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Asymptotic expansions for harmonic functions
at conical boundary points

Dennis Kriventsov and Zongyuan Li

Abstract. We prove three theorems about the asymptotic behavior of solutions u to
the homogeneous Dirichlet problem for the Laplace equation at boundary points with
tangent cones. First, under very mild hypotheses, we show that the doubling index
of u either has a unique finite limit, or goes to infinity; in other words, there is a well-
defined order of vanishing. Second, under more quantitative hypotheses, we prove
that if the order of vanishing of u is finite at a boundary point 0, then locally u.x/ D
jxjm .x=jxj/ C o.jxjm/, where jxjm .x=jxj/ is a homogeneous harmonic func-
tion on the tangent cone. Finally, we construct a convex domain in three dimensions
where such an expansion fails at a boundary point, showing that some quantitative
hypotheses are necessary in general. The assumptions in all of the results only involve
regularity at a single point, and in particular are much weaker than what is necessary
for unique continuation, monotonicity of Almgren’s frequency, Carleman estimates,
or other related techniques.

1. Introduction

Let � � Rd be an open set with 0 2 @�, and consider solutions to the Dirichlet problem
for the Laplace equation:

(1.1)

´
�u D 0 in � \ B2;
u D 0 on @� \ B2:

A basic question here is to understand the asymptotic behavior of u near 0.
If, instead, 02�were an interior point, the asymptotic behavior would be clear: as u is

analytic, locally it can be decomposed as a leading-order homogeneous harmonic function
plus higher order terms. Similar expansion formulas hold in related contexts where analyt-
icity is not available, including second-order or higher order elliptic equations with C1;
Lipschitz, or Hölder coefficients; see [3, 4, 9].

Below, we will use the term asymptotic expansion loosely for representations of the
form u D v C w, where v has homogeneity m (or more generally, growth at least g.jxj/
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for some nondecreasing g � 0) and w D o.jxjm/ (or more generally, w D o.g.jxj// for
the same modulus g), possibly with more quantitative control over w.

At boundary points (so 0 2 @�), Felli and Ferrero proved in [5] that if � is a C 1;˛

perturbation of a regular cone, then suitable rescalings of the solution (i.e., blow-ups)
converge to a non-trivial homogeneous harmonic function on that cone; this gives an
expansion of u to leading order. In [14], Kenig and Zhao show that when @� 2C 1;Dini,
the expansion formula u.x/ D PN .x/ C O.jxj

N
R jxj
0
Q!/ holds, where Q! is a modified

modulus of continuity for the unit normal and PN is a degree N homogeneous harmonic
polynomial on RdC that vanishes on the boundary (choosing coordinates so that @RdC is
tangent to @� at 0).

In these results,� is required to have certain smoothness in a neighborhood of 0. Here,
we aim to discuss rougher domains under only one-point conditions, i.e., conditions which
do not imply any smoothness except possibly at the single point 0 itself. It is clear that at
least some assumptions are necessary at 0 to have any hope for solutions to (1.1) to have
asymptotic expansions. Indeed, assuming � is regular for the Dirichlet problem, consider
a Green’s function G for � with some fixed pole: if G.x/ D jxjm .x=jxj/C o.jxjm/,
then � D ¹G.x/ > 0º is tangent to the cone � D ¹x W  .x=jxj/ > 0º at the origin. With
this in mind, we begin with the following definitions.

Definition 1.1. Given an open cone � , the point 02 @� is called conical with cone � if,
in Hausdorff distance,

r�1 dist.@� \ Br ; @� \ Br /! 0:

Here, a cone � is a set invariant under dilation, i.e., r� D � for all r > 0.

For an open cone � , let

.0 </ �1;� � �2;� � � � � � �k;� � � � �

be the sequence of Dirichlet eigenvalues (counting multiplicity) of the Laplace–Beltrami
operator on the cross-section � \ B1. Also, let  k;� be the associated eigenfunction,
and let

(1.2) mk;� D
�.d � 2/C

p
.d � 2/2 C 4�k;�

2
.> 0/

be the characteristic constant. Then all homogeneous harmonic function on � vanishing
on @� can be written as jxjmk;� �k;� .x=jxj/. Below, the dependence on � will be omitted
when there is no ambiguity. It is worth mentioning that in Definition 1.1, � is allowed to
be RdC, so in particular every boundary point of a C 1 domain is conical.

If one wants to find an asymptotic expansion for u at 0, the first step is to identify the
homogeneity of the leading-order term. On cones, convex domains, or sufficiently regular
perturbations of them, the Almgren frequency gives a way to read off this homogeneity
(this will be discussed below), but in this more general configuration, it is unclear that the
frequency is even approximately monotone. Instead, taking zero extensions of solutions
to (1.1) outside �, define the doubling index

(1.3) Nu.r/ WD

¬
@Br
juj2¬

@Br=4
juj2
�
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We say that u is asymptotically homogeneous if the limit of Nu.r/ at r D 0 exists in
the extended real number sense (limr&0 Nu.r/2 Œ0;1�). The doubling index is a rough
measure of homogeneity, and the existence of this limit means that there is a unique
leading-order homogeneity for u in this rough sense. Our first theorem states that u is
asymptotically homogeneous if 0 is a conical point, under a smoothness assumption on � .

Assumption 1.2. The open cone � is graphical, in the sense that � D ¹.x0; xn/ W xn >
g.x0/º for some choice of coordinates and function gWRd�1 ! R, and g is Lipschitz.

Theorem 1.3. If 0 2 @� is conical with cone � satisfying Assumption 1.2, then u is
asymptotically homogeneous and, moreover,

lim
r&0

Nu.r/ D 4
2m for some m2 ¹m�k;� º

1
kD1 [ ¹C1º;

where m�k;� are the characteristic constants of � defined in (1.2).

Note that Theorem 1.3 does not exclude the possibility that u vanishes to infinite order
near 0, i.e., that the strong unique continuation property (SUCP) fails. In the literature,
(SUCP) is known to hold when� is regular enough. See Remark 1.7 below for discussion.
Assumption 1.2 can be considerably relaxed, for example to a uniform Lebesgue density
condition on �c , but we do not attempt maximal generality here: in fact, this theorem is
interesting even when � D RdC.

Theorem 1.3 suggests that one might consider Almgren blow-ups of u, the rescaled
functions

(1.4) ur .y/ D
u.ry/

.
¬
@Br\�

juj2/1=2
,

to attempt to find the leading order term in an asymptotic expansion for u, even when
the Almgren frequency is unavailable. Indeed, the boundedness of Nu.r/ is enough to
guarantee the compactness of ¹urºr2.0;1/ in L2. Hence, along subsequences rk ! 0, ur
converges. Moreover, limr&0Nu.r/ D 4

2m <1 guarantees that the blow-up limit has to
be a homogeneous harmonic function with homogeneity m. When d D 2, one can further
obtain the uniqueness of the blow-up limit simply due to the fact that the eigenvalues �k;�
are all simple.

When d � 3, however, it turns out we require additional assumptions. First, the fol-
lowing essentially says that @� is C 1;˛ at 0 only, but with an arbitrary tangent object.

Definition 1.4 (˛-conical). Given an open cone � , we say 0 is ˛-conical with cone � if
there exists ˛ > 0 such that

(1.5) lim sup
r!0

r�.1C˛/ dist.@� \ Br ; @� \ Br / <1:

We will also need to assume some smoothness of the limit cone � .

Assumption 1.5. The open cone � is graphical in the sense of Assumption 1.2 with the
graph g being either C 1;Dini or semiconvex on Sn�1.

Recall that a function g is called semiconvex if there exists a constant C > 0 such that,
locally, g.x C y/ � 2g.x/C g.x � y/ � �C jyj2. This is equivalent to say that � \ @B1
satisfies a uniform exterior ball condition, cf. Theorem 3.9 in [18].
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Theorem 1.6. Let��Rd with 02 @� and d � 3. If 0 is ˛-conical with cone � satisfying
Assumption 1.5, then for any non-trivial solution u to (1.1), either limr!0Nr .u/ D C1,
or there exist a Laplacian eigenfunction  �N;� on � , C ¤ 0, and ˛0 2 .0; 1/ such that

(1.6) u.x/ D C jxjmN;� �N;� .x=jxj/C w.x/; where jw.x/j � C jxjmN;�C˛0 ˛:

Recall that the characteristic constant is defined in (1.2). It is easy to see that (1.6)
implies .

¬
@Br\�

juj2/1=2 � rmN;� and ur ! C jxjmN;� N;� in L2. That is, the Almgren
blow-up of u is also unique. However, the opposite is not true: (SUCP) or even the validity
of Almgren’s monotonicity formula combined with the uniqueness of blow-ups do not
imply an expansion formula in the format of (1.6). This can be seen from the harmonic
function Re.x C iy/= log.x C iy/ on R2.

In [14], an expansion formula was proved when @�2C 1;Dini. It is interesting to ask
whether our ˛-conical condition can be relaxed to a Dini rate.

Remark 1.7. For @� 2 C 1;Dini (see [1]) or convex (see [2]), it is known that (SUCP)
holds at every boundary point. For @�2C 1, combining our Theorem 1.3 and Lemma 4.1
in [20], it can be shown that (SUCP) holds at almost every boundary point. See also [21]
for discussion on quasiconvex Lipschitz domains. At a point where (SUCP) holds, any
non-trivial solution must vanish to at most finite order, and in particularNr .u/ is bounded.
On the other hand, the assumptions in Theorem 1.6 are weaker than any known criterion
for (SUCP) even if the cone � is a half-space, as far as we are aware. That is, assuming
(SUCP), the expansion formula only requires the regularity of @� at one point.

Remark 1.8. We expect similar results as Theorem 1.6 hold for operators with scaling
subcritical coefficients and lower order terms, i.e.,

Lu D Di .aijDjuC zWiu/CWiDiuC V u;

with aij 2C ", zWi ;Wi 2LdC"loc and V 2Ld=2C"loc . See [4] for an interior version which works
for higher order elliptic equations with subcritical lower order terms.

One may naturally ask whether the extra convergence rate condition in (1.5) is neces-
sary. We construct a convex domain � � R3 for which 02 @� is conical with cone R3C,
but for which no expansion (1.6) exists for some u:

Theorem 1.9. There exist a convex domain � � R3 with 0 2 @� being conical with
tangent cone R3C D ¹.x; y; z/ W z > 0º, a solution u to (1.1), and a sequence rk ! 0, such
that

u.r2kC1�/

.
¬
@Br2kC1

juj2/1=2
! 4

p
2=� xz and

u.r2k �/

.
¬
@Br2k

juj2/1=2
! 4

p
2=� yz:

The point here is that r�1.�\Br /!BC1 slowly, with cross-sections @Br \� resem-
bling ellipses with oscillating eccentricity. Then a suitably chosen u can be made to have
traces uj@Br “rotate" between two second eigenfunctions of the Lapacian on @Br \ R3C,
as r decreases.

Note that when � is convex, every point x0 2 @� is conical. Indeed, .� � x0/=r
always converges monotonically to a cone �x0 . Moreover, Almgren’s frequency is mono-
tone on convex domains ([2]), so

Nu.r/& Nu.0/ D 4
2mN;�x0 for some N 2N; as r & 0:
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So the conclusion of Theorem 1.3 for convex� holds, and in the following stronger form:
limr&0 Nu.r/ <1 and (SUCP) is valid. Therefore, the example of Theorem 1.9 shows
that to have an asymptotic expansion in the weakest possible sense (uniqueness of limits
for the Almgren rescalings ur ), it is not sufficient to have monotonicity of the frequency,
or (SUCP), or even monotonicity in the convergence of �=r to its tangent cone; some
sufficiently summable rate of convergence appears to be needed.

Similarly, it follows that the Dini condition in [14] cannot be replaced by even very
strong geometric assumptions like convexity. In the recent work [15], counterexamples are
constructed of barely non-C 1;Dini domains admitting solutions to the Dirichlet problem
with large singular sets, but in those examples u still has unique Almgren blow-ups.

It is worth emphasizing that in both Theorems 1.6 and 1.3, we only assume one-point
conditions at 0. Compared to earlier results in [5, 14], we do not need any smoothness
condition on @� or its normal direction n in a neighborhood. We hope the methodology
here could be useful when discussing asymptotic and unique continuation properties of
harmonic functions on rough domains.

The paper is organized as follows. In Section 2, we prove Theorem 1.3. After collect-
ing some preliminary facts about Green’s functions on cones in Section 3, we provide the
proof of Theorem 1.6 in Section 4. Finally, in Section 5, we discuss the uniqueness of
Almgren blow-ups on � � R2, and construct the example in Theorem 1.9.

2. Asymptotic homogeneity at a conical point

In this section, we prove Theorem 1.3. The key idea is to combine a compactness argument
motivated by [16,17] and a rigidity result. Besides the usual doubling indexNu.r/ defined
in (1.3), the following version using averages over full balls rather than spheres will also
be useful:

zNu.r/ WD

¬
Br
juj2¬

Br=2
juj2
�

If there is no ambiguity, we suppress the subscript: N D Nu and zN D zNu. It is worth
noting that if u is harmonic, u2 is subharmonic, and so from the mean value property both
N; zN � 1. The following lemma shows that N and zN are comparable at adjacent scales.

Lemma 2.1. Let v be a harmonic function on B1 � Rd , d � 2, with v 6� 0 on any neigh-
borhood of 0. Then, for some C D C.d/,

zNv.r/�CNv.r/ and Nv.s/�C
Y3

jD0
zNv.2

1�j r/; 8r 2 .0;1=2/ and s 2 .r=2; r/:

Proof. For the first inequality, by definition,

(2.1) zNv.r/ D

¬
Br
jvj2¬

Br=2
jvj2
� C

¬
Br
jvj2¬

Br=2nBr=4
jvj2
�

By the mean value property of v2, which is subharmonic, we obtain

RHS of (2.1) � C

¬
@Br
jvj2¬

@Br=4
jvj2
D CNv.r/:
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The second inequality can be proved similarly:

Nv.s/ D

¬
@Bs
jvj2¬

@Bs=4
jvj2
� C

¬
B2rnBr

jvj2¬
Br=8
jvj2

� C

¬
B2r
jvj2¬

Br=8
jvj2
D C

3Y
jD0

zNv.2
1�j r/:

The rigidity result is given as follows.

Lemma 2.2. Let � � Rd , d � 2, be a cone with vertex at 0 satisfying Assumption 1.2,
and let v be a non-trivial solution to´

�v D 0 in � \ B2;
v D 0 on @� \ B2:

Then both Nv and zNv are non-decreasing for r 2 .0; 2/. Moreover, if either Nv.t/ D
Nv.s/ or zNv.t/ D zNv.s/ for some t > s, then u is homogeneous of degree mj;� with a
characteristic constant defined in (1.2). In particular, Nv � 16mj;� and zNv � 4mj;� .

The proof of Lemma 2.2 is standard, by computing the derivatives of the (generalized)
Almgren frequency functions. See Appendix B. The rest of the section is devoted to the
proof of Theorem 1.3. From now on, let � be the tangent cone of� at 0, and letmj be the
characteristic constant defined in (1.2).

2.1. Step 1

We prove that lim infr!0Nu.r/ <1 implies (SUCP). More precisely, we show

(2.2) lim sup
r!0

Nu.r/ � C.lim inf
r!0

Nu.r//
4:

For this, we first prove the following:

Claim. For any number � … ¹mj ºj , there exists r0 D r0.d;�;�/, such that zNu.r/ � 22�

implies zNu.r=2/ � 22� for all r 2 .0; r0/.

Proof of the Claim. We argue by contradiction. Suppose the contrary, that there exist solu-
tions uk 2H 1 to (1.1) and rk ! 0, such that zNuk .rk/ � 2

2�, zNuk .rk=2/ > 2
2�. Let

zuk.y/ WD
uk.rky/� ¬
Brk
jukj2

�1=2 �
Then we have

�zuk D 0 in r�1k .� \ Brk /; zuk D 0 on B1 n r�1k .� \ Brk /; and
−
B1

jzukj
2
D 1:

By the Caccioppoli inequality and the Sobolev embeddings, for all "2 .0; 1/,

(2.3) zuk ! u1 weakly in L2.B1/;H 1.B1�"/; and strongly in L2.B1�"/;

passing to a subsequence. Since � is conical at 0, we claim that

(2.4) �u1 D 0 in B1 \ � and u1 D 0 on @� \ B1:
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To see that u1 is harmonic, take any test function ' 2C1c .B1 \ �/. From Defini-
tion 1.1, for sufficiently large k, we have supp.'/� r�1

k
.�\Brk /. Combining with (2.3),

we obtain
R
rzuk � r' D 0. Passing k !1 and noting that ' is chosen arbitrarily, we

obtain�u1 D 0 in B1 \ � . For the boundary condition, we first note that u1 D 0 a.e. on
B1 n N� by recalling the L2.B1�"/ strong convergence. The desired zero boundary value
now follows from the fact that � is Lipschitz.

Note that from (2.3), we have−
B1

ju1j
2
� lim inf

k

−
B1

jzukj
2
D 1 and

−
Br

ju1j
2
D lim

k

−
Br

jzukj
2; 8r < 1;

In particular,
¬
B1=2
ju1j

2 � 22� > 0, so u1 6� 0 on � . Moreover,

zNu1.1/ � lim inf
k

zNzuk .1/ � 2
2� and zNu1.1=2/ D lim

k

zNzuk .1=2/ � 2
2�:

From Lemma 2.2, this implies zNu1.r/�4
m for somem2¹mj ºj , and in particular,�Dm.

But we have assumed � … ¹mj º, which is a contradiction. Hence, the claim is proved.

Using the Claim, now we prove (2.2). Let N1 D lim infNu.r/. Since N1 <1, we
can find a sequence of rk ! 0 such that Nu.rk/ � 2N1 for each k. Using Lemma 2.1,
we can deduce that zNu.rk/ � CNu.rk/ � 2CN1. Pick a small " � 0 such that � WD
log4.2CN1 C "/ … ¹mj ºj , then fix an rk < r0 with r0 given in the claim with such �.
Now, applying the claim iteratively, we obtain that for all j � 0, zNu.2�j rk/� 2CN1C ".
Finally, for all sufficiently small r , we can find some j such that r 2 .2�j�2rk ; 2�j�1rk/.
Using the second inequality in Lemma 2.1, we obtain Nu.r/ � C

Q3
iD0
zNu.2

�irk/ �

C.2CN1 C "/
4 � CN 4

1, noting that " can be chosen arbitrarily close to zero.

2.2. Step 2

We now are in a position to perform a more precise version of the argument in Step 1,
this time using N in place of QN . Step 1 is used to improve compactness for the less well-
behaved quantity N .

Lemma 2.3. Suppose lim infr!0Nu.r/ <1. Then for any � … ¹mj º, there exists some
r0 D r0.d;�;�;u/ such that Nu.r/ � 42� implies Nu.� r/ � 42� for any r < r0 and any
� 2 Œ1=16; 1=4�.

Proof. We prove this by contradiction. Suppose the contrary, that there exist sequences
rk ! 0 and �k 2 Œ1=16; 1=4� such that

(2.5) Nu.rk/ � 4
2� and Nu.�krk/ > 4

2�:

Recall from Step 1 that, for all large enough k,

(2.6) Nu.4rk/ � 2 lim sup
r!0

Nu.r/ � 2C.lim inf
r!0

Nu.r//
4
D 2CM 4;

where we denote M WD lim infr!0Nu.r/. Let

uk.y/ WD
u.rky/� ¬

@Brk=4
juj2

�1=2 �
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Then −
@B1=4

jukj
2
D 1 and

´
�uk D 0 in .�=rk/ \ B4;
uk D 0 on B4 n .�=rk/:

Combining with (2.5) and �.uk/2 � 0, we obtain
¬
@B1
jukj

2 � 42�
¬
@B1=4

jukj
2 D 42�.

Hence, also noting (2.6), we reach

(2.7)
−
B4

jukj
2
�

−
@B4

jukj
2
� 2CM 4

−
@B1

jukj
2
� 2CM 442�:

From the Caccioppoli inequality and the Sobolev embedding, passing to a subsequence,
for all "2 .0; 4/,

uk ! u1 weakly in L2.B4/;H 1.B4�"/; strongly in L2.B4�"/:

Passing to further subsequences, we can also obtain that �k ! �1 2 Œ1=16; 1=4� and

(2.8) uk ! u1 strongly in L2.@B�1/; L
2.@B�1=4/; L

2.@B1/; L
2.@B1=4/:

Hence,

(2.9) Nu1.1/ D

¬
@B1
ju1j

2¬
@B1=4

ju1j2
D lim
k!1

¬
@B1
jukj

2¬
@B1=4

jukj2
D lim
k!1

Nu.rk/ � 4
2�:

Here, in the last inequality we used (2.5). Next, we show

(2.10)
−
@B�k

jukj
2
!

−
@B�1

ju1j
2 and

−
@B�k=4

jukj
2
!

−
@B�1=4

ju1j
2:

For the first limit, we estimate

(2.11)
ˇ̌̌ −
@B�k

jukj
2
�

−
@B�1

jukj
2
ˇ̌̌
D

ˇ̌̌ −
@B1

.juk.�kx/j
2
� juk.�1x/j

2/ d�x

ˇ̌̌
D

ˇ̌̌ −
@B1

Z �k

�1

d

dr
juk.rx/j

2 dr d�x

ˇ̌̌
� CkukkL1.B1=4/

ˇ̌̌ −
@B1

Z �k

�1

jruk.rx/j dr d�x

ˇ̌̌
:

From the mean value property for u2
k

(which is subharmonic) and the inequality (2.7), we
have kukkL1.B1=4/ � C�. Hence,

RHS of (2.11) � C
ˇ̌̌ −
@B1

Z �k

�1

jruk.rx/j dr d�x

ˇ̌̌
� C

ˇ̌̌ Z �k

�1

−
@Br

jrukj d� dr
ˇ̌̌
� CkrukkL2.B1=4/

p
j�k � �1j ! 0:

The last step used that ruk is uniformly bounded in L2.B1=4/. Combining with (2.8), we
haveˇ̌̌ −

@B�k

jukj
2
�

−
@B�1

ju1j
2
ˇ̌̌

�

ˇ̌̌ −
@B�k

jukj
2
�

−
@B�1

jukj
2
ˇ̌̌
C

ˇ̌̌ −
@B�1

jukj
2
�

−
@B�1

ju1j
2
ˇ̌̌
! 0:
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This proves the first convergence in (2.10). The proof for the second convergence is almost
identical. From (2.10) and (2.5),

Nu1.�1/ D

¬
@B�1

ju1j
2¬

@B�1=4
ju1j2

D lim
k!1

¬
@B�k
jukj

2¬
@B�k=4

jukj2
D lim
k!1

Nu.�krk/ � 4
2�:(2.12)

As before, u1 satisfies (2.4). From (2.9), (2.12), and the rigidity in Lemma 2.2, we must
have Nu1 � 16

m for some m2 ¹mj º. Hence, � D m, a contradiction.

2.3. Step 3: Conclusion of the proof of Theorem 1.3

We may as well assume that lim infNu.r/ < C1. Recall that Nu.r/ � 1 for all r , and let
m WD 2�1 log4.lim infr!0Nu.r//: We have m2 Œ0;1/.

Now, we find a sequence of positive numbers "k ! 0 such that mC "k … ¹mj º. For
each k, we further find a small enough rk with Nu.rk/ < mC "k and rk < r0.d;mC "k ;
�; u/ (where r0 is given in Lemma 2.3). Applying Lemma 2.3 iteratively, we have that
supr�rk=4Nu.r/ � 4

2.mC"k/, and so in particular lim supr!0Nu.r/ � 4
2.mC"k/. Sending

k !1,
lim sup
r!0

Nu.r/ � 4
2m
D lim inf

r!0
Nu.r/:

This implies, passing to a subsequence, ur D u.r �/=.
¬
@Br
juj2/1=2 converges to a non-

trivial, homogeneous harmonic function onB1 \� , with the homogeneitym. This implies
that m must be one of the characteristic constants defined in (1.2).

3. Eigenvalues, eigenfunctions, and Green’s functions on cones

Before proving Theorem 1.6. we make some preparatory remarks concerning the Green’s
function on the limit cone. Let � � Rd be a cone with vertex at the origin and let † D
� \ @B1 be its spherical cross-section.

3.1. Eigenvalues and eigenfunctions of spherical cross-sections

Let �1 � �2 � � � � �k � � � � be the Dirichlet eigenvalues (counting multiplicity) of the
spherical cross-section † and let ¹ kº1kD1 be a corresponding basis of eigenfunctions,
orthonormal in L2. We have the following properties.

Lemma 3.1. For each q > .d � 1/=4, there exists C D C.q;d;†/ > 0, independent of k,
such that

k kkL1.†/ � C�
q

k
:

Proof. Applying the local maximum principle to v D j kj, which is a weak subsolution
of ��Sn�1v � �kv, in charts (see, e.g., Theorem 8.17 in [7]),

k kkL1.†/ � C Œk�k kkL2q C k kkL2 �

noting 2q > .d � 1/=2. Then

k�k kkL2q � �kk kk
.q�1/=q
L1 k kk

1=q

L2
� "k kkL1 C C"�

q

k
;
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using that k kkL2 D 1. Choosing " small and reabsorbing the first term gives

k kkL1.†/ � C�
q

k
:

Lemma 3.2. For some C D C.d/, �k � 1
C
k2=.d�1/.

Proof. Since † � @B1, we have �k � �k.Sd�1/, where �k.Sd�1/ is the kth eigenvalue
of Laplacian operator on a .d � 1/-dimensional unit sphere. We know that ¹�k.Sd�1/ºk
contains exactly one zero and

�
dCj�1
d�1

�
�
�
dCj�3
d�1

�
� j d�2 copies of j.j C d � 2/, for

j D 1; 2; : : : Hence, counting all eigenvalues up to the size j.j C d � 2/� j 2, we reach

�k �
1

C

�� k
C

�1=.d�1/
� 1

�2
�
1

C
k2=.d�1/:

As a direct corollary of Lemma 3.2,

(3.1)
1X
jD1

�
p
�k <1; 8� 2 .0; 1/:

3.2. Green’s function on a cone and orthogonal expansions

From standard elliptic regularity theory, the Green’s function G.x; y/ exists on an arbi-
trary Lipschitz cone � . More precisely, for every x 2� \ B1, f; gi 2L1.� \ B1/, and
h2C 0c .@� \ B1/, the unique continuous weak solution to8<: �u D f C @igi in � \ B1;

u D h on @.� \ B1/;
u! 0 as jxj ! 1

can be represented by

u.x/ D

Z
�

G.x; y/f .y/ dy �

Z
�

@

@yi
G.x; y/gi .y/ dy C

Z
@�

h.y/
@

@ny
G.x; y/ d�y :

See, for instance, Theorem 1.1 in [8] and [13]. See also [12] for discussions on unbounded
domains. The following properties are standard: symmetry G.x; y/ D G.y; x/; scaling
G.�x; �y/ D �2�dG.x; y/; and a pointwise bound

(3.2) G.x; y/ � C
1

jx � yjd�2
�

Furthermore, we have the following derivative bounds when � is regular enough.

Lemma 3.3. Suppose that � satisfies Assumption 1.5. Then for x; y 2�; x ¤ y, we have

jryG.x; y/j � C .jyj
�1
C jx � yj�1/ jx � yj2�d ;(3.3)

jryG.x; y/j � Cı.x/ .jxj
�1
C jx � yj�1/ .jyj�1 C jx � yj�1/jx � yj2�d ;(3.4)

where ı.x/ D dist.x; @�/.
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The proof is standard, and it is based on scaling, the point-wise bound (3.2), and a
local Lipschitz estimate coming from the smoothness of†. For completeness, we provide
a proof in Appendix A. Throughout the rest of the paper, we denote

Ki .x; y/ WD
@G.x; y/

@yi
for x; y 2 �; x ¤ y;

k.x; y/ WD
@G.x; y/

@ny
for x 2�; y 2 @� n ¹0º:

From Lemma 3.3, we know that Ki .�; y/; k.�; y/ 2 L1loc.Bjyj/ are harmonic functions,
which have orthogonal expansions

Ki .x; y/ D

1X
jD1

b
.j /
i .y/ jxjmj  j .x=jxj/ and K.x; y/ D

1X
jD1

b.j /.y/ jxjmj  j .x=jxj/;

where

b
.j /
i .y/ D

R
@B2jyj=3\�

Ki .z; y/jzj
mj j .z=jzj/ dzR

@B2jyj=3\�
.jzjmj j .z=jzj//2 dz

,

b.j /.y/ D

R
@B2jyj=3\�

k.z; y/jzjmj j .z=jzj/ dzR
@B2jyj=3\�

.jzjmj j .z=jzj//2 dz
�

Here, 2=3 could have been any fixed number smaller than 1. By scaling,

(3.5) b
.j /
i .y/ D jyj1�d�mj b

.j /
i .y=jyj/ and b.j /.y/ D jyj1�d�mj b.j /.y=jyj/:

Denote the partial sums as

(3.6)

K
.N/
i .x; y/ D

X
j�N

b
.j /
i .y=jyj/jyj1�d�mj jxjmj j .x=jxj/;

k.N/.x; y/ D
X
j�N

b.j /.y=jyj/jyj1�d�mj jxjmj j .x=jxj/:

We have the following estimates.

Lemma 3.4. Suppose that � satisfies Assumption 1.5 and that b.j /i and b.j / are defined
as above. Then for some C D C.d;†/,

(3.7) jb
.j /
i .y=jyj/j C jb.j /.y=jyj/j � C .�j /

d=4 .3=2/mj ; j D 1; 2; : : : :

Furthermore, we have remainder estimates: for some C D C.d;†;N /,

(3.8)
jKi .x; y/ �K

.N/
i .x; y/j � C

jxjmNC1

jyjmNC1Cd�1
; 8y 2� n ¹0º; x 2� \ Bjyj=2;

jk.x; y/ � k.N/.x; y/j � C
jxjmNC1

jyjmNC1Cd�1
; 8y 2 @� n ¹0º; x 2� \ Bjyj=2:
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Here, (3.7) is not sharp in general, but as it is enough for later use, we do not pursue
more precise bounds.

Proof. We only prove forKi and b.j /i as the computation for k and b.j / is almost identical.
For (3.7), by the scaling property (3.5) and k j kL2 D 1,

jb
.j /
i .y=jyj/j D .3=2/�1CdCmj jb

.j /
i .3y=.2jyj//j

D .3=2/�1CdCmj
ˇ̌̌ Z
�\@B1

Ki .w; 3y=.2jyj//  j .w/ dw
ˇ̌̌

� .3=2/�1CdCmj C .1=2/1�d k j kL1 � C �
d=4
j .3=2/mj :

Here we have also used the point-wise bound (3.3) and Lemma 3.1 with q D d=4. Next,
we prove (3.8):

jKi .x; y/ �K
.N/
i .x; y/j D

ˇ̌̌ 1X
jDNC1

b
.j /
i .y=jyj/ jyj1�d�mj jxjmj  j .x=jxj/

ˇ̌̌
�

jxjmNC1

jyjmNC1Cd�1

1X
jDNC1

jb
.j /
i .y=jyj/j.jxj=jyj/mj�mNC1k j kL1

� C
jxjmNC1

jyjmNC1Cd�1

1X
jDNC1

.3=2/mj .1=2/mj�mNC1 �
d=2
j :

In the last inequality, we used (3.7), jxj < jyj=2, and Lemma 3.1. Hence,

jKi .x; y/ �K
.N/
i .x; y/j � C

jxjmNC1

jyjmNC1Cd�1

1X
jDNC1

.3=4/mj �
d=2
j

� C
jxjmNC1

jyjmNC1Cd�1

1X
jDNC1

.3=4/mj�.d=2/ log4=3.�j /

� C
jxjmNC1

jyjmNC1Cd�1

1X
jDNC1

.3=4/
p
�j =2

� C
jxjmNC1

jyjmNC1Cd�1

1X
jD1

.3=4/
p
�j =2 D C

jxjmNC1

jyjmNC1Cd�1
�

Here we have also used (1.2) and (3.1). The lemma is proved.

4. Proof of Theorem 1.6

In this section, we prove Theorem 1.6. From Assumption 1.5, we first fix coordinates
x D .x0; xd / such that the tangent cone � at the origin can be locally represented by
¹xd >‰.x

0/º for some 1-homogeneous function‰. By (1.5), we know that for sufficiently
large C , locally,

(4.1) C WD ¹.x0; xd / W xd > ‰.x
0/C C jx0j1C˛º � �:
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The following De Giorgi-type estimate plays a key role in our proof.

Lemma 4.1. Assume� together with its tangent cone at the origin � satisfy assumptions
of Theorem 1.6, and let C be defined as above. Let u 2 H 1

loc satisfy

(4.2) @i .aij @ju/ D 0 in � \ B2 and u D 0 on @� \ B2;

with bounded and measurable coefficients aij D aij .x/ satisfying, for some �;ƒ > 0,

(4.3) aij �i�j � � j�j
2; 8� 2Rd n ¹0º; and jaij j � ƒ:

Then there exists a constant ˛0 2 .0; 1/, such that for all small enough r > 0,

sup
Br\.�nC/

juj � Cr˛˛0 sup
B2r\�

juj:

Proof. Fix a point x 2Br \ .� n C/. From the definition of C and (1.5), there exists a
constant C1 > 0, such that for all sufficiently small r , we have

dist.@� \ Br ; @C \ Br / � C1 r1C˛

and

(4.4) jBs.x/ \�
c
j � c0 jBsj; 8s 2 .10C1 r

1C˛; r=2/:

Now, from u D 0 on @�, B10C1r1C˛ .x/ \ @� ¤ ;, and the De Giorgi improvement of
oscillation lemma, we have that, for some ˛0 2 .0; 1/,

ju.x/ � 0j � osc�\B10C1r1C˛ .x/.u/ � C
�10C1 r1C˛

r=2

�˛0
sup

Br=2.x/

juj � Cr˛˛0 sup
B2r

juj:

See for instance Theorem 8.27 in [7]. Note that in the proof of Theorem 8.27 in [7], the
exterior cone condition can be replaced by the exterior measure condition. Moreover, here
we only need the estimate up to the scale C1r1C˛ instead of zero, and at these scales, the
exterior measure condition is true due to (4.4).

Proposition 4.2. Let � and � satisfy assumptions of Theorem 1.6, and in addition, for
some small R > 0, � \ BR � � \ BR. Let mN < mNC1 be two distinct characteristic
constants of � . Suppose that u2H 1

loc satisfies (4.2) with coefficients satisfying (4.3) and

(4.5) jaij .x/ � ıij j D O.jxj
ˇ /; as x ! 0

for some ˇ > 0. Then, if u.x/ D O.jxj�/ for some �2 ŒmN ; mNC1/, we have

(4.6)

u.x/ D C jxjmN N

� x
jxj

�
C w.x/ in �;

with
� −

Br\�

jwjp
�1=p

D O.rmin¹�C˛0 min¹˛;ˇº;mNC1º/;

where p > 2d=.d � 2/ and ˛0 2 .0; 1/ are constants depending only on .�; d; �; ƒ/.
Furthermore, when �2 .mN ; mNC1/, we must have C � 0.



D. Kriventsov and Z. Li 14

Assuming Proposition 4.2, we prove Theorem 1.6.

Proof of Theorem 1.6. From Theorem 1.3, limr!0Nu.r/2 .0;1� exists. Clearly, we only
need to consider the case of limr!0 Nu <1. We claim that there exists a characteristic
constant mN such that

(4.7) ju.x/j D O.jxjmN / and ju.x/j ¤ O.jxjmNC1/:

Indeed, if Nu.r/ �M , we have
¬
B
2�k

u2 � cM�k from Lemma 2.1, and so

kuk2L1.Br / �

−
Br

u2 � crˇ

for some ˇ > 0. This shows that juj ¤ O.jxj�/ for some � <1. We still need to show
u D O.jxjm1/, which can be done by constructing a barrier function. By (1.5), we know
that for sufficiently large C , locally,

� � C1 WD ¹.x
0; xd / W xd > ‰.x

0/ � C jx0j1C˛º:

Now for sufficiently small R > 0, let u1 2H 1
loc be the solution to

�u1 D 0 in C1 \ BR; u1 D 0 on @C1 \ BR; u1 D 1 on C1 \ @BR;

where the boundary condtions are understood in the sense of non-tangential limit. Such
solution exists since C1 \ BR is a Lipschitz domain. Now, C1 is a “C 1;˛ perturbation” of
the cone � , which verifies the assumptions in Theorem 1.1 of [5]. Hence, for some non-
trivial homogeneous harmonic function Pm1 of degreem1, we have .0 </u1 D Pm1.x/C
o.jxjm1/, noting that m1 is the characteristic constant associated with the leading eigen-
value of the tangent cone � . Now, since�\BR � C1 \BR by choosingR small enough,
by comparison, we have juj � u1 D O.jxjm1/. Combining these, we have proved (4.7).

Now we prove (4.6). Take a C 1;˛ change of variables

. Qx0; Qxd / D ˆ.x
0; xd / D .x

0; xd � C jx
0
j
1C˛/;

where C is the number given in (4.1). It is easy to see that z� WD ˆ.�/ is still ˛-conical
with the tangent cone z� WDˆ.C/, which satisfies Assumption 1.5. More importantly, now
the tangent cone z� is locally contained in z�.

In the new coordinates,
zu WD u ıˆ�1

satisfies (4.2) locally on z�, with coefficients verifying all the conditions in Proposition 4.2.
Moreover, we still have zu D O.j QxjmN / since ˆ is locally a diffeomorphism. Applying
Proposition 4.2 with � D mN to Qu on z�, we obtain a homogeneous harmonic function
P. Qx/ D C1j Qxj

mN N . Qx=j Qxj/ on z� , such that

(4.8)
� −
z�\Br

j Qu. Qx/ � P. Qx/jp d Qx
�1=p

� Crmin¹mNC˛0˛;mNC1º:

We first show the leading term P 6� 0, i.e., C1 ¤ 0. Suppose the contrary, that is, C1 D 0.
Again from the fact that ˆ is locally a diffeomorphism, by Lemma 4.1, we have

k Quk
L1.Br\.e�nz�// � CkukL1.BCr\.�nC// � Cr˛˛0 sup

B2Cr

juj � CrmNC˛˛0 :
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Combining this, (4.8), and a local maximum principle, we reach ju.x/j D O.jxj�1/,
where �1 WD min¹mN C ˛0˛;mNC1º. If �1 D mNC1, this is a contradiction. Otherwise,
repeating the above procedure, but now applying Proposition 4.2 with � D �1 instead
of mN , we can further improve the vanishing order of u, and in finitely many steps reach
juj D O.jxjmNC1/, which is again a contradiction. Hence, C1 ¤ 0.

Set
w.x/ D u.x/ � P.x/;

where u and P are extended by zero outside � and � , respectively. We are left to show

kwkL1.Br / � Cr
min¹mNC˛0˛;mNC1º:

Note that both u and P satisfy assumptions of Lemma 4.1 (for P , we take�D �). Hence,

sup
BrnC

jwj � sup
BrnC

.juj C jP j/ � CrmNC˛˛0 :

Here, we also used u D 0 on Br n� and P D 0 on Br n � . To bound w on Br \ C , we
transform (4.8) back to x-coordinates and apply the triangle inequality. This gives� −

C\Br

ju.x/ � P.x/jp dx
�1=p

�

� −
C\Br

ju.x/ � P ıˆ.x/jp dx
�1=p

C

� −
C\Br

jP.x/ � P ıˆ.x/jp dx
�1=p

� C
� −
z�\BCr

ju ıˆ�1 � P jp
�1=p

C sup
Br\C

.jx �ˆ.x/jjrˆj/ � Crmin¹mNC˛0˛;mNC1º:

Here, we also used jx �ˆ.x/j � C jxj1C˛ and jrP j D O.jxjmN�1/. Now, note that

�w D �.u � P / D 0 in B1 \ C ; jwj D ju � P j � C jxjmNC˛˛0 on B1 \ @C :

We apply a local maximum principle to .w �CrmNC˛˛0/C on B2r \ C , which is subhar-
monic in B2r \ C and vanishes on B2r \ @C by choosing C large enough, to obtain

k.w � CrmNC˛˛0/CkL1.Br\C/ � Cr
d=2
k.w � CrmNC˛˛0/CkL2.Br\C/ � Cr

mNC˛˛0 :

Similarly, we can bound k.�w � CrmNC˛˛0/CkL1.Br\C/, and hence, as desired,
kwkL1.Br\C/ � Cr

mNC˛˛0 .

The rest of Section 4 will be devoted to the proof of Proposition 4.2.

4.1. A representation by Green’s function

Let �2C1c .BR/ be a usual cut-off function with � D 1 on BR=2. Let

v WD �

Z
�

Ki .x; y/fi .y/ dy C

Z
@�

k.x; y/h.y/ d�y WD �IC II;
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where fi D �.ıij � aij /@xj u, hD u�, andKi and k are the kernels defined in Section 3.2.
Now, u � v satisfies ²

�.u � v/ D 0 in � \ BR=2;

u � v D 0 on @� \ BR=2:

Hence, we have the full series expansion

u � v D

1X
jD1

Cj jxj
mj  j .x=jxj/ D

NX
jD1

Cj jxj
mj  j .x=jxj/CO.jxj

mNC1/:

Next, we expand v. First, from Lemma 4.1, we have

(4.9) sup
Br\@�

jhj D O.r�C˛˛0/:

By (4.5),

(4.10) jfi j D � jıij � aij j j@xj uj � C jxj
ˇ
jruj:

4.2. Estimating the term I

Recall the definition for K.N/i in (3.6). We split

I D
dX
iD1

Z
�

K
.N/
i .x; y/fi .y/ dy �

dX
iD1

Z
�\B2jxj

K
.N/
i .x; y/fi .y/ dy

C

dX
iD1

Z
�\Bc

2jxj

.Ki �K
.N/
i /.x; y/fi .y/ dy C

dX
iD1

Z
�\B2jxj

Ki .x; y/fi .y/ dy

WD I1 � I2 C I3 C I4:

In the following,we prove that I1 is a finite combination of homogeneous harmonic func-
tions with degree up to mN , and the rest three terms I2, I3 and I4 are of higher order.

Convergence and expansion of I1.
For each j D 1; : : : ; N and i D 1; : : : ; d , from (3.7) and (4.10),

jb
.j /
i .y=jyj/j jyj1�d�mj jf .y/j � C jyj1�d�mjCˇ jru.y/j;

where C is a constant that could depend on mj ; �j .
Hence,Z

�\BR

ˇ̌̌
b
.j /
i

� y
jyj

�ˇ̌̌
jyj1�d�mj jf j dy

� C

1X
lD0

.2�lR/1�d�mjCˇ .2�lR/d
−
�\.B

2�l R
nB

2�l�1R
/

jruj

� C

1X
lD0

.2�lR/1�mjCˇ
� −

�\.B
2�l R
nB

2�l�1R
/

jruj2
�1=2

:(4.11)
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By the Caccioppoli inequality, u D O.jxj�/, and mj � �, we can further compute

RHS of (4.11) � C
1X
lD0

.2�lR/1�mjCˇ .2�lR/�1 kukL1.�\B
2�lC1R

/

� C

1X
lD0

.2�lR/�mjCˇ .2�lC1R/�

� CR��mjCˇ
1X
lD0

2�lˇ 2�l.��mj /(4.12)

� CRmN�mjC"Cˇ
1X
lD0

2�lˇ � CR��mjCˇ :(4.13)

This proves that the integrands in I1 are in L1. Hence,

I1 D
dX
iD1

NX
jD1

Z
�

b
.j /
i

� y
jyj

�
jyj1�d�mj jxjmj j

� x
jxj

�
fi .y/ dy

D

NX
jD1

jxjmj  j

� x
jxj

�� dX
iD1

Z
�

b
.j /
i

� y
jyj

�
jyj1�d�mj fi .y/ dy

�
is a combination of homogeneous harmonic functions of degree up to mN .

Smallness of I2.
From Lemma 3.1 and (4.11)–(4.13) with R replaced by 2jxj, we have

j I2j � C
NX
jD1

jxjmj j j j

Z
�\B2jxj

jb
.j /
i j.y=jyj/ jyj

1�d�mj jf j dy

� C

NX
jD1

jxjmj �
d=4
j .2jxj/��mjCˇ � C jxj�Cˇ :

Smallness of I3.
By (3.8) and (4.10),

j I3j � C jxjmNC1
Z
�\¹2jxj�jyj<Rº

jyj1�d�mNC1Cˇ jDu.y/j dy

� C jxjmNC1
log2.R=jxj/X

lD1

.2l jxj/1�d�mNC1Cˇ .2l jxj/d
−
�\.B

2lC1 jxj
nB

2l jxj
/

jru.y/j dy

� C jxjmNC1
log2.R=jxj/X

lD1

.2l jxj/1�mNC1Cˇ
� −

�\.B
2lC1 jxj

nB
2l jxj

/

jru.y/j2 dy
�1=2

:(4.14)
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Again by the Caccioppoli inequality and u D O.jxj�/, we obtain

RHS of (4.14) � C jxjmNC1
log2.R=jxj/X

lD1

.2l jxj/1�mNC1Cˇ .2l jxj/�1kukL1.�\.B
2lC1 jxj

nB
2l jxj

//

� C jxjmNC1
log2.R=jxj/X

lD1

.2l jxj/�mNC1Cˇ .2l jxj/� � C jxj�Cˇ
log2.R=jxj/X

lD1

2l.��mNC1Cˇ/

� C jxj�Cˇ
�
2log2.R=jxj/.��mNC1Cˇ/ C 1

�
D CR��mNC1Cˇ jxjmNC1 C C jxj�Cˇ :

Smallness of I4.
Note that the kernelKi .x;y/ has two singular points for y2B2jxj: at y D x and y D 0.

This motivates us to split

I4 D
Z
�\.B2jxj.x/nBjxj=10.x//

Ki .x; y/fi .y/ dy C

Z
�\Bjxj=10.x/

Ki .x; y/fi .y/ dy

DW I41 C I42:

For I41, noting (3.3), (4.10), and jxj � jyj � jx � yj for all y 2B2jxj.x/ nBjxj=10.x/,

j I41j � C
Z
�\.B2jxj.x/nBjxj=10.x//

.jx � yj�1 C jyj�1/ jx � yj2�d jyjˇ jru.y/j dy

� C jxj1�dCˇ
Z
B2jxj.x/

jru.y/j dy � C jxj1�dCˇ jxjd
� −

B2jxj.x/

jruj2
�1=2

� C jxj1�dCˇ jxjd jxj�1 kukL1B4jxj.x/ � C jxj
ˇC�:

Here, in the last line, we also used the Caccioppoli inequality and u D O.jxj�/.
For I42, by (3.3), (4.10), and jyj � jxj � 10jx � yj,

j I42j � C
Z
�\Bjxj=10.x/

1

jx � yjd�1
jyjˇ jru.y/j dy

� C jxjˇ
Z
�\B2jxj

1

jx � yjd�1
jru.y/j dy:

Hence, for jxj � r ,

j I42j � Crˇ
ˇ̌̌ Z
�\B2jxj

1

jx � yjd�1
jru.y/j dy

ˇ̌̌
D Crˇ

ˇ̌̌ Z
�\B3r .x/\B2r .0/

1

jx � yjd�1
jru.y/j dy

ˇ̌̌
� Crˇ

ˇ̌�
.jzj�dC11B3r / � .jruj1B2r\�/

�
.x/
ˇ̌
:

By Young’s inequality for convolution, a reverse Hölder inequality for ru (cf. [6]), the
Caccioppoli inequality, and u D O.jxj�/, we obtain that for some q < d=.d � 1/ to be
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fixed later, a small " > 0 coming from the reverse Hölder inequality, and p satisfying
1C 1=p D 1=q C 1=.2C "/,

k I42kLp.Br\�/ � Cr
ˇ
k1B3r jzj

�dC1
kLq kjruj1B2r\�kL2C"

� C rˇ r�dC1Cd=qrd=.2C"/
� −

B4r\�

jruj2
�1=2

� C rˇ r�dC1Cd=q rd=.2C"/ r�1 kukL1.�\B8r / � C r
�dCd=qCd=.2C"/ r�Cˇ :

That is, � −
�\Br

j I42jp
�1=p

� Cr�Cˇ :

Finally, we can make p > 2d=.d � 2/ by choosing q to be sufficiently close to d=.d � 1/.

4.3. Estimating the term II

Similar to the treatment of I, we split

II D
Z
@�

k.N/.x; y/ h.y/ d�y �

Z
@�\B2jxj

k.N/.x; y/ h.y/ d�y

C

Z
@�\B2jxjc

.k.x; y/ � k.N/.x; y// h.y/ d�y C

Z
@�\B2jxj

k.x; y/ h.y/ d�y

DW II1 � II2 C II3 C II4;

and further,

II4 D
Z
@�\.B2jxj.x/nBjxj=10.x//

k.x; y/ h.y/ d�y C

Z
@�\Bjxj=10.x/

k.x; y/ h.y/ d�y

DW II41 C II42:

The estimates for II1, II2, II3, and II41 are very similar to those of the corresponding
terms in I. Actually, the estimates here are simpler since a point-wise bound (4.9) for h is
available, instead of merely an L2 bound for Du from Caccioppoli’s inequality. For II1,
formally,

II1 D
Z
@�

X
j�N

b.j /
� y
jyj

�
jyj1�d�mj jxjmj  j

� x
jxj

�
h.y/ d�y

D

X
j�N

jxjmj j

� x
jxj

� Z
@�

b.j /
� y
jyj

�
jyj1�d�mj h.y/ d�y ;

which is a combination of homogeneous solutions on � with homogeneity at most mN .
Such formal computation is rigorous since all integrands are inL1, which we check below.
By (3.7) and (4.9),Z

@�

jb.j /j jyj1�d�mj jhj d�y � C

Z
@�\BR

jyj1�d�mj jyj�C˛˛0 d�y

� C

Z R

0

r1�d�mj r�C˛˛0 rd�2 dr D CR��mjC˛˛0 :
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As explained when estimating I2, similar computation yields j II2j � C jxj�C˛˛0 .
For II3, we use (3.8) and (4.9) to obtain

j II3j � C jxjmNC1
Z
@�\Bc

2jxj

jyj1�d�mNC1 jyj�C˛˛0 d�y

� C jxjmNC1
Z R

2jxj

r��mNC1C˛˛0�1 dr � C jxj�C˛˛0 C C jxjmNC1 :

For II41, from (3.3), (4.9), and the fact that jxj � jyj � jx � yj for any y 2B2jxj.x/ n
Bjxj=10.x//, we obtain

j II41j � C
Z
@�\.B2jxj.x/nBjxj=10.x//

.jyj�1 C jx � yj�1/ jx � yj2�d jyj�C˛˛0 d�y

� C jxj�C˛˛0 :

Finally, we estimate II42, which is different from estimating I42. Here, using (3.4)
instead of (3.3), and noting (4.9) and the fact that jyj � jxj � 10jx � yj for y 2Bjxj=10.x/,
we obtain

j II42j � C
Z
@�\Bjxj=10.x/

ı.x/

jx � yjd
jyj�C˛˛0 d�y

� C jxj�C˛˛0
Z
@�\Bjxj=10.x/

ı.x/

jx � yjd
d�y :

Let x�2@� be the point with jx � x�j D ı.x/. Since y 2@� , by definition and the triangle
inequality,

jx � yj � ı.x/ .D dist.x; @�// and jx� � yj � jx � yj C ı.x/ � 2jx � yj:

Hence,

j II42j � C jxj�C˛˛0
Z
@�\Bjxj=10.x/

ı.x/

ı.x/d C jx� � yjd
d�y

� C jxj�C˛˛0
Z

Rd�1

ı.x/

ı.x/dCjy0jd
dy0DC jxj�C˛˛0

Z
Rd�1

1

1Cjy0jd
dy0 � C jxj�C˛˛0 :

4.4. Concluding the proof of Proposition 4.2

With all above, we have constructed

P D

NX
jD1

Cj jxj
mj j .x=jxj/

such that � −
�\Br

ju � P jp
�1=p

� Crmin¹�C˛0 min¹˛;ˇº;mNC1º:
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When �2 .mN ; mNC1/, clearly we must have P D 0 in order to match the vanishing
order. When � D mN , i.e., u.x/ D O.jxjmN /, similarly P cannot have any term with
homogeneity lower than mN . Hence, P is homogeneous of degree mN . Choosing  N
from the eigenspace properly, we have P. Qx/ D C j QxjmN N . Qx=j Qxj/. This finishes the
proof of Proposition 4.2.

5. Uniqueness and non-uniqueness of blow-ups

As mentioned in the introduction, Theorem 1.3 implies the existence of Almgren blow-
ups (along subsequences) for any non-trivial harmonic functions vanishing locally on the
boundary near a conical point. When d D 2, such limit is also unique.

Proposition 5.1. Let � � R2 and let 0 2 @� be a conical point with a tangent cone � .
Suppose that u is a non-trivial harmonic function vanishing locally on @� near 0, with
u D O.jxjN / for some N > 0. Then there exists a homogeneous harmonic function P
on � , vanishing on @� , such that for the function ur defined in (1.4), we have ur ! P

weakly in H 1.B1/ and strongly in C 0;˛0.B1/, where ˛0 is a constant depending only � .

As before, in the statement we do not distinguish u and P with their zero extensions.
We give a sketch of the proof. First, as explained in the introduction, all subsequence

limits of ur have to be L2-normalized on @B1, lying in an eigenspace of �N determined
by limr!0 Nu.r/. Now from the fact that the eigenvalue �N is simple, there exists an
L2-normalized eigenfunction  N , such that all possible Almgren blow-ups along subse-
quences have to be either C N or � N . Noting that the full blow-up sequence ur varies
continuously with respect to r in L2.@B1/, the limit has to be unique.

When the dimension is three or more, higher eigenvalues need not to be simple, so the
argument fails. This suggests that the Almgren blow-up sequences might “rotate” within
these eigenspaces, leading to non-unique limits. In this section, we confirm that this actu-
ally can happen by constructing the example promised in Theorem 1.9.

5.1. Setup

We construct� by intersecting cones. For k D 1; 2; : : : , let ˛k ; ˇk 2 .0; �=2/ be numbers
satisfying

(5.1) ˇ1 < ˛1 < � � � < ˇk < ˛k < � � � ! �=2:

The values of ˛k ;ˇk are not important. For instance, here we can fix ˛k D �=2� 2�.2kC2/

and ˇk D �=2 � 2�.2kC1/. Let

�k D

²
.x; y; z/ W z >

s� x

tanˇk

�2
C

� y

tan˛k

�2 ³
be an elliptic cone with opening angles 2˛k and 2ˇk . For a sequence of numbers with
¹ıkº

1
kD1
� .0; 1/, ık # 0, to be chosen later, we set

� D

1\
kD1

.Ok�k � ık/;
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where

Ok D I3 D

0@ 1 0 0

0 1 0

0 0 1

1A if k odd, and Ok D O D

0@ 0 1 0

�1 0 0

0 0 1

1A if k even:

Here and throughout this section, we use the abbreviation

�k � ık D �k � ık.0; 0; 1/ D �k � ıkez

for cones shifted along the z axis. Clearly, this� is convex with 0 2 @�, and is symmetric
with respect to reflections about the x and y axes.

z

x

�ı1

ˇ1

�1

�ı2

˛2

O2�2

�ı3

ˇ3

�3

Let �x;k and �y;k be the first Dirichlet eigenvalues of the bisected cross-sections
�k \ @B1 \ ¹x > 0º and �k \ @B1 \ ¹y > 0º, respectively. Due to the eccentricity of
the elliptical region �k \ @B1, we have �x;k < �y;k . In the next section, we sketch a proof
of this fact via an elementary perturbation argument from a spherical cap. A more detailed
exposition (in the case of ellipses in the plane, but the approach is the same) can be found
in [11].

5.2. The spectrum of perturbations of spherical caps

Let E0 � Sd�1 � Rd be a spherical cap of the form E0 D ¹x W jxj D 1; xd > sº for
a fixed s 2 .�1; 1/. We parametrize Sd�1 n ¹.0; : : : ; 0; 1/º by . ; �/ 2 Œ0; �/ � Sd�2 D
T.1;0;:::;0/S

d�1 via the exponential map, and write g for the round metric. Let �t WSd�1 �
Œ0; T / ! Sd�1 be a family of diffeomorphisms smooth in both parameters and with
�0.x/ D x. Set Et D �t .E0/.

Now consider the Dirichlet eigenvalues ¹�k.Et /º1kD1 of these domains, i.e., the non-
decreasing sequences of numbers for which²

��Sd�1vk D �k.Et /vk on Et ;
vk D 0 on @Et :

At t D 0, �k.E0/ have a straightforward structure which may be verified by separation of
variables: �1.E0/ is simple, then �2.E0/D � � � D �d .E0/ < �dC1.E0/ with an orthonor-
mal (in L2.E0/) basis of .d � 1/ eigenfunctions ¹viºd�1iD1 .
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The eigenvalues ¹�k.Et /ºdkD2 of Et form, for t small, a union of C 1 curves of the
following form: let

mij D �

Z
@E0

g.rvi ;rvj /g.V; �/ dA;

where A is the surface measure on @E0 and vi are the basis of second eigenfunctions,
V D @t�t jtD0 (this is a vector field), and � is the outward unit normal vector to E0. This
is an .d � 1/-dimensional symmetric matrix, with eigenvalues �1 � � � � � �d�1. Then

�k.Et / D �2.E0/C t �k CO.t
2/:

This formula can be found in [19] in the case of subsets Rd , but remains valid over any
Riemannian manifold by the same argument after a direct computation of the variation
of the Dirichlet and volume integrals ([10] carries out such computations). As a conse-
quence, if the numbers �k are all distinct, then there is a t0 > 0 such that for t 2 .0; t0/ the
eigenvalues �2.Et /; : : : ; �n.Et / are simple.

When d D 3, the eigenfunctions v1 and v2, by separation of variables, are easily seen
to be of the form v1. ; �/ D q. / cos.�/ and v2. ; �/ D q. / sin.�/ (after a rotation),
for a smooth function q which is positive on Œ0; arccos s/ and vanishes at  D arccos s.
This gives the explicit formula

m D �.q0/2
Z �

cos2 � cos � sin �
cos � sin � sin2 �

�
g.V; �/ dA:

Then �1 D �2 if and only if this matrix is a multiple of the identity, or equivalently ifZ
@E0

sin.2�/g.V; �/ dA D 0 and
Z
@E0

cos.2�/g.V; �/ dA D 0:

If �t .�; �; t/ D .�.1C h.�; t//; �/ where h.�; 0/ D 0, h is even and �-periodic in � , and
has @th.�; 0/ strictly decreasing on Œ0; �=2�, then the second integral is positive and Et
has �2.Et / < �3.Et / for t 2 .0; t0/. Moreover, the domains Et are symmetric across the
planes � D 0 and � D �=2, so odd reflections of the first eigenfunctions of the bisected
domains Et \ ¹� 2 .0; �/º; Et \ ¹� 2 .��=2; �=2/º give eigenfunctions on Et . As all
the eigenvalues are continuous in t , these must be the second and third eigenfunctions: in
particular, �1.Et \ ¹� 2 .0; �/º/ ¤ �1.Et \ ¹� 2 .��=2; �=2/º/. A more careful exami-
nation of the matrix m shows that in fact �1.Et \ ¹� 2 .0; �/º/ is the larger of the two.

It is then easy to see that, given E0 a hemisphere, one may construct a �t of this form
for which eachEt is the cross-section of an elliptic cone with opening angles ˛D �=2� t
and ˇ D �=2 � 2t (along the � D 0 and � D �=2 axes, respectively). We conclude that
�x;k < �y;k for the cones �k above so long as ˇk � ˛k is small enough.

5.3. Back to the example

The discussion in Section 5.2 shows that the second eigenvalue of the hemisphere @B1 \
¹.x; y; z/ W z > 0º, which equals 6 with a multiplicity of 2, splits into simple second
and third eigenvalues on every �k \ @B1. Furthermore, from �x;k < �y;k , we have the
same order for their characteristic constants (see (1.2)), i.e., mx;k < my;k . Recall that by
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separation of variables,mx;k andmy;k are equal to the homogeneities of the corresponding
extended harmonic functions on �k .

Now find harmonic functions u1 and u2 solving the Dirichlet problems8<: �u1 D 0; � \ B1 \ ¹x > 0º;

u1 D 0; .@� [ ¹x D 0º/ \ B1;

u1 D 1; @B1 \ .� \ ¹x > 0º/;

and

8<: �u2 D 0; � \ B1 \ ¹y > 0º;

u2 D 0; .@� [ ¹y D 0º/ \ B1;

u2 D 1; @B1 \ .� \ ¹y > 0º/:

These are in W 1;2.Bt \�/ for t < 1. Take odd extensions of u1 and u2 with respect to
x D 0 and y D 0, respectively, and then extend both by zero outside �. Still denote the
resulting functions by u1 and u2. It is not difficult to see that

Nu1.r/; Nu2.r/ # 4
2�2
D 256; as r # 0;

and

u1.r �/

.
¬
@Br
ju1j2/1=2

! 4

r
2

�
xz;

u2.r �/

.
¬
@Br
ju2j2/1=2

! 4

r
2

�
yz; as r # 0;

which areL2-normalized eigenfunctions associated with the second eigenvalue �2 D 6 on
the hemisphere @B1 \ ¹.x; y; z/ W z > 0º. In the following, we show that the desired “rota-
tion” occurs for uD u1C u2 by choosing ık properly. We consider auxiliary domains�k
and y�k and auxiliary functions u.k/1 and u.k/2 . Here,

�k WD
\
j�k

.Oj�j � ıj / \ .OkC1�kC1/ and y�k WD
\
j�k

.Oj�j � ıj /:

It is not difficult to see that

(5.2) �1 � �2 � � � � � �k � � � � � � � � � � � y�k � � � � � y�2 � y�1:

The functions u.k/1 and u.k/2 are solutions to

(5.3)

8̂<̂
:
�u

.k/
1 D 0; �k�1 \ B1 \ ¹x > 0º;

u
.k/
1 D 0; .@�k�1[¹x D 0º/\B1;

u
.k/
1 D 1; @B1\.�k�1\¹x > 0º/;

8̂<̂
:
�u

.k/
2 D 0;

y�k\B1\¹y > 0º;

u
.k/
2 D 0; .@ y�k[¹y D 0º/\B1;

u
.k/
2 D 1; @B1\. y�k\¹y > 0º/;

if k is odd, or

(5.4)

8̂<̂
:
�u

.k/
1 D 0;

y�k\B1\¹x > 0º;

u
.k/
1 D 0; .@ y�k[¹x D 0º/\B1;

u
.k/
1 D 1; @B1\. y�k\¹x > 0º/;

8̂<̂
:
�u

.k/
2 D 0; �k�1\B1\¹y > 0º;

u
.k/
2 D 0; .@�k�1[¹y D 0º/\B1;

u
.k/
2 D 1; @B1\.�k�1\¹y > 0º/;

if k is even.
Like for u1 and u2, in the following we first take odd extensions of u.k/1 and u.k/2 with

respect to x D 0 and y D 0, respectively, and then extend both by zero outside. Still denote
the resulting functions by u.k/1 and u.k/2 .
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Below, we attempt to choose a sequence of ık decreasing to zero, such that, due to the
alternation of mx;k and my;k ,

(5.5)

¬
@Bık
ju
.k/
1 j

2¬
@Bık
ju
.k/
2 j

2
> k if k is odd, and

¬
@Bık
ju
.k/
1 j

2¬
@Bık
ju
.k/
2 j

2
<
1

k
if k is even:

In Section 5.5, we show that (5.5) together with a comparison, which comes from (5.2),
imply that the desired “rotation” occurs.

5.4. Choosing ık

Starting point k D 1.

Recall that u.1/1 and u.1/2 solve (5.3) with �0 D �1 and y�1 D �1 � ı1. Denote  x;1
to be the (odd extension with respect to x D 0 of) L2-normalized leading Dirichlet eigen-
function on @B1 \ �1 \ ¹x > 0º. From the orthogonality properties of the spherical har-
monics, it is easy to see that

(5.6)
� −

@Br\�1

ju
.1/
1 j

2
�1=2
� rmx;1

� −
@B1\�1

u
.1/
1  x;1

�1=2
� C�1 rmx;1 ; 8r < 1:

For u.1/2 , by Almgren’s monotonicity formula on the convex domain (actually, cone) y�1,
centered at �ı1ez 2@ y�1, and the fact that the lowest non-orthogonal mode of u.1/2 is �y;1,
we have

(5.7)

¬
@Br .�ı1ez/

ju
.1/
2 j

2¬
@Br=4.�ı1ez/

ju
.1/
2 j

2
D N

u
.1/
2

.r/ � N
u
.1/
2

.0/ D 42my;1 ; 8r 2 .0; 1 � ı1/:

Here and also later in this section, we abuse the notation N
u
.1/
2

.r/, which includes a shift
of the center. Iterating (5.7), we obtain, for all r < 3=4 and ı1 < 1=4 (away from 1 is
enough),� −

@Br .�ı1ez/

ju
.1/
2 j

2
�1=2
� Crmy;1

� −
@B3=4.�ı1ez/

ju
.1/
2 j

2
�1=2
� Crmy;1 :

By the subharmonicity of ju.1/2 j
2 and the mean value property, for r 2 .ı1=2; 3=16/ and

ı1 < 1=4,� −
@Br

ju
.1/
2 j

2
�1=2
� C

� −
B2r

ju
.1/
2 j

2
�1=2
� C

� −
B4r .�ı1ez/

ju
.1/
2 j

2
�1=2

� C
� −

@B4r .�ı1ez/

ju
.1/
2 j

2
�1=2
� Crmy;1 :(5.8)

Here, C is a constant independent of r and ı1.
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Combining (5.6)–(5.8) with r D ı1,¬
@Bı1
ju
.1/
1 j

2¬
@Bı1
ju
.1/
2 j

2
� C�1 ı

2.mx;1�my;1/

1 ; 8ı1 < 1=4:

Finally, noting that mx;1 < my;1, we are able to choose ı1 small enough, such that
C�1ı

2.mx;1�my;1/

1 > 1.

Given ¹ıj ºj�k�1, choose ık .

By switching the roles of x and y, without loss of generality, we can always assume
that k is an even number.

Recall that u.k/1 and u.k/2 solve (5.4). The estimate of u.k/1 is similar to that of u.1/2 , not-
ing that y�k is still convex. By Almgren’s monotonicity formula centered at �ıkez 2@ y�k ,¬

@Br .�ıkez/
ju
.k/
1 j

2¬
@Br=4.�ıkez/

ju
.k/
1 j

2
D N

u
.k/
1

.r/ � N
u
.k/
1

.0/ D 42my;k ; 8r < 1 � ık :

Here, in the last step, we used the fact that the lowest non-orthogonal mode of u.k/1 is �y;k ,
noting that the cone Ok�k was rotated by 90 degree in .x; y/. Hence, following the proof
of (5.8), we obtain, whenever ık < ı1 < 1=4,

(5.9)
� −

@Br

ju
.k/
1 j

2
�1=2
� Crmy;k ; 8r 2 .ık=2; 3=16/:

Compared to u.1/1 , the estimate of u.k/2 requires some extra work, since now �k�1 is not
exactly a cone. Define

Rk WD sup¹r W Br \ @�k�1 � @.Ok�k/º:

From the monotonicity of the cones coming from (5.1), we have Rk > 0. Clearly, Rk
depends on ¹ıj º up to j � k � 1. As in the proof of (5.6), denote  x;k to be the (odd
extension of)L2-normalized leading Dirichlet eigenfunction on @B1 \�k \ ¹x > 0º. Note
thatOk is a 90 degree rotation in .x;y/ and the symmetry, the projection of u.k/2 onto x;k ,
is non-trivial, from which� −

@Br

ju
.k/
2 j

2
�1=2
D

� −
@Br\Ok�k

ju
.k/
2 j

2
�1=2

�

� r
Rk

�mx;k � −
@BRk\Ok�k

u
.k/
2  x;k

�1=2
� C

� r
Rl

�mx;k
; 8r < Rl ;(5.10)

where C is a constant depending on ¹ıj ºj�k�1. Here we used the fact that

@Br \ @�l�1 � @Ol�l ; 8r < Rl ;

coming from our definition of Rl .
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Combining (5.9)–(5.10) and the fact that mx;lC1 < my;lC1, we can choose ık small
enough such that ık < Rk and¬

Bık
ju
.k/
1 j

2¬
@Bık
ju
.k/
2 j

2
� CR

�2mx;k
k

ı
2.my;k�mx;k/

k
<
1

k
�

With all above, we have finished our choice of ¹ıkº1kD1.

5.5. Conclusion of the proof of Theorem 1.9

Since�2k ��� y�2kC1, by the comparison principle, we have that ju1j � ju
.2kC1/
1 j and

ju2j � ju
.2kC1/
2 j. Hence,

lim sup
r!1

¬
@Br
ju1j

2¬
@Br
ju2j2

� lim
k!1

¬
@Bı2kC1

ju
.2kC1/
1 j2¬

@Bı2kC1
ju
.2kC1/
2 j2

� lim
k!1

k D1:

Similarly,

lim inf
r!1

¬
@Br
ju1j

2¬
@Br
ju2j2

� lim
k!1

¬
@Bı2k

ju
.2k/
1 j2¬

@Bı2k
ju
.2k/
2 j2

� lim
k!1

1

k
D 0:

Then in strong L2.B1/ topology, u D u1 C u2 satisfies

lim
k!1

u.ı2kC1�/

.
¬
@Bı2kC1

juj2/1=2
D lim
k!1

u1.ı2kC1�/

.
¬
@Bı2kC1

ju1j2/1=2
D 4

r
2

�
xz

and

lim
k!1

u.ı2k �/

.
¬
@Bı2k

juj2/1=2
D lim
k!1

u2.ı2k �/

.
¬
@Bı2k

ju2j2/1=2
D 4

r
2

�
yz;

which are second eigenfunctions on a hemisphere, symmetric with respect to x and y
axis, respectively. Hence, u has non-unique blow-up limits near the origin. This finishes
the proof of Theorem 1.9.

A. Proof of gradient estimates in Lemma 3.3

The proof of (3.3) is standard. Take R WD 1
2

min¹jyj; jx � yjº. Now, since 0 … BR.y/ and
x … BR.y/, we apply a local Lipschitz estimate for harmonic functions in BR.y/\ � and
the point-wise bound (3.2) to obtain

jryG.x; y/j � CR
�1 sup

z2BR.y/\�

jG.x; z/j � CR�1jx � yj2�d ;

which proves (3.3). Here, Assumption 1.5 implies the same smoothness of @� \ BR,
and hence a local Lipschitz estimate for harmonic functions with zero Dirichlet boundary
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conditions. When g in Assumption 1.5 is C 1;Dini, such estimate is standard. When it is
semiconvex, a local Lipschitz estimate can be obtained by constructing a simple barrier
coming with the exterior ball.

The proof of (3.4) requires more work. First, by (3.3) and the fact that G.x; y/ D 0
for y 2 @� , we immediate obtain

G.x; y/ � C ı.y/ .jyj�1 C jx � yj�1/ jx � yj2�d :

By symmetry, we also have

(A.1) G.x; y/ � C ı.x/ .jxj�1 C jx � yj�1/ jx � yj2�d :

Now, repeating the argument in the proof of (3.3) but using the new point-wise bound (A.1)
instead of (3.2), we reach (3.4). The lemma is proved.

B. Doubling indices and Almgren’s frequencies on cones

In this section, we prove Lemma 2.2. Define the (generalized) Almgren frequency func-
tions

F.r/ WD
r
R
Br
jruj2R

@Br
juj2

and zF .r/ WD

R
Br
jruj2.r2 � jxj2/R

Br
juj2

�

By standard computations, we have

(B.1) F 0.r/ D
2r

h2

��Z
@Br

juj2
�� Z

@Br\�

.� � ru/2
�
�

� Z
@Br

u.� � r/u
�2�

and

zF 0.r/ D
4

r Qh2

��Z
Br

juj2
�� Z

Br\�

jx � ruj2
�
�

� Z
Br\�

u.x � r/u
�2�

:

See for instance [2]. Note that here all contributions from @� vanish since � is a cone.
Moreover, by standard elliptic regularity theory, we haveDuj@�2L2, which is understood
in the sense of non-tangential limit. This guarantees that all the integration by parts in the
process are justified. Now we give the proof of Lemma 2.2.

Proof of Lemma 2.2. Noting

F D
rD.r/

h.r/
D
r

2

d

dr
log h �

d � 1

2
and zF D

zD.r/

Qh.r/
D r

d

dr
log Qh � d;

we have

Nu.4
t / D

¬
@B4t
juj2¬

@B4t�1
juj2
D 4d�1

h.4t /

h.4t�1/
D 4d�1 e

R t
t�1

d
ds

logh.4s/ ds

D 4d�1 elog.4/
R t
t�1.r log.h/0/jrD4s ds D 16d�116

R t
t�1 F.4

s/ ds
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and

zNu.2
t / D

¬
B2t
juj2¬

B2t�1
juj2
D 2d

Qh.2t /

Qh.2t�1/
D 2d e

R t
t�1

d
ds

log Qh.2s/ ds

D 2d elog.2/
R t
t�1.r log. Qh/0/jrD2s ds D 4d 2

R t
t�1
zF .2s/ ds :

From these, in the following we only prove the monotonicity and rigidity of F and zF ,
since those for N and zN naturally follow. Moreover, we only prove for F as the proof
for zF is almost identical. First, from (B.1) and Hölder’s inequality, clearly F 0 � 0. Now,
if F.t/ D F.s/ for some t > s, by the condition for achieving “D” in Hölder’s inequality,
@u=@r D Cru for all r 2 .s; t/. Expanding as spherical harmonics, clearly this can only
be true when u is homogeneous in r . Once u is homogeneous in r , we immediately have
F � constant and u is a homogeneous harmonic function.
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