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Abstract. This paper is concerned with quasi-linear parabolic equations driven by an additive forc-
ing � 2 C˛�2, in the full subcritical regime ˛ 2 .0; 1/. We are inspired by Hairer’s regularity
structures, however we work with a more parsimonious model indexed by multi-indices rather than
trees. This allows us to capture additional symmetries which play a crucial role in our analysis.
Assuming bounds on this model, which is modified in agreement with the concept of algebraic
renormalization, we prove local a priori estimates on solutions to the quasi-linear equations modi-
fied by the corresponding counter-terms.
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1. Introduction

In this article, we study the quasi-linear parabolic partial differential equation

@tu � a.u/�u D �; (1.1)

where uD u.t; x/ for .t; x/ 2R�Rd ,�D
Pd
iD1 @

2
xi

, and the coefficient field u 7! a.u/

is sufficiently smooth and uniformly elliptic. In line with the pathwise approach to
stochastic analysis of Lyons [28], the external forcing � is deterministic and viewed as
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a realization of a singular noise1 which a.s. belongs to the (negative) parabolic Hölder
space C ˛�2. For ˛ 2 .0;1/, the PDE (1.1) is subcritical in the sense of Hairer [20].
A standard reference point is space-time white noise, which is included in this regime if
d D 1, but marginally fails if d D 2. For ˛ > 0 the solution to (1.1) should behave on
small scales like the solution to the linear equation where a is replaced by a constant,
which belongs to C ˛ by Schauder theory. Hence, we expect the same regularity for u, but
the following difficulty arises: for ˛ 2 .0; 1/, there is no canonical definition of a.u/�u as
a limit of smooth approximations. Indeed, the usual power counting heuristic fails since
u 2 C ˛ implies a.u/ 2 C ˛ and�u 2 C ˛�2, but ˛C ˛ � 2 < 0. More concretely, one can
carry out explicit calculations with Gaussian noise to see that products of this type often
require re-centering by suitable counter-terms, divergent as the smooth regularization is
released. As a result, (1.1) is not expected to be well-posed in the traditional PDE sense
and a similar re-centering will be needed for the nonlinearity a.u/�u, which amounts to
adjusting the equation (1.1) with certain counter-terms, known as a renormalization.

There is now an extensive literature on renormalized stochastic PDEs following the
development of regularity structures [19, 20] and paracontrolled calculus [18], the main
applications of these seminal works being to semi-linear equations; see e.g. [22]. The
quasi-linear case was first considered in [31] and soon after in [5, 14] in the case of
˛ > 2=3. The case ˛ > 2=5, which in one space dimension includes the case of space-time
white noise, was investigated in [15,16].2 An alternative approach to this regime inspired
by [5] appeared in [7]. See also [32] for a treatment of the initial value problem using
the methods of [31] (in the regime ˛ > 2=3). The regime ˛ > 1 corresponds to spatially
colored noise, which has been studied in the articles [23, 24], and in the series of papers
[1–3]. We also mention the articles [12, 13, 25] where singular quasi-linear SPDEs arise
naturally in some relevant physical models. Finally, we mention the interesting recent
work [9] which explores the quasi-linear generalized KPZ equation driven by space-time
white noise, providing sufficient conditions for global well-posedness and a large class of
examples.

In our prior work [30], we developed two key analytic tools (see Section 4.1) which
applied to arbitrary ˛ > 0, but applied them in the more restricted regime ˛ > 1=2. In
fact, in [30] we considered a more general problem of developing a well-posedness the-
ory for the linear problem with rough coefficients.3 In the present article, we do not use
linear well-posedness theory to treat the nonlinear problem (1.1). Instead, we shift our
perspective and analyze the nonlinear problem directly. Our main result is an a priori

1More precisely, we think of � as a realization of a singular noise with a small regularization
in space-time and hence make the qualitative assumption that � is smooth throughout the paper.
Crucially, all quantitative estimates on the solution depend only on the C˛�2-norm of � and higher
order analogues of the corresponding model; see Assumption 1 below.

2A number of aspects of this paper also work for arbitrary ˛ > 0, but the authors did not identify
the renormalized PDE in the full subcritical regime.

3Extending the linear theory developed in [30] to arbitrary ˛ > 0 remains an interesting and
challenging open problem.
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bound on smooth solutions to a renormalized version of (1.1). We provide a framework
that applies to all subcritical regularities ˛ > 0 and all space dimensions d . The aforemen-
tioned shift in perspective comes with the following merit. Rather than arguing entirely
within the class of modelled distributions (which would be forced upon us if we had to
pass through e.g. a contraction mapping principle), we show that any solution to the renor-
malized equation admits a local description under the mere assumption of local smallness
of the supremum norm.

The main inputs for our Main Theorem are two structural assumptions on the driver �
that would not hold for an arbitrary � 2 C ˛�2, but are nonetheless very reasonable for
realizations of a large class of stationary space-time random fields. On the basis of the
approach introduced in this paper, the construction and the stochastic estimates of the
renormalized model, which this paper takes as an input, have been carried out in [27], and
we will comment on how the results of [27] connect to the present work below Assump-
tions 1 and 2. However, in the spirit of regularity structures, both papers are logically
independent: based on purely deterministic arguments, this paper establishes uniform
interior regularity estimates for the renormalized equation. Taken together, both papers
demonstrate the viability of the approach to regularity structures proposed in this paper.
In particular, both papers are written in such a way that they can be read independently.

We now state these assumptions and motivate them with the theory of regularity struc-
tures. Inspired by [20], we rely on a triplet .A;T;G/ consisting of a space of homogeneities
A � R, an abstract (linear) model space T, and a structure group G � Aut.T/, in the sense
of Hairer [21, Definition 3.1]. For the black box approach to semi-linear equations devel-
oped in [8, 10, 11], each � 2 T is a decorated rooted tree (or forest). A natural attempt
to merge the semi-linear machinery with the parametric rough path approach employed
in [31], as advocated in [16, 30], would be to utilize trees depending on one or more
parameters. In the present work, we proceed in a rather different way by using a much
smaller vector space T, which is essentially indexed by multi-indices.

We motivate the form of the triplet .A; T;G/ and its grading here by introducing our
twist on Hairer’s notion of a centered model, which we view as a parameterization of the
solution manifold for a renormalized version of (1.1). In fact, it is possible to motivate the
algebraic objects that appear in this article, including both the hierarchy of PDEs deter-
mining the model and the action of the structure group, as arising from searching for a
formal series solution to (1.1), as we discuss in Section 1.1 below. In order to explain the
role of multi-indices played in our analysis, we now give a slightly different motivation
in line with the rough path perspective where the ensemble of all nonlinearities a is con-
sidered simultaneously. Thinking of � as being fixed, we are interested in the analytical
properties of the mapping

a 7! uŒa�;

where we denote by uŒa� the solution to (1.1) with nonlinearity a. This gives rise to a
solution manifold which has an important invariance:

uŒa�C v D uŒa.� � v/� for all v 2 RI (1.2)
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In words, if u solves (1.1), u C v solves (1.1) with a replaced by its shifted version
a.� � v/. In the case of a driven ODE like @tu D a.u/� , this implies that modulo additive
constants, the solution manifold is parameterized by a. Hence in the ODE case

zk WD
1

kŠ

dka

duk
.0/ for k 2 N0 (1.3)

provide a complete set of coordinates for the solution manifold modulo constants. Think-
ing of u as uŒ.zk/k�0� in abstract variables .zk/k�0 we obtain uŒa� upon choosing zk D zk
for all k � 0. In our PDE case of (1.1), the coordinates (1.3) are insufficient. A natural
ansatz is to enrich them by a linear jet at some fixed base point x,4 which as in (1.3) we
somewhat arbitrarily fix to be the origin. We choose the jet to be zx � x with

zx WD “rxu.0/”I (1.4)

in view of the invariance (1.2) we deliberately drop the constant jet u.0/. As is common in
the theory of rough paths and regularity structures, we will need to re-interpret (1.4) as a
Gubinelli derivative (see (1.20)); hence the quotation marks. Since the coordinate a0 WD z0
will play a slightly different role in our considerations (in contrast to the other coordinates
zx and .zk/k�1, we need arbitrary high powers in the ellipicity z0 if we want to describe
the solution u to a finite order of precision in terms of a series expansion), we often
make the distinction and write uŒzx ; .zk/k�1I a0�. Formally, Taylor’s formula suggests
that the general solution u can be recovered from its partial derivatives with respect to zD
.zx ; z1; z2; : : :/, which are parameterized by the countable set5 Nd

0 � c00.N0/ of multi-
indices ˇ D .ˇx ; ˇ.1/; ˇ.2/; : : :/. An algebraically convenient way to analyze objects
labelled by multi-indices is via formal power series. Therefore we introduce the model
space T as the space of formal power series in infinitely many abstract variables, the
coefficients of which are (complex) analytic functions of a single parameter a0. More
precisely, each � 2 T is identified with a formal power seriesX

ˇ

�ˇ zˇ ;

where ˇ D .ˇx ; ˇ.1/; ˇ.2/; : : : / is a multi-index, zˇ WD zˇxx
Q1
kD1 zˇ.k/

k
, and each coef-

ficient �ˇ is a function of a single parameter a0 from a disc DT in the right complex
half-plane containing a (real) interval I D Œƒ;ƒ�1� for some fixed ellipticity parameter6

ƒ 2 .0; 1/.

4Throughout the paper we use the shorthand notation x WD .t; x/, y WD .s; y/, and z WD .r; z/
for space-time points.

5Here c00.N0/ WD ¹ˇ W N ! N0 W suppˇ is finiteº is the space of all N0-valued sequences of
finite support.

6It turns out to be enough to consider functions of a single parameter rather than several param-
eters since we perform estimates directly on the nonlinear problem rather than attempt to develop a
theory for the linear problem with rough coefficients, as in [30].
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Another, rather minor, difference from standard regularity structures lies in the fact
that we adopt a dual perspective. In the setting of Hairer, the abstract model space would
actually correspond to T� rather than T and the correspondence between the abstract space
of symbols in T� and the concrete space-time distributions is specified through a lin-
ear map …x W T� ! � 0.RdC1/. We alternatively view …x as a T-valued distribution. For
notational reasons, it is convenient to distinguish functions in the local description of u,
denoted …x, from distributions in the description of7 a.u/�u, denoted …�x , which takes
values in the slightly smaller space T� where polynomials are excluded; see Section 2.1.
The …�x can be thought of as an enhancement of the noise, in the sense that for any base
point x, we have …�x0 D � � q0 where 0 denotes the multi-index with all components
being zero, and where we can allow for a constant q0 to ensure that certain ensemble or
space-time averages of the noise vanish. Similarly, …x can be viewed as an enhancement
of the classical polynomials, in the sense that

P…x.y/ D zx � .y � x/; (1.5)

where P is the projection onto the polynomial sector; see Section 2.1.
To each multi-index ˇ one can associate a homogeneity jˇj 2 .0;1/which is dictated

by the inherent scaling of (1.1) (see (2.3)). This naturally generates a set of homogeneities
A and a grading of T in terms of subspaces Tjˇ j which consist of those elements of homo-
geneity jˇj, i.e., of � 2 T such that �
 D 0 for j
 j ¤ jˇj. These subspaces come with their
norms. More specifically, we fix a sequence ¹Djˇ jºjˇ j<2 of discs, where all Djˇ j have the
same center as DT and are such that

I ¨ Djˇ j ¨ Dj
 j ¨ DT for j
 j < jˇj;

and set
k�kTjˇj WD sup

j
 jDjˇ j

sup
a02Djˇj

j�
 .a0/j: (1.6)

Observe that elements in T are (complex) analytic functions8 in a0, so that in view of
Cauchy’s integral formula derivatives with respect to a0 are conveniently estimated on a
marginally larger disc by the function itself; whence the nested form of the Djˇ j’s.

We now turn to our first assumption on the noise. For this we introduce an anisotropic
distance. Anisotropy in the directions of time and space is due to the parabolic operator
@t �� and its mapping properties on the scale of Hölder spaces (i.e., Schauder theory),
which imposes its intrinsic (Carnot–Carathéodory) metric given by

d.x; y/ D
p
jt � sj C jx � yj: (1.7)

7More accurately, the components of …�x provide a local description of the renormalized non-
linearity a.u/�uC h.u/.

8We remark that we could avoid the use of complex methods altogether by monitoring the
number of derivatives with respect to a0 more thoroughly in terms of (real) vector-valued C k-
spaces; this approach was used in [30].
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We shall use the shorthand notation distx WD dist.x; @D/ for the parabolic distance of x
from the boundary of a domain D.

Assumption 1. For all x 2 B1.0/ � RdC1, there exist smooth functions…x W RdC1! T
and …�x W R

dC1 ! T� satisfying the compatibility conditions (1.5) and9

.@t � a0�/…xˇ D

´
� if ˇ D 0;

…�xˇ if ˇ ¤ 0:
(1.8)

Furthermore,

sup
jˇ j<2

sup
y¤x2B1.0/�RdC1

disthˇi˛x d�jˇ j.y; x/k…x.y/kTjˇj <1; (1.9)

where hˇi 2 N is defined10 in (2.2).

Assumption 2 concerns the group G, which is a subgroup of the linear endomorphisms
of T, together with a re-expansion map �yx 2 G associated to each pair of base points
x; y 2 RdC1. This is essentially the structure group in the language of [21, Section 4.2],
with the caveat that due to our dual perspective mentioned above, the transformation
�yx 2 G corresponds to the adjoint of the corresponding quantity in [20]. Keeping in
mind that elements of T are essentially functions of an ellipticity parameter a0 and the
abstract variables z, it turns out that elements of G have an elegant formulation as dif-
ferential operators in these variables. They lead to a parameterization of G by � .0/ 2 T
and � .1/ 2 Td (with � .1/

ˇ
D 0 unless jˇj > 1) by an exponential formula; see (2.7) in Sec-

tion 2.3. Also see the recent work [26], where G is shown to arise from a Hopf algebra in
the context of our more parsimonious model. In Section 1.1, we give a simple motivation
for the definition of the structure group �yx based on Taylor’s formula and on a formal
series solution to the PDE.

Assumption 2. For all x; y 2 B1.0/ there exist � .0/yx 2 T and � .1/yx 2 Td with .� .1/yx /ˇ D 0

unless jˇj > 1 such that for �yx 2 G defined by (2.7),

�yx…y D …x � �
.0/
yx ; in particular � .0/yx

(1.9)
D …x.y/; (1.10)

sup
jˇ j2.1;2/

sup
y¤x2B1.0/

disthˇi˛x d1�jˇ j.y; x/k� .1/yx kTjˇj <1: (1.11)

Furthermore, there exists q 2 T with qˇ D 0 for ˇx ¤ 0 such that for all x 2 RdC1,

…�x .x/ D �.x/1 � q; (1.12)

where 1 is the unit element in T defined by 1.z/ D 1.

9We may even allow for slightly more flexibility in identity (1.8) by demanding only that it
holds up to an affine function y 7! Px.y/, by which we mean Px.y/ D p0 C p1 � .y � x/ for some
p0 2 T, p1 2 Td .

10We mention that hˇi can be interpreted as the number of appearances of the noise in a tree.
In particular, hˇi 2 N (see (2.2) and (1.17)). Moreover, for jˇj < 2, the number hˇi is completely
determined by jˇj (see Section 2.2).
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To measure the size of the model, we define

Œ…� WD sup
mD0;1

sup
hˇi�1;jˇ j2.m;2/

sup
y¤x2B1.0/

disthˇi˛x dm�jˇ j.y; x/k� .m/yx kTjˇj ; (1.13)

which is finite provided Assumptions 1 and 2 hold. We emphasize that these assumptions
are well-justified by the results in [27], as we will explain more precisely at the end of
Section 1.2. The most subtle point of our assumption is hidden in (1.12): the innocent
looking q 2 T is in fact a collection of functions of a0 that determine the counter-term h

in the renormalized equation as we show below. In the application, one should think of q
as deterministic but divergent as the regularization (through mollification of �) vanishes,
while the model .…x;…

�
x ; �yx/ is random but stays bounded. Loosely speaking, q is what

has to be subtracted from …�x in order for the latter to stay bounded.11 The important
structural assumption is that q is independent of the base point x and is not affected by
adjoining polynomials, by which we mean that it does not depend on the variable zx .
In order to be self-contained, we argue below in Section 1.2 that these two structural
assumptions and (1.12) are realistic.

We denote by k � k the supremum norm. We use d for dimension, ƒ for an elliptic-
ity constant, and ˛ 2 . 2

nC1 ;
2
n / for the Hölder exponent of the solution u. A constant is

said to be universal if it depends only on d , n, and ƒ. The notation A . B indicates an
inequality that holds up to a universal constant. The symbols _ and ^ indicate max and
min, respectively.

Main Theorem. Let ˛ 2 . 2
nC1 ;

2
n / for some n 2 N, ƒ > 0 and a 2 C n.R/ satisfy ƒ �

a �ƒ�1 together with ka.k/k �ƒ�1 for 1� k � n. Let � satisfy Assumptions 1 and 2 for
some q 2 T. There exists a universal constant " > 0 and a function h W R! R depending
only on a and q such that all smooth solutions u W RdC1 ! R to the renormalized PDE

@tu � a.u/�uC h.u/ D � on B1.0/ � RdC1 (1.14)

with kuk � " satisfy for all r 2 .0; 1/ and all x;y 2B1�r .0/ with x¤ y the interior Hölder
bound

r˛ju.y/ � u.x/j . .kuk C Œ…�/.1 _ Œ…�/d˛.y; x/: (1.15)

The Main Theorem holds in the full subcritical regime ˛ 2 .0; 1/ and provides bounds
on u which are independent of the possibly divergent constants hidden in the counter-
term u 7! h.u/, which is local and identified explicitly; see (1.18) below. En route to
(1.15) we establish a much stronger bound in the flavor of controlled rough paths, which
plays the role of a higher regularity theory in the setting of singular SPDEs; see (1.19)
below. The most substantial difference from our prior work [30] is that we need to iden-
tify a suitable algebraic structure to support our local description of u, which becomes

11Using a re-expansion property of…� (see (4.33)), it is possible to verify that…�x is character-
ized by …�x .x/.
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increasingly refined as the parameter ˛ approaches zero. This algebraic machinery is a
central ingredient that must be combined in a rather delicate way with the analytical tools
developed in [30]. Our approach is self-contained and we believe our methods are quite
robust, potentially adding a valuable alternative perspective even in the context of semi-
linear equations.

The renormalization of a.u/�u involves counter-terms which are products of deriva-
tives of u 7! a.u/ with “renormalization constants” that depend on the forcing �. It will
follow from the proof of the Main Theorem that these “renormalization constants” are col-
lected precisely in q 2 T appearing in Assumption 2 through (1.8) (see also Section 1.2,
where we argue why this form of renormalization is to be expected). To be more specific,
we encode the products of derivatives of a by introducing

da.v/ WD

�
1

kŠ

dka

duk
.v/

�
k2N

and use the following shorthand notation: for ˇ D .ˇx ; ˇ0/ we write

da.v/ˇ
0

WD

Y
k�1

�
1

kŠ

dka

duk
.v/

�ˇ.k/
; (1.16)

and introduce a scaled norm of such a multi-index as follows:

jˇjs WD
X
k�1

kˇ.k/: (1.17)

We will show that the renormalization h WR!R appearing in the Main Theorem is given
by

h.v/ WD

n�1X
jˇ jsD0

da.v/ˇ
0

qˇ 0.a.v//; (1.18)

where we recall that q 2 T depends on a variable a0 by the definition of T.
Estimate (1.15) is only the lowest of a whole hierarchy of estimates resembling the

controlled rough path condition in [17, Definition 1]. In fact, we will show that the func-
tions …x describe the solution close to x 2 RdC1 to any order � < 2, in the sense that for
all r 2 .0; 1/ and all x; y 2 B1�r .0/,

r�
ˇ̌̌
u.y/ � u.x/ �

X
jˇ j<�

�ˇx .x/da.u.x//ˇ
0

…xˇ .yI a.u.x///
ˇ̌̌

. .kuk C Œ…�/.1 _ Œ…��=˛/d �.y; x/; (1.19)

where the Gubinelli derivative � is given by

�.x/ WD ru.x/ �
X
jˇ j<1

da.u.x//ˇ
0

r…xˇ .xI a.u.x///: (1.20)

Here …xˇ .yI a0/ denotes the coefficient of zˇ in …x.y/ 2 T evaluated at a0.
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Since the first version of this work appeared on arXiv, there have been some further
developments in this direction. In particular, the paper [6] studies renormalization of a
class of quasi-linear SPDEs containing (1.1), focusing on the initial value problem for
small times. An advantage of [6] is that the authors are able to provide an existence and
uniqueness theory for the SPDE. However, the result in [6] is conditional on the existence
and continuity properties of a suitable model. The model involves heat kernels which are
not translation invariant and have limited regularity near the initial time, which rules out
a direct application of the results of [11], so presently the hypotheses in [6] have not been
verified.

The approach in [6] has a number of similarities with this paper and our previous
work [30]. The main departure from our methodology is that the “freezing in” of the
quasi-linear term a.u/�u is performed globally, with respect to a reference function
approximating the initial condition (similar to [5], which implements this with paracon-
trolled calculus). This allows the authors to apply Hairer’s analytic results [19] to close
a fixed point argument in a space of modelled distributions and then recover the counter-
terms by modifying the arguments of [4]. The choice of reference function has some
collateral damage in terms of the form of counter-terms in the renormalized equation,
which the authors can mitigate on a case by case basis. The arguments in [6] are an
instance of the traditional bottom-up approach to singular SPDEs via a tree-based model.

By contrast, our work introduces a new regularity structure and a top-down method-
ology. In particular, we show that by indexing the local expansion more efficiently and
defining the right structure group, the correct counter-terms in the PDE appear automat-
ically. This viewpoint is not limited to quasi-linear equations, and leads to a particularly
transparent simplification in settings like KPZ or ˆ4 where one can index the model (and
corresponding local expansion) simply by powers of the coupling constant and polyno-
mials. Finally, we mention that it does not seem clear how to apply the approach of [6]
on a reference domain of a fixed size, which is the setup of our main result. In fact, in
order to achieve this in the present work, even for solutions small in the supremum norm,
we require more refined estimates on the solution (closer to what is needed for global
bounds), which is a key reason why we do not attempt to apply directly the results of [19]
as in the approach of [6].

1.1. A formal series expansion for the solution

In this section, we motivate our algebraic objects and local expansion by a formal analysis
of the PDE (1.1) without renormalization. The discussion below is completely formal, as
it involves manipulating formal power series which are not expected to converge. Let us
freeze in the coefficients at a base point x and rewrite (1.1) as

.@t � a0�/u D .a.u/ � a0/�uC �; (1.21)

where a0 WD a.u.x//. Our goal is to find a formal series solution to (1.21) of the form

u � u.x/ D f .x/: O…x: (1.22)
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We will demand that T 3 � 7! f .x/:� is linear and has the morphism property: for �;� 2 T,

f .x/:.��/ D .f .x/:�/.f .x/:�/;

as well as f .x/:zk D 1
kŠ
a.k/.u.x//. Similar to …x, one should think of O…x as a T-valued

function, the hat being used to distinguish the two since at this stage there will be no
renormalization. Our goal is to show that formally, u satisfies (1.21) provided that the
coefficients of O…x satisfy a certain hierarchy of PDEs; see (1.26) below. In the next
section, we will explain that by adjusting this hierarchy slightly via a suitable renormal-
ization, we are led to a definition of…x which has been shown in [27] to satisfy the bounds
imposed in the present work. We now turn to the calculation. First note that considering
the left-hand side of (1.21), by linearity we clearly see that for u satisfying (1.22),

.@t � a0�/u D f .x/:.@t � a0�/ O…x: (1.23)

Furthermore, turning to the right-hand side of (1.21) and applying � to (1.22) together
with Taylor’s formula, we get

.a.u/ � a0/�u D
X
k�1

1

kŠ
a.k/.u.x//.u � u.x//kf .x/:� O…x

D

X
k�1

.f .x/:zk/.f .x/: O…x/
kf .x/:� O…x D f .x/:

X
k�1

zk O…
k
x�
O…x; (1.24)

where we have used the morphism property in the last step. Note also that for 1 2 T being
the constant power series with value 1, we have f .x/:1 D 1 for any x 2 RdC1. Hence,
matching the terms we see that (1.1) holds provided that

.@t � a0�/ O…x D
X
k�1

zk O…
k
x�
O…x C �1: (1.25)

At the level of components, recalling the componentwise definition of multiplication of
power series, this reads

.@t � a0�/ O…xˇ D O…
�
xˇ ;

where

O…�xˇ WD

8̂<̂
:
� if ˇ D 0;X
k�1

X
ˇ1C���CˇkC1CekDˇ

O…xˇ1 � � �
O…xˇk�

O…xˇkC1 if ˇ ¤ 0: (1.26)

Note that the sum in k is effectively finite due to the appearance of ek in the second sum.
Here ek is a multi-index with 1 in component k and zero in all other components. Note
that with this definition, the identity (1.24) turns into

.a.u/ � a0/�uC � D f .x/: O…�x : (1.27)

The similarity between (1.22) and (1.27) is effectively the reason why it suffices to use a
single index set for both the positive and the negative model simultaneously.

Remark 1. A simple way to achieve the properties of � 7! f .x/:� demanded above is as
follows. Define the linear form T 3 � 7! f .x/:� by evaluating the formal power series � ,
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by setting the abstract variables z to be (an a priori unknown function) zx D �.x/ and
zk D

1
kŠ
dka

duk
.u.x//. That is, writing � D �.zx ; .zk/k�1I a0/ we introduce

f .x/:� WD �
�
�.x/;

�
1

kŠ

dka

duk
.u.x//

�
k�1

I a.u.x//
�
: (1.28)

Note that this is in line with the motivation given for our model space T (see (1.3) and
(1.4)), where now we use a general base point x rather than fixing the origin arbitrarily.
We remark again that this definition is only formal, as the evaluation of a formal power
series is unlikely to converge. Ignoring this issue, we see that such a form f .x/ clearly
has the morphism property .f .x/:�/.f .x/:�/ D f .x/:.��/. We also emphasize that this
reasoning shows that evaluation is the driving principle behind the definition of modelled
distributions: it takes elements from the abstract model space to concrete objects.

We now turn our attention to the structure group � 7! O�yx� and claim that its definition
arises naturally from demanding that the modelled distribution f .x/ has the following
(formal) covariance property:

f .y/:� D f .x/: O�yx� (1.29)

for all x; y 2 RdC1 and all � 2 T. Before deriving the action of O�yx, we start by giving a
motivation for (1.29) based on demanding the consistency of the local expansion (1.22)
across two different base points, together with the re-expansion property (1.10). In fact,
for two points x; y 2 RdC1, using the relation (1.22) first at y and then at x yields

f .y/: O…y D u � u.y/ D u � u.x/ � .u.y/ � u.x// D f .x/:. O…x � O…x.y//

D f .x/: O�yx O…y; (1.30)

where we have used (1.10) in the last step. The reader acquainted with regularity structures
will notice that Hairer’s definition of a modelled distribution f is a quantification of the
defect in (1.29) for x and y close together. Since f describes a formally exact solution u,
it is reasonable to expect an identity rather than an inequality.

We will now use (1.29) and the definition (1.28) to deduce the action of O�yx on zj .
We take the time to spell this calculation out explicitly since the manipulation is generally
very similar to the key ideas carried out in the proof of the Continuity Lemma , a core
point of the present work. Applying Taylor’s formula yields

f .y/:zj D
1

j Š
a.j /.u.y// D

X
k�j

1

j Š
.u.y/ � u.x//k�j

1

.k � j /Š
a.k/.u.x//:

Inserting (1.22) and using the morphism property of f , we deduce

f .y/:zj D
X
k�j

1

j Š
.f .x/: O…x.y//k�j

1

.k � j /Š
a.k/.u.x//

D

X
k�j

�
k

j

�
.f .x/: O…x.y//k�jf .x/:zk D f .x/:

X
k�j

�
k

j

�
O…x.y/k�j zk :
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Since f .x/ is linear, we see that ensuring (1.29) amounts to defining

O�yxzj WD
X
k�j

�
k

j

�
O…x.y/k�j zk : (1.31)

1.2. The renormalized model

Accepting that some form of counter-term in (1.1) is necessary, we aim to choose it in
a minimally intrusive way. This is in line with the axiomatic approach common in the
physics community; see also [27]. In particular, we ask that it is scalingwise lower order
and respects the symmetries of the SPDE and its solution manifold, which then restricts
the possible functional dependence. Hence in view of [8], the appropriate ansatz for a
counter-term in equation (1.1) is

@tu � a.u/�uC h.u/CH.u/ � ru D �: (1.32)

The ansatz (1.32) is thus parameterized by the nonlinearities h and H that one postulates
to be deterministic, i.e., dependent only on the law but not the realizations of �. In making
the ansatz (1.32), we have in mind a � whose law is invariant under shifts of space-time
and implicitly use symmetry as follows. As the original nonlinear operator u 7! @tu �

a.u/�u does not depend explicitly on space-time, we may assume that the same is true
for h and H . There is a further symmetry-related reduction: we demand that if the law
of � is invariant under the spatial reflection xi 7! �xi for i 2 ¹1; : : : ; dº, then the same is
true for the solution u. Since u 7! @tu � a.u/�u commutes with spatial reflection, this
requires H � 0. Hence (1.32) collapses to (1.14).

In fact, there is a final, but crucial symmetry observation related to the (functional)
dependence of the function h D hŒa�.u/ of u 2 R on the nonlinearity a. For this, recall
that the solution manifold has the important shift invariance (1.2). By our principle of
minimal intrusiveness regarding the symmetries of the SPDE we therefore assume the
following covariance under shifts

hŒa.� C v/�.u/ D hŒa�.uC v/: (1.33)

This implies that h is determined by a functional q D hŒ��.0/ on the space of nonlinearities
via

hŒa�.v/ D qŒa.� C v/�: (1.34)

At least heuristically, there is a one-to-one correspondence between functionals a 7! �Œa�

and S WD ¹� 2 T W � independent of zxº. In particular, (1.34) can be recast for fixed a as

h.v/ D g.v/:q; v 2 R; (1.35)

where S 3 � 7! g.v/:� acts via g.v/:� D �Œa.� C v/�. On the one hand, (1.35) is a non-
truncated version of (1.18), as can be seen via (1.3), (1.16) and

1

kŠ

dka.� C v/

duk
.0/ D

1

kŠ

dka

duk
.v/ for k 2 N0:
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On the other hand, Taylor’s formula gives, for x 2 RdC1,

h.u/ D
X
k�0

1

kŠ
.u � u.x//k.@ku/juDu.x/h D

X
k�0

1

kŠ
.u � u.x//k.@ku/juDu.x/g:q

D

X
k�0

1

kŠ
.u � u.x//kg.u.x//:.D.0//kq;

where the derivation D.0/ is the infinitesimal generator of shifts on the algebra T deter-
mined via @ug:� D g:D.0/� for all � 2 T. We remark that D.0/ is given by (2.9) as
shown in Lemma 2 below. Furthermore, by (1.28) we formally deduce that g.u.x//:� D
�Œa.� C u.x//� D f .x/:� for � 2 S. Using (1.22) and the morphism property of f .x/, we
therefore expect

h.u/ D
X
k�0

1

kŠ
.f .x/:…x/

kf .x/:.D.0//kq D f .x/:
X
k�0

1

kŠ
…k

x .D
.0//kq:

Following the same steps as in Section 1.1, we see that if we demand

.@t � a0�/…x D
X
k�1

zk…
k
x�…x �

X
k�0

1

kŠ
…k

x .D
.0//kq C �1 DW …�x :

then u given by (1.22) is formally a solution to the renormalized equation (1.14). In par-
ticular, keeping in mind that …x.x/ D 0, we expect (1.12).

Now that we have finished motivating our assumptions, we comment on the precise
connection with the work [27] where the model is constructed. Note that in [27], the letter
c is used in place of our q. In particular,

� analytical dependence on the parameter a0 of all relevant objects as imposed by the
definition of T is obtained in [27, Remark 2.7];

� (1.5) corresponds to [27, (2.21)] in the relevant case ˇx 2 ¹0; 1º;

� (1.8) corresponds to [27, (2.35)], where we spell out explicitly the component corre-
sponding to ˇ D 0. Indeed, the .ˇ D 0/-component of [27, (2.18)] reads…�x0 D � � q0,
which is (1.8) up to a constant q0 which we can allow for in view of the footnote
to (1.8);

� (1.9) corresponds to [27, (2.36)];

� the explicit form of elements in G postulated in (2.7) corresponds to [27, (2.44)];

� (1.10) corresponds to [27, (2.61)];

� (1.11) corresponds to [27, (2.55)];

� (1.12) corresponds to evaluating [27, (2.18)] at the base point x and observing that the
sums collapse due to [27, (2.36)] in the form of …xˇ .x/ D 0.

2. Model space and structure group

In this section, we introduce the algebraic framework which underlies our local expansion
for the solution and is used to quantify our assumptions on the forcing � . For a multi-index
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a D .a1; : : : ; ad / we use the standard notation

aŠ WD a1Š � � � ad Š; jaj WD a1 C : : :C ad ; xa
WD x

a1
1 � � � x

ad
d
;

with the convention that 00 D 1.

2.1. The model space

Recall the definition of the model space T as the linear space of formal power seriesP
ˇ �ˇ zˇ in the abstract variables z D .zx ; z1; z2; : : :/ 2 Rd � RN . It will be important

that T forms an algebra with unit element 1 defined via 1.z/ WD 1, and given �; � 2 T the
product �� is identified with its coefficients via

.��/ˇ WD
X

ˇ1Cˇ2Dˇ

�ˇ1�ˇ2 : (2.1)

A special role is played by the monomials zx ; ¹zj ºj�1, and in addition we define z0 WD
a01. It will be convenient to separate the polynomial sector NT of T from the rest, that is,
we write

T D NT˚ T�

with

NT WD ¹� 2 T W �.ˇx ;ˇ 0/ D 0 unless ˇx ¤ 0; ˇ0 D 0º;

T� WD ¹� 2 T W �.ˇx ;0/ D 0 for all ˇx ¤ 0º:

We denote the projection of T onto NT by P. Notice that in particular 1 2 T�, which should
be compared with the ˇ D 0 constraint of (1.8), and we warn the reader that we are
departing from the notational convention in [20].

2.2. Homogeneities

We now define a grading of T by assigning a homogeneity to each elementary mono-
mial zˇ , or equivalently to each multi-index ˇ. Specifically, recalling (1.17) we define an
integer-valued function ˇ 7! hˇi by

hˇi WD jˇjs C 1ˇxD0; (2.2)

and use this to define the homogeneity

jˇj WD hˇi˛ C jˇxj: (2.3)

Remark 2. We emphasize that we are not making any departures from the traditional
homogeneity counting in regularity structures. For example, for ˇx 2 Nd

0 with jˇxj D 1
we have j.ˇx ; 0/j D 1 to be compatible with (1.5) and j0j D ˛ which should be compared
with the ˇ D 0 constraint of (1.8), keeping in mind � 2 C ˛�2.
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Remark 3. The definition can also be motivated by a scaling argument. Indeed, observe
that the C ˛�2-norm of � is invariant under the scaling �.x/ 7! Q�.x/ WD �˛�2�.Qx/, Qx WD
.��2t; ��1x/. Such scaling leaves (1.1) invariant if we define Qu.x/ WD �˛u.Qx/ and Qa.v/D
a.��˛v/. In view of (1.3) and (1.4), this leads to the rescaled coordinates Qz given by
Qz WD .�˛�1zx ; ��˛z1; ��2˛z2; : : :/. Thus, for the partial derivatives Q…ˇ of Qu with respect
to Qz we have

Q…ˇ .x/ D @
ˇ

Qz jQzD0 Qu.x/ D �
˛C˛

P
k�1 kˇ.k/C.1�˛/jˇx j@ˇz jzD0u.Qx/ D �

jˇ j…ˇ .Qx/;

which is exactly corresponding to (2.2) in the relevant case jˇxj D 0; 1.

This assignment of homogeneities naturally generates a finite set of homogeneities

A WD ¹jˇj < 2º � N0˛ CN0:

The reader should keep in mind that the least element of A is ˛, the homogeneity of the
multi-index ˇD 0 (see Remark 2). A distinguished role will also be played by d˛�1e˛, the
least homogeneity in A larger than 1. Moreover, if ˇ and 
 are such that jˇj D j
 j 2 A,
then the choice of ˛ implies that jˇjs D j
 js , hˇi D h
i, and ˇx D 
x . The notion of
homogeneity leads to a grading on T as follows: for each ı 2 A we define

Tı WD ¹� 2 T W �ˇ D 0 if jˇj ¤ ıº; T�ı WD
[
jˇ j�ı

Tjˇ j;

and analogously T>ı . It will be important to keep in mind how the multiplication of power
series in the sense of (2.1) interacts with the grading resulting from the definition (2.3).
The reader should be careful to note that although jˇ1 C ˇ2js D jˇ1js C jˇ2js , in most
cases of interest in this article, jˇ1C ˇ2j ¤ jˇ1j C jˇ2j. This is easily seen by considering
ˇ1 D ˇ2 D 0. For the typical cases that interest us, the two sides differ by ˛, and for
convenience we record this in the following lemma.

Lemma 1. Let ˇ1; ˇ2 be multi-indices.

(1) The following identity holds:

jˇ1 C ˇ2j D

´
jˇ1j C jˇ2j � ˛ if jˇ1;xj � jˇ2;xj D 0;

jˇ1j C jˇ2j else:
(2.4)

(2) The following implication holds:

� 2 T�jˇ1j

� 2 T�jˇ2j

µ
H) �� 2 T�jˇ1jCjˇ2j�˛ � T�jˇ1j_jˇ2j: (2.5)

Moreover, if jˇ1;xj � jˇ2;xj D 0, then

� 2 Tjˇ1j

� 2 Tjˇ2j

µ
H) �� 2 Tjˇ1jCjˇ2j�˛: (2.6)
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Proof. To see the identity (2.4), notice that

jˇ1 C ˇ2j D ˛.jˇ1js C jˇ2js C 1ˇ1;xCˇ2;xD0/C jˇ1;xj C jˇ2;xj

D jˇ1j C jˇ2j C ˛.1ˇ1;xCˇ2;xD0 � 1ˇ1;xD0 � 1ˇ2;xD0/:

Hence, if at least one of ˇ1;x ;ˇ2;x is zero, then jˇ1Cˇ2j D jˇ1j C jˇ2j � ˛ and otherwise
all indicator functions above vanish and jˇ1 C ˇ2j D jˇ1j C jˇ2j. This establishes (2.4).
We now turn to the implication (2.5) and suppose � 2 T�jˇ1j, � 2 T�jˇ2j. We now argue
that .��/
 D 0 if j
 j< jˇ1j C jˇ2j �˛. Indeed, keeping in mind (2.1), if 
1C 
2D 
 , then
by (2.4) we have j
1j C j
2j � j
 j C ˛ < jˇ1j C jˇ2j. Hence, j
i j< jˇi j for at least one of
i D 1;2, which implies that �
1�
2 D 0, yielding the claim. The inclusion T�jˇ1jCjˇ2j�˛ �
T�jˇ1j_jˇ2j follows immediately since all homogeneities in A are at least ˛. To show (2.6),
let � 2 Tjˇ1j, � 2 Tjˇ2j and consider .��/
 , where 
 D 
1 C 
2. Then .��/
 D 0 unless
j
1j D jˇ1j and j
2j D jˇ2j, and hence j
1;xj � j
2;xj D jˇ1;xj � jˇ2;xj D 0. Thus, by (2.4)
we have j
 j D j
1j C j
2j � ˛ D jˇ1j C jˇ2j � ˛.

2.3. The structure group

We now define a subgroup G of the linear endomorphisms � of T. Namely, each � is
required to be of the “exponential” form

� D
X
k;jaj�0

1

kŠaŠ
� .k;a/D.k;a/; (2.7)

where .� .0/; � .1// 2 T � Td .12 Here, we have used the notation

� .k;a/ WD .� .0//k.� .1//a and D.k;a/
WD .D.0//k.D.1//a; (2.8)

with the linear operators D.0/ and D.1/ given by

D.0/
WD z1@a0 C

1X
kD1

.k C 1/zkC1@zk ; D.1/
WD rzx : (2.9)

These are “derivations” in the sense that they satisfy

D.��/ D .D�/� C �.D�/ for all �; � 2 T; (2.10)

in particular D1 D 0. It will be convenient to record their value on the linear monomials
(recall z0 D a01): ´

D.0/zj D .j C 1/zjC1 for j 2 N0;

D.0/zx D 0;
(2.11)

12At this stage, � .0/; � .1/ are arbitrary since we are describing a generic group element. Given
base points x; y we write � .0/yx ,� .1/yx for the specific choices leading to the group element �yx
described in Assumption 2.
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and for 0 ¤ a 2 Nd
0 , ´

.D.1//azj D 0 if j 2 N0;

.D.1//aza
x D aŠ1:

(2.12)

In particular, if we set �� WD .��1; : : : ; ��d / 2 Td for � D .�1; : : : ; �d / 2 Td introduce,
then we have

�zj D
X
k�j

�
k

j

�
.� .0//k�j zk for j � 0; (2.13)

�zx D zx C �
.1/: (2.14)

By a short calculation using the binomial formula and (2.10), it follows that � is an algebra
morphism, that is, for �; � 2 T we have

�.��/ D .��/.��/; �1 D 1: (2.15)

Remark 4. The reader might wonder where the definition (2.7) based on (2.9) comes
from. We first note that the relation (2.13) is consistent with our heuristic expectation
(1.31). In fact, we could equivalently define � by starting with (2.13)–(2.14) and extend-
ing to the rest of T by demanding (2.15). However, the rather explicit expression (2.9)
is useful in the proof of the Continuity Lemma , where the starting point is a general
� 2 T. To motivate the D.0/ operator, note that we could alternatively define it by starting
with (2.11) and extending to a general � by demanding (2.10). Furthermore, (2.11) has a
simple interpretation: thinking of zj as a placeholder for 1

j Š
a.j /.u/ (see (1.3)), the D.0/

operator simply corresponds to differentiation in u. This will be important in the proof of
Corollary 1.

We mention that the set G of all � given in the form (2.7), where .� .0/; � .1// runs
through T � Td , forms a subgroup of the endomorphisms of T. In particular, every � 2 G
is invertible. In the present work, we do not need these properties and hence refer the
reader13 to [26], where the group structure is established in a more general situation.

Since the coefficients �ˇ are analytic in a0, we may estimate higher derivatives with
respect to a0 onDjˇ j by lower ones on a larger set, and hence it follows from the definition
of the operatorsD.0/ andD.1/ in (2.9) and (2.8), and from the nestedness of the discsDjˇ j
that for j
 j 2 A, k 2 N0 and jaj � 1 with j
 j C �.k; a/ 2 A, we have

D.k;a/
W Tj
 j ! Tj
 jC�.k;a/; �.k; a/ WD k˛ C jaj.˛ � 1/;

kD.k;a/�kj
 jC�.k;a/ . k�kj
 j; (2.16)

where the implicit constant is universal (indeed, it does not depend on the specific k 2N0

since there are only finitely many k that fulfill the proviso).

13We mention for the convenience of the reader two basic transformation rules: if .� .0/; � .1//
generates � , then .���1� .0/;���1� .1// generates ��1. If additionally .� .0/

0
; � .1/

0
/ generates � 0,

then .� .0/ C �� .0/
0
; � .1/ C �� .1/

0
/ generates �� 0 (see [26, Proposition 5.1 (iii)]).
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2.4. Linear forms on .u; �/ space

We define a family of linear forms parameterized by R �Rd which will be used to quan-
tify our estimates on the solution u (see (3.3)). Namely, for each .u; �/ 2 R � Rd we
define

g.u; �/:� WD
X
ˇ

�ˇxda.u/ˇ
0

�ˇ .a.u// (2.17)

for all � 2 T which have at most finitely many nonzero coefficients �ˇ . We will often omit
the dependence of g on .u; �/ and simply use the shorthand notation g:� . We will make
extensive use of the fact that � 7! g:� is an algebra morphism, that is,

g:.��/ D .g:�/.g:�/; (2.18)

which can be seen from recalling (2.1) and writing

g:.��/ D
X
ˇ

�ˇxda.u/ˇ
0

X
ˇ1Cˇ2Dˇ

�ˇ1.a.u//�ˇ2.a.u//

D

X
ˇ1;ˇ2

�ˇ1;x�ˇ2;xda.u/ˇ
0
1da.u/ˇ

0
2�ˇ1.a.u//�ˇ2.a.u// D .g:�/.g:�/:

A further property of g is the interaction between differentiation in .u; �/ space and appli-
cation of the operators D.k;a/ used in the definition of G (see (2.8)).

Lemma 2. For all k � 0 and a 2 Nd
0 ,

@ku@
a
�.g:�/ D g:D

.k;a/�: (2.19)

Proof. Note that it suffices to show (2.19) for the special cases k D 1; a D 0 and k D 0,
jaj D 1 which read

@u.g:�/ D g:D
.0/�; @a

�.g:�/ D g:.D
.1//a� for jaj D 1: (2.20)

The general case then follows by iteration. To establish (2.20) we start with monomials
and then use the morphism property (2.18) to extend to a general � . Indeed, note that for
monomials zx and zj , j � 0, we have

@u.g:zj / D
a.jC1/.u/

j Š
D .j C 1/g:zjC1

(2.11)
D g:D.0/zj ;

@u.g:zx/ D @u� D 0
(2.11)
D g:D.0/zx ;

as well as

@a
�.g:zj / D @

a
�

a.j /.u/

j Š
D 0

(2.12)
D g:.D.1//azj ;

@a
�.g:z

a
x/ D @

a
��

a
D 1

(2.12)
D g:.D.1//aza

x :
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Since D.0/ is a derivation (see (2.10)), and since � 7! g:� is a morphism, if (2.20) holds
for given �; � 0, applying the product rule gives

@u.g:��
0/ D @u.g:�g:�

0/ D .@ug:�/.g:�
0/C .g:�/.@ug:�

0/

(2.20)
D .g:D.0/�/.g:� 0/C .g:�/.g:D.0/� 0/

D g:
�
.D.0/�/� 0 C �.D.0/� 0/

� (2.10)
D g:D.0/.�� 0/:

Similarly, @a
�.g:��

0/ D g:.D.1//a.�� 0/ for jaj D 1. This shows (2.20) for all � 2 Tj
 j that
are polynomial in a0, and hence by density for all � 2 Tj
 j.

2.5. Projections

For each ˇ we define the projection Pˇ W T! Tjˇ j via

� D
X
ˇ

�ˇ zˇ 7! Pˇ � WD �ˇ zˇ ;

and for each � > 0, we define the projection Q� WD
P
jˇ j<� Pˇ W T 7! T<� , i.e.

� D
X
ˇ

�ˇ zˇ 7! Q�� WD
X
jˇ j<�

�ˇ zˇ : (2.21)

We will need a variation of the exponential formula (2.7) for the composition of a group
element with a projection onto homogeneities below a given level. This will be employed
in the proof of Corollary 1, which is the starting point for the proof of the Graded Continu-
ity Lemma. In preparation for truncating the infinite summation in (2.7), it is convenient
to introduce the following notation: for jaj D 0; 1 and � 2 R,

K.�; jaj/ WD d˛�1.� C jaj/e � d˛�1jaje � 1: (2.22)

Throughout the article, we will often use the abbreviation K.jaj/.

Lemma 3. Let � > 0 and let � 2 G be associated with .� .0/; � .1// 2 T� .T>1/d . For each
� 2 Tj
 j with j
 j 2 A and j
 j < �,

Q��� D Q�
X
jajD0;1

K.��j
 j;jaj/X
kD0

1

kŠaŠ
� .k;a/D.k;a/� (2.23)

.see (2.22)/.

Proof. We apply Q� on both sides of (2.7) and our goal is to truncate the summation
in k; jaj. Observe that for � 2 Tj
 j with j
 j 2 A we have j
xj 2 ¹0; 1º and therefore
D.k;a/� D 0 if jaj � 2 (see (2.9)). Note that due to the structure of the set of homo-
geneities, � .1/ 2 Td>1 implies � .1/ 2 Td

�d˛�1e˛
, which together with .� .0//k 2 T�˛ implies

via (2.5) that � .k;a/ 2 T�.1Cjajb˛�1c/˛ . Combining this with D.k;a/� 2 Tj
 jCk˛Cjaj.˛�1/
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(see (2.16), (2.5)) shows that � .k;a/D.k;a/� 2 T�j
 jCk˛Cjaj.d˛�1e˛�1/ and therefore
Q�.�

.k;a/D.k;a/�/ D 0 provided that k � ˛�1.� � j
 j C jaj/ � jajd˛�1e and hence for
k � K.� � j
 j; jaj/C 1.

Next we introduce a truncated version of g, denoted g� , via

T 3 � 7! g�:� WD g:Q�� D
X
jˇ j<�

g:Pˇ �: (2.24)

We also need a variant of the morphism property (2.18) for g� with � 2 .0; 2/. Let us first
consider a special case and let �; � 2 T with � 2 Tj
 j for some j
 j < �. Then by (2.4),

g�:.��/ D
X
jˇ j<�

X
ˇ1Cˇ2Dˇ

�ˇ1;xCˇ2;xda.u/ˇ
0
1
Cˇ 0

2�ˇ1.a.u//�ˇ2.a.u//

D

X
jˇ2jDj
 j

�ˇ2;xda.u/ˇ
0
2�ˇ2.a.u//

X
jˇ1j<�C˛�j
 j

�ˇ1;xda.u/ˇ
0
1�ˇ1.a.u//

D .g�C˛�j
 j:�/.g�:�/: (2.25)

Note that the right-hand side is generally not the same as .g�:�/.g�:�/, but instead
involves a truncation at a (potentially) lower level �C ˛ � j
 j � �. More generally, we
find that for any �; � 2 T,

g�:.��/ D
X
j
 j<�

.g�C˛�j
 j:�/.g:P
�/; (2.26)

which follows from g�:.��/ D g�:.�Q��/ (see the inclusion (2.5)) by decomposing the
projection (2.21) and applying (2.25). We now combine Lemma 2, Lemma 3, and (2.25)
to obtain the following corollary, for which we recall the definition of �.k; a/ in (2.16).

Corollary 1. Let � 2 .0; 2/, � 2 Tj
 j for j
 j < �, and g be given by (2.17). For all
u; u0 2 R, �; �0 2 Rd , there exist some u0; u1 2 R between u and u0 such that

g�.u
0; �0/:� � g�.u; �/:��

D

X
jajD0;1

K.jaj/X
kD1�jaj

1

kŠaŠ

�
.u0�u/k.�0��/a�g�C˛�j
 j��.k;a/.u; �/:�

.k;a/
�
g.u; �/:D.k;a/�

C

X
jajD0;1

1

K.jaj/Š
.u0�u/K.jaj/.�0��/a

�
g.ujaj; �/�g.u; �/

�
:D.K.jaj/;a/�:

Proof. Since � 2 Tj
 j for j
 j < �, we have g�.u0; �0/:� D g.u0; �0/:� and hence

g�.u
0; �0/:� � g�.u; �/:�� D

�
g.u0; �0/ � g.u; �/

�
:� � g�.u; �/:.�� � �/: (2.27)

We will analyze the first term using Taylor’s theorem and (2.19), while for the second term
we will appeal to Lemma 3. Since � and j
 j are fixed throughout the proof, we will simply
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write K.jaj/ instead of K.� � j
 j; jaj/. Indeed, for the second term in (2.27) applying g
on both sides of (2.23) (see (2.24)) we find

g�:.�� � �/ D
X
jajD0;1

K.jaj/X
kD1�jaj

1

kŠaŠ
g�:.�

.k;a/D.k;a/�/

D

X
jajD0;1

K.jaj/X
kD1�jaj

1

kŠaŠ
g�C˛�j
 j��.k;a/:�

.k;a/g:D.k;a/�: (2.28)

In the second equality, we have used (2.25) and D.k;a/� 2 Tj
 jC�.k;a/ (see (2.16)). We
have also used the fact that g�:D.k;a/� D g:D.k;a/� due to j
 j C �.k; a/ < � for k �
K.jaj/, which is a consequence of the inequality K.jaj/ < ˛�1.� � j
 j C jaj/ � jaj

(see (2.22)).
For the first term in (2.27), we write�
g.u0; �0/ � g.u; �/

�
:� D

�
g.u0; �/ � g.u; �/

�
:� C

�
g.u0; �0/ � g.u0; �/

�
:� (2.29)

and analyze both terms separately. By Taylor’s formula in u to order K.0/ and (2.19),
there exists a u0 2 R between u and u0 such that

�
g.u0; �/ � g.u; �/

�
:� D

K.0/X
kD1

1

kŠ
.u0 � u/kg.u; �/:D.k;0/�

C
1

K.0/Š
.u0 � u/K.0/

�
g.u0; �/ � g.u; �/

�
:D.K.0/;0/�: (2.30)

For the second term in (2.29), we first use @a
�g D 0 for jaj > 1 to write�

g.u0; �0/ � g.u0; �/
�
:� D

X
jajD1

.�0 � �/a@a
�g.u

0; �/:� D
X
jajD1

.�0 � �/ag.u0; �/:D.0;a/�:

Now Taylor’s formula in u to orderK.1/ and (2.19) yield a u1 2R between u and u0 such
that

�
g.u0; �0/ � g.u0; �/

�
:� D

X
jajD1

K.1/X
kD0

.�0 � �/a.u � u0/kg.u; �/:D.k;a/�

C

X
jajD1

1

K.1/Š
.�0 � �/a.u � u0/K.1/

�
g.u1; �/ � g.u; �/

�
:D.K.1/;a/�: (2.31)

Combining the identities (2.27)–(2.31) completes the proof.

Remark 5. In the above, we have used � < 2 in our appeal to (2.25). We remark that
Corollary 1 continues to hold if we relax this assumption to � < 1C d˛�1e˛ and � 2 T�.
Recall that in the derivation of (2.25), this ensures that there is no contribution of the
form �ˇ1.a.u//�ˇ2.a.u// where both ˇ1;x ¤ 0 and ˇ2;x ¤ 0, so the application of (2.4)
is valid.
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In our main application of the previous lemma, we will need to further simplify the
quantity

.u0 � u/k.�0 � �/a � g�C˛�j
 j��.k;a/.u; �/:�
.k;a/ (2.32)

in order to relate it to the semi-norms (3.3) defined in the next section. This is accom-
plished with the following lemma.

Lemma 4. Let � 2 .0; 2/, J 2 N, um 2 R and �m 2 T form 2 ¹1; : : : ; J º. The following
identity holds:� JY

mD1

um

�
� g� :.�1 � � � �J / D .u1 � g� :�1/

JY
mD2

um

C

X
jˇ j<�

JX
jD2

.uj � g�C˛�jˇ j:�j /
� JY
mDjC1

um

�
g:Pˇ .�1 � � � �j�1/: (2.33)

Proof. We give a proof by induction on J . For J D 1, the claim follows immediately,
noting that by convention the empty sum is zero and the empty product is 1. To provide
some additional intuition, let us also consider the case J D 2 (the reader can also skip
directly to the case of general J below). Using (2.26),

u1u2 � g� :.�1�2/ D .u1 � g� :�1/u2 C u2.g� :�1/ �
X
jˇ j<�

.g�C˛�jˇ j:�2/.g:Pˇ �1/

D .u1 � g� :�1/u2 C
X
jˇ j<�

.u2 � g�C˛�jˇ j:�2/.g:Pˇ �1/;

which is precisely (2.33). We now proceed to the general inductive proof. Let J > 1 be
such that the statement is true for J � 1. We multiply the induction hypothesis by uJ
resulting in� JY

mD1

um

�
� uJg� :.�1 � � � �J�1/ D .u1 � g� :�1/

JY
mD2

um

C

X
jˇ j<�

J�1X
jD2

.uj � g�C˛�jˇ j:�j /
� JY
mDjC1

um

�
g:Pˇ .�1 � � � �j�1/: (2.34)

Now we further analyze the LHS of the equality above and write

uJg� :.�1 � � � �J�1/ D
X
jˇ j<�

uJg:Pˇ .�1 � � � �J�1/

D

X
jˇ j<�

.uJ � g�C˛�jˇ j:�J /g:Pˇ .�1 � � � �J�1/C
X
jˇ j<�

g:Pˇ .�1 � � � �J�1/.g�C˛�jˇ j:�J /:

The first term is now incorporated in the RHS of (2.34) to give the contribution from
j D J , and it only remains to argue that the second term simplifies via

g� :.�1 � � � �J / D
X
jˇ j<�

g:Pˇ .�1 � � � �J�1/.g�C˛�jˇ j:�J /;

which follows immediately from (2.26).
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Remark 6. Let us explain how we intend to apply Lemma 4 in the context of Corollary 1.
We claim that for jaj D 0; 1 and any � 2 .0; 2/,

.u0 � u/k.�0 � �/a � g�.u; �/:�
.k;a/

D
�
.u0 � u/1�jaj.�0 � �/a � g�.u; �/:.�

.0//1�jaj.� .1//a
�
.u0 � u/kCjaj�1

C

X
jˇ j<�

�
u0 � u � g�C˛�jˇ j.u; �/:�

.0/
� kCjajX
jD2

.u0 � u/kCjaj�jg:Pˇ �
.j�1�jaj;a/: (2.35)

Indeed, for jaj D 0; 1 this follows from Lemma 4 with J D k C jaj, u1 D

.u0 � u/1�jaj.�0 � �/a, �1 D .� .0//1�jaj.� .1//a and um D u0 � u, �m D � .0/ for m D
2; : : : ; J . The identity above makes it easy to estimate the LHS in terms of the semi-
norms (3.3) defined below.

3. Modelled distributions

Let D � RdC1 be a bounded, open, convex domain. Given functions u W D ! R, � D
.�1; : : : ; �d / W D ! Rd , and a cut-off value � > 0, recalling (2.17), (2.21) we define a
map f� W D ! T� via

f�.x/:� WD g.u.x/; �.x//:Q��: (3.1)

An important consequence of truncating f� at a finite level � is the loss of the covariance
property (1.29), which has to be replaced by a corresponding continuity property. To quan-
tify this type of continuity of f� with respect to the base point x 2D in the case of a finite
cut-off level � > 0, we take inspiration from [20, Definition 3.7] and define the quantity14

jjjf�jjj to be the minimal M > 0 such that for all � 2 T�, x 2 D and y 2 B 1
2 distx

.x/,

dist�x jf�.y/:� � f�.x/:�yx� j �M
X
jˇ j<�

d��jˇ j.y; x/ disthˇi˛x k�kTjˇj ; (3.2)

where we recall the shorthand notation distx WD dist.x; @D/ for the parabolic distance of x
from the boundary of D.15 By analogy to (4.7), we seek to control u and � through the
(weighted) nonlinear quantities

Œu�� and Œ��0� ; (3.3)

14For ease of notation we do not explicitly state the dependence of jjjf jjj, Œu�� and Œ��0� on D.
15On a first reading, we would advise the reader to ignore the factor of dist�x and think of y 2 D

in the definitions (3.2) and (3.3). Many of the core ideas in the paper are largely unrelated to this
additional weight. In fact, the weights could be completely avoided if one restricted attention to
solutions to (1.14) which are space-time periodic, though in general due to the renormalization
these may be difficult to construct even with smooth noise.
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where

Œu�� WD sup
²

dist�x
ju.y/ � u.x/ � f�.x/:� .0/yx j

d �.y; x/
W x 2 D; y 2 Bdistx.x/

³
; � > 0:

Œ��0� WD sup
²

dist�x
j�.y/ � �.x/ � f�.x/:� .1/yx j

d ��1.y; x/
W x 2 D; y 2 B 1

2 distx
.x/
³
; � > 1:

This control relaxes the formal identity (1.22) and draws on the ideas of (controlled) rough
paths developed in [17, 28]. Observe that both quantities depend not only on u and �, but
also on � and the nonlinearity a via f . Note that Œu�˛ is just a weighted ˛-Hölder semi-
norm of u, while for higher values of �, the quantity Œu�� is nonlinear in u. Similarly,
Œ��0
d˛�1e˛

is a weighted .d˛�1e˛ � 1/-Hölder norm of �, while for higher values of �,
nonlinear effects come into play. We additionally introduce

k�k01 WD sup
x2D

distx j�.x/j: (3.4)

The following lemma is at the core of the article. It can be understood as control on the
semi-norm defined via (3.2) in terms of (3.3)–(3.4) in a way that scales optimally with
respect to u and �. This lemma is crucial in order to meet the requirements of reconstruc-
tion and integration; see Propositions 1 and 2 which we will recall in Section 4 below.

Continuity Lemma. Let u W D ! R and � W D ! Rd be smooth functions and define
f� via (3.1) with � < 1C b˛�1c˛. Assume that kuk C ı˛Œ…� � 1 for some ı 2 .0; 1=2/.
Then

jjjf�C˛jjj . Œu�� C Œ��
0
� C ı

��:

Remark 7. The assumption that kuk C ı˛Œ…� � 1 is purely for convenience. In fact, the
two main inputs for the Continuity Lemma are the Graded Continuity Lemma , which
gives a more general bound on the above semi-norm, together with interpolation inequal-
ities (see Lemma 5), and neither requires this assumption, but it slightly simplifies the
combined output.

3.1. Graded Continuity Lemma

We start by analyzing for each j
 j < � the optimal M�;j
 j such that (3.2) holds for all
� 2 Tj
 j \ T�. We refer to this as the Graded Continuity Lemma, since the estimate for
M�;j
 j involves the semi-norms (3.3) for variable �, compared to the Continuity Lemma
which involves only the semi-norm of order �.

Graded Continuity Lemma. Let � < 1C d˛�1e˛. For all � 2 Tj
 j \ T� with j
 j < �,
x 2 D and y 2 B 1

2 distx
.x/,

dist��h
i˛x jf�.y/:� � f�.x/:�yx� j . M�;j
 jd
��j
 j.y; x/k�kTj
j ; (3.5)
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where

M�;j
 j . 1C Œ…�
��h
i˛
˛ C sup

˛�����h
i˛

Œu�
��h
i˛
�

� C .k�k01/
��h
i˛

C 1j
x jD1 sup
d˛�1e˛�����h
i˛

.Œ��0�/
��h
i˛
� : (3.6)

Proof. Without loss of generality, we may assume that k�kTj
j D 1. For brevity, we will
write K.jaj/ for K.� � j
 j; jaj/. We apply Corollary 1, taking into account Remark 5,
with u0 D u.y/; u D u.x/, �0 D �.y/; � D �.x/, and � D �yx to obtain

f�.y/:� � f�.x/:�yx�

D

X
jajD0;1

K.jaj/X
kD1�jaj

1

kŠaŠ

�
.u.y/ � u.x//k.�.y/ � �.x//a � f�C˛�j
 j��.k;a/.x/:� .k;a/yx

�
� f .x/:D.k;a/� (3.7)

C

X
jajD0;1

1

K.jaj/Š
.u.y/ � u.x//K.jaj/.�.y/ � �.x//a

�
�
g.ujaj; �.x// � f .x/

�
:D.K.jaj/;a/�; (3.8)

for some intermediary point ua with jua � u.x/j � ju.y/� u.x/j. We will start by arguing
the following bound, which is used in estimating both (3.7) and (3.8): for all jaj � 1 and
1 � k � K.a/C 1,

jf .x/:D.k;a/� j � kg.�; �.x//:D.k;a/�kC0.R/

. .1 � 1j
x jD0;jajD1/

�
k�k01
distx

�j
x j.1�jaj/
: (3.9)

The first inequality is immediate. For the second, notice that if j
xj D 0 and jaj D 1, then
g.�; �.x//:D.k;a/� D 0 sinceD.k;a/� D 0 (see (2.12)). The other cases follow easily from
the definitions (2.17) and (3.1), taking into account the convention ka.m/.�/kC0.R/ . 1 for
m � n, (2.16), and the normalization k�kTj
j D 1.

We now turn to estimating (3.8). By (3.9), and using for ı 2 Œ0; 1� and jaj � 1 the
(standard Hölder space) interpolation inequality

kg.�; �.x//:D.K.jaj/;a/�kC ı.R/

� kg.�; �.x//:D.K.jaj/;a/�kC0.R/ C kg.�; �.x//:D
.K.jaj/;a/�kC1.R/

� kg.�; �.x//:D.K.jaj/;a/�kC0.R/ C kg.�; �.x//:D
.K.jaj/C1;a/�kC0.R/

. .1 � 1j
x jD0;jajD1/

�
k�k01
distx

�j
x j.1�jaj/
;

setting ı D ��j
 jCjaj
˛

� d
��j
 jCjaj

˛
e C 1 2 Œ0; 1� (see (2.22)), we can bound each summand

of (3.8) by
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ju.y/ � u.x/jK.jaj/jua
� u.x/jı j�.y/ � �.x/jjajkg.�; �.x//:D.K.jaj/;a/�kC ı.R/

. .1 � 1j
x jD0;jajD1/d
��j
 j.y; x/ disth
i˛��x Œu�˛

�1.��j
 j/Cjaj.˛�1�d˛�1e/
˛

� .Œ��0
d˛�1e˛

/jaj.k�k01/
j
x j.1�jaj/

. d��j
 j.y; x/ disth
i˛��x

�
�
Œu�

��h
i˛
˛

˛ C 1j
x jD1.k�k
0
1/
��h
i˛

C 1j
x jD1.Œ��
0

d˛�1e˛
/
��h
i˛

d˛�1e˛
�
;

where we have used Young’s inequality in the last step, keeping in mind (2.3).
Now we turn to the estimate for (3.7): for the .k;a/ summand we bound f .x/:D.k;a/�

with (3.9) and estimate the other part of the product using identity (2.35) with � D �C
˛ � j
 j ��.k;a/. Note that due to (3.9), we are free to exclude the case jaj D 1; j
xj D 0,
so that our assumption � < 1C b˛�1c˛ ensures � < 2. We therefore obtain

.u.y/ � u.x//k.�.y/ � �.x//a � f�C˛�j
 j��.k;a/.x/:� .k;a/yx

D
�
.u.y/ � u.x//1�jaj.�.y/ � �.x//a � f�C˛�j
 j��.k;a/.x/:.� .0/yx /

1�jaj.� .1/yx /
a
�

� .u.y/ � u.x//kCjaj�1 (3.10)

C

X
jˇ j<�C˛�j
 j��.k;a/

.u.y/ � u.x/ � f�C2˛�j
 j��.k;a/�jˇ j.x/:� .0/xy /

�

kCjajX
jD2

.u.y/ � u.x//kCjaj�jf .x/:Pˇ � .j�1�jaj;a/yx : (3.11)

We insert the above identity into (3.7) and then estimate the resulting contribution, tak-
ing into account (3.9). The contribution from (3.10) for k � 1 � jaj is estimated by the
quantity d��j
 j.y; x/ disth
i˛��x multiplied by

.1 � 1j
x jD0;jajD1/.Œu��C˛�j
 j��.k;a/.k�k
0
1/
j
x j/1�jaj.Œ��0�C˛�j
 j��.k;a//

jajŒu�kCjaj�1˛

. Œu�
��h
i˛
˛

˛ C Œu�
��h
i˛

�C˛�j
j�k˛

�C˛�j
 j�k˛

C 1j
x jD1.k�k
0
1/
��h
i˛

C 1j
x jD1.Œ��
0
��.h
iCk/˛/

��h
i˛
��.h
iCk/˛ ;

where the RHS is a consequence of Young’s inequality. Note that � C ˛ � j
 j � k˛ �
�� h
i˛, simply using k � 0 if j
xj D 1 and k � 1 if j
xj D 0, so the above is contained
in M�;j
 j.

The contribution to (3.7) from (3.11) is estimated similarly, but requires the following
additional estimate:

jf .x/:Pˇ � .j�1�jaj;a/yx j

. d jˇ jC.j�2/˛�jaj.y; x/ dist�jˇ j�.j�2/˛x

´
Œ…�j�1.k�k01/

jˇx j; jˇj ¤ 1;

Œ…�j�2k�k01; jˇj D 1;
(3.12)
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which follows from (1.13), (2.1), and (2.4). In the case jˇj D 1, the improved exponent
on Œ…� is a consequence of (1.5). Indeed, if jaj D 1, then the left-hand side vanishes by
Assumption 2, while if jaj D 0, Assumption 1 implies via (1.5) that the factor of Œ…�j�1

in (3.12) can be replaced by Œ…�j�2 since ˇ1 C � � � C ǰ�1 D ˇ and jˇj D 1 implies that
jˇi j D 1 for one i 2 ¹1; : : : ; j � 1º and ˇk D 0 for all k ¤ i .

Applying (3.12), the contribution to (3.7) from a summand in (3.11) with j
 j C jˇj C
�.k; a/ < �C 2˛, jˇj ¤ 1 is estimated by d��j
 j.y; x/ disth
i˛��x multiplied by

.1 � 1j
x jD0;jajD1/Œu��C2˛�j
 j�jˇ j��.k;a/Œu�
k�jCjaj
˛ .k�k01/

jˇx jCj
x j.1�jaj/Œ…�j�1

. Œu�
��h
i˛
˛

˛ C Œu�
��h
i˛

�C2˛�j
j�jˇj��.k;a/

�C2˛�j
 j�jˇ j��.k;a/
C .k�k01/

��h
i˛
C Œ…�

.j�1/.��h
i˛/
.jChˇi�2/˛ ;

where we have used Young’s inequality. Notice that for ˇ satisfying the constraints above

we have hˇi � 1, so that again Young’s inequality yields Œ…�
.j�1/.��h
i˛/
.jChˇi�2/˛ � 1C…

��h
i˛
˛ .

Finally, if jˇj D 1 so that hˇi D 0, the same estimate holds by the same argument, simply
accounting for the change in the exponent of Œ…� resulting from the second case in (3.12).

3.2. Interpolation inequalities

The final ingredient to pass from the graded continuity lemma to the continuity lemma is
interpolation inequalities.

Lemma 5. Let D � Rd be a domain. Let u W D ! R be a smooth function and define
� W D ! R via (1.20). Let ˛ < � < � < 2. For all ı 2 .0; 1=2/ we have

Œu�� . Œu��=�� .kuk C ı˛Œ…�/1��=� C .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/� ; (3.13)

k�k01 . Œu�1=�� .kuk C ı˛Œ…�/1�1=� C .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/ ; (3.14)

Œ��0� . .Œ��0�/
��1
��1 .k�k01 C ı

˛Œ…�/���=��1 C .k�k01 C ı
˛Œ…�/.ı�1 _ Œ…�

1
˛ /��1; (3.15)

where we assume � > 1 for (3.14), and � > 1 for (3.15). The implicit constants are uni-
versal and independent of ı.

Proof. We start with the following claim: for any R 2 .0; 1/ the following inequalities
hold:

Œu�� . Œu��R
���
C .kuk CR˛Œ…�/R�� C k�k01R

1��
C Œ…�k�k01R

1C˛�� ; (3.16)

k�k01 . Œu��R
��1
C .kuk CR˛Œ…�/R�1 C Œ…�k�k01R

˛; (3.17)

Œ��� . Œ���R
���
C .k�k01 CR

˛Œ…�/R1�� C Œ…�k�k01R
1C˛�� : (3.18)

We recall in advance that k� .0/xy kTjˇj � distjˇx jx Œ…�.d.x;y/distx
/jˇ j for all ˇ 2 A, and hence in

particular j�.x/j k� .0/xy kTjˇj � k�k
0
1Œ…�.

d.x;y/
distx

/jˇ j (see (3.4)). The reader should also keep
in mind that by convention jda.u/ˇ j . 1 for all ˇ 2 A. To show (3.16), pick R 2 .0; 1/
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and x; y 2 D with y 2 Bdistx.x/. Notice that for d.x;y/distx
� R,�

distx
d.x; y/

��
ju.y/ � u.x/ � f�.x/:� .0/yx j

. R��kuk C Œ…�
X

˛�jˇ j<�
jˇx jD0

Rjˇ j�� CR1��k�k01 C Œ…�k�k
0
1

X
1<jˇ j<�
jˇx jD1

Rjˇ j�� :

On the other hand, for d.x;y/distx
� R,�

distx
d.x; y/

��
ju.y/ � u.x/ � f�.x/:� .0/yx j

�

�
distx
d.x; y/

��
ju.y/ � u.x/ � f�.x/:� .0/yx j C

�
distx
d.x; y/

��
j.f� � f�/.x/:� .0/yx j

. R��� Œu�� C Œ…�
X

��jˇ j<�
jˇx jD0

Rjˇ j�� C Œ…�k�k01

X
��jˇ j<�
jˇx jD1

Rjˇ j�� :

Combining the two observations and using Rjˇ j � R˛ for jˇj > 0 and Rjˇ j � R1C˛ for
jˇj > 1; jˇxj D 1, we obtain (3.16). The bound (3.18) follows by an analogous argument.

To show (3.17), given x 2 D and 1 � i � d , let y WD x C R distx ei 2 D, so that
d.x;y/
distx
D R. Applying this, we find with distx j�.x/j � k�k01 that

R distx j�i .x/j D j�i .x/.y � x/i j

. ju.y/ � u.x/ � f�.x/:� .0/yx j kuk C Œ…�
X

˛�jˇ j<�
jˇx jD0

Rjˇ j C Œ…�
X

1C˛�jˇ j<�
jˇx jD1

.k�k01/
jˇx jRjˇ j

. Œu��R
�
C kuk CR˛Œ…�C Œ…�k�k01R

1C˛:

Taking the supremum over 1 � i � d and dividing by R yields (3.17).
Recall that ı 2 .0; 1=2/ has been fixed in advance. We now claim that there is a uni-

versal � > 0 such that for any R satisfying

R � ı; R˛Œ…� � �; (3.19)

the following inequalities hold:

Œu�� . Œu��R
���
C .kuk C ı˛Œ…�/R�� ; (3.20)

k�k01 . Œu��R
��1
C .kuk C ı˛Œ…�/R�1; (3.21)

Œ��� . Œ���R
���
C .k�k01 C ı

˛Œ…�/R1�� : (3.22)

Indeed, it is clear from (3.17) that a sufficiently small and universal � can be chosen to
obtain (3.21). Now (3.20) and (3.22) follow in virtue of (3.19) by inserting (3.21) into
(3.16) and (3.18).
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We would like to chooseR to balance the two terms in (3.20) and (3.21). In both cases
this corresponds to choosing R� D .kuk C ı˛Œ…�/Œu��1� . If (3.19) holds with this choice
of R, then we obtain the (homogeneous) interpolation inequalities

Œu�� . Œu��=�� .kuk C ı˛Œ…�/1��=�; k�k01 . Œu�1=�� .kuk C ı˛Œ…�/1�1=�;

which imply (3.13) and (3.14). If instead (3.19) fails, then it follows that

Œu�� � .kuk C ı
˛Œ…�/Œı�� _ .��1Œ…�/�=˛� . .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/�: (3.23)

In this case, we apply (3.21) and (3.20) with R D ı ^ .�Œ…��1/1=˛ � ı ^ Œ…��1=˛ , which
satisfies (3.19) by design, then we insert (3.23). This yields

k�k01 . .kuk C ı˛Œ…�/ŒR��1.ı�1 _ Œ…�1=˛/� CR�1� . .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/;

which implies (3.14). Similarly, we obtain

Œu�� . .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/� ;

which implies (3.13). This completes the proof of the estimates on Œu�� and k�k01.
The proof of (3.15) follows a similar argument. To balance terms in (3.22), we would

need to choose R��1 D .k�k01 C ı
˛Œ…�/Œ���1� . If (3.19) holds with this choice of R, we

find
Œ��0� . .k�k01 C ı

˛Œ…�/
���
��1 .Œ��0�/

��1
��1 ;

which implies (3.15). Otherwise, we find that

Œ��� . .k�k01 C ı
˛Œ…�/.ı�1 _ Œ…�1=˛/��1;

so that choosing again R � ı ^ Œ…��1=˛ leads us to

Œ��� . .k�k01 C ı
˛Œ…�/.ı�1 _ Œ…�1=˛/��1;

which implies (3.15).

3.3. Proof of the Continuity Lemma

In light of the Graded Continuity Lemma (applied with �C ˛ in place of �), it suffices to
show that for all j
 j < �C ˛ with h
i � 1 (since � 2 T� \ Tj
 j implies h
i � 1) we have

M�C˛;j
 j . Œu�� C Œ��
0
� C ı

��: (3.24)

We will make use of the following interpolation inequalities:

Œu�� . Œu��=�� C ı�� ; k�k01 . Œu�1=�� C ı�1; Œ��0� . .Œu�� _ Œ��
0
�/
�=�
C ı�� : (3.25)

The first two follow immediately from (3.13)–(3.14) in light of our assumption that
kuk C ı˛Œ…� � 1. We now argue the third inequality, keeping in mind � > 1. Indeed,
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inserting the second inequality in (3.25) into (3.15) and using ı˛Œ…� � 1 � ı�1 we find

Œ��0� . .Œ��0�/
��1
��1 .Œu�1=�� C ı�1/

���
��1 C .Œu�1=�� C ı�1/ı�.��1/

. .Œu�� _ Œ��
0
�/
�=�
C .Œ��0�/

��1
��1 ı�

���
��1 C Œu�1=�� ı�.��1/ C ı�� ;

which implies the claim via Young’s inequality applied to the second and third terms.
In particular, from (3.25) it follows that for any exponent p � �,

Œu�p=�� C .k�k01/
p
C .Œ��0�/

p=� . Œu�� C Œ��
0
� C ı

��: (3.26)

Hence, using (3.6) followed by (3.26) with p D � � .h
i � 1/˛ � �, we obtain (3.24).

4. Jets and proof of the main theorem

In this section, we present the two main analytic ingredients required for our method,
reconstruction and integration in the language of [20], then show how to apply them to
deduce our main result. The general strategy is to prove (1.19), from which the (weaker)
bound (1.15) easily follows by our interpolation inequalities (see (3.13)). Hence, our main
focus is on estimating the Œu�� and Œ��0� semi-norms, which we view abstractly as a semi-
norm on a specific jet of smooth functions. By a jet, we mean a family of functions
Ux W D ! R indexed by a base point x 2 D � RdC1. These are used to describe the
remainder that appears in the formal identities (1.22) and (1.27) when the linear form
f .x/ is replaced by its truncated version f�.x/. More precisely, given u satisfying (1.14)
and � defined by (1.20), we define

Ux WD u � u.x/ � f�.x/:…x;

Fx WD
�
a.u/ � a.u.x//

�
�uC � � h.u/ � f�C˛.x/:…�x ; (4.1)

where � 2 .1; 2/ will be chosen sufficiently close to 2 depending on how close ˛ is to 0
(see (4.27)). Our goal is then to estimate dist�x d

��.y; x/jUx.y/j, which is done using
Proposition 2, a generalization of classical Schauder theory to jets.

To describe the input for Proposition 2, let us fix our notational conventions for con-
volutions: we say that � is a symmetric convolution kernel if it is a Schwartz function
with integral 1 satisfying �.t; x/ D �.t; �x/. For a fixed �, we use � > 0 to denote
a convolution parameter and write .�/� for the convolution with ��, where ��.t; x/ WD
��.dC2/�.��2t; ��1x/. Specifically, given a (regular) tempered distribution F and a ker-
nel �, we define F�.x/ WD

R
RdC1 F.y/��.x� y/ dy, and omit the specific kernel from the

notation.16

The most important input for Proposition 2 is (4.10) below, which requires for each
base point x 2 D control on dist�x �

2��j.@t � a.u.x//�/Ux�.x/j, the natural extension

16In the notation of Hairer [20], F�.x/ D hF; ��x i.
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of the C ��2 semi-norm applied to the jet ¹.@t � a.u.x//�/Uxºx. At this point, the com-
patibility between …x and …�x in the form of (1.8) becomes important, as it leads to
compatibility between Ux and Fx up to a correction. Specifically, it follows from (1.8)
and (1.14) that

.@t � a.u.x//�/Ux D Fx C .f�.x/ � f�C˛.x//:…�x : (4.2)

The second term on the right-hand side is straightforward to estimate to order �� 2 since it
only involves…�xˇ for jˇj � �, and we can easily combine (1.8) and (1.9) for this purpose
(see (4.35)). Hence, our main task is to estimate dist�x �

2��jFx�.x/j below, which is where
Proposition 1 comes into play. The main input for Proposition 1 is (4.8), which requires a
bound on jFx�.y/ � Fy�.y/j in terms of a sum of terms of the form d �1.y; x/��2 where
�1 C �2 D ı > 0. It follows immediately from the definition (4.1) that

Fx�.y/� Fy�.y/D .a.u.y//� a.u.x///�u�.y/C f�C˛.y/:…�y�.y/� f�C˛.x/:…
�
x�.y/:

(4.3)

This identity needs to be further rearranged: for instance, the first term could at best be
bounded by Œu�2˛d

˛.y; x/�˛�2, but adding the exponents gives 2˛ � 2 < 0 for ˛ < 1.
Fortunately, there are many cancellations between the above quantities, and we establish
that in the following way. We start by arguing the following change of base point for the
negative model

…�x D �yx…
�
y C

X
k�1

zk…x.y/k�…x: (4.4)

Inserting this above we find that

Fx�.y/ � Fy�.y/ D
�
f�C˛.y/:id � f�C˛.x/:�yx

�
…�y

C
�
a.u.y// � a.u.x//

�
�u�.y/ �

X
k�1

f�C˛.x/:.zk…x.y/k�…x/:

The first term is exactly tailored to the modelled distribution norm (3.2) and leads to a
sum of terms of the form jjjf�C˛jjj Œ…�d�C˛�jˇ j.y; x/�jˇ j�2, which explains the role of
the Continuity Lemma. The second contribution above is precisely the truncated version
of (1.24). We show below that by a Taylor expansion and further application of Lemma 4
(similar to the proof of the Graded Continuity Lemma), this quantity can be estimated by

a sum of terms, the ones of highest order taking the form Œu�
�C˛
�

� d�C˛�jˇ j.y; x/�jˇ j�2,
where ˛ � � � �. This suggests applying Proposition 1 with ı D � C ˛ � 2 provided
that � > 2 � ˛. The output from reconstruction is of order �C ˛ � 2, which in particular
implies control of order � � 2. If we take the above estimates as an input for integration,
we would find

Œu�� C Œ��
0
� . .Œu�� C Œ��

0
�/Œ…�C

X
˛����

Œu�
�C˛
�

� C l.o.t., (4.5)

where the first term comes from the Continuity Lemma. Unfortunately, even with the
help of our interpolation inequalities, this estimate does not close without an additional a
priori smallness constraint on Œu�� and Œ…�. For typical perturbative results, this is usually
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achieved via a continuity argument or exploiting an additional small factor of the time
interval. However, our main result is of a different character and takes for granted only
the rather weak input: smallness of kuk. To improve on (4.5), we need to be more careful
in passing from the �C ˛ � 2 output from reconstruction to the � � 2 input required for
integration. Namely, in Lemma 7 we interpolate between the (optimal) � C ˛ � 2 > 0

description (on small scales) with a rather coarse ˛ � 2 bound (on large scales) to obtain
an �� 2 < 0 description where the quantities on the right-hand side of (4.5) are effectively
raised to the power �

�C˛
, allowing us to apply our interpolation inequalities and buckle

under smallness of kuk.

4.1. Approximation by jets

We are interested in jets that are uniformly locally bounded, which we monitor using the
quantity

kU k0 WD sup ¹jUx.y/j W x 2 D; y 2 Bdistx.x/º; (4.6)

where we recall the shorthand notation distx WD dist.x; @D/ for the distance of x from the
boundary of D. Moreover, we measure higher regularity of order � > 0 via the weighted
quantities

ŒU �� WD sup
²

dist�x
jUx.y/j
d�.y; x/

W x 2 D; y 2 Bdistx.x/
³
;

ŒU �0� WD sup
²

dist�x
jUx.y/j

d��1.y; x/
W x 2 D; y 2 B 1

2 distx
.x/
³
: (4.7)

The second definition is used to monitor jets related to analogues of Gubinelli derivatives,
which explains the subscript � despite U being measured against d��1.y; x/. It also hints
to why the supremum over y is taken over a smaller ball. The definition (4.7) is designed
to be compatible with (3.3) (for a specific choice of jet).

We first cite a local reconstruction assertion, which can be found in essentially this
form in [29]; it is a local version of the reconstruction theorem in [31], both being inspired
by related results in [20].

Proposition 1 (Reconstruction). Let ı > 0 and K � .�1; ı/ finite. There is a symmetric
convolution kernel � with supp� � B1.0/ with the following property. Fix z 2D and � 2
.0; 1/ with � < distz. Assume that for a jet of smooth functions ¹Fxºx such that Fz.z/D 0,
there is C > 0 such that for all � 2 .0; �/ and x; y 2 B���.z/,

jFx�.y/ � Fy�.y/j � C
X
�2K

d ı��.y; x/�� : (4.8)

Then
jFz�.z/j . C�ı ; (4.9)

where the implicit constant depends only on �, K, and the dimension d .

The following proposition on integration of jets is a local variant of [30, Lemma 5]
and extends [29, Lemma 2.11]. Within the proof of the Main Theorem , the output of
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Proposition 1 will be used as an input of Proposition 2. At first glance, the conditions of
Proposition 2 appear to be stronger than expected, compared to integration lemmas from
multi-level Schauder theory that are used in semi-linear contexts, as we have to include the
continuity condition (4.11). However, we emphasize that condition (4.10) is rather weak:
It does not rely at all on regularity information of the coefficient field a relative to the
base point or the convolution scale. This condition alone cannot therefore suffice to give a
result that is applicable to quasi-linear equations. Proposition 2 can thus be understood as
providing a surprisingly weak supplementary condition to (4.10), namely the three-point
continuity (4.11), which is sufficient to conclude the regularity statement (4.12).

Proposition 2 (Integration). Letƒ2 .0;1/, �2 .1;2/ and let A� .0;�/ be finite. Consider
a jet of smooth functions ¹Uxºx on D such that for all x 2 D we have Ux.x/ D 0 and
ry jyDxUx.y/ D 0, and assume that ŒU �� <1. Let � be a symmetric convolution kernel
with compact support in B1.0/, and let the following two conditions be satisfied for some
M > 0:

(1) For all y 2 D and � 2 .0; 1
10

disty/,

inf
a0;c0

dist�y j.@t � a0�/Uy�.y/ � c0j �M���2; (4.10)

where the infimum is taken over all a0 2 I WD Œƒ;ƒ�1� and all constants c0 2 R.

(2) (Three-point continuity) For all x 2 D, y 2 B 1
2 distx

.x/, z 2 B 1
2 distx

.y/,

dist�x jUx.z/ � Ux.y/ � Uy.z/ � 
x.y/ � .z � y/j �M
X
�2A

d���.y; x/d �.z; y/

(4.11)
for some jet ¹
xºx with 
x W D ! Rd .

Then

ŒU �� C Œ
�
0
� . M C kU k0: (4.12)

Here the implicit constant in (4.12) depends only on ƒ, �, A, the dimension d and the
convolution kernel �.

Proof. Step 1. We claim that for all x 2 D, and all � 2 .0; 1
10

distx/ and R 2 .0; 1
2

distx/
with � � 1

2
R,

dist�x inf
a02I; c02R

k.@s � a0�/Ux� � c0kBR.x/ �M�˛�2.�CR/��˛; (4.13)

where k � kM denotes the supremum norm restricted to a subset M � RdC1. To this end,
we let x; y satisfy d.y; x/ � R and write

.@t � a0�/.Ux� � Uy�/.y/

D

Z �
Ux.z/ � Ux.y/ � Uy.z/ � 
x.y/ � .z � y/

�
.@t � a0�/��.y � z/ dz:
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Using the three-point continuity condition (4.11), which is valid since R;� < 1
2

distx, we
find that

dist�x j.@s � a0�/.Ux� � Uy�/.y/j

. M
X
�2A

Z
d���.y; x/d �.z; y/j.@t � a0�/��.y � z/j dz . M

X
�2A

R������2: (4.14)

To pass from (4.14) to (4.13) we use the triangle inequality and Young’s inequality
together with (4.10) and note that distx

disty
� 2 as a consequence of disty � distx �R and

R � 1
2

distx.

Step 2. We claim that for all base points x 2 D and scales � 2 .0; 1
10

distx/ and R;L 2
.0; 1

2
distx/ with �;R � 1

2
L,�

distx
R

��
inf
`
kUx� � `kBR.x/ .

�
R

L

�2��
ŒU �� C

L2M

R�
�˛�2.�C L/��˛; (4.15)

where the infimum is taken over all affine functions `, by which we mean functions of the
form `.y/D c C � � .y � x/ for some c 2 R and � 2 Rd . To see this we define for a0 2 I
and c0 that are near optimal in the estimate (4.13), a decomposition Ux� D u<.�/C u>.�/

by setting u> to be the (decaying) solution to

.@s � a0�/u> D I.BL.x// ..@s � a0�/Ux� � c0/ ;

where I.BL.x// is the characteristic function of BL.x/. Observe that on BL.x/,

.@s � a0�/u< D c0: (4.16)

By standard estimates for the heat equation and (4.13) we have

ku>kBL.x/ . L2k.@s � a0�/Ux� � c0kBL.x/ � L
2 dist��x M�˛�2.�C L/��˛; (4.17)

together with

k¹@s;r
2
ºu<kBR.x/ . L�2ku<kBL.x/; (4.18)

where we have used R � 1
2
L. In fact, (4.18) is slightly nonstandard due to the presence

of a constant c0 on the right-hand side of (4.16). However, this can be reduced to the case
c0 D 0 as observed in [31, Lemma 3.6]. Next we define a concrete affine function via
`<.y/ WD u<.x/Cru<.x/ � .y � x/ and observe that Taylor’s formula, (4.18) andR � L
give

ku< � `<kBR.x/ . R2k@su<kBR.x/ CR
2
kr

2u<kBR.x/

(4.18)
.
�
R

L

�2
ku<kBL.x/ �

�
R

L

�2
kUx�kBL.x/ C ku>kBL.x/:
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Combining this observation with (4.17) gives

kUx� � `<kBR.x/ � ku>kBR.x/ C ku< � `<kBR.x/

.
�
R

L

�2
kUx�kBL.x/ C ku>kBL.x/

.
�
R

L

�2
kUx�kBL.x/ C L

2 dist��x M�˛�2.�C L/��˛;

which implies (4.15), since

1

L�
kUx�kBL.x/ .

1

L�
kUxkBLC�.x/ .

1

.2L/�
kUxkB2L.x/ � dist��x ŒU ��

by the definition of ŒU �� , the constraints on �;L and the fact that Ux.x/ D 0 by assump-
tion.

Step 3. We claim that for all base points x 2 D and all scales �;R 2 .0; 1
2

distx/,

dist�x kUx��UxkBR.x/ . ŒU ���
�
CM

X
�2A

R����� : (4.19)

For y 2 BR.x/ we write

.Ux� � Ux/.y/ D
Z
.Ux.z/ � Ux.y//��.y � z/ dz:

By the symmetry of the convolution kernel under the involution x 7! �x, we have in
particular

R
� � .y � x/��.y� z/dzD 0 for any � 2 Rd , so that we may rewrite the above

identity as

.Ux� � Ux/.y/ D
Z
Uy.z/��.y � z/ dz

C

Z �
Ux.z/ � Ux.y/ � Uy.z/ � 
x.y/ � .z � y/

�
��.y � z/ dz:

By the choice of R, the triangle inequality and the definition of distx, we find that y 2
BR.x/ implies 1

2
distx � disty. Hence, by the choice of � and since the support of � is

contained in B1.0/, we have d.z; y/ � 1
2

distx � disty; so that z 2 Bdisty.y/. Thus, the
definition (4.7) of ŒU �� and (4.11) give

j.Ux� � Ux/.y/j � dist��y ŒU ��

Z
d�.z; y/j��.y; z/j dz

C dist��x M
X
�2A

d���.x; y/
Z
d �.z; y/j��.y; z/j dz:

This implies by virtue of the scaling properties �� and once more 1
2

distx � disty the
desired

dist�x j.Ux��Ux/.y/j . ŒU ���
�
CM

X
�2A

d���.y; x/�� :
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Step 4. We claim the norm equivalence

ŒU �� � ŒŒU ���; (4.20)

where we have set

ŒŒU ��� WD sup
x2B1.0/

dist�x sup
R2.0;distx/

R�� inf
`
kUx � `kBR.x/; (4.21)

and where � means that both inequalities with . and & are true. Here, the infimum is
taken over all affine functions `. We first argue that these ` may be chosen to be indepen-
dent of R, that is, for all x 2 D,

inf
`

sup
R2.0;distx/

R��kUx � `kBR.x/ . dist��x ŒŒU ��� DW C; (4.22)

where we denote the right-hand side momentarily by C for better readability. Indeed, let
`R.y/ D cR C �R � .y � x/ be (near) optimal in (4.21). Then by definition of ŒŒU ��� and
the triangle inequality,

R��k`2R � `RkBR.x/ . C:

This implies R�.��1/j�2R � �Rj C R��jc2R � cRj . C . Since � > 1, telescoping gives
R�.��1/j�R � �R0 j CR

��jcR � cR0 j. C for allR0 �R and thus the existence of � 2Rd

and c 2 R such that
R�.��1/j�R � �j CR

��
jcR � cj . C;

so that `.y/ WD c C � � .y � x/ satisfies

R��k`R � `kBR.x/ . C:

Hence we may pass from (4.21) to (4.22) by the triangle inequality.
It is clear from (4.22) and the assumptions on U that necessarily for any x 2 D the

optimal ` must be of the form `.y/ D 0. Thus

jUx.y/j . ŒŒU ���

�
d.y; x/
distx

��
(4.23)

for y 2 Bdistx.x/, which establishes the nontrivial direction of (4.20).

Step 5. We now give the estimate of ŒU �� in (4.12), that is, we will show

ŒU �� . M C kU k0: (4.24)

Combining Steps 2 and 3, by the triangle inequality we obtain, for each base point x 2 D
and all scales � 2 .0; 1

10
distx/, R;L 2 .0; 12 distx/ with �;R � 1

2
L,�

distx
R

��
inf
`
kUx � `kBR.x/ . ŒU ��

��
R

L

�2��
C

�
�

R

���
C
L2M

R�
�˛�2.�C L/��˛ CM

X
�2A

R���� :
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Now we link the scales L and � to R by introducing a small " 2 .0; 1
5
/ and choosing

L D 1
"
R and � D "R. Then for all R 2 .0; "

2
distx/ we have�

distx
R

��
inf
`
kUx � `kBR.x/ . ŒU ��."

2��
C "�/CM

�
"��4 C "2˛�4�� C

X
�2A

"�
�
:

Since for R 2 Œ "
2

distx; distx/ we have, by the definition (4.6) of kU k0,�
distx
R

��
inf
`
kUx � `kBR.x/ . "��kUxkBR.x/ � "

��
kU k0;

Step 4 implies

ŒU �� . kU k0"�� C ŒU ��."2�� C "�/CM
X
�2A

."��C2��4 C "�/: (4.25)

Taking into account � 2 .0; 2/ and using the qualitative property that ŒU �� <1, we may
choose " small enough to ensure (4.24).

Step 6. Finally, we show the full estimate (4.12). For x 2 D and y 2 B 1
2 distx

.x/ choose
z WD yC d.y; x/ei for each i 2 ¹1; : : : ; dº. Observe that .z � y/i D d.z; y/ D d.y; x/, so
that in particular z 2 B 1

2 distx
.y/. Using

d.z; x/ � d.y; x/C d.z; y/ D 2d.y; x/ < distx (4.26)

and 1
2

distx � disty, we see z 2 Bdistx.x/ \ Bdisty.y/. Hence, the definition (4.7) of ŒU ��
and the triangle inequality yield

dist�x jUx.z/ � Ux.y/ � Uy.z/j . ŒU ��.d
�.z; x/C d�.y; x/C d�.z; y// . ŒU ��d

�.y; x/;

where in the last step we have used (4.26) again. We now combine this with the three-
point continuity condition (4.11) and the triangle inequality, using again d.z;y/D d.y;x/
to the effect of

dist�x j
x.y/ � .z � y/j . .M C ŒU ��/d
�.y; x/:

Noting j
x.y/ � .z � y/j D j
i;x.y/jd.y; x/ we have, together with (4.24),

dist�x j
i;x.y/j . .M C kU k0/d
��1.y; x/:

Since i 2 ¹1; : : : ; dº was arbitrary, this yields

Œ
�0� . M C kU k0;

which together with (4.24) implies (4.12).

4.2. Application of reconstruction

We now need to place a constraint on the height of �. A lower bound is required for
reconstruction and an upper bound is required to use the Continuity Lemma. We will
additionally need an upper bound in terms of n 2 N. More specifically, recalling that
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n 2 N is defined such that n˛ < 2 < .nC 1/˛ we select � subject to

2 � ˛ < � � min ¹n˛; 1C b˛�1c˛º < 2: (4.27)

Lemma 6. For all y 2 D and � 2 .0; 1
5

disty/,

dist�C˛y jFy�.y/j . QM��C˛�2; (4.28)

where

QM WD sup
˛����

Œu�
�C˛
�

� C .jjjf�C˛jjj C 1 _ Œ…�
�=˛/Œ…�C .k�k01/

�C˛:

Proof. We divide the proof into three steps. In Step 1 we show an identity for the differ-
ence of Fx and Fy. This identity is used in Step 2 to obtain an estimate which we recognize
as the input (4.8) of Proposition 1. In Step 3 we apply Proposition 1 and obtain (4.28).

Step 1. In this step, we show that for all x; y 2 D there is u� 2 R between u.x/ and u.y/
with

Fx � Fy D .f�C˛.y/:id � f�C˛.x/:�yx/…
�
y (4.29)

C
1

.n � 1/Š
.a.n�1/.u�/ � a.n�1/.u.x///.u.y/ � u.x//n�1�u (4.30)

C

n�1X
kD1

1

kŠ
a.k/.u.x//..u.y/ � u.x//k�u � f��.k�1/˛.x/:…x.y/k�…x/:

(4.31)

By definition (4.1), keeping in mind that a.u/�uC � � h.u/ is independent of the base
point x,

Fx � Fy D
�
a.u.y// � a.u.x//

�
�uC f�C˛.y/:…�y � f�C˛.x/:…

�
x : (4.32)

Furthermore, we claim that

…�x D �yx…
�
y C

X
k�1

zk.�
.0/
yx /

k�…x: (4.33)

To see this, write the compatibility condition (1.8) in the form …�y D @t…y � z0�…y,
then apply �yx on both sides and use the morphism property, the j D 0 item of (2.13),
and the re-expansion property (1.10). In light of (4.33) and � .0/yx D …x.y/, we obtain

f�C˛.y/:…�y � f�C˛.x/:…
�
x

D f�C˛.y/:…�y � f�C˛.x/:�yx…
�
y �

X
k�1

f�C˛.x/:.zk…x.y/k�…x/;

and thus inserting (4.33) into (4.32) reveals

Fx � Fy D f�C˛.y/:…�y � f�C˛.x/:�yx…
�
y

C .a.u.y// � a.u.x///�u �
n�1X
kD1

1

kŠ
a.k/.u.x//f��.k�1/˛.x/:.…x.y/k�…x/;
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where we have also applied (2.25) in the form of Remark 5 to � WD � C ˛, � WD zk 2
T.kC1/˛ \ T� and � WD …x.y/k�…x, relying on f�C˛:zk D 1

kŠ
a.k/.u.x// for k � n � 1

and f�C˛:zk D 0 otherwise since �C ˛ � .nC 1/˛ by assumption (4.27) (see (1.16)),
(2.17) and (3.1). Hence applying Taylor’s formula in u to order n� 1 to the term a.u.y//�
a.u.x// yields the claimed identity.

Step 2. In this step we show that for all x 2 D, y 2 B 1
2 distx

.x/ and 0 < � � 1
2

distx

dist�C˛x jFx�.y/ � Fy�.y/j . QM
X

jˇ j<�C˛

d�C˛�jˇ j.y; x/�jˇ j�2: (4.34)

We mention in passing that

1
2

distx � disty � 3
2

distx;

which we will use multiple times without further mention. Indeed, for the first inequality,
note that for all z 2 @D using the triangle inequality and y 2 B 1

2 distx
.x/ gives distx �

d.z; x/ � d.z; y/ C 1
2

distx, which implies the claim by taking the infimum in z. The
second inequality is argued in a similar way.

We now apply the convolution kernel .�/� to the identity from Step 1, evaluate at y,
and estimate each contribution. For (4.29) we first observe that (1.9) combined with (1.8)
implies due to supp � � B1.0/ and � � 1

2
distx � disty, that

disthˇi˛x k…�y�.y/kTjˇj . disthˇi˛y

Z
k…y.z/kTjˇj.@s ��/��.y � z/ dz

. Œ…��jˇ j�2: (4.35)

Now we use the definition (3.2) together with (4.35) to obtain

dist�C˛x j.f�C˛.x/:�yx � f�C˛.y/:id/…�y�.y/j

.
X

jˇ j<�C˛

jjjf�C˛jjjd
�C˛�jˇ j.y; x/ disthˇi˛x k…�y�.y/kTjˇj

.
X

jˇ j<�C˛

jjjf�C˛jjj Œ…�d
�C˛�jˇ j.y; x/�jˇ j�2;

which is contained in the right-hand side of (4.34).
Next we estimate (4.30). First note that (4.35) implies

dist˛x j�u�.y/j . Œu�˛�
˛�2: (4.36)

Since u� is between u.x/ and u.y/, our assumption kakC n . 1 with ı WD �=˛ � .n� 1/ 2
.0; 1� (see (4.27)), implies

dist�C˛x j
�
a.n�1/.u�/ � a.n�1/.u.x//

�
.u.y/ � u.x//n�1�u�j

. dist�C˛x ju.y/ � u.x/jn�1Cı j�u�.y/j . Œu�
�C˛
˛

˛ d�.y; x/�˛�2;

which is contained in the right-hand side of (4.34).
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Finally, we estimate (4.31). For this, it is enough to show that for k 2 ¹1; : : : ; n � 1º,

dist�C˛x j.u.y/ � u.x//k�u�.y/ � f��.k�1/˛.x/:.…x.y/k�…x�.y//j

. QM
X

jˇ j<�C˛

d�C˛�jˇ j.y; x/�jˇ j�2: (4.37)

We apply Lemma 4 with g WD f .x/, � WD �� .k � 1/˛ 2 .0;2/, J D kC 1, u1D�u�.y/,
�1 WD �…x�.y/ and um D u.y/ � u.x/ as well as �m WD …x.y/ for m 2 ¹2; : : : ; k C 1º.
Then for jˇj < � � .k � 1/˛, we have

�u�.y/.u.y/ � u.x//k � f��.k�1/˛.x/:.�…x�.y/…x.y/k/

D .�u�.y/ � f��.k�1/˛.x/:�…x�.y//.u.y/ � u.x//k�1 (4.38)

C

X
jˇ j<��.k�1/˛

kC1X
jD2

.u.y/ � u.x/ � f��.k�2/˛�jˇ j:…x.y//.u.y/ � u.x//k�jC1

� f .x/:Pˇ .�…x�.y/…x.y/j�2/: (4.39)

To estimate (4.38), we notice that for any � D � � .k � 1/˛,

dist�x j�u�.y/ � f�.x/:�…x�.y/j
(1.10)
. dist�x

Z
j.u.z/ � u.x/ � f�.x/:� .0/zx /���.y � z/j dz

. Œu��

Z
d�.x; z/j���.y � z/j dz . Œu��.d

�.y; x/C ��/��2;

where we have used z 2 Bdistx.x/ since supp� � B1.0/ and d.z;x/� �C d.y;x/� distx.
Hence, the contribution of (4.38) to QM is

Œu���.k�1/˛Œu�
k
˛ . Œu�

�C˛
��.k�1/˛

��.k�1/˛
C Œu�

�C˛
˛

˛ :

The estimate for (4.39) follows directly from the definition (3.3) together with the bound

distjˇ jC.j�2/˛x jf .x/:Pˇ .�…x�.y/…x.y/j�2/j

. d.y; x/jˇ jC.j�2/˛
´
.k�k01/

ˇx Œ…�j�1; jˇj ¤ 1;

.k�k01/
ˇx Œ…�j�21j�3; jˇj D 1:

The argument is entirely analogous to the proof of (3.12) for jaj D 0, but also taking into
account that �…x 2 T� and hence Pˇ�…x D 0 if jˇj D 1 (which explains the 1j�3).
Hence, the contribution to QM from a summand in (4.39) with hˇi � 1 is

Œu���.k�2/˛�jˇ jŒu�
kC1�j
˛ .k�k01/

jˇx jŒ…�j�1

. Œu�
�C˛

��.k�2/˛�jˇj

��.k�2/˛�jˇ j
C Œu�

�C˛
˛

˛ C .k�k01/
�C˛
C Œ…�

.j�1/.�C˛/

.jChˇi�2/˛ :
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Note that the exponent of Œ…� satisfies

�C ˛

�
�
.j � 1/.�C ˛/

.j C hˇi � 2/˛
�
�C ˛

˛
:

Indeed, the upper bound follows from hˇi � 1, and the lower uses the constraint jˇj <
� � .k � 1/˛ followed by 2 � j � k C 1 to get .j�1/.�C˛/

�C.j�k�1/˛
� .j � 1/�C˛

�
�

�C˛
�

. The
case jˇj D 1, for which hˇi D 0, is treated in an identical way, simply taking into account
the change in the exponent of Œ…�.

Step 3. In this step we will obtain (4.28) as a consequence of Proposition 1 and the esti-
mate (4.34). We first argue that Fx.x/ D 0 for all x 2 B1.0/. To show this, note that

f�C˛.x/:q D
n�1X
jˇ 0jsD0

da.u.x//ˇ
0

qˇ .a.u.x/// D h.u.x//: (4.40)

Indeed, since qˇ D 0 unless ˇx D 0, (3.1) gives

f�C˛.x/:q D
X

jˇ j<�C˛
ˇxD0

da.u.x//ˇ
0

qˇ .a.u.x///;

and for ˇ with ˇx D 0, (2.3), (4.27) and n˛ < 2 < �C ˛ imply

0 � jˇ0js � n � 1 ” ˛ � jˇj < �C ˛:

Together with …�x .x/ D �.x/1 � q (see (1.12)), (4.40) yields

Fx.x/ D 0:

Our last step is to use (4.34) to obtain (4.8), so that (4.9) turns into the desired output

jFz�.z/j . dist�.�C˛/z
QM��C˛�2

for z2B1.0/ and �2 .0; 1
5

distz/. Note that we have simply relabelled y as z in comparison
to (4.28). To do so, we use Proposition 1 and now fix z 2D and � 2 .0; 1

5
distz/. We need

to argue that for any � 2 .0; �/ and x; y 2 B���.z/,

jFx�.y/ � Fy�.y/j . QM dist�.�C˛/z

X
�2A

d�C˛��.y; x/���2:

To apply (4.34), we need to show that x;y2B���.z/ and �< 1
5

distz imply y2B 1
2 distx

.x/.
Indeed, first note that d.y; x/ � d.x; z/ C d.y; z/ � 2.� � �/ � 2

5
distz. Furthermore,

since distz � distx C d.z; x/ � distx C � � distxC15 distz, we have 4
5

distz � distx so that
combining the two yields d.y; x/ � 1

2
distx. Hence, (4.34) is applicable, and since our

argument also showed that distz . distx, we may change the factor of dist�C˛x to dist�C˛z ,
which completes the proof.



F. Otto, J. Sauer, S. A. Smith, H. Weber 42

4.3. Negative interpolation

We now use interpolation, the argument and notation being similar to the proof of
Lemma 5.

Lemma 7. Let u W Rd ! R be a smooth function and define � W Rd ! R via (1.20).
Assume 0 < ı < 1

2
and let QM 2 R be defined as in Lemma 6. For each x 2 D and � 2

.0; 1
5

distx/,

dist�x �
2�� inf

a02I; c0
j.@t � a0�/Ux�.x/ � c0j

. .kuk C ı˛Œ…�/
˛
�C˛ . QM C Œu��/

�
�C˛ C .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/�: (4.41)

Proof. Let x 2 D and � 2 .0; 1
5

distx/, and set R WD �=distx.

Small scale bounds: We will first argue that

dist�x �
2�� inf

a02I; c0
j.@t � a0�/Ux�.x/ � c0j

. QMR˛ C Œ…�
X

��jˇ j<�C˛

.k�k01/
jˇx jRjˇ j��: (4.42)

To prove it, note that

.@t � a.u.x//�/Ux D Fx � .f�C˛.x/ � f�.x//:…�x C `0;

where the `0 WD f�.x/:Px is active only if Px from (the footnote of) Assumption 1 is
nonzero. We now apply .�/� on both sides and evaluate at y D x. By (4.28) and the con-
straint on � we have

dist�x �
2��
jFx�.x/j . dist�˛x

QM�˛ D QMR˛:

Furthermore, using (4.35) we have

dist�x �
2��
j.f�C˛ � f�/.x/:…�x�.x/j . Œ…�

X
��jˇ j<�C˛

.k�k01/
jˇx jRjˇ j��:

Since a.u.x// 2 I and `0.x/ 2 R, this completes the proof of (4.42).

Large scale bounds: We now turn to the large scale estimate and in this case we write

.@t � a.u.x//�/Ux� D .@t � a.u.x//�/u� � f�.x/:.@t � a0�/…x�;

which implies via the triangle inequality

dist�x �
2�� inf

a02I; c02R
j.@t � a0�/Ux�.x/ � c0j

. kukR�� C Œ…�
X
jˇ j<�

.k�k01/
jˇx jRjˇ j��: (4.43)
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Hence, combining (4.42) and (4.43) we obtain

dist�x �
2�� inf

a02I; c02R
j.@t � a0�/Ux�.x/ � c0j

. QMR˛ C kukR�� C Œ…�
X

jˇ j<�C˛

.k�k01/
ˇxRjˇ j��: (4.44)

If R � 1 satisfies (3.19), we may use (2.33) to obtain

dist�x �
2�� inf

a02I; c02R
j.@t � a0�/Ux�.x/ � c0j

. . QM C Œu��/R
˛
C .kuk C ı˛Œ…�/R��: (4.45)

To complete the proof, we argue similarly to the proof of Lemma 5. Namely, balancing the
terms leads us to define R via R�C˛ D .kuk C ı˛Œ…�/. QM C Œu��/�1. If (3.19) is satisfied
with this choice of R, then we obtain

dist�x �
2�� inf

a02I; c0
j.@t � a0�/Ux�.x/ � c0j . .kuk C ı˛Œ…�/

˛
�C˛ . QM C Œu��/

�
�C˛ ;

which implies (4.41). If (3.19) fails, then we find

QM C Œu�� . .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/�C˛;

so that choosing R � ı ^ Œ…��1=˛ , (4.45) leads to

distx �2�� inf
a02I; c02R

j.@t � a0�/Ux�.x/ � c0j . .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/�;

which again implies (4.41).

4.4. Application of integration

We will now use Proposition 2 in order to transform the output (4.28) of Lemma 6 into a
bound on the solution u to the renormalized equation (1.14).

Lemma 8. Let u be a smooth solution to (1.14) and define � as in (1.20). For � satisfying
(4.27) and ı 2 .0; 1=2/,

Œu�� C Œ��
0
� . .kuk C ı˛Œ…�/

˛
�C˛ QM

�
�C˛ C .k�k01 C jjjf�jjj/Œ…�

C .kuk C ı˛Œ…�/.ı�1 _ jŒ…�1=˛/�: (4.46)

Proof. Recall that the jet in Proposition 2 is required to be centered to first order in the
sense that Ux.x/Dry jyDxUx.y/D 0. For the specific choice (4.1), we find that Ux.x/D 0
since…xˇ .x/D 0 for jˇj< 2 (see (1.9)). Let us now explain how the choice of � in (1.19)
ensures ry jyDxUx.y/ D 0. Indeed, note that

rUx.y/ D ru.y/ � f�.x/:r…x.y/ D ru.y/ � f�.x/:r.id � P/…x.y/ � �.x/; (4.47)
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where we recall that id � P is the projection of T onto T�, (see Section 2.1) and we have
usedrP…xD zx (see (1.5)) together with f�.x/:zx D �.x/ (see (3.1)). Furthermore, since
r…xˇ .x/ D 0 for jˇj > 1 (see (1.9)), we may use the definition of f� (see (3.1)) to write

�.x/ D ru.x/ � f1.x/:r…x.x/ D ru.x/ � f�.x/:r.id � P/…x.x/;

and conclude that ry jyDxUx.y/ vanishes.

Step 1. In this step, we establish the three-point continuity condition: for all x 2 B1.0/,
y 2 B 1

2 distx
.x/ and z 2 B 1

2 distx
.y/,

dist�x jUx.z/ � Ux.y/ � Uy.z/ � 
x.y/ � .z � y/j

.
X

˛�jˇ j���˛

jjjf�jjj Œ…�d
��jˇ j.y; x/d jˇ j.z; y/; (4.48)

where 
x.y/ is defined by


x.y/ WD .f�.x/:�yx � f�.y/:id/zx : (4.49)

To establish (4.48), use (1.10) to write …x.z/ �…x.y/ D �yx…y.z/, so that

Ux.z/ � Ux.y/ � Uy.z/ � 
x.y/ � .z � y/

D f�.x/:.…x.z/ �…x.y// � f�.y/:…y.z/ � 
x.y/ � .z � y/
D f�.x/:�yx…y.z/ � f�.y/:…y.z/ � 
x.y/ � .z � y/
D .f�.x/:�yx � f�.y/:id/.id � P/…y.z/;

where we have used P…y.z/ WD zx � .z � y/ (see (1.5)). Since distx � 2 disty, we find by
(3.2) that

dist�x jUx.z/ � Ux.y/ � Uy.z/ � 
x.y/ � .z � y/j

.
��˛X
jˇ jD˛

jjjf�jjjd
��jˇ j.y; x/ disthˇi˛y k.id � P/� .0/zy kTjˇj

(1.9)
.

��˛X
jˇ jD˛

jjjf�jjj Œ…�d
��jˇ j.y; x/d jˇ j.z; y/;

which yields (4.48).

Step 2. We may apply Proposition 2 to the jet y 7! Ux.y/, as we have verified (4.10) in
Lemma 7 and (4.11) in Step 2, where the set A \ .0; �� plays the role of A. Moreover,
Ux.x/ D ry jyDxUx.y/ D 0 as observed at the beginning of the proof.

Observe that for x 2 B1.0/ and y 2 Bdistx.x/ we have

u.y/ � u.x/ � f�.x/:� .0/yx
(1.10)
D u.y/ � u.x/ � f�.x/:…x.y/ D Ux.y/
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and thus by (1.9) and d.x; y/ � distx � 1 and the definition of kU k0 in (4.6),

kU k0 . kuk C Œ…�C k�k01Œ…�:

Moreover, the definition of 
x.y/ in Step 2, (2.14) and f�:zx D � (see (3.1)) imply

�.y/ � �.x/ � f�.x/:� .1/yx D �
x.y/:

Therefore, as a result of the steps above, and taking into account that ı�1 _ Œ…�1=˛ � 1,
and also using Young’s inequality, the output (4.12) implies (4.46).

4.5. Proof of the Main Theorem

The main step is to prove that for � satisfying (4.27), there exists a universal � > 0 such
that if kuk � �, then

Œu�� . .kuk C Œ…�/.1 _ Œ…��=˛/: (4.50)

We will choose � later in the proof, but we mention already that we will apply Lemma 5,
Lemma 8 and the Continuity Lemma with ı WD 1

2
^ .�Œ…��1/1=˛ , so we may assume

throughout that
kuk C ı˛Œ…� � 2� � 1: (4.51)

We will make use of the following interpolation inequalities:

Œu�� . Œu��=�� ; k�k01 . Œu�1=�� ; Œ��0� . .Œu�� _ Œ��
0
�/
�=�
C ı�� ; (4.52)

which follow from (3.13)–(3.14) and (4.51). Indeed, for the first two inequalities, notice
that we have dropped the second term on the RHS of each of (3.13)–(3.14), which is
possible since if the second term dominates the first term on the RHS (3.13)–(3.14), then

Œu�� . .kuk C ı˛Œ…�/.ı�1 _ Œ…�1=˛/� . .kuk C Œ…�/.1 _ Œ…��=˛/;

which is precisely (4.50). The third inequality in (4.52) was already justified in the proof
of (3.25).

Our plan is to deduce (4.50) from (4.46), so we need to control QM . We claim that

QM . Œu�
�C˛
�

� C .Œ��0�/
�C˛
� C Œ…�ı��: (4.53)

In light of (4.52),

sup
˛����

Œu�
�C˛
�

� C .k�k01/
�C˛
C Œ…�.1 _ Œ…��=˛/ . Œu�

�C˛
�

� C Œ…�ı��:

Furthermore, by the Continuity Lemma and Young’s inequality

jjjf�C˛jjj Œ…� . .Œu�� C Œ��
0
� C ı

��/Œ…� . Œu�
�C˛
�

� C .Œ��0�/
�C˛
� C Œ…�

�C˛
˛ C Œ…�ı��;

which completes the proof of (4.53).
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We now consider the remaining contributions to (4.46). Using again the Continuity
Lemma, Young’s inequality, and (4.52) we find that

.jjjf�jjj C k�k
0
1/Œ…� . .Œu���˛ C Œ��

0
��˛ C ı

�.��˛/
C Œu�1=�� /Œ…�

. .Œu�� C Œ��
0
��˛/

��˛
� Œ…�C ��Œu�� C �

�
��1
� Œ…�

�
��1 C ı��Œ…�

. �
�
��˛ .Œu�� C Œ��

0
�/C ı

��Œ…�:

We now insert the above estimates into (4.46), taking into account (4.51) and Young’s
inequality to obtain

Œu�� C Œ��
0
� . .�

˛
�C˛ C �

�
��˛ /.Œu�� C Œ��

0
�/C Œ…�ı

��
C .kuk C ı˛Œ…�/ı��

. .�
˛
�C˛ C �

�
��˛ /.Œu�� C Œ��

0
�/C .kuk C Œ…�/.1 _ Œ…�

�=˛/:

Choosing � sufficiently small (and universal), we obtain (4.50).
We now combine (4.50) with interpolation to conclude the main estimate (1.15).

Namely, using (3.13) with ı D 1=2, we obtain

Œu�� . Œu��=�� .kuk C Œ…�/1�˛=� C .kuk C Œ…�/.1 _ Œ…��=˛/

. .kuk C Œ…�/.1 _ Œ…��=˛/:

If x;y 2B1�r .0/with r 2 .0; 1/, then distx � r . Hence, if y 2Bdistx.x/, the above estimate
with � D ˛ implies (1.15), and if y … Bdistx.x/, then d.y; x/ � distx � r and hence

r˛ju.y/ � u.x/j . r˛kuk . kukd˛.y; x/;

which is also contained in the right-hand side of (1.15). We conclude by arguing the more
general claim (1.19) by essentially the same argument. No changes are required if � � 1,
and if � 2 .1; 2/ we use the fact that by (3.14) (with � playing the role of �) and Young’s
inequality,

k�k01 . Œu�� C .kuk C Œ…�/.1 _ Œ…�
1=˛/;

which implies that

r� j�.x/j � r j�.x/j . .kuk C Œ…�/.1 _ Œ…��=˛/:
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