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In an industrial group like Safran, numerical simulations of physi-
cal phenomena are integral to most design processes. At Safran’s
corporate research center, we enhance these processes by devel-
oping fast and reliable surrogate models for various physics. We
focus here on two technologies developed in recent years. The
first is a physical reduced-order modeling method for non-linear
structural mechanics and thermal analysis, used for calculating
the lifespan of high-pressure turbine blades and performing heat
analysis of high-pressure compressors. The second technology
involves learning physics simulations with non-parameterized geo-
metrical variability using classical machine learning tools, such as
Gaussian process regression. Finally, we present our contributions
to the open-source and open-data community.

1 Introduction

Consider an operator F that represents a complex numerical prob-
lem or an expensive experiment. Industrial design processes of-
ten require frequent evaluations of such operators in many-query
tasks, such as parametric exploration, optimization, uncertainty
quantification, or calibration. These tasks are intractable without
modifications or simplifications, making them unsuitable for real-
life industrial applications. For instance, optimizing the shape of an

aircraft wing to maximize finesse under a minimum thickness con-
straint involves many iterations of running a complex fluid solver,
which is computationally intensive, see Figure 1.

A common approach to manage these tasks is by replacing the
expensive operator F with a surrogate f. This surrogate is created
by learning the behavior of F from data. A training database is
constructed by selecting inputs using a design of experiments (DoE)
algorithm and computing corresponding outputs by evaluating F.
The surrogate, formed as a regressor trained on these input/output
pairs, must be accurate enough to replace F in many-query tasks
and fast enough to be practical for industrial applications.

For tabular problems where inputs and outputs are low-dimen-
sional vectors (ℝd ∋ x ↦ y = F(x) ∈ ℝp), traditional regression
methods like linear or polynomial regression, nearest neighbors,
random forests, support vector regression, or Gaussian process
regression can be used. This work focuses on learning physics prob-
lems, which involve complex, high-dimensional heterogeneous
objects like meshes, boundary conditions, fields, or material mod-
els, unlike tabular problems. The inputs are the varying components
of the physical setting in the many-query task, while the outputs
are the predicted components used for decision-making.

For example, the AirfRANS physics learning problem [1] involves
a mesh of the fluid domain, boundary conditions, the Reynolds-
averaged Navier–Stokes equations, and the k−ω turbulencemodel.

Expensive complex 3D CFD computation

Wing shape parameters

Optimization

Maximize finesse
under min thickness constraint

finesse = lift
drag

Figure 1. Optimization of the shape of an aircraft wing.
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Here, the inputs include the mesh, angle of attack, and inlet velocity,
while the outputs are the velocity, pressure, and turbulent velocity
fields. The chosen turbulence model being fixed in the training
dataset, it is not part of the inputs of the learning problem.

The advantage of physics learning problems over tabular prob-
lems with scalar inputs and outputs is the flexibility to change
shapes beyond the training parameterization and the ability to
modify the post-treatments of predicted solution fields after learn-
ing.

This article first discusses physical reduced-order modeling tech-
nologies developed at Safran in Section 2. Then, it introduces
a machine learning method for non-parameterized geometrical
variability in Section 3. Finally, it presents Safran’s initiatives in the
open-source and open-data communities in Section 4.

The article is a shortened version of the paper submitted to the
Proceedings of the 9th European Congress of Mathematics, based
on the work presented during the Felix Klein Prize Lecture on July
16th, 2024.

2 Physical reduced-order modeling

Physical reduced-order modeling (ROM) is a surrogate modeling
technique that uses the underlying physics equations during the
exploitation stage.

2.1 Linear data compression
During the training stage, we generate inputs using DoE algo-
rithms and compute corresponding outputs by evaluating the
operator F. We then apply a linear dimensionality reduction al-
gorithm to these outputs to construct a reduced-order basis. In
the exploitation stage, we use the same algorithms as in the
high-dimension problem but restrict the solution to the subspace
spanned by the reduced-order basis. For example, if F involves
solving a high-dimensional initial boundary value problem, we re-
place the finite element basis with the reduced-order basis to keep
using the Galerkin method, expressing the reduced solution as
a linear combination of the reduced-order basis elements. Various
methods have been proposed to adapt physical ROMs to different
problems and simulation methods involved in F evaluations. One
such method is the Reduced Basis method [20], which starts with
a single input/output pair and enriches the data by selecting con-
figurations where the current model makes the largest error, using
fast and accurate error bounds [5] for accuracy assessments and
to trigger enrichment steps.

The speed-up in physical ROMs comes from the reduced-order
basis having a much smaller cardinality than the finite element basis,
leading to smaller linear systems to solve in the Newton’s algorithm
during the exploitation stage. However, constructing these small
systems can be costly, especially with non-linear problems requiring

numerical integration over the mesh. To achieve practical speed-
up, precomputations and approximations (called hyperreduction)
are performed during the training stage to reduce computational
effort in the exploitation stage, see [4, Section 3.2] for more details,
and [6, Section 1] for references on hyperreduction methods.

We focus on non-linear structural mechanics and non-linear
transient heat problems, utilizing snapshot proper orthogonal de-
composition (POD) for dimensionality reduction, which is paralleliz-
able with domain decomposition. Additionally, we use a localized
empirical cubature method (ECM), which derives reduced quadra-
ture formulae independently for each subdomain. This involves
solving an optimization problem to minimize the number of non-
zero elements of the quadrature weights vector, using a greedy
approach called non-negative orthogonal matching pursuit. This
ensures the reduced operators retain the spectral properties of F,
maintaining symmetry and positive definiteness of the tangent
operator in the Newton’s algorithm.

For non-linear structural mechanics and transient heat prob-
lems, we have demonstrated significant speed-ups, see respec-
tively [4] and [6]. For instance, our physical ROM reduced the
computation time for the lifetime prediction of 3D elastoviscoplastic
high-pressure turbine blades from weeks to hours, and accelerated
transient heat analysis of high-pressure compressors with complex
boundary conditions, achieving errors compatible with industrial
requirements.

In structural mechanics applications, quantities of interest often
include dual quantities, such as plastic strain or von Mises stress.
To reconstruct dual quantities over the entire mesh, the gappy POD
method is used. By enforcing the reduced quadrature scheme to
include well-chosen quadrature points, the gappy POD reconstruc-
tion can be made well-posed, see [4, Proposition 1]. Our numerical
experiments revealed a strong correlation between the prediction
error on dual quantities and the ROM-gappy-POD residual, which
is defined as the error, on the reduced quadrature points, between
the online computation of the corresponding quantity by the con-
stitutive law solver and the gappy POD reconstruction. Thus, we
introduced [3] an error indicator, which is a regressor trained to
predict the error from the ROM-gappy-POD residual. This indica-
tor successfully maintains the error below a chosen threshold by
triggering enrichment steps.

Linear dimensionality reduction enables the application of the
Galerkin method during the exploitation stage. However, this re-
striction can sometimes result in a reduced-order basis with a cardi-
nality too large to achieve significant speed-up, even with hyperre-
duction. These situations, referred to as poorly reducible problems,
will be addressed in the following section.

2.2 Piecewise linear data compression
The reducibility of the approximation of F by f linear dimensionality
reduction is evaluated by the rate of decay of the Kolmogorov
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Figure 3. Local ROM recommendation.

N-width of the output solutions with respect to the dimension N of
an optimal approximation vector space. The Kolmogorov N-width
measures the worst approximation error of a set of outputs by the
best N-dimensional subspace. If the decay rate is fast, linear data
compression methods are effective. If not, the reduced-order basis
becomes too large, making the reduced problems slow to solve,
indicating a poorly reducible problem. This challenge is addressed
in Thomas Daniel’s Ph.D. work [11].

To tackle poorly reducible problems, we focus on creating
a dictionary of local physical ROMs using piecewise linear data
compression, by clustering the outputs fields, see Figure 2. Consider

Large solution manifold

Dictionary of local ROMs (cluster-specific ROMs)

Figure 2. Piecewise linear data compression

the problem of predicting the lifetime of 3D elastoviscoplastic high-
pressure turbine blades, now with the temperature loading field
as input. To use a dictionary of local ROMs, we need to know in
advance in which cluster of the outputs the solution is located,
for us to use the adequate local ROM. To achieve this, we train
a classifier to select the correct local ROM based on the 3D input
temperature field, similar to how classifiers in computer graphics

recognize objects in images, see Figure 3. Such workflows are
proposed in [13]. Unlike image classifiers, our situation involves
few high-dimensional inputs. To improve the classifier training, we
developed specialized feature selection and data augmentation
techniques. This approach ensures accurate local ROM selection
and effective handling of complex, high-dimensional input data,
see [14].

Partitioning outputs using the L2-norm in the ambient solu-
tion space has been explored in the literature, but this does not
guarantee low-dimensional approximation subspaces. In [12, Prop-
erty 4.13], we demonstrate that the partitions of outputs minimiz-
ing the k-medoid cost function with sine dissimilarity are exactly the
minimizers of the sum of a local variant of the Kolmogorov 1-width,
weighted by the partition element’s volume. This method, which
considers the relative angles between outputs, offers a practical
algorithm for optimally partitioning outputs for our purposes.

Consider a 2D advection problem where Gaussian processes
with small (0.1) and large (1) amplitudes and various vertical po-
sitions ξ 0

2 move from left to right, see Figure 4. We illustrate the

ξ2

ξ1

ξ 02

0.5
0.4

0.2

0.0

n

Figure 4. Some output fields for the 2D advection problem [12].

clustering of these outputs using multidimensional scaling (MDS)
with five clusters, comparing L2-norm and sine dissimilarity. With
the L2-norm, all outputs with the small amplitude (0.1) are tightly
packed at the center, likely grouping into the same cluster. This clus-
ter contains all the independent directions of the outputs, hence
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Figure 5. Number of POD modes for each local basis with respect to the
number of clusters, for various accuracy criterions of the POD truncation,
applied to the 2D advection problem [12].

has a Kolmogorov N-width not smaller than the one of the set
of all outputs. Conversely, with sine dissimilarity, three connected
components emerge, corresponding to the three considered ξ 0

2

values. At each position are located two outputs varying only by
magnitude, indicating zero sine dissimilarity for outputs differing
only in magnitude.

In Figure 5, we compare the effectiveness of clustering outputs
using the L2-norm versus sine dissimilarity in constructing local
ROMs of small dimensions. When using the L2-norm, one cluster
ends up with the same dimension as a global ROM, specifically
the cluster containing all small magnitude outputs. This indicates
that no matter how many clusters are chosen, one cluster remains
as poorly reducible as the entire set of outputs. Conversely, when
using sine dissimilarity, the dimensions of all local ROMs decrease
as the number of clusters increases. This demonstrates that clus-
tering outputs using sine dissimilarity is beneficial, as it successfully
reduces the ROM dimensions. Therefore, the choice of dissimilarity
in output clustering is crucial, and the sine dissimilarity proves to
be effective in this context.

In [15], a dictionary of local ROMs is developed to quantify
the uncertainty of the plastic strain and von Mises stress in high-
pressure turbine blades with respect to input temperature loading.
First, we parameterize the variability of the input temperature field
and construct two DoEs: one MaxProj of size 80 and one Sobol’
of size 120. We evaluate the operator F for these 200 configura-
tions, taking 7 days and 9 hours on 48 computer cores. Using the
sine dissimilarity with the PAM k-medoid clustering algorithm, we
partition the MaxProj DoE outputs into two clusters in 5 minutes.
Next, we construct the two corresponding local ROMs using the
POD-ECM technique presented in Section 2.1, which takes 5 hours
on 24 computer cores. We label the 120 Sobol’ DoE outputs by
computing the sine dissimilarity with the two identified medoids
in 5 minutes. Our feature selection algorithm takes 16 minutes
on 280 computer cores, followed by training a logistic regression
classifier with elastic-net regularization in 1 minute. This process
results in a ROM dictionary of two local ROMs and a classifier ca-

pable of recommending the appropriate local ROM based on input
temperature loading, making our surrogate f ready for use. Finally,
we conduct probability density estimation of the plastic strain and
von Mises stress in areas of interest on the turbine blade using
1,008 Monte Carlo evaluations of f. This yields relative errors of
1–2% and a speed-up factor of 600.

2.3 Limitations
Despite the successful application of physical ROMs to many equa-
tions and configurations, two significant challenges persist. First,
non-parameterized geometrical variations make it difficult to com-
pare outputs supported on different meshes. Second, global non-
linear data compression prevents the use of the Galerkin method
during the exploitation stage. Some authors have developed solu-
tions to address these limitations while still constructing a sur-
rogate f that involves solving the physics equations. However,
these approaches often involve complex algorithms that can hinder
practical speed-ups.

In the following section, we propose a surrogate f that incorpo-
rates non-linear data compression andmanages non-parameterized
geometrical variations, but does not rely on solving the physics
equations during the exploitation stage.

3 Learning physical problems with non-parameterized
geometrical variability

3.1 Mesh morphing Gaussian process
In our recent work [9], we introduce the mesh morphing Gaussian
process (MMGP) technique, which integrates four key components:
(i) mesh morphing, (ii) finite element interpolation, (iii) dimensional-
ity reduction, and (iv) Gaussian process regression. This approach is
designed to learn solutions to partial differential equations (PDEs)
that involve geometric variations not explicitly parameterized.

Figure 6 illustrates the MMGP inference process for predicting
a field of interest. The figure should be read from left to right:
the left side shows various geometries corresponding to differ-
ent samples, while the right side displays the target fields to be
predicted on these geometries. For non-parameterized meshes,
we perform a shape embedding process to convert meshes into
learnable objects, by considering the coordinates of the mesh ver-
tices as continuous fields. The left column of Figure 6 depicts the
continuous field of the x-component of the coordinates, showing
vertical iso-values. We then apply a deterministic morphing process
to transform input meshes into a common shape, such as the unit
disk shown in Figure 6. Each sample is converted into a mesh of the
unit disk, modifying the coordinate fields according to the input
mesh shapes. We then select a common mesh of the unit disk
and project the coordinate fields from each morphed mesh onto
this common mesh using finite element interpolation. This process
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Figure 6. Illustration of the MMGP inference workflow for the prediction of an output field of interest [9].

results in all coordinate fields being represented on the same mesh,
allowing us to use classical dimensionality reduction techniques, like
principal component analysis (PCA), to generate low-dimensional
vectors for the meshes. If scalar inputs are part of the learning
problem, these are appended at the end of these vectors.

Similarly, a field embedding process is needed to convert
variable-sized output fields into learnable objects. We apply the
same transformations used for coordinate fields: morphing onto
a common shape, finite interpolation onto a common mesh, and
PCA compression. This process results in low-dimensional vectors
representing our output fields of interest.

These deterministic pre-treatments effectively reduce the
physics learning problem to a low-dimensional input/output tab-
ular regression problem. The morphing and related steps act as
the dimensionality reduction phase, which, while possibly highly
non-linear, simplifies the machine learning task by converting large,
variable-dimensional objects into smaller manageable ones. The
deterministic nature of these pre-treatments is essential, as it sim-
plifies the machine learning stage and avoids the complexity of
dealing with large and variable-dimensional data directly.

We use Gaussian process regression for its high accuracy and
ability to estimate predictive uncertainties effectively. For further
details and numerical experiments demonstrating the efficacy of
MMGP, including comparisons with recent deep learning technolo-
gies like MeshGraphNet and U-net graph convolutional networks,
we refer to [9].

3.2 ML4PhySim competition
We participated in a competition [16] organized by IRT SystemX
and partners, where we employed our MMGP technology. The chal-
lenge involved predicting pressure, velocity, and turbulent viscosity
fields on the AirfRANS dataset [1], introduced in Section 1.

To achieve effective morphing, we first extended all 2D meshes
to a common boundary box to handle irregular external boundaries,
as shown in Figure 7.

We select the geometry of the first pretreated mesh from the
training set as the common shape. We specify the morphing of cho-
sen control points — on the intrados and extrados of the airfoil, the
wake line, and the external boundary— and use a Radial Basis Func-
tion (RBF) morphing algorithm to compute the transformation of all
other points. We project all fields, including input coordinates and
output fields, onto the commonmesh (the pretreated and morphed
mesh from the first training sample). For dimensionality reduction,
we used snapshot proper orthogonal decomposition (POD) as de-
tailed in [9, Annex C]. The snapshot POD approach ensures that
objects reconstructed from reduced representations preserve zero
linear relationships, which is critical for maintaining zero boundary
conditions, such as those for the velocity field at the airfoil surface.
This helps to ensure that the zero boundary condition is respected
in the predicted fields. We train separate Gaussian processes for
each generalized coordinate associated with the snapshot POD of
each output field. The Gaussian process kernel combines a constant
term with an RBF kernel and a white noise term.

Some results are illustrated in Figure 8.

Ux 20−2.7 44

Figure 7. Illustration of the horizontal velocity for two samples of the
AirfRANS dataset: the external boundaries are very irregular.
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Figure 8. Illustration of the result on a test sample.

The competition score, ranging from 0 to 100, evaluates both
the speed and accuracy of the surrogate model, including scalar
quantities derived from the output fields (such as lift and drag
coefficients) and their Spearman’s rank correlation coefficients,
tested on two test sets, one of them being out-of-distribution.
Table 1 shows that our method won first place, outperforming
competitors who used advanced deep learning techniques, despite
our approach using simpler and more classical tools.

3.3 Outlooks
MMGP is an effective method for approximating field and scalar
outputs in complex physics problems with non-parameterized geo-
metrical variability. It combines mesh morphing with finite element
interpolation and uses shape embedding by reducing the dimen-
sions of coordinate fields, simplifying the machine learning task.
This approach enables efficient Gaussian process regression on
reduced-dimensional data.

The method can handle large meshes, can be trained on CPU,
is interpretable, and provides accurate predictions and predictive
uncertainties. It is especially efficient for industrial part design,
where configurations often have low intrinsic dimensions.

However, MMGP has some limitations: the morphing process
must be customized for each use case, it assumes a fixed mesh
topology, and speed-up is limited by the need for morphing and
interpolation during inference. Future work will focus on addressing
these issues by developing a generic morphing method, creating
efficient approximate morphing procedures for inference [19], and
deriving an optimal morphing strategy to minimize dimensionality
further.

4 Open source and open data

Since the inauguration of the Safran corporate research center
in 2015, we have implemented processes to make our research

physics (30%) ML-related (40%) OOD generalization (30%)
rank method physical criteria accuracy (75%) OOD accuracy (42%) OOD physics (33%) global score (%)

CD CL ρD ρL ux uy p νt ps
speed-up (25%)

ux uy p νt ps CD CL ρD ρL
speed-up (25%)

1 MMGP wv wv wv wv wv wv wv wv wv 27.4 wv wv wv wv wv wv wv wv wv 28.08 81.29

2 GNN-FC wv wv wv wv wv wv wv wv wv 570.77 wv wv wv wv wv wv wv wv wv 572.3 66.81

3 MINR wv wv wv wv wv wv wv wv wv 518.58 wv wv wv wv wv wv wv wv wv 519.21 58.37

4 Bi-Trans wv wv wv wv wv wv wv wv wv 552.97 wv wv wv wv wv wv wv wv wv 556.46 51.24

5 NeurEco wv wv wv wv wv wv wv wv wv 44.93 wv wv wv wv wv wv wv wv wv 44.78 50.72

Table 1. ML4PhySim competition final leaderboard [17].
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codes open-source and non-confidential datasets available as
open-data. Our commitment to accessibility, quality, and robustness
involves using DevOps tools and practices, such as Git for version
control, code reviews, automated testing, deployment pipelines,
and extensive documentation. We opt for permissive licenses like
MIT or BSD3 for our code and CC-BY-SA for datasets. Our codes are
hosted on GitLab, documentation on Read the Docs, and packages
are distributed via conda-forge, when possible.

4.1 Open-source codes
One recent development is the PLAID (Physics Learning AI Data-
model) library, which formalizes physics learning problems and
manages complex datasets. It leverages the CGNS standard [10]
for data handling, promoting consistency and ease of data sharing
among practitioners.

The codes developed for the methods presented in the pre-
vious sections are open-source. Notably, Muscat [2, 29] is a li-

brary for mesh processing in finite element computations. PLAID
[30] is used as a foundation for our physics learning develop-
ments. Physical ROM technologies are supported by two libraries:
Mordicus [18], co-developed with the MOR_DICUS consortium,
and genericROM [26], developed by Safran. The implementation
of genericROM is non-intrusive, parallel with distributed memory,
and can handle non-parameterized variability, see [25] for details
on these notions and a description of Mordicus and genericROM.
Additionally, MMGP, discussed in Section 3, is also available as
open-source [28]. For tabular learning problems, Safran’s open-
source platform Lagun [27] supports a range of tasks including
design of experiments, surrogate modeling, sensitivity analysis, and
optimization.

4.2 Open-data datasets
We are in the process of making our non-confidential datasets
available as open-data in the PLAID format, facilitating their use

Figure 9. Hugging Face Spaces hosting a demo of our method MMGP applied on the physics learning problem of the ML4PhySim competition.
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by the community. These datasets are shared through Zenodo and
Hugging Face. Specifically, the three datasets used in our recent
comparison of MMGP with advanced deep learning methods in [9]
are accessible on Zenodo [7,21,22] and Hugging Face [8,23,24].

Additionally, we have distributed a demo of our MMGP method
on Hugging Face’s Spaces platform, which was applied to the
ML4PhySim competition problem presented in Section 3.2, see
Figure 9. In this demo, users can select a sample ID, which trig-
gers the MMGP surrogate model, which involves: morphing, finite
element interpolation, projection onto snapshot POD modes, in-
ference using a Gaussian process regressor, and finally, inverse
snapshot POD and finite element interpolation. Predicted fields,
reference data, and errors are plotted. Note that for real-time per-
formance, the demo uses a remeshed dataset with meshes reduced
from approximately 180,000 nodes to around 8,000 nodes.
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