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Prescribing Q-curvature on even-dimensional
manifolds with conical singularities

Aleks Jevnikar, Yannick Sire and Wen Yang

Abstract. On a 2m-dimensional closed manifold, we investigate the existence of
prescribed Q-curvature metrics with conical singularities. We present here a general
existence and multiplicity result in the supercritical regime. To this end, we first
carry out a blow-up analysis of a 2mth-order PDE associated to the problem, and
then apply a variational argument of min-max type. For m > 1, this seems to be the
first existence result for supercritical conic manifolds different from the sphere.

1. Introduction

In conformal geometry, one of the most fundamental problems is understanding the rela-
tionship between conformally covariant operators, their associated conformal invariants,
and the related PDEs.

As a first example, let us consider the Laplace–Beltrami operator in two dimensions on
a closed surface .M;g/ and the Gaussian curvature. If we want to prescribe the curvatureK
through a conformal change of metric gv D e2vg, we have the associated PDE

(1.1) ��gv CKg D Ke
2v;

where �g denotes the Laplace–Beltrami operator with respect to the background metric
g and Kg , K D Kgv are the Gaussian curvatures of the metric g and gv , respectively.
Observe that the latter equation yields in particular the conformal invariance of the total
Gaussian curvature which is then tight to the topology of the surface via the Gauss-Bonnet
formula Z

M

Kg dvolg D �.M/:

Here, �.M/ is the Euler characteristic of the surface.
A classical issue here is the prescribed Gaussian curvature problem or the Uniformiz-

ation Theorem about the existence of a conformal metric in the conformal class of g with
prescribed (possibly constant) curvature. This amounts to solve the PDE in (1.1) which
has been systematically studied since the works of Berger [9], Kazdan–Warner [31] and
Chang–Yang [16, 17].
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In higher dimensions, we have the so-called GJMS operators P 2mg and the related
Q-curvatures Q2m

g , which are the higher-order analogues of the Laplace–Beltrami oper-
ator and the Gaussian curvature for 2m-dimensional closed manifolds, see [26,27]. These
are conformally covariant differential operators whose leading term is .��g/m. In partic-
ular, when m D 1, we recover the Laplace–Beltrami operator and the Gaussian curvature.
Moreover, for m D 2, P 4g and Q4

g are related to the Paneitz operator and the standard
Q-curvature:

(1.2)
P 4g f D Pgf D �

2
gf C divg

�2
3
Rgg � 2Ricg

�
df;

Q4
g D 2Qg D �

1

6
.�gRg �R

2
g C 3 jRicg j2/;

where Ricg and Rg stand for the Ricci tensor and the scalar curvature of the manifold
.M; g/. See the original works of Paneitz [46, 47] and Branson [10] for more details.

The family of GJMS operators and the related Q-curvature functions play now an
important role in modern differential geometry. As in the lower order case, if we want
to prescribe the Q-curvature Q2m

gv
D Q through a conformal transformation gv D e2vg,

then P 2mg and Q2m
g satisfy the following laws:

(1.3) P 2mgv D e
�2mvP 2mg and P 2mg v CQ2m

g D Qe
2mv:

The prescribed Q-curvature problem is in thus related to the solvability of (1.3).
One can attack this problem variationally by looking at the critical points of the asso-

ciated energy functional. A lot of work has been done in this direction, in particular for
the four-dimensional case and the Paneitz operator (1.2). In this setting, assuming

Pg � 0 and Ker¹Pgº D ¹constantsº;

the problem has been first solved by Chang–Yang [18] forZ
M

Q4
g dvolg D 2

Z
M

Qg dvolg < 16�2 D 2
Z

S4
Qg0 dvolg0 :

Here, g0 is the standard metric of the sphere. See also the related work of Gursky [28]. This
is the so-called subcritical case, in which the energy functional is coercive and bounded
from below by means of the Adams–Trudinger–Moser inequality [1], and solutions cor-
respond to global minima using the direct methods of the calculus of variations. We refer
to the discussion in the sequel for the precise definition of the subcritical, critical and
supercritical case. The supercritical case

R
M
Q4
g dvolg > 16�2, where the energy func-

tional fails to be bounded from below, has been considered by Djadli–Malchiodi [23]
via a new min-max method based on improved versions of the Adams–Trudinger–Moser
inequality [3, 19], solving the problem provided

Ker¹Pgº D ¹constantsº and
Z
M

Q4
g dvolg … 16�2N:

Finally, some existence results for the critical case
R
M
Q4
g dvolg 2 16�2N have been

derived by Ndiaye [45] by making use of the critical point theory at infinity jointly with a
blow-up analysis.
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As far as the higher-dimensional case 2m > 4 is concerned, the subcritical case has
been solved in [11] via a geometric flow, while the Djadli–Malchiodi’s argument has been
generalized by Ndiaye [44] to treat the supercritical case.

In this paper, we are interested in prescribing theQ-curvature on a general 2m-dimen-
sional closed manifold M with conical singularities. Let g be a smooth metric on M . We
will say that a point q 2M is a conical singularity of order ˛ 2 .�1;C1/ for the new
metric gv D e2vg if

gv.x/ D f .x/ jxj
2˛
jdxj2 locally around q;

for some smooth function f . The set of conical singularities qj of orders j̨ is encoded in
the formal sum

D D

NX
jD1

j̨ qj ;

while .M;D/ will denote the related conical manifold. We define

�g D

Z
M

Q2m
g dvolg and �gv D

Z
M

Q2m
gv
dvolgv ;

for which the following relation holds:

(1.4) �gv D �g C
ƒm

2

NX
jD1

j̨ ;

where ƒm D .2m � 1/Š jS2mj, see for example Theorem 2.3. The critical threshold of a
singular manifold is essentially related to the singular Adams–Trudinger–Moser inequal-
ity stated in Theorem 2.4. In the spirit of Troyanov [49], we let

�.M;D/ D ƒm

�
1Cmin

j
¹ j̨ ; 0º

�
and give the following classification.

Definition 1.1. The singular manifold .M;D/ is said to be:

subcritical if �gv < �.M;D/;

critical if �gv D �.M;D/;

supercritical if �gv > �.M;D/:

See also the recent work of Fang–Ma [25] for a similar discussion. We point out we
have a slightly different notation for ƒm with respect to that paper.

Due to the singular behavior of the conformal factor v around a conical point, pre-
scribing the Q-curvature on a manifold with conical singularities at qj 2M of order
j̨ 2 .�1;C1/ is related to the solvability of the following singular PDE:

(1.5) P 2mg v CQ2m
g D Q

2m
gv
e2mv �

ƒm

2

NX
jD1

j̨ ıqj ;

where ıqj stands for the Dirac measure located at the point qj 2M .
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One may desingularize the behavior of v around the conical points by considering

u D v C
ƒm

2

NX
jD1

j̨ G.x; qj /;

whereG.x;p/ is the Green function of P 2mg , see for example Lemma 2.2. Then u satisfies

(1.6) P 2mg uCQ2m
g C

ƒm

2jM j

NX
jD1

j̨ D zQe
2mu;

where

(1.7) zQ D Q2m
gv
e�mƒm

PN
jD1 j̨G.x;qj /;

which is now singular at the points qj .
The singular equation (1.6) has been studied mainly in the two-dimensional case, that

is, in relation to the prescribed Gaussian curvature problem. After the initial work of Troy-
anov [49], there have been contributions by many authors, as for example [19–21,34,40].
This problem has received a lot of attention also in recent years, see [4–6,15,36]. See also
[24, 39, 41, 42] for further developments in this direction.

In the higher-dimensional casem> 1, there are very few results available. The subcrit-
ical regime has been just recently solved by Fang–Ma in [25], where the four-dimensional
case is considered. The authors point out their method could be applied for higher dimen-
sions too. In any case, the existence here follows by direct methods of the calculus of vari-
ations once the singular Adams–Trudinger–Moser inequality in Theorem 2.4 is derived.
See also [29] for a related result on the sphere via a fixed point argument. For a blow-up
analysis in dimension four, we refer instead to [2]. Concerning the existence problem in
the supercritical case, the only result we are aware of is [30], where the authors consider
a slightly supercritical problem on the sphere, again with a fixed point argument in the
spirit of [29].

The goal of this paper is to give a first general existence result for 2m-dimensional
conic manifolds in the supercritical regime. We define a critical set of values � as follows:

(1.8) � D
°
nƒm Cƒm

X
i 2J

.1C ˛i / j n2N [ ¹0º and J � ¹1; : : : ; N º
±
:

Observe that if j̨ 2N for all j , then we simply have � DƒmN. Recall now the definition
of the total curvature �g given before (1.4). Let MR � M be a closed n-dimensional
submanifold, n 2 Œ1; 2m/, such that the singular points qj … MR for all j D 1; : : : ; N .
Then, we have the following.

Theorem 1.1. Let .M;D/ be a supercritical singular 2m-dimensional closed manifold
with j̨ > 0 for j D 1; : : : ; N , and let Q be a smooth positive function on M . Suppose
that there exists a retraction RWM !MR, with MR �M as above. If, moreover,

Ker¹P 2mg º D ¹constantsº and �g C
ƒm

2

NX
jD1

j̨ … �;

then there exists a conformal metric on .M;D/ with Q2m-curvature equal to Q.
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Remark 1.1. We point out that a retraction RWM !MR as above exists for a wide class
of manifolds. For example, we can consider manifolds of the type M n �M 2m�n, where
we denote by M l any l-dimensional closed manifold. Indeed, it is easy to see that we can
define a retraction RWM n �M 2m�n!M n � ¹pº for some p 2M 2m�n with the desired
properties. Observe that the torus T2m belongs to this class of manifolds. One could also
consider the connected sum .M n �M 2m�n/#N 2m, modifying the above retraction so
that it is constant on N 2m.

We can also deduce the following multiplicity result. Here, MR
k

are the formal bary-
centers of MR according to (4.3) and zHq.MR

k
/ denotes its reduced q-th homology group.

Theorem 1.2. Under the assumptions of Theorem 1.1, let �gv 2 .kƒm; .k C 1/ƒm/.
Then, if E in (4.1) is a Morse functional,

#¹solutions of (1.6)º �
X
q�0

dim zHq.M
R
k /:

Remark 1.2. Consider for example the class of manifolds M n �M 2m�n in Remark 1.1.
We will get an explicit lower bound on the number of solutions as far as we can explicitly
estimate the homology groups ofM n

k
. One can find such computations in [22] for general

manifolds M n, focusing on the cases n D 2 and n D 4. For some simple manifolds, we
can easily compute the homology groups. For example, if M n is a 2-dimensional G-torus
(connected sum of G tori), then we have at least .NCG�1/Š

NŠ.G�1/Š
solutions, see [4].

The argument of the proof of the existence result is in the spirit of the celebrated min-
max scheme of [23], extended to high dimensions by [44], jointly with some ideas of [4] to
treat the singularities. Roughly speaking, the strategy is based on the study of the sublevels
of the energy functional, in particular, by showing the low sublevels are non-contractible.
This is done by using improved versions of the singular Adams–Trudinger–Moser inequal-
ity. We will then overcome the complexity due to the singularities by retracting the mani-
fold onto MR, not containing the singular points. This leads us to study the low sublevels
just by looking at functions concentrating on such submanifold, which is enough to gain
some non-trivial homology. We refer the interested readers to [8] and [7] for a similar
approach applied to surfaces with boundary and Toda systems, respectively.

To conclude the min-max argument, we would need some compactness property as
the Palais–Smale conditions are not available in this setting. We thus use Struwe’s mono-
tonicity trick [48], which is by now a standard tool in this class of problems, to deduce the
existence of a sequence of solutions uk satisfying (1.6). We will then conclude by showing
the following compactness result, which actually holds for any 2m-dimensional manifold
and j̨ > �1.

Theorem 1.3. Let uk be a sequence of solutions of (1.6) with zQ > 0 and j̨ > �1 for
j D 1; : : : ; N . If

Ker¹P 2mg º D ¹constantsº and �gv … �;

then there exists a constant C , independent of k, such that

kukkL1.M/ � C:
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This result is a consequence of a quantization phenomenon of blowing-up solutions
which is derived via Pohozaev-type inequalities in the spirit of [2, 6, 33].

The above analysis, together with Morse inequalities, allows us to deduce also the
multiplicity result of Theorem 1.2.

Remark 1.3. We conclude the introduction with the following observations.
(1) The existence result is derived for the case j̨ > 0 for all j . In principle, the same

strategy can be carried out for the case j̨ 2 .�1; 0/. However, in this scenario we get
a worse Adams–Trudinger–Moser inequality in Theorem 2.4, and this in turn affects the
topology of the low sublevels in a non-trivial way, see for instance [15]. We postpone this
study to a future paper.

(2) The same analysis should work in the odd-dimensional case with some further
technical difficulties, as explained in Section 5 of [44]. We will not discuss this case in the
present paper.

This paper is organized as follows. In Section 2, we collect some useful preliminary
results. Section 3 is devoted to blow-up analysis and the proof of Theorem 1.3, and in
Section 4, we carry out the min-max method to derive the existence and multiplicity results
of Theorems 1.1 and 1.2. A Pohozaev-type identity is provided in Appendix A.

Notations.

(1) BMr .p/ is the ball centered at p 2M with geodesic radius r on the manifold M .
(2) Br .p/ is the ball centered at p with radius r in R2m.

2. Preliminary facts

In this section, we recall briefly some known results which can be easily derived from the
existing literature. Let p be a point inM and let BMr .p/ be the geodesic normal ball such
that BMr .p/ is mapped by exp�1p diffeomorphically onto a neighborhood of 02 Tp.M/,
where Tp.M/ refers to the tangent space of p, which can be identified with R2m. The
local coordinates defined by the chart .exp�1p ;BMr .p// are called normal coordinates with
center p. In such coordinates, the Riemannian metric at the point p satisfies

(2.1) gij D ıij ; gij;k D 0; � ijk D 0; for all i; j; k 2 ¹1; : : : ; 2mº;

where � i
jk

stands for the Christoffel symbols. With the above preparation, we have:

Lemma 2.1. Let ��g be the Laplace–Beltrami operator and let p be any point of M . In
normal coordinates at p, we have

(2.2) .��g/
mu D .��/muCD2muCD2m�1u;

where D2m is a linear differential operator, of order 2m, and whose coefficients are
O.jx � pj2/ as x tends to p, while D2m�1 is a linear differential operator of order at
most 2m � 1, and whose coefficients belong to C lloc.R

2m/ for all l � 0.
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Proof. By the definition of Laplace–Beltrami operator, we have

(2.3) ��gu D �
1

p
detg

@i .
p

detggij @ju/;

where gij is the inverse of gij . Using (2.1), we can write

(2.4) ��gu D �g
ij @iju �

@i .
p

detggij /
p

detg
@ju: D �g

ij @iju � #j @ju;

where #j is a smooth function. Based on (2.4), it is easy to see that in the final expression
of .��/mg , the leading differential order is

gi1j1 gi2j2 � � � gimjm @i1j1i2j2���imjm � ;

where ia; jb 2 ¹1; : : : ; 2mº; 8a; b 2 ¹1; : : : ; mº. While the remaining terms are order at
most 2m� 1 and the coefficients are smooth, because the exponential map is differentiable
with arbitrary order. Consider the leading term; using (2.1), we see that

gij .x/ D ıij .x/CO.r
2/; if x 2BMr .p/:

Therefore we can write

mY
aD1

giaja.x/ D

mY
aD1

ıiaja CO.r
2/; if x 2BMr .p/:

As a consequence, we can write

(2.5) gi1j1 gi2j2 � � � gimjm @i1j1i2j2���imjm � D .��/
m
� CD2m

� ;

with D2m satisfying the property stated in the lemma. This finishes the proof.

Remark 2.1. Throughout the paper, when performing local computations, we may con-
sider conformal normal coordinates, see [14] or [32], if needed. These are normal coordin-
ates at a point x0 for a metric gw D e2wg with det.gw/D 1 in a small neighborhood of x0
and other useful properties, for which we refer the interested reader to [50]. Observe that
the differential operator P 2mg , after this change of the metric, can be still expanded as
the right-hand side of (2.2). Indeed, w.x/ D O.d2gw .x; x0//, and it is smooth in a small
neighborhood of x0. Moreover, by (1.3), we can write (1.6) as

P 2mgw u D e
�2mwPgu D e

�2mw
�
�Q2m

g �
ƒm

2jM j

NX
jD1

j̨ C zQe2mu
�
;

which is equivalent to

e2mw P 2mgw u D �Q
2m
g �

ƒm

2jM j

NX
jD1

j̨ C zQe2mu:
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Concerning the differential operator e2mwP 2mgw , it is known that the leading order operator
is e2mw.��gw /

m. Then, by using the above Lemma 2.1 and the asymptotic behavior of
w.x/, we can write

e2mw.��gw /
mu D .��/muCP 2muCP 2m�1u;

with P 2m and P 2m�1 satisfying the same properties as D2m and D2m�1 in Lemma 2.1.

In what follows, recall ƒm D .2m � 1/Š jS2mj. We will need the following structural
result on the Green functional of the operators under consideration, see Lemma 2.1 in [44].

Lemma 2.2. Suppose Ker¹P 2mg º D ¹constantsº. Then the Green functionG.x;y/ of P 2mg
exists and has the following properties:

(1) For all u2C 2m.M/ we have, for x ¤ y 2M ,

u.x/ � Nu D

Z
M

G.x; y/P 2mg u.y/ dVg.y/;

Z
M

G.x; y/ dVg.y/ D 0;

P 2mg G.x; p/ D ıp �
1

jM j
,

where Nu is the average of u.

(2) The function
G.x; y/ D H.x; y/CK.x; y/

is smooth on M �M , away from the diagonal. The function K extends to a C 2;˛

function on M �M and H satisfies

H.x; y/ D
2

ƒm
log

�1
r

�
f .r/;

where r is the geodesic distance from x to y and f is a smooth positive, decreasing
function such that f .r/ D 1 in a neighborhood of r D 0 and f .r/ D 0 for r � injg.M/.

As mentioned in the introduction, the total Q-curvature is a conformal invariant for
which the following formula holds true.

Theorem 2.3. ConsiderD D
PN
iD1 pi˛i , where pi 2M and ˛i > �1. Let g be a smooth

metric on M , and let gv D e2vg be the conical metric representing D as explained
before (1.4). Then, it holds

(2.6)
Z
M

Q2m
gv
dvolgv D

Z
M

Q2m
g dvolg C

ƒm

2

NX
iD1

˛i :

Proof. The proof is a standard argument (see, e.g., [25] for m D 2), using Lemmata 2.1
and 2.2. See also [13] for a more general result which implies this statement as a particular
case.

Finally, we state the general singular Adams–Trudinger–Moser inequality suitable to
treat our problem. We focus here for simplicity on the case P 2mg � 0, and refer to the
discussion in [44] for the general case.
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Theorem 2.4. Consider D D
PN
iD1 pi ˛i , where pi 2M and ˛i > �1. Let zQ > 0 be

as in (1.7). Assume P 2mg � 0 and Ker¹P 2mg º D ¹constantsº. Then, there exists a constant
C D C.˛;M/ such that for any u2Hm.M/, we have

ƒm

�
1Cmin

j
¹ j̨ ; 0º

�
log

Z
M

zQe2m.u�Nu/ dvolg � m
Z
M

uP 2mg udvolg C C;

where Nu is the average of u.

Proof. The case without singularities is Proposition 2.2 in [44]. The conic case follows
by the same approach as in [25].

3. Compactness property

In this section, we shall prove the compactness result of Theorem 1.3. For simplicity of
notation, there is no loss of generality to consider a blow-up sequence uk to

(3.1) P 2mg uk CQ
2m
g D

zQe2muk ;

where

zQ D Q2m
gv
e�mƒm

PN
jD1 j̨G.x;qj / > 0; with ƒm D .2m � 1/Š jS

2m
j:

We call p the blow-up point for the blow-up sequence ¹ukº if uk.p/!C1 as k!C1.
Collecting all the blow-up points into a set B and we name it the blow-up set for ¹ukº.
Theorem 1.3 will follow by showing a concentration phenomenon:

zQe2muk *
X
p2B

.1C p̨/ƒmıp as k !C1;

weakly in the sense of measures,

p̨ D

´
0; if p … ¹q1; : : : ; qN º;

j̨ ; if p D qj :

It follows that when blow-up occurs, then necessarilyZ
M

zQe2muk dvolg ! � 2� as k !C1;

where � is given in (1.8).
First, we establish the following lemma.

Lemma 3.1. Let ¹ukº be a sequence of functions on .M; g/ satisfying (3.1). Then for
i D 1; : : : ; 2m � 1, we have

(3.2)
Z
BMr .x/

jr
iukj

l dy � C.n/r2m�il ; 1 � l <
2m

i
; 8x 2M; 0 < r < rinj;

where rinj is the injectivity radius of .M; g/.
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Proof. Set
fk WD zQe

2muk �Q2m
g ;

which is bounded in L1.M/. By Green’s representation formula, we have

(3.3) uk.x/ D �

Z
M

uk dvolg C
Z
M

G.x; y/fk.y/ dvolg.y/:

For x; y 2M; x ¤ y, we have (see Lemma 2.1 in [44])

(3.4) jr
i
yG.x; y/j �

C

dg.x; y/i
, 1 � i � 2m � 1:

Then differentiating (3.3) and using (3.4) and Jensen’s inequality, we get

jr
iuk.x/j

l
� C

� Z
M

jfk.y/j

dg.x; y/i
dvolg

�l
� C

Z
M

�kfkkL1.M/

dg.x; y/i

�l jfk.y/j
kfkkL1.M/

dvolg :

From Fubini’s theorem, we conclude that

(3.5)
Z
BMr .x/

jr
iuk.x/j

l dvolg � C sup
y 2M

Z
BMr .x/

kfkk
l
L1.M/

dg.x; z/il
dvolg.z/ � Cr2m�il :

This proves the lemma.

Next, we shall give the minimal local mass around a blow-up point.

Lemma 3.2. Let the sequence uk satisfy (3.1) and blowing-up at qj . Suppose that

zQe2muk * m; weakly in the sense of measures in M:

Then
m.qj / �

1

2
min¹ƒm.1C j̨ /;ƒmº:

Proof. To show the thesis, it suffices to prove that if the following inequality holds,

(3.6)
Z
BM .qj ;2r/

zQe2muk dvolg <
1

2
min¹ƒm.1C j̨ /;ƒmº; r <

rinj

2
,

then

(3.7) uk � C in BM .qj ; r/:

We now study equation (3.1) in terms of the local normal coordinates at qj (see, for
example, Lemma 2.1 and Remark 2.1). By the exponential map, we define the preimage
of BM .qj ; r/ by Br .0/ and we use the same notation to denote x 2M and its preimage.
We decompose uk as uk D u1k C u2k , where u1k is the solution of

(3.8)

´
.��/mu1k D zQe

2muk„r .x/; in B2r .0/;
u1k D �u1k D � � � D .��/

m�1u1k D 0; on @B2r .0/;
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where

„r .x/ D
dvolg.x/
dx

D 1CO.r2/;

due to the metric tensor gij .x/ D ıij CO.r2/. By Theorem 7 in [37], we have

(3.9) e2m`ju1k j 2L1.B2r .0// for ` 2
�
0;

ƒm

2k zQe2muk„r .x/kL1.B2r .0//

�
and

(3.10)
Z
B2r .0/

e2m`ju1k j dx � C.p/r2m:

Let Gr .x; y/ be the Green function of .��/m on B2r .0/ satisfying the Navier boundary
condition, i.e., ´

.��/mGr .x; y/ D ıx.y/; in B2r .0/;
Gr .x; y/ D � � � D �

m�1Gr .x; y/ D 0; on @B2r .0/:

the function Gr .x; y/ can be decomposed as

Gr .x; y/ D �
2

ƒm
log jx � yj CRr .x; y/;

with Rr .x; y/ a smooth function for x; y 2B2r . By the Green representation formula, we
have

(3.11) u1k.x/ D �
2

ƒm

Z
B2r .0/

log jx � yj zQe2muk„r .y/ dy CO.1/; x 2B3r=2.0/:

Observe that
zQ D dg.x; qj /

2m j̨ yQ;

where

(3.12) yQ D Q2m
gv
e�mƒm j̨R.x;qj /�mƒm

PN
i¤j ˛iG.x;qi / is a smooth function in B2r .0/:

On the other hand, by using G.x; y/ and the Green representation formula, we get that

(3.13)
uk.x/ D u1k.x/C u2k.x/

D uk C

Z
M

G.x; y/ zQe2muk dvolg �
Z
M

G.x; y/Q2m
g dvolg ;

where uk is the average of uk . Since it is known that the leading term of G and G2r carry
the same singular behavior, we get from Jensen’s inequality that

(3.14) u2k D uk CO.1/ D vk CO.1/ � log �
Z
M

evk CO.1/ D O.1/;
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where we used the average of Green function on M is zero. Therefore, we conclude
that u2k is bounded uniformly from above. Next, we shall prove that u1k is bounded,
and our discussion is separated into two cases:

Case 1. If j̨ > 0, then (3.6) is equivalent toZ
BM2r .qj /

zQe2muk dvolg <
1

2
ƒm:

Since u2k is bounded from above in B3r=2.0/, we see from (3.10) that there exists
some ` > 1 such that zQe2muk 2L`.BM2r .q1//. It is easy to see that uk 2L1.M/. Together
with (3.11), we can easily see that u1k ; u2k 2L1.B3r=2.0//. By the interior regularity
results in Theorem 1 of [12], we get that

(3.15) ku1kkW 2m;`.Br .0//
� k zQe2mukkL`.B3r=2.0// C ku1kkL1.Br .0// � C:

Thus by the classical Sobolev inequality, we get that u1k 2L1.Br .0//.

Case 2. If j̨ 2 .�1; 0/, then (3.6) is equivalent toZ
BM2r .qj /

zQe2muk dvolg <
1

2
ƒm.1C j̨ /:

It is not difficult to see jxj2m j̨ 2L`.B2r / for any ` 2 Œ1;�1= j̨ / and e2mu1k 2Lp.B2r /
for p 2 Œ1; 1=.1C ˛1/C "/ for some small strictly positive number " by (3.9). As a con-
sequence, we get that jxj2m˛1e2mu1k 2L`.B2r .0// for some ` > 1 by Hölder’s inequality.
Repeating the arguments as in Case 1, we obtain that u1k is bounded uniformly in Br .0/.

After establishing that u1k is bounded in Br .0/, combining with (3.14), we derive
that uk is bounded above in BMr .qj /. Then we finish the proof of this lemma.

We shall derive now the quantization result and the concentration property of the bub-
bling solution.

Proposition 3.3. Let ¹ukº be a sequence of solutions to (3.1) and let B be its blow-up
set. Then we have the following convergence in the sense of measures:

(3.16) zQe2muk *
X
p2B

ƒm.1C p̨/ıp; as k !C1;

where

p̨ D

´
˛i ; if p D qi 2 ¹q1; : : : ; qN º;
0; if p 2B n ¹q1; : : : ; qN º:

In particular, uk ! �1 uniformly on any compact subset of M nB.

Proof. For any compact set K �M nB, we can use the Green representation formula

(3.17) uk.x/ � uk.y/ D

Z
M

.G.x; z/ �G.y; z//
�
zQe2muk �Q2m

g

�
dz;
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together with the estimate (3.4), to derive that

(3.18) jr
iuk.x/j � C.K/; for x 2K; 1 � i � 2m � 1:

Then from equation (3.1) and classical elliptic estimates, we get that the 2m order deriv-
atives of uk satisfy

(3.19) jr
2muk.x/j � C.K/; for x 2K:

To proceed with our discussion, we introduce the following quantity:

(3.20) �p D lim
r!0

lim
k!C1

Z
BM .p;r/

zQe2muk dvolg :

It has been shown in Lemma 3.2 that �p has a positive lower bound at the blow-up point.
From the fact that

R
M
Q2m
g dvolg is finite, we conclude that the blow-up points are finitely-

many. At a regular blow-up point p, it has been already shown in Theorem 2 of [38] that

zQe2muk * ƒmıp in BMrp .p/;

where rp is chosen such that BM .p; rp/\ .B n ¹pº/D ;. In the following discussion, we
will focus on the singular blow-up point. Without loss of generality, we shall consider uk
in BM2r .q1/, where r is chosen such that BM2r .q1/ only contains q1 from B. We first claim
that

(3.21) uk ! �1; for x 2BM2r .q1/ n ¹q1º:

We prove it by contradiction. Suppose that uk is uniformly bounded below at some point
away from q1. Then by (3.18), we derive that

(3.22) uk ! u0 in C 2m�1;�loc .BM2r .q1/ n ¹q1º/; � 2 .0; 1/;

with the limit function satisfying

(3.23) P 2mg u0 CQ
2m
g D dg.x; q1/

2m˛1 yQe2mu0 in BM2r .q1/ n ¹q1º;

where yQ is a smooth function around q1 defined analogously as in (3.12) and dg.x; q1/
denotes the geodesic distance between x and q1 with respect to the metric g. According
to the definition of �p (see (3.20)), we see that u0 satisfies

P 2mg u0 CQ
2m
g D dg.x; q1/

2m˛1 yQe2mu0 C �q1ıq1 in BM2r .q1/:

Using the Green representation formula for u0, we have

(3.24) u0.x/ D �q1G.x; q1/C v0.x/;

where

(3.25)

v0.x/ D

Z
M

2

ƒm
log dg.x; y/

�
dg.y; q1/

2m˛1 yQe2mu0
�
dvolg

C

Z
M

R.x; y/
�
dg.y; q1/

2m˛1 yQe2mu0
�
dvolg

C Nu0 �

Z
M

G.x; y/Q2m
g dvolg :
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Denoting the two terms on the right-hand side by Ov1 and Ov2, respectively, it is not difficult
to see that Ov2 is smooth.

In the following, we shall prove that Ov1.x/ is bounded in x 2BMr .q1/. In fact, for
x 2BMr .q1/, we have

(3.26)
v0.x/ D

Z
BMr .q1/

G.x; y/dg.y; q1/
2m˛1 yQe2mu0 dvolg CO.1/

�
2

ƒm
log

1

r
k yQjxj2m˛1e2mu0kL1.BM2r .q1//

CO.1/:

This provides a lower bound for v0.x/. On the other hand, we have

(3.27) dg.x; q1/
2m˛1 e2mu0 � Cdg.x; q1/

2m.˛1�2�q1=ƒm/:

Using the fact that the left-hand side of (3.27) is integrable, we get

(3.28) ˛1 �
2�q1
ƒm

> �1:

When ˛1 < 0, we see that the above inequality (3.28) implies that

�q1 <
1

2
ƒm.1C ˛1/:

Therefore, uk cannot blow-up at q1 by Lemma 3.2, and we get a contradiction. This
implies (3.21) for ˛1 < 0. For ˛1 > 0 we have

(3.29)
Cdg.x; q1/

2m˛1�4m�q1=ƒmev0.x/ � dg.x; q1/
2m˛1 e2mu0

� C dg.x; q1/
2m˛1�4m�q1=ƒm :

In order to show that Ov1.x/ is bounded in BMr .q1/, we study Ov1.x/ in terms of local
coordinates at q1. Then dg.x; q1/ can be regarded as jxp � 0j, where xp denotes its
preimage of x under the exponential map at q1. By a little abuse of notation, we still
denote xp by x. Then we notice that Ov1.x/ satisfies

(3.30) .��/m Ov1.x/ D jxj
2m˛1 yQe2mu0„.x/ in B2r .0/;

where „.x/ D dvolg.x/=dx is bounded above and below in B2r .0/ since the metric
tensor is comparable to the standard Euclidean metric. Since we only consider the local
behavior of Ov1.x/ in Br .0/, by multiplying a cut-off function �.x/ with �.x/ D 1 for
jxj � r and �.x/ D 0 for jxj � 2r , we have that

Qv1.x/ WD �.x/ Ov1.x/

satisfies

(3.31)

´
.��/m Qv1.x/ D jxj

2m˛1 yQe2mu0„.x/C„0.x/ in B2r .0/;
Qv1.x/ D � Qv1.x/ D � � � D �

m�1 Qv1.x/ D 0 on @B2r .0/;
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where „0.x/ is smooth in B2r .0/. It is not difficult to see that

jxj2m˛1 yQe2mu0„.x/C„0.x/2L
1.B2r.0//:

We decompose jxj2m˛1 yQe2mu0„.x/C„0.x/ into P1.x/ and P2.x/, with

(3.32) kP1kL1.B2r .0// � " and P2 2L
1.B2r .0//:

Correspondingly, we decompose Qv1 into Qv11 and Qv12, where Qv1i , i D 1; 2, solves

(3.33)

´
.��/m Qv1i .x/ D Pi .x/; in B2r .0/;
Qv1i .x/ D � Qv1i .x/ D � � � D �

m�1 Qv1i .x/ D 0; on @B2r .0/:

For Qv11, by Theorem 7 in [37] we get that e
ƒm
2" Qv11 2L1.B2r .0//. While for Qv12, using the

classical elliptic regularity theory, we derive that Qv122L1.B2r .0//. Together with (3.29),
we can select " sufficiently small such that

jxj2m˛1 yQe2mu0„.x/2Ll .B2r .0// for some l > 1:

Returning to (3.31), we apply the regularity theory to deduce that Ov1 2W 2m;l .B2r .0//.
As a consequence, we have v0 2W 2m;l .B2r .0//, and this implies that jv0j � C for some
constant C in Br .0/ by the classical Sobolev inequality. Thus we have proved v0 is
bounded in BMr .q1/. Together with (3.29), we get that

(3.34) dg.x; q1/
2m˛1 yQe2mu0 � dg.x; q1/

2m.˛1�2�q1=ƒm/ if ˛1 > 0:

Next we shall derive a contradiction by making use of the Pohzozaev identity. It is known
that equation (3.1) can be written as

.��g/
muk.x/CAuk CQ

2m
g D

zQe2muk in BMr .q1/;(3.35)

where A is a linear differential operator of order at most 2m� 1; moreover, the coefficients
of A belong to C lloc.M/ for all l � 0. Using the local normal coordinates, by Lemma 2.1
(see also Remark 2.1), we could write (3.35) as

(3.36) .��/muk CD2muk C Cuk CQ
2m
g D

zQe2muk in Br .0/;

where D2m is a linear differential operator of order 2m and the coefficients are of order
O.jxj2/, with its derivative of arbitrary order smooth, while C is a linear differential oper-
ator of order at most 2m� 1, and the coefficients of Bk belong to C lloc.R

2m/ for all l � 0.
Multiplying by x � ruk on both sides, concerning the right-hand side, we have

r.h.s. of (3.36) D
1

2m

Z
Br .0/

x � r.jxj2m˛1 yQe2muk / dx � ˛1

Z
Br .0/

jxj2m˛1 yQe2muk dx

�
1

2m

Z
Br .0/

.x � r yQ/jxj2m˛1e2muk dx

D
1

2m

Z
@Br .0/

jxj2m˛1C1 yQe2muk ds�.˛1C1/

Z
Br .0/

jxj2m˛1 yQe2muk dx

�
1

2m

Z
Br .0/

.x � r yQ/jxj2m˛1e2muk dx

! �.1C ˛1/�q1 C or .1/ as k !C1:(3.37)
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Next, we consider the left-hand side of (3.36). At first, for the fourth term, we have

(3.38)
ˇ̌̌ Z
Br .0/

hx;rukiQ
2m
g dx

ˇ̌̌
� r

Z
Br .0/

jrukj dx � Cr
2m;

where we used Lemma 3.1. Therefore,

(3.39) lim
r!0

lim
k!C1

ˇ̌̌ Z
Br .0/

hx;rukiQ
2m
g dx

ˇ̌̌
D 0:

For the third term, we haveˇ̌̌ Z
Br .0/

hx;rukiCuk

ˇ̌̌
� C

2m�1X
iD0

Z
Br .0/

jxj jriukj jrukj dx

�

2m�1X
iD1

� Z
Br .0/

jxjsi jrukj
si dx

�1=si� Z
Br .0/

jr
iukj

ti dx
�1=ti

(3.40)

C C

Z
Br .0/

jrukjdx;

where we have used that
jxj jukj � C in Br .0/,

and where

ti D
2m

i
� ı and si D

2m � ıi

2m � i � ıi
, ı 2

�
0;

1

2.2m � 1/

�
:

From (3.24) and (3.25), and since Ov1 and Ov2 are bounded from above, we can see that

jx � ru0j � C in Br .0/.

Together with Lemma 3.1, we have

(3.41)
Z
Br .0/

jxjsi jru0j
si dx � Cr2m and

Z
Br .0/

jr
iu0j

ti dx � Cr iı :

As a consequence of (3.40) and (3.41), we see that

(3.42) lim
r!0

lim
k!C1

ˇ̌̌ Z
Br .0/

hx;rukiCuk

ˇ̌̌
dx D 0:

For the second term, we have already seen that v0 2W 2m;l .Br .0// for some l > 1.
Then, using (3.24), we see thatZ

Br .0/

x � ru0D2mu0 dx � C

Z
Br .0/

1

jxj2m�2
dx C Cr2 kv0kW 2m;1.Br .0// � Cr

2:
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This leads to

(3.43) lim
r!0

lim
k!C1

ˇ̌̌ Z
Br .0/

hx;rukiD
2muk dx

ˇ̌̌
D 0:

Therefore, from (3.39), (3.42) and (3.43), we get that except from the first term on the
left-hand side of (3.36), the other terms vanish in the limit. It remains to study the termZ

Br .0/

.��/mukx � ruk dx:

We shall only consider the case where m is even; the argument for the case where m
is odd goes almost the same. We set m D 2m0. Using the Pohozaev identity (A.1), and
replacing f by 2�q1

ƒm
log jxj plus a smooth function, after direct computations we get that

(3.44)

Z
Br .0/

.��/mu0hx;ru0i dx

D

m0X
iD2

Z
@Br .0/

22m .m � 1/Š.m � 1/Š
�
1 �

i � 1

m � i

� �2q1
ƒ2m

1

r2m�1
ds

C

m0X
iD1

Z
@Br .0/

22m .m � 1/Š.m � 1/Š
� i � 1
m � i

� 1
� �2q1
ƒ2m

1

r2m�1
ds

�

Z
@Br .0/

22m�1 .m � 1/Š.m � 1/Š
�2q1
ƒ2m

1

r2m�1
ds C or .1/

! �22m�1 .m � 1/Š.m � 1/Š
�2q1
ƒ2m
jS2m�1j as r ! 0:

It is known that we can write

ƒm D .2m � 1/Š jS
2m
j D 22m�1 .m � 1/Š.m � 1/Š jS2m�1j:

Together with (3.37) and (3.44), we derive that

(3.45) .1C ˛1/�q1 D
�2q1
ƒm
�

Recalling also Lemma 3.2, we get

(3.46) �q1 D .1C ˛1/ƒm:

Returning to equation (3.34) we see that

(3.47) dg.x; q1/
2m˛1 yQe2mu0 � dg.x; q1/

�2m�2m.1C˛1/ � dg.x; q1/
�2m;

which contradicts
dg.x; q1/

2m˛1 yQe2mu0 2L1.Br .0//:

Therefore, uk ! �1 uniformly on any compact subset of BM2r .q1/ n ¹q1º.
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It remains to show the quantization �q1 is exactly ƒm.1C ˛1/. We consider the func-
tion

Ouk.x/ D uk.x/ � ck ;

with
ck D �

Z
@Br .0/

uk.x/! �1:

As before, we can show that Ouk.x/ converges to some function Ou0.x/ in C 2mloc .B2r n ¹0º/

and we can write
Ou0.x/ D �

2�q1
ƒm

log dg.x; q1/C Ov.x/:

Repeating the previous argument, again by the Pohozaev identity we derive that

�q1 D ƒ.1C ˛1/;

and we finish the proof.

4. Existence result

In this section, we are going to prove the existence and multiplicity results of Theorems 1.1
and 1.2. To make the exposition more transparent, we assume hereafter for simplicity
that P 2mg � 0. The general case can be treated by suitable adaptations, see Remark 4.1.

Solutions of (1.6) are critical points of the functional

(4.1)
E.u/ D 2m

Z
M

uP 2mg udvolg C 4m
Z
M

�
Q2m
g C

ƒm

2jM j

NX
jD1

j̨

�
udvolg

� 2�gv log
Z
M

zQe2mu dvolg

with u2Hm.M/, where we recall

zQ D Q2m
gv
e�mƒm

PN
jD1 j̨G.x;qj / > 0; ƒm D .2m � 1/Š jS

2m
j

and

�gv D

Z
M

zQe2mu dvolg D
Z
M

Q2m
g dvolg C

ƒm

2

NX
jD1

j̨ :

We point out we consider here

j̨ > 0; 8j D 1; : : : ; N:

Then, in particular, the Adams–Trudinger–Moser inequality in Theorem 2.4 implies the
functional E is coercive and bounded from below provided �gv < ƒm. Thus, existence of
solutions in this subcritical case follows by direct method of calculus of variations.
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In the supercritical case �gv > ƒm, the functional is unbounded from below and we
need to apply a min-max method based on the topology of the sublevels of the functional

Ea D ¹u2Hm.M/ W E.u/ � aº:

The rough idea is that the low sublevels carry some non-trivial topology, while the high
sublevels are contractible, and such change of topology jointly with the compactness prop-
erty of Theorem 1.3 (provided �gv … �) detects a critical point. The main step is the study
of low sublevels, which is done by an improved version of the Adams–Trudinger–Moser
inequality and suitable test functions.

Let us start by pointing out that once the Adams–Trudinger–Moser inequality is avail-
able (Theorem 2.4), then a standard argument yields improved versions of it under a
spreading of the conformal volume zQe2mu in, say, l disjoint subsets as expressed in (4.2).
Somehow, it is possible to sum up localized versions of the inequality, which are in
turn based on cut-off functions, and improve the Adams–Trudinger–Moser constant to
roughly lƒm. We refer the interested readers for example to Lemma 4.1 in [44] and refer-
ences therein.

Lemma 4.1. Let ı; � > 0, l 2N and�1; : : : ;�l �M be such that d.�i ;�j / > ı for any
i ¤ j . Then, for any " > 0, there existsC DC.";ı;�;L;M/ such that for any u2Hm.M/

such that

(4.2)
Z
�i

zQe2mu dvolgR
M
zQe2mu dvolg

� � 8i 2 ¹1; : : : ; lº;

it holds

lƒm log
Z
M

zQe2m.u�Nu/ dvolg � .1C "/m
Z
M

uP 2mg udvolg C C;

where Nu is the average of u.

Improved inequalities then yield lower bounds on the functional E . As a consequence,
in the low sublevels, zQe2mu has to be concentrated in not too many different subsets, as
shown in the following result.

Lemma 4.2. Suppose �gv < .k C 1/ƒm for some k 2N. Then, 8"; r > 0, there exists
L D L."; r/� 1 such that 8u 2 E�L there exist k points ¹p1; : : : ; pkº �M such thatZ

Sk
iD1B

M
r .pi /

zQe2mu dvolgR
M
zQe2mu dvolg

� 1 � ":

Proof. We sketch here the proof. Suppose the thesis is false. Then, using a standard cover-
ing argument as in Lemma 2.3 of [23], we find kC 1 disjoint subsets�1; : : : ;�kC1 �M
in which zQe2mu is spread in the sense of (4.2). Therefore, applying the improved Adams–
Trudinger–Moser inequality of Lemma 4.1, we would get a lower bound of the functional

E.u/ � 2m
�
1 �

�gv
.k C 1/ƒm

.1C "/
� Z

M

uP 2mg udvolg C l.o.t.
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By assumption,
�gv < .k C 1/ƒm;

and hence we can take a sufficiently small " > 0 such that

1 �
�gv

.k C 1/ƒm
.1C "/ � 0

which yields E.u/ � �L for some L� 1. But this is not possible, since we were consid-
ering u 2 E�L.

It is then convenient to describe the low sublevels by means of formal barycenters
of M of order k, that is, unit measures supported in at most k points on M , defined by

(4.3) Mk D

° kX
iD1

tiıpi W

kX
iD1

ti D 1; ti � 0; pi 2M; 8i D 1; : : : ; k
±
:

The idea is to use a projection within unit measures such that

zQe2mu dvolgR
M
zQe2mu dvolg

7! � 2Mk :

This is done exactly as in Proposition 3.1 of [23] by using Lemma 4.2 to get the following.

Proposition 4.3. Suppose �gv < .k C 1/ƒm for some k 2 N. Then, there exist L� 1

and a projection ‰WE�L !Mk .

Recall now that we are assuming there exists a retractionRWM !MR, withMR �M

a closed n-dimensional submanifold, n2 Œ1; 2m�, such that j̨ …M
R for all j D 1; : : : ;N .

Let MR
k

be the set of formal barycenters of MR. We can then define a map ‰RWE�L !
MR
k

simply by considering the composition

E�L
‰
�!Mk

R�
�!MR

k ;

where R� is the push-forward of measures induced by the retraction R. Therefore, we
have the following result.

Lemma 4.4. Suppose that �gv < .k C 1/ƒm for some k 2 N. Then, there exist L� 1

and a continuous map ‰RWE�L !MR
k

.

The low sublevels are thus naturally described (at least partially) by MR
k

. As a matter
of fact, we are going to construct a reverse map, mapping continuously MR

k
into E�L.

This is done by suitable test functions on which the functional attains low values. The
idea here is that, since MR does not contain conical points qj , we may consider a family
of regular bubbles centered on MR. We thus take a non-decreasing cut-off function �ı
such that ´

�ı.t/ D t; t 2 Œ0; ı�;

�ı.t/ D 2ı; t � 2ı;
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let � > 0 and then define ˆWMR
k
! Hm.M/ by

ˆ.�/ D '�;� ; � D

kX
iD1

tiıpi 2M
R
k ;

where

'�;� .y/ D
1

2m
log

kX
iD1

ti

� 2�

1C �2�2
ı
.d.y; pi //

�2m
:

Now, since we are considering bubbles centered on MR, which does not contain conical
points, we can neglect the effect of the singularities, and all the following estimates are
carried out exactly as in the regular case, see Lemmas 4.5 and 4.6 in [44] and references
therein. To avoid technicalities, and with a little abuse of notation, we will write o.1/ to
denote quantities which do not necessarily tend to zero, but that can be made arbitrarily
small.

Lemma 4.5. Let '�;� be as above. Then, for �!C1, it holdsZ
M

'�;�P
2m
g '�;� dvolg � 2kƒm.1C o.1// log�;Z

M

�
Q2m
g C

ƒm

2jM j

NX
jD1

j̨

�
'�;� dvolg D ��gv .1C o.1// log�;

log
Z
M

zQe2m'�;� dvolg D O.1/:

By the latter estimates, we readily get the map we were looking for if we take

�gv > kƒm:

Indeed, it is enough to observe that by Lemma 4.5, we have

E.ˆ.�// � 4m.kƒm � �gv C o.1// log�! �1

as �!C1. Therefore, we can state the following result.

Proposition 4.6. Suppose �gv > kƒm for some k 2 N. Then, for any L > 0, there exists
�� 1 such that ˆWMR

k
! E�L.

We are now in position to prove the existence result.

Proof of Theorem 1.1. Suppose �gv 2 .kƒm; .k C 1/ƒm/ for some k 2 N and �gv … � ,
where � is the critical set given in (1.8). The proof is based on a min-max argument relying
on the set MR

k
which will keep track of the topological properties of the low sublveles of

the functional E , jointly with the compactness property in Theorem 1.3.
Step 1. Recalling Lemma 4.4, let L� 1 be such that there exists a continuous map

‰RWE
�L!MR

k
. Then, by Proposition 4.6, we can take �� 1 such that ˆWMR

k
! E�L.
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Consider now the composition

MR
k

ˆ
�! E�L

‰R
�! MR

k

� 7! '�;� 7! ‰R

�
zQe

2m'�;� dvolgR
M
zQe

2m'�;� dvolg

�
:

It is not difficult to see that the latter composition is homotopic to the identity map onMR
k

.
We have just to notice that, as �!C1,

zQe2m'�;� dvolgR
M
zQe2m'�;� dvolg

* �

in the sense of measures, that ‰ is a projection, and that R is a retraction onto MR. The
homotopy is thus realized by letting � ! C1. As a consequence, if we consider the
induced maps between homology groups H� we get that

(4.4) H�.M
R
k / ,! H�.E

�L/ injectively:

Now, since MR is a closed manifold, it is well known that MR
k

has non-trivial homology
groups and hence, in particular, it is non-contractible. We refer the interested readers for
example to Lemma 3.7 in [23], where the 4-dimensional case is considered. By the above
discussion, this implies

(4.5) ˆ.MR
k / � E�L is non-contractible:

Step 2. We next consider the topological cone over MR
k

, which is defined through the
equivalence relation

C D
MR
k
� Œ0; 1�

MR
k
� ¹0º

,

that is,MR
k
� ¹0º is collapsed to a single point which is the tip of the cone. We then define

the min-max value
m D inf

f 2F
sup
� 2C

E.f .�//;

where

F D
®
f W C ! Hm.M/ continuous W f .�/ D '�;� ; 8� 2 @C DMR

k

¯
;

which is non-empty since tˆ2F . Still by Proposition 4.6, we can take �� 1 sufficiently
large such that

sup
� 2 @C

E.f .�// D sup
� 2MR

k

E.'�;� / � �2L:

On the other hand, we claim that
m � �L:

To prove it, we just need to observe that @C D MR
k

is contractible in C (by construction
of the cone), and thus ˆ.MR

k
/ is contractible in f .C/ for any f 2F . Hence, we deduce

by (4.5) that f .C/ cannot be contained in E�L, which proves the claim.
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We conclude that the functional E has a min-max geometry at the level m which in
turn implies there exists a Palais–Smale sequence at this level.

Step 3. Since the Palais–Smale condition is not available in this framework, we cannot
directly pass to the limit to obtain a critical point. To overcome this problem, we use the
so-called monotonicity trick jointly with the compactness property in Theorem 1.3. This
argument has been first introduced by Struwe in [48], and has been then applied by many
authors, see for example [23, 44]. Therefore, we omit the details and just sketch the main
ideas.

One considers a small perturbation E" of the functional so that the above min-max
scheme applies uniformly. By using a monotonicity property of the perturbed min-max
valuesm", it is possible to obtain a bounded Palais–Smale sequence which then converges
to a solution of the perturbed problem. We then pass to the limit as "! 0 by using the com-
pactness property in Theorem 1.3 to eventually recover a solution of the original problem.
This concludes the proof.

Finally, we present the proof of the multiplicity result in Theorem 1.2.

Proof of Theorem 1.2. Once the above analysis (needed to prove the existence result) is
carried out, the multiplicity result is essentially a straightforward application of the Morse
inequalities. Thus, we will be sketchy and refer for example to [4, 22] for further details.
Recall also that E is assumed to be a Morse functional. The (weak) Morse inequalities
would assert that

#¹solutions of (1.6)º �
X
q�0

#¹critical points of E in ¹�L � E � Lº with index qº

�

X
q�0

dim Hq.E
L;E�L/;

whereHq.EL;E�L/ stands for the relative homology group of .EL;E�L/, see, for exam-
ple, Theorem 2.4 in [22]. Now, it is known that the high sublevels EL are contractible.
Roughly speaking, one can take L � 1 sufficiently large so that there are no critical
points above the level L which then allows to construct a deformation retract of EL onto
Hm.M/, which is of course contractible, see for example the argument in [35]. Then, by
the long exact sequence of the relative homology, it easily follows that

Hq.E
L;E�L/ Š zHq.E

�L/:

But we already now from (4.4) that

H�.M
R
k / ,! H�.E

�L/ injectively;

thus
dim zHq.E

�L/ � dim zHq.M
R
k /

and we are done.

Remark 4.1. As already pointed out, for simplicity, all the argument has been carried
out in the case P 2mg � 0. In general, one needs to modify the Adams–Trudinger–Moser
inequality and its improvements by adding a bound to the component u� of the function u
lying in the direct sum of the negative eigenspaces of P 2mg . As a consequence, in the low
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subleveles, E�L either the function u concentrates or u� tends to infinity, or both altern-
ative can hold. To express this alternative, one can use the topological join (see [43])
between MR

k
and a set representing the negative eigenvalues of P 2mg . We refer the inter-

ested reader to [23].

A. Appendix: Pohozaev identity

Here we state a Pohozaev-type identity which is used in the blow-up argument.

Lemma A.1. Let Br .0/ be a ball in R2m. We have the following identities:

(a) If m D 2m0; m0 � 1, thenZ
Br .0/

x � rf .��/2m0fdx

D

m0X
iD2

Z
@Br .0/

2.i�1/
�
.��/m�if

@.��/i�1f

@�
�
@.��/m�if

@�
.��/i�1f

�
ds(A.1)

C

m0X
iD1

Z
@Br .0/

.��/m�if @�hx;r.��/
i�1f i ds

�

m0X
iD1

Z
@Br .0/

hx;r.��/i�1f i
@.��/m�if

@�
ds

C

Z
@Br .0/

1

2
jxj..��/m0f /2 ds:

(b) If m D 2m0 C 1; m0 � 1, then

(A.2)

Z
Br .0/

x � rf .��/2m0C1f

D

m0X
iD2

Z
@Br .0/

2.i � 1/
�
.��/m�if

@.��/i�1f

@�
�
@.��/m�if

@�
.��/i�1f

�
ds

C

m0X
iD1

Z
@Br .0/

.��/m�if @�hx;r.��/
i�1f i ds

�

m0X
iD1

Z
@Br .0/

hx;r.��/i�1f i
@.��/m�if

@�
ds

C

Z
@Br .0/

1

2
jxj.r.��/m0f /2 ds � 2m0

Z
@Br .0/

@�.��/
m0f .��/m0f ds

�

Z
@Br .0/

@�.��/
m0f hx;r.��/m0f i ds:

Here, � is outward normal vector along the boundary @Br .0/.
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Proof. The proof is based on the following identity:

.��/hx;r.��/if i D 2.��/iC1f C hx;r.��/iC1f i:

Using the second Green identity repeatedly, we can get above formula by straightforward
computations. We omit the details.

Funding. A. Jevnikar is partially supported by INdAM-GNAMPA project ‘Analisi qualit-
ativa di problemi differenziali non lineari’ and PRIN Project 20227HX33Z ‘Pattern form-
ation in nonlinear phenomena’, funded by European Union-Next Generation EU within
the PRIN 2022 program. Y. Sire is partially supported by NSF DMS grant 2154219, “Reg-
ularity vs singularity formation in elliptic and parabolic equations”. W. Yang is supported
by National Key R&D Program of China 2022YFA1006800, NSFC, China no. 12171456,
NSFC, China no. 12271369, FDCT no. 0070/2024/RIA1, Multi-Year Research Grant no.
MYRG-GRG2024-00082-FST and Startup Research Grant no. SRG2023-00067-FST.

References

[1] Adams, D. R.: A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. (2)
128 (1988), no. 2, 385–398. Zbl 0672.31008 MR 0960950

[2] Ahmedou, M., Wu, L. and Zhang, L.: Classification and a priori estimates for the singular
prescribing Q-curvature equation on 4-manifold. J. Funct. Anal. 283 (2022), no. 9, article
no. 109649, 49 pp. Zbl 1507.58016 MR 4458227

[3] Aubin, T.: Some nonlinear problems in Riemannian geometry. Springer Monogr. Math.,
Springer, Berlin, 1998. Zbl 0896.53003 MR 1636569

[4] Bartolucci, D., De Marchis, F. and Malchiodi, A.: Supercritical conformal metrics on surfaces
with conical singularities. Int. Math. Res. Not. IMRN (2011), no. 24, 5625–5643.
Zbl 1254.30066 MR 2863376

[5] Bartolucci, D. and Malchiodi, A.: An improved geometric inequality via vanishing moments,
with applications to singular Liouville equations. Comm. Math. Phys. 322 (2013), no. 2,
415–452. Zbl 1276.58005 MR 3077921

[6] Bartolucci, D. and Tarantello, G.: Liouville type equations with singular data and their applic-
ations to periodic multivortices for the electroweak theory. Comm. Math. Phys. 229 (2002),
no. 1, 3–47. Zbl 1009.58011 MR 1917672

[7] Battaglia, L., Jevnikar, A., Malchiodi, A. and Ruiz, D.: A general existence result for the Toda
system on compact surfaces. Adv. Math. 285 (2015), 937–979. Zbl 1327.35098
MR 3406518

[8] Battaglia, L., Jevnikar, A., Wang, Z.-A. and Yang, W.: Prescribing Gaussian curvature on sur-
faces with conical singularities and geodesic boundary. Ann. Mat. Pura Appl. (4) 202 (2023),
no. 3, 1173–1185. Zbl 1514.35137 MR 4576934

[9] Berger, M. S.: Riemannian structures of prescribed Gaussian curvature for compact 2-mani-
folds. J. Differential Geometry 5 (1971), 325–332. Zbl 0222.53042 MR 0295261

[10] Branson, T. P.: Sharp inequalities, the functional determinant, and the complementary series.
Trans. Amer. Math. Soc. 347 (1995), no. 10, 3671–3742. Zbl 0848.58047 MR 1316845

https://doi.org/10.2307/1971445
https://zbmath.org/?q=an:0672.31008
https://mathscinet.ams.org/mathscinet-getitem?mr=0960950
https://doi.org/10.1016/j.jfa.2022.109649
https://doi.org/10.1016/j.jfa.2022.109649
https://zbmath.org/?q=an:1507.58016
https://mathscinet.ams.org/mathscinet-getitem?mr=4458227
https://doi.org/10.1007/978-3-662-13006-3
https://zbmath.org/?q=an:0896.53003
https://mathscinet.ams.org/mathscinet-getitem?mr=1636569
https://doi.org/10.1093/imrn/rnq285
https://doi.org/10.1093/imrn/rnq285
https://zbmath.org/?q=an:1254.30066
https://mathscinet.ams.org/mathscinet-getitem?mr=2863376
https://doi.org/10.1007/s00220-013-1731-0
https://doi.org/10.1007/s00220-013-1731-0
https://zbmath.org/?q=an:1276.58005
https://mathscinet.ams.org/mathscinet-getitem?mr=3077921
https://doi.org/10.1007/s002200200664
https://doi.org/10.1007/s002200200664
https://zbmath.org/?q=an:1009.58011
https://mathscinet.ams.org/mathscinet-getitem?mr=1917672
https://doi.org/10.1016/j.aim.2015.07.036
https://doi.org/10.1016/j.aim.2015.07.036
https://zbmath.org/?q=an:1327.35098
https://mathscinet.ams.org/mathscinet-getitem?mr=3406518
https://doi.org/10.1007/s10231-022-01274-y
https://doi.org/10.1007/s10231-022-01274-y
https://zbmath.org/?q=an:1514.35137
https://mathscinet.ams.org/mathscinet-getitem?mr=4576934
https://doi.org/10.4310/jdg/1214429996
https://doi.org/10.4310/jdg/1214429996
https://zbmath.org/?q=an:0222.53042
https://mathscinet.ams.org/mathscinet-getitem?mr=0295261
https://doi.org/10.2307/2155203
https://zbmath.org/?q=an:0848.58047
https://mathscinet.ams.org/mathscinet-getitem?mr=1316845


A. Jevnikar, Y. Sire and W. Yang 26

[11] Brendle, S.: Global existence and convergence for a higher order flow in conformal geometry.
Ann. of Math. (2) 158 (2003), no. 1, 323–343. Zbl 1042.53016 MR 1999924

[12] Browder, F. E.: On the regularity properties of solutions of elliptic differential equations.
Comm. Pure Appl. Math. 9 (1956), 351–361. Zbl 0070.09601 MR 0090740

[13] Buzano, R. and Nguyen, H. T.: The higher-dimensional Chern–Gauss–Bonnet formula for sin-
gular conformally flat manifolds. J. Geom. Anal. 29 (2019), no. 2, 1043–1074.
Zbl 1416.53031 MR 3935249

[14] Cao, J. G.: The existence of generalized isothermal coordinates for higher-dimensional
Riemannian manifolds. Trans. Amer. Math. Soc. 324 (1991), no. 2, 901–920.
Zbl 0715.53016 MR 0991959

[15] Carlotto, A. and Malchiodi, A.: Weighted barycentric sets and singular Liouville equations on
compact surfaces. J. Funct. Anal. 262 (2012), no. 2, 409–450. Zbl 1232.53035 MR 2854708

[16] Chang, S.-Y. A. and Yang, P. C.: Prescribing Gaussian curvature on S2. Acta Math. 159 (1987),
no. 3-4, 215–259. Zbl 0636.53053 MR 0908146

[17] Chang, S.-Y. A. and Yang, P. C.: Conformal deformation of metrics on S2. J. Differential
Geom. 27 (1988), no. 2, 259–296. Zbl 0649.53022 MR 0925123

[18] Chang, S.-Y. A. and Yang, P. C.: Extremal metrics of zeta function determinants on 4-man-
ifolds. Ann. of Math. (2) 142 (1995), no. 1, 171–212. Zbl 0842.58011 MR 1338677

[19] Chen, W X. and Li, C.: Prescribing Gaussian curvatures on surfaces with conical singularities.
J. Geom. Anal. 1 (1991), no. 4, 359–372. Zbl 0739.58012 MR 1129348

[20] Chen, W. X. and Li, C.: Gaussian curvature on singular surfaces. J. Geom. Anal. 3 (1993),
no. 4, 315–334. Zbl 0780.53032 MR 1231005

[21] Chen, W. X. and Li, C.: What kinds of singular surfaces can admit constant curvature? Duke
Math. J. 78 (1995), no. 2, 437–451. Zbl 0854.53036 MR 1333510

[22] De Marchis, F.: Generic multiplicity for a scalar field equation on compact surfaces. J. Funct.
Anal. 259 (2010), no. 8, 2165–2192. Zbl 1211.58011 MR 2671126

[23] Djadli, Z. and Malchiodi, A.: Existence of conformal metrics with constantQ-curvature. Ann.
of Math. (2) 168 (2008), no. 3, 813–858. Zbl 1186.53050 MR 2456884

[24] Eremenko, A.: Co-axial monodromy. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 2,
619–634. Zbl 1481.57032 MR 4105912

[25] Fang, H. and Ma, B.: Constant Q-curvature metrics on conic 4-manifolds. Adv. Calc. Var. 15
(2022), no. 2, 235–264. Zbl 1501.53042 MR 4399823

[26] Graham, C. R., Jenne, R., Mason, L. J. and Sparling, G. A. J.: Conformally invariant powers of
the Laplacian. I. Existence. J. London Math. Soc. (2) 46 (1992), no. 3, 557–565.
Zbl 0726.53010 MR 1190438

[27] Graham, C. R. and Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152
(2003), no. 1, 89–118. Zbl 1030.58022 MR 1965361

[28] Gursky, M. J.: The principal eigenvalue of a conformally invariant differential operator, with
an application to semilinear elliptic PDE. Comm. Math. Phys. 207 (1999), no. 1, 131–143.
Zbl 0988.58013 MR 1724863

[29] Hyder, A., Lin, C. and Wei, J.: The SU.3/ Toda system with multiple singular sources. Pacific
J. Math. 305 (2020), no. 2, 645–666. Zbl 1441.35127 MR 4099312

https://doi.org/10.4007/annals.2003.158.323
https://zbmath.org/?q=an:1042.53016
https://mathscinet.ams.org/mathscinet-getitem?mr=1999924
https://doi.org/10.1002/cpa.3160090307
https://zbmath.org/?q=an:0070.09601
https://mathscinet.ams.org/mathscinet-getitem?mr=0090740
https://doi.org/10.1007/s12220-018-0029-z
https://doi.org/10.1007/s12220-018-0029-z
https://zbmath.org/?q=an:1416.53031
https://mathscinet.ams.org/mathscinet-getitem?mr=3935249
https://doi.org/10.2307/2001747
https://doi.org/10.2307/2001747
https://zbmath.org/?q=an:0715.53016
https://mathscinet.ams.org/mathscinet-getitem?mr=0991959
https://doi.org/10.1016/j.jfa.2011.09.012
https://doi.org/10.1016/j.jfa.2011.09.012
https://zbmath.org/?q=an:1232.53035
https://mathscinet.ams.org/mathscinet-getitem?mr=2854708
https://doi.org/10.1007/BF02392560
https://zbmath.org/?q=an:0636.53053
https://mathscinet.ams.org/mathscinet-getitem?mr=0908146
https://doi.org/10.4310/jdg/1214441783
https://zbmath.org/?q=an:0649.53022
https://mathscinet.ams.org/mathscinet-getitem?mr=0925123
https://doi.org/10.2307/2118613
https://doi.org/10.2307/2118613
https://zbmath.org/?q=an:0842.58011
https://mathscinet.ams.org/mathscinet-getitem?mr=1338677
https://doi.org/10.1007/BF02921311
https://zbmath.org/?q=an:0739.58012
https://mathscinet.ams.org/mathscinet-getitem?mr=1129348
https://doi.org/10.1007/BF02921316
https://zbmath.org/?q=an:0780.53032
https://mathscinet.ams.org/mathscinet-getitem?mr=1231005
https://doi.org/10.1215/S0012-7094-95-07821-1
https://zbmath.org/?q=an:0854.53036
https://mathscinet.ams.org/mathscinet-getitem?mr=1333510
https://doi.org/10.1016/j.jfa.2010.07.003
https://zbmath.org/?q=an:1211.58011
https://mathscinet.ams.org/mathscinet-getitem?mr=2671126
https://doi.org/10.4007/annals.2008.168.813
https://zbmath.org/?q=an:1186.53050
https://mathscinet.ams.org/mathscinet-getitem?mr=2456884
https://doi.org/10.2422/2036-2145.201706_022
https://zbmath.org/?q=an:1481.57032
https://mathscinet.ams.org/mathscinet-getitem?mr=4105912
https://doi.org/10.1515/acv-2019-0056
https://zbmath.org/?q=an:1501.53042
https://mathscinet.ams.org/mathscinet-getitem?mr=4399823
https://doi.org/10.1112/jlms/s2-46.3.557
https://doi.org/10.1112/jlms/s2-46.3.557
https://zbmath.org/?q=an:0726.53010
https://mathscinet.ams.org/mathscinet-getitem?mr=1190438
https://doi.org/10.1007/s00222-002-0268-1
https://zbmath.org/?q=an:1030.58022
https://mathscinet.ams.org/mathscinet-getitem?mr=1965361
https://doi.org/10.1007/s002200050721
https://doi.org/10.1007/s002200050721
https://zbmath.org/?q=an:0988.58013
https://mathscinet.ams.org/mathscinet-getitem?mr=1724863
https://doi.org/10.2140/pjm.2020.305.645
https://zbmath.org/?q=an:1441.35127
https://mathscinet.ams.org/mathscinet-getitem?mr=4099312


Q-curvature on even-dimensional manifolds with conical singularities 27

[30] Hyder, A., Mancini, G. and Martinazzi, L.: Local and nonlocal singular Liouville equations in
Euclidean spaces. Int. Math. Res. Not. IMRN (2021), no. 15, 11393–11425. Zbl 1489.35139
MR 4294121

[31] Kazdan, J. L. and Warner, F. W.: Curvature functions for compact 2-manifolds. Ann. of
Math. (2) 99 (1974), no. 1, 14–47. Zbl 0273.53034 MR 0343205

[32] Lee, J. M. and Parker, T. H.: The Yamabe problem. Bull. Amer. Math. Soc. (N.S.) 17 (1987),
no. 1, 37–91. Zbl 0633.53062 MR 0888880

[33] Lin, C.-S. and Wei, J.: Sharp estimates for bubbling solutions of a fourth order mean field
equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 4, 599–630. Zbl 1185.35067
MR 2394412

[34] Luo, F. and Tian, G.: Liouville equation and spherical convex polytopes. Proc. Amer. Math.
Soc. 116 (1992), no. 4, 1119–1129. Zbl 0806.53012 MR 1137227

[35] Malchiodi, A.: Morse theory and a scalar field equation on compact surfaces. Adv. Differential
Equations 13 (2008), no. 11-12, 1109–1129. Zbl 1175.53052 MR 2483132

[36] Malchiodi, A. and Ruiz, D.: New improved Moser–Trudinger inequalities and singular
Liouville equations on compact surfaces. Geom. Funct. Anal. 21 (2011), no. 5, 1196–1217.
Zbl 1235.35094 MR 2846387

[37] Martinazzi, L.: Classification of solutions to the higher order Liouville’s equation on R2m.
Math. Z. 263 (2009), no. 2, 307–329. Zbl 1172.53026 MR 2534120

[38] Martinazzi, L.: Concentration-compactness phenomena in the higher order Liouville’s equa-
tion. J. Funct. Anal. 256 (2009), no. 11, 3743–3771. Zbl 1201.53014 MR 2514059

[39] Mazzeo, R. and Zhu, X.: Conical metrics on Riemann surfaces I: The compactified configura-
tion space and regularity. Geom. Topol. 24 (2020), no. 1, 309–372. Zbl 1443.53018
MR 4080484

[40] McOwen, R. C.: Prescribed curvature and singularities of conformal metrics on Riemann sur-
faces. J. Math. Anal. Appl. 177 (1993), no. 1, 287–298. Zbl 0806.53040 MR 1224820

[41] Mondello, G. and Panov, D.: Spherical metrics with conical singularities on a 2-sphere: angle
constraints. Int. Math. Res. Not. IMRN (2016), no. 16, 4937–4995. Zbl 1446.53027
MR 3556430

[42] Mondello, G. and Panov, D.: Spherical surfaces with conical points: systole inequality and
moduli spaces with many connected components. Geom. Funct. Anal. 29 (2019), no. 4, 1110–
1193. Zbl 1447.58013 MR 3990195

[43] Munkres, J. R.: Topology: a first course. Prentice-Hall, Englewood Cliffs, NJ, 1975.
Zbl 0306.54001 MR 0464128

[44] Ndiaye, C. B.: Constant Q-curvature metrics in arbitrary dimension. J. Funct. Anal. 251
(2007), no. 1, 1–58. Zbl 1130.53027 MR 2353700

[45] Ndiaye, C. B.: Sharp estimates for bubbling solutions to some fourth-order geometric equa-
tions. Int. Math. Res. Not. IMRN (2017), no. 3, 643–676. Zbl 1405.53014 MR 3658148

[46] Paneitz, S. M.: Essential unitarization of symplectics and applications to field quantization.
J. Funct. Anal. 48 (1982), no. 3, 310–359. Zbl 0499.47025 MR 0678176

[47] Paneitz, S. M.: A quartic conformally covariant differential operator for arbitrary pseudo-
Riemannian manifolds (summary). SIGMA Symmetry Integrability Geom. Methods Appl. 4
(2008), article no. 036, 3 pp. Zbl 1145.53053 MR 2393291

https://doi.org/10.1093/imrn/rnz149
https://doi.org/10.1093/imrn/rnz149
https://zbmath.org/?q=an:1489.35139
https://mathscinet.ams.org/mathscinet-getitem?mr=4294121
https://doi.org/10.2307/1971012
https://zbmath.org/?q=an:0273.53034
https://mathscinet.ams.org/mathscinet-getitem?mr=0343205
https://doi.org/10.1090/S0273-0979-1987-15514-5
https://zbmath.org/?q=an:0633.53062
https://mathscinet.ams.org/mathscinet-getitem?mr=0888880
https://doi.org/10.2422/2036-2145.2007.4.05
https://doi.org/10.2422/2036-2145.2007.4.05
https://zbmath.org/?q=an:1185.35067
https://mathscinet.ams.org/mathscinet-getitem?mr=2394412
https://doi.org/10.2307/2159498
https://zbmath.org/?q=an:0806.53012
https://mathscinet.ams.org/mathscinet-getitem?mr=1137227
https://doi.org/10.57262/ade/1355867288
https://zbmath.org/?q=an:1175.53052
https://mathscinet.ams.org/mathscinet-getitem?mr=2483132
https://doi.org/10.1007/s00039-011-0134-7
https://doi.org/10.1007/s00039-011-0134-7
https://zbmath.org/?q=an:1235.35094
https://mathscinet.ams.org/mathscinet-getitem?mr=2846387
https://doi.org/10.1007/s00209-008-0419-1
https://zbmath.org/?q=an:1172.53026
https://mathscinet.ams.org/mathscinet-getitem?mr=2534120
https://doi.org/10.1016/j.jfa.2009.02.017
https://doi.org/10.1016/j.jfa.2009.02.017
https://zbmath.org/?q=an:1201.53014
https://mathscinet.ams.org/mathscinet-getitem?mr=2514059
https://doi.org/10.2140/gt.2020.24.309
https://doi.org/10.2140/gt.2020.24.309
https://zbmath.org/?q=an:1443.53018
https://mathscinet.ams.org/mathscinet-getitem?mr=4080484
https://doi.org/10.1006/jmaa.1993.1258
https://doi.org/10.1006/jmaa.1993.1258
https://zbmath.org/?q=an:0806.53040
https://mathscinet.ams.org/mathscinet-getitem?mr=1224820
https://doi.org/10.1093/imrn/rnv300
https://doi.org/10.1093/imrn/rnv300
https://zbmath.org/?q=an:1446.53027
https://mathscinet.ams.org/mathscinet-getitem?mr=3556430
https://doi.org/10.1007/s00039-019-00506-3
https://doi.org/10.1007/s00039-019-00506-3
https://zbmath.org/?q=an:1447.58013
https://mathscinet.ams.org/mathscinet-getitem?mr=3990195
https://zbmath.org/?q=an:0306.54001
https://mathscinet.ams.org/mathscinet-getitem?mr=0464128
https://doi.org/10.1016/j.jfa.2007.06.008
https://zbmath.org/?q=an:1130.53027
https://mathscinet.ams.org/mathscinet-getitem?mr=2353700
https://doi.org/10.1093/imrn/rnw007
https://doi.org/10.1093/imrn/rnw007
https://zbmath.org/?q=an:1405.53014
https://mathscinet.ams.org/mathscinet-getitem?mr=3658148
https://doi.org/10.1016/0022-1236(82)90091-X
https://zbmath.org/?q=an:0499.47025
https://mathscinet.ams.org/mathscinet-getitem?mr=0678176
https://doi.org/10.3842/SIGMA.2008.036
https://doi.org/10.3842/SIGMA.2008.036
https://zbmath.org/?q=an:1145.53053
https://mathscinet.ams.org/mathscinet-getitem?mr=2393291


A. Jevnikar, Y. Sire and W. Yang 28

[48] Struwe, M.: The existence of surfaces of constant mean curvature with free boundaries. Acta
Math. 160 (1988), no. 1-2, 19–64. Zbl 0646.53005 MR 0926524

[49] Troyanov, M.: Prescribing curvature on compact surfaces with conical singularities. Trans.
Amer. Math. Soc. 324 (1991), no. 2, 793–821. Zbl 0724.53023 MR 1005085

[50] Weinstein, G. and Zhang, L.: The profile of bubbling solutions of a class of fourth order geo-
metric equations on 4-manifolds. J. Funct. Anal. 257 (2009), no. 12, 3895–3929.
Zbl 1182.53036 MR 2557728

Received June 13, 2022; revised September 16, 2024.

Aleks Jevnikar
Department of Mathematics, Computer Science and Physics, University of Udine
Via delle Scienze 206, 33100 Udine, Italy;
aleks.jevnikar@uniud.it

Yannick Sire
Department of Mathematics, Johns Hopkins University
404 Krieger Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA;
ysire1@jhu.edu

Wen Yang
Department of Mathematics, Faculty of Science and Technology, University of Macau
Macau, P. R. China;
wenyang@um.edu.mo

https://doi.org/10.1007/BF02392272
https://zbmath.org/?q=an:0646.53005
https://mathscinet.ams.org/mathscinet-getitem?mr=0926524
https://doi.org/10.2307/2001742
https://zbmath.org/?q=an:0724.53023
https://mathscinet.ams.org/mathscinet-getitem?mr=1005085
https://doi.org/10.1016/j.jfa.2009.09.006
https://doi.org/10.1016/j.jfa.2009.09.006
https://zbmath.org/?q=an:1182.53036
https://mathscinet.ams.org/mathscinet-getitem?mr=2557728
mailto:aleks.jevnikar@uniud.it
mailto:ysire1@jhu.edu
mailto:wenyang@um.edu.mo

	1. Introduction
	2. Preliminary facts
	3. Compactness property
	4. Existence result
	A. Appendix: Pohozaev identity
	References

