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The word problem for some classes of Adian inverse
semigroups — I1

Muhammad Inam

Abstract. We introduce the notion of a subgraph generated by an R-word r of the Schiitzen-
berger graph of a positive word w, ST'(w), where w contains r as its subword. We show that
the word problem for a finitely presented Adian inverse semigroup Inv(X|R) is decidable if the
subgraphs of ST'(¢), forall # € X T, generated by all the R-words over the presentation (X |R),
are finite. As a consequence of this result, we show that the word problem is decidable for some
classes of one relation Adian inverse semigroups.

1. Introduction

Throughout this paper, X denotes an alphabet. The set R = {(u;,v;) | i € I}, where
u;,v; € X, denotes the set of positive relations. The words u; and v; are called R-
words, provided that (u;, v;) € R. The pair (X|R) is called a positive presentation.
The semigroup generated by the set X and having a set R of relations is denoted
by Sg(X|R), and the group generated by the set X and having a set R of rela-
tions is denoted by Gp(X |R). There exists a natural homomorphism ¢ : Sg{X|R) —
Gp(X|R).

We can construct two undirected graphs corresponding to a positive presentation.
The left graph of the presentation (X|R) is denoted by LG(X |R). The vertices of
LG(X|R) are labeled by the elements of X, and there is an edge corresponding to
every relation (u;, v;) € R, that connects the first (prefix) letters of u; and v; together.
Similarly, the right graph of the presentation (X |R) is denoted by RG(X|R), and it
can be obtained by connecting the last (suffix) letters of u; and v; together, for every
(ui,vi) € R. A closed path in LG(X|R) is called a left cycle and a closed path in
RG(X|R) is called a right cycle. Further details about the left and right graphs of
a positive presentation (X |R) along with some examples can be found in [3]. If for
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some presentation (X | R}, there is no closed path (cycle) in LG(X |R) and RG(X |R),
then the presentation is called a cycle free presentation. A cycle free presentation is
also called an Adian presentation because these presentations were first studied by
S. I. Adian [1]. A semigroup (group) presented by an Adian presentation is called an
Adian semigroup (Adian group).

Meakin [8] proved that for a given finite positive presentation (X | R), it is undecid-
able whether Sg(X | R) is an Adian semigroup, whether Inv{X |R) is an Adian inverse
semigroup, or whether Gp(X |R) is an Adian group.

A semigroup S is called an inverse semigroup if for every element a € S there
exists a unique element b € S such that aba = a and bab = b. The unique ele-
ment b is denoted by a~!. The idempotents commute in an inverse semigroup, and
the product of two idempotents is an idempotent. The natural partial order on an
inverse semigroup S is defined as @ < b if and only if aa~'h = a, for some a,b € S.
A congruence relation o is defined on S, for a,b € S, by acb if and only if there
exists an element ¢ € S such that ¢ < a, b. It turns out that ¢ is the minimum group
congruence relation on S, i.e., /o is the maximum group homomorphic image of S.
Just like groups and semigroups, an inverse semigroup can also be presented by a set
of generators and a set of relations. We denote an inverse semigroup by Inv(X|R),
where X is the set of generators, and R is the set of relations. An inverse semi-
group presented by an Adian presentation is called an Adian inverse semigroup. If
S = Inv(X|R), then S/o is the group Gp(X|R). The set of idempotents of S is
denoted by E(S) = {e € S | e = e}. An inverse semigroup is called E-unitary if
the inverse image of 1 (the identity element of the group S /o) is precisely E(S). All
these facts about the inverse semigroups along with more details can be found in the
text [6].

In [2], Gray proved that the word problem for one relator E-unitary inverse semi-
groups is undecidable in general.

Adian conjectured [1] that the word problem is decidable for Adian semigroups.
The following result was first proved by Adian [1] for only finite Adian presentations.
Later Remmers [9] proved the same result by using geometric techniques for any
Adian presentation.

Theorem 1.1. An Adian semigroup embeds in the Adian group with the same presen-
tation.

Magnus [7] proved that the word problem is decidable for one relator groups.
Since Adian semigroups embed in Adian groups, it follows that the word problem is
decidable for one relation Adian semigroups as well. However, the question whether
the word problem is decidable for one relation Adian inverse semigroups or not, has
not been answered yet.

The following theorem is proved in [5].
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Theorem 1.2. Adian inverse semigroups are E-unitary.

By using Theorem 1.2, we can make the following remark about one relation
Adian inverse semigroups.

Remark 1.1. Let M = Inv(X |u = v) be an Adian inverse semigroup. Then the mem-
bership problem for the set of idempotents of M, E(M), is decidable, because a word
w represents an element of E(M ) iff w/o = 1 in Gp(X |u = v) (by E-unitary) which
is decidable by Magnus.

The following result has been proved in [4].

Theorem 1.3. Let M = Inv(X|R) be a finitely presented Adian inverse semigroup.
Then the Schiitzenberger graph of w, for all w € (X U X~ V)% is finite if and only if
the Schiitzenberger graph of w' is finite, for all w' € X .

In this paper, we prove the following result.

Theorem 1.4. Let M = Inv(X|R) be a finitely presented Adian inverse semigroup.
The Schiitzenberger graph of every positive word is finite if and only if the subgraphs
of ST (w), for all w € X, generated by all the R-words are finite.

The proof of Theorem 1.4 is given in Section 3 of this paper, where this theo-
rem is labeled as Theorem 3.2. It follows from Theorem 1.3 and 1.4 that in a finitely
presented Adian inverse semigroup M = Inv(X|R), if the subgraphs of the Schiitzen-
berger graph of w’, for all w’ € X T, generated by all the R-words, are finite, then the
Schiitzenberger graph of w, for all w € (X U X~1)T, is finite, which implies the
decidability of the word problem for M [10].

In this paper, we also study the word problem for one relation Adian inverse semi-
groups and show that the word problem is decidable for those classes of one relation
Adian inverse semigroups that are mentioned in Theorem 1.5 below. We apply Theo-
rem 1.4 in the proof of Theorem 1.5 which shows the usefulness of Theorem 1.4.

Theorem 1.5. Let M = Inv(X|u = v) be an Adian inverse semigroup, such that no
R-word is a subword of the other R-word, and the relation (u, v) is in one of the
following forms:

(1) No R-word overlaps with itself or with the other R-word.

(2) One of the R-words overlaps with itself, and the other R-word neither over-
laps with itself nor with the former R-word.

(3) Both R-words overlap with themselves, there is no overlap between both the
R-words, and at least one of the R-words is not of the form x", for some
xeXTandn > 2.
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(4) A prefix of one R-word is a suffix of the other R-word, no suffix of the former
R-word is a prefix of the latter R-word, and no R-word overlaps with itself.

Then the word problem is decidable for M .

The proof of Theorem 1.5 is given in Section 4 of this paper, where this theorem
is labeled as Theorem 4.1.

Remark 1.2. In the proof of Theorem 1.5 we show that in any of the cases (1)—(4) all
the Schiitzenberger graphs are finite, and hence the word problem is decidable.

For the convenience of the readers we provide an example of the inverse semi-
group presented by the Adian presentation of each type (1)—(4) of Theorem 1.5. These
examples mutually exclusive in the sense none of the following Adian inverse semi-
groups belong to more than one case.

(1) M =1Inv{a,b,c,d|ab = cd) is an example of case (1).
2) M =1Inv{a,b,c,d|aba = cd) is an example of case (2).
(3) M = Inv{a,blaba = b?) is an example of case (3).

4) M =1Inv{a,b,clab = ca) is an example of case (4).

In general, one relation Adian inverse semigroup Inv(X |u = v), where no R-word
is a subword of the other R-word, may contain some positive words with infinite
Schiitzenberger graphs. For instance, in the Adian inverse semigroup M = Inv{a, b|
ab = b2%a?), the word a?b has an infinite Schiitzenberger graph. Therefore, some
extra condition like (1)—(4) of Theorem 1.5 is needed to make all the Schiitzenberger
graphs finite.

In this paper, we study the word problem for a finitely presented Adian inverse
semigroup.

Section 2 of this paper provides some fundamental definitions and results of in-
verse semigroup theory that have been used in this paper. In this section, the notion of
Schiitzenberger graphs has been elaborated and an iterative procedure for constructing
these graphs is provided.

Section 3 of this paper mainly consists of the proof of Theorem [.4. At the begin-
ning of this section we introduce the notion of a subgraph of a Schiitzenberger graph,
generated by an R-word. We provide an iterative procedure for constructing these
subgraphs. We also provide some basic structural properties of these subgraphs. We
give the definition of S-diagram as it has been used in the proof of Theorem 1.4.

Section 4 of this paper provides some of the applications of Theorem 1.4. In this
section we study the word problem for one relation Adian inverse semigroups, and
prove Theorem 1.5.
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2. Preliminaries

For an alphabet X, the set X denotes the set of all positive words on X, and the
set X* denotes the set X U {¢}, where ¢ is the empty word. The set X forms a
semigroup under the binary operation of concatenation of words, and is called the
free semigroup on X . The empty word ¢ serves as the identity element under the con-
catenation of words, and the set X* denotes the free monoid on X. If p denotes the
congruence generated by a set relation R, then X ™ /p is the semigroup given by the
presentation Sg(X |R). For wy, w, € X*, we write w; = w, when w; and w, are iden-
tical words, and write w; = w, when w; p = w;p in the monoid Mon(X |R) := X*/p,
where p is the congruence generated by R. If p denotes the Vagner congruence on the
monoid (X U X~1)*, then FIM(X) := (X U X~ 1)*/p is the free inverse monoid
on X.If R C (X UXH)* x (X UX~1* and t denotes the congruence relation
generated by R U p, then M = Inv(X|R) := (X U X~ !)*/7 is the inverse monoid
presented by the set of generators X and the set of relations R.

A labeled directed graph over a set X is a directed graph in which the edges are
labeled by elements of X. We write (u, x, v) to denote the edge labeled by x with
initial vertex u and terminal vertex v. A path or segment of length n is a sequence of
edges

{(o, x1,v1), (V1,X2,V2), .+ ., (Vn—1, Xn, Un)}
such that the initial vertex of an edge (except the first) equals the terminal vertex of
the previous edge. If vg = v, the path is a cycle. We say that the path is labeled by
the word w = x1x5 - X, and that w can be read in the graph starting at vy.

An inverse word graph over X is a labeled directed graph over X U X! such
that the labeling is consistent with an involution, that is, (u, x, v) is an edge from a
vertex u to a vertex v if and only if (v, x™!, u) is an edge from v to u. A birooted
inverse word graph is an inverse word graph I" with vertices «, 8 € V(I") identified as
the start and end vertices, respectively. The language L[A] of a birooted inverse word
graph A = («, I, B) is the set of words that label a path from « to 8 in I'. In a birooted
inverse word graph over a presentation (X |R), for each relation (r,s) € R and two
distinct vertices v, and vy, if 7 and s can be read along two directed paths going from
v1 to vy, then there is a region with boundary given by the pair of paths labeled by r
and s starting from v; and ending at v,. Every region is simply connected, and so is
homeomorphic to the open disk. In a birooted inverse word graph, for each relation
(r,s) € R and a vertex v, if we can find a segment labeled by one side of the relation
r starting from the vertex v, but we do not find a segment labeled by the other side s
of the relation starting from v, then the segment labeled by r is called an unsaturated
segment.

J. B. Stephen [10] introduced the notion of Schiitzenberger graphs as a tool to
study the word problem for inverse semigroups. If M = Inv(X|R) is an inverse
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semigroup then we may consider the corresponding Cayley graph I'(M, X ). The ver-
tices of this graph are labeled by the elements of M and there exists a directed edge
labeled by x € X U X! from the vertex labeled by m to the vertex labeled by m, if
my = m1x. The Cayley graph I'(M, X) is not necessarily strongly connected unless
M happens to be a group because it may happen that when there is an edge labeled
by x from m; to m5, there is no edge labeled by x~ 1 from my to my (so, mp = mx,
but m; # mpx~"'). The strongly connected components of I'(M, X) are called the
Schiitzenberger graphs of M . For any word u € (X U X ~!)*, the strongly connected
component of I'(M, X) that contains the vertex corresponding to u is the Schiitzen-
berger graph of u and it is denoted by ST'(M, X, u). In [10] it is shown that the
vertices of ST (M, X, u) are precisely those vertices that are labeled by the elements
of the R-class of u,i.e., Ry = {m e M | mm™' = uu=1}.

For any word u € (X U X ~1)*, itis useful to consider the Schiitzenberger automa-
ton (uu=', ST (M, X,u),u) with initial vertex uu~! € M, terminal vertex u € M and
with the Schiitzenberger graph of u as the underlying graph. The language accepted
by this automaton is a subset of (X U X ~1)* and will be denoted as L(u),

L(u) = {w e (X UX~H* | wlabels a path from uu ™! to u in ST (M, X, u)}.

Here, u and w may be regarded both as elements of (X U X~ 1)* and as elements
of M. Thus, L(u) may be regarded as a subset of (X U X ~1)* or as a subset of M.
The following result of Stephen [10] plays a key role in solving the word problem
for inverse semigroups.
Theorem 2.1. Let M = Inv(X|R) and letu,v € (X U X~ H)*.
(1) L(u) = {w | w > u in the natural partial order on M }.
(2) The following are equivalent:
i) u=vinM.
(i) L(u) = L(v).
(iii) u € L(v)andv € L(u).
Gv) (uu=',ST(M,X,u),u) and (vv=',ST(M, X,v),v) are isomorphic as

automata.

We briefly describe the iterative procedure described by Stephen [10] for building
a Schiitzenberger graph. Let Inv(X |R) be a presentation of an inverse monoid.

Givenawordu = ajas ---a, € (X U X~ 1)*, the linear graph of u is the birooted
inverse word graph (o, 'y, B,) consisting of the set of vertices

V((etw, T, Bu)) = A, Bus V1o - Yu—1}
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and edges

(au’als V1)7 (Vlﬂ a2s Vz)y ey (Vn—2,an—la Vn—l)s (Vn—l,an, ,Bu)v

together with the corresponding inverse edges.

Let (o, T, B) be a birooted inverse word graph over X U X!, The following
operations may be used to obtain a new birooted inverse word graph (o', I/, 8'):

e Determination or folding: Let («, T, B) be a birooted inverse word graph with
vertices v, v, v, with vy # v, and edges (v, x, v1) and (v, x, vp) for some x €
Xuxt

Then we obtain a new birooted inverse word graph (¢, I/, B’) via taking the
quotient of («, I, B) by the equivalence relation that identifies the vertices v; and v,
and the two edges. In other words, edges with the same label coming out of a vertex
are folded together to become one edge.

e Elementary P-expansion: Let r = s be a relation in R and r can be read from
v1 to vy in T, but s cannot be read from vy to v, in I'. Then we define (o, T, B’) to
be the quotient of I' U (cs, Iy, B5) by the equivalence relation that identifies vertices
vy and o and vertices v, and Bs. In other words, we “sew” on a linear graph for s
from v; to v, to complete the other half of the relation r = s.

An inverse word graph is deterministic if no folding can be performed and is
closed if it is deterministic and no elementary expansion can be performed over a
presentation (X | R). Note that given a finite inverse word graph it is always possible to
produce a determinized form of the graph because determination reduces the number
of vertices. So, the process of determination must stop after finitely many steps. We
also observe that the process of folding is confluent [10] .

If (1, Ty, B1) is obtained from (e, I', B) by an elementary P-expansion, and
(a2, 'z, B2) is the determinized form of («y, I'1, B1), then we write («, T, 8) =
(a2, Iz, B2) and say that (a5, [z, B2) is obtained from («, I, B) by a P-expansion.
The reflexive and transitive closure of = is denoted by =*.

For u € (X U X~ Y)*, an approximate graph of (uu=', ST'(u), u) is a birooted
inverse word graph A = («, I, B) such that u € L[A] and y > u holds in M for all
y € L[A]. Stephen showed in [10] that the linear automaton of u is an approximate
graph of (uu~!, ST'(u), u). He also proved the following.

Theorem 2.2. Let u € (X U X~ V)* and let (a, T, B) be an approximate graph
of (uu=', ST(u),u). If (o, T, B) =* (&', T, B') and (&', T, B') is closed, then
(o', T, B") is the Schiitzenberger automaton for u.

In [10], Stephen showed that the class of all birooted inverse word graphs over
X U X! is a co-complete category and that the directed system of all finite P-
expansions of a linear graph of u has a direct limit. Since the directed system includes
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all possible P-expansions, this limit must be closed. Therefore, by Theorem 2.2, the
Schiitzenberger graph of u is the direct limit.

An elementary P-expansion is said to be relative to a birooted inverse word graph
(o, T, B) if it can be applied to it.

Full P-expansion (a generalization of the concept of P-expansion): A full P-
expansion of a finite birooted inverse word graph (c, I', 8) over a finite (infinite)
presentation (X |R) is obtained in the following way:

e Form the graph («’, '/, /), which is obtained from («, ', 8) by performing all
possible elementary P-expansions of (¢, I, §), relative to («, I, ). We emphasize
that an elementary P-expansion may introduce a path labeled by one side of a relation
in R, but we do not perform an elementary P-expansion that could not be done to
(a, T, B) when we do a full P-expansion.

e Find the determinized form (a1, 'y, B1), of (o', T, B').

The birooted inverse word graph («p, I'1, B1) is called the full P-expansion of
(e, I', B). We denote this relationship by («, I', B) =7 (1, I'1, B1). If (an, T, Br)
is obtained from («, I, B) by a sequence of full P-expansions then we denote this by
(a, T, B) :>; (ctn, T,y Br)-

For any word w € (X U X~ 1)*, (g, To(w), Bo) denotes the linear graph of w.
We apply full P-expansion to («;, I'; (w), B;) to obtain (o;+1, [i+1(w), Bit+1), for
i € N U {0}. This recursive process generates a sequence of birooted approximate
graphs {(a;, I[';(w), B;) | i € N U{0}}. This sequence of birooted approximate graphs
converges to the Schiitzenberger graph of w. In a finitely presented inverse semigroup
Inv(X |R), there exists a graph morphism

¢i - (i, Ti(w), Bi) = (¢ti+1, Tit1(w), Bi+1),

for any w € (X UX~1)* and i € N U {0}. If Inv(X|R) happens to be a finitely
presented Adian inverse semigroup, and w € X T, then it has been proved in [4, Propo-
sition 3] that the birooted graph («;, I'; (w), ;) embeds in (&; 41, ['i41(w), Bi+1), for
alli € N U {0}. This embedding is as an induced subgraph embedding. Those regions
which appear in (¢;, I'; (w), B;) as a consequence of application of full P- expansion
on (aj—1, [i—1(w), Bi—1), are called the i-th generation regions, for alli € N.

3. Subgraphs generated by an R-word of a Schiitzenberger graph

For a finitely presented Adian inverse semigroup Inv(X|R) and a positive word w €
X that contains an R-word r as its subword, a birooted inverse word subgraph of
ST (w) can be generated by r by using an iterative procedure similar to the Stephen’s
full P-expansion. The word w can contain the R-word r only a finite number of times
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as its subword. Therefore, we can label each occurrence of r by a number i € N,
starting from the initial letter of w and going along w up to the terminal letter of w. So,
ry (i) denotes the i -th occurrence of r in w, and A(ry, (i )) denotes the birooted inverse
word subgraph of ST'(w) generated by the i-th occurrence of r in w. We construct
A(ry (1)) by applying elementary P-expansions successively in the following manner.

We construct the linear graph of w, and denote it by (xg, Ag(ry (i), Bo), where
the underlying graph is denoted by Ag(ry (i), and ag and By are the initial and ter-
minal vertices of the underlying linear graph.

At the first step, we only apply the elementary P-expansion on the i-th segment
labeled by r by sewing on a segment labeled by s from the initial vertex of the segment
r to the terminal vertex of the segment r, for some (r, s) € R. We denote the resulting
graph by (a1, A1(ry(i)), B1), where the underlying graph is denoted by Aj(ry (7)),
and oy and B; are the initial and terminal vertices of the underlying graph. The initial
and the terminal vertices remain the same as before, that is, g = @ and By = B;.
This creates a first generation region whose one side is labeled by r, and it lies on
the linear automaton of w. In (a1, A1 (ry (7)), B1), if we cannot find any unsaturated
segment labeled by some R-word that either starts from or terminates at an interior
vertex of the segment s that was sewn on at the first step, then we cannot continue
further. In this case, the graph A (ry (7)) is the subgraph of ST (w) generated by the
i-th occurrence of the R-word r. Otherwise, there will be some unsaturated segments
labeled by some R-words rj, for 1 < j < ny, that either start from or terminate at
an interior vertex of the segment s that was sewn on at the first step. These new
unsaturated segments share an edge with the segment s that was sewn on at the first
step.

At the second step, we only apply elementary P-expansion on all these new unsat-
urated segments labeled by r;’s by sewing on segments labeled by s;’s from the
initial vertices to the terminal vertices of the corresponding segments r;’s, where
{(rj,sj),1=<j <n} € R.This step creates the second generation regions of A(ry, (i)).
We denote the resulting graph by (a2, A (ry (7)), B2), where the underlying graph is
denoted by A,(ry(i)), and ap, and B, are the initial and terminal vertices of the
underlying graph. All these second generation regions share an edge with the first
generation region created at the first step. If we cannot find any unsaturated segment
labeled by an R-word that either starts from an interior vertex of the segment s; or
terminates an in interior vertex of the segment s;, for some j € {1,2,...,n}, where
the segments s;’s were sewn on at the second step, then we cannot proceed further. In
this case, the graph A, (ry, (i)) is the subgraph of ST (w) generated by the i -th occur-
rence of the R-word r. Otherwise, there will be some unsaturated segments labeled
by some R-words u;’s, for 1 < j < n», that either start from an interior vertex of the
segment s; or terminate at an interior vertex of s;, for some j € {1,2,...,n1}, where
the segments s;’s were sewn on at the second step. These new unsaturated segments
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u;’s share an edge with some of the segments s;’s that were sewn on at the second
step.

At the third step, we only apply elementary P-expansion on all these new unsatu-
rated segments 1;’s by sewing on segments labeled by v;’s from the initial vertices to
the terminal vertices of the corresponding segments u;’s, where {(u;,v;),1 < j <n»}
C R. We denote the resulting graph by (a3, A3(ry(i)), B3), where the underlying
graph is denoted by Aj3(ry(i)), and a3, and B3 are the initial and terminal ver-
tices of the underlying graph. This step forms all the third generation regions of
A(ry(i)). Note that all the third generation regions share an edge with a second
generation region. If we cannot find any unsaturated segment labeled by an R-word
that either starts from or terminates at an interior vertex of the segment v;, for some
j €{1,2,...,n5,}, where the segments v;’s were sewn on at the third step, then we
cannot proceed further. In this case, the graph A3z (ry (i)) is the subgraph of ST (w)
generated by the i-th occurrence of the R-word r. Otherwise, there will be some
unsaturated segments labeled by some R-words that either start from or terminate
at an interior vertex of the segment v;, for some j € {1,2,...,n,}, where the seg-
ments v;’s were sewn on at the third step. So, we continue the process of successive
applications of elementary P-expansions in this manner, and we obtain a sequence
of approximate graphs {(«,, Ay (rw (i), Bn) | n € N} that converges to the subgraph
A(ry(i)) of ST (w). If the sequence {(ay,, An(ry (i), Br) | n € N} stabilizes after a
finite number of terms, then A(ry, (7)) is finite. Otherwise, A(ry (i)) is infinite.

The construction of A(ry, (i)) can be summarized in the following way:

(1) We construct the linear graph of w, and denote it by (ag, Ao(ry (7)), Bo),
where the underlying graph is denoted by A¢(ry (7)), and g and B¢ are the
initial and terminal vertices of the underlying graph.

(2) We only apply the elementary P-expansion on the i-th segment labeled by r.
We denote the resulting graph by (o1, Aq1(ryw (7)), B1), where the underlying
graph is denoted by A1(ry (7)), and o1 and B; are the initial and terminal
vertices of the underlying graph. Here o9 = o1 and o = B1.

(3) Forn > 1, to obtain (ap+1, An+1(rw (i), Bu+1) from (an, Ap (rw (i), Bn), we
only apply elementary P-expansion on those unsaturated segments labeled by
some R-words of A, (ry (1)) that either start from or terminate at an interior
vertex of the segments labeled by some R-words and were sewn on at the n-th
iterative step. Here o, = a1 and 8, = Br1.

Consequently, we obtain a sequence of approximate graphs {(¢,, Ay (ry (7)), Bn) |
n € N U {0}}, where a9 = a, and Bo = B,, for all n € N. This sequence converges
to the subgraph A(ry (i)) of ST (w). The subgraph A(ry (7)) is an induced subgraph
of ST (w).
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In the following example, we consider an inverse semigroup from the family of
Baumslag—Solitar inverse semigroups, and a positive word w that contains some of the
R-words as its subword to demonstrate the construction of the subgraphs of ST (w)
generated by an R-word. It has already been proved in [4] that all the Schiitzenberger
graphs are finite in a Baumslag—Solitar inverse semigroup.

Example 3.1. We consider the inverse semigroup Inv{a, blab = ba) and the word
w = a’b?a’b? € {a,b}™. The word w contains both the R-words ab and ba as its
subwords. The R-word ab occurs twice and the R-word ba occurs once in w. We
construct the subgraph of ST'(w) generated by the first occurrence of the R-word ab.

First, we construct the linear graph of w, (g, Ag(aby (1)), Bo) (see Figure 1).
We apply the elementary P-expansion only at the first subsegment labeled by ab of
w by sewing on a path labeled by ba from the initial vertex of ab to the terminal
vertex of ab, and we denote the resulting graph by (a1, Aj(aby (1)), B1) (see Fig-
ure 2). In Aq(aby (1)), we can find two unsaturated segments labeled by ab, one of
which terminates at an interior vertex of the segment ba, and the other one starts from
an interior vertex of the segment ba, where the segment labeled by ba was sewn at
the previous step. We apply elementary P-expansion only on both of these unsatu-
rated segments by sewing on segments labeled by ba from the initial vertices to the
terminal vertices of these unsaturated segments. We denote the resulting graph by
(a2, Az(aby, (1)), B2) (see Figure 3). In Ax(aby (1)), we can find only one unsatu-
rated segment labeled by ab that starts from an interior vertex of a segment labeled by
ba that was sewn on at the previous step. So, we apply elementary P-expansion only
on this unsaturated segment labeled by sewing on a path labeled by ba from the initial
vertex to the terminal vertex of the segment labeled by ab. We denote the resulting
graph by (a3, Az(aby (1)), B3) (see Figure 4). In As(aby (1)), we cannot find any
unsaturated segments labeled by an R-word that either starts from or terminates at an
interior vertex of the segment ba that was sewn on at the previous step. Therefore, we
cannot continue further. Hence Az (aby, (1)) is the subgraph of ST (w) generated by
the first occurrence of the R-word ab in w, which is denoted by A(aby (1)).

Similarly, we can construct A(aby, (2)) (see Figure 5) and A(bay, (1)) (see Fig-
ure 6).

The complete graph of ST (w) can be constructed by five successive applications
of Stephen’s full P-expansion (see Figure 7).

— > > > > >
%Oaabbaabb’so

Figure 1. (ag, Ao(aby (1)), Bo)



Figure 2. (a1, Ay (aby (1)), B1)

/N

2 4 b b a a b b P
Figure 3. (a2, Ax(aby (1)), B2)
¢

o3 /33

a a b b a a b b

Figure 4. (a3, Asz(aby (1)), B3)

S s b a4 a b P

Figure 6. A(bay, (1))
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Figure 7. ST (w)

The following lemma is proved in [4] and it implies that we only use elementary
P-expansions, and no foldings in the construction of ST (w), for some w € X .

Lemma 3.1. Let M = Inv(X, R) be an Adian inverse semigroup and w € X+. Then
no two edges fold together in Stephen’s process of constructing approximations of the
Schiitzenberger graph of w.

The following lemma and proposition are also proved in [4] and they will be used
latter in the proof of Theorem 3.2.

Lemma 3.2. Let M = Inv(X|R) be an Adian inverse semigroups and w € (X U
X~YF. Then the Schiitzenberger graph of w contains no directed cycle of edges.

Proposition 3.1. Let M = Inv(X|R) be an Adian inverse semigroup and w € X .
Then:
@) Yn (@ Tn(w), Bn) — (@n+1. Tnr1(w), But1) is an embedding for all
n e N.
(i) T['(w) has exactly one source vertex a and exactly one sink vertex 8, where
(o, T'(w), B) is the Schiitzenberger automaton of w.
(iii) For every v # a in (a, y(w), B) there exists a positively labeled path in
I'(w) from « to v. For every v # B in (a, y(w), B) there exists a positively
labeled path in T (w) from v to .

(iv) Every positively labeled path in T (w) can be extended to a positively labeled
transversal from « to B.
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For any semigroup S = Sg(X|R), and two words p,q € X+, p — ¢ denotes that
q is obtained from p by replacing a subword r by s, for some (r, s) € R. In this case,
we can also obtain p from ¢ (that is, ¢ — p) by replacing the subword s by r, for
some (r,s) € R. Any two words u,v € X+ are equal in the semigroup S = Sg(X |R)
if and only if there exists a transition sequence from u to v,

U=wy—> W —> Wy —> - —> W, =v, forsomen > 0.

The above derivation sequence is called a regular derivation sequence of length n
for the pair (u, v) over the presentation Sg(X |R).

A semigroup diagram or S-diagram over a semigroup presentation Sg(X |R) for
the pair of positive words (u, v) is a finite planar diagram D C R?, that satisfies the
following properties:

* The diagram D is connected and simply connected.
* Each edge is directed and labeled by a letter of the alphabet X .
 Eachregion of D is labeled by the word rs~! for some defining relation (r,s) € R.

* There is a distinguished vertex « on the boundary of D such that the boundary of

1

D starting at « is labeled by uv™". « is a source in D (i.e., there is no edge in D

with terminal vertex «).
e There are no interior sources or sinks in D.

In [9], Remmers proved an analogue of Van Kampen’s lemma for semigroups to
address the word problem for semigroups.

Theorem 3.1. Let S = Sg(X|R) be a semigroup and u,v € X . Then there exists
a regular derivation sequence of length n for the pair (u, v) over the presentation
Sg(X|R) for the pair (u, v) having exactly n regions.

A sub-diagram IT" of an S-diagram IT is called a simple component of T1 if it is a
maximal sub-diagram whose boundary is labeled by a simple closed curve.

The proof of the following lemma can be found in [4] and it will be used in the
proof of Theorem 3.2. This lemma ensures the embeddability of an S-diagram over
an Adian presentation Sg{X|R), into a Schiitzenberger graph over same presentation
Inv(X|R).

Lemma 3.3. Let M = (X|R) be an Adian inverse semigroup, let w € (X U X ~1)*
and let wy, w, € X7 label two co-terminal paths in ST (w). Then there exists an
S-diagram corresponding to the pair of words (w1, wy) that embeds in ST (w).

Theorem 3.2. Let M = Inv(X|R) be a finitely presented Adian inverse semigroup.
The Schiitzenberger graph of every positive word is finite if and only if the subgraphs
of ST(w), for all w € X, generated by all the R-words are finite.
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Idea of the proof: We assume that the subgraphs of ST'(¢), for all 1 € X *, gener-
ated by all the R-words are finite and we let w be an arbitrary positive word, w € X .
We use induction on the number of segments labeled by the R-words of the linear
automaton of w, (ag, [o(w), Bo), to show that ST (w) is finite. The construction of
ST (w) only involves the applications of elementary P-expansions and no foldings
by Lemma 3.1. We factorize w as w = wjw,, such that w; and w, contain fewer
segments labeled by the R-words than w. So, by induction hypothesis, ST (w;) and
ST (w,) are finite. To speedup the Stephen’s process of successive applications of
elementary P-expansions we sew on ST'(w;) and ST (w») to the corresponding seg-
ments of («g, [o(w), Bo), and denote the resulting finite inverse word graph by So. We
observe that in Sy there is only one vertex (labeled by y) that is common to ST (w1)
and ST (wy). Since ST (wy) and ST (w,) are P-complete, therefore we can only find
some unsaturated segments passing through y. To speedup Stephen’s processes of
successive applications of P-expansions we sew on the finite subgraphs generated by
the R-words that label unsaturated segments passing through y, to the corresponding
transversals of Sy, and obtain a finite inverse word graph, S;. Finally, we show that
S is P-complete. So, S; is ST (w).

Proof. The direct statement is obvious. So, we prove the converse statement only. Let
w be an arbitrary word, w € X *. If w does not contain any R-word as its subword,
then our claim follows immediately. If w contains only one R-word as its subword,
such that the R-word occurs only once in w, then the finiteness of ST (w) follows
from the hypothesis of the theorem.

We assume that the statement of the theorem is true for any positive word that
contains less than n number of (not necessarily distinct) R-words as its subword,
where n € N and n > 2. We assume that w contains #n number of (not necessarily
distinct) R-words as its subwords. We show that ST (w) is finite.

We factorize w as w = w;w,, such that both w; and w, contain fewer than n
R-words as their subwords. Such a factorization of w is possible, because w; can be
considered any proper prefix of w that can be read along a segment labeled by w,
starting from the initial vertex and terminating at an interior vertex 7 of a subsegment,
labeled by an R-word, of w. The suffix w, can be read from 7 to the terminal vertex
of the segment labeled by w.

The Schiitzenberger graphs of w; and w, are finite by the induction hypothesis.
We construct the linear automaton of w, (g, I'o(w), Bo). We sew on ST (w;) and
ST (w2) to (a9, To(w), Bo) at the segments labeled by w; and w,, respectively. We
denote the resulting graph by Sy (see Figure 8).

We observe that in S there is only one vertex (labeled by y) common to ST (w1)
and ST (w;). The vertex y is the terminal vertex of ST'(w;), and the initial vertex of
ST (wy). Therefore, every transversal (a positively labeled path from the initial ver-
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(o)) \ w2 %L,BO
e — .

ST (wy)

Figure 8. So with ST (w;) and ST (w5>) attached to the segments w; and w»

/! \

Figure 9. Sp with some transversals highlighted

tex oo to the terminal vertex o) of So passes through y (see Figure 9). We know
that ST'(w1) and ST (w,) are P-complete. So, in Sy we can only find some unsatu-
rated segments labeled by some R-words starting from a vertex of ST (w), passing
through y, and terminating at a vertex of ST"(w»).

By Lemma 3.2, the Schiitzenberger graphs ST'(w;) and ST (w;) do not contain
any positively labeled cycle (closed path). Therefore, there are only a finite number of
transversals in Sy, as it is a finite inverse word graph. We consider those transversals
of So which contain an unsaturated segment labeled by an R-word passing through y.
We assume that these transversals are labeled by #1, #5, .. ., t;;, for some m € N.

By hypothesis, the subgraphs of ST'(#;), for 1 <i < m, generated by all the R-
words are finite. It is possible that a transversal ¢;, for some i € {1,2,...,m}, may con-
tain more than one unsaturated segment passing through y, because the R-words can
overlap with themselves or with the other R-words. We generate the subgraphs A(r;;)
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of ST'(t;) by the R-words r;,’s labeling an unsaturated segment passing through y,
and denote them simply by A;, where 1 < j <[ for some [ > m.

We sew on the finite subgraphs Ay, Aj, ..., Aj to Sp at the corresponding trans-
versals #;’s (see Figure 10). Consequently, we obtain a finite graph. We denote this
new graph by S;. No two edges fold together in S; by Lemma 3.1. Finally, we show
that S; is P-complete.

To prove the P-completeness of S; we need to show that S; does not contain any
unsaturated segment, where elementary P-expansions can be applied. So, we prove
the following two claims.

(1) Every segment labeled by an R-word that either starts from a vertex of Sy
and terminates at a vertex of A;, or vice versa, for some i € {1,2,...,1}, is
contained in A;, forsome j (1 < j #1i <I).

(2) Every segment labeled by an R-word that starts from a vertex of A; and ter-
minates at a vertex of A, for 1 <i # j </, is contained in Ay for some

k#i,j.
From claims (1) and (2), it follows that every segment of S; that is labeled by an
R-word, is either entirely contained in Sg or in A;, for some i € {1,2,...,/}. Hence,

S1 does not contain any unsaturated segment labeled by an R-word.

Proof of (1): Without loss of generality, we assume that we can find a segment
labeled by an R-word that starts from a vertex yg of Sg, passes through a vertex y; of
the transversal ¢;, and terminates at a vertex y, of A;, for some 1 <i < [. Here y; is
the first vertex that is common between the transversal #; and the segment labeled by
the R-word from yp to y». A dual argument can be used to show that every segment
labeled by an R-word, that starts from a vertex of A; and terminates at a vertex of .Sy,
is contained in A;, for 1 <i # j <.

Figure 10. So with some A;’s attached
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The vertex y; lies either before the vertex y, or at the vertex y. If the vertex y;
lies after the vertex y, then by Proposition 3.1 (iii), we can find a positively labeled
segment from g to yo. We can extend this path to a transversal of Sy by extending
this path to y1, and proceeding along the transversal #; up to 8. This transversal does
not pass through y, which contradicts the fact that every transversal of Sy passes
through y.

If the subsegment from y; to y, of the segment labeled by the R-word lies on the
transversal #;, then by Proposition 3.1 (iii), we can find a positively labeled segment
from o to yp. We can extend this segment to a transversal of Sp by proceeding along
the segment from yy to y,, and further proceeding along the transversal ;. We denote
this transversal by z. If y, lies before or at y, then the segment from yg to y, lies in
ST (w1). In this case, the segment from yg to y, cannot be unsaturated, as ST (wq)
is P-complete. If y, lies after y, that is, y; lies at y, or y lies between the vertices y;
and y,, then the transversal ¢ contains the segment from y; to y», that is labeled by an
R-word, and passes through y. So, the transversal ¢ is among one of the transversals
ti.t2, ... . ty. Hence, t = t; where 1 <i # j < m. The subgraph A; generated by
an R-word, that labels the segment from yy to y», and sewed onto the transversal ¢;,
contains the segment from yg to Y. So, our claim holds in this case.

If the vertex y, does not lie on the transversal #;, then by using Proposition 3.1 (iii),
we can find a positively labeled segment in A; that starts from y;, passes through
y» and terminates at a vertex of the transversal #;. We assume that this segment is
labeled by p’, for some p’ € X+. We assume that the subsegment of #;, from y; to
the terminal vertex of p’, is labeled by p, for some p € X*. By Lemma 3.3, there
exists an S-diagram over the semigroup presentation Sg(X|R) whose boundary is
labeled by the pair of words (p, p’). Again, by using Proposition 3.1 (iv), we can find
a transversal s of Sp that passes through the subsegment from yy to y; of the segment
labeled by the R-word, and the segment p. Clearly, the S-diagram corresponding to
(p, p') embeds in ST (s). That is because there exists a regular derivation sequence
from p to p’ corresponding to this S-diagram, the terms of this regular derivation
sequence label the transversals of the S-diagram corresponding to (p, p’), p is a
subword of s, and ST (s) is P-complete. So ST (s) contains every region of the S-
diagram corresponding to (p, p’). If the transversal s does not contain an unsaturated
segment labeled by an R-word, then ST (s) embeds in Sy. This implies that the vertex
Y, lies in Sy, which is a contradiction. Hence, s contains an unsaturated segment
labeled by an R-word passing through y. Therefore, s = ¢;, forsome 1 <i # j <m.
The segment from yy to y», labeled by the R-word, is contained in some A}, that was
sewn onto the transversal #; and contains the S-diagram with boundary labels (p, p’).

Proof of (2): We assume that there exists a segment labeled by an R-word that
starts from a vertex y; of A; and terminates at a vertex y; of Aj fori # j. If this
segment from y; to y; lies in Sp, such that it does not pass through the vertex y, then
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this segment either lies in ST (w1) or in ST (w5). In this case, the segment from y; to
y;j cannot be unsaturated, as ST'(w;) and ST (w») both are P-complete.

If the segment from y; to y; lies in So, and passes through y, then by Propo-
sition 3.1 (iv) we can extend this segment to a transversal labeled by ¢, for some
t € Xt of Sy. The transversal ¢ contains a segment labeled by an R-word passing
through y, therefore, t = 1, for some k € {1,2,...,m}. So, the claim is true in this
case, because the segment from y; to y; is contained in A (where Ay is the subgroup
of ST'(t), generated by the R-word that labels the segment from y; to y;).

Now we assume that the segment from y; to y; does not lie in So, where the ver-
tices y; and y; can lie in So. We can find a vertex y;, on the transversal f;, and a
vertex y;; on the transversal 7;, such that the segments from y;, to y;, and from y; to
yt; are the shortest non-negatively labeled segments from Sp to y; and from y; to So.
If y; or y; lies in So, then y; (y;) and yy; (y¢,) represents the same vertex, otherwise,
there will be positively labeled segment from yy; to y; (y¢; to y;). Obviously, none
of the edges of the segments from y;, to y;, and from y; to y;; lie in So, otherwise
they will not be the shortest ones. We consider the positively labeled segment start-
ing from y,,, passing through the segment from y; to y; labeled by an R-word, and
terminating at y,;. We assume that this segment is labeled by p’, for some p’ € X +.
The vertex yy; lies in ST'(w;) and the vertex y;; lies in ST (w2). So, So contains a
positively labeled segment from y;; to y;;, passing through y. We assume that the
segment from yy; to y¢,, of So, is labeled by p, for some p € X*. By Lemma 3.3,
there exists an S-diagram over the semigroup presentation Sg(X|R) with boundary
labeled by the pair of words (p, p’) that embeds in ST (w). We denote this S-diagram
by IT.

The segment labeled by p contains a subsegment labeled by an R-word passing
through y. Otherwise, the S-diagram IT embeds in Sy. This leads us to a contradictory
conclusion that the segment from y; to y;, labeled by an R-word, lies in Sp.

The S-diagram IT consists of only one simple component. If this S-diagram con-
sists of more than one simple component, then there exists a vertex § between y;,
and y;;, where the segments p and p’ intersect with each other. We already observed
that p contains a subsegment labeled by an R-word passing through y. If § lies any-
where between the initial and terminal vertex of the subsegment of p, that is labeled
by an R-word and passes through y, then it means that this subsegment of p does not
play any role in construction of the S-diagram IT. So, the S-diagram IT embeds in Sp.
This leads us to a contradiction that the segment from y; to y;, labeled by an R-word,
lies in Sy.

Now we show that § cannot lie before or at the initial vertex of the subsegment
of p, that is labeled by an R-word and passes through y. A similar argument can be
used to show that § cannot lie at the terminal vertex or after the terminal vertex of the
subsegment of p, that is labeled by an R-word and passes through y.
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If § lies anywhere before the initial vertex or at the initial vertex of the subsegment
of p, that is labeled by an R-word and passes through y, then p can be factorized as
P = p1p2, where p; labels the segment from y;, to §, and p, labels the segment from
8 to yt,; . The segment p; lies in ST (wy). But, ST'(wy) is P-complete. Therefore, the
subsegment of p’ from y;; to 8, also lies in ST (w ), hence in Sp. This contradicts the
choice of the vertex yy, .

By Proposition 3.1 (iv), the segment p can be extended to a transversal ¢ of Sy.
Since this transversal ¢ contains a segment labeled by an R-word passing through y,
t =tg,forsome k €{1,2,...,m}. The S-diagram IT consists of only one simple com-
ponent. Therefore, it can be generated by some successive applications of elementary
P-expansions starting from the subsegment of p, that is labeled by an R-word and
passes through y. The subgraph Ay generated by the subsegment of p, that is labeled
by an R-word and passes through y, is the largest subgraph of ST"(w) that can be gen-
erated by successive applications of elementary P-expansions. So, the S-diagram IT
is contained in Ag. This implies that the segment from y; to y; labeled by an R-word
is also contained in Ay. ]

4. The word problem for some classes of one relation Adian inverse
semigroups

In this paper, we only focus on those one relation Adian inverse semigroups, in which
no R-word is a subword of the other R-word.

For any word w € X T, a prefix (suffix) u of w is said to be a proper prefix (suffix)
of w if the length of u is less than the length of w (that is, |u| < |w|). For any two
words u, v € X T, if a proper prefix of u is a proper suffix of v, we say that u and v
overlap with each other. If a proper prefix of u is also a proper suffix of u, we say that
u overlaps with itself.

Lemma 4.1. Let M = Inv(X|u = v) be an Adian inverse semigroup. If none of the
R-words is a subword of the other R-word, and no R-word overlaps with itself or
with the other R-word, then ST (t), for all t € X, is finite.

Proof. Let t be a positive word. If # does not contain any R-word as its subword, then
there is nothing to prove, because ST'(¢) is finite in this case.

We assume that ¢ contains n number of (not necessarily distinct) R-words, for
some n € N. We construct the linear graph of ¢, denoted by (e, [o(2), Bo). We apply
full P-expansion on (ag, I'g(?), Bo) and obtain («q, I'1(¢), B1). Since none of the R-
word is subword of the other R-word, we cannot find any unsaturated subsegment
labeled by an R-word of the newly attached segments of (a1, I'1(¢), f1). We know
from [4, Proposition 3 (iii)], that (aq, I'1(¢), B1) is a directional graph in the sense
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that every vertex of (1, ['1(¢), B1) lies on a transversal from o3 to 1. We cannot find
an unsaturated segment labeled by an R-word that either starts from a vertex which
lies before the initial vertex of a newly attached segment and terminates at an interior
vertex of the newly attached segment, or that starts from an interior vertex of a newly
attached segment and terminates at a vertex which lies after the terminal vertex of
the newly attached segment, as none of the R-words overlap with themselves or with
the other R-word. So, (a1, I'1(¢), B1) cannot be expanded further by applying full
P-expansion. Hence, the underlying finite graph of (1, I'1(¢), B1) is ST (¢). ]

The one relation Adian presentations with no R-word being a subword of the other
R-word, as well as some overlap between the R-words, can be distributed into four
classes.

Proposition 4.1. Let (X |u = v) be a positive presentation, such that no R-word is
a subword of the other R-word. There are four different types of overlaps possible in
the presentation (X |u = v).

(1) One of the R-words has same prefix and suffix. The other R-word does not
overlap with itself and there is no overlap between the two R-words.

(2) Both the R-words overlap with themselves and they do not overlap with each
other.

(3) A prefix of an R-word is suffix of the other R-word, and no suffix of the former
R-word is a prefix of the latter R-word.

(4) A prefix of one R-word is a suffix of the other R-word, and a suffix of the
former R-word is a prefix of the later R-word.

Proof. There are only two R-words u and v in the presentation (X |u = v). So, there
can be only two possibilities of an R-word overlapping with itself. That is, either one
of the R-words overlaps with itself or both of the R-words overlap with themselves.
Both of these possibilities are considered in cases (1) and (2) of the above statement.
Obviously, cases (1) and (2) cannot occur simultaneously.

There are only two possibilities of an R-word overlapping with the other R-word
in an Adian presentation of the form (X |u = v). That is, either a prefix of an R-word
is a suffix of the other R-word, and no suffix of the former R-word is a prefix of the
latter R-word, or a prefix of one R-word is the suffix of the other R-word and a suffix
of the former R-word is the prefix of the latter R-word. Both of these possibilities are
considered in cases (3) and (4) of the above statement. Obviously, cases (3) and (4)
cannot occur simultaneously.

In case (3), it is also possible that one or both of the R-words overlap with them-
selves as well. But, these possibilities are considered as sub-cases of (3). Also in
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case (4), it is possible that one or both of the R-words overlap with themselves. But,
these possibilities are considered as sub-cases of (4). ]

We say that an Adian inverse semigroup M = (X |u = v) is of type (1), when the
presentation (X |u = v) is of type (1) of Proposition 4.1.

Lemma4.2. Let M = Inv{X |u = v) be an Adian inverse semigroup of type (1). Then
every subgraph of ST (w), for all w € X, generated by an R-word, is finite.

Proof. Without loss of generality, we assume that u overlaps with itself and v neither
overlaps with itself nor with u. Obviously, for any w € X that does not contain
any R-word as its subword, ST (w) is finite. So, we consider an arbitrary positive
word w, such that w contains some R-words as its subwords. We construct the linear
graph of w, (o, 'o(w), Bo).

If w contains u as its subword, we apply the elementary P-expansion on the seg-
ment labeled by u of («g, ['g(w), Bo) by sewing on a path labeled by v from the initial
vertex to the terminal vertex of the segment labeled by u. Since v neither overlaps with
itself nor with u, the first application of elementary P-expansion does not create any
new unsaturated segment labeled by an R-word. So, the subgraph of ST (w) generated
by u stops to grow at the first iterative step. Hence, the subgraph of ST (w) generated
by u is finite.

If w contains v as its subword, we apply elementary P-expansion on the segment
labeled by v of (ag, I'o(w), Bo) by sewing on a path labeled by u from the initial
vertex to the terminal vertex of the segment labeled by v. Since u overlaps with itself,
we may find a finite number of unsaturated segments labeled by u starting from a
vertex of (cg, [o(w), Bo) that lies before the initial vertex of the segment labeled
by v and terminating at an interior vertex of the segment labeled by u or starting
from an interior vertex of the segment labeled by u and terminating at a vertex of
(o, To(w), Bo) that lies after the terminal vertex of the segment labeled by v. We
apply elementary P-expansions on all of these new unsaturated segments by sewing
on segments labeled by v. Since v does not overlap with itself or with u, the second
applications of elementary P-expansions do not create any new unsaturated segments
labeled by some R-words. Hence, the subgraph of ST'(w) generated by v remains
finite. ]

We say that an Adian inverse semigroup M = (X |u = v) is of type (2) when the
presentation (X |u = v) is of type (2) of Proposition 4.1.

Proposition 4.2. Let M = Inv(X |u = v) be an Adian inverse semigroup of type (2).
Then all the segments sewn on in an iterative step of the construction of a subgraph of
ST (w), for all w € X, generated by an R-word, are labeled by the same R-word.
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Proof. If w € X T does not contain any R-word as its subword, then ST (w) is finite.
So, there is nothing to prove in this case.

Let w € X be an arbitrary word that contains some R-words as its subwords. To
prove the above statement we use induction on the number of iterative steps involved
in the construction of a subgraph of ST (w), generated by an R-word. Without loss of
generality, we assume that v is a subword of w. We construct the linear graph of w,
(g, To(w), Bo). At the first iterative step, we sew on a segment labeled by u from the
initial vertex to the terminal vertex of the segment labeled by v of (g, I'g(w), Bo).
So, the above statement is obviously true for the first iterative step.

We assume that the above statement is true for some n € N, where n > 2. That
is, all the segments that are sewn on at the n-th iterative step are labeled by the same
R-word. Since both the R-words overlap with themselves and there is no overlap
between them, if some of the segments sewn on at the n-th iterative step create some
new unsaturated segments, they must be labeled by the same R-word that labels all
the segments sewn on at the n-th iterative step. So, all the segments sewn on at the
(n + 1)-st iterative step, are labeled by the other R-word. [

We can distribute the Adian presentations of type (2) into the following two cate-
gories.
(a) No proper subword of one R-word is a proper subword of the other R-word.

(b) A proper subword of one R-word is a proper subword of the other R-word.

For instance, the presentation (a, b, c|aba = c?) is of type (2a), and the presentation
(a, blaba = b3) is of type (2b) as b is common between both the R-words. The
presentation {(a, b, clababa = cbabc) is also of type (2b).

Proposition 4.3. Let M = Inv(X |u = v) be an Adian inverse semigroup of type (2a).
If every third generation region of a subgraph of ST (w), for all w € X, generated
by an R-word uses an edge of the linear automaton of w, then every higher generation
region of the subgraph uses an edge of the linear automaton of w.

Proof. If w € X does not contain any R-word as its subword, then ST (w) is finite.
So, there is nothing to prove in this case.

Let w € X be an arbitrary word that contains some R-words as its subwords.
We apply induction on the number of iterative steps involved in the construction of a
subgraph of ST"(w), generated by an R-word.

We assume that every third generation region of the subgraph of ST"(w), generated
by an R-word, uses an edge of the linear graph of w, denoted by («g, ['o(w), Bo). For
the base case of our induction, we show that every fourth generation region of the
subgraph uses an edge of («g, ['o(w), Bo).

Since every third generation region uses an edge of (ag, I'o(w), Bo), either the
initial vertex or the terminal vertex of all the segments sewed on at the third iterative
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step, lies on («g, I'o(w), Bo). Without loss of generality, we assume that the initial
vertex of a segment, labeled by an R-word, and sewed on at the third iterative step,
lies on (g, [o(w), Bo). We denote this segment by s3. Since both the R-words overlap
with themselves and there is no overlap between them, if the third iterative step creates
some new unsaturated segments, then they are labeled by the same R-word as s3.

The terminal vertex of s3 lies on a segment that was sewn on at the second iterative
step and labeled by the other R-word. If s3 creates some new unsaturated segments,
then these new unsaturated segments either start from a vertex of (g, I'o(w), Bo)
which lies before the initial vertex of s3 and terminates at an interior vertex of s3,
or they start from an interior vertex of s3 and passes through a segment labeled by
the other R-word and sewed on at the second iterative step. The latter case is not
possible, as no proper subword of one R-word is a proper subword of the other R-
word. Therefore, if a fourth generation region exists, then it also uses an edge of
(a0, To(w), o).

We assume that every k-th generation region uses an edge of (g, I'o(w), Bo), for
some k > 4. Then either the initial vertex or the terminal vertex of every segment that
is sewed on at the k-th iterative step lies at («tg, ['g(w), Bo). Without loss of generality,
we assume that the initial vertex of a segment labeled by an R-word and sewed on at
the k-th iterative step lies on (g, [o(w), Bo). We denote this segment by sz. Since
both the R-words overlap with themselves and there is no overlap between both of
them, if the k-th iterative step creates some new unsaturated segments, then they will
be labeled by the same R-word as sx. Moreover, these new unsaturated segments
either start from a vertex of (ag, I'g(w), Bo) which lies before the initial vertex of s
and terminates at an interior vertex of s or they start from an interior vertex of s
and pass through the segment labeled by the other R-word that was sewed on at the
(k — 1)-st iterative step. The latter case is not possible as no proper subword of one R-
word is a proper subword of the other R-word. Therefore, if the (k + 1)-st generation
region exists, then it also uses an edge of (g, [o(w), Bo). [

We call a vertex § of ST (w), for some w € X, to be a special vertex, if § is the
terminal vertex of a segment labeled by an R-word and the initial vertex of a segment
labeled by the same R-word.

Proposition 4.4. Ifawordt € Xt overlaps with itself, then t is in one of the following
forms.
(1) t = x", wherex € XT, andn > 2.
(2) t = (xs)"x, for some x,s € XT, and n > 1. For n = 1, x is the maximal
prefix of t that is also a suffix of t. For n > 2, (xs)"~x is the maximal prefix
of t that is also a suffix of t.
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Proof. If t = x", for some x € X' and n > 2, then clearly ¢ overlaps with itself. If
t # x", for some x € X, then there are two possibilities.

(1) The maximal prefix x € X * of ¢, that is also a suffix of 7, does not overlap
with itself in z. In this case, ¢ is of the form ¢ = xsx = (xs)!x, for some x,s € X +.
Here s # ¢. Otherwise, t = x2, for some x € X .

It is worth noticing that the prefix word x can possibly overlap with itself. That
is, x can have a same prefix and suffix, but inside 7, the prefix x and the suffix x are
separated from each other by a nonempty word s.

(2) The maximal prefix yo € Xt of ¢, that is also a suffix of z, overlaps with itself
in ¢. In this case, since yo overlaps with itself in 7, a prefix of yg is also a suffix of yj.
Let y; € X be the maximal prefix of y that is also a suffix of yo. There are two
possibilities.

(2.1) If y; does not overlap with itself in yq, then yo = y15y1, for some y;,s €
X7 (just like case (1) above). In this case, t = (y15y1)sy1 = (y15)%y;. Here 5 # ¢.
Otherwise, ¢ = y3, for some y; € X .

(2.2) If y; overlaps with itself in yq, then a prefix of y; is also a suffix of y;.
Let y, be the maximal prefix of y; that is also a suffix of y;. Again, there are two
possibilities.

(2.2.1) If y, does not overlap with itself in yq, then y; = y,sy,, for some y,,s €
X7 (just like case (1) above). In this case, yo = (y25y2)sy2 = (y25)%y,, and ¢ =
(y25)y2, for some y,,s € X . Clearly s # ¢. Otherwise, ¢ = y5, for some y, € X *.

(2.2.2) If y, overlaps with itself in y;, then a prefix of y, is also a suffix of y,.
Let y3 be the maximal prefix of y, that is also a suffix of y,.

If y3 does not overlap with itself in y,, then y, = y3sy3, for some y3,s € X .
In this case, y; = (y35)2y3 which implies that yo = (y35)3y3, and consequently
t = (y35)*y3, for some y3,s € XT. Clearly 5 # &. Otherwise, 1 = y3, for some
yze Xt

If y3 overlaps with itself in y,, then by using the same argument we can show that
t = (745)° y4, for some y4,5 € X .

We observe that y4 is a proper prefix of ys, y3 is a proper prefix of y,, y» is a
proper prefix of y1, y; is a proper prefix of yg, and yy is a proper prefix of . Hence,
this process eventually terminates after n (a finite) number of steps and ¢ = (zs)"z,
for some z,s € X T. n

Proposition 4.5. Let M = Inv(X |u = v) be an Adian inverse semigroup of type (2a).
A segment of ST (w), for some w € X T, labeled by u? contains a subsegment labeled
by u passing through the special vertex of the segment u? if and only if u = x", for
somex € Xt andn > 2.

Proof. The converse of the above statement is obvious. Therefore, we only prove the
direct statement.
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Let a segment of ST (w), for some w € X +, labeled by u?2 contain a subsegment
labeled by u passing through the special vertex, and u # x”, for any x € X+ and
n > 2. Then by Proposition 4.4, u = (xs)™x, for any x, s € XTandm>1.Ifm=1
then x is the maximal prefix of u that is also a suffix of u. Otherwise, (xs)™ !x is the
maximal prefix of u that is also a suffix of u.

Case 1: If m = 1, then u = xsx, for some x,s € X1, where x is the maximal
prefix of u that is also a suffix of u. By hypothesis there exists a subsegment of the
segment u2, that is labeled by u, and passing through the special vertex of the seg-
ment u2. If u can be read starting from the initial vertex of x (where x is the suffix of
the first u in the segment u?), then x = 5. This implies that u = x3, which contradicts
our assumption that u # x”, for some x € X+ andn > 2.

If u can be read starting from a vertex that lies before the initial vertex of x (where
x is the suffix of the first u in the segment u2), then a longer prefix of u will be a suffix
of u. This contradicts the maximality of x.

If u can be read starting from a vertex that lies between the initial and terminal
vertices of x (where x is the suffix of the first u in the segment u?), then again a longer
prefix of u will be a suffix of u. This contradicts the maximality of x.

Case 2: If m > 1, then u = (xs)™x, for some x,s € X+, where (xs)" !x is the
maximal prefix of u that is also a suffix of u. By hypothesis, there exists a subsegment
of the segment u2, that is labeled by u, and passing through the special vertex of
the segment u?. If this subsegment starts from the initial vertex of y (where y =
(xs)™ ! x a suffix of the first ¥ in the segment u?), this is only possible when x = s.

2m+1 " for some x € X, which contradicts our hypothesis

This implies that u = x
that u is not a proper power a positive word.

If the subsegment labeled by u starts from a vertex that lies before the initial vertex
of y, then a longer prefix of u will be a suffix of u, which contradicts the maximality
of (xs)™ 1x.

Similarly, if the subsegment labeled by u starts from a vertex that lies between the
initial and terminal vertices of y, then a longer prefix of u will be a suffix of u, which

contradicts the maximality of (xs)™ 1x. ]

We call a third generation region of a subgraph of ST (w), for some w € X,
generated by an R-word, that does not use an edge of the linear automaton of w, to
be a special region.

Proposition 4.6. Let M = Inv(X |u = v) be an Adian inverse semigroup of type (2a).
There exists a word w € X T such that there is a subgraph of ST (w) generated by
an R-word containing a special region if an only if u = x" and v = y™, for some
x,ye€Xtandn,m > 2.
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Proof. The converse of the above proposition is easy to see. Let u = x" and v = y™,
for some x,y € Xt and n,m > 2. Then ST (y?'uy'), where p; + q; = n, and
ST (xP2vx92), where p, + q» = m, contain a third generation region that does not
use an edge of linear automatons of y?1uy9! and xP2vx92, respectively.

Now we prove the direct statement. We assume that a subgraph of ST (w), for
some w € X, generated by an R-word, contains a special region. Without loss of
generality, we assume that one side of this special region that lies on the boundary
of second generation regions of the subgraph, is labeled by u. Since (X|u = v) is a
presentation of type (2a), it follows that there is no letter from X that belongs both to
u and v, hence one side of the special region labeled by u lies on a segment labeled by
u? of the subgraph of ST (w), generated by an R-word (see Figure 11). The segment
labeled by u? contains a special vertex and the one side of the special region labeled
by u is passing through this special vertex. So, by Proposition 4.5, u = x", for some
x € XT and n > 2. The segment labeled by u? can only exist, if there is a segment
labeled by v? after the first iterative step. The segment labeled by v2 contains a special
vertex that lies on the segment labeled by an R-word, and sewed on at the first iterative
step. Since (X |u = v) is an Adian presentation of type (2a), the segment sewed on at
the first iterative step is labeled by v. The segment labeled by v? contains a segment
labeled by v that is passing through the special vertex. By Proposition 4.5, v = y™,
forsome y € X+ andm > 2. n

An Adian inverse semigroup M = Inv{X |u = v) is of type (3) when the presen-
tation (X |u = v) is of type (3) of Proposition 4.1.

Proposition 4.7. Let M = Inv(X |u = v) be an Adian inverse semigroup of type (3),
such that no R-word overlaps with itself. Then there is no third generation region in
a subgraph of w generated by an R-word, for all w € X T, that does not use an edge
of the linear automaton of w.

Special region
Special vertex

/! \

Figure 11. Special region of a subgraph of ST (w) generated by an R-word
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Proof. Without loss of generality, we assume thatu = xy and v = yz, where x, y,z €
X7, and y is the maximal prefix of v that is also a suffix of u. We also assume that u
is a subword of w, for some w € X *. We show that the subgraph of ST (w) generated
by u, cannot contain a third generation region that does not use an edge of the linear
automaton of w. Since w is any arbitrary positive word, the above proposition is true
for any positive word that contains u as its subword.

We construct the linear graph of w. We sew on a segment labeled v from the initial
vertex to the terminal vertex of the segment labeled by u. This creates the first gener-
ation region of the subgraph of ST"(w) generated by u. Since u and v do not overlap
with themselves, and no prefix of u is a suffix of v, the second generation region of
the subgraph generated by u exists only if the word u is followed by x in w. So, we
assume that the subword u is followed by x in w. Now, we can find an unsaturated
segment labeled by u starting from the initial vertex of x and terminating at an inte-
rior vertex of the segment labeled by v that was sewn on at the first step. We sew on
a segment labeled v from the initial vertex to the terminal vertex of this unsaturated
segment, and create the second generation region of the subgraph generated by u.

If we assume that the subgraph of ST'(w) generated by u contains a third gener-
ation region that does not use an edge of the linear automaton of w, then there exists
an unsaturated segment labeled by an R-word that starts from an interior vertex of the
segment labeled by v (that was sewn at the second step) and terminates at a vertex of
the segment labeled by v (that was sewn at the first step). If this unsaturated segment
is labeled by v, then this implies that v overlaps with itself, which is a contradiction
to the fact that no R-word overlaps with itself. If this unsaturated segment is labeled
by u, then it implies that a suffix of v is also a prefix of u, which is also a contradiction.

A dual argument can be used to show that a subgraph of ST (w), forallw € X T,
generated by v cannot contain a third generation region that does not use an edge of
the linear automaton of w. ]

Proposition 4.8. Let M = Inv(X |u = v) be an Adian inverse semigroup of type (3),
such that no R-word overlaps with itself. Then every region of a subgraph of ST (w),
forallw € X, generated by an R-word uses an edge of the linear automaton of w.

Proof. Without loss of generality, we assume that u = xy and v = yz, where x, y,z €
X7, and y is the maximal prefix of v that is also a suffix of u. Let w be an arbitrary
positive word that contains u as its subword. We prove the above statement for a
subgraph of ST'(w) generated by u, a similar argument can be used to prove the
above statement for a subgraph generated by v.

We use mathematical induction on the number of iterative steps involved in the
construction of the subgraph generated by u. We have already seen in Proposition 4.7
that every region of the subgraph generated by u up to the third generation uses an
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edge of the linear automaton of w. Which proves the base case for the mathematical
induction (that is, every third generation region of the subgraph generated by u uses
an edged of the linear automaton of w).

We assume that every region of the subgraph generated by u up to k-th iterative
step uses an edge of the linear automaton of w, for some k > 3. We show that the
(k 4 1)-generation region of the subgraph generated by u also uses an edge of linear
automaton of w.

We observe in the proof of Proposition 4.7 that we only sew on a segment labeled
by v in the first three iterative steps involved in the construction of the subgraph
generated by u. So if we continue in the same manner up to the k-th iterative step,
then the segment labeled by v is sewn on at the k-th iterative step to form the k-th
generation region of the subgraph generated by u. The initial vertex of this segment
lies at the linear automaton of w and the terminal vertex of this segment lies on the
segment labeled by v sewed on at the (k — 1)-st iterative step.

We cannot find an unsaturated segment labeled by an R-word that starts from
an interior vertex of the segment labeled by v (sewed on at the k-th iterative step)
and terminating anywhere after passing through the terminal vertex of this segment
labeled by v. Because if such a segment exists and it is labeled by v, then it means that
v overlaps with itself. This contradicts the fact that no R-word overlaps with itself.
If such a segment is labeled by u then it is only possible when a prefix of u is also
a suffix of v, which again a contradiction. So if the k-th iterative step creates a new
unsaturated segment, then this segment will start from a vertex of the linear automaton
of w and after passing through the initial vertex of the segment v (sewed on at the k-th
iterative step) terminates at an interior vertex of this segment v. Hence the (k + 1)-st
generation region also uses an edge of the linear automaton of w. ]

Theorem 4.1. Let M = Inv(X|u = v) be an Adian inverse semigroup, such that no
R-word is a subword of the other R-word, and the relation (u, v) is in one of the
following forms:

(1) No R-word overlaps with itself or with the other R-word.

(2) One of the R-words overlaps with itself, and the other R-word neither over-
laps with itself nor with the former R-word.

(3) Both R-words overlap with themselves, there is no overlap between both the
R-words, and at least one of the R-words is not of the form x", for some
xeXTandn > 2.

(4) A prefix of one R-word is a suffix of the other R-word, no suffix of the former
R-word is a prefix of the latter R-word, and no R-word overlaps with itself.

Then the word problem is decidable for M .
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Proof. If the relation (u, v) is of the form (1), then, by Lemma 4.1, ST (w), for all
w € X, is finite. Therefore, by Theorem 1.3, ST (w), for all w € (X U X~ 1)*, is
finite, which implies that the word problem is decidable for M.

If the relation (u, v) is of the form (2), then, by Lemma 4.2, every subgraph of
ST (w), forall w € X, generated by an R-word is finite. Therefore, by Theorem 3.2,
ST (w), for all w € X, is finite. So, by Theorem 1.3, ST (w), for all w € (X U
X~1)*, is finite. Hence, the word problem is decidable for M.

If the relation (u, v) is of the form (3), then by Proposition 4.6, none of the sub-
graphs of ST (w), for all w € X *, generated by an R-word, contains a special region.
Therefore, for any arbitrary w € X T, every region of a subgraph of ST (w), gener-
ated by an R-word, uses an edge of the linear automaton of w. Since w is a word
of finite length, every subgraph of ST (w), generated by an R-word, is finite. Since
w € X7 is arbitrary, every subgraph of ST (w), for all w € X, is finite. It follows
by Theorem 3.2 that ST (w), for all w € X, is finite. By Theorem 1.3, ST (w), for
all w € (X U X~1*, is finite. So, the word problem is decidable for M.

If the relation (u, v) is of the form (4), then by Proposition 4.8 every region of
a subgraph of ST (w), for all w € X, generated by an R-word, uses an edge of
the linear automaton of w. Since w is a word of finite length, every subgraph of
ST (w), generated by an R-word, is finite. Since w € X T is arbitrary, every subgraph
of ST'(w), for all w € X, is finite. It follows by Theorem 3.2 that ST (w), for all
w € X T, is finite. By Theorem 1.3, ST'(w), for all w € (X U X ~1)*, is finite. So, the
word problem is decidable for M. |
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