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A sphericity criterion for strictly pseudoconvex
hypersurfaces in C2 via invariant curves

Florian Bertrand, Giuseppe Della Sala and Bernhard Lamel

Abstract. We prove that if every chain on a strictly pseudoconvex hypersurface M
in C2 coincides with the boundary of a stationary disc, then M is locally spherical.

1. Introduction

Every strictly pseudoconvex hypersurface M � C2 bounding a domain � � C2 carries
two natural, biholomorphically invariant families of real curves: the so-called chains and
boundaries of stationary discs. These come from very different types of geometrical con-
structions. Chains have been introduced by Chern and Moser [5] as the CR geometry
analogue of geodesics in Riemannian geometry. Stationary discs, on the other hand, are
the solutions to the Euler–Lagrange equations of Kobayashi extremal discs in �. If M is
in addition real-analytic, it carries a third natural biholomorphically invariant family of
real curves: traces of Segre varieties. A theorem of Faran [6] shows that if the traces of
Segre varieties agree with the chains, then M is locally spherical. In a former paper [1],
we showed that if the traces of Segre varieties agree with the traces of stationary discs,
then M is also locally spherical.

In this paper, we address the remaining question: if the traces of stationary discs coin-
cide with chains, is M also necessarily spherical? We have been asked this repeatedly
when presenting the results in [1], and it turns out that the answer is also yes. The natural
setting for this question is for sufficiently smooth hypersurfaces.

Theorem 1.1. Assume thatM is a strictly pseudoconvex hypersurface of class C12 in C2.
If the chains of M are boundaries of stationary discs, then M is locally spherical.

We remark that M in Theorem 1.1 is not assumed to be closed (so the theorem is a
local result). In order to prove this theorem, we cannot utilize the cited results. Instead, we
rely on Fefferman’s characterization of chains as projections of light rays of an associated
Lorentz metric and analyzing its Hamiltonian. We construct a special family of chains
centered at the origin and show that if each of the members of this family is the trace of a
stationary disc, then the origin is an umbilical point.

Mathematics Subject Classification 2020: 32V40 (primary); 32T15 (secondary).
Keywords: stationary discs, Hamiltonian systems, Chern–Moser chains, sphericity and umbilicity of CR
manifolds.
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The organization of this paper is to review the basics in Section 2, summarize facts
about the chains in Section 3, and give the proof of a (slightly sharpened) version of the
theorem in Section 4.

2. Preliminaries

2.1. Intrinsic geometry of strictly pseudoconvex hypersurfaces

In this section, we give a quick review of the basic local biholomorphic equivalence the-
ory for strictly pseudoconvex hypersurfaces in C2. We thank one of the referees for the
suggestion to include some background material in this paper, and hope the reader will
enjoy it.

A hypersurface M � C2 inherits the complex structure of C2 on its complex tangent
spaces T cpM D TpM \ iTpM . The complex tangent bundle T cM is defined by the van-
ishing of a not uniquely determined 1-form � , which we usually call characteristic form;
the annihilator .T cM/?D T 0M DNM � T �M is called the characteristic or conormal
bundle ofM . If d� induces a hermitian inner product on T cM by h.X;Y /D i�.ŒX; NY �/D
�id�.X; NY /, called the Levi form of M with respect to � , then we say that M is strictly
pseudoconvex.

Thus, geometrically speaking, a strictly pseudoconvex hypersurface M � C2 can be
thought of as a 3-dimensional manifold with a contact structure with some additional
compatibility conditions. The choice of a contact form gives rise to a pseudohermitian
structure .M; �/.

The ambivalence in choosing a contact form gives rise to fascinating mathematics
which mixes aspects of complex, conformal, contact, and symplectic geometry. The equiv-
alence problem for strictly pseudoconvex hypersurfaces in C2 was solved in a series
of groundbreaking papers by E. Cartan [3, 4] applying his method of equivalence; later,
Tanaka [16] and Chern–Moser [5] gave solutions of the problem for strictly pseudoconvex
and Levi-nondegenerate hypersurfaces in higher dimensions. For the convenience of the
reader, we recall some of the necessary background, with a view towards the Fefferman
construction of chains which we are going to use.

If we start with an arbitrary characteristic form � , we can consider a real line bundleE
over M consisting of the multiples u� , where u > 0. The form ! D u� is intrinsically
defined, and (on E) we have

d! D ig1 N1 !
1
^ N!1 C ! ^ ';

with a real one form '; the forms !, !1, N!1, and ' span CT �E. Since we assume
that M is strictly pseudoconvex, we have g1 N1 ¤ 0, and we will assume for simplicity
that g1 N1 D 1; the more general case where g1 N1 is not assumed to be constant follows in
a similar but more involved way. Since this short review is only meant to recall how the
main computations work, we opted to keep the simple variant. We follow the notation of
Chern–Moser [5], so that the reader can pick up the necessary modifications in that source
easily.
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Now any other frame of CT �E satisfying the condition above is given by0BB@
Q!

Q!1

NQ!1

Q'

1CCA D
0BB@
1 0 0 0

� � 0 0
N� 0 N� 0

s i� N� �i N�� 1

1CCA
0BB@
!

!1

N!1

'

1CCA ;
where j�j2 D 1. The group of matrices of this form is denoted by G1, and we can form
the principal G1-bundle Y over E; thus s, �, and � are fiber coordinates. One has the
integrability condition

d!1 D !1 ^ ˛ C ! ^ ˇ;

for every frame as above, with some not uniquely determined forms ˛ and ˇ.
One then obtains a uniquely determined frame !; !1; N!1; '; ˛; ˇ;  of CT �Y satis-

fying a number of identities:

Theorem 2.1 ([3]). There exists a unique frame !; !1; N!1; '; ˛; ˇ;  of CT �Y and
invariantly defined functions Q and R such that

d! D i!1 ^ N!1 C ! ^ ';

d!1 D !1 ^ ˛ C ! ^ ˇ;

' D ˛ C N̨ ;

d' D i!1 ^ Ň;�i N!1 ^ ˇ C ! ^  ;

d˛ D i N!1 ^ ˇ C 2i!1 ^ Ň �
 

2
^ !;

dˇ D N̨ ^ ˇ �
 

2
^ !1 CQ N!1 ^ !;

d D ' ^  C 2iˇ ^ Ň C .R!1 C NR N!1/ ^ !:

Definition 2.2. A curve  is called a chain if it solves the system of ODEs

!1 D ˇ D 0:

We note that the equations for the real forms !, ', and  along a chain simply read

d! D ! ^ '; d' D ! ^  ; d D ' ^  :

One can use these equations to therefore introduce a canonical parameter along the chain
defined up to a linear fractional map.

We now give, as promised, the details for the construction of the canonical forms
in Theorem 2.1, basically to set the stage. We also point the reader to the book [13] by
Jacobowitz.

First, one observes that exterior differentiation of the frame conditions

(2.1)
d! D i!1 ^ N!1 C ! ^ ';

d!1 D !1 ^ ˛ C ! ^ ˇ;
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yields

(2.2)

0 D id!1 ^ N!1 � i!1 ^ d N!1 C d! ^ ' � ! ^ d'

D i.!1 ^ ˛ C ! ^ ˇ/ ^ N!1 � i!1 ^ . N!1 ^ N̨ C ! ^ Ň/

C .i!1 ^ N!1 C ! ^ '/ ^ ' � ! ^ d'

D i.�˛ � N̨ C '/ ^ !1 ^ N!1 C .�d' C iˇ ^ N!1 � i Ň ^ !1/ ^ !;

0 D d!1 ^ ˛ � !1 ^ d˛ C d! ^ ˇ � ! ^ dˇ

D ! ^ ˇ ^ ˛ � !1 ^ d˛ C .i!1 ^ N!1 C ! ^ '/ ^ ˇ � ! ^ dˇ

D .�d˛ C i N!1 ^ ˇ/ ^ !1 C .ˇ ^ ˛ C ' ^ ˇ � dˇ/ ^ !:

It follows from the first equation in (2.2) that

�˛ � N̨ C ' D A!1 C NA N!1 C C!; with C D NC ,

i.e., with the choice Q̨ D ˛CA!1 C C
2
! we have ' D Q̨ C NQ̨ . It is easy to see that ' with

this property are unique up to multiples of !, and for such a choice of ', we have

�d' C iˇ ^ N!1 � i Ň ^ !1 D �! ^  ; for a real 1-form  .

Summarizing, we have imposed the following restrictions:

d! D i!1 ^ N!1 C ! ^ ';

d!1 D !1 ^ ˛ C ! ^ ˇ;

' D ˛ C N̨ ;

d' D i!1 ^ Ň;�i N!1 ^ ˇ C ! ^  ;

and after simplification of the second equation in (2.2), we have the equation

(2.3) .d˛ � i N!1 ^ ˇ/ ^ !1 C .dˇ � N̨ ^ ˇ/ ^ ! D 0:

The forms ˛, ˇ, and  satisfying these identities are uniquely determined up to a
change

(2.4)

Q̨ D ˛ CD!;

Q̌ D ˇ CD!1 CE!;

Q D  CG! C i. NE!1 �E N!1/;

where D is purely imaginary and G is real.
One can then check that the form

ˆ D d˛ � i N!1 ^ ˇ � 2i!1 ^ Ň

satisfies ˆ D � N̂ modulo !:

ˆC N̂ D d˛ � i N!1 ^ ˇ � 2i!1 ^ Ň C d N̨ C i!1 ^ Ň C 2i N!1 ^ ˇ

D d' � i!1 ^ Ň C i N!1 ^ ˇ D ! ^  :

Since in addition ˆ ^ !1 D 0 modulo ! by (2.3), we have

d˛ � i N!1 ^ ˇ � 2i!1 ^ Ň Š S!1 ^ N!1 mod !;
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and the real number S transforms in the following way under a change of frame as above
(computing modulo !):

QS!1 ^ N!1 D d Q̨ � i N!1 ^ Q̌ � 2i!1 ^ Q̌

D d.˛ CD!/ � i N!1 ^ .ˇ CD!1/ � 2i!1 ^ . Ň �D N!1/

D d˛ CD ^ d! � i N!1 ^ ˇ C 3iD!1 ^ N!1 � 2i!1 ^ Ň

D .S C 4iD/!1 ^ N!1:

The condition S D 0 therefore is possible for a certain D, and fixes the form ˛ uniquely.
We proceed to calculate with

ˆ D d˛ � i N!1 ^ ˇ � 2i!1 ^ Ň D � ^ !

for some 1-form �, and we note right away that

.�C N�/ ^ ! D ˆC N̂ D ! ^  ;

in other words, �C N� D � modulo !. Plugging

d˛ � i N!1 ^ ˇ � 2i!1 ^ Ň D � ^ !

into (2.3), we obtain

0 D .d˛ � i N!1 ^ ˇ/ ^ !1 C .dˇ � N̨ ^ ˇ/ ^ ! D .dˇ � N̨ ^ ˇ C !1 ^ �/ ^ !;

so that
dˇ � N̨ ^ ˇ C !1 ^ � D � ^ !

for some other 1-form �.
We next take the derivative of

d˛ � i N!1 ^ ˇ � 2i!1 ^ Ň D � ^ !;

which modulo ! yields

0 D id N!1 ^ ˇ � i N!1 ^ dˇ C 2id!1 ^ Ň � 2i!1 ^ d Ň � � ^ d!

D i N!1 ^ . N̨ ^ ˇ � dˇ/C 2i!1 ^ .˛ ^ Ň � d Ň/ � i� ^ !1 ^ N!1

D �i N!1 ^ .!1 ^ �/ � 2i!1 ^ . N!1 ^ N�/ � i� ^ !1 ^ N!1

D 2i N!1 ^ !1 ^ N�:

It follows that we can write � D � 
2
C V!1 � NV N!1 C a!, and we have a complete

expression for �, and therefore, for

ˆ D d˛ � i N!1 ^ ˇ � 2i!1 ^ Ň D � ^ ! D �
 

2
^ ! C V!1 ^ ! � NV N!1 ^ !;

and the effect of the frame change

Q̌ D ˇ CE!;

Q D  CG! C i. NE!1 �E N!1/;

yields
QV D V �

3i

2
NE:
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We can thus choose ˇ uniquely requiring that V D 0 and now also have

(2.5) d˛ D i N!1 ^ ˇ C 2i!1 ^ Ň �
 

2
^ !:

Substituting (2.5) back into (2.3) yields

.d˛ � i N!1 ^ ˇ/ ^ !1 C .dˇ � N̨ ^ ˇ/ ^ ! D
�
dˇ � N̨ ^ ˇ C

 

2
^ !1

�
^ !;

so that

(2.6) dˇ � N̨ ^ ˇ C
 

2
^ !1 D � ^ !:

Taking the derivative of d' D i!1 ^ Ň � i N!1 ^ ˇC ! ^ and using (2.1) and (2.6),
we obtain �

d � ' ^  � 2iˇ ^ Ň C i!1 ^ N� � i N!1 ^ �
�
^ ! D 0:

We can therefore write

(2.7) ‰ D d � ' ^  � 2iˇ ^ Ň D i N!1 ^ � � i!1 ^ N� C % ^ !:

In the next (and last) step, we take the exterior derivative of (2.6), obtaining after
using (2.5), (2.6), (2.7), and (2.1), computing modulo !:

0 D �d N̨ ^ ˇ C N̨ ^ dˇ C
d 

2
^ !1 �

 

2
^ d!1 � d� ^ ! C � ^ d!

D �i!1 ^ Ň ^ ˇ � N̨ ^
 

2
^ !1 C

1

2
.' ^  C 2iˇ ^ Ň C i N!1 ^ �/ ^ !1

�
 

2
^ !1 ^ ˛ C � ^ .i!1 ^ N!1/

D �
3i

2
� ^ !1 ^ N!1 C

1

2
.' � ˛ � N̨ /„ ƒ‚ …

D0

^ ^ !1:

Since � is only defined modulo !, we can therefore write � D P!1 CQ N!1. It turns
out that the exterior differentiation of (2.5), using the expressions for dˇ and d already
obtained, implies that P D NP is real. Hence from (2.7) we have

‰ D i N!1 ^ � � i!1 ^ N� C % ^ ! D 2iP N!1 ^ !1 C % ^ !:

The last free parameter G in the frame change Q D  C G! transforms QP D P C G,
and we finally have an invariantly defined frame as we wanted by requiring P D 0. Note
that with this choice we have

(2.8) dˇ D N̨ ^ ˇ �
 

2
^ !1 CQ N!1 ^ !:

We can also differentiate the equation for ‰ above, and obtain from it that

� ^ !1 ^ N!1 D 0;

so that � is a linear combination R!1 C S N!1, which by reality of ‰ also implies S D NR.
Hence we can write

(2.9) d D ' ^  C 2iˇ ^ Ň C .R!1 C NR N!1/ ^ !:
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2.2. The canonical connection

Theorem 2.1 has a neat description in terms of a canonical connection for Y , which we
recall again using the notation of [5]. One sets

h D

0B@ 0 0 �i=2

0 1 0

i=2 0 0

1CA and � D

0B@�.2˛ C N̨ /=3 !1 2!

�i Ň .˛ � N̨ /=3 2i N!1

� =4 ˇ=2 .2 N̨ C ˛/=3

1CA ;
so that �h C h�� D 0 and Tr � D 0; in other words, � is su.2; 1/-valued (with the
hermitian form given by h). It turns out that the equations of Theorem 2.1 are equivalent to

d� � � ^ � D

0B@ 0 0 0

�iQ N!1 ^ ! 0 0

�
1
4
.R!1 C NR N!1/ ^ ! 1

2
NQ!1 ^ ! 0

1CA :
2.3. The Chern–Moser normal form and chains

It is well known that the group of germs of biholomorphisms G D Aut.H2; 0/ of the
Heisenberg hypersurface H2 � C2

z2;z1
(defined by Re z1 D jz2j2) fixing the origin are

explicitly given by

(2.10)
H.z1; z2/ D .g.z1; z2/; f .z1; z2//

D

�
j�j2 z1

1C 2 Naz2 C .jaj2 C i t/z1
, �.z2 C az1/

1C 2 Naz2 C .jaj2 C i t/z1

�
:

They are therefore uniquely determined by the derivatives .fz2.0/; fz1.0/; Im gz21
.0// 2

C� �C �R. Using this, we identify G with C� �C �R.
Next, we recall the celebrated Chern–Moser theorem [5]. If we consider a germ of a

strictly pseudoconvex real-analytic hypersurface .M; p/ � .C2; p/, then after an affine
change of coordinates, p D 0 and M is given near p by an equation of the form

Re z1 D jz2j2 C '.z2; Nz2; Im z1/ D jz2j
2
C

X
˛; Ň

'˛; Ň .Im z1/ z2
˛
Nz
Ň

2 :

The Chern–Moser normal form imposes conditions on the '˛; Ň which make this coordi-
nate choice unique up to a parameter ƒ 2 G in the isotropy group of H2:

Theorem 2.3 (Chern–Moser [5], n D 2). Let .M; p/ be a real-analytic hypersurface.
Then there exists a holomorphic choice of holomorphic coordinates .z;w/ in which p D 0
and the equation of M satisfies the normalization conditions

'˛; Ň .Im z1/ D 0; if min.˛; Ň/ � 1 or .˛; ˇ/ 2 ¹.1; 1/; .2; 2/; .3; 3/; .2; 3/; .3; 2/º:

Any other choice . Qz; Qw/ of holomorphic coordinates in which the defining equation of M
takes this form is given by . Qz; Qw/ D Hƒ.z; w/ for some ƒ 2 G, with Hƒ uniquely deter-
mined by the requirement that it agrees with the map in (2.10) up to order two.
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The lowest order term in the defining equation ' of M in normal coordinates which
is not necessarily vanishing is therefore of the form Ap z

2
2 Nz

4
2 C

NAp z
4
2 Nz

2
2 . The number A

transforms nicely under changes of normal coordinates, and is called Cartan’s cubic ten-
sor. It already appears in Cartan’s early work [3, 4], and it being 0 is a biholomorphic
invariant; points where Ap D 0 are called umbilical points. For ease of notation later on,
we always normalize Ap to be real. Vanishing of Ap on an open subset is equivalent to
local sphericity:

Theorem 2.4 (Cartan’s umbilical tensor [3, 4]). Let .M; p/ � C2 be a germ of a smooth
strictly pseudoconvex hypersurface. If Aq D 0 for q in a neighborhood of p inM , thenM
is near p CR-equivalent to H2.

The theorem actually hods true for a C6 hypersurface, for which we can still define
the cubic tensor, and can even (due to recent not yet published work of Kossovskiy) be
formulated in lower regularity.

The quantity Ap can be thought of as a form of intrinsic curvature, and in a similar
vein, Chern and Moser used their normal form to introduce the notion of chains as replace-
ments for geodesics in Riemannian geometry. For each ƒ D .�; a; t/ 2 G, we obtain a
parametrized curve (defined for jsj small enough)

.s/ D Hƒ.is; 0/:

If one disregards the parametrization of  , then it turns out that the condition '2; N3 D
'3; N2 D 0 is a second order ODE whose solution is unique given a (which one thinks of
as a vector transverse to the complex tangent space T c0M ). The rest of the data in ƒ geo-
metrically correspond to a choice of frame of T c0M and a choice of parametrization of 
amongst a family of projectively equivalent ones. The second order differential equations
for chains are not easy to compute from a defining equation of M . For boundaries of
strictly pseudoconvex domains, the best way to get a computational handle on chains for
our problem turned out to be their interpretation as projections of light rays of an associ-
ated Lorentz metric introduced by Fefferman [7] which we discuss in the next section.

2.4. Chains and the Fefferman Hamiltonian

We will now recall the Fefferman metric for a strictly pseudoconvex hypersurface M D
¹� D 0º � C2. We write zj D xj C iyj , j D 1; 2, and we assume that .y1; x2; y2/ are
local coordinates on M near the origin, which we assume to be defined by

�.x1; y1; x2; y2/ D x1 � .x
2
2 C y

2
2/ � '.y1; x2; y2/;

where ' vanishes to order at least 3.
The constructive appeal of Fefferman’s metric is based on the fact that for the complex

Monge–Ampère operator

J.�/ D det

0@ � � Nz1 � Nz2
�z1 �z1 Nz1 �z1 Nz2
�z2 �z2 Nz1 �z2 Nz2

1A ;
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one can construct approximate solutions �.k/ to the equation J.�.k// D 1CO.�kC1/ in
an iterative way, in this particular case by

�.1/ D
�

3
p
J.�/

and �.2/ D �.1/
�5 � J.�.1//

4

�
:

The Fefferman metric is defined on a circle bundle overM . We denote by .x0; y1; x2; y2/
the coordinates on S1 �M . The conjugate momenta will be denoted by px0 , py1 , px2
and py2 . There is a lot of flexibility in which metric is actually used, because the light rays
of conformally equivalent Lorentz metrics are the same. The one defined in [7] is

ds2 D �
i

3

�
@�.2/ � N@�.2/

�
dx0 C

2X
j;kD1

@2�.2/

@zj Nzk
dzj d Nzk :

Setting
ˆ D J.�/;

A D

0@ 0 i� Nz1 i� Nz2
�i�z1 3�z1 Nz1 3�z1 Nz2
�i�z2 3�z2 Nz1 3�z2 Nz2

1A ;
P D .px0 ; ipy1 ; px2 C ipy2/;

@ˆ D .0;ˆ Nz1 ; ˆz2/;

Q̂ D

�
3 ĵ k �

5

ˆ
ĵˆk

�
j;k
;

the Hamiltonian of Fefferman’s metric is now given by

(2.11) H D PA�1P � �
2px0
ˆ

Im.@ˆ � A�1 � P �/ �
p2x0
2ˆ

Tr
�
Q̂ A�1

�
;

where Tr. Q̂ A�1/ stands for the trace of the matrix Q̂ A�1. Note that the formula of the
Hamiltonian in p. 410 of [7] contains a minor sign mistake, see [8]. Now, writing x D
.x0; y1; x2; y2/, and p D .px0 ; py1 ; px2 ; py2/, chains are the projections on M of the
solutions of the Hamiltonian system

(2.12) H.x; p/ D 0; x0 D Hp.x; p/; p0 D �Hx.x; p/:

We are now ready to discuss a basic example.

Example 2.5. In the case of the sphere 2Re z1 D jz2j2,

A�1 D

0@ 0 i 0

�i �jz2j
2=3 �z2=3

0 �Nz2=3 �1=3

1A :
For convenience, and since light rays for H or 3H are the same, we consider

A�1 D

0@ 0 3i 0

�3i �jz2j
2 �z2

0 �Nz2 �1

1A :
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In that case, the Fefferman Hamiltonian is given by

(2.13) H D PA�1P � D 6px0py1 � jz2j
2p2y1 C 2y2py1px2 � 2x2py1py2 � p

2
x2
� p2y2 :

Now, we seek solution curves .x0.t/; y1.t/; x2.t/; y2.t/; px0.t/; py1.t/; px2.t/; py2.t// to
the Hamiltonian system (2.12), which written out is given by8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

0 D 6px0py1 � jz2j
2p2y1 C 2y2py1px2 � 2x2py1py2 � p

2
x2
� p2y2 ;

x00 D 6py1 ;

y01 D 6px0 � 2jz2j
2py1 C 2y2px2 � 2x2py2 ;

x02 D 2y2py1 � 2px2 ;

y02 D �2x2py1 � 2py2 ;

p0x0 D 0;

p0y1 D 0;

p0x2 D 2x2p
2
y1
C 2py1py2 ;

p0y2 D 2y2p
2
y1
� 2py1px2 :

To solve this system, note that we have py1 D c=4 for some c, so that we get x002 D cy
0
2

and y002 D �cx
0
2, and therefore z2 D c1e

�ict C c2 for some c1; c2 2 C. It remains to
determine y1. Next we note that the quantity y2px2 � x2py2 is conserved, and solving
one sees that the chains are the curves of the form

z1.t/ D
1

2
j c1e

�ict
C c2j

2
C i . Qc1t C Qc2 cos.ct/C Qc3 sin.ct/C Qc4/;

z2.t/ D c1 e
�ict
C c2;

where Qcj 2 R and cj 2 C.

We will now assign weights to all variables in the following way. The usual anisotropic
scaling on C2,

ƒı W .z1; z2/ 7! .ız1; ı
2z2/; ı > 0;

lifts to the cotangent bundle as

Qƒı W .z1; z2; pz1 ; pz2/ 7! .ız1; ı
2z2; ı

�1pz1 ; ı
�2pz2/:

This leads to assign the respective natural weights 1, 2, �1, �2 and �2 to the variables z1,
z2, py1 , px2 and py2 . The variables x0 and px0 both carry a weight 0. However, with this
convention, the Hamiltonian for the sphere (2.13) is homogeneous of degree �2. It will be
more convenient for us if the Hamiltonian (2.13) is homogeneous of degree 2, and so we
shift the weights of the momenta by 2. To summarize, we assign the following weights:

(2.14)
wt x0 D 0; wty1 D 2; wt x2 D wty2 D wt z2 D 1;
wtpx0 D 2; wtpy1 D 0; wtpx2 D wtpy2 D 1:
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2.5. Stationary discs

We recall that a holomorphic disc f D .g; h/, with g; h 2 O.�/ \ C.�/ is said to be
attached to M if f .b�/ � M . We recall that the complex tangent space of M at p is
given by

T cpM D TpM \ iTpM;

and denote the conormal bundle of M by NM � T �M , defined by

NpM D
®
�p 2 T

�
pM W �p.Xp/ D 0; Xp 2 T

c
pM

¯
:

An attached disc f D .g; h/ is said to be stationary if it has a lift .f; Qf / attached to NM

which is holomorphic up to a pole of order at most 1 in �. If M D @� is the boundary
of a strictly pseudoconvex domain, stationarity is related to the Euler–Lagrange equations
for extremal discs for the Kobayashi metric.

In terms of equations, we can use the fact that NpM is spanned by

%z D
� @�
@z1

, @�
@z2

�
to express the fact that f is stationary in the following form: f is stationary if and only
if there exists a real-valued positive function a on b� such that the map Qf D . Qg; Qh/

defined by

(2.15) Qg.�/ D �a.�/
@�

@z1

�
f .�/; f .�/

�
and Qh.�/ D �a.�/

@�

@z2

�
f .�/; f .�/

�
;

for � 2 b�, extends holomorphically to�. To deal with this extension property, we will use
the well-known fact (see [1] for a proof) that a continuous function ' W b�! C defined
on the smooth boundary of a simply connected domain � extends holomorphically to �
if and only if it satisfies the moment conditions

(2.16)
Z
b�

�m'.�/ d� D 0 for all m � 0:

It turns out that if M is strictly pseudoconvex, then its conormal bundle is actually
totally real [17], and so the attachment of stationary discs turns into a standard Riemann-
Hilbert problem [9–11,14]. In the case of the model hypersurface 2Rez1D jz2j2, a typical
stationary disc f passing through 0 at 1 (i.e. f .1/ D 0) is f .�/ D .1 � �; 1 � �/ and its
lifts are given by .1 � �; 1 � �; a�; a.� � 1//; a 2 R.

The boundary traces of stationary discs are preserved under (local) CR diffeomor-
phisms in the following sense. In the case of a strictly pseudoconvex hypersurface M ,
every CR function on M extends to the pseudoconvex side of M . Since the components
of a CR map H are CR functions, the map actually extends as a holomorphic map to the
pseudoconvex side ofM . Therefore, for a small enough stationary disc attached toM , the
discH ı f is attached toH.M/ and is stationary (this is obvious from the characterization
as lifts, or one can use the defining equation Q� D � ıH�1 in (2.15)).
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3. The Fefferman Hamiltonian in normal form

3.1. The model case

Consider a strictly pseudoconvex hypersurface of the form

M D ¹2Re z1 D Q.z2; z2/º � C2:

Such hypersurfaces (whose defining equations do not depend on Im z1) are called rigid;
the 1-parameter group of transformations z1 7! z1C i t , t 2 R, yields a cyclic variable for
the Hamiltonian (2.11).

As before, we write zj D xj C iyj , j D 1; 2 and use .x0; y1; x2; y2/ as variables on
S1 �M . We also write z0 D ei� and x0 D � . We now consider the defining equation

� D 2Re z1 �Q.z2; z2/:

We have

ˆ D det

0@ � 1 �Q Nz2
1 0 0

�Qz2 0 �Qz2 Nz2

1A D Qz2 Nz2
and

A�1 D

0@ 0 i �iQ Nz2
�i 0 0

iQz2 0 �3Qz2 Nz2

1A�1 D
0BB@
0 i 0

�i �
jQ Nz2 j

2

3Qz2 Nz2
�

Q Nz2
3Qz2 Nz2

0 �
Qz2
3Qz2 Nz2

�
1

3Qz2 Nz2

1CCA :
Moreover, following (2.11), we haveX

l�1;k�0

ˆ Nzl A
lk.pxk � ipyk / D

X
k�0

ˆ Nz2A
2k.pxk � ipyk /;

and since Q is independent of z1, we also have

Q̂ A�1 D

0B@ 0 0 0

0 .nC1/
ˆ

ˆz1 Nz1 �
2nC1
ˆ2

ˆz1ˆ Nz1
.nC1/
ˆ

ˆz1 Nz2 �
2nC1
ˆ2

ˆz1ˆ Nz2

0 .nC1/
ˆ

ˆz2 Nz1 �
2nC1
ˆ2

ˆz2ˆ Nz1
.nC1/
ˆ

ˆz2 Nz2 �
2nC1
ˆ2

ˆz2ˆ Nz2

1CA
D

0@ 0 0 0

0 0 0

0 0 3
ˆ
ˆz2 Nz2 �

5
ˆ2
ˆz2ˆ Nz2

1A :
Thus the Fefferman Hamiltonian is computed to be

(3.1)

H D PA�1P � �
2

3

px0
.Qz2 Nz2/

2
Im
�
Qz2 Nz22

.iQz2py1�px2Cipy2/
�

C
p2x0

6.Qz2 Nz2/
2

�
3Qz22 Nz

2
2
� 5

Qz22 Nz2
Qz2 Nz22

Qz2 Nz2

�
:
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Using the notations

pz2 D px2 C ipy2 and p Nz2 D pz2 D px2 � ipy2 ;

the expression involving A in (3.1) is explicitly given by

PA�1P � D .px0 ; ipy1 ; pz2/

0BB@
0 i 0

�i �
jQ Nz2 j

2

3Qz2 Nz2
�

Q Nz2
3Qz2 Nz2

0 �
Qz2
3Qz2 Nz2

�
1

3Qz2 Nz2

1CCA
0@ px0
�ipy1
p Nz2

1A
D 2px0py1 �

jQ Nz2 j
2

3Qz2 Nz2
p2y1 C i

Qz2
3Qz2 Nz2

py1pz2 � i
Q Nz2
3Qz2 Nz2

py1p Nz2 �
1

3Qz2 Nz2
jpz2 j

2:

Adding the rest of the Hamiltonian, we get

H D
�1
2

Qz22 Nz
2
2

Q2
z2 Nz2

�
5

6

Qz22 Nz2
Qz2 Nz22

Q3
z2 Nz2

�
p2x0 C

�
2 �

Qz2 Nz22
Qz2 CQz22 Nz2

Q Nz2

3Q2
z2 Nz2

�
px0py1

C i
Qz22 Nz2

3Q2
z2 Nz2

px0pz2 � i
Qz2 Nz22
3Q2

z2 Nz2

px0p Nz2 �
jQ Nz2 j

2

3Qz2 Nz2
p2y1 C i

Qz2
3Qz2 Nz2

py1pz2

� i
Q Nz2
3Qz2 Nz2

py1p Nz2 �
1

3Qz2 Nz2
jpz2 j

2

D P

0BBBBB@
1
2

Q
z22 Nz

2
2

Q2z2 Nz2

�
5
6

Q
z22 Nz2

Q
z2 Nz

2
2

Q3z2 Nz2

i
�
1 �

Q
z2 Nz

2
2
Qz2

3Q2z2 Nz2

�
�i

Q
z2 Nz

2
2

3Q2z2 Nz2

�i
�
1 �

Q
z22 Nz2

Q Nz2

3Q2z2 Nz2

�
�
jQ Nz2 j

2

3Qz2 Nz2
�

Q Nz2
3Qz2 Nz2

i
Q
z22 Nz2

3Q2z2 Nz2

�
Qz2
3Qz2 Nz2

�
1

3Qz2 Nz2

1CCCCCAP �:
As a particular case, we consider

Q.z2; Nz2/ D jz2j
2
C az22 z

4
2 C az

4
2 z

2
2 D jzj

2
C 2a jz2j

4 Re z22 ;

where we assume that a 2 R from now on. We can explicitly compute that

H D �
2

3d2
2px0py1

�
8az2 Nz2 .5az

5
2 Nz2 C 14az

3
2 Nz

3
2 C 5az2 Nz

5
2 C 2 Nz

2
2 C 2z

2
2/ � 3d

2
�

�
4ia

d3
px0

�
z2 .3 Nz

2
2 C z

2
2/p Nz2 � . Nz

3
2 C 3z

2
2 Nz2/pz2

�
�
1

3d
jz2py1 .2az2 Nz2 .2 Nz

2
2 C z

2
2/C 1/ � ipz2 j

2

�
4a

3d3
p2x0

�
40az2 Nz2 .10z

2
2 Nz

2
2 C 3 Nz

4
2 C 3z

4
2/ � 9d . Nz

2
2 C z

2
2/
�
;

where
d D Qz2 Nz2 D 8az

3
2 Nz2 C 8az2 Nz

3
2 C 1:



F. Bertrand, G. Della Sala and B. Lamel 14

If we truncate this expression at order 6, discarding terms which are quadratic or higher
order in a, we obtain

H0 D 24a.Re z22/p
2
x0
C

�
2 �

64a

3

�
jz2j

2 Re z22
� �
px0py1C

ia

3

�
24z22 Nz2 C 8 Nz

3
2

�
px0pz2

�
ia

3

�
8z32 C 24z2 Nz

2
2

�
px0p Nz2 C

1

3

�
�jz2j

2
C 4a jz2j

4 Re z22
�
p2y1

C
i

3

�
Nz2 � az2 .4 jz2j

4
C 6 Nz42/

�
py1pz2 �

i

3

�
z2 � az2 .4 jz2j

4
C 6z42/

�
py1p Nz2

�
1

3

�
1 � 16a jz2j

2 Re z22
�
jpz2 j

2:

We are going to use this as our model Hamiltonian. The system of ODEs associated toH0
can now be obtained as in Example 2.5, with the only difference that

z02 D 2
@H0

@p Nz2
, Nz02 D 2

@H0

@pz2
, p0z2 D �2

@H0

@ Nz2
and p0Nz2 D �2

@H0

@z2
,

as follows:

(3.2)

0 D H0.z2.t/; px0.t/; py1.t/; pz2.t//;

x00 D 48a .Re z2/ px0 C
�
2 �

64a

3

�
jz2j

2 Re z2
� �
py1

C
ia

3
.24z22 Nz2 C 8 Nz

3
2/pz2 �

ia

3
.8z32 C 24z2 Nz

2
2/p Nz2 ;

y01 D
�
2 �

64a

3
.jz2j

2 Re z22/
�
px0 C

2

3

�
�jz2j

2
C 2a jz2j

4 Re z22
�
py1

C
i

3

�
Nz2 � az2 .4 jz2j

4
C 6 Nz42/

�
pz2 �

i

3

�
z2 C a Nz2 .4 jz2j

4
C 6z42/

�
p Nz2 ;

z02 D �
16ia

3

�
z32 C 3 jz2j

2
Nz2
�
px0 �

2i

3

�
z2 � a jzj

2 .6z32 � 4z2 Nz
2
2/
�
py1

�
2

3

�
1 � 16a jz2j

2 Re z22
�
pz2 ;

p0x0 D 0;

p0y1 D 0;

p0z2 D �48a Nz2p
2
x0
C
64a

3

�
z32 C 3z2 Nz

2
2

�
px0py1 �

96ai

3
.Re z22/px0pz2

C
96ai

3
jz2j

2px0p Nz2 C
2

3

�
z2 � 4a jz2j

2 .z32 C 2z2 Nz
2
2/
�
p2y1

C
i

3
.�2C 16a jz2j

2 .z22 C 3 Nz
2
2//py1pz2 �

12ai

3
.z42 C 2z

2
2 Nz

2
2/py1p Nz2

�
16a

3
.z32 C 3z2 Nz

2
2/ jpz2 j

2:
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3.2. The general case: weighted Taylor expansion of the Fefferman Hamiltonian

Consider a strictly pseudoconvex hypersurface M � C2, locally written in Chern–Moser
normal form as � D 0, with

� D 2Re z1 � .jz2j2 C 2ajz2j4 Re z22 C .Im z1/ � �.Im z1; z2; Nz2/C ı.z2; Nz2//;

where a 2 R, and � and ı are functions of weighted orders O.6/ and O.7/ respectively.
In the following, we give weighted degrees to all the monomials in the variables x0; y1; z2
and the conjugate momenta px0 ; py1 ; pz2 according to the weight assignments (2.14).

Lemma 3.1. Let H and H0 be the Fefferman Hamiltonians associated respectively to �
and �0 D 2Re z1 � .jz2j2 C az22 Nz

4
2 C az

4
2 Nz

2
2/. We then have

H D H0 CO.7/:

Proof. We denote by Qk a generic homogeneous polynomial of weighted order k. We
emphasize that, in the below, the polynomials Qk are not necessarily the same. More-
over, throughout the computations, each Qk , k � 6, comes directly from differentiating
or multiplying terms in �0. We then write

� D �0 CO.7/ D 2Re z1 � jz2j2 � 2a jz2j4 Re z22 CO.7/:

The expression of the Hamiltonian H associated to � is given by (2.11). Since all terms
in H involve the matrix A�1, we first focus on computing the order in its entries. Com-
puting explicitly the inverse of A, we get

A�1 D

0@ 0 i� Nz1 i� Nz2
�i�z1 3�z1 Nz1 3�z1 Nz2
�i�z2 3�z2 Nz1 3�z2 Nz2

1A�1

D
3

detA

0@3.�z1 Nz1�z2 Nz2��z1 Nz2�z2 Nz1/ �i.� Nz1�z2 Nz2�� Nz2�z1 Nz2/ i.� Nz1�z1 Nz2�� Nz2�z1 Nz1/i.�z1�z2 Nz2 � �z2�z1 Nz2/ �z2� Nz2=3 ��z2� Nz1=3

�i.�z1�z2 Nz1 � �z2�z1 Nz1/ ��z1� Nz2=3 �z1� Nz1=3

1A:
A careful bookkeeping of the weighted order of the entries of the matrix above, as well

as the tracking of the contribution of �0 alone, lead to

(3.3) A�1 D
3

detA

0@ O.4/ Q0 CQ4 CO.5/ O.5/

Q0 CQ4 CO.5/ Q2 CQ6 CO.7/ Q1 CQ5 CO.6/

O.5/ Q1 CQ5 CO.6/ Q0 CO.6/

1A :
Moreover, we have

1

detA
D

1

3�z2 Nz2 CO.5/
D �

1

3
CQ4 CO.5/:

We can now investigate the first term PA�1P � in the Hamiltonian H . It follows
from (3.3) and the order of the components of P D .px0 ; ipy1 ; px2 C ipy2/ (see (2.14))
that

PA�1P � D Q2 CQ6 CO.7/:

We now consider the term
2px0
ˆ

Im.@ˆ � A�1 � P �/:
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By a very similar computation, we obtain

@ˆ D .0;ˆ Nz1 ; ˆz2/ D .0;O.4/;Q3 CO.4//;

and thus
2px0
ˆ

Im.@ˆ � A�1 � P �/ D Q6 CO.7/:

Finally, we also have
p2x0
2ˆ

Tr. Q̂ A�1/ D Q6 CO.7/:

This proves the lemma.

4. Proof of the main theorem

Let us reformulate our main theorem in the way we will prove it.

Theorem 4.1. Let M � .C2; 0/ be a strictly pseudoconvex hypersurface of class C12

with local defining equation of the form

� D 2Re z1 �
�
jz2j

2
C 2a jz2j

4 Re z22 C .Im z1/ � �.Im z1; z2; Nz2/C ı.z2; Nz2/
�
;

where � and ı are of weighted order O.6/ and O.7/, respectively. If every chain for M
for a family of starting conditions as in Lemma 4.2 is the boundary of a stationary disc,
then a D 0.

In order to prove Theorem 4.1, we compute an asymptotic expansion of a family of
chains which would come from circles in the case of the sphere, and find that the moment
conditions for the members of the family yield an obstruction to umbilicity in the fourth
order term of that expansion. The details are as follows.

4.1. Computations of the orbits

We will use a special family of solutions of the Hamiltonian system associated to �
depending on a small real parameter s > 0. This will be achieved by making a suitable
choice of initial conditions imposed in order to reproduce the circular orbits in the case of
the sphere ¹2Re z1 D jz2j2º.

Lemma 4.2. Let x0. � ; 0/, ',  and � be four functions in s of class C7. Then there exists
a family of initial conditions of the form

(4.1)

y1.s; 0/ D s
2'.s/;

z2.s; 0/ D s C s
5 .s/;

px0.s; 0/ D �
1

2
s2 C s6�.s/;

py1.s; 0/ D �
3

4
,

pz2.s; 0/ D �
3i

4
s C s5 �.s/;
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for some function � of class C7, such that

(4.2) H.x0.s; 0/; y1.s; 0/; z2.s; 0/; px0.s; 0/; py1.s; 0/; pz2.s; 0// D 0;

where H is the Fefferman Hamiltonian associated to �.

Proof. Substituting the initial conditions (4.1) into the formula of the Hamiltonian and
using Lemma 3.1, we get

.24as2 CO.s6//
�1
4
s4 � s8�C s12�2

�
C

�
2 �

64

3
as4 CO.s8/

� �3
8
s2 �

3

4
s6�

�
C .16as4 CO.s8//

�
�
1

2
s2 C s6�

�
C

3

16
.�s2 CO.s6// �

3

8
.s2 CO.s6// �

3

16
s2 CO.s6/ D 0;

where the O.�/ terms in the expression above may depend on s, ˛, x0. � ; 0/, ',  and �,
but not on �. Developing the products explicitly, we note that the s2 terms (coming only
from the spherical part of the Hamiltonian) simplify, while the next lowest order terms
are O.s6/, giving the following:

s6
��
�
3

2
CO.s/

�
�CO.s6/�2 CO.1/

�
D 0;

where once again the O.�/ terms do not depend on �. Applying the implicit function the-
orem to the expression inside the parenthesis, we conclude that for any choice of x0. � ; 0/,
',  , and �, there exists locally a unique function �.s/ of class C7 such that equation (4.2)
is satisfied.

This choice of initial conditions then provides the following family of solutions of the
Hamiltonian system associated to �:

(4.3)

x0.s; t/ D x
0
0.t/C � � � ;

y1.s; t/ D s
2y21.t/C � � � ;

z2.s; t/ D s z
1
2.t/C s

2 z22.t/C � � � ;

px0.s; t/ D �
1

2
s2 C s6�.s/C � � � ;

py1.s; t/ D �
3

4
C � � � ;

pz2.s; t/ D sp
1
z2
.t/C s2p2z2.t/C � � � :

Remark 4.3. For our later computations, the most important components of the solutions
are y1.s; t/ and z2.s; t/. Due to the expression of the defining function, the terms involving
y1.s; t/ appear to high order, and for this reason, it is enough to know that y1.s; t/ is of
order O.s2/. As for z2.s; t/, we need to know more precisely its asymptotic behavior,
beyond the fact that its order is O.s/.
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Lemma 4.4. We have

z2.s; t/ D s e
it
�
4

3
s5a e3it CO.s6/:

Proof. According to Lemma 3.1, solving the Hamiltonian system associated to � up to
order s5 is equivalent to solving the system (3.2). We will proceed iteratively by expanding
in powers of s. The terms of order s in the equations for z02 and p0z2 give the system

z12
0
.t/ D

i

2
z12.t/ �

2

3
p1z2.t/;

p1z2
0
.t/ D

3

8
z12.t/C

i

2
p1z2.t/:

Using the initial conditions z12.0/ D 1 and p1z2.0/ D �3i=4, we get z12.t/ D eit and
p1z2.t/ D �3ie

it=4. Now, the terms in s2 lead to

z22
0
.t/ D

i

2
z22.t/ �

2

3
p2z2.t/;

p2z2
0
.t/ D

3

8
z22.t/C

i

2
p2z2.t/:

If p1y1 D 0; z
2
2.0/ D 0 and p2z2.0/, then z22.t/ � 0 and p2z2.t/ � 0. Similarly, we get that

z
j
2 .t/� 0 and pjz2.t/� 0 for j D 3; 4. Finally, computing the terms of order s5, we obtain

z52
0
.t/ D

i

2
z52.t/ �

2

3
p5z2.t/ �

13i

3
ae3it C 2i ae�it ;

p5z2
0
.t/ D

3

8
z52.t/C

i

2
p5z2.t/C

17

4
ae3it C

9

2
ae�it :

A particular solution is given by

z52.s; t/ D �
4

3
ae3it and p5z2.s; t/ D �

3i

2
ae3it C 3i ae�it :

This concludes the proof of the lemma.

4.2. Enforcing stationarity

We consider the y1.s; t/ and z2.s; t/ components of the family of solutions (4.3) of the
Hamiltonian system associated to �. Assume that there exists a family of stationary discs
fs D .gs; hs/ such that fs.b�/ coincides with the image of the chain .z1.s; �/; z2.s; �//,
where the real part of z1.s; �/ is determined by �. In particular, note this implies that
the chain .z1.s; �/; z2.s; �// is periodic. We denote by Ts its period. We may assume
that the projection on the second coordinate �2W fs.�/! Cz2 is injective and that 0 2
�2.fs.�// D hs.�/. Then we can take as hs the unique Riemann map �! hs.�/ such
that hs.0/ D 0 and h0s.0/ > 0.
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By definition, fs D .gs; hs/ is stationary if and only if there exists a continuous func-
tion as W b�! RC and functions Qgs; Qhs 2 O.�/ \ C.�/ satisfying

(4.4)
Qgs.�/ D � as.�/

@�

@z1

�
gs.�/; hs.�/; gs.�/; hs.�/

�
;

Qhs.�/ D � as.�/
@�

@z2

�
gs.�/; hs.�/; gs.�/; hs.�/

�
;

for all � 2 b�. Define now

�s WD hs.�/ � C and Ss WD b�s :

We also write h�1s .z/ D ze's.z/ for a certain holomorphic function 's.z/. Evaluating
Equations (4.4) for � D h�1s .z/, we obtain

Qgs.h
�1
s .z// D z e

's.z/as.h
�1
s .z//

@�

@z1

�
gs.h

�1
s .z//; z; gs.h

�1
s .z//; z

�
;

Qhs.h
�1
s .z// D z e

's.z/as.h
�1
s .z//

@�

@z2

�
gs.h

�1
s .z//; z; gs.h

�1
s .z//; z

�
;

for all z 2 Ss . We then set

bs.z/ WDas.h
�1
s .z//; Gs.z/ WDe

�'s.z/ Qgs.h
�1
s .z// and Hs.z/ WDe

�'s.z/ Qhs.h
�1
s .z//:

Furthermore, if we write each disc fs.�/ as a graph ¹z1 D ws.z/º over its projection �s ,
we have ws.z/ D gs.h�1s .z//. Thus we can rewrite the previous system as

(4.5)
Gs.z/ D z bs.z/

@�

@z1

�
ws.z/; z; ws.z/; z

�
;

Hs.z/ D z bs.z/
@�

@z2

�
ws.z/; z; ws.z/; z

�
;

for z 2 Ss . In order to apply the moment conditions (2.16) to the functions Gs and Hs ,
we need to find an adapted parametrization of the curve Ss . We first consider the scal-
ing ƒs WC ! C defined by ƒs.z/ D z=s and define z�s WD ƒs.�s/ and zSs WD ƒs.Ss/.
Note that, with this change of variables, the moment conditions (2.16) applied to Gs.z/
and Hs.z/ become

(4.6)
Z
zSs

zmGs.sz/ dz D

Z
zSs

zmHs.sz/ dz D 0;

for allm � 0:We may now set an adapted parametrization of zSs . Since the image fs.b�/
coincides with the image of the chain .z1.s; �/; z2.s; �//, we consider the parametrization
of zSs given by

(4.7) Œ0; Ts� 3 t 7! yz2.s; t/ WD
z2.s; t/

s
2 zSs :

According to Lemma 4.4, we can write yz2.s; t/ D r.s; t/eit , with

r.s; t/ D 1C k.t/s4 CO.s5/; where k.t/ D �
4

3
ae2it :
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Note that r.s; t/ is not necessarily real valued. Moreover, due to standards results on ODEs
(see, for instance, Theorem 4.1 in [12]), the parametrization yz2.s; t/ is of class C7 in both
variables. A straightforward computation leads to the following useful lemma.

Lemma 4.5. For j � 1,

r.s; t/j D 1C jk.t/s4 CO.s5/;

r.s; t/j r.s; t/ D 1C .jk.t/C k.t//s4 CO.s5/;

@r

@t
.s; t/ D

dk

dt
.t/ s4 CO.s5/:

Moreover, in order to apply Fourier analysis later on, we need to understand the behav-
ior of the period Ts of yz2.s; �/ as s ! 0.

Lemma 4.6. The function Œ0; "� 3 s 7! Ts 2 R is of class C7. Furthermore, we have

Ts D 2� CO.s
5/:

Proof. The function .s; t/ 7! yz2.s; t/ of class C7 and, as s ! 0, converges uniformly to
t 7! eit on any fixed neighborhood of Œ0; 2��. Since, by assumption, yz2.s; t/ parametrizes
a simple closed curve on Œ0; Ts�, the period Ts tends to 2� as s ! 0.

By the C k smoothness of yz2.s; t/, we have jyz02.s; t/j ! jyz
0
2.0; t/j D 1 uniformly as

s! 0. Then the period Ts must satisfy
R Ts
0
jyz02.s; t/jdt D length. zSs/! 2� as s! 0. This

is only possible if Ts ! 2� as s ! 0, since any sequence sn ! 0 such that jTsn � 2�j >
" > 0 would lead to a contradiction by taking the limit as n!1.

To prove the smoothness of Ts , we will use the fact that the function  appearing
in Lemma 4.2 is real-valued (since a 2 R), which implies Im yz2.s; 0/ D 0 for s 2 Œ0; "�.
Consider the function �.s; t/ WD Im yz2.s; t/. At s D 0 and t D 2� , we have

�.0; 2�/ D Im yz2.0; 2�/ D 0 and
@�

@t
.0; 2�/ D Im

@

@t
.yz2.0; 2�// D 1:

By the implicit function theorem, there exists a function �W Œ0; "�!R, of the same smooth-
ness as �, such that �.0/ D 2� and �.s; �.s// D 0. We claim that Ts D �.s/. Indeed, by
the implicit function theorem, t D �.s/ represent the unique time in a neighborhood of
t D 2� at which the curve yz2.s; t/ crosses the line Im z D 0. Since the period of yz2.s; �/
approaches 2� as s! 0, and Im yz2.s; 0/ D 0, we necessarily have yz2.s; �.s// D yz2.s; 0/,
which means that Ts D �.s/ is of class C7 near s D 0.

We now turn to the asymptotic expression of Ts . By Lemma 4.4,

yz2.s; t/ D e
it
�
4

3
s4ae3it CO.s5/;

so yz2.s; t/ can be seen as a small perturbation of the unit circle parametrized by t 7! eit .
Denoting the velocity vector of yz2 by yz02 D @yz2=@t , we have

yz02.s; t/ D ie
it
CO.s4/:
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On the one hand, from the expression of yz2.s; t/, we have

yz2.s; 2�/ D yz2.s; 0/CO.s
5/:

On the other hand, we can write

yz2.s; 2�/ D yz2.s; Ts/C

Z 2�

Ts

yz02.s; t/ dt

and since yz2.s; Ts/ D yz2.s; 0/, putting together the expressions above we get

O.s5/ D

Z 2�

Ts

yz02.s; t/dt D

Z 2�

Ts

.ieit CO.s4// dt:

For s small enough, we may suppose that jieit CO.s4/j � 1=2, and moreover, that

j arg.ieit CO.s4// � �=2j < �=4

for t 2 ŒTs; 2��, due to the fact that Ts is close to 2� . It follows that

Im.ieit CO.s4// �

p
2

4

for t 2 ŒTs; 2��, and thus

O.s5/ D

Z 2�

Ts

Im.ieit CO.s4// dt �

p
2

4
jTs � 2�j;

so that jTs � 2�j D O.s5/.

In view of equation (4.6), we now define

c.s; t/ WD bs.s yz2.s; t// D as.h
�1
s .s yz2.s; t// D as.h

�1
s .z2.s; t//:

Lemma 4.7. There is a choice of as such that the function c.s; t/ is of class C4 in a
neighborhood of ¹0º � Œ0; 2�� and satisfies

R 2�
0
c.s; t/dt D 1 for all s > 0 small enough.

The proof is an adaptation of both proofs of Lemma 3.3 and Lemma 3.4 in [1]. The
main differences come from the facts that, in the present paper, the parametrization inter-
vals depend on s, and the first component of the discs we consider is not constant.

Proof. We first show that h�1s .z2.s; t// is of class C5 in both variables s and t . In order to
extend the parametrization (4.7) to a uniform domain, namely the unit disc, we consider

Œ0; 2�� 3 t 7! yz2

�
s;
Ts

2�
t
�
2 zSs :

According to Lemma 4.6, this map is of class C7 in both variables s and t . Moreover,
its form allows us to extend it to the interior of the unit disc, and, thus, to obtain a fam-
ily of diffeomorphisms �s D �.s; �/W� ! z�s of class C7 in both variables s and z.
It follows from Corollary 9.4 in [2] and Lemma 2.1 in [1] that the function .s; t/ 7!
h�1s .s yz2.s; Ts t=.2�///, and so .s; t/ 7! h�1s .z2.s; t//, are of class C5.
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We now define yas by
1

yas.�/
D � @�.fs.�// � f

0
s .�/;

for � 2 b�, where � denotes the dot product in C2. According to Pang [15], since fs is
stationary and satisfies (4.4) for a continuous function as , then as is a positive multiple
of yas , where the multiple may be any function of s. We now show that the function .s; t/ 7!bas.h�1s .z2.s; t// is of class C4. Note first that the map

@�.fs.h
�1
s .z2.s; t/e

it // D @�
�
ws.z2.s; t//; z2.s; t/; ws.z2.s; t//; z2.s; t/

�
is of class C7 in both variables. To study the smoothness of f 0s .h

�1
s .z2.s; t//, note that by

the chain rule, we have

d

dt
.z1.s; t/; z2.s; t/// D

d

dt
fs.h

�1
s .z2.s; t// D f

0
s .h
�1
s .z2.s; t// �

d

dt
h�1s .z2.s; t//;

and so,

f 0s .h
�1
s .z2.s; t// D

� d
dt
.z1.s; t///

d
dt
h�1s .z2.s; t//

,
d
dt
.z2.s; t///

d
dt
h�1s .z2.s; t//

�
:

Following the proof of Lemma 3.3 in [1], we have h�1s .z2.s; t// D e
it CO.s/, and since

h�1s .z2.s; t// is of class C5, so is the map f 0s .h
�1
s .z2.s; t//. This shows that the function

.s; t/ 7! bas.h�1s .z2.s; t// is of class C4.
Finally, with the same proof of Lemma 3.4 in [1], we get

1bas.h�1s .z2.s; t// D s2 CO.s3/:
The function as we seek can be obtained by rescaling bas to ensure

R 2�
0
c.t; s/dt D 1 for

all s > 0 small enough.

We are now in a position to apply the moment conditions (4.6) to the system (4.5). We
start with the function Gs:Z

zSs

zm
�
s z bs.sz/

@�

@z1

�
ws.sz/; sz; ws.sz/; s Nz

��
dz D 0;

for all m � 0, that is, using the form of the defining function �,Z
zSs

zj bs.sz/
�
1C

i

2
�.Imws.sz/; sz; s Nz/� .Imws.sz// �

@�

@z1
.Imws.sz/; sz; s Nz/

�
dz D 0

for all j � 1. We use the parametrization of zSs given by (4.7). With this parametrization,
as observed in Remark 4.3, s yz2 is of order O.s/ and Imws.s yz2/ D y1 of order O.s2/.
Since � is of weighted order O.6/, the first term involving � in the above integral is of
order O.s6/, while the second one is of order O.s7/. Accordingly, we obtain, for j � 1,Z Ts

0

rj ei.jC1/t bs.sre
it /.1CO.s6//

�@r
@t
C ir

�
dt D 0:
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Using Lemma 4.5, we haveZ Ts

0

ei.jC1/ t c.s; t/
�
1C jk.t/s4 CO.s5/

��
iC

�dk
dt
.t/C ik.t/

�
s4 CO.s5/

�
dt D 0:

Developing the product leads toZ Ts

0

ei.jC1/ t c.s; t/
�
1 �

4

3
jae2its4 CO.s5/

� �
i � 4iae2its4 CO.s5/

�
dt

D i

Z Ts

0

ei.jC1/ t c.s; t/
�
1 �

4

3
.j C 3/ae2its4 CO.s5/

�
dt D 0:

In order to apply Fourier analysis, we apply the change of variables t 7! 2�
Ts
t and, using

Lemma 4.6, we obtainZ 2�

0

ei.jC1/
Ts
2� t c

�
s;
Ts

2�
t
� �
1 �

4

3
.j C 3/ae2i

Ts
� ts4 CO.s5/

�
dt

D i

Z 2�

0

ei.jC1/t c.s; t/
�
1 �

4

3
.j C 3/ae2its4 CO.s5/

�
dt D 0:

We may then expand c.s; �/ in its Fourier series,

c.s; t/ D

C1X
kD�1

k.s/ e
ikt ;

where �k D k for all k 2 Z and, by Lemma 4.7, k is C4 and satisfies 0.s/ � 1.
Inserting the Fourier expansion of c.s; t/ inZ 2�

0

ei.jC1/t c.s; t/
�
1 �

4

3
.j C 3/ae2its4 CO.s5/

�
dt D 0;

we deduce that

(4.8) jC1.s/ D O.s
4/;

for all j � 1. Taking the fourth derivative with respect to s, we get

4X
`D0

�
4

`

��d `jC1
ds`

.s/ ı`4 �
4Š

`Š

�4
3
.j C 3/a

d `jC3

ds`
.s/
�
s` CO.s`C1/

�
D 0;

where ı`4 is the Kronecker symbol, which for j D 1 leads to

d42

ds4
.s/ � 4Š

16

3
a4.s/ D O.s/;

implying that

(4.9)
d42

ds4
.s/ D O.s/:
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We now apply the moment conditions (4.6) to the function Hs in (4.5):Z
zSs

zm
�
s z bs.sz/

@�

@z2
.ws.sz/; sz; ws.sz/; s Nz/

�
dz D 0;

for all m � 0. Due to the form of the defining equation �, we getZ
zSs

zj bs.sz/
�
s Nz C 2as5 z Nz4 C 4as5 z3 Nz2

C .Imws.sz// �
@�

@z2
.Imws.sz/; sz; s Nz/C

@ı

@z2
.sz; s Nz//

�
dz D 0;

for all j � 1. We once again parametrize zSs by (4.7). With this parametrization, the
term involving � in the above integral is of order O.s7/, and the one involving ı is of
order O.s6/. We then obtainZ Ts

0

ei.jC1/ t c.s; t/
�
rj r e�its C rj .2arr4 e�3it C 4ar3 r2 eit /s5 C rjO.s6/

�
�

�@r
@t
C ir

�
dt D 0:

Using once again Lemma 4.5 and dividing by is givesZ Ts

0

ei.jC1/ t c.s; t/
�
e�it C s4

�2
3
ae�3it C

�
�
4

3
j C 4

�
aeit

�
CO.s5/

�
�
�
1 � 4ae2its4 CO.s5/

�
dt D 0;

and, after developing the product, and applying as above the change of variables t 7! 2�
Ts
t ,

we obtain for j � 1,Z 2�

0

c.s; t/
�
eijt C

2

3

�
aei.j�2/t �

4

3
j aei.jC2/t

�
s4 CO.s5/

�
dt D 0:

Once again, we integrate from 0 to 2� , insert the Fourier expansion of c.s; t/, and differ-
entiate four times with respect to s, and obtain

4X
`D0

�
4

`

��d `j
ds`

.s/ ı`4 C
4Š

`Š

�2
3
a
d `j�2

ds`
.s/ �

4

3
j a

d `jC2

ds`
.s/
�
s` CO.s`C1/

�
D 0:

For j D 2, this implies

d42

ds4
.s/ � 4Š

�2
3
a0.s/ �

8

3
a4.s/

�
D O.s/:

Using (4.8) and (4.9), we then deduce that

2

3
a0.s/ D

2

3
a D 0:

This concludes the proof of Theorem 4.1.



A sphericity criterion for strictly pseudoconvex hypersurfaces in C2 25

Funding. Research of the first two authors was supported by a Research Group Linkage
Programme from the Humboldt Foundation, a URB grant from the American University
of Beirut, and by the Center for Advanced Mathematical Sciences. Research of the third
author was supported by the Austrian Science Fund FWF, project AI4557-N.

References

[1] Bertrand, F., Della Sala, G. and Lamel, B.: Extremal discs and segre varieties for real-analytic
hypersurfaces in C2. To appear in Proc. Amer. Math. Soc. DOI 10.1090/proc/15330.

[2] Bertrand, F. and Gong, X.: Dirichlet and Neumann problems for planar domains with param-
eter. Trans. Amer. Math. Soc. 366 (2014), no. 1, 159–217. Zbl 1281.31001 MR 3118395

[3] Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables
complexes II. Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 1 (1932), no. 4, 333–354.
Zbl 0005.37401 MR 1556687

[4] Cartan, E.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables
complexes. Ann. Mat. Pura Appl. 11 (1933), no. 1, 17–90. Zbl 0005.37304 MR 1553196

[5] Chern, S. S. and Moser, J. K.: Real hypersurfaces in complex manifolds. Acta Math. 133
(1974), 219–271. Zbl 0302.32015 MR 0425155

[6] Faran, J. J. V: Lewy’s curves and chains on real hypersurfaces. Trans. Amer. Math. Soc. 265
(1981), no. 1, 97–109. Zbl 0477.32021 MR 0607109

[7] Fefferman, C.: Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex
domains. Ann. of Math. (2) 103 (1976), no. 2, 395–416. Zbl 0322.32012 MR 0407320

[8] Fefferman, C.: Correction to: “Monge–Ampère equations, the Bergman kernel, and geometry
of pseudoconvex domains” [Ann. of Math. (2) 103 (1976), no. 2, 395–416)]. Ann. of Math. (2)
104 (1976), no. 2, 393–394. Zbl 0332.32018 MR 407321
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