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Graded homotopy classification of Leavitt path algebras
over finite primitive graphs

Guido Arnone

Abstract. We show that the graded Grothendieck group classifies unital Leavitt path
algebras of primitive graphs up to graded homotopy equivalence. To this end, we
further develop classification techniques for Leavitt path algebras by means of (graded,
bivariant) algebraic K-theory.

1. Introduction

Let ` be a commutative unital ring. Given a graph E, we will consider its Leavitt path
`-algebra L.E/ (see Definition 2.5 in [24]), which carries a natural grading over Z (Pro-
position 4.7 in [24]). Its graded Grothendieck group Kgr

0 .L.E// is the group completion of
the monoid of isomorphism classes of Z-graded finitely generated projective modules. This
group carries an action from the infinite cyclic group C1 D h�i, and is moreover a pointed
preordered ZŒ��-module; see Section 2.8 for a precise defintion of these terms. This paper
is mainly concerned with the graded classification question for Leavitt path algebras.

Conjecture 1.1 (Conjecture 1 in [18]). Assume that ` is a field. Let E and F be two finite
graphs. If there exists a pointed, preordered ZŒ��-module isomorphism K

gr
0 .L.E//

�
�!

K
gr
0 .L.F //, then the algebras L.E/ and L.F / are isomorphic as graded algebras.

In line with recent advances in the (ungraded) classification question for purely infinite
simple Leavitt path algebras [11–13], we investigate the notion of graded classification up
to polynomial homotopy. Before stating our main result, we recall the relevant definitions
and provide some motivation. An elementary (graded, polynomial) homotopy between
graded algebra homomorpshisms f; gWA! B is a graded homomorphism hWA! BŒt�

such that ev0 ı hD f and ev1 ı hD g; here the indeterminate t is set to be homogeneous of
degree zero. Two graded algebra maps are homotopic if they are connected via finitely many
elementary homotopies. Homotopy equivalences are then defined to be homomorphisms
which have an inverse up to this notion of homotopy.

It can be shown that Kgr
0 maps graded homotopy equivalences to isomorphisms (see

Remark 2.12). Hence, a positive answer to Conjecture 1.1 would imply that two Leavitt
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path algebras are graded isomorphic if and only if they are graded homotopy equivalent.
One could thus first aim at deciding whether the graded Grothendieck group classifies
Leavitt path algebras up to homotopy equivalence. In the ungraded, purely infinite simple
case this program was carried out in [12] and [11]. The main theorem of this paper provides
a similar result in the graded context.

Main Theorem (Theorem 8.1). Let E and F be two finite, primitive graphs. Assume that `
is a field. If there exists a pointed, preordered ZŒ��-module isomorphism K

gr
0 .L.E//

�
�!

K
gr
0 .L.F //, then the algebras L.E/ and L.F / are graded homotopy equivalent.

As a consequence, the primitive case of Conjecture 1.1 is equivalent to the following.

Conjecture (Conjecture 8.2). Let ` be a field. If E and F are finite primitive graphs, then
L`.E/ and L`.F / are graded isomorphic if and only if they are unitally graded homotopy
equivalent.

We point out that despite the resemblance of the Main Theorem above with ungraded
homotopy classification results, significant technical work is needed to obtain similar
conclusions. The hypothesis that graphs be primitive (see Definition 7.2) stems from
adapting the techniques of [11]; put succinctly, we need a family of idempotents of L.E/
arising from edges to be full (Proposition 7.4). Such graphs are in particular essential,
meaning that they have no sinks or sources. This allows us to interpret their associated
Leavitt path algebras as corner skew Laurent polynomial rings. The latter are characterized
as the Z-graded rings with a homogeneous left invertible element of degree 1 (Lemma 2.4
in [4]). These ideas are due to Ara and Pardo and go back to [6].

The main tool used in this article is graded bivariant algebraicK-theory ([17]). This is a
functor j WAlg`

gr ! kkgr from the category of graded `-algebras to a triangulated category
which is universal in a specific sense; see Section 3 for a brief recollection of its main
properties. Here ` is viewed as a graded algebra with trivial grading. The functor j is the
identity on objects; hence we shall omit it from our notation. Writing ŒL.E/;L.F /� for the
set of graded algebra homormophisms between two Leavitt path algebras up to homotopy,
our objective will be to understand the canonical map

(1.1) ŒL.E/; L.F /�! kkgr.L.E/; L.F //:

In Corollary 11.11 of [9], it is shown that homomorphisms between two Leavitt path
algebras L.E/ and L.F / in kkgr fit into an exact sequence involving their gradedK-theory
groups. Concretely, let AE be the adjacency matrix of E and I the identity matrix on its
set of vertices. Write BFgr.E/ D coker.I � �AtE / for the Bowen–Franks module of E
and BF_gr.E/ D coker.I t � �AE / for its so-called dual. Abbreviating ˝ D ˝ZŒ�� and
hom D homZŒ��, there is a diagram of ZŒ��-modules with exact top-row as follows:

0 BF_gr.E/˝K
gr
1 .L.F // kkgr.L.E/; L.F // hom.BFgr.E/;K

gr
0 .L.F /// 0

ŒL.E/; L.F /�

d

j

K
gr
0

The first part of this article is devoted to Poincaré duality for Leavitt path algebras,
which is used in Lemma 13.1 of [11] to effectively compute the map d in the exact sequence
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above. Let us recall the relevant terminology. In this paper, a graph is a pair of source
and range functions s; r WE1 ! E0 from a set of edges E1 to a set of vertices E0. The
dual graph Et of E has the same sets of vertices and edges with the functions r and s
interchanged one for the other; informally, we revert the direction of all arrows. The
suspension in the triangulated structure of kkgr is represented by tensoring by the trivially
graded algebra � D t .1 � t /`Œt �; we shall write �L.Et / for �˝` L.Et /.

Theorem (Theorem 6.1). If E is a finite essential graph, then the functor�˝` L.E/ is left
adjoint to �˝�L.Et / as endofunctors of the graded bivariant K-theory category kkgr.
Thus, for each pair of graded algebras R and S , there are isomorphisms

kkgr.R˝` L.E/; S/ Š kkgr.R; S ˝` �L.Et //

which are natural in both R and S .

The proof of Poincaré duality given in [11] involves a specific homomorphism from
L.E/ to the suspension algebra †X for a suitable set X . The latter algebra is a quotient of
Karoubi’s cone �X by the ideal of X-indexed matrices MX . In our context, we want this
homomorphism to preserve the gradings; in particular, we have to equip †X with a grading
to begin with. Further, in ungraded algebraic bivariant K-theory tensoring by †X plays
the role of the inverse for the suspension functor. In Section 4 we generalize the notion of
infinity sum-rings and, for a suitable notion of graded infinite set X , we define a graded
analogue �gr

X of Karoubi’s cone and produce a quotient algebra †gr
X which plays the role of

the suspension in kkgr.
Another key ingredient of the proof of Poincaré duality is the relationship between

a degree zero unit element u1 2 L.E/˝ L.Et / and the class in kkgr represented by the
algebra homomorphism from � WD ker.`Œt; t�1�

ev1
��! `/ toL.E/˝L.Et /mapping t 7! u1.

In this direction, we prove the following.

Theorem (Theorem 5.6). LetA be a unital, strongly graded algebra, p 2A0 an idempotent
and u a unit in pA0p. Consider the map �W � ! A given by 1 7! p, t 7! u. There is a
chain of isomorphisms

kkgr.� ; A/ Š kk.� ; A0/ ' KH1.A0/;

mapping j.�/ to Œ1 � p C u�.

Here KH is Weibel’s homotopy K-theory [27]. Finally, in Section 3 we also record
some results that we use regarding left and right boundary maps of a triangle in kkgr and
their compatibility with tensor products. We remark that these statements are not found in
the literature, even in the ungraded case.

With a graded version of Poincaré duality in place, and the fact that Kgr
0 is a full

functor when restricted to Leavitt path algebras ([8, 25]), we are able to study the image
of (1.1) (Lemmas 7.19 and 7.20). This relies on a procedure to deform a unital graded
algebra homomorphism L.E/! L.F / using a given element ofKgr

1 .L.F //, adapted from
the ungraded setting in Section 7. Studying the extent to which (1.1) is injective necessitates
a study of Kgr

1 .L.F //. By a result of Hazrat (see Theorem 3.15 in [19]), together with
Dade’s theorem (Theorem 2.8 in [16]), if F is a graph with no sinks, then one has canonical
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isomorphisms Kgr
� .L.F // Š K�.L.F /0/. Further, it is known that L.F /0 is an ultramatri-

cial algebra, see the proof of Theorem 5.3 in [5]. Using these results, in Lemma 3.6 of [6],
Ara and Pardo give an explicit description of the shift action on K0.L.F /0/ Š K

gr
0 .L.F //.

We extend the characterization above toK1.R0/ Š K
gr
1 .R/ for any strongly graded, corner

skew Laurent polynomial ring R such that R0 is ultramatricial.

Theorem (Corollary 7.16). Let .R; tC; t�/ be a strongly graded, corner skew Laurent
polynomial ring. Assume that ` is a field and R0 a unital ultramatricial algebra. Writ-
ing ˛WR0 ! R0 for the homomorphism given by x 7! tCxt�, the following diagram is
commutative:

K
gr
1 .R/ K

gr
1 .R/

K1.R0/ K1.R0/:

�

�

K1.˛/

�

The proof involves the observation that K1.R0/ agrees with the abelianization of the
unit group of R0, recorded as Proposition 7.8. We also need an alternative description
of the K1 of an ultramatricial algebra, akin to Cortiñas and Montero’s characterization
of Karoubi and Villamayor’s KV1 group for purely infinite simple rings (Proposition 2.8
in [12]).

Theorem (Proposition 7.10). Assume that ` is a field. If R is a unital ultramatricial
algebra, then

K1.R/ D R
�=¹u.1/ W u 2 .RŒt �/�; u.0/ D 1º:

The theorem above allows us to deduce injectivity of (1.1) up to a relaxed notion of
homotopy. We say that two graded algebra maps f; gWA! B are ad-homotopic if there
exists a degree zero unit u 2 B�0 such that f is homotopic to the conjugation of g by u. A
particular case of Theorem 7.25 is the following.

Theorem. Let E and F be two primitive graphs. Assume that ` is a field. Two unital
graded homomorphisms f; gWL.E/! L.F / satisfy j.f / D j.g/ if and only if they are
ad-homotopic.

With all of this in place, we prove our Main Theorem in Section 8 as Theorem 8.1.

2. Preliminaries

For the rest of the article, we fix an abelian group G and a commutative unital ring `. The
adjective graded will always meanG-graded. Recall that a graded algebra is an `-algebraR
together with an abelian group decomposition R D

L
g2G Rg satisfying RgRh � Rgh

for each g; h 2 G. The projection of x 2 R to Rg will be denoted xg . If x 2 Rg , then we
say that x is a homogeneous element of degree g and write jxj D g. The base ring ` is
viewed as a graded algebra by equipping it with the trivial grading, that is, we set j�j D 1G
for all � 2 `. A graded algebra homomorphism f WR! S is an algebra homomorphism
satisfying f .Rg/ � Sg for each g 2 G. We shall denote the category of graded algebras
by Alg`

gr.
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2.1. Tensor products

Given two graded algebras R and S , their tensor product has a canonical grading given by

.R˝` S/d D
M
ghDd

Rg ˝ Sh:

We equip the ring `Œt � of polynomials with the trivial grading, and setRŒt� WDR˝` `Œt �
with the tensor product grading for any graded algebra R. In other words, we set jt j D 1G .

We will often omit the tensor product symbol and use juxtaposition in its place, espe-
cially when one of the algebras carries the trivial grading. For example, we define the path
and loop algebras respectively as

P D ker.`Œt �
ev1
��! `/ and � D ker.P

ev0
��! `/;

and write
PR D P ˝` R and �R D �˝` R

for any graded algebra R.

2.2. Graded sets, matricial stability and G -stability

A graded set will mean a pair .X; d/ where X is a set and d WX ! G is a function. When
understood from context, we shall write j � j instead of d . An element x 2X is said to have
degree d.x/ 2 G, and the degree g 2 G component of X is Xg WD d�1.g/. A morphism
of graded sets f W .X; d/! .Y; d 0/ is a function f WX ! Y such that d 0 ı f D d . If X is
a set, we write jX j for the graded set given by the constant function with value 1G .

From a graded set X , one can form a graded algebra of X-indexed matrices, denoted
by MX . As an algebra, it is the free `-module with basis ¹"x;y W x; y 2 Xº with product
"x;y � "w;z D ıy;w"x;z . Its grading is induced by the assignment j"x;y j D jxjjyj�1. If R is
a graded algebra, we set MXR WDMX ˝` R.

Definition 2.1. We put M1 for MjNj and Mn DMj¹1;:::;nºj for each n2N.

Any morphism f WX ! Y of graded sets with injective underlying function gives rise
to a graded algebra map Mf WMX !MY mapping "x;y to "f .x/;f .y/.

Definition 2.2. Let F WAlg`
gr ! C be a functor. We say that F is matricially stable if for

every pair of sets X; Y of cardinality less or equal than Æ D max¹@0; jGjº and any graded
algebra R, the functor F maps the inclusion MjX jR!MjXtY jR to an isomorphism. If F
moreover maps inclusionsMXR!MXtYR to isomorphisms for every pair of graded sets
of cardinality less or equal than Æ, we say that it is G-stable.

The following proposition is implied by Proposición 3.3.8 in [7].

Proposition 2.3. Let X be a graded set and A a graded algebra. If x 2X , then

�x W a 7! "x;x ˝ a 2MXA

is a graded homomorphism. Moreover, if y 2 X is such that d.x/ D d.y/, then any
G-stable functor F satisfies F.�x/ D F.�y/.
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Unless specified otherwise, we viewG as a graded set via idG WG!G. If A is a graded
algebra, we write �A for �1G WA!MGA.

2.3. Extensions

An extension of graded algebras is an exact sequence

K
i
�! E

p
�! Q

such that p D coker.i/, i D ker.p/, and p admits a linear section sWQ! E.

Remark 2.4. The section in the definition of extension is not required to preserve the
grading. This is justified by the fact that the existence of an `-linear section s guarantees
the existence of a section

Os.m/ D
X
d2G

s.md /d :

which preserves the grading.

Example 2.5. The loop extension of a graded algebra R is �R ,! PR
ev1
��! R:

Example 2.6. Let

� D
®
f WN �N ! ` W j imf j <1 and .9N � 1/

such that j supp.x;�/j; j supp.�; x/j � N .8x 2X/
¯

be Karoubi’s cone ring, equipped with pointwise addition and the convolution product. We
view � as a graded algebra via the trivial grading. Observe that it contains M1 as an ideal;
put † D �=M1 for the suspension ring. The extension

M1R! �R! †R

is the cone extension of R (see Section 4.7 in [14]). We will deal with generalizations of
this extension in Section 4.

2.4. Homotopy invariance

A graded elementary (polynomial) homotopy between graded algebra homomorphisms
f;gWA!B is a graded map hWA!BŒt� such that ev0 ıhD f , ev1 ıhD g. We say that f
and g are graded homotopic if there exists a sequence of graded elementary homotopies
h1; : : : ; hnWA ! BŒt� such that ev0 ıh1 D f , ev1 ıhn D g and ev1 ıhj D ev0 ıhjC1
for all j . This is an equivalence relation which will be denoted �. Two graded (unital)
algebras R and S are (unitally) graded homotopy equivalent if there exist (unital) maps
f WR! S and gWS ! R such that fg � 1S and gf � 1R.

Definition 2.7. We say that a functor F W Alg`
gr ! C is graded homotopy invariant if it

maps the inclusion A � AŒt� for each graded algebra A to an isomorphism. Equivalently, a
functor is graded homotopy invariant if f � g implies F.f / D F.g/.



Graded homotopy classification of Leavitt path algebras over finite primitive graphs 7

We will also need two more notions of graded homotopy. The first one involves
matricial stabilization. We say that two graded homomorphisms f; gWA! B are graded
M2-homotopic if the maps �1 ı f; �1 ı gWA!M2B are graded homotopic. As above, this
also induces an equivalence relation denoted by�M2 . Likewise, we have a notion of graded
M2-homotopy equivalence; we say that two algebras are graded M2-homotopy equivalent
if there exists a graded M2-homotopy equivalence between them. For the second notion,
we first need a definition.

Definition 2.8. Let C be a graded unital algebra and A; B � C two subalgebras with
inclusion maps incAWA!C and incB WB!C . Given two homogeneous elements u;v 2C
such that jujjvj D 1, avua0 D aa0 for each a; a0 2 A, and uAv � B , we define the graded
homomorphism

ad.u; v/ W A! B; a 7! uav:

If u is a unit, we abbreviate ad.u/ WD ad.u; u�1/.

We say that two unital algebra maps f; gWR! S are graded ad-homotopic, denoted
f �ad g, if there exists a unit u 2 S1G such that ad.u/ ı f � g. When this happens, we
will write f �u g. The proof of the following lemma is implied by Proposition 2.10 below.

Lemma 2.9. If two unital graded algebra maps are graded ad-homotopic, they are graded
M2-homotopic.

Proposition 2.10. Let C be a graded unital algebra and A; B � C two subalgebras
with inclusion maps incAWA! C and incB WB ! C . Given u; v 2 C in the situation of
Definition 2.8, we have that

(i) any G-stable functor F satisfies F.incB ad.u; v// D F.incA/;
(ii) if B D A, uA;Av � A, and juj D 1G , then ad.u; v/ �M2 idA.

In particular, by (ii), any graded homotopy invariant, matricially stable functor F
satisfies F.ad.u; v// D idF.A/.

Proof. For the proof of (i), we adapt Proposition 2.2.6 in [10]. Put d WD juj and note that
jvj D d�1. The assignment 1 7! 1, 2 7! d yields a grading on M2; in the rest of the proof,
we will consider the latter algebra equipped with this particular grading.

Put U D "1;1u C "2;2 1C and V D "1;1v C "2;21C . A straightforward verification
shows that we have a well-defined graded algebra homomorphism

� WM2A!M2C; x 7! UxV:

For each k 2 ¹1; 2º, write �R
k
WR ! M2R for the corner inclusions of each algebra R.

Observe that
� �A1 D �

C
1 incB ad.u; v/ and � �A2 DM2.incA/�A2 :

Applying F , we obtain that

F.�/F.�A2 / D F.M2.incA//F.�A2 /:

Since F.�A2 / is an isomorphism byG-stability, it follows that F.�/D F.M2.incA//. Hence

F.�C1 /F.incB ad.u; v// D F.��A1 / D F.M2.incA/�A1 / D F.�
C
1 /F.incA/:
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Once again by G-stability, we know that F.�C1 / is an isomorphism and thus

F.incB ad.u; v// D F.incA/:

This concludes the proof of (i).
Now suppose that A D B , uA;Av � A and juj D 1G . Write �k D �Ak . The hypotheses

imply in particular that � can be corestricted to a homomorphism  WM2A ! M2A

satisfying  �1 D �1 ad.u; v/ and  �2 D �2. They also say that the grading on M2A is the
standard one and that the homotopy given in Lemma 2.1 of [13] is a graded homotopy
between �1 and �2. This implies that �1 ad.u; v/ D  �1 �  �2 D �2 � �1, proving (ii).

2.5. Graded K -theory

Given a unital graded algebra R, its graded K-theory Kgr
� .R/ is the K-theory of the

exact category of graded, finitely generated projective R-modules. In Section 3.3 of [9], a
homotopy invariant version KH gr of graded K-theory is introduced. It comes equipped
with a canonical comparison map Kgr

� .R/! KH
gr
� .R/ for any graded algebra R. Given a

graded left R-module M , its shift by g 2 G is the module MŒg� WDM with the grading
MŒg�h D Mgh. Note that the shift of modules induces an action of ZŒG� on graded
(homotopy)K-theory. In particular, the graded (homotopy)K-theory of a Z-graded algebra
is a ZŒ��-module.

2.6. Strongly graded rings

A graded unital ring R is strongly graded if RgRh D Rgh for each g; h 2 G. A theorem
of Dade (Theorem 2.8 in [16]) says that R is strongly graded if and only if the functor

R˝R1G � W Projfg.R1G /! Gr � Projfg.R/

is an equivalence of categories with inverse

.�/1G W Gr � Projfg.R/! Projfg.R1G /:

In particular, one has canonical isomorphisms

(2.1) K�.R1G /! K
gr
� .R/ and KH�.R1G /! KH

gr
� .R/:

for every strongly graded algebra R.

Example 2.11. By Example 1.1.16 in [18], if A is a strongly graded unital algebra then so
is B ˝` A for any graded unital algebra B .

2.7. Graphs, their Leavitt path algebras and Bowen–Franks modules

A (finite, directed) graph is a tuple E D .E0; E1; r; s/ consisting of two finite sets E0

of vertices and E1 of edges together with range and source functions r; sWE1 ! E0.
We say that v 2 E0 is a sink if s�1.v/ D ;, regular if it is not a sink, and a source if
r�1.v/D ;. The sets of sinks, regular vertices and sources are denoted by sink.E/, reg.E/
and sour.E/ respectively. A graph E is regular if E0 D reg.E/ and essential if it is regular
and sour.E/ D ;.
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To a graph E, we will associate its Leavitt path `-algebra L.E/. The latter is a quotient
of the free algebra on the set ¹v; e; e� W v 2 E0; e 2 E1º by the relations:

vw D ıv;wv; .v; w 2 E0/;(V)

s.e/e D er.e/ D e; .e 2 E1/;(E1)

r.e/e� D e� s.e/ D e�; .e 2 E1/;(E2)

f �e D ıf;e r.e/; .f; e 2 E1/;(CK1)

v D
X

e2s�1.v/

ee�; .v 2 reg.E//:(CK2)

The standard grading of L.E/ over Z is given by extension of the rule jvj D 0, jej D 1,
je�j D �1 for each v 2 E0, e 2 E1. The Cohn algebra of E is the one obtained similarly
dividing by all of the relations above except (CK2). One has a canonical surjection C.E/!
L.E/. Writing qv D v �

P
e2s�1.v/ ee

� for each v 2 reg.E/ and K.E/ WD hqv W v 2

reg.E/i, we have an exact sequence

K.E/! C.E/! L.E/:(CE )

We shall refer to the exact sequence above as the Cohn extension of L.E/. By Proposi-
tion 1.5.11 in [1], it is always `-linearly split.

The (reduced) adjacency matrixAE 2N0 2Zreg.E/�E0 of a graphE is the one given by

.AE /v;w D #¹e 2 E1 W s.e/ D v; r.e/ D wº:

Writing I for the reg.E/ �E0-indexed matrix given by Iv;w D ıv;w , the Bowen–Franks
module of E is defined as

BFgr.E/ WD coker.I � �AtE / D
ZŒ��E

0

hv � �
P
e2s�1.v/ r.e/ W v 2 reg.E/i

�

By Theorem 5.3 in [9], the (homotopy) graded K-theory of L.E/ can be computed in
terms of this group as

K
gr
� .L.E// D BFgr.E/˝Z K�.`/ and KH

gr
� .L.E// D BFgr.E/˝Z KH�.`/:

Remark 2.12. By Theorem 3.9, Equation (3.9) and Theorem 5.3 in [9], ifE is a finite graph,
then the comparison map Kgr

� .L.E//! KH
gr
� .L.E// can be identified with tensoring the

canonical comparison map K�.`/! KH�.`/ by BFgr.E/. In particular, if ` is a field, a
PID, or more generally a regular noetherian ring, then Kgr

� .L.E// D KH
gr
� .L.E//.

In the case in which ` is a field, as a corollary of the above we obtain that any graded
homotopy equivalence L.E/ ! L.F / induces an isomorphism at the level of Kgr

0 . If
Conjecture 1.1 is true, then this would entail that the algebras L.E/ and L.F / are graded
isomorphic. In other words, Conjecture 1.1 would imply that two Leavitt path algebras are
graded isomorphic if and only if they are graded homotopy equivalent.

Remark 2.13. If E is a finite graph, then L.E/ endowed with its standard Z-grading is
strongly graded if and only if the underlying graph has no sinks (Theorem 3.15 in [19]).
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2.8. Pointed preordered modules

A pointed preordered module is a tuple .M;MC; u/ where M is a ZŒ��-module together
with a distinguished submonoid MC such that N0Œ��MC � MC and a distinguished
element u 2 MC that is an order unit; this means that for every m 2 M there exists
x 2N0Œ�� satisfying x � u�m2MC. A pointed preordered module map f W .M;MC;u/!
.N;NC; v/ is a ZŒ��-linear map f WM ! N such that f .MC/ � NC and f .u/ D v.

Example 2.14. If R is a graded ring, then its graded Grothendieck group together with the
submonoid Kgr

0 .L.E//C of classes of projective modules and the class ŒR� form a pointed
preordered module.

Example 2.15. The Bowen–Franks module of a graph E can be made into a pointed pre-
ordered module by setting BFgr.E/CD h

P
v2E0 xv � v W xv 2N0Œ��i and 1E WD

P
v2E0 Œv�.

Remark 2.16. There is a canonical pointed preordered module map

can W BFgr.E/! K
gr
0 .L.E//; Œv� 7! ŒvL.E/�

which, by Corollary 5.4 in [9], is an isomorphism whenever K0.`/ Š Z.

3. The category kkgr and its triangulated structure

Recall that an excisive homology theory for graded algebras is a functor H WAlg`
gr ! T

taking values in a triangulated category T , such that for each extension

K
i
�! E

p
�! Q(E)

there exists a triangle

H.Q/ŒC1�
@H

E
��! H.K/

H.i/
���! H.E/

H.p/
���! H.Q/:

The maps @H
E

are called the (left) boundary map of H associated to an extension E , and
they are required to satisfy some compatibility conditions (see Section 6.6 of [14]).

A morphism of excisive homology theories .F; �/ fromH toH 0WAlg`
gr! T 0 consists

of a triangulated functor F W T ! T 0 such that FH D H 0, and a natural transformation
�WF.H.�/ŒC1�/! H 0.�/ŒC1� such that the following diagram commutes for all exten-
sions E:

F.H.Q/ŒC1�/

H 0.K/

H 0.Q/ŒC1�:

�Q

F.@H
E
/

@H
0

E

Graded bivariant algebraic K-theory

j W Alg`
gr
! kkgr



Graded homotopy classification of Leavitt path algebras over finite primitive graphs 11

is the initial G-stable, matricially stable, graded homotopy invariant excisive homology
theory (Theorem 4.2.1 in [17]). We refer the reader to [17] (see also Sections 7 and 8 of [9])
for the construction of the category kkgr and its main properties.

In this section, we shall study properties of boundary maps @E WD @
j

E
in kkgr. The

construction of kkgr is built off that of the initial homology theory among the matricially
stable, graded homotopy invariant theories which are not necessarily G-stable. This functor
will be denoted j 0W Alg`

gr ! kkAlg`
gr . We first give an account on boundary maps in the

latter theory.

3.1. Boundary maps in kkAlg`
gr

The category kkAlg`
gr is constructed in the same way algebraic bivariant K-theory is

constructed in [14]; we refer the reader to Section 2 of [17] for a detailed explanation on
the construction of these categories. Its objects are, as those of kkgr, all graded algebras.

Recall that given an extension (E), its classifying map cE is computed explicitly by
considering the tensor algebra map TQ! E induced by a section sWQ! E of p, and
then restricting it to the kernel JQ WD ker.TQ! Q/ of the counit map T ) id. Up to
graded homotopy, cE is independent of the chosen section.

The boundary map @0
E
WD @

j 0

E
of an extension (E) is given by a zig-zag of classifying

maps, that of E and the one associated to the loop extension

(LQ) �Q! PQ
ev1
��! Q:

Namely,

@0E WD cE ı c
�1
LQ
D �Q

cLQ

 ��� JQ
cE
�! K:

Remark 3.1. Note that, by construction, the boundary map of LQ is the identity map
of�Q. As recalled above, ifH WAlg`

gr! T is a matricially stable, graded homotopy invari-
ant excisive homology then there is a unique homomorphism .X; �/W j 0 ! H . Although
we will not delve into the construction of X , we nonetheless note that since @0

LQ
D id�Q,

it follows that �Q D .@HLQ
/�1 for all Q.

3.2. Boundary maps in kkgr

The category kkgr is built in terms of kkAlg`
gr . Given A;B 2Alg`

gr, by definition,

kkgr.A;B/ D kkAlg`
gr.MGA;MGB/:

If f WA! B is a graded algebra homomorphism, then j.f / D j 0.MGf /. The boundary
map of an extension (E) is, thus, an element @E 2 kk

gr.�Q;K/D kkAlg`
gr.MG�Q;MGK/.

To construct it, we consider the extension

(MGE) MGK
MG i
���!MGE

MGp
���!MGQ:

Its boundary map in kkAlg`
gr is an arrow @0

MGE
W�MGQ ! MGK. To define @E , we

precompose the latter by the flip map �QWMG�Q! �MGQ:

(3.1) @E WD @
0
MGE ı �Q D cMGE ı c

�1
LMGQ

ı �Q:
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Our first computation will concern the loop extension.

Lemma 3.2. If A is a graded algebra, then @LA D id�A.

Proof. Put E DMGLA and D D LMGA. Following the definition of (3.1), we obtain the
following equality in kkAlg`

gr :

@LA D @
0
MGLA

ı �A D cE ı c
�1
D ı �A:

Consider the flip map � 0AWMGPA! PMGA. It fits in a morphism of extensions from E

to D :
MG�A MGPA MGA

�MGA PMGA MGA:

�A � 0A

By the graded version of Proposition 4.4.2 in [14] (see [17], p. 205–206), in kkAlg`
gr we

have the equality �A ı cE D cD . Hence cE is an isomorphism and c�1
D
D c�1

E
��1A ; this

concludes the proof.

Remark 3.3. Let H W Alg`
gr ! T be a G-stable, matricially stable, graded homotopy

invariant excisive homology theory. We recall the construction of the unique map j ! H

from Section 4.2 of [17].
Given the unique map .X 0; �0/W j 0 ! H , one defines X.A/ D X 0.A/ on objects

A 2 kkgr and X.˛/ D X 0.�B/�1X 0.˛/X 0.�A/ on morphisms ˛WA! B . The natural trans-
formation �W id!MG.�/ induces, for any extension (E), a map of extensions E !MGE .
In particular, it follows that

�K ı @
0
E D @

0
MGE ı��Q D @

0
MGE ı �Q ı ��Q in kkAlg`

gr ;

and hence
X.@E/ D X

0.�K/
�1X 0.@0MGE ı �Q/X

0.��Q/ D X
0.@0E/:

This automatically implies that setting �Q D �0Q D .@
H
LQ
/�1 makes .X;�/ into a morphism

of excisive homology theories. Note also that, by Lemma 3.2, this is the only possible
choice for �; cf. Remark 3.1.

3.3. Ungraded extensions

We will write jkk WAlg` ! kk for ungraded algebraic bivariant K-theory [14]. There is a
canonical map trivWkk! kkgr induced by the trivial grading inclusion trivWAlg` ,! Alg`

gr.
In particular, one may view any extension of ungraded algebras as one of trivially graded

ones. Since j ı trivWAlg` ! kkgr is a an excisive homology theory (for ungraded algebras,
i.e., for G D ¹1º), there is a unique map .X; �/W jkk ! j ı triv and �Q D .@triv.LQ//

�1 D

@�1
Ltriv.Q/

D id�Q for each algebra Q. Thus, we have the following.

Theorem 3.4. Let trivW kk ! kkgr be the canonical functor induced by the trivial grading
functor trivWAlg` ,! Alg`

gr. If E is an extension of ungraded algebras and @kk
E

its boundary
map in kk, then triv.@kk

E
/ D @E .
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We conclude this subsection with a characterization of the boundary map of the cone
extension

M1 ! � ! †(K)

in both the graded and ungraded case. First, we need a definition.

Definition 3.5. Let s0 D
P
i2N "iC1;i 2 � be the right shift and s WD Œs0� its class as an

element of†. Since s�0 s0D 1 and s0 s�0 D 1� "1;1, it follows that s is a unit. WriteLD s�1

and
�L W `! �†

for the morphism in kk.`;�†/ corresponding to ŒL� 2 KH1.†/.

Lemma 3.6. The following diagram commutes in kkgr :

` �†

M1:

triv.�L/

inc1
@K

In particular, triv.�L/ is an isomorphism.

Proof. Since by Theorem 3.4 the functor trivW kk ! kkgr is compatible with boundary
maps, we may assume that G is the trivial group. The result now follows from the proof of
Lemma 11.1 in [11], which in particular says that the boundary @WKH1.†/! KH0.M1/

maps Œs� to Œ1 � s�0 s0� � Œ1 � s0s
�
0 � D �Œ"1;1� and thus @.ŒL�/ D Œ"1;1�.

3.4. Compatibility with tensor products.

Next we use Lemma 3.2 to prove the compatibility of left boundary maps with tensor
products.

Theorem 3.7. If

(E) K ! E ! Q

is an extension and A a graded algebra, then the boundary map of the extension

(E ˝ A) K ˝ A! E ˝ A! Q˝ A

equals that of E tensored by A. That is,

@E˝A D @E ˝ A:

Proof. Recall that the functor �˝ AW kkgr ! kkgr is defined using the universal property
of j as the unique morphism of homology theories from j to H WD j.�˝ A/. As noted
in Remark 3.3, this entails in particular that @E ˝ A D @

H
E
ı .@H

LQ
/�1 D @E˝A ı @LQ˝A.

Since LQ ˝ A D LQ˝A, it follows from Lemma 3.2 that LQ ˝ A is the identity map;
this concludes the proof.
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3.5. Adjoint equivalences between � and †

As a consequence of Lemma 3.6, the natural transformation

(3.2) � W �†) id; �A WD triv.�L/�1 ˝ A;

is an isomorphism. Put flipW�†Š †� for the permutation of tensor factors. Since flip˝�
is a natural isomorphism, so is  WD .flip˝�/ ı ��1W id) †�. We have thus explicitly
constructed pseudoinverses exhibiting the fact that tensoring by � and † yield inverse
equivalences of categories. In particlular, this allows us to see � as a left adjoint of † by
viewing � as the counit of an adjunction:

Theorem 3.8. The natural transformation � of (3.2) is the counit of an adjunction whose
unit is ‚ WD �1†� ı†��1� ı  . Explicitly,

‚B WD ‚0 ˝ B;

where ‚0 D .triv.�L/�1ıflip˝†˝�/ı.†˝ triv.�L/˝�/ı.flip ı triv.�L//:

Proof. This follows from the characterization of an adjunction in terms of triangle identities
(Remark 4.2.7 in [23]); the reader can view the dual construction of a counit in the proof of
Proposition 4.4.5 in [23].

Similarly, we can use the natural equivalence u WD ��1D triv.�L/˝�with inverse �1

to construct an adjunction in which � is right adjoint to †:

Theorem 3.9. The natural transformation u, inverse to (3.2), is the unit of an adjunction
whose counit is c WD �1 ı†�� ı†� . Explicitly,

cB D c0 ˝ B; where c0 WD .�
�1
L ı flip�1/ ı .†˝ ��1L ˝�/ ı .†˝�˝ flip ı�L/:

From Theorems 3.8 and 3.9 we obtain, for each pair of graded algebras A and B ,
natural abelian group isomorphisms

RA;B W kk
gr.�A;B/

�
�! kkgr.A;†B/; � 7! †� ı‚A;(3.3)

LA;B W kk
gr.A;†B/

�
�! kkgr.�A;B/; � 7! �B ı��;(3.4)

and

UA;B W kk
gr.†A;B/

�
�! kkgr.A;�B/; � 7! �� ı uA;(3.5)

VA;B W kk
gr.A;�B/

�
�! kkgr.†A;B/; � 7! cB ı†�:(3.6)

3.6. Right boundaries

Given an extension (E), its right boundary map is defined as

ıE WD �RQ;K.@E/ D �†@E ı .‚0 ˝Q/:

Remark 3.10. By Theorem 3.7, right boundary maps are compatible with tensoring in the
sense that ıE˝A D ıE ˝ A.
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To conclude the section, we record the following computation, which will be useful to
us later on.

Lemma 3.11. Let A be a graded algebra. The right boundary map of the cone extension

(K˝A) M1A! �A! †A

is ıK˝A D �† inc1˝A.

Proof. In light of Remark 3.10, we may assume that A D `. In this case, the extension
consists of ungraded algebras; by Theorem 3.4, we may thus prove the statement in kk (in
other words, we may assume G to be the trivial group). Denote the left and right boundary
maps of the cone extension (K) by @ and ı respectively. By Lemma 3.6 and the definition
of ı,

ı D �†@ ı‚Q D �† inc1 ı .†˝ ��1L / ı .‚˝†/ D �† inc1 ıR†;`.�
�1
L /:

To conclude we observe that ��1L D L†;`.id†/ D R�1
†;`
.id†/.

4. Graded infinity-sum algebras, cones and suspensions

A graded �-algebra is a graded algebra R together with an involution �WR! R such that
R�g � Rg�1 for each g 2 G. A graded sum �-algebra is a graded �-algebra R together
with homogeneous elements x; y 2 A1G such that

x�x D y�y D xx� C yy� D 1:

If x; y 2 A1G make A into a graded sum �-algebra, then y�x D 0. This follows from
left multiplying by y� and right multiplying by x in the equality xx� C yy� D 1. Likewise
we have that x�y D 0. As a consequence, the assignment

� W A � A! A; a� b WD xax� C yby�;

is a graded algebra homomorphism. Given graded �-algebra homomorphisms f; gWB ! A,
we write f � g for the �-algebra homomorphism b 7! f .b/� g.b/.

A graded infinite-sum �-algebra is a graded sum �-algebra A together with a graded
homomorphism .�/1WA! A such that� ı .id�.�/1/ D .�/1, i.e., such that

a� a1 D a1 .8a 2 A/:

Our motivation for considering such algebras stems from the fact that they possess
desirable properties in algebraic bivariant K-theory. Next, we adapt some results from [14]
to the graded setting.

Proposition 4.1. If B is a graded sum �-algebra and f; gWA! B are graded algebra
homomorphisms, then j.f /C j.g/ 2 kkgr.A;B/ equals j.f � g/.

Proof. Since kkgr is an additive category and j is an additive functor (in the sense that
it maps finite products to biproducts), it suffices to show that the codiagonal map r 2
kkgr.B � B;B/ is equal to j.�/.
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By Proposition 2.3, the inclusions �1; �2WB !M2B of B in the top-left and bottom-
right corners respectively are mapped to the same arrow in kkgr. Thus, considering the
graded homomorphism

� W .b1; b2/ 2 B � B 7!

�
b1 0

0 b2

�
2M2B;

we have that r D j.�1/�1 ı j.�/. In particular, to prove the proposition it suffices to see
that j.�1�/ D j.�/.

Let x; y 2 B1G be the homogeneous elements that define the graded sum �-algebra
structure on B . Put

Q D

0@x y 0

0 0 x�

0 0 y�

1A
for the matrix considered by Wagoner on p. 355 of [26], and set uDQ�DQ�1. Note that u
is a unitary element of M3B which is homogeneous of degree 1 2 G. By Lemma 4.8.3
in [14], we have

(4.1) u

0@b � b0 0 0

0 0 0

0 0 0

1Au� D 0@b 0 0

0 b0 0

0 0 0

1A :
In terms of the top-right corner inclusion | WM2B!M3B , equation (4.1) says that ad.u/ ı
| ı �1 ı� D | ı �. Applying now the functor j and using Proposition 2.10, we see that
j.|/ ı j.�1�/D j.|/ ı j.�/. To conclude, we note that j.|/ is an isomorphism by matricial
stability.

Proposition 4.2. If A is a graded infinite-sum �-algebra and I G A an ideal such that
I1 � I , then I is kkgr-equivalent to zero.

Proof. By Proposition 2.10, the matrix u given in the proof of Proposition 4.1 determines a
graded �-homomorphism ad.u/WM3I !M3I representing the identity ofM3I . Hence the
same argument as in Proposition 4.1 shows that the restriction�0W I � I ! I of� to I is
the codiagonal map of I . Since I1 � I , we can also restrict .�/1 to a map .�/1

0

W I ! I

satisfying .�/1
0

D 1I �0 .�/1
0

. It follows that j..�/1
0

/ D j.1I �0 .�/1
0

/ D j.1I /C

j..�/1
0

/; this goes to show that j.1I / D 0 and therefore j.I / D 0.

In the ungraded setting, an example of an infinite-sum �-algebra is Karoubi’s cone �X
for any infinite set X (Equation (2.2) in [9], see also Lemma 4.8.2 in [14]). We wish to
prove a similar statement for its graded analogue

�ıX D span`¹f 2 �X W jxjjf .x; y/jjyj
�1 is constant whenever f .x; y/ ¤ 0º:

Notice that this algebra is graded by setting

.�ıX /g D span`¹f 2 �X W jxjjf .x; y/jjyj
�1
D g if f .x; y/ ¤ 0.º:

It contains MX as a homogeneous ideal; the quotient �ıX=MX is denoted by †ıX .
A non-empty graded set .X;d/ with degree map d WX ! G is said to be graded infinite

if for all g 2 G the set Xg WD d�1.g/ is either empty or infinite.
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Proposition 4.3. If X is graded infinite, there exists a graded bijection X tX �
! X .

Proof. If X is graded infinite, then each component Xg is either infinite or empty and thus
there exist injections �g ; �g WXg ! Xg such that �g t �g WXg tXg ! Xg is a bijection.
It follows that � D tg2G�g and � D tg2G�g assemble into the desired bijection.

Proposition 4.4 (cf. Lemma 4.8.2 in [14]). If X is graded infinite, then �ıX is a graded
infinite-sum �-algebra.

Proof. In view of Proposition 4.3, we may consider a graded bijectionX tX!X induced
by graded injections �; � WX ! X , with disjoint image, such that X D im.�/ t im.�/. A
direct verification shows that the elements

u D
X
x2X

"�.x/;x and v 2
X
x2X

"�.x/;x

make �ıX into a graded sum �-algebra.
Next we will show that, for every x; y 2 X ,

(4.2) �n.�.x// D �m.�.y// ” n D m; x D y:

Indeed, suppose without loss of generality that n D mC k for some k � 0. By injectivity
of �m, we would have that �k.�.x// D �.y/. Since the images of � and � are disjoint, it
must be k D 0 and hence n D m. Finally, the injectivity of � lets us deduce that x D y.

From (4.2) we see that, for each z 2 �ıX , there is a well-defined element of �ıX given by

z1 WD
X
n�0

vnuzu�.vn/� D
X

n�0;x;y2X

"�n.�.x//;x � z � "y;�n.�.y//

D

X
n�0;x;y2X

z.x; y/ � "�n.�.x//;�n.�.y//:

By definition, z 7! z1 is an algebra homomorphism and makes �ıX into a graded infinite-
sum �-algebra, as desired.

We now apply the definition of graded infinity sum �-algebra to a graded analogue of
Karoubi’s cone and the resulting suspension algebra.

Corollary 4.5. If X is a graded infinite set, then �ıX is kkgr-equivalent to zero.

Proof. Apply Proposition 4.2 to I D A D �ıX .

Note that if .X; d/ is any graded set, then

yX WD X �N; d.x; n/ D d.x/;

is graded infinite and there is a canonical inclusion x 2X 7! .x; 0/ 2 yX .

Definition 4.6. Let X be a graded set such that X1G ¤ ;. Define

�
gr
X WD �

ı

yX
; †

gr
X WD †

ı

yX
and M

gr
X WDM yX :
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Corollary 4.7. Let X be a graded set such that X1G ¤ ; and let x 2X1G . The graded
inclusion ix W k 2 N 7! .x; k/ 2 yX induces algebra monomorphisms

M1 ,!M
gr
X ; † ,! †

gr
X and � ,! �

gr
X

which are kkgr-isomorphisms.

Proof. Since �ıN D �N D � and †ıN D †N D †, the maps induced by the inclusion ix
yield a diagram of cone extensions (and thus triangles) as follows:

M1 � †

M yX �ı
yX

†ı
yX
:

The leftmost vertical arrow is a kkgr-equivalence by graded matricial stability. The vertical
arrow in the middle is a kkgr-equivalence because both its domain and codomain are
kkgr-equivalent to zero. It follows, using that kkgr is a triangulated category, that the
rightmost vertical arrow is a kkgr-equivalence.

4.1. Graded suspensions and deloopings

A family of boundary maps that will be of interest to us come from graded cone extensions.
Given a graded set X , we have an extension

�†
gr
X

@X
�!M

gr
X ! �

gr
X ! †

gr
X :

Using that the inclusion incgr
X WMX ,!M

gr
X is a kkgr-isomorphism, we obtain a triangle

(4.3) �†
gr
X

.incgr
X /
�1ı@X

��������!MX ! �
gr
X ! †

gr
X :

Since �gr
X D 0 in kkgr by Corollary 4.5, it follows that the map .incgrX /�1 ı @X is an

isomorphism. In particular, by matricial stability, for any x 2X1 we have an isomorphism

(4.4) @
gr
X WD �†

gr
X

.incgr
X /
�1ı@X

��������!MX
j.�x/

�1

����! `:

We may describe @gr
X more explicitly, in the same way as for the ungraded cone exten-

sion.

Proposition 4.8. Let X be a graded infinite set such that X1G ¤ ; and x 2X1G . Write Lx
for the class of

P
i�1 ".x;i/;.x;iC1/ in†gr

X , and �Lx W `!�† for the map corresponding to
ŒLx �2KH

gr
1 .†

gr
X /. The following diagram commutes in kkgr :

` �†
gr
X

M
gr
X :

�Lx

inc.x;1/
@

gr
X
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Proof. The morphism of extensions between the ungraded cone extension (K) and exten-
sion (4.3) given by inclusions, as in Corollary 4.7, extends to a morphism of triangles
expressing @gr

X in terms of @. The conclusion now follows from Lemma 3.6; we leave the
details to the reader.

Remark 4.9. If X D � with j � j D 1G , then yX is isomorphic to N with trivial grading.
The inclusion incgr

X corresponds to the inclusion �1W `! M1, and (4.3) to the triangle
`! � ! †. Hence, the boundary (4.4) recovers the isomorphism

�†
@
�!M1

inc�11
���! `;

and Proposition 4.8 recovers Lemma 3.6 as a particular case.

5. Units as morphisms

The purpose of this section is to represent elements of KH1 and KH gr
1 coming from units

as certain arrows in the corresponding bivariant K-theory category. We first give a repres-
entation for units in ungraded algebras as maps in kk. Next, we use these results to deduce
a representation in kkgr for homogeneous units of degree 1G of strongly graded rings.

5.1. Non-homogeneous units

Definition 5.1. Let � WD ker.`Œ t; t�1�
ev1
��! `/. Note that a homomorphism `Œ t; t�1�! A

corresponds to the choice of an idempotent p WD �.1/ 2 A and a unit in pAp, namely
u WD �.t/. We write �p;u for such a homomorphism and �p;u for its restriction to � . If A
is unital and u is a unit in A, we put �u WD �1;u and �u WD �1;u.

Definition 5.2. Let A be a unital algebra. A unit u 2 A� determines a class Œu� 2 K1.A/
which, via the canonical comparison map, determines an element inKH1.A/which we also
call Œu�. We define �uW `! � to be the homomorphism corresponding to Œu� 2 KH1.A/
via the isomorphism KH1.A/ ' kk.`; �A/. Since kk.`; �.�// ' KH1.�/, it follows
that for any non-necessarily unital map f WR! S between unital algebras, we have

(5.1) �.j.f // ı �u D �1�f .1/Cf .u/:

In particular, if A is a unital algebra, then applying (5.1) to the unit t 2 `Œ t; t�1� and any
map �p;uW `Œ t; t�1�! A gives

�.j.�p;u//�t D �1Cp�u:

By Section 4.10 and the proof of Theorem 7.3.1 in [14], we know that �LW� ! † is an
isomorphism. Upon tensoring by �L, we obtain a natural isomorphism � ˝� Š †˝�.
This allows for the following definition.

Definition 5.3. Put

}A;B WD kk
gr.�A;B/

.��1L ˝A/
�

������! kk.†A;B/
UA;B

���! kk.B;�A/;(5.2)

} WD }`;� .id� / D �.�
�1
L /�L:(5.3)
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The map (5.2) allows us to represent classes of units in KH1 as classes of algebra
homomorphisms in kk:

Theorem 5.4. Let A be a unital algebra. The natural chain of isomorphisms

kk.� ; A/
}`;A
���! kk.`;�A/ ' KH1.A/

maps j.�p;u/ to the class of the unit 1 � p C u 2 A� in KH1.A/.

Proof. Write i W�! `Œt; t�1� for the inclusion. We aim to show that �1�pCuD�.�p;u/ ı �t
agrees with

�.�p;u/�.j.�L//
�1�L D �.�p;u/�.i/�.j.�L//

�1�L:

Thus, it suffices to see that
�.i/�.j.�L//

�1�L D �t :

We claim that, to conclude, it suffices to see that �t factors through �.i/. Indeed, suppose
that there exists a map �W `! �� such that �t D �.i/�. Then

�L D �.j.�L//�t D �.j.�L//�.i/� D �.j.�L//�;

and composing with �.i/�.j.�L//�1 on the left to both sides, we obtain the desired
equality.

Finally, we have to prove the existence of such a morphism �W `! �� , which amounts
to showing that Œt � 2 KH1.`Œt; t�1�/ lies in the image of KH1.i/. It suffices to do so
substituting K1 for KH1.

Consider the elements x D .t � 1/, y D .t�1 � 1/ of � . A direct computation shows
that xy C x C y D 0, which says that in the unitalization U of � the element x C 1U is
a unit with inverse y C 1U . The map induced by i on K1 restricts to a map between the
units of U and those of the unitalization U 0 of `Œ t; t�1�, which maps x C 1U to x C 1U 0 .
To conclude, we note that the identification of K1.`Œ t; t�1�/ with ker.K1.U 0/! K1.`//

maps t to x C 1U 0 .

5.2. Graded units in strongly graded rings

We view � and `Œ t; t�1� as graded algebras via the trivial grading. A graded homomorphism
`Œ t; t�1�! � corresponds to a homogeneous idempotent p 2 A1 and a unit u 2 pA1p.
We employ the same notation as in Definition 5.1 for these homomorphisms and their
restrictions to � .

Proposition 5.5. Let C be a trivially graded algebra and A a strongly graded algebra.
There is an isomorphism

kkgr.C;A/ ' kk.C;A1G /

which maps the class of a graded algebra homomorphism f WC ! A to the class of its
corestriction f jWC ! A1g .

Proof. This follows directly from the proof of Theorem 6.1.4 in [17] (see also Remark 8.4
in [9]) and the bivariant version of Dade’s theorem (Theorem 10.1 in [9]).
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From Theorem 5.4 and the proposition above, we obtain the main result of the section.

Theorem 5.6. Let A be a unital, strongly graded algebra, p 2 A1G an idempotent and u a
unit in pA1Gp. Consider the map �W � ! A given by 1 7! p, t 7! u. Under the chain of
isomorphisms

kkgr.� ; A/ Š kk.� ; A1G / ' KH1.A1G /;

the arrow j.�/ has image Œ1 � p C u�.

For the next corollary, we recall from Lemma 9.3 in [9] that given two arrows � 2
kkgr.A;B/ and � 2 kkgr.C;D/, their tensor product is defined as

� ˝ � WD .B ˝ �/ ı .� ˝ C/ D .� ˝D/ ı .A˝ �/:

Corollary 5.7. Let R and B be unital graded algebras and let p 2 R1G and q 2 B1G be
two idempotents. Consider u a unit of R1G and incq W `! B the algebra map sending 1
to q. If R is strongly graded and u is a unit of R1G , then �1˝q;u˝q D �u ˝ incq .

Proof. The map incq defines a natural transformation id) �˝ B , and thus we have the
following commuting diagram:

` �† �� �R

B �†˝ B �� ˝ B �R˝ B:

�

incq

�L

�†˝incq

��u

�˝incq �R˝incq

� �L˝B �u˝B

By Theorem 5.6, the top row corresponds to �u. Composition by�R˝ incq corresponds to
the morphismKH

gr
1 .R/!KH

gr
1 .R˝B/ induced by R˝ incq ; hence, the top row of the

diagram followed by the right-most vertical arrow corresponds to �.R˝incq/.1/;.R˝incq/.u/
D �1˝q;u˝q . As the diagram shows, this has to coincide with incq D `˝ incq composed
with �u ˝ B , which is by definition �u ˝ incq .

We conclude the section with some results on boundary maps from K
gr
1 to Kgr

0 .

Proposition 5.8. Let � WR! S be a surjective, graded �-algebra homomorphism; write
I WD ker.�/. Assume that R is strongly graded. Let u 2 S1 be a unit. If Ou 2 R1 is a partial
isometry such that �. Ou/ D u, then the boundary map @WKgr

1 .R/! K
gr
0 .I / maps Œu� to

Œ1 � Ou� Ou� � Œ1 � Ou Ou��.

Proof. In the case of (hermitian) ungraded K-theory, a more general result is proven in the
proof of Lemma 11.1 in [11]; the former implies in particular that @0WK1.R1G /!K0.I1G /

maps Œu� to Œ1 � Ou� Ou� � Œ1 � Ou Ou��. The conclusion follows from the comparison square

K1.R1G / K0.I1G /

K
gr
1 .R/ K

gr
0 .I /:

@0

@



G. Arnone 22

Lemma 5.9. Let X be a graded set such that X1 ¤ ;. For any x 2X1, the algebra map

(5.4) �X W � ! †
gr
X ; t 7!

X
i�1

".x;iC1/;.x;i/;

is a kkgr-equivalence.

Proof. By Corollary 4.7, the map†!†
gr
X induced by the inclusion N�¹xº�N is a kkgr-

equivalence. The result is thus implied by the fact that �LW�!† is a kkgr-equivalence.

6. Poincaré duality

This section is devoted to the proof of the graded analogue of Poincaré duality, The-
orem 11.2 in [11], and its consequences. Although not needed in the rest of this manuscript,
we shall prove the result for any grading on L.E/ given by a weight function !WE1 ! G,
that is, the one given by the extension of the rule jvj D 1G , jej D !.e/, je�j D !.e/�1 for
each v 2 E0, e 2 E1. We shall write L!.E/ to emphasize that L.E/ is being considered
as a graded algebra with grading induced by !. Recall that the dual graph Et of a graph E
is given by vertex and edge sets

E0t D E
0 and E1t D ¹et W e 2 E

1
º;

and source and range functions

r.et / D s.e/ and s.et / D r.e/ .e 2 E1/:

Theorem 6.1. If E is a finite essential graph and !WE1 ! G a weight function, then
� ˝` L!.E/ is left adjoint to � ˝ �L!.Et / as endofuntors of kkgr. Thus, for each
R; S 2 Alg`

gr, there are isomorphisms

kkgr.R˝` L!.E/; S/ Š kk
gr.R; S ˝` �L!.Et //:

natural in both R and S .

Proof. We adapt the proof of Theorem 11.2 in [11] to the present setting, which we will
frequently cite in the argument below. Consider P�1 the set of paths of positive length; we
endow this set with a grading via the weighted length function e1 � � � en 7! !.e1/ � � �!.en/.
From now on, we omit the weight ! from the notation. Given v 2 E0, the set of paths
starting at v will be denoted P v . Those ending at v will be denoted Pv . Both are graded
sets viewed as subsets of P .

Put X D P�1 t ¹�º and set j � j D 1G . We shall view L.Et /˝ L.E/ and L.E/˝
L.Et / as graded algebras via the tensor product grading. The morphisms

�1.e/ D
h X
˛2Ps.e/

"˛e;˛

i
and �2.et / D

h X
˛2P r.e/

"e˛;˛

i
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in loc. cit. can be corestricted to morphisms with codomain†ıX which we denote in the same
way. Composing with the canonical map †ıX ! †

gr
X , we obtain a graded homomorphism

�WL.Et /˝ L.E/! †
gr
X . Put

� W �L.Et /˝ L.E/! `; � WD �L.Et /˝ L.E/
��
��! �†

gr
X

@
gr
X
�! `:

Tensoring by � on the right yields a natural map

kkgr.R; S ˝�L.Et //! kkgr.R˝ L.E/; S/; � 7! .S ˝ �/ ı .� ˝ L.E//:(6.1)

In the other direction, we consider the elements u1D
P
e2E1 e˝ e

�
t and pD

P
v2E0 v˝ v

as in the ungraded case, noting that they lie in the homogeneous component of degree zero of
L.E/˝L.Et /. Thus u1 D uC 1� p is a degree zero unit of L.E/˝L.Et / and we have
an induced map �u1 W�!L.E/˝L.Et /. By Lemma 5.4, the map �u1 2 kk

gr.`;�L.E/˝

L.Et // associated to Œu1�2KH
gr
1 .L.E/˝L.Et // equals }�;L.E/˝L.Et /.�u1/D�.�u1/}.

We now consider the composition

r WD `
}
�! ��

��u1
���! �˝ L.E/˝ L.Et /

�
�! L.E/˝�L.Et /:

This defines a natural map

kkgr.R˝ L.E/; S/! kkgr.R; S ˝�L.Et //; � 7! .� ˝�L.Et // ı .R˝r/:(6.2)

Similar to the ungraded case, to see that the compositions of (6.1) and (6.2) are bijec-
tions, it suffices to show that .� ˝�L.Et // ı .�L.Et /˝ r/ and .L.E/˝ �/ ı .r ˝
L.E// are isomorphisms in kkgr. We will indicate how to adapt the argument for the first
composition, the other one follows likewise. Define �W � ˝ L.Et /! †

gr
X ˝ L.Et / to be

the restriction of

�0 W `Œ t; t�1�˝ L.Et /! †
gr
X ˝ L.Et /; s ˝ 1 7! .�2 ˝ 1/.u/; 1˝ x 7! �1.x/˝ 1;

and consider the following permutations of tensor factors:

.243/ W �L.Et /˝��
�
�! �˝�˝ � ˝ L.Et /I

.23/ W �˝�˝†
gr
X ˝ L.Et /

�
�! �†

gr
X ˝�L.Et /:

A direct calculation shows that .� ˝�L.Et // ı .�L.Et /˝r/ agrees with the following
composition:

�L.Et /
�L.Et /˝}
�������! �L.Et /˝��

.23/ı.�˝�˝�/ı.243/
���������������! �†

gr
X ˝�L.Et /

@
gr
X˝�L.Et /

��������! �L.Et /:

Hence, to see that .� ˝�L.Et // ı .�L.Et /˝ r/ is a kkgr-isomorphism it suffices to
show that � is one. To this end we define, as in the ungraded case, the graded �-homo-
morphism

@ W L.Et /!
M
v2E0

†
gr
P v ; et 7!

X
˛2P v

s.e/

"˛e;˛:
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It lifts to a graded �-homomorphism C.Et /!
L
v2E0 �

ı

yP v
which restricts to the canonical

isomorphism K.Et / '
L
v2E0MP v . We thus have maps of triangles

(6.3)

`E
0

`E
0

L.Et / †`E
0

K.Et / C.Et / L.Et / †K.Et /

L
v2E0MP v

L
v2E0 �

gr
P v

L
v2E0 †

gr
P v †

L
v2E0MP v :

� inc � �

� @ �

�

Hence, the boundary map L.Et /! †K.E/ corresponds to the kkgr-class of @ and
have a triangle

`E
0 inc
�! L.Et /

@
�!

M
v2E0

†
gr
P v :

Tensoring with � and †gr
X respectively, we obtain two distinguished triangles in kkgr. To

conclude the proof that � is an isomorphism, we will complete � to a morphism of triangles
as in the following diagram, where both dashed arrows will be isomorphisms:

(6.4)

� ˝ `E
0

� ˝ L.Et / � ˝
L
v2E0 †

gr
P v

†
gr
X ˝ `

E0 †
gr
X ˝ L.Et / †

gr
X ˝

L
v2E0 †

gr
P v :

�˝inc

‡1 �

�˝@

‡2

†
gr
X˝inc †

gr
X˝@

We construct the left-hand arrow first using the map �X as defined in (5.4). Set ‡1 D
�X ˝ `

E0 , which is an isomorphism by Lemma 5.9. We shall now see that

�.S ˝ inc/ D .†ı
yX
˝ inc/ ı ‡1:

By additivity, it suffices to see that these compositions agree in each factor � ˝ v. In
view of Lemma 5.4, this boils down to checking whether 1 � �X .1/ ˝ v C �X .t/ ˝ v
and 1 � �.1˝ v/C �.t ˝ v/ represent the same class in KH gr

1 .†
gr
X ˝ L.Et //. As in the

ungraded setting, this follows from a direct computation using Proposition 5.8 and the fact
that, in this particular case, the boundary map @WKH gr

1 .†
gr
X ˝ L.Et //! KH

gr
0 .L.Et //

is an isomorphism.
Now we turn to defining the dashed right-most arrow. Write

� WD `¹t; t� W t�t D 1º;

where jt j D 1G . Recall that there is an isomorphism M1 Š ker.� ,! `Œ t; t�1�/ map-
ping "1;1 to 1 � t t�. As in the ungraded case, the restriction of �0 to `Œ t; t�1� ˝ 1 �
`Œ t; t�1�˝ L.Et / can be extended to a graded homomorphism O�W � ! †

gr
X ˝ L.Et /. Put

�0 WD ker.�
ev1
��! `/:
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Consider now the following morphisms of triangles:

M1L.Et / �0 ˝ L.Et / � ˝ L.Et / †M1L.Et /

M1L.Et / � ˝ L.Et / `Œ t; t�1�˝ L.Et / †M1L.Et /

†
gr
XK.Et / †

gr
XC.Et / †

gr
XL.Et / ††

gr
XK.Et /:

i˝L.Et /

d
�

O� j O� � 0 †. O� j/

Since �0 is trivially graded and by Lemma 7.3.2 in [14], it is kk-equivalent to zero as an
ungraded algebra, it follows that �0 Š 0 in kkgr. In particular, the right boundary map d of
the top triangle is an isomorphism. Together with (6.3), the diagram above says in particular
that we have a commuting diagram as follows:

� ˝ L.Et / †M1L.Et /

†
gr
XL.Et / ††

gr
XK.Et / †

gr
X†K.Et /

†
gr
X

L
v2E0 †

gr
P v †

gr
X†

L
v2E0MP v :

�

d
�

†. O� j/

†
gr
X .@/

�

�

�

From this we obtain an isomorphism �W††
gr
XK.Et /! †

gr
X

L
v2E0 †

gr
P v such that

†
gr
X .@/ ı � D � ı†.

O�j/ ı d:

Similarly, by the same argument as in the ungraded case we obtain a commuting diagram

L.Et /
L
v2E0 †

gr
P v

L
v2E0 †

gr
X

M1L.Et / †
gr
XK.Et /;

@

inc1˝L.Et / �

L
v incv
�

�
P
v2E0 †

gr
X˝qv

O� j

guaranteeing the existence of an isomorphism �0W
L
v2E0 †

gr
P v ! †

gr
XK.Et / such that

�0 ı†.@/ ı†.inc1˝L.Et //�1 D †. O�j/:

Further, as we have an isomorphism �LW �
�
�! †, it follows that�

�L ˝
M
v2E0

†
gr
P v

�
ı .� ˝ @/ D †.@/ ı .�L ˝ L.Et //

Thus, setting �00 D �L ˝
L
v2E0 †

gr
P v , we get

†
gr
X ı � D ��

0�00 ı .� ˝ @/ ı .�L ˝ L.Et //
�1
ı .† inc1˝L.Et //�1 ı d:
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To conclude, we will see that

.�L ˝ L.Et //
�1
ı .† inc1˝L.Et //�1 ı d D � id :

Indeed, by Lemma 3.11 we have a commuting diagram

M1L.Et / �0L.Et / �L.Et / †M1L.Et /

M1L.Et / �L.Et / †L.Et / †M1L.Et /;

d

�L˝L.Et /

ı

where ı D �.† inc1˝L.Et //. Therefore d D �.† inc1˝L.Et // ı .�L ˝ L.Et // and

†
gr
X ı � D ���

0�00 ı .� ˝ @/:

We may thus complete (6.4) by setting ‡2 D ���0�00. This finishes the proof.

Corollary 6.2. Let E and F be finite graphs with E essential. If f WL.E/! L.F / is a
graded algebra homomorphism, then the chain of isomorphisms

kkgr.L.E/; L.F //
(6.2)
��! kkgr.`; L.F /˝�L.Et //

(5.6)
��! KH1..L.F /˝ L.Et //0/

maps j.f / to the class of the unit

(6.5) uf WD 1˝ 1 �
X
v2E0

f .v/˝ v C
X
e2E1

f .e/˝ e�t :

Proof. The map in question is given by tensoring � 2 kkgr.L.E/; L.F // by �L.E/,
precomposing by

`
u1
�! �.L.E/˝ L.Et //

�
�! L.E/˝�L.Et /

and postcomposing again with the inverse of the isomorphism �.L.E/˝ L.Et //
�
�!

L.E/˝�L.Et /. This coincides with the composition .�f ˝ L.Et // ı u1; that is, the
map corresponding to the image of Œu1�2KH1..L.E/˝L.Et // underKH1.f ˝L.Et //.
It remains to note that uf D .f ˝ L.Et //.u1/.

Convention 6.3. For the rest of the article, we will assume that G D Z; in particular, we
will use additive notation for the sum of degrees of homogeneous elements.

6.1. Graded Morita invariance and source elimination

We record some observations on how one can extend Poincaré duality to non-necessarily
essential graphs. We first recall the notions of full idempotents and source elimination
(Definition 1.2 in [2]).

An idempotent p of a unital ring R is full if RpR D R, that is, if there exist n2N and
x1; : : : ; xn; y1; : : : ; yn 2 R such thatX

i2N

yipxi D 1:
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Notice that any unital ring homomorphism maps full idempotents to full idempotents. LetE
be a graph and v 2 sour.E/ n sink.E/. The source elimination graph Env is given by

E0
nv D E

0
n ¹vº and E1

nv D E
1
n s�1.v/; rEnv D r; sEnv D sjE0n¹vº:

By Lemma 8.3 in [11], the element p D 1 � v is a full homogeneous idempotent of
L.E/ and the image of the graph inclusion induced map incvWL.Env/! L.E/ is exactly
pL.E/p. As noted in p. 230 of [20], when ` is a field source elimination preserves the
(graded) Morita equivalence class of a Leavitt path algebra; this stems from the fact that,
by the graded uniqueness theorem, the map incv is injective and thus L.Env/ Š pL.E/p.
In this direction, we wish to prove that incv is a kkgr-isomorphism. This is implied by the
result below.

Proposition 6.4. Let R be a graded algebra. If p 2 R a homogeneous full idempotent of
degree zero, then the inclusion pRp � R is a kkgr-isomorphism.

Proof. We adapt Lemma 8.12 in [11]. Let x1; : : : ; xn; y1; : : : ; yn 2 R be such that 1 D
y1px1 C � � � C ynpxn. Taking degree zero components at both sides of this equality,
enlarging n if necessary, we may assume that all xi ; yj are homogeneous such that jxi j D
�jyi j. Substituting xi by pxi and x�i by yip if necessary, we may also assume that xi 2 pR
and yi 2 Rp. Put di D jyi j. For the rest of the proof, we shall consider the grading on Mn

given by the assignment i 7! di . Consider the elements

c D

nX
jD1

"j;1xj 2MnpR and r D

nX
jD1

"1;jyj 2MnRp

and notice that these elements are homogeneous and that jcjjr j D 1 and that c"1;1MnR"1;1r

� MnpRp. Further, sice rc D "1;1, it follows that wrcw0 D ww0 for each w; w0 2
"1;1MnR"1;1. We thus have a well-defined graded homomorphism

ad.c; r/ W "1;1MnR"1;1 !MnpRp; w 7! cwr;

and, by Proposition 2.10, upon composing with the inclusionMn.incp/WMnpRp ,!MnR,
it coincides in kkgr with the inclusion "1;1MnR"1;1 ,!MnR. Therefore, if we define

� W R Š "1;1MnR"1;1
ad.c;r/
�����!MnpRp;

it satisfies j.Mn.incp/�/D j.�R1 /. In particular,Mn.incp/� is a kkgr-isomorphism. A sim-
ilar argument applied to cp; rp 2MnpRp says that the composition

� incp D pRp Š "1;1MnpRp"1;1
ad.cp;pr/
������!MnpRp

agrees in kkgr with �pRp1 ; hence � incp is also a kkgr-isomorphism. Finally, this says
that � is a kkgr-isomorphism which, in turn, proves that j.incp/ D j.�/�1j.�

pRp
1 / is an

isomorphism as desired.

Corollary 6.5. Assume that ` is a field. If E is a graph with at least two vertices and
v 2 sour.E/ n sink.E/, then the inclusion L.Env/! L.E/ is a kkgr-isomorphism.
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Remark 6.6. By Theorem 5.3 in [3], two graded unital rings are graded Morita equivalent
if and only if there exists a graded set structure on N, say X D .N; d /; d WN ! G, such
that MXS ŠM1R as graded algebras. (As per our conventions, here M1R means MNR

where N is equipped with the trivial grading). In particular, this is a way to show that
G-stable functors are Morita invariant.

The results of this section say that given a regular graph E, upon finitely many source
eliminations we may find an essential graph F such that we have a kkgr-isomorphism
L.F /!L.E/. Theorem 6.1 then implies that tensoring byL.E/ is left adjoint to tensoring
by �L.Ft /.

7. The relationship between kkgr-maps and graded algebra maps

Consider E a finite graph and the Cohn extension (CE ). Write @E and ıE for its left and
right boundary. By Corollary 11.9 in [9], in kkgr we have a triangle

(7.1) `reg.E/
I��AtE
�����! `E

0 inc
�! L.E/:

In particular, for a given graded algebra R, applying kkgr.�; R/ to (7.1) yields an exact
sequence

kkgr.†E
0
; R/ kkgr.†reg.E/; R/

kkgr.L.E/;R/

kkgr.`E
0
; R/ kkgr.`reg.E/; R/:

.†.I��AtE //
�

ı�E

inc�
.I��AtE /

�

From this sequence we can obtain, by taking appopriate kernels and cokernels, a short
exact sequence involving kkgr.L.E/;R/. This is what in the ungraded case is referred to
as the universal coefficient theorem (UCT). Recall that the dual Bowen–Franks module
of E is BF_gr.E/ D coker.I t � �AE /. If E is essential, then AE is square and AtE D AEt ;
hence BFgr.Et / D coker.I � �AtEt / D coker.I t � �AE / D BF_gr.E/. With this notation
in place, we state a theorem which, in particular, contains a graded version of the UCT.

Theorem 7.1 (UCT). Let E be a finite graph and R a graded algebra. Put ˝ D ˝ZŒ��

and hom D homZŒ��. There is a diagram with exact top-row

0 BF_gr.E/˝KH
gr
1 .R/ kkgr.L.E/;R/ hom.BFgr.E/;KH

gr
0 .R// 0

ŒL.E/;R�

d ev

j

can� ıKH gr
0

such that:
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(i) The map j is the factorization of j through the category of graded `-algebras with
graded homomorphisms up to graded polynomial homotopy.

(ii) The map ev corresponds to the assignment between hom-sets of the functor

kkgr.`;�/ D KH
gr
0 ;

followed by precomposition by the canonical map canWBFgr.E/! KH
gr
0 .L.E//.

(iii) The map d is obtained from the right boundary map ıE WL.E/!†reg.E/, by passing
the composition

ZŒ��reg.E/
˝ZŒ�� KH

gr
1 .R/

�
�! kkgr.†reg.E/; L.F //

ı�

�! kkgr.L.E/; L.F //

to the quotient module BF_gr.E/˝ZŒ�� KH
gr
1 .R/.

(iv) If E is an essential graph, then for any v 2 E0 and unit z 2 R represented by
a map �z W `! �R, the isomorphism kkgr.L.E/; R/ Š kkgr.`;�.R˝ L.Et // Š

KH
gr
1 .R˝ L.Et // maps d.v ˝ z/ to Œ1˝ 1 � 1˝ v C z ˝ v�.

Proof. We prove (iv), the other assertions are proved in the same way as in ungraded case;
see, e.g., Corollary 7.20 in [13] and Theorem 12.1 in [11]. Assume that E is essential.
Recall that �z corresponds to an arrow V`;R.�z/W†! R via the assignment (3.6). Thus, if
pvW `

E0 ! ` denotes the projection to the v-th coordinate, then d.v ˝ �z/ coincides with
the composition

L.E/
ı
�! †E

0 †pv
��! †

V`;R.�z/
�����! R:

Recall also that the arrow above is assigned to an element kkgr.`;�.R˝ L.Et // in the
following way: first, one tensors by L.Et /; next one applies the loop functor � and, at last,
one precomposes by the arrow �u1 W `! �.L.E/˝ L.Et // given by the degree zero unit
u1 2 L.E/˝ L.Et /. Call this element � WD �.d.v ˝ �z/˝ L.Et // ı �u1 .

Notice that, by Remark 3.10 and the definition of (3.6), we have ıE ˝ L.Et / D
ıC.E/˝L.Et / and V`;R.�z/˝ L.Et / D V`;R˝L.Et /.�z ˝ L.Et //. We shall drop the sub-
scripts under V to ease the notation, and write ı D ıC.E/˝L.Et /, @ D @C.E/˝L.Et /, zpv D
pv ˝ L.Et /, and z�z D �z ˝ L.Et /. Consider now the following diagram:

�L.E/˝L.Et / �†˝`E
0
˝L.Et / �†˝L.Et / �R˝L.Et /

�.L.E/˝L.Et // `E
0
˝L.Et / L.Et / �R˝L.Et /:

�ı �† zpv �V. z�z/

@

�L˝`
E0 ˝L.Et /

zpv

�L˝L.Et /

z�z

Note that the composition of the top row with �u1 agrees with �. As in the ungraded
case (proof of Lemma 12.3 in [11]), one checks that the boundary of u1 is the class ofP
v2E0 �v ˝ v, and thus

� D �z ˝ L.Et / ı pv ı
� X
v2E0

�v ˝ v
�
D �z ˝ incv :

Finally, by Lemma 5.7, we have �u ˝ incv D �1˝v;z˝v which corresponds to the class in
KH

gr
1 .R˝ L.Et // of the unit 1˝ 1 � 1˝ v C z ˝ v, as desired.
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We now want to use the UCT to investigate the relationship between graded algebra
maps between Leavitt path algebras and morphisms between them in kkgr. First, we set
some conventions.

Definition 7.2. A regular graph E is primitive if its adjacency matrix is primitive (Defini-
tion 4.5.7 and Theorem 4.5.8 in [22]), that is, if there exists N � 1 such that .ANE /v;w > 0
for all v;w 2 E0.

Remark 7.3. If E is a primitive graph, then by definition there exists N � 1 such that
there is a path of length N between each pair of vertices. In particular, primitive graphs are
essential.

Our interest for primitive graphs stems from the following.

Proposition 7.4. Assume that ` is a field. If E is a primitive graph, then for each e 2 E1,
the idempotent ee� 2L.E/0 is full as an element of L.E/0.

Proof. Recall that if we put

L.E/0;n D span`¹˛ˇ
�
W r.˛/ D r.ˇ/; j˛j D jˇj D nº

for each n � 0, then L.E/0 D
S
n�0L.E/0;n. Recall also that, writing Pv;n for the set of

paths of length n ending at a vertex v, there are isomorphisms

(7.2) L.E/0;n Š
M
v2E0

MPv;n ; ˛ˇ� 7! "˛;ˇ 2MPr.˛/;n ;

for each n � 0.
Since L.E/ is an inreasing union of its unital subalgebras L.E/0;n, to see that ee� 2

L.E/0 is full it suffices to see that it is so in L.E/0;n for some n2N. Let N � 1 be such
that there exists a path of length N between every pair of vertices. Observe that

ee� D
X

s.˛/Dr.e/;j˛jDN

e˛.e˛/� D
X
v2E0

X
s.˛/Dr.e/;j˛jDN;r.˛/Dv

e˛.e˛/�:

Thus, under the isomorphism (7.2) applied to n D N C 1, the idempotent ee� is mapped
to a sum of diagonal matricesX

v2E0

X
s.˛/Dr.e/;j˛jDN;r.˛/Dv

"e˛;e˛:

Given that matrix rings over a field are simple algebras, to conclude it suffices to prove
that the coordinate of element above corresponding to each algebra MPv;NC1 is non-zero.
This amounts to showing that for each set ¹e˛ W r.˛/ D v; j˛j D N º is non-empty, which
is implied by the fact that .ANE /r.e/;v > 0 for all v 2 E0.

Remark 7.5. In the proof of Proposition 7.4, we only need that for each vertex v in
the graph E there exists some Nv � 1 such that the v-th row of ANE has positive entries.
However, if E is essential, this condition is equivalent to E being primitive. Indeed, put
N D maxu2E0 Nu and fix v; w 2 E0. Since E is essential, inductively we may find a
path ˇ of lengthN �Nw ending at w. By hypothesis we also have a path ˛ of lengthNs.ˇ/
from v to s.ˇ/; hence ˛ˇ is a path of length N from v to w.
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Convention 7.6. From now on, we shall assume that ` is a field and all graphs considered
are primitive.

Define

kkgr.L.E/; L.F //1

D ¹� 2 kkgr.L.E/; L.F // W ev.�/ is an pointed preordered module morphismº;

and write ŒL.E/; L.F /�1 for the set of graded unital algebra homomorphisms L.E/!
L.F / modulo graded polynomial homotopy. Our next objective is to study the map

(7.3) j W ŒL.E/; L.F /�1 ! kkgr.L.E/; L.F //1:

To proceed further in the understanding of kkgr.L.E/; L.F //1, we first need to under-
stand the Kgr

1 group of a Leavitt path algebra. To do this, we first establish some remarks
on ultramatricial algebras and corner skew Laurent polynomial rings.

7.1. K1 of ultramatricial algebras

As pointed out in Remark 2.13, when E is a regular graph, its associated Leavitt path
algebra is strongly graded and thus KH gr

1 .L.E// D KH
gr
1 .L.E/0/. If in addition ` is a

field, then we may replace K for KH . This allows us to compute the graded K-theory
of L.E/ in terms of its subalgebra of homogeneous elements of degree zero.

The advantage of this passage to L.E/0 is that the latter algebra is ultramatricial, that
is, it is a countable increasing union of matricial algebras. For this reason, we wish to prove
some generalities regarding the first K-theory group of a unital ultramatricial algebra. In
what follows we will write Gab for the abelianization of a group. In particular, if R is a
unital ring then K1.R/ D GL.R/ab. The field of two elements will be denoted F2.

The following observation is straightforward from the definition of ultramatricial
algebra.

Lemma 7.7. Let F;GWAlg`! Grp be two additive functors which preserve finite products
and filtering colimits and let �WF ) G be a natural transformation. The following state-
ments are equivalent:

(i) For each unital ultramatricial algebra R, the map �R is an isomorphism.

(ii) For each n2N, the map �Mn.`/ is an isomorphism.

Proposition 7.8. Assume that ` is a field different from F2. If R is a unital ultramatricial
`-algebra, then the canonical map R�ab ! K1.R/ is an isomorphism.

Proof. By Lemma 7.7, it suffices to prove so for R DMn.`/ for each n2N. Notice that
Mn.`/

� D GLn.`/ and ŒGLn.`/;GLn.`/� D SLn.`/, since ` ¤ F2.
We know that the (non-unital) inclusion of ` in the top-left corner induces an iso-

morphism in K1, mapping � 2 `� D K1.`/ to the class of ŒIn � "1;1 C �"1;1�. To con-
clude, we note that this isomorphism factors as the inverse of the determinant induced
map detW GLn.`/=SLn.`/ ! `�, followed by the comparison map GLn.`/=SLn.`/ D
Mn.`/

�
ab ! K1.Mn.`//.
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Given a functor F WAlg` ! Grp, write

F 0.A/ D F.ev1/.ker.F.AŒt �/
F.ev0/
����! F.A///:

Note that, since ev1WAŒt�! A is a retraction for any algebra A, the homomorphism
F.ev1/ is a retraction; in particular, it is surjective. Hence, it maps the normal subgroup
ker.F.ev0// of F.AŒt �/ to a normal subgroup of F.A/. This justifies the fact that

�0F.A/ WD F.A/=F
0.A/

is a group. Further, this assignment can be extended to a functor Alg`!Grp by the universal
properties of kernels and images.

In Proposition 2.8 of [12], Cortiñas and Montero show that the Karoubi–Villamayor
K1-group of a purely infinite simple ring R can be computed as

�0R
�
D R�=¹u.1/ W u 2 .RŒt �/�; u.0/ D 1º:

In our context, we obtain a similar conclusion for ultramatricial algebras. First, we need a
lemma.

Lemma 7.9. If ` is a field, then .Mn.`/
�/0 D SLn.`/.

Proof. We prove both inclusions. Since SLn.`/ is generated by elementary matrices, it
suffices to show that In C �"i;j 2 .Mn.`/

�/0 for each � 2 `�, for which it suffices to
consider the elementary matrix

In C �t"i;j 2 GLn.`Œt �/ DMn.`Œt �/
�
D .Mn.`/Œt �/

�:

For the converse, let u 2Mn.`/Œt �DMn.`Œt �/ be an invertible matrix such that u.0/D In.
We have to prove that u.1/ 2 SLn.`/. Since `Œt � is an integral domain, a matrix inMn.`Œt �/

is a unit if and only if det.u/ 2 .`Œt �/� D `�. In particular, det.u/ is constant and thus

det.u.1// D det.u/.1/ D det.u/.0/ D det.u.0// D det.In/ D 1:

Proposition 7.10. Assume that ` is a field. If ` ¤ F2, then the comparison map R�
ab
!

�0R
� ! K1.R/ is an isomorphism for every unital ultramatricial algebra R. If ` D F2,

then K1.R/ D �0R� D 1.

Proof. Since .Mn.`/
�/0 D SLn.`/ for each n2N, we have

�0.Mn.`/
�/ D GLn.`/=SLn.`/ D

´
GLn.`/ab j`j > 2;

1 j`j D 2:

This together with Lemma 7.7 prove the first part of the lemma and also that �0R� D 1 for
each unital ultramatricial algebraR over F2. It remains to see thatK1.R/ is also trivial when
`DF2, which follows from matricial stability, sinceK1.Mn.F2//ŠK1.F2/DF�2 D 1.

Definition 7.11. Let E be a finite graph and �WL.E/! R a graded unital homomorphism.
Write

R� WD
M
e2E1

�.ee�/R0�.ee
�/:
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Lemma 7.12. Assume that ` is a field. If R is a unital ultramatricial algebra and e 2 R
an idempotent, then eRe is a unital ultramatricial algebra.

Proof. LetRD
S
n�1Rn be an increasing union of unital, matricial subalgebras. Since the

union is increasing, we may assume without loss of generality that 1R; e 2R1; consequently,
eRe D

S
n�1 eRne.

It suffices to show that each algebra eRne is matricial, that is, to show that the corner of
any idempotent in a matricial algebra is again matricial. LetADMk1.`/� � � � �MkN .`/ be
a matricial algebra and .e1; : : : ; eN / 2 Idem.A/. Since eAe D

QN
iD1 eiAiei , we may prove

that any corner of a matrix algebra is again a matrix algebra. In other words, we may assume
that N D 1. Put k D k1 and e D e1. Since ` is a field and an idempotent matrix represents
a linear projector on `k , there is an invertible matrix u such that u�1euD

Pj
sD1 "s;s DW pj

for some j 2 ¹0; : : : ; kº; conjugation by u maps e to pj and eMk.`/e to pjMk.`/pj ,
which is isomorphic to Mj .`/.

Proposition 7.13. Let E be a primitive graph and R a strongly graded algebra such
that R0 is ultramatricial. Each graded unital algebra homomorphism �W L.E/ ! R

induces an isomorphism

(7.4)
.R�/

�
ab D

Y
e2E1

.�.ee�/R0�.ee
�//�ab ! K1.R0/

E1
Š K

gr
1 .R/

E1 ;

.ze/e2E1 7! .Œ1 � �.ee�/C ze/�/e2E1 :

Proof. It follows from Lemma 7.12 and Proposition 7.8 that K1.�.ee�/R0�.ee�// can be
computed as .�.ee�/R0�.ee�//�ab for all e 2 E1. By Proposition 7.4, we know that each
element ee� is a full idempotent ofL.E/0 and so, since � is a graded unital homomorphism,
it follows that �.ee�/ is a full idempotent of R0. Consequently, each corner inclusion
�.ee�/R0�.ee

�/! R0 induces an isomorphism at the level ofK1 groups. This concludes
the proof.

7.2. The shift action for corner skew Laurent polynomials

Let R be a corner skew Laurent polynomial ring, that is, a Z-graded ring together with
elements tC 2 R1, t� 2 R�1 satisfying t�tC D 1 (Lemma 2.4 in [4]). Our motivating
example is that of the Leavitt path algebra of an essential graph, see p. 210 in [6]; indeed,
if one selects one edge ev with range v for each v 2 E0, then the elements

tC D
X
v2E0

ev and tl D
X
v2E0

e�v

yield a corner skew Laurent polynomial ring structure on L.E/.
Hazrat proves in Proposition 1.6.6 of [21] that p WD tCt� is a full idempotent if and only

if R is strongly graded. When this is the case, we know thatKgr
� .R/ is naturally isomorphic

to K�.R0/; we wish to understand to what kind of action the shift action translates to when
viewed on K�.R0/.
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In the case of the Leavitt path algebra of an essential graph E, Ara and Pardo prove in
Lemma 3.6 of [6] that the action on L.E/0 is the one induced by the (non-unital) corner
homomorphism

˛ W L.E/0 ! L.E/0; x 7! tCxt�:

The proof relies on the fact that for L.E/0, the Grothendieck group is generated by .1� 1/-
idempotents. In other words, instead of considering idempotents for all finite matrices, it
suffices to do so for the ones of size 1.

Remark 7.14. We remark that in Lemma 3.6 of [6], the shift agrees with the inverse of the
map induced by ˛. This difference is explained by the fact that, if one builds Kgr

0 for right
modules instead of left modules, the isomorphism maps the shift action of � to that of ��1.

We will extend this result toK1, for which we will use thatK1.L.E/0/ is generated by
units. Since this is true for any ultramatricial algebra, as noted in Proposition 7.8, we can
in fact extend this to a statement on any strongly graded corner skew Laurent polynomial
ring whose degree zero subring is ultramatricial. Namely, we prove the following.

Theorem 7.15. Let .R; tC; t�/ be a strongly graded, corner skew Laurent polynomial ring.
Consider ˛WR0 ! R0 the homomorphism given by x 7! tCxt� and put p DW ˛.1/. For
any x 2 R�, write .R0; x/ for the class in K1 given by the (left) module R0 together with
right multiplication by x. We have the following equality on K1.R0/:

Œ.R1; x/� D Œ.R0; 1C p � ˛.x/�:

Proof. Observe that R1 D R0 tC and that right multiplication by t� yields an isomorphism
R1

�
�! R0p whose inverse in right multiplication by tC. It follows that Œ.R1; x/� D

Œ.R0p; ˛.x//�. Now, the following diagram with exact rows,

R0.p � 1/ R0 R0p

R0.p � 1/ R0 R0p;

��p

��.1�pC˛.x// ˛.x/

��p

says that

Œ.R0; 1C p � ˛.x//� D Œ.R0.p � 1/; 1/�C Œ.R0p; ˛.x//� D Œ.R0p; ˛.x//�:

We remark that the following corollary applies to Leavitt path algebras of essential
graphs, which is our main interest for this result.

Corollary 7.16. Let .R; tC; t�/ be a strongly graded, corner skew Laurent polynomial ring.
Assume that ` is a field and R0 is a unital ultramatricial algebra. Writing ˛WR0 ! R0
for the homomorphism given by x 7! tCx t� and DadeWK1.R0/! K

gr
1 .R/ for the iso-

morphism of (2.1), the following diagram is commutative:

K
gr
1 .R/ K

gr
1 .R/

K1.R0/ K1.R0/:

�

Dade

K1.˛/

Dade
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Proof. By Proposition 7.8 applied to R0, an element in K1.R0/ can be represented by
the class of the free module R0 together with the automorphism �uWR0 ! R0 of right
multiplying by a unit u; we denote this by .R0; u/.

The map Dade is induced by tensoring by R ˝R0 �. Applying it to .R0; u/ gives
.R˝R0 R0; u/, which is equal in Kgr

1 .R/ to the class of .R; u/, via the canonical (graded)
isomorphism R ˝R0 R0 Š R. The shift functor maps .R; u/ to .RŒC1�; u/. Finally, the
inverse of the map Dade takes the class of the latter to its 0-th component, resulting in
Œ.R1; u/�. This is exactly the action induced on units by ˛, as shown in Theorem 7.15.

Remark 7.17. Let .R; tC; t�/ be a corner skew Laurent polynomial ring, and let f WR! S

be a unital graded algebra homomorphism. If we put s� D f .t�/ and sC D f .t�/, then
.S; sC; s�/ is a corner skew Laurent polynomial ring. Further, if R is strongly graded, then
so is S (see Proposition 1.1.15 (4) in [21]).

7.3. Surjectivity of the map (7.3)

We are now in position to prove that the map (7.3) is surjective. To do this, we first define
a certain modification of a graded algebra map L.E/! R by an element of K1.R0/, cf.
Equation (5.10) in [12] and Equation (13.6) in [15].

Definition 7.18. Let E be a primitive graph. Given �WL.E/! R a graded algebra homo-
morphism, we define the following group epimorphism:

U W .R�/
�
ab

(7.4)
��! K1.S0/

E1 s�
�! K1.S0/

E0
! BF_gr.E/˝ZŒ�� KH

gr
1 .S/(7.5)

z 7�!
Y
e2E1

s.e/˝ .1 � �.ee�/C ze/:

Given z D .ze/e2E1 2 .R�/
�, we associate to it a graded unital map �z WL.E/ ! R

defined by

(7.6)
�z WL.E/! L.F /; �.e/ D ze �.e/;

�z.e
�/ D �.e�/z�1e ; �u.v/ D �.v/ .v 2 E

0; e 2 E1/:

Lemma 7.19. If � 2 kkgr.L.E/; L.F //1, then there exist a graded unital algebra map
�WL.E/! L.F / and x 2 BF_gr.E/˝ZŒ�� KH

gr
1 .L.F // such that

j .�/C d.x/ D �:

Proof. By Theorem 6.1 in [8] (see also Theorem 3.2 in [25]), there exists a unital graded
algebra map �WL.E/! L.F / such that Kgr

0 .�/ D ev.�/. Since Kgr
0 .�/ D ev j .�/, this

says that j .�/ � � 2 ker.ev/ D im d , from which the lemma now follows.

Lemma 7.20. Let E be a primitive graph and let R be a graded algebra such that R0 is a
unital ultramatricial algebra. If �WL.E/! R is a unital graded homomorphism, then for
each z D .ze/e2E1 2 R�� , we have

d.U.Œz�//C j.�/ D j.�z/:
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Proof. Employing the notation of (6.5), one checks that u�z D u� � U.z/. Part (iv) of
Theorem 7.1 and Corollary (6.2) imply that j.�z/ D j.�/C d.U.Œz�//.

Corollary 7.21. The map (7.3) is surjective.

Proof. Let � 2 kkgr.L.E/; L.F //1. By Lemma 7.19, there exist �WL.E/ ! L.F / a
graded unital algebra homomorphism and x 2 BF_gr.E/ ˝ZŒ�� KH

gr
1 .L.F // such that

j .�/C d.x/ D �. Since (7.5) is surjective, there exists z 2 L.F /� such that x D ŒU.z/�,
and thus � D j .�z/ by Lemma 7.20.

7.4. Injectivity of the map (7.3)

Next we analyze the injectivity of j . We now consider the set ŒL.E/;L.F /�1;M2 of graded
unital mapsL.E/!L.F / up to gradedM2-homotopy. As we shall presently see, restricted
to this quotient of ŒL.E/; L.F /�1, the map j becomes injective.

Lemma 7.22. With notation as in Lemma 7.20, if v; u2R�� are such that Œv� D Œu� in
.R�/

�
ab, then �v � �u.

Proof. By Proposition 7.10, there exist

.Ze/e2E1 2
Y
e2E1

.�.ee�/R0�.ee
�//Œt �/� D

Y
e2E1

.�.ee�/.SŒt �/0�.ee
�///�

such thatZe.0/D ue andZe.1/D ve . If we compose � with the inclusion i WS ! SŒt � and
then consider h WD .i ı �/Z , it follows that evi ı h D �Z.i/; this concludes the proof.

Lemma 7.23. Let E be a primitive graph and �WL.E/ ! R a graded unital homo-
morphism. Assume that R0 is ultramatricial. Given e; f 2 E1 such that r.f / D s.e/ and
u 2 �.ee�/R0�.ee

�/�, we have that

� � Œ1 � �.ee�/C u� D Œ1 � �.fe.fe/�/C �.f /u�.f �/�

in K1.R0/. In particular, for any other g 2 E1 such that r.g/ D s.e/, we have

Œ1 � �.fe.fe/�/C �.f /u�.f �/� D Œ1 � �.ge.ge/�/C �.g/u�.g�/�:

Proof. For each vertex v 2 E0 n ¹s.e/º, let fv be an edge with range v; their existence
is guaranteed by the essentiality hypothesis on E. Set fs.e/ WD f . As pointed out in [6],
p. 203, the elements tC D

P
v2E0 fv and t� D t�C satisfy t� tC D 1, yielding a corner skew

Laurent polynomial structure on L.E/. Further, this gives such a structure on R via the
elements �.tC/ and �.t�/.

As per Theorem 7.15, the action of � on K1.R0/ can be described as the one induced
by the automorphism

˛ W R0 ! R0; x 7! �.tC/x�.t�/:

Hence

� � Œ1 � �.ee�/C u� D Œ1 � �.tCt�/C �.tC/.1 � �.ee
�/C u/�.t�/�

D Œ1 � �.tC/.�.ee
�/ � u/�.t�/�:
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Since �.ee�/;u 2 �.ee�/R0�.ee�/, it follows that fve D 0 unless v D s.e/, that is, unless
fv D f . Thus

Œ1 � �.tC/.�.ee
�/ � u/�.t�/� D Œ1 � �.fe.fe/

�/C �.f /u�.f �/�;

concluding the proof.

Lemma 7.24. Let E be a primitive graph and let R be a graded algebra such that R0
is an ultramatricial algebra. Let �WL.E/! R be a graded algebra map. If the element
z 2

Q
e2E1.�.ee

�/R0�.ee
�//� is such that d.U.Œz�// D 0, then � �ad �z .

Proof. Consider the homomorphism

�WR� ! R� ; a 7!
X
e2E1

�.e/a�.e�/:

As in the ungraded case, writing Be;f D ır.e/;s.f / and using Lemma 7.23, one checks that
the following square is commutative:

K1.R�/ K1.R�/

K1.R/
E1 K1.R/

E1 :

�

�

�

�B

Writing Es for the graph with adjacency matrix B , we get a commutative diagram

K1.R�/ K1.R�/

K1.R/
E1 K1.R/

E1 BF_gr.Es/˝Z KH
gr
1 .R/

K1.R/
E0 K1.R/

E0 BF_gr.E/˝Z KH
gr
1 .R/ kkgr.L.E/;R/:

�

1��

�

s�

I��B

s�

I��AE

The rightmost horizontal map is injective by Theorem 7.1. Further, the map induced by s�
at the level of dual Bowen–Franks modules is an isomorphism; its inverse is induced by r�.

Now, since @.U.Œz�// D 0, there exists Œ�� 2 K1.S�/ such that Œ��.�/�1� D Œz�. By
Lemma 7.22, this says that �z � ���.�/�1 . Finally, like in the ungraded case, one checks
that ���.�/�1 D ad.v/ ı �.

Theorem 7.25. Assume that ` is a field. Let E and F be two primitive graphs. Given
two unital graded homomorphisms f; gWL.E/ ! L.F /, the following statements are
equivalent:

(i) j.f / D j.g/;
(ii) f �ad g ;
(iii) f �M2 g.
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Proof. The fact that (ii) implies (iii) is the content of Lemma 2.9. Since j is matricially
stable and graded homotopy invariant, it follows that (iii) implies (i); hence, it remains to
show that (i) implies (ii). Suppose that j.f / D j.g/. In particular, Kgr

0 .f / D ev ıj.f /
agrees with Kgr

0 .g/ and therefore, by Corollary 3.5 in [8], there exists a homogeneous unit
of degree zero u 2R such that ad.u/ ı f and g agree onD.E/1 D span`¹ee

� W e 2 E1º D

span`¹ee
�; v W e 2 E1; v 2 E0º. Since ad.u/ ı f �ad f , we may without loss of generality

assume that f and g agree on D1.E/.
Now, if we put ze D g.e/f .e�/, for each e 2 E1, these are units in each corner

f .ee�/L.F /0f .ee
�/ with inverse f .e/g.e�/. Using the notation of Lemma 7.20, it fol-

lows that g D fz and d.U.Œz�//D j.fz/� j.f /D j.g/� j.f /D 0. Thus, we can apply
Lemma 7.24 to obtain that f �ad g.

Corollary 7.26. Assume that ` is a field. If E and F are two primitive graphs, then the
map j W ŒL.E/; L.F /�1;M2 ! kkgr.L.E/; L.F //1 is bijective.

Proof. Surjectivity was proven in Corollary 7.21, while injectivity follows from The-
orem 7.25.

8. Graded homotopy classification

We conclude with a graded homotopy classification theorem. To simplify its statement,
we shall say that two algebras are unitally graded homotopy equivalent if there exists a
unital graded homotopy equivalence between them whose graded homotopy inverse is also
a unital homorphism.

Theorem 8.1. Let ` be a field and E and F two primitive graphs. The following statements
are equivalent:

(i) The pointed, preordered ZŒ��-modules

.BFgr.E/;BFgr.E/C; 1E / and .BFgr.F /;BFgr.E/C; 1F /

are isomorphic.

(ii) There exists an isomorphism � 2 kkgr.L.E/; L.F //1.

(iii) The algebras L.E/ and L.F / are unitally graded homotopy equivalent.

Proof. In Theorem 13.1 of [9] it was proved that, in the surjection of Theorem 7.1, one
can lift isomorphisms at the level of Kgr

0 to kkgr-isomorphisms. Since by definition a
lifting of a pointed preordered module map lies in kkgr.L.E/; L.F //1; this proves the
implication (i)) (ii).

Next assume (ii) and consider the inverse of �, noting that ��1 2 kkgr.L.F /; L.E//1.
By Corollary 7.26, there exist unital algebra homomorphisms f WL.E/ ! L.F / and
gWL.F /! L.E/ such that j.f / D � and j.g/ D ��1. In particular, j.fg/ D idL.F / and
j.gf / D idL.E/, and thus Theorem 7.25 says that there exist units u 2 L.F /0, v 2 L.E/0
such that fg � ad.u/ and gf � ad.v/. This readily implies that f is a graded homotopy
equivalence. We have thus proved that (ii) implies (iii).
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Finally, we prove that (iii) implies (i). Let f WL.E/! L.F / be a unital graded homo-
topy equivalence. The map Kgr

0 .f / is a pointed, preordered module map between the
Bowen–Franks modules of E and F , it suffices to see that it is an isomorphism. To prove
this, we note that Kgr

0 agrees with KH gr
0 for L.E/ and L.F / as per Remark 2.12 and that

KH
gr
0 maps graded homotopy equivalences to isomorphisms. This concludes the proof.

By Theorem 8.1, the primitive case of Conjecture 1.1 is equivalent to the following.

Conjecture 8.2. Let ` be a field. If E and F are primitive graphs, then L`.E/ and L`.F /
are graded isomorphic if and only if they are unitally graded homotopy equivalent.
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