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Identification of non-isomorphic 2-groups with dihedral
central quotient and isomorphic modular group algebras

Leo Margolis and Taro Sakurai

Abstract. The question whether non-isomorphic finite p-groups can have isomor-
phic modular group algebras was recently answered in the negative by García-Lucas,
Margolis and del Río [J. Reine Angew. Math. 783 (2022), 269–274]. We embed these
negative solutions in the class of two-generated finite 2-groups with dihedral central
quotient, and solve the original question for all groups within this class. As a result,
we discover new negative solutions and simple algebra isomorphisms.

Introduction

The modular isomorphism problem asks whether non-isomorphic finite p-groups can have
isomorphic group algebras over a field of positive characteristic p. It seems to have first
been raised in the 1950s and appears in an influential survey by Brauer (Problem 2 and
Section 9 of Supplements in [3]). Over the following decades, positive results for many
classes of finite p-groups were published, cf. [18] for an overview. However, a few years
ago, García-Lucas, Margolis and del Río [11] discovered the first non-isomorphic finite
2-groups that have isomorphic group algebras over an arbitrary field of characteristic 2.

Nevertheless, the problem remains poorly understood in general and open for odd
primes, for instance. Our goal in this article is to understand better how the negative
solutions presented in [11] come to be. These groups were discovered during an effort
to solve the modular isomorphism problem for two-generated finite p-groups with cyclic
derived subgroup, after these had been classified by Broche, García-Lucas and del Río [4].
Although considerable effort has been devoted to solving the problem in this wide class,
it has not been achieved completely so far [9, 10]. We consider the negative solutions
from another viewpoint and embed them in a natural class of groups for which we can
completely solve the modular isomorphism problem.

We call a non-abelian group that is generated by two elements of order 2 dihedral.
For a group G, we call the quotient by its center the central quotient of G. In this arti-
cle, we study the modular isomorphism problem for two-generated finite 2-groups with
dihedral central quotient. This class of groups includes the negative solutions presented
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in [11], and we are able to identify all negative solutions to the problem –including new
counterexamples– within this class of groups.

Theorem A. Let G and H be finite 2-groups and F a field of characteristic 2. Suppose
that G is two-generated and the central quotient of G is dihedral. Then FG Š FH but
G 6Š H if and only if for some integers n > m > ` � 2, up to exchange,

G Š ˝x; y; z j x2n D 1; y2m D 1; z2
` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2 ˛;

H Š ˝a; b; c j a2n D 1; b2m D a2m ; c2` D 1; Œb; a� D c; Œc; a� D c�2; Œc; b� D c�2 ˛:
The known counterexamples to the modular isomorphism problem presented in [11]

correspond to the case ` D 2. It should be emphasized, however, that our algebra isomor-
phisms are simpler than the original ones and it makes the proof cleaner. This is largely
due to the change of presentations of the groups, which is natural in our class.

For the proof of Theorem A, we first give presentations of the groups in our target
class. We then establish an isomorphism between the algebras of the above groups in
Theorem 3.1. The proof of this isomorphism can be read independently of the rest of this
article, as it only needs the presentations of the groups. We remark that the proof cannot be
carried over to odd primes, or at least not in the most naive way (cf. Remark 3.5). Finally,
we prove that no more negative solutions exist within the class of two-generated finite
2-groups with dihedral central quotient. This is the most challenging part of the article,
and what can be considered standard methods to attack the problem turn out to be insuf-
ficient to prove this. We hence introduce a procedure that could be called a “group base
approximation”. It allows us, after considerable effort, to solve the modular isomorphism
problem completely within our class. This procedure could also be used for other classes
of groups with some adjustments. These positive solutions for most groups in the studied
class give some insights why minimal changes to the defining relations of the negative
solutions break down the isomorphism between the group algebras.

As a byproduct of identifying negative solutions, we obtain the classification of two-
generated finite 2-groups with dihedral central quotient. Since such a classification of
groups might be also of independent interest, we provide a direct proof in Appendix A.

1. Preliminaries

We use standard group-theoretical notation. We always writeG andH for finite p-groups
for some prime p. In most cases, p D 2 holds. The center of G is denoted by Z.G/,
the derived subgroup by G0 and the Frattini subgroup by ˆ.G/. By �.G/ we mean the
subgroup of G generated by the elements of order p. For a non-negative integer r , we
write Ãr .G/ for the subgroup ofG generated by gp

r
, g 2G. For g;h 2G, we let Œg; h�D

g�1h�1gh denote the commutator. Accordingly, we conjugate as gh D h�1gh. We write
a cyclic group of order n as Cn.

Let F denote a field of characteristic p and FG the group algebra of G over F . We
write �.G/ for the augmentation ideal in the group algebra FG. Note that �.G/ is nilpo-
tent and equal to the Jacobson radical of FG. In particular, the complement of �.G/
equals the set of units in FG. The center of an algebra ƒ over F is denoted by Z.ƒ/, and
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the linear subspace spanned by the Lie commutators is denoted by Œƒ; ƒ�. We note that
�.G0/FG is the relative augmentation ideal of the derived subgroup and equal to the
smallest ideal ŒFG;FG�FG of FG with commutative quotient. Moreover, we let Ãr .ƒ/
be the subalgebra of ƒ generated by T p

r
, T 2 ƒ.

The center of FG has a special decomposition which we will use frequently. Namely,
Z.FG/D FZ.G/˚ .Z.FG/\ ŒFG;FG�/. Moreover, Z.FG/\ ŒFG;FG� coincides with
the linear subspace of Z.FG/ spanned by the class sums of non-central elements of G.
We refer to Section III.6 of [25] for more details and proofs. We will allude to these facts
in Section 4 without further mention.

A property ofG is an invariant if FGŠFH implies the same property forH . A subset
of FG is called canonical if it is stable under all algebra automorphisms.

2. Presentations of groups

In this section, we give presentations of two-generated finite 2-groups with dihedral central
quotient. Compared to many other classes of finite p-groups, this class turns out to be
rather accessible.

Theorem 2.1. Let G be a two-generated finite 2-group with dihedral central quotient.
ThenG=G0 Š C2n �C2m andG0 Š C2` for some positive integers n,m and ` with n �m
and ` � 2, and G is isomorphic to a group generated by x, y and z, with one of the
following defining relations:

W x2n D 1; y2
m D 1; z2

` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2I
W x2n D 1; y2

m D x2m ; z2
` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2I

W x2n D 1; y2
m D z2`�1 ; z2

` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2I
W x2n D 1; y2

m D x2mz2`�1 ; z2` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2I
W x2n D z2`�1 ; y2m D 1; z2

` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2I
W x2n D z2`�1 ; y2m D x2m ; z2

` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2:
We write

(2.1) G ;G ; : : : ; G

for the groups of order 2nCmC` in Theorem 2.1 and always use the generators satisfying
the above relations, which are written x; y; z or a; b; c. Although the definitions of the
groups depend on the parameters n, m and `, we do not include these in the notation as
different parameters are never considered simultaneously, except in the appendix where
the parameters are hence included.

Evidently, if n D m, then

(2.2) G Š G and G Š G Š G :

We will see in the end that all other pairs of groups are non-isomorphic through inves-
tigation of their modular group algebras. Even though such indirect arguments suffice to
prove Theorem A, a more direct proof is also of interest. See Appendix A.
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We also note that the groups (2.1) include finite 2-groups of maximal class: the dihe-
dral, semidihedral and generalized quaternion groups (Proposition A.5).

To help the reader we summarize some of the basic properties which the groups have
in common. We will frequently use these properties in the following without explicit men-
tion. Let G D G ? with ? 2 ¹ ; : : : ; º. Then:
(1) the order of G is 2nCmC`,
(2) we have G=G0 Š C2n � C2m and G0 Š C2` ,
(3) the center of G is generated by x2, y2 and z2`�1 and has order 2nCm�1 (cf. Lem-

ma 4.1 for the different isomorphism types of the center),
(4) xy commutes with z,
(5) the nilpotency class of G is `C 1 and the coclass is nCm � 1.

We next prove several auxiliary results before proving Theorem 2.1.

Lemma 2.2. LetG be a two-generated finite 2-group with dihedral central quotient. Then
G=G0 Š C2n � C2m and G0 Š C2` for some positive integers n, m and ` with n � m and
` � 2, and G is isomorphic to the group

G� D
�
x; y; z

ˇ̌̌̌
x2

n D zr2`�1 ; y2m D xs2mzt2`�1 ; z2` D 1;
Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2

�
for some � D .r; s; t/ belonging to

‚ D ¹.r; s; t/ j 0 � r � 1; 0 � s � 2n�m � 1; 0 � t � 1º:
Proof. First, suppose that the central quotientG=Z.G/ is isomorphic to the dihedral group
of order 2`C1 with `� 2. Then the quotientG0Z.G/=Z.G/, which is the derived subgroup
of G=Z.G/, has order 2`�1. There are two elements x and y of G such that x2, y2 and
.yx/2

`
are trivial modulo the center Z.G/. Moreover, x and y together with the center

of G generate the whole group G. We write z for the commutator Œy; x�. Since y2 is
central, we have

1 D Œy2; x� D Œy; x�y Œy; x� D zyz;
and the action of y on z by conjugation equals the inversion. The same is true for x. Then
a direct calculation of commutators shows that the derived subgroup G0 is a cyclic group
generated by z. Since z is congruent to .yx/2 modulo the center Z.G/, the power z2`�1 is
central. Then z2`�1 is equal to its inverse by conjugation. This shows that G0 \ Z.G/ has
order 2 and hence G0 has order 2`. In summary, three elements x, y and z of G satisfy the
last four relations:

z2
` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2:

Next, suppose that G=G0 Š C2n � C2m with n � m as G is two-generated. Since
G=G0Z.G/, the abelianization of G=Z.G/, is elementary abelian of rank two, ˆ.G/ D
G0Z.G/. Hence, x and y generateG. We may assume that x2

n
belongs toG0, while x2

n�1

does not. (Otherwise replace x, y and z by y, x and z�1). Since x2 is central, we see that
x2

n
belongs to G0 \ Z.G/ which is a cyclic group of order 2 generated by z2`�1 . Hence,

x2
n D zr2`�1 for some 0 � r � 1.
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Let NG denote the abelianizationG=G0. From Theorem 7.12 in [14], there is an element
w of G with NG D h Nxi � h Nwi, in particular, Nw has order 2m. Then Ny2m D Nxs2m for some
0 � s � 2n�m � 1. Since y�2mxs2m belongs to G0 \ Z.G/, we obtain

y2
m D xs2mzt2`�1 for some 0 � t � 1.

The six relations above define a finite group of order 2nCmC` and yield a presentation
of G.

We consider a partition of the parameter space introduced in Lemma 2.2 as

‚ D ‚ [ � � � [‚
defined by the following:

‚ D ¹.r; s; t/ 2 ‚ j r D 0; t D 0; s � 0 mod 2º;
‚ D ¹.r; s; t/ 2 ‚ j r D 0; t D 0; s � 1 mod 2º;
‚ D ¹.r; s; t/ 2 ‚ j r D 0; t D 1; s � 0 mod 2º;
‚ D ¹.r; s; t/ 2 ‚ j r D 0; t D 1; s � 1 mod 2º;

‚ D
´
¹.r; s; t/ 2 ‚ j r D 1; s � 0 mod 2º .n > m/;

¹.r; s; t/ 2 ‚ j r D 1; s � 0 mod 2º n ¹.1; 0; 1/º .n D m/;

‚ D
´
¹.r; s; t/ 2 ‚ j r D 1; s � 1 mod 2º .n > m/;

¹.r; s; t/ 2 ‚ j r D 1; s � 1 mod 2º [ ¹.1; 0; 1/º .n D m/:
The introduction of this partition is justified by the next lemma; note that in the corner

case n D m, slight changes are required to ensure that ‚ is non-empty.

Lemma 2.3. Let n, m and ` be positive integers with n � m and ` � 2, and let � D
.r; s; t/ 2 ‚. Let s0 � s mod 2 with s0 2 ¹0; 1º. Then

G� Š G.r;s0;.1�r/t/
except the case n D m and � D .1; 0; 1/. In the exceptional case,

G� Š G.1;1;0/:
In particular, we have G ? Š G� if � 2 ‚ ? for ? 2 ¹ ; : : : ; º.
Proof. Assume that n > m or � ¤ .1; 0; 1/ so that r.2 � t /2n�m is even. Note here that
n D m implies s D 0.

Take an even number u such that s C u D s0 C r.2 � t /2n�m. Then xu is central and

.xuy/2
m D xu2my2m D xu2mxs2mzt2`�1 D x.sCu/2mzt2`�1

D xs02mxr.2�t/2nzt2`�1 D xs02mzr2.2�t/2`�1zt2`�1

D xs02mzr.2�t/2`�1zt2`�1 D xs02mz.1�r/t2`�1 :
Hence, G� D hx; xuy; zi enjoys the defining relations of G.r;s0;.1�r/t/.
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If nDm and � D .1; 0; 1/, then y2
m D z2`�1 D x2n D x2m and G� D hx; y; zi enjoys

the defining relations of G.1;1;0/.

Proof of Theorem 2.1. It follows from Lemmas 2.2 and 2.3.

3. Isomorphic modular group algebras

This section is devoted to proving that groups G and G with n > m > ` � 2 have iso-
morphic group algebras over an arbitrary field of characteristic 2, but are non-isomorphic
groups. In the next section, we will see that these are the only counterexamples to the mod-
ular isomorphism problem within the class of two-generated finite 2-groups with dihedral
central quotient.

Arguably the most interesting part of this article is the following, which generalizes
the negative solutions to the modular isomorphism problem presented in [11].

Theorem 3.1. Let n � m > ` � 2 and F a field of characteristic 2. Then FG Š FG .

Proof. Let G D G and H D G D ha; b; ci. We construct an algebra homomorphism
from FG to FH and then show that it is bijective. Given a group homomorphism from G

to the unit group of FH , we can extend it and obtain an algebra homomorphism from FG
to FH by Lemma 1.1.7 in [23]. To obtain such a group homomorphism, it suffices to show
that the units

x D a; y D b C aC 1; z D Œy; x� 2 FH n�.H/
satisfy the defining relations for G by Proposition 4.3 in [16].

We first verify the commutator relations. Evidently, Œy;x�D z. As x2 is central in FH ,
the basic commutator identity Œy; x2� D Œy; x�Œy; x�x yields Œz; x� D z�2. Now use ba D
abc to see

y2 D b2 C a2 C ab C abc C 1:
Observe that .ab/a D abc D .ab/b and .abc/a D ab D .abc/b . Hence, ¹ab; abcº is a
conjugacy class of H and the class sum ab C abc is central in FH . Thus, so is y2 which
yields Œz; y� D z�2 as before.

We proceed to the power relations. Clearly, x2
n D 1. As ab commutes with c, it is also

easy to raise y to a power:

y2
m D .b2 C a2 C ab C abc C 1/2m�1 D b2m C a2m C .ab/2m�1.1C c2m�1/C 1:

The first two terms vanish as b2
m D a2m , and the third term vanishes as c2

` D 1 andm> `.
Thus, y2

m D 1. Finally, use yx D xyz and ba D abc to see

xy.1C z/ D xy C yx D ab C ba D ab.1C c/:
We raise both sides to the power of 2`. Since ab commutes with c, the right-hand side
becomes .ab/2

`
.1C c2`/ D 0. On the other hand, xy commutes with z as

Œz; xy� D Œz; y� Œz; x�y D z�2z2 D 1:
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Hence, the left-hand side becomes .xy/2
`
.1C z2`/. As xy is a unit, we obtain z2

` D 1.
Therefore, all relations are satisfied and we obtain a suitable algebra homomorphism.

Since a D x and b D y C x C 1 belong to the image of our algebra homomorphism,
it is surjective. As G and H have the same order, it is bijective.

Lemma 3.2. Let n > m > ` � 2. Then G 6Š G .

Proof. Let G D G D hx; y; zi and H D G D ha; b; ci. The centralizers of the derived
subgroups can distinguish these groups. First we calculate the exponent of CH .H 0/.

Recall that the Frattini subgroup ˆ.H/ is generated by a2, b2 and c. As a2 and b2

are central, we have ˆ.H/ � CH .H 0/. Moreover, as ab 2 CH .H 0/ but ab … ˆ.H/ we
have that ha2; ab; b2; ci is an abelian maximal subgroup ofH and hence equals CH .H 0/.
The orders of a2, b2 and c are 2n�1, 2n�1 and 2`, respectively. From .ab/2 D a2bcb D
a2b2c�1 and b2

m D a2m , we obtain

.ab/2
n�1 D a2n�1b2n�1c�2n�2 D c�2n�2 :

Since n > m > ` � 2, we have .ab/2
n�1 D 1 and the exponent of CH .H 0/ is 2n�1.

Similar arguments show that CG.G0/ is abelian and generated by x2, xy, y2 and z.
Then the exponent of CG.G0/ is equal to 2n, which is the order of xy. Hence, these groups
are not isomorphic.

The negative solutions to the modular isomorphism problem presented in [11] corre-
spond to the groups G and G for n > m > ` D 2 in our notation. In fact, the isomor-
phisms from G D hx; y; zi and G D ha; b; ci to the original groups

G D ˝x; y; z j x2
n D 1; y2

m D 1; z2` D 1; Œy; x� D z; zx D z�1; zy D z�1
˛
;

H D ˝a; b; c j a2n D 1; b2m D 1; c2` D 1; Œb; a� D c; ca D c�1; cb D c
˛

are given by

G ! G; x 7! x; y 7! y; z 7! z;

G ! H; a 7! a; b 7! ab; c 7! c:

Remark 3.3. For a finite p-group G with cyclic derived subgroup G0, García-Lucas,
del Río and Stanojkovski (Theorem A in [10]) proved that the exponent of the central-
izer CG.G0/ is an invariant of its modular group algebra, provided that the prime p is odd.
This shows that the above pairs of groups, including the original ones presented in [11],
are distinctive for p D 2.

The groups G and G are in fact isomorphic if n D m. We summarize explicitly the
negative solutions to the modular isomorphism problem that we obtain by the previous
theorem and lemma.

Corollary 3.4. Let n > m > ` � 2. Then the groups˝
x; y; z j x2n D 1; y2m D 1; z2

` D 1; Œy; x� D z; Œz; x� D z�2; Œz; y� D z�2˛;˝
a; b; c j a2n D 1; b2m D a2m ; c2` D 1; Œb; a� D c; Œc; a� D c�2; Œc; b� D c�2˛

are not isomorphic, but have isomorphic group algebras over an arbitrary field of char-
acteristic 2.
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Remark 3.5. Given the simple proof of the negative solutions to the modular isomor-
phism problem for p D 2, it is natural to ask whether this strategy might be imitated for
groups of odd order. While we currently have no clue, at least the isomorphism we exhibit
and the proof we use cannot be imitated directly, as we will quickly show. Analyzing what
facilitates the proof so much, one important thing is that no actual commutator between
any non-trivial units in the group algebra must be computed: The action of the generators
of the group on the derived subgroup follows from the fact that their squares are central,
and the correct structure of the whole derived subgroup essentially from its cyclicity. To
imitate the proof, it would be necessary to find a finite non-abelian p-group G gener-
ated by two elements, say x and y, such that xp and yp are central and G0 is cyclic. We
show that in this case G=Z.G/ is elementary abelian of rank two. For such groups, a pos-
itive answer to the modular isomorphism problem over an arbitrary field is obtained by
Drensky [7].

So, assume p is odd, G D hx; yi is a finite non-abelian p-group such that xp; yp are
central in G and G0 D hzi is cyclic. We assume z D Œy; x� and let p` be the order of z.
Then G is regular by Satz 10.2 (c) in Kapitel III of [13]. Hence, 1 D Œz; xp� D Œz; x�p by
Satz 10.6 (b) in Kapitel III of [13]. As �.G0/ D hzp`�1i, there exists an 0 � r � p � 1
such that Œz; x� D zrp

`�1 . This implies zxi D z1Cirp`�1 . We conclude by the standard
commutator identity that Œy; xp� D Œy; x�Œy; x�x � � � Œy; x�xp�1 D zk , where

k D
p�1X
iD0

.1C irp`�1/ D p C 1

2
r.p � 1/p` � p mod p`:

As Œy;xp�D 1, we conclude that `D 1. Hence, x centralizes z, and so does y. This implies
that z is central. As xp and yp are also central, we get ˆ.G/ D Z.G/, which shows that
G=Z.G/ is indeed elementary abelian of rank two.

We add one bibliography remark for readers interested in generalizing the groups from
Theorem 3.1 to odd primes: In several generalizations we have tried and which were
proposed to us the invariants from [2] turned out to solve the problem in the positive.

For the choice of our isomorphisms in Theorem 3.1, see also Remark 4.21.

4. Non-isomorphic modular group algebras

The rest of this article is devoted to showing that the groupsG andG with n>m>`�2
are indeed the only negative solutions within our class, thereby completing the proof of
Theorem A. Throughout this section, we fix a field F of characteristic p and assume pD 2
unless otherwise stated.

We first apply known group-theoretical invariants and then utilize a well-known argu-
ment on power maps to distinguish algebras. However, this turns out to be insufficient, and
in the last part, we apply a procedure that could be called a “group base approximation”.
This could also be used for other classes of groups with some adjustments.

For the proof, we examine all the pairs of groups with n � m and ` � 2. Basically, we
divide it into five cases:

(1) n > m > `,
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(2) n > m � 2 and m � `,
(3) n > m D 1,
(4) n D m � 2,
(5) n D m D 1.

We observe first that the coclass of the groups is nCm� 1, and the last case nDmD 1
corresponds to the finite 2-groups of maximal class for which a positive answer to the
modular isomorphism problem has been known for decades [1, 5]. Therefore, we may
assume n � 2.

The case n D m � 2 can be dealt with using a classic invariant, the center of a group,
except the pair that corresponds to . We will use a group base approximation for this
case (Lemmas 4.17 to 4.19). What will be used to distinguish modular group algebras for
the rest of the cases is summarized in Table 1.

n > m > ` n > m � 2 and m � ` n > m D 1
X P P
C C Q
C C P
C C C
C C C
C C P
C C K
C C C
C C C
A P P
C C C
C C C
C C C
C C C
A P P

Table 1. Summary of how modular group algebras will be distinguished for n > m. [X] counterex-
ample (Theorem 3.1), [C] center of group (Lemma 4.1), [P] kernel size of power map (Lemma 4.8),
[Q] Quillen’s theorem (Proposition 4.4), [K] Külshammer’s theorem (Proposition 4.3), [A] group
base approximation (Section 4.3).

4.1. Group-theoretical invariants

The first invariant we will use is the isomorphism type of the center of a group. This is a
well-known invariant, and a proof can be found in Theorem 6.6 of Chapter III in [25].

Lemma 4.1. Let G D hx; y; zi be one of the groups G ; : : : ; G . Then the center of G is
generated by x2, y2 and z2`�1 . Consequently,

Z.G / D hx2i � hy2i � hz2`�1i Š C2n�1 � C2m�1 � C2;
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Z.G / D hx2i � hx�2y2i � hz2`�1i Š C2n�1 � C2m�1 � C2;
Z.G / D hx2i � hy2i Š C2n�1 � C2m ;
Z.G / D hx2i � hx�2y2i Š C2n�1 � C2m ;
Z.G / D hx2i � hy2i Š C2n � C2m�1 ;
Z.G / D hx2i � hx�2y2i Š C2n � C2m�1 :

Proof. From the relations, we directly get x2; y2 2 Z.G/. As G=hx2; y2i is dihedral with
the center generated by the image of z2`�1 , it follows that Z.G/ D hx2; y2; z2`�1i. The
concrete descriptions of the centers are then easy to read off from the relations.

Proposition 4.2. Let n D m. If G and H are two of the groups G ; : : : ; G with FG Š
FH butG 6ŠH , thenG andH are, up to exchange, isomorphic to the groupsG andG
with n D m � 2.

Proof. We observe first that the coclass of the groups is n C m � 1 in general. Hence,
the case n D m D 1 corresponds to the finite 2-groups of maximal class for which a
positive answer to the modular isomorphism problem is obtained by Carlson [5], p. 434,
and Bagínski [1].

Thus, we may assume that n D m � 2. Recall that G Š G and G Š G Š G
by (2.2). Since Z.G /Š C2n�1 � C2m�1 � C2 and Z.G /Š Z.G /Š C2n � C2m�1 from
Lemma 4.1, the assertion follows.

We will see in Lemmas 4.17 to 4.19 that the remaining cases cannot happen and hence
n > m. The corner case n > m D 1 requires some extra work as the direct factor C2m�1
in Lemma 4.1 becomes trivial and the isomorphism type of the center is not sufficient to
distinguish the groups as in cases where m > 1. Nevertheless, known group theoretical
invariants give further information as we show now.

Proposition 4.3. Let n > m D 1. Then FG 6Š FG .

Proof. We will calculate the number of conjugacy classes that consist of squares for each
group. This is an invariant of the group algebra due to the work of Külshammer in Sec-
tion 1 of [17], cf. Section 2.2 of [12] for a short proof. To see that these numbers are
different forG andG , consider a generic element xryszt with 0� r � 2n � 1, 0� s� 1
and 0 � t � 2` � 1. Then, independently of the group,

.xryszt /2 D

8̂̂̂<̂
ˆ̂:
x2rz2t .r � 0 mod 2; s D 0/;
x2r .r � 1 mod 2; s D 0/;
x2ry2z2t�1 .r � 1 mod 2; s D 1/;
x2ry2 .r � 0 mod 2; s D 1/:

Note that if a square is not central, then its centralizer is given by the maximal subgroup
hx2; y2; z; xyi, the centralizer of the derived subgroup hzi. So each conjugacy class con-
taining squares has either one or two elements; this can be seen from the generic form of an
element. The case r � 0 mod 2 and s D 0 covers all elements of shape xuzv with u � 0
mod 4 and v � 0 mod 2. These elements are formally reading the same in G and G
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and they also give the same number of classes, as the centrality of an element of this shape
does not depend on which group we choose. In the case r � 1 mod 2 and s D 0, we get
elements of shape xu with u� 2 mod 4. Again this is the same for G and G . Next we
consider the case r � 1 mod 2 and s D 1. In G , we have x2ry2z2t�1 D x2rC2z2t�1,
so these are the elements of shape xuzv with u� 0 mod 4 and v � 1 mod 2. In G , we
have x2ry2z2t�1 D x2rC2z2t�1C2`�1 , which gives the same kind of elements.

Finally, we consider the case where there is a difference: r � 0 mod 2 and s D 1.
InG , we have x2ry2D x2rC2, which are elements of shape xu with u� 2 mod 4. These
elements are not new as they already appeared in the second case (i.e., r � 1 mod 2 and
s D 0). While in G , we have x2ry2 D x2rC2z2`�1 , which are elements of shape xuz2`�1

for u� 2 mod 4. These elements are new, so in particular there are 2n�2 more conjugacy
classes of squares in G than in G .

Proposition 4.4. Let n > m D 1. Then FG 6Š FG .

Proof. Note that G contains an elementary abelian subgroup of rank three, namely, the
group hx2n�1 ;y;z2`�1i. By contrast,G does not since the only involutions are x2n�1; z2`�1

and x2n�1z2`�1 . As the maximal rank of an elementary abelian subgroup is known to be
an invariant of the group algebra due to the work of Quillen (Theorem 6.28 in [24]), we
conclude that FG 6Š FG .

Proposition 4.5. Let n > m. If G and H are two of the groups G ; : : : ; G with FG Š
FH but G 6Š H , then G and H are, up to exchange, isomorphic to one of the following
groups:
(1) G and G ,

(2) G and G ,

(3) G and G .

Proof. This follows from Lemma 4.1 and Propositions 4.3 and 4.4. See also Table 1.

We note that computer experiments for the remaining cases in Propositions 4.2 and 4.5
show that the group-theoretical invariants contained in the GAP package ModIsomExt [19,
20] do not give new information on whether the algebras in question are isomorphic.
(These invariants can now also be computed using the version 3.0.0 of the ModIsom pack-
age [8].)

4.2. Kernel sizes

We will write � for the augmentation ideal �.G/ of FG for brevity. The next argument
we will apply is well known and consists in computing the sizes of the kernels of certain
maps. It can be traced back to an idea of Brauer (Section 9 of Supplements in [3]), and
was applied in practice for the first time by Passman [22]. For a positive integer s, we
define the standard 2s-power map

(4.1) 's W �=�2 ! �2
s

=�1C2s :
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The kernel of a power map 's is defined to be

Ks.G/ D ¹RC�2 2 �=�2 j 's.RC�2/ D 0C�1C2s º:

Note that this kernel is not an ideal of� in general, but still a well-defined set stable under
automorphisms of the algebra.

A basis for � makes concrete calculations of the kernels feasible, and we use what
is called a Jennings basis, which behaves well with a filtration � � �2 � � � � . We will
work with a basis that looks formally the same in each case. We assume some familiarity
with Jennings’ theory for the proof of the next lemma. If the reader is willing to accept
it, then one can safely skip its proof because we will not use Jennings’ theory explicitly
elsewhere.

We write capital letters for elements of the augmentation ideal corresponding to group
elements, e.g., X D x C 1 2 � for x 2 G.

Lemma 4.6. Let G D hx; y; zi be one of the groups G ; : : : ; G and k a non-negative
integer. Set

(4.2) w D z2`�1 and q D

8̂<̂
:
2` .G D G or G D G /;

2max¹m;`º .G D G or G D G /;

2max¹n;`º .G D G or G D G /:

Then

(4.3) Dk D

8̂<̂
:X rY sZtW u

ˇ̌̌̌
ˇ̌̌ 0 � r � 2

n � 1; 0 � s � 2m � 1;
0 � t � 2`�1 � 1; 0 � u � 1;

r C s C 2t C qu � k

9>=>;
is a basis of �k . In particular, the image of Dk nDkC1 under the natural projection
�k ! �k=�kC1 is a basis of �k=�kC1.

Proof. Let Mk D G \ .1C�k/, the kth dimension subgroup of G, for k � 1. Observe
first that G0 D hzi and ˆ.G/ D hx2; y2; zi are abelian. It follows from Theorems 11.2
and 12.9 in [6] that M1 D hx; yi and

2e�1 < k � 2e H) Mk D Ãe.G/Ãe�1.G0/ D hx2e ; y2e ; z2e�1i

for e � 1. In particular, we have

0 � e � n � 1 H) x2
e 2M2e nM1C2e ;

0 � e � m � 1 H) y2
e 2M2e nM1C2e ;

1 � e � ` � 1 H) z2
e�1 2M2e nM1C2e ;

and by the relations of G, one has

w 2Mq nM1Cq :
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Since x2 and y2 are central, an element of the Jennings basis can be written in the form

.x C 1/r0.y C 1/s0.x2 C 1/r1.y2 C 1/s1.z C 1/t0 � � � .w C 1/u � � �
D .x C 1/r0.x2 C 1/r1 � � � .y C 1/s0.y2 C 1/s1 � � � .z C 1/t0 � � � .w C 1/u
D .x C 1/r0.x C 1/r12 � � � .y C 1/s0.y C 1/s12 � � � .z C 1/t0 � � � .w C 1/u

D .x C 1/r0C���Crn�12n�1.y C 1/s0C���Csm�12m�1.z C 1/t0C���Ct`�22`�2.w C 1/u
D .x C 1/r .y C 1/s.z C 1/t .w C 1/u
D X rY sZtW u

for
0 � r0; r1; : : : ; rn�1; s0; s1; : : : ; sm�1; t0; : : : ; t`�2; u � 1

where r D r0 C � � � C rn�12n�1, s D s0 C � � � C sm�12m�1 and t D t0 C � � � C t`�22`�2.
Hence, the assertion follows from Jennings’ theorem (Theorem 3.2 in [15]).

The weight of an element of Dk nDkC1 is defined to be k.
To aid the reader in the following calculations, we explicitly state the bases of the

first few layers of the subsequent quotients of the augmentation ideal power series when
n � m � 2:

�1=�2 WD1 nD2 D ¹X; Y º;
�2=�3 WD2 nD3 D ¹X2; XY; Y 2; Zº;
�3=�4 WD3 nD4 D ¹X3; X2Y;XY 2; XZ; Y 3; YZº:

We will collect some elementary relations between the elements of the basis, which
we will use without further mention:

XY C YX D Z CXZ C YZ CXYZ;
XY C YX � Z mod �3:

Now a more concrete expression of the power map (4.1) can be obtained.

Lemma 4.7. Let G D hx; y; zi be one of the groups G ; : : : ; G and ˛; ˇ 2 F . Then

'm.˛X C ˇY C�2/ D ˛2mX2m C ˇ2mY 2m C .˛ˇ/2m�1Z2m�1 C�1C2m :
Proof. In general, we have

.˛X C ˇY /2 D ˛2X2 C ˇ2Y 2 C .˛ˇ/.XY C YX/
� ˛2X2 C ˇ2Y 2 C .˛ˇ/Z mod �3:

Since X2 and Y 2 are central in FG, we obtain

'm.˛X C ˇY C�2/ D ˛2mX2m C ˇ2mY 2m C .˛ˇ/2m�1Z2m�1 C�1C2m :
Lemma 4.8. Assume n > m and let G be one of the groups G ; : : : ; G . Then the kernel
Km.G/ of the power map 'm has the cardinality shown in Table 2.
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m > ` m D ` m < `

jF j jF j jF j
jF j 1 1

1 1 jF j
1 jF j 1

jF j jF j jF j
jF j 1 1

Table 2. Kernel sizes jKm.G/j for n > m.

Proof. Let G D hx; y; zi. Every element of �=�2 can be written in the form ˛X C
ˇY C �2 and the scalars ˛; ˇ 2 F are unique by Lemma 4.6. To measure the size of
the kernel, we write 'm.˛X C ˇY C �2/ in Lemma 4.7 as a linear combination of the
images of D2m nD1C2m in�2

m
=�1C2m for each case. Note that as n>m, the differences

between G and G as well as between G and G cannot enter into the expression of
'm.˛X C ˇY C �2/, so we handle these two pairs of groups simultaneously. We write
w D z2`�1 as in (4.2) and also use the equation Y 2

m D X2m CW CX2mW for G D G .
For m > `, as Z2

m�1
vanishes, 'm.˛X C ˇY C�2/ is written as follows:

W ˛2
m

X2
m C�1C2m ;

W .˛2
m C ˇ2m/X2m C�1C2m ;

W ˛2
m

X2
m C ˇ2mW C�1C2m ;

W .˛2
m C ˇ2m/X2m C ˇ2mW C�1C2m :

Similarly, for m < `, the following is obtained:

W ˛2
m

X2
m C .˛ˇ/2m�1Z2m�1 C�1C2m ;

W .˛2
m C ˇ2m/X2m C .˛ˇ/2m�1Z2m�1 C�1C2m ;

W ˛2
m

X2
m C .˛ˇ/2m�1Z2m�1 C�1C2m ;

W .˛2
m C ˇ2m/X2m C .˛ˇ/2m�1Z2m�1 C�1C2m :

Finally, for m D `, the expressions for G , G , G and G are as in the case m < `,
and for the other two we have the following:

W ˛2
m

X2
m C .ˇ2m C .˛ˇ/2m�1/W C�1C2m ;

W .˛2
m C ˇ2m/X2m C .ˇ2m C .˛ˇ/2m�1/W C�1C2m :

All of the terms present are linearly independent by Lemma 4.6. Therefore, ˛X C
ˇY C �2 belongs to the kernel Km.G/ if and only if all of the coefficients present are
equal to zero. Since the Frobenius map on F is injective, the cardinalities for Km.G/ now
follow easily.
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We remark that in the case n D m, the kernel size can also give some useful informa-
tion, but only if one restricts the possibilities for F . As we prefer to work independently
of the base field, we do not include the corresponding calculations.

We summarize the progress we have made on the proof of Theorem A in this section.

Proposition 4.9. If G and H are two of the groups G ; : : : ; G with FG Š FH but
G 6Š H , then G and H are, up to exchange, isomorphic to one of the following groups:

(1) G and G with n > m > `,

(2) G and G with n > m > `,

(3) G and G with n > m > `,

(4) G and G with n D m � 2.

Proof. By Proposition 4.2, it suffices to show that one of the first three items holds under
the assumption n > m. It follows from Proposition 4.5 that G and H are, up to exchange,
isomorphic to one of the followings: G and G , G and G , G and G . If m D `

or m < `, then the groups in each pair have different kernel sizes by Lemma 4.8, which
contradicts FG Š FH . Hence, we have m > `.

Some more information can be obtained from canonical ideals. The following propo-
sition could be used to further reduce the cases, though we will not use it in this sense,
but rather differently later on. It seems to have the potential to also be applicable to other
classes of groups.

Proposition 4.10. Let G be a finite p-group and F a field of characteristic p. Assume
that G0 is abelian of exponent p`. Then

F.Ãr .Z.G/// D Ãr .Z.FG//

for every integer r � ` and, in particular,�.Ãr .Z.G/// is canonical in FG. Consequently,
if FG Š FH , then F ŒG=Ãr .Z.G//� Š F ŒH=Ãr .Z.H//�.

Proof. Recall that Z.FG/ has a basis that is given by class sums and a decomposition
Z.FG/ D FZ.G/˚ .Z.FG/ \ ŒFG;FG�/. We will show that class sums of non-central
elements vanish under a pr -power. So let g 2 G be a non-central element with conjugacy
class ¹ga1; : : : ; gasº for some a1; : : : ; as 2 G0. Note that p divides s. The class sum
of g equals g.a1 C � � � C as/. As this element is central in FG, it commutes in particular
with g, hence .a1 C � � � C as/ commutes with g. As G0 is abelian of exponent p` � pr ,
we conclude that

.g.a1 C � � � C as//pr D gpr .ap
r

1 C � � � C ap
r

s / D gp
r

s D 0:

The next lemma is an easy observation which will be helpful in some calculations.

Lemma 4.11. Let G D hx; y; zi be one of the groups G ; : : : ;G . Then ŒX; Y � is central
in FG.

Proof. We have ŒX;Y �D xyC yxD xyC xyz. As .xy/x D xyzD .xy/y and .xyz/x D
xy D .xyz/y , we conclude that ŒX; Y � is a class sum and hence central in FG.
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4.3. Group base approximation

We will handle the rest of the cases by a procedure that could be called a “group base
approximation”. We will first make a few general observations on group bases satisfying
the relations of the normal form given in Theorem 2.1, and then see in each single case
why this leads to a contradiction.

4.3.1. General group bases. Now we fix integers n,m and ` with n � m � 2 and ` � 2.
Fix a group G from G ; : : : ; G generated by x, y and z, which satisfy the defining
relations. Also fix another group base H in FG from G ; : : : ; G generated by a, b
and c, which satisfy the defining relations. Thus, throughout this section, we assume

n � m � 2; ` � 2; G D G ? ; H D G ¿ ; ? ; ¿ 2 ¹ ; : : : ; º;
G D hx; y; zi; a; b; c 2 1C�.G/; H D ha; b; ci; FG D FH:

As before, we write � for �.G/ and use the basis Dk of �k introduced in Lemma 4.6.
Recall that w D z2`�1 , so in this basis W D Z2`�1 , and the weight of W is denoted by q
as in (4.2); the exact value of q will be irrelevant, except the fact that q � 4 as ` � 2.

Since n � m � 2, the squares x2 and y2 are not trivial and we have

� D FX ˚ FY ˚ FXY ˚ FZ ˚ FX2 ˚ FY 2 ˚�3:
From now on square brackets denote Lie commutators in�, i.e., ŒU; V �D UV C V U

for U; V 2 �. We will frequently use without comment the commutator formula

ŒS; T � D .1C S C T C ST /.1C t�1s�1ts/;
which holds for all s; t 2 G. In particular, ŒX; Y � D .1CX C Y CXY /Z. Moreover, as
z�1zx ; z�1zy 2 hz2i, we have ŒX;Z�; ŒY;Z� 2 Z2FG � �4.

We first consider A and B modulo �3. Write

(4.4)
A D ˛AX C ˇAY C 
AXY C ıAZ C �AX2 C �AY 2 C UA;
B D ˛BX C ˇBY C 
BXY C ıBZ C �BX2 C �BY 2 C UB ;

where ˛A; ˛B ; : : : ; �A; �B 2 F and UA; UB 2 �3. Note that the scalars are uniquely deter-
mined. This notation will be fixed throughout this section. Observe that A C �2 and
B C �2 span the two-dimensional vector space �=�2, as a and b generate H . Hence,
they must be linearly independent, and we have

˛AˇB C ˛BˇA ¤ 0:(4.5)

We first show that XY does not appear as a summand in A and B .

Lemma 4.12. We have 
A D 
B D 0.

Proof. The proof is identical for A and B , so we only show 
A D 0. The idea is to use the
fact that A2 is central in FG, as a2 is central in H .

Let „ be the linear subspace of � defined by

„ D ¹R 2 �2 j ŒR; S� 2 �5 for all S 2 �º:
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Note that �4 � „ and ŒX; Y � 2 „ by Lemma 4.11. We will consider A2 modulo „. We
will use that

ŒX;Z�; ŒY;Z� 2 Z2FG � �4 � „;
ŒX;XY � D XŒX; Y � � XZ mod „;
ŒY;XY � D ŒX; Y �Y � YZ mod „:

From (4.4), we get

A2 � ˛AˇAŒX; Y �C ˛A
AŒX;XY �C ˇA
AŒY; XY �(4.6)
� ˛A
AXŒX; Y �C ˇA
AŒY; X�Y � ˛A
AXZ C ˇA
AYZ mod „;

where ŒX; Y � 2 „ is used to go from the first to the second line. Computing commutators
modulo �5 gives

ŒXZ; Y � � ŒYZ;X� � Z2 mod �5; ŒXZ;X� � ŒYZ; Y � � 0 mod �5:

So modulo�5 computing commutators with A2 using (4.6) and the definition of„ yields

ŒA2; X� � ˇA
AZ2 mod �5; ŒA2; Y � � ˛A
AZ2 mod �5:

As A2 is central in FG, we conclude that ˛A
A D ˇA
A D 0. But as ˛A ¤ 0 or ˇA ¤ 0
by A 62 �2, this implies 
A D 0.

The next lemma allows us to make conclusions about scalars from a relation between
A2

n
and B2

n
.

Lemma 4.13. We have

A2
n � ˛2nA X2

n C ˇ2nA Y 2
n

mod Z.FG/ \ ŒFG;FG�;
B2

n � ˛2nB X2
n C ˇ2nB Y 2

n

mod Z.FG/ \ ŒFG;FG�:
Proof. We first observe that, by Lemma 4.1 and (4.2), Z.G/ is generated by x2, y2 andw.
Thus,

(4.7) FZ.G/ \� D
X
r;s;t�0

2rC2sCqt�1

FX2rY 2sW t � FX2 C FY 2 C�4:

We will prove the claims only for A as the arguments for B are identical. Recall that
(4.4) and Lemma 4.12 imply

A D ˛AX C ˇAY C ıAZ C �AX2 C �AY 2 C UA:
So, by ŒX; Y � � Z mod �3, it yields

(4.8) A2 � ˛2AX2 C ˇ2AY 2 C ˛AˇAZ mod �3:

Using the decomposition Z.FG/ D FZ.G/˚ .Z.FG/ \ ŒFG;FG�/, we get

(4.9) A2 D ˛2AX2 C ˇ2AY 2 CRA C SA
for some RA 2 FZ.G/ \� and SA 2 Z.FG/ \ ŒFG;FG�.
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Now SA can be written as a linear combination of class sums of non-central elements.
It follows from G0 D hzi that

SA 2 FZ C�3:
Indeed, let g D xiyj zk be a representative of a non-central conjugacy class of G with
i; j; k � 0. Since the conjugacy class of g can be written as

¹gze1 ; : : : ; gzet º
for some non-trivial power t of 2 and some e1; : : : ; et � 0, the class sum of the conjugacy
class can be written as follows:

gze1 C � � � C gzet D xiyj zk.ze1 C � � � C zet /
D .1CX/i .1C Y /j .1CZ/k..1CZ/e1 C � � � C .1CZ/et /
� .1CX/i .1C Y /j .1CZ/k.e1 C � � � C et /Z
� .e1 C � � � C et /Z mod �3:

Hence, SA belongs to the desired vector space.
Since RA 2 FX2 C FY 2 C �4, SA 2 FZ C �3 and X2 C �3, Y 2 C �3, Z C �3

are linearly independent in �2=�3, reformulating (4.8) and (4.9) as

RA C SA � ˛AˇAZ mod �3;

it follows thatRA 2�4. Hence,R2
n�1
A 2�2nC1 . SinceX2

nC1 D 0,X2
n
Y 2

n D 0, Y 2
nC1 D 0

and W 2 D 0 by the relations of G, we get R2
n�1
A D 0 from (4.7). Raising (4.9) to a power

hence yields
A2

n D ˛2nA X2
n C ˇ2nA Y 2

n C S2n�1A ;

and the claim follows.

The element C D 1C c will play an important role and we first approximate it mod-
ulo �4.

Lemma 4.14. The following congruence holds:

C � �Z C �XZ C �YZ mod �4;

where � D ˛AˇB C ˛BˇA, � D �.1C ˛A C ˛B/ and � D �.1C ˇA C ˇB/.
Proof. From the definitions, we have

C D 1C c D 1C b�1a�1ba D 1C .1C B/�1.1C A/�1.1C B/.1C A/:
For R 2 �, one has .1CR/�1 D 1CRCR2 C � � � CRk for some k such that Rk D 0.
Hence,

C � 1C .1C B C B2 C B3/.1C AC A2 C A3/.1C B/.1C A/
� ŒA; B�C AŒA;B�C BŒA;B� � .1C AC B/ŒA;B� mod �4;

by an explicit multiplication, with cancellation afterwards as we may in characteristic 2.
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Then, by the fact that ŒX;Z�; ŒY;Z�2�4,UA;UB 2�3 and 
AD
BD0 (Lemma 4.12),
from (4.4) we obtain

C � .1C ˛AX C ˇAY C ˛BX C ˇBY /Œ˛AX C ˇAY; ˛BX C ˇBY � mod �4:

Since ŒX; Y � D .1CX C Y CXY /Z, straightforward calculations yield that

C � .1C .˛A C ˛B/X C .ˇA C ˇB/Y /.˛AˇB C ˛BˇA/.Z CXZ C YZ/
� .˛AˇB C ˛BˇA/.Z C .1C ˛A C ˛B/XZ C .1C ˇA C ˇB/YZ/ mod �4:

We now define a variation of a power map that will turn out to be very useful to us.
First set � D �.G0/FG D ŒFG;FG�FG. Note that � D ZFG, and thus the subset

(4.10) C D
²
X rY sZtW u

ˇ̌̌̌
0 � r � 2n � 1; 0 � s � 2m � 1;

0 � t � 2`�1 � 1; 0 � u � 1; 2t C qu � 1

³
of the basis of FG defined in Lemma 4.6 is a basis of � . In fact, it follows from the
observations that C is a linearly independent subset ofZFG and consists of jGj � jG WG0j
elements. The condition 2t C qu � 1 is equivalent to .t; u/ ¤ .0; 0/, but we formulate in
this way to indicate the weight contributed by the powers of Z and W .

Recall that q denotes the weight of W . Set d D 1C 2`�1 C q, and define a map

(4.11)  W �=�2 ! �2
`�1
=.�1C2`�1 C�d / \ �2`�1

that is induced from the 2`�1-power map. As will become clear, the reason for the defini-
tion of d is thatW , X2

`�1
W and Y 2

`�1
W are non-zero modulo .�1C2`�1 C�d /\ �2`�1 ,

while other elements in C that span the image of  are zero.

Lemma 4.15. For T 2 �2 and �;�; � 2 F , we have

 .�Z C �XZ C �YZ C TZ C �2/
D �2`�1W C �2`�1X2`�1W C �2`�1Y 2`�1W C .�1C2`�1 C�d / \ �2`�1 :

Proof. To prove the lemma, we factor  as a composition of maps. Define the square-map

 i W �2i =�1C2i ! �2
iC1
=�1C2iC1

for i � 0 and the natural projection

� W �2`�1=�1C2`�1 ! �2
`�1
=.�1C2`�1 C�d / \ �2`�1 :

Then  D � ı  `�2 ı � � � ı  1 ı  0. Note that this expression is well defined as ` � 2.
Claim 1. For g 2 G and i � 0, one has Œg;Z2

i
� 2 �2iC1 .

It suffices to show that 1C g�1Z2ig � 1C Z2i mod �2
iC1

. From the general for-
mula .1CR/�1 D 1CRCR2 C � � � for R 2 �, we get

1CZ�2i D .1CZ2i /�1 D 1CZ2i C .Z2i /2 C � � � � 1CZ2i mod �2
iC1
:

Note that ¹z2i ; z�2i º is a conjugacy class of G. Thus, 1C g�1Z2ig is equal to 1C Z2i
or 1CZ�2i and the claim holds.
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Claim 2. For R; S 2 FG, one has

 i .RZ
2i C SZ2i C �1C2i / D R2Z2iC1 C S2Z2iC1 C �1C2iC1 :

From the previous claim we know ŒR;Z2
i
�; ŒS;Z2

i
� 2 �2iC1 , so

 i .RZ
2i C SZ2i C �1C2i / D .RZ2i /2 C .SZ2i /2 C ŒRZ2i ; SZ2i �C �1C2iC1

D R2Z2iC1 C S2Z2iC1 C ŒR; S�Z2iC1 C �1C2iC1 :
As ŒR; S� 2 � , the claim follows.

Now applying the last claim stepwise to  0,  1; : : : ;  `�2 gives

. `�2 ı � � � ı  1 ı  0/.�Z C �XZ C �YZ C TZ C �2/
D �2`�1W C �2`�1X2`�1W C �2`�1Y 2`�1W C T 2`�1W C �1C2`�1 :

As T 2
`�1 2�2` , this means T 2

`�1
W 2�d . Thus, applying � eliminates the last term, and

the lemma follows.

4.3.2. Specific cases. Next we consider the coefficients ˛A and ˛B . As the calculations
are no longer uniform for all groups, we introduce case distinctions.

Lemma 4.16. If G Š G , H Š G and n > m > `, then ˛A D ˛B .
If G Š G and H Š G , then we have the following:

(1) m > ` implies ˛A D ˛B ,

(2) n D m D ` implies ˛A.˛A C ˇA/ D ˛B.˛B C ˇB/,
(3) n D m < ` implies ˛AˇA D ˛BˇB D 0.

Proof. Recall that 'm denotes the 2m-power map �=�2 ! �2
m
=�1C2m . In this proof,

the fact that the Frobenius map on F is injective will be used without further comment.
First consider G Š G and H Š G . By Lemma 4.7 and Y 2

m D 0, we have

'm.AC�2/ D ˛2mA X2
m C .˛AˇA/2m�1Z2m�1 C�1C2m

and, if additionally n D m holds,

'm.AC�2/ D ˛2mA W C .˛AˇA/2m�1Z2m�1 C�1C2m :
Similar expressions hold for 'm.B C�2/. Note that the relation a2

m D b2m , which holds
in H , implies 'm.AC�2/ D 'm.B C�2/.

Now, consider m > `. Then Z2
m�1 D 0, and so 'm.AC�2/ D 'm.B C�2/ implies

˛2
m

A X2
m C�1C2m D ˛2mB X2

m C�1C2m . As X2
m 2 D2m nD1C2m , we have ˛A D ˛B .

Note that if additionally n D m holds, then we have X2m D W , but this does not change
the conclusion, as then W 2D2m nD1C2m .

Next, consider n D m D `. Then 'm.AC�2/ D 'm.B C�2/ implies

.˛2
m

A C .˛AˇA/2
m�1
/W C�1C2m D .˛2mB C .˛BˇB/2

m�1
/W C�1C2m :

As W 2D2m nD1C2m , this implies ˛2A C ˛AˇA D ˛2B C ˛BˇB and hence the claim.
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Finally, consider n D m < `. Then W 2 �1C2m and C 2
`�1 2 �1C2m . So, because of

a2
m D b2m D c2`�1 , we have

'm.AC�2/ D 'm.B C�2/ D 0C�1C2m :
As

'm.AC�2/ D .˛AˇA/2m�1Z2m�1 C�1C2m ;
'm.B C�2/ D .˛BˇB/2m�1Z2m�1 C�1C2m ;

this together with Z2
m�1 2D2m nD1C2m implies ˛AˇA D ˛BˇB D 0.

Finally, consider G Š G , H Š G and n > m > `. Then, by Lemma 4.7 and using
Y 2

m D W , Z2` D 0 and m > `, we get from (4.4):

(4.12)
'm.AC�2/ D ˛2mA X2

m C ˇ2mA W C�1C2m ;
'm.B C�2/ D ˛2mB X2

m C ˇ2mB W C�1C2m :
Now H Š G means b2

m D a2mc2`�1 , so

'm.B C�2/ D B2m C�1C2m D 1C a2mc2`�1 C�1C2m(4.13)

D A2m C C 2`�1 C A2mC 2`�1 C�1C2m :
We next consider A2

m
and B2

m
modulo � C�1C2m which is done by “deleting the Z’s

and C ’s”, roughly speaking. Formally, (4.12) and (4.13) imply

˛2
m

A X2
m � A2m � B2m � ˛2mB X2

m

mod � C�1C2m :
Now as X2

m
does not lie in � C�1C2m by (4.10) and (4.3), we get ˛A D ˛B .

With these preparations, we are finally ready to solve the modular isomorphism prob-
lem for all the remaining cases. In the first two cases,m � ` holds, and we use the explicit
approximations of A2n and B2n given by Lemma 4.13. In the last two cases,m > ` holds,
and we use the explicit approximation of C 2`�1 given by Lemmas 4.14 and 4.15.

Lemma 4.17. If n D m < `, then FG 6Š FG .

Proof. Assume the notation (4.4), n D m < `, G Š G and H Š G . By the relations
X2

n D W and Y 2n D 0, we have

A2
n � ˛2nA W mod Z.FG/ \ ŒFG;FG�

by Lemma 4.13. Similarly, we have

B2
n � ˛2nB W mod Z.FG/ \ ŒFG;FG�:

As inH the relation a2
n D b2n holds by nDm, from the fact thatW is a non-zero element

in FZ.G/ and the decomposition Z.FG/D FZ.G/˚ .Z.FG/\ ŒFG;FG�/, we conclude
that ˛A D ˛B .

As n D m < `, Lemma 4.16 implies ˛AˇA D ˛BˇB D 0. Hence, as ˛A D ˛B , we get
˛AˇB C ˛BˇA D 0, which contradicts (4.5).

The proof of the next case parallels that of the first case.
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Lemma 4.18. If n D m D `, then FG 6Š FG .

Proof. Assume the notation (4.4), n D m D `, G Š G and H Š G . We conclude that
˛A D ˛B by the same arguments as in the proof of Lemma 4.17.

As n D m D `, Lemma 4.16 and ˛A D ˛B imply ˛AˇA D ˛BˇB . Hence, ˛AˇB C
˛BˇA D 0, which contradicts (4.5).

Lemma 4.19. If m > `, then FG 6Š FG .

Proof. Assume the notation (4.4), m > `, G Š G and H Š G . As n > `, we obtain
Ãn�1.Z.FG// D F.Ãn�1.Z.G/// by Proposition 4.10. This is generated by W as an
algebra since Lemma 4.1 shows that Ãn�1.Z.G// is generated by w from the relations
x2

n Dw and y2m D 1. Thus, Ãn�1.Z.FG//\ � D FW . As a2 is central and c2`�1 D a2n
by the defining relations ofH , we see thatC 2`�1 D .A2/2n�1 lies in Ãn�1.Z.FG//. Hence,
C 2

`�1 2 FW .
Recall the definition (4.11) of the map  . Now, by Lemmas 4.14 and 4.15, we know

 .C C �2/ D �2`�1W C �2`�1X2`�1W C �2`�1Y 2`�1W C .�1C2`�1 C�d /;

where � D ˛AˇB C ˛BˇA, � D �.1C ˛A C ˛B/ and � D �.1C ˇA C ˇB/.
As X2

`�1
W does not lie in FW and neither in �1C2`�1 C�d by (4.10) and (4.3), the

coefficient of it in the expression of  .C C �2/ is 0 by C 2`�1 2 FW . This coefficient
equals a power of � and by Lemma 4.16, this implies � D 0, which contradicts (4.5).

The proof of the last case parallels that of the previous case.

Lemma 4.20. If n > m > `, then FG 6Š FG .

Proof. Assume the notation (4.4), n > m > `, G Š G and H Š G . As m > `, we
obtain Ãm�1.Z.FG// D F.Ãm�1.Z.G/// by Proposition 4.10. This is generated by X2

m

andW as an algebra, since Lemma 4.1 shows that Ãm�1.Z.G// is generated by x2
m

andw
from the relation y2

m D w. Recall that d D 1C 2`�1 C q. Now, the weight of X2
m
W

is 2m C q which is bigger than d as m > `. Thus, Ãm�1.Z.FG// \ � � FW C�d . As
a�2b2 is central and .a�2b2/2m�1 D a�2mb2m D a�2ma2mc2`�1 D c2

`�1 by the defin-
ing relations of H , we see that C 2`�1 D .1C a�2b2/2m�1 lies in Ãm�1.Z.FG//. Hence,
C 2

`�1 2 FW C�d .
The rest of the argument is essentially the same as at the end of the proof of the

previous lemma: by the previous paragraph, we known that the coefficient of X2`�1W
in the expression of  .C C �2/ is 0. On the other hand, by Lemmas 4.14 and 4.15,
this coefficient equals a power of �. By Lemma 4.16, we conclude that � D 0, which
contradicts (4.5).

Now we give a proof of Theorem A using the results obtained so far.

Proof of Theorem A. It remains to show that the groups in Corollary 3.4 are the only
counterexamples to the modular isomorphism problem in our class.

First we show that H is two-generated and the central quotient of H is dihedral.
The minimal number of generators is a well-known invariant and a proof can be found
in Lemma 14.2.7 of [23]. Note that the central quotient of H is dihedral if and only if
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jH W Z.H/j � 8 and jH WH 0Z.H/j D 4; thus it is also an invariant by a result of Margolis,
Sakurai and Stanojkovski (Corollary 2.8 and Lemma 5.9 in [21]). Since the order and the
isomorphism type of the abelianization are invariant, the groups have common parameters
n, m and `.

By Theorems 2.1 and 3.1 and Proposition 4.9, it remains to show that FG 6Š FG
when either nDm� 2 or n >m> ` and that FG 6ŠG when n >m> `. If nDm� 2,
then we conclude that FG 6Š FG from Lemmas 4.17 to 4.19. If n > m > `, then we
conclude that FG 6Š FG from Lemma 4.19, and FG 6Š FG from Lemma 4.20.

Remark 4.21. The arguments involved in the group base approximation partly explain
the choice we make for the isomorphism in Theorem 3.1. There are of course many more
choices for this isomorphism, but Lemma 4.12 imposes some restrictions, for example.
A similar argument, as in the first case proved in Lemma 4.16, can be used to show that
˛A D ˛B needs to hold in the setting of Theorem 3.1. Eventually the choice we make for
the isomorphism seems to be the easiest.

Moreover, the arguments in Section 4 suggest that the straightforward calculations in
the proof of Theorem 3.1 not only make this proof easy, but also make it possible. Any
relation in a group H that requires to compute an actual commutator in the group algebra
of another group G for some given elements is not only difficult to verify, it imposes
conditions that are difficult to meet in the first place.

A. Distinction of groups

In the class of two-generated finite 2-groups with dihedral central quotient, each group
has a presentation of the form in Theorem 2.1. The goal of this appendix is to establish
by group-theoretical arguments when these groups are non-isomorphic and to obtain the
classification of groups within this class. Let n, m and ` denote positive integers. Recall
that a group is homocyclic if it is isomorphic to a direct product of copies of a cyclic group.

Theorem A.1. The six groups G ; : : : ; G are pairwise non-isomorphic if they do not
have homocyclic abelianizations (i.e., n > m).

Theorem A.2. The three groups G , G , G are pairwise non-isomorphic if they have
homocyclic abelianizations (i.e., n D m). Moreover, in this case, G Š G and G Š
G Š G .

These theorems follow immediately from Theorem A and Lemma 3.2; nevertheless,
we will provide a direct group-theoretical proof. We do this by considering the centers and
maximal quotients of the groups. We will write G .n;m; `/; : : : ;G .n;m; `/ to make the
parameters n, m and ` explicit when necessary.

A.1. Maximal quotients

To describe the maximal quotients, we first describe the socle in each case, as the central
involutions are exactly the generators of minimal normal subgroups. By the socle of a
finite p-group, we mean the subgroup generated by central elements of order p. From
Lemma 4.1, we directly get the socles in all cases.
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Lemma A.3. Assume n � 2. Then the following hold:

�.Z.G // D
´
hx2n�1i � hy2m�1i � hz2`�1i Š C2 � C2 � C2 .m � 2/;
hx2n�1i � hz2`�1i Š C2 � C2 .m D 1/;

�.Z.G // D
´
hx2n�1i � hx�2m�1y2m�1i � hz2`�1i Š C2 � C2 � C2 .m � 2/;
hx2n�1i � hz2`�1i Š C2 � C2 .m D 1/;

�.Z.G // D hx2n�1i � hz2`�1i Š C2 � C2;
�.Z.G // D hx2n�1i � hz2`�1i Š C2 � C2;

�.Z.G // D
´
hy2m�1i � hz2`�1i Š C2 � C2 .m � 2/;
hz2`�1i Š C2 .m D 1/;

�.Z.G // D
´
hx�2m�1y2m�1i � hz2`�1i Š C2 � C2 .m � 2/;
hz2`�1i Š C2 .m D 1/:

The next lemma describes all the maximal quotients of the six groups in Theorem 2.1.

Lemma A.4. Assume n � 2. Let G be one of the groups G .n; m; `/; : : : ; G .n; m; `/

and Q a maximal quotient of G. Then Q Š G ? .n0; m0; `0/ for some ? 2 ¹ ; : : : ; º
and n0; m0; `0 satisfying n0 C m0 C `0 D n C m C ` � 1; all the possible values of the
parameters for Q are divided into five cases:
(1) n > mC 1 and m � 2 (Table 3),
(2) n D mC 1 and m � 2 (Table 4),
(3) n D m and m � 2 (Table 5),
(4) n > mC 1 and m D 1 (Table 6),
(5) n D mC 1 and m D 1 (Table 7),

and those are summarized in Tables 3 to 7.

Proof. In all cases, the proof is obtained by applying Lemma 2.3 to each maximal quotient
in each case, which corresponds to a minimal normal subgroup generated by a non-trivial
element of the socle in Lemma A.3.

.n � 1;m; `/ .n;m � 1; `/ .n;m; ` � 1/
G .n;m; `/ G G G G G

G .n;m; `/ G G G G G

G .n;m; `/ G G G

G .n;m; `/ G G G

G .n;m; `/ G G

G .n;m; `/ G G

Table 3. Maximal quotients when n > mC 1, m � 2.
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.n � 1;m; `/ .n;m � 1; `/ .n;m; ` � 1/
G .n;m; `/ G G G G G

G .n;m; `/ G G G G G

G .n;m; `/ G G G

G .n;m; `/ G G

G .n;m; `/ G G

G .n;m; `/ G G

Table 4. Maximal quotients when n D mC 1, m � 2.

.n � 1;m; `/ .n;m � 1; `/ .n;m; ` � 1/
G .n;m; `/ G G G G G

G .n;m; `/ G G G G G

G .n;m; `/ G G

G .n;m; `/ G G

G .n;m; `/ G G

G .n;m; `/ G G

Table 5. Maximal quotients when n D m, m � 2.

.n � 1;m; `/ .n;m � 1; `/ .n;m; ` � 1/
G .n;m; `/ G G G

G .n;m; `/ G G G

G .n;m; `/ G G G

G .n;m; `/ G G G

G .n;m; `/ G

G .n;m; `/ G

Table 6. Maximal quotients when n > mC 1, m D 1.

.n � 1;m; `/ .n;m � 1; `/ .n;m; ` � 1/
G .n;m; `/ G G G

G .n;m; `/ G G G

G .n;m; `/ G G G

G .n;m; `/ G G

G .n;m; `/ G

G .n;m; `/ G

Table 7. Maximal quotients when n D mC 1, m D 1.

We finish this subsection with an illustration of the studied groups by a graph, which
can be derived from Lemma A.4 in Figure 1.
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A.2. Inductive argument

We will now proceed to prove Theorems A.1 and A.2. This will be achieved by a dou-
ble induction. The outer induction runs on the first parameter, i.e., n, and the inner on
the second parameter, i.e., m. We will need the following two cases for the base of the
inductions.

Recall the standard presentations of finite 2-groups of maximal class: the dihedral,
semidihedral and generalized quaternion groups.

D2nC1 D ha; b j a2 D 1; b2
n D 1; ba D b�1 i;

S2nC1 D ha; b j a2 D 1; b2
n D 1; ba D b2n�1�1 i;

Q2nC1 D ha; b j a2 D b2
n�1
; b2

n D 1; ba D b�1 i:

Proposition A.5. Assume ` � 2. Then

D2`C2 Š G .1; 1; `/; S2`C2 Š G .1; 1; `/; Q2`C2 Š G .1; 1; `/:

In particular, G .1; 1; `/, G .1; 1; `/ and G .1; 1; `/ are pairwise non-isomorphic.

Proof. Since the three cases have the same kind of isomorphism a 7! y and b 7! xy, we
only prove that Q2`C2 Š G .1; 1; `/ here.

Let G .1; 1; `/ D hx; y; zi and define a D y and b D xy. Since

b2 D xyxy D x2yŒy; x�y D x2yzy D z2`�1yzy D z2`�1y2zŒz; y� D z2`zŒz; y� D z�1;

we have, using that y2 is central in the last equation,

a2 D y2 D z2`�1 D z�2`�1 D b2` ;
b2

`C1 D z�2` D 1;
ba D .xy/y D y�1xy2 D yx D xyŒy; x� D xyz D bb�2 D b�1:

Hence, there is an epimorphism from Q2`C2 to G .1; 1; `/. Since both groups have the
same order, they must be isomorphic.

Lemma A.6. Assume n � 2. Then G .n; 1; 1/ 6Š G .n; 1; 1/.

Proof. Observe that G .n; 1; 1/ has a maximal subgroup that is isomorphic to C2n�1 �
C2 �C2, namely, hx2;y;zi, whileG .n;1;1/ does not. Indeed, we haveˆ.G .n;1;1//D
hx2; zi, so that the maximal subgroups of G .n; 1; 1/ are hx; zi, hy; zi and hxy; x2i. Note
here that .xy/2 D x2y2z D x4z, so that z 2 hxy; x2i. Hence, all the maximal subgroups
of G .n; 1; 1/ are two-generated.

We are ready for the inductions.

Proof of Theorems A.1 and A.2. We first note that when n D m, then the isomorphisms
G .n;m; `/Š G .n;m; `/ andG .n;m; `/Š G .n;m; `/Š G .n;m; `/ are clear from
the presentations.
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We proceed by induction on n. If n D 1, then also m D 1 and the groups G .n;m; `/,
G .n;m; `/ and G .n;m; `/ are pairwise non-isomorphic by Proposition A.5.

So assume that n � 2 and that Theorems A.1 and A.2 hold for smaller values of n. We
proceed by induction on m. When m D 1, then by Lemma 4.1 the centers of G .n;m; `/,
G .n;m;`/,G .n;m;`/ andG .n;m;`/ are not isomorphic to the centers ofG .n;m;`/

and G .n;m; `/. By induction and Tables 6 and 7, only G .n;m; `/ or G .n;m; `/ can
map onto one of the groups G .n � 1;m; `/ or G .n � 1;m; `/, so these two groups are
not isomorphic to either of G .n;m; `/ or G .n;m; `/. To see that G .n;m; `/ is not iso-
morphic to G .n; m; `/, note that, again by induction and Tables 6 and 7, G .n; m; `/

maps onto G .n � 1; m; `/, while G .n; m; `/ does not. To see that G .n; m; `/ is
not isomorphic to G .n; m; `/, note that, by Tables 6 and 7, exactly one of them maps
onto G .n � 1;m; `/ by induction. To distinguish between G .n;m; `/ and G .n;m; `/,
we observe that, again by Tables 6 and 7, the only maximal quotient of G .n; m; `/ is
G .n;m; ` � 1/, while the only maximal quotient of G .n; m; `/ is G .n;m; ` � 1/. If
`D2, then these quotients are not isomorphic and hence neither are the groupsG .n;m;`/

and G .n; m; `/ by Lemma A.6. In the case ` > 2, the quotients G .n; m; ` � 1/ and
G .n; m; ` � 1/ are also not isomorphic, as we showed earlier in this paragraph. This
finishes the case m D 1.

Consider next n > m � 2 and assume that Theorems A.1 and A.2 hold for smaller
values of n or m. Looking on the centers of the groups in Lemma 4.1, we see that we
only need to show that G .n; m; `/ 6Š G .n; m; `/, G .n; m; `/ 6Š G .n; m; `/ and
G .n; m; `/ 6Š G .n; m; `/. To distinguish between G .n; m; `/ and G .n; m; `/, note
that, by induction and Tables 3 and 4, the group G .n;m; `/ maps onto G .n;m � 1; `/,
while G .n;m; `/ does not. To see that G .n;m; `/ 6Š G .n;m; `/, we note that, again
by induction and Tables 3 and 4, exactly one of them maps onto G .n� 1;m; `/. Finally,
to observe that G .n; m; `/ and G .n; m; `/ are not isomorphic, we also use induction
and Tables 3 and 4 to see that G .n;m; `/ maps onto G .n;m� 1; `/, while G .n;m; `/

does not.
The last case to consider is n D m. Recall that then G .n;m; `/ Š G .n;m; `/ and

G .n;m;`/ŠG .n;m;`/ŠG .n;m;`/. So after looking at the centers in Lemma 4.1, it
only remains to show that G .n;m; `/ and G .n;m; `/ are not isomorphic. By induction
and Table 5, we observe that G .n; m; `/ maps onto G .n; m � 1; `/, which is not the
case for G .n;m; `/. This finishes the inner induction and hence also the induction step
of the outer induction.
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