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Trace inequalities for Sobolev martingales

Dmitriy Stolyarov

Abstract. We study limiting trace inequalities in the style of Maz’ya and Meyers–
Ziemer for Sobolev martingales. We develop the Bellman function approach to such
estimates, which allows to provide sufficient and almost necessary conditions on the
martingale space and the martingale transform under which the trace inequalities
hold true.

1. Introduction

The space of summable functions and its subspaces play a special role in analysis. Many
statements that are true for Lp spaces in the reflexive regime 1 < p < 1 break at the
endpoints; one may recall the Lp boundedness of singular integrals as an example. Other
remain true when interpreted properly, but the proofs might be more complicated. This is
the instance for Sobolev embedding theorems. While the foundations of this theory in the
reflexive regime were laid by Sobolev in [37], the endpoint case p D 1 was not covered
until the work of Gagliardo [13] and Nirenberg [29]. Even then, many natural interesting
questions were left open in the case p D 1. One of the directions of research was initi-
ated by Bourgain and Brezis in [6]. Roughly speaking, we may describe Bourgain–Brezis
inequalities as

(1.1) kf kLp.Rd / . kAf kL1.Rd /;

where A is a differential operator of order m or a Fourier multiplier with similar homo-
geneity properties, p D d=.d � m/, and f may satisfy additional constraints (such as
divf D 0). Usually, these inequalities are related to vectorial behavior of the function f
or the operators in question (Af is usually a vector field or a differential form). We refer
the reader to the papers [5,7,8,11,14,17,19,20,23,24,31,32,35,39,41,42,47–51], among
many others, as well as the surveys [52] and [38] for many Bourgain–Brezis inequalities.

There is a classical trace inequality

(1.2) kf kL1.�/ .
�

sup
x 2Rd
r>0

r1�d�.Br .x//
�
krf kL1.Rd /; f 2C10 .R

d /;
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proved by Maz’ya in [22] and Meyers and Ziemer in [26] (see [25] for generalizations,
and Chapter 7 in [1] for more classical Lp-theory of trace inequalities with p > 1), which,
seemingly does not have any relatives among Bourgain–Brezis inequalities. We call this
inequality the trace inequality, because it allows to define traces of W 1

1 and even BV
functions on sets of non-zero .d � 1/-dimensional Hausdorff measure (we plug for � the
natural Frostman measure related to the set, see Chapter 8 in [21]). It is desirable to obtain
similar inequalities in the generality of (1.1); first, because it is an L1 ! L1 inequality,
which seems to be more difficult than the usual L1 ! Lp Bourgain–Brezis inequalities;
second, such type inequalities often deliver information about geometric properties of cor-
responding BV-type measures. The depth of the desirable analog of (1.2) is emphasized by
the fact that defining the trace on a hyperplane, the simplest .d � 1/-dimensional set, in the
generality of (1.1) was already a demanding problem. We refer the reader to [9,12,15,16]
for trace inequalities on hyperplanes for differential operators and L1-norms.

In this paper, we do not aim to say anything new about functions on Rd . We wish
to explore the aforementioned class of inequalities in the related martingale setting intro-
duced in [4] (the discrete model might be traced to [18]). While there is a well-known
analogy between singular integrals on Rd and martingale transforms, the existence of an
effect similar to that of Bourgain–Brezis inequalities in the martingale setting was noticed
only in [4]. The consideration of these related discrete problems allows to guess the right
way to prove statements in the Euclidean case. See [42] for the proof of several endpoint
Bourgain–Brezis inequalities with the approach suggested by [4], [40] for a probabilistic
model of weakly cancelling operators, and the implementation of the reasoning of that
paper on the Euclidean setting in [41]. See [44] for Maz’ya’sˆ-inequalities in the martin-
gale setting, and [45] for the transference of that reasoning to the Euclidean setting.

In the forthcoming section, we introduce the martingale model. Section 3 contains the
description of our methods. In [4], the authors relied upon common combinatorial tricks
for proving martingale inequalities (mostly stopping times), here we will need to use a
finer tool called the Bellman function or the Burkholder method. We refer the reader to the
foundational papers [10, 28] and the books [30, 53] for the basics of the Bellman function
method. Though the present paper is self-contained, it might be instructive to consult [44],
where a simpler Bellman function was used to solve a related problem. For smoothness
of exposition, we first prove the non-limiting L1-trace inequality from [4] using Bellman
function in Section 4. This is already interesting, because the Bellman extremal problem
arising here seems new. Section 5 introduces additional requirements on the spaces and
functionals and states the main result, Theorem 5.11. The assumptions we impose on the
martingale Sobolev space (see Definition 5.1) might be thought of as martingale versions
of the requirements that the k-wave cone is empty introduced in [2] (see [43] as well). This
is a simple condition on the operator A as in (1.1) sufficient to conclude that any vectorial
measure � D Af has the lower Hausdorff dimension at least k; note that in some cases,
this condition might be essentially sharpened, see [3]. Section 6 contains the proof of the
main theorem, which has been reduced to a verification of a finite dimensional inequality
by the Bellman function method in Section 4; the said finite dimensional inequalities are
still non-trivial. The final section is devoted to two examples that emphasize the analogy
between the martingale problems and similar questions in the Euclidean setting. We con-
sider two particular cases of martingale Sobolev spaces that resemble the spaces PW 1

1 and
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the space of divergence-free measures, and apply our investigations to these two cases; the
results are summarized in Theorems 7.17 and 7.18. We end the paper with formulating a
conjecture about functions on the Euclidean space.

2. Sobolev martingales

Consider a probability space. If S is a finite algebra of measurable sets, a non-empty
set a 2 S is called an atom provided there are no non-empty sets b 2 S such that b � a.
Suppose thatm> 2 is a fixed natural number and F D ¹Fnºn>0 is anm-uniform filtration
(i.e., an increasing sequence of set algebras, Fn � FnC1, such that each atom in Fn is
split into m atoms in FnC1 having equal masses; we also assume that F0 is the trivial
algebra) on the standard atomless probability space. The set of atoms of the algebra Fn
is denoted by AFn. There is a natural tree structure on the set of all atoms

S
n AFn: the

atom !0 2AF nC1 is a kid of ! 2AFn if !0 � !. In such a case, ! is the parent of !0, and
we denote the parent of !0 by .!0/". For each atom a2AFn, we enumerate its kids with
the numbers 1; 2; : : : ; m and fix this enumeration. We will be using the notation Œ1 : : : m�
to denote the integer interval with the endpoints 1 and m, including the endpoints.

We may treat our probability space equipped with an m-uniform filtration as a metric
space T . The points of T are infinite paths in the tree of atoms (we start from the whole
space, then choose an atom in AF1, then pass to one of its kids in AF2, and so on). More
formally, a path is a mapping  WN [ ¹0º! Œ1 : : :m�. A point of T that corresponds to such
a mapping  may be thought of as the intersection of the atoms !n 2AFn, nD 0;1;2; : : :,
where !nC1 is the .n/-th kid of !n. This allows to interpret atoms as subsets of T . The
distance between the two paths 1 and 2 is defined by the formula

dist.1; 2/ D m�d ; d D max¹n 2 N j 1.j / D 2.j / for all j < nº:

With this metric, T becomes a compact metric space. Another way to interpret T is to
identify a path  D ..0/; .1/; .2/; : : :/ with the formal series

P1
nD0..n/� 1/m

�n�1,
which induces the surjection T ! Œ0; 1�. This suggests to call .n/ the n-th digit of  . In
this interpretation, the atoms become m-adic subintervals of Œ0; 1�. One may prove that T
is homeomorphic to a Cantor-type set.

Recall that a sequence of summable random variables F D ¹Fnºn is called a mar-
tingale adapted to F , provided, first, each Fn is Fn-measurable, and second, we have
Fn D E.FnC1 j Fn/ for any n > 0. For a martingale F adapted to F , let ¹dFnºn>1 be the
sequence of its martingale differences:

dFnC1 D FnC1 � Fn; n > 0:

We refer the reader to Chapter VII in [36] for the general martingale theory. We will be
working with a very narrow class of martingales adapted to uniform filtrations, and will
not use anything other than terminology from the general theory.

Consider the linear space

V D
°
v 2 Rm

ˇ̌̌ mX
1

vj D 0
±
:
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For each atom ! 2AFn, the function dFnC1 attains at most m values on !, and, thus,
might be identified with an element of V . Namely, for any !, we fix a bijective map

J! W Œ1 : : : m�! ¹!0 2 AF nC1 j ! D .!
0/"º

that maps the number j to the j -th kid of !. This map may be extended linearly to
the mapping between V and the space of restrictions of all possible martingale differ-
ences dFnC1 to !. This extended map is also called J! .

Let us observe that each signed Borel measure � with bounded variation on T gener-
ates a martingale via the formula

(2.1) Fn D m
n

X
! 2AFn

�.!/�! ; n2N [ ¹0º:

Note that the characteristic functions of atoms are continuous with respect to the metric d
and form a total family in the space C.T / (i.e., each measure on T is uniquely defined by
its values at the atoms). Using this fact, one may establish the one-to-one correspondence
via (2.1) between finite signed measures on T andL1-martingales adapted to F . By anL1
martingale we mean a martingale F such that supn kFnkL1 is finite, the latter expression
being the L1 norm of F .

The Hardy–Littlewood–Sobolev inequality for martingales (going back to [54]) reads
as follows:

(2.2)
X
n>0

m�˛n dFn


Lq

. kF kLp ;

where 1=p � 1=q D ˛ and 1 < p < q <1. Here and in what follows, the notation A. B

means A 6 CB , where the constant C is uniform in a certain sense. For example, the
constant in (2.2) should not depend on the particular choice of F , but it might depend
on p and q. The parameter ˛ should be interpreted as the order of the integration operator.
See [27] and [46] for more general versions of the Hardy–Littlewood–Sobolev inequality
for martingales.

Remark 2.1. Note that the inequality (2.2) is true when p D 1 and 1 � 1=q < ˛ since

kdFnkLq 6 m.q�1/.nC1/=q kdFnkL1 6 2m.q�1/.nC1/=q kF kL1 :

If the martingale F is R`-valued, then fnC1j! might be naturally identified with an
element of V ˝ R` (we apply J! to each of ` coordinates individually); here ! 2AFn.
In other words, we may think of the trace of fnC1 on ! 2AFn as of an m � ` matrix
such that the sum of the elements in each row equals zero. Let W be a linear subspace
of V ˝R`. Consider the subspace W of the R`-valued martingale space L1:

W D
®
F is an L1 martingale with values in R` j 8n; ! 2AFn; dFnC1j! 2 J! ŒW �

¯
:

In view of (2.1), one should think of W as of a BV-type space.The main common feature
of W and spaces of constrained vectorial measures such as rBVD ¹rf j f 2 BV.Rd /º
is that both spaces are invariant under certain group actions. The classical space rBV and
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its generalizations are translation and dilation invariant, while W is invariant with respect
to shifts of the tree T and, if Œ1 : : : m� is equipped with a group structure and W is invari-
ant, invariant with respect to other automorphisms of T . The spaces W were implicitly
introduced in [18] and proved to be good discrete models for several problems in harmonic
analysis onL1 and the space of measures, see [4] and [40]; the former paper suggested the
name ‘Sobolev martingales’ since the behavior of the spaces W resembles that of PW 1

1 (it is
more appropriate to compare W with BV, since L1-martingales correspond to measures
by (2.1); seemingly, this was overlooked by the authors of [4]).

3. Setting of the trace problem and the Bellman function

Let 'WW ! V be a linear operator and let ˛ 2 .0; 1/. Consider the operator

(3.1) I˛ŒF � D
X
n

m�˛n
X

!2AFn

J!
�
'.J�1! ŒdFnC1j! �/

�
; F 2W :

This operator maps martingales to functions; by the correspondence (2.1), we may inter-
pret it as an operator that transforms measures into functions (the series converges in Lq
with q < 1=.1 � ˛/ by Remark 2.1). The operator Jw is used to make the formula mathe-
matically rigorous; informally, (3.1) may be written as

I˛ŒF � D
X
n

m�˛n
X

!2AFn

'.dFnC1j!/; F 2W :

We note that the operator I˛ cannot be applied to an arbitrary R`-valued martingale
since ' is defined on W only and the condition dFnC1j! 2 W is required. We will also
use the notation�

I˛ŒF �
�
N
D

N�1X
nD0

m�˛n
X

!2AFn

J!
�
'.J�1! ŒdFnC1j! �/

�
; F 2W :

Note that .I˛ŒF �/N is FN -measurable. Therefore, ¹.I˛ŒF �/nºn is a martingale.

Remark 3.1. Set ` D 1. The choice of the identity operator for ' reduces I˛ to the mar-
tingale Riesz potential present in the Hardy–Littlewood–Sobolev inequality (2.2). This
operator has positive kernel if we represent it as an integral operator. A different choice
of the operator ' might make the operator I˛ more cancelling than the Riesz potential
(usually, larger ` are needed for such a choice). This is similar to the difference between
the classical Euclidean Riesz potential jxj�ˇ and the kernel x=jxjˇC1. The most classical
example arises in the regime ˇ D d (the dimension of the Euclidean space): the former
operator does not act on L1 at all, while the latter operator is a Calderón–Zygmund opera-
tor and mapsL1 toL1;1. As we will see, these additional cancellations become important
at the endpoints for the trace inequalities we consider (a similar effect appeared in [33]).

We will be studying the question: ‘for which measures � on T does the inequality

(3.2) kI˛ŒF �kL1.�/ . kF kL1 ; F 2W ;
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hold true?’ This inequality allows to define L1-traces of I˛ŒF � on lower-dimensional sub-
sets of T (this explains the name ‘trace inequality’). We will be working with simple mar-
tingales only, since usually the result may be extended to the class of all L1-martingales
by a routine limiting argument.

Definition 3.2. Let ˛ 2 .0; 1/ and let p 2 Œ1;1/. We say that a measure � with bounded
variation on T satisfies the .˛; p/-Frostman condition provided

(3.3) 8n > 0 8! 2AFn .�.!//1=p . m.˛�1/n:

One may restate the .˛; p/-Frostman condition in terms of Morrey space norms,
see [33]. Sometimes, the .˛; p/-Frostman condition is called the ball growth condition.

Remark 3.3. One may prove that the .˛; 1/-Frostman condition is necessary for (3.2),
provided ' is not degenerate. Namely, assume that for any j 2 Œ1 : : :m�, there exists v2W
such that the j -th coordinate of 'Œv�, as an element of Rm, is non-zero (we will later
denote this number by .'Œv�/j , j D 1; 2; : : : ; m). Then, the .˛; 1/-Frostman condition is
necessary for (3.2). One may prove this by plugging ‘elementary martingales’ into (3.2),
i.e., martingales F for which dFnC1j! is non-zero for only single n and single ! 2AFn.

We will be working with a slightly more demanding ‘bilinear’ form of (3.2):

(3.4) kI˛ŒF �kL1.�/ .
�

sup
n>0

!2AFn

m.1�˛/n �.!/
�
kF kL1 ; F 2W :

Definition 3.4. Define the Bellman function BWR` � R � RC � RC � RC ! R by the
rule

B.x; y; z; t; s/ D sup
�° Z

T

ˇ̌
y C I˛ŒF �

ˇ̌
d�
ˇ̌
F0 D x; E jF1j D z; �.T / D t;

sup
n>0

!2AFn

m.1�˛/n�.!/ D s; F 2W
±�
:(3.5)

The supremum in the formula above is taken over the set of simple martingales F only;
note that in such a case, we may assume that � is generated (via (2.1)) by a simple mar-
tingale as well.

The Bellman domain (i.e., the set of points .x; y; z; t; s/ for which the supremum
in (3.5) is taken over a non-empty set) is

(3.6) � D
®
.x; y; z; t; s/ 2 R` �R �RC �RC �RC

ˇ̌
jxj 6 z; t 6 s

¯
:

The Bellman function satisfies the boundary inequality (this follows from substitution of
a constant martingale into (3.5))

(3.7) B.x; y; jxj; t; s/ > jyj t:

We will use the symbol
Pm
jD1 to denote the average, i.e.,

mX
jD1

aj D
1

m

mX
jD1

aj :
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Proposition 3.5. The Bellman function satisfies the main inequality

(3.8) B.x; y; z; t; s/ > m�˛
mX
jD1

B.xj ; m
˛y C .'ŒEx�/j ; zj ; tj ; sj /;

where

(3.9)
x D

mX
jD1

xj ; z D

mX
jD1

zj ; t D

mX
jD1

tj ;

Ex D .x1 � x; x2 � x; : : : ; xm � x/ 2 W and s D max
�
t; m1�˛ max

jD1;:::;m
sj
�
:

Proposition 3.5 is similar to Lemma 3:4 in [44], so we omit its proof. Formally, we
will not need it. A reverse statement is more important for us. We need to set up notation
before formulating it.

Definition 3.6. The configuration space W is formed by strings .X; y;Z;T ;S/, where

X D ¹xj º
m
jD1 2 R`m; y 2 R; Z D ¹zj º

m
jD1 2 .RC/

m;

T D ¹tj º
m
jD1 2 .RC/

m; and S D ¹sj º
m
jD1 2 .RC/

m;

satisfy the splitting rules (3.9), i.e., Ex constructed by the formulas listed in (3.9) belongs
to W , and the natural domain requirements jxj j 6 zj and tj 6 sj for all j D 1; 2; : : : ; m
are also fulfilled.

A sequence ¹Hnºn of summable random variables is called a supermartingale provided
each Hn is Fn-measurable (i.e., ¹Hnºn is adapted to F ) and for any n > 0,

E.HnC1 j Fn/ 6 Hn:

If ¹Hnºn is a supermartingale, then, for any N ,

(3.10) EHN 6 H0:

Proposition 3.7. Let GW�! R be a function that obeys the main inequality (3.8), i.e.,
such that

(3.11) G.x; y; z; t; s/ > m�˛
mX
jD1

G.xj ; m
˛y C .'ŒEx�/j ; zj ; tj ; sj /

for all .X; y;Z;T ;S/ 2 W and x; z; t; s generated from them by (3.9). Let �n be the
martingale generated by � via (2.1), and let

Mn.!/ D sup
N>n;v�!;
v2AFN

m.1�˛/N �.v/:

Then, the process

(3.12) m.1�˛/nG.Fn; m
˛n.y0 C .I˛ŒF �/n/;E.jF1j j Fn/;m

�n�n; m
.˛�1/nMn/

is a supermartingale provided F 2W and y0 2 R.
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Proposition 3.7 and Corollary 3.8 below are similar to Lemma 3:9 in [44].

Proof of Proposition 3.7. Letw2AFn and letw1;w2; : : : ;wm be its kids in AFnC1. Let

y D m˛n
�
y0 C .I˛ŒF �/n.w/

�
I xj D FnC1.wj /; zj D E.jF1j j FnC1/.wj /;

tj D �.wj / D m
�n�1�nC1.wj /; sj D m

.˛�1/.nC1/MnC1.wj /; j 2 Œ1 : : : m�:

By the martingale properties,

x D Fn.w/; z D E.jF1j j Fn/.w/; t D �.w/; s D m.˛�1/nMn.w/;

and Ex D J�1w ŒdFnC1jw �;

satisfy the splitting rules (3.9). In other words, the string .X; y;Z;T ;S/ formed by these
numbers generated as above, belongs to the configuration space W. Therefore, the main
inequality (3.11) applies, which means exactly the supermartingale property

m.1�˛/nG
�
Fn.w/;m

˛n.y0C.I˛ŒF �/n.w//;E.jF1jjFn/.w/;m
�n�n.w/;m

.˛�1/nMn.w/
�

> m.1�˛/.nC1/ EG
�
FnC1; m

˛.nC1/.y0 C .I˛ŒF �/nC1/;E.jF1j jFnC1/;m
�n�1�nC1;

m.˛�1/.nC1/MnC1

�
�w

for the process (3.12); we have used the identity

m˛.nC1/.y0 C .I˛ŒF �/nC1.wj // D m
˛y C .'ŒEx�/j on wj :

Corollary 3.8. Suppose there exists a finite function GW�! R that satisfies the main
inequality (3.11), the boundary inequality G.jxj; y; jxj; s; t/ > jyj t , and the estimate

(3.13) G.x; 0; z; t; s/ . zs:

Then, the inequality (3.4) holds true for all measures � that satisfy the .˛; 1/-Frostman
condition.

Proof. By Definition 3.4, it suffices to prove the estimate

(3.14) B.x; 0; z; t; s/ . zs:

In fact, we will prove that B 6 G on �. Let .x; y; z; t; s/ 2 � and let .F; �/ be a pair
of a simple martingale and a measure generated by a simple martingale that fulfills the
requirements in (3.5) for these fixed x, z, t , and s. By Proposition 3.7, the corresponding
process (3.12) is a supermartingale. Therefore,

G.x; y; z; t; s/ D G.F0; y C .I˛ŒF �/0;E jF1j; �0;M0/

(3.10)
> m.1�˛/N EG

�
FN ; m

˛N .y C .I˛ŒF �/N /;E.jF1j jFN /;m
�N �N ; m

.˛�1/NMN

�
;

for any N > 0. Let us pick sufficiently large N (recall we are working with simple mar-
tingales). By the boundary inequality, the latter expression is bounded from below by

m.1�˛/N Em˛N jy C .I˛ŒF �/N jm
�N �N D E jy C .I˛ŒF �/N j�N D

Z
T
jy C I˛ŒF �j d�:



Trace inequalities for Sobolev martingales 9

Since F and � are arbitrary, we get

B.x; y; z; t; s/ 6 G.x; y; z; t; s/;

which yields (3.14).

Remark 3.9. It is unclear whether the estimate (3.13) in the above corollary is necessary.
Maybe, it is possible to derive (3.13) from the finiteness of G and the validity of the main
inequality for it.

Definition 3.10. The functions G that satisfy the main inequality and the boundary in-
equality are usually called supersolutions.

4. Subcritical case

Let v 2V be a vector. Consider the function �v W .0; 1�! R given by the formula

�v.�/ D � log
� mX
jD1

j1C vj j
1=�
�
D log k1C vkL1=� :

We may extend this function to 0 by continuity. Then,

(4.1) �v.0/ D log
�

max
jD1;:::;m

j1C vj j
�
:

By Hölder’s inequality, this function is convex and non-increasing. If, in addition,
vj > �1 for any j , then this function also satisfies �v.1/ D 0. Consider yet another func-
tion �W Œ0; 1�! R:

(4.2) �.�/ D sup
®
�v.�/

ˇ̌
9a 2 R` n ¹0º such that v ˝ a2W and 8j; vj > �1

¯
:

The function � is also convex, non-increasing, and satisfies �.1/ D 0. As an elementary
computation shows,

�0.1/ D inf
°
�

mX
jD1

.1C vj / log.1C vj /
ˇ̌̌
9a 2 R` n ¹0º such that

v ˝ a2W and 8j; vj > �1
±
:(4.3)

Heuristically, the function � shows how rapidly can the Lp-norm of a rank-one martingale
in W grow. Theorem 1:11 in [4] shows that this function is linked to concentration of
measures�2W : the lower Hausdorff dimension of�2W is at least 1C �0.1/= logm and
this bound is sharp for every W . We cite Theorem 6:2 from [4] (there was no operator '
in [4]; the theorem below is not sensitive to ').

Theorem 4.1. Assume � satisfies the .˛; 1/-Frostman condition and

(4.4) ˛ > �
�0.1/

logm
�

Then, (3.4) holds true with any operator '.
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Let us give the Bellman function proof of this theorem (it relies upon the same princi-
ples as the original one in [4], but uses a different language).

Theorem 4.2. Assume (4.4). Then, for any � 2 .0; 1/ sufficiently close to one, the function

(4.5) G.x; y; z; t; s/ D jyj t CM1 jxj t
1��s� CM2.z � jxj/s

is a supersolution, provided 1�M1 �M2 (depending on �/.

The notation� means the statement holds true when M1 is sufficiently large and M2

is also sufficiently large (depending on the particular choice ofM1). Note that Theorem 4.2
implies Theorem 4.1 via Corollary 3.8.

Definition 4.3. If GW�! R is a function, then its discrepancy DISCRŒG�WW ! R is

DISCRŒG�.X; y;Z;T ;S/ D G.x; y; z; t; s/

�m�˛
mX
jD1

G.xj ; m
˛y C .'ŒEx�/j ; zj ; tj ; sj /:

The main inequality says that DISCRŒG� > 0 on W.

Proof of Theorem 4.2. We wish to prove

DISCR
�
jyj t CM1 jxj t

1��s� CM2.z � jxj/s
�

> 0:

Let us first compute DISCRŒ.z � jxj/s�:

DISCRŒ.z � jxj/s� D .z � jxj/s �m�˛
mX
jD1

.zj � jxj j/sj

D

� mX
jD1

zj �

mX
jD1

jxj j
�
s C

� mX
jD1

jxj j � jxj
�
s �m�˛

mX
jD1

.zj � jxj j/sj

D

� mX
jD1

jxj j � jxj
�
s C

mX
jD1

.zj � jxj j/.m
�1s �m�˛sj /:(4.6)

We see that this expression is always non-negative due to the splitting rules (3.9). What is
more,

(4.7) DISCRŒ.z � jxj/s� & jXjs;

provided

(4.8)
mX
jD1

jxj j > .1C "/ jxj

for some fixed small " (the notation jXjmeans the Euclidean norm of XD .x1;x2; : : : ;xm/
2R`m). Now we turn to the function jxj t1��s� and estimate its discrepancy. Let p be such
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that .1 � �/p0 D 1, where 1=p C 1=p0 D 1. Then,

m�˛
mX
jD1

jxj j t
1��
j s�j D m

1�˛

mX
jD1

jxj j t
1��
j s�j(4.9)

6 m1�˛
� mX
jD1

jxj j
p
�1=p� mX

jD1

t
.1��/p0

j s
�p0

j

�1=p0
.1��/p0D1

6 m1�˛
� mX
jD1

jxj j
p
�1=p� t

m
.m.˛�1/s/�p

0
�1=p0

D m.1�˛/.1��/�.1��/
� mX
jD1

jxj j
p
�1=p

t1�� s� :

Thus, if

(4.10) m�˛.1��/
� mX
jD1

jxj j
p
�1=p

6 jxj;

then DISCRŒjxj t1�� s� � > 0, i.e., the discrepancy of the second term in (4.5) is non-
negative. It was proved in Lemma 2:1 of [4] that, given p 2 .1;1�, for any Qı > 0 there
exists " > 0 such that

e��.p
�1/
� mX
jD1

jxj j
p
�1=p

6 .1C Qı/ jxj; Ex 2 W;

provided (4.8) is violated. Therefore, if ˛ > ��0.1/= logm, p is sufficiently close to one
and " is sufficiently small, then there exists a tiny ı such that

m�˛p=.p�1/
� mX
jD1

jxj j
p
�1=p

6 .1 � ı/ jxj

whenever Ex 2W and
Pm
jD1 jxj j 6 .1 C "/ jxj, which is slightly stronger than (4.10).

Therefore,

(4.11) DISCRŒ jxj t1�� s� � & jXj t1�� s� ;

provided (4.8) is violated with sufficiently small ". We fix such an ".
Combining (4.7), (4.11), and the simple estimate

(4.12) j DISCRŒ jxj t1�� s� �j . jXj t1�� s� ;

we obtain

(4.13) DISCRŒ jxj t1�� s� CM.z � jxj/s� & jXj t1�� s� ;

provided M is sufficiently large (note that t1��s� 6 s). Indeed, in the case (4.8) holds
true, (4.13) follows from (4.7) and (4.12) by the choice of sufficiently large M ; in the
case (4.8) is violated, we rely upon the positivity of DISCRŒ.z � jxj/s� and (4.11)1.

1We will refer to this simple reasoning as to the flat/convex argument (see the explanation after the proof of
the lemma).
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Thus, it remains to prove

(4.14) j DISCRŒ jyj t �j . jXj t:

This follows from direct computation,

(4.15) DISCRŒjyjt � D

mX
jD1

�
jyj � jy Cm�˛.'ŒEx�/j j

�
tj ;

and the triangle inequality.

Remark 4.4. Lemma 6:2 in [4] says that if the function � is affine and (3.2) holds true
with any ', then (4.4) is also true.

In [4], the condition (4.8) played the pivotal role (see Definition 3:1 in that paper).
The atoms for which the corresponding quantities violated it were called "-flat2. The core
of the reasoning is contained in Lemma 2:1 of [4], which manifests the principle that flat
atoms (or flat configurations X D .x1; x2; : : : ; xm/ such that Ex 2W ) lie close to rank-one
configurations. It is convenient to introduce the set of admissible 0-flat increments:

(4.16) MW
D
®
v2V j8j2 Œ1 : : :m�; vj >�1; and 9a2R` n ¹0º such that v˝ a2W

¯
:

See [42] for ‘translation’ of these notions into the language of the Euclidean space (instead
of T ). The following lemma justifies the heuristic principle that flat configurations are
close to rank-one configurations.

Lemma 4.5. Fix W . Let U be a neighborhood of the set

(4.17)
®
X 2 Rm ˝R` j 9v 2MW and a2R` n ¹0º such that Ex D v ˝ a; x D a

¯
:

Then, for sufficiently small ", the violation of (4.8), together with the conditions jxj D 1
and Ex 2W , imply X 2 U .

Proof. Note that if XD¹xj º
m
jD1 violates (4.8) and jxj D 1, then jxj j6mC 1 for every j 2

Œ1 : : : m� (we assume " is sufficiently small). Therefore, the configurations X we consider
are uniformly bounded as vectors in Rm`. Assume the contrary: for any n 2N, there
exists Xn D .xn1 ; x

n
2 : : : ; x

n
m/ 2 Rm` that does not belong to U , jxnj D 1, Exn 2W , and

mX
jD1

jxnj j 6 1C
1

n
�

Let X be a limit point of the sequence ¹Xnºn. Then,
Pm
jD1 jxj j D 1, which means that the

triangle inequality
Pm
jD1 jxj j > 1 turns into equality and there exists v2V with vj > �1,

j 2 Œ1 : : : m�, such that Ex D v ˝ x. Since Ex 2W , we have v 2MW . Therefore, Ex belongs
to (4.17), which contradicts the openness of U .

2The term ‘flat’ symbolizes that the martingale develops along the flat part of the boundary of the ball ofL1.
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5. Additional requirements on ' and W

Definition 5.1. We call the spaceW � V ˝R` geometric if the corresponding function �
is affine.

The condition that a space W is geometric is similar to the condition that the k-wave
cone is empty (see also Lemma 7.4 below); the latter condition played an important role
in [2] and [43].

Proposition 5.2. The space W is geometric if there exists ˛ such that

• the inequality

(5.1)
mX
jD1

.1C vj / log.1C vj / 6 ˛ logm

holds true for any vector v 2MW ;
• there exists v 2MW and H � Œ1 : : : m� such that jH j D m1�˛ and

vj D

´
m˛ � 1; j 2H;

�1; j …H I

in particular, (5.1) turns into equality on this vector.

Proof. Let W be a geometric space and let

˛ D �
�0.1/

logm
�

Then, since � is affine, we have that �.0/ D ˛ logm. Thus, for arbitrary v 2MW , we
have .1C vj / 6 m˛ for all j , and, therefore,

(5.2)
mX
jD1

.1C vj / log.1C vj / 6
mX
jD1

.1C vj /˛ logm D ˛ logm:

Now let v be the vector at which the infimum in (4.3) is attained (by compactness, such
a vector exists). The inequality (5.2) turns into equality by the choice of v. Thus, for
any j 2 Œ1 : : : m�, 1 C vj equals either zero or m˛ . The set where it equals m˛ is the
searched-for set H ; it is clear that jH j D m1�˛ since v has mean zero.

Remark 5.3. If W is a geometric space, then m1�˛ is an integer.

Remark 5.4. Proposition 5.2 may be reversed, the conditions described there are not only
necessary, but also sufficient for W to be a geometric space.

Definition 5.5. The special vectors v ˝ a from Proposition 5.2 for which (5.1) turns into
equality are called extremal. The corresponding sets H are their supports3.

Remark 5.6. There might be several extremal vectors related to a 2 R` n ¹0º.

3This is a slight abuse of notation since H is the support of the function j 7! 1C vj , j 2 Œ1 : : : m�.
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Remark 5.7. The proof of Proposition 5.2 also says the following: if W is a geometric
space and �v.�/ D �.�/ for some v 2MW , � 2 .0; 1/, then v ˝ a is an extremal vector
for some a2R` n ¹0º. Indeed, by Jensen’s inequality4,

mX
jD1

.1C vj / log.1C vj / 6
1

1 � �
log

� mX
jD1

.1C vj /
1=�
��
:

We know this inequality turns into equality. Thus, for each j , we have either 1C vj D 0
or 1C vj D m˛ .

Definition 5.8. LetW �V ˝R` be a geometric space. We say that an operator 'WW !V

is cancelling if the identity
8j 2H; .'Œw�/j D 0

holds true for any extremal vector w D v ˝ a and its support H � Œ1 : : : m�.

The following proposition resembles Theorem 1:5 in [33].

Proposition 5.9. Let W be a geometric space. If (3.4) holds true at the endpoint ˛ D
��0.1/= logm, then ' is a cancelling operator.

Proof. Let v ˝ a be an extremal vector. Consider the martingale F given by

(5.3) Fn D

nY
jD0

.1C hj /˝ a; where hj D
X

w2AF j

Jw Œv�:

In such a case,
dFnC1 D FnhnC1 ˝ a and F 2W :

What is more,
I˛ŒF � D

X
n>0

m�˛n
X

w2AFn

Jw Œ'Œv ˝ a��Fn.w/:

Let H be the support of v. By (5.3), we have Fn.w/ D 0 provided there is a digit in the
m-ary expansion of the ‘number’ w that does not belong to H . Let us compute the values
of Fn.w/ at the other ‘numbers’ w 2AFn:

Fn.w/ D m
˛na:

Therefore, if we pick some large N and consider the stopped martingale

FN D ¹Fmin.n;N/ºn;

then

I˛ŒF
N �.w/ D

NX
jD0

�
'Œv ˝ a�

�
w.j /

at any point w inside the set

HN D ¹w 2AFn j 8j 6 N; w.j / 2 H º:

4We use the weighted Jensen’s inequality
P

j̨ f .aj / 6 f .
P

j̨ aj / for a concave function f and substi-
tute j̨ WD .1C vj /=m, aj WD .1C vj /1=��1, and f WD log.
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The following two statements will contradict (3.4):
• we have

lim
N!1

X
w2HN

ˇ̌̌ NX
jD0

�
'Œv ˝ a�

�
w.j /

ˇ̌̌
D1I

• the uniform probability measure on HN fulfills the .˛; 1/-Frostman condition uni-
formly with respect to N .
The second statement follows from the fact that the said measure is represented via

the correspondence (2.1) by the martingale ¹
Qn
jD0.1C hj /ºn, which is the scalar version

of F , and the bound  nY
jD0

.1C hj /

L1

6 m˛n:

To prove the first statement, we consider following the random variables �j :

�j .w/ D .'Œv ˝ a�/w.j /; w 2HN ;

on the probability space HN equipped with the uniform probability measure. Note that
these random variables are identically distributed and independent. We need to prove
that E j

PN
jD1 �j j ! 1 as N !1 (note that the mathematical expectation is computed

with respect to the uniform measure on HN ). In the case E �j ¤ 0, this follows from the
triangle inequality. In the remaining case E �j D 0, we use the central limit theorem

N�1=2
NX
jD0

�j ! N .0; �/ in distribution;

where � is the variance of �j . Thus, E j
PN
jD0 �j j � c

p
N !1.

We will need yet another condition imposed on W . The necessity of this condition is
doubtable.

Definition 5.10. Let ˛ 2 .0; 1/ be fixed. We say that a geometric space W � V ˝ R` is
non-local (of order ˛) if for any extremal vector v ˝ a2R` supported on H , any w 2W ,
and any b 2 R` the identity

b C wj D 0; 8j … H;

implies that w is proportional to v ˝ a.

In particular, the non-locality assumption implies that for any H � Œ1 : : : m�, all a 2
R` n ¹0º such that there exists an extremal vector v˝ a supported onH , are proportional;
this somehow resembles the strong cancellation condition in [15] (the similarity is empha-
sized by the Fourier-side sufficient condition of non-locality in Lemma 7.15 below). We
are ready to formulate our main result – the endpoint trace theorem.

Theorem 5.11. LetW be a geometric non-local space and let ' be a cancelling operator.
Then, (3.4) holds true at the endpoint ˛ D ��0.1/= logm.
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This theorem has a Bellman function behind it.

Theorem 5.12. LetW be a geometric non-local space and let ' be a cancelling operator.
There exists a collection of constants 1� C1 � C2 � C3 such that the function

(5.4) ˆ.x; y; z; t; s/ D jyj t C C1 jxj t C C2 jxj
p
st C C3.z � jxj/s

is a supersolution.

Theorem 5.12 implies Theorem 5.11 via Corollary 3.8, since ˆ satisfies both the
boundary inequality

ˆ.jxj; y; jxj; s; t/ > jyj t
and (3.13).

Remark 5.13. Mysteriously, both terms jxjt and jxj
p
st are required in the sense that

both functions

jyj t C C2 jxj
p
st C C3.z � jxj/s and jyj t C C1 jxj t C C3.z � jxj/s

are not supersolutions in general. We will not prove this claim. However, inspecting the
proof of Theorem 5.12 at the end of the forthcoming section, one may see that the discrep-
ancies of the two terms, namely, of jxj t and of jxj

p
st , control the discrepancy of jyj t at

different places of the configuration space.

6. Proof of Theorem 5.12

In fact, the proof consists of an accurate computation and estimate of DISCRŒˆ�, which is
done in several steps. We start with the function jxj

p
st CM.z � jxj/s and prove that its

discrepancy allows a bound from below better than simply zero (see Lemma 6.1 below).
The general line is similar to the proof of Theorem 4.2: the discrepancy of the function
in question is positive everywhere (by that theorem), except the extremal vectors and the
corresponding extremal configurations, and we need to analyze its behavior close to those
configurations. This is the most hard part of the proof. Then, we use these bounds to show
that the function jxjt C L.jxj

p
st CM.z � jxj/s/ is a supersolution in Proposition 6.2.

Finally, we use all these estimates to bound the discrepancy of jyjt from below.

6.1. Estimates for jxj
p

st CM.z � jxj/s

One may verify that this function is a supersolution, providedM is sufficiently large, using
the reasonings presented in the proof of Theorem 4.2 (see (4.13)). Now we need to prove
that this function is a supersolution with certain excess. We derive from (4.6) and (4.9)
that

DISCR
�
jxj
p
st CM.z � jxj/s

�
>
p
st
�
jxj �m�˛=2

� mX
jD1

jxj j
2
�1=2
CM

� mX
jD1

jxj j � jxj
��

(recall s > t ).
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By homogeneity with respect to the variables x and z, we may assume jxj D 1. We
may also assume

Pm
jD1 jxj j 6 .1C "/jxj for sufficiently small ", the other case will be

covered by the flat/convex argument and the choice of large M (or large C3 for the initial
function ˆ). Thus, by Lemma 4.5, we need to study the behavior of the function

jxj �m�˛=2
� mX
jD1

jxj j
2
�1=2
CM

� mX
jD1

jxj j � jxj
�

when Ex lies in a neighborhood of some v ˝ a 2 W and x lies in a neighborhood of a.
Using the homogeneity with respect to the variables x and z, we may assume jaj D 1 and
hx; ai D 1, which does not change the things much since all our functions are homoge-
neous of order one with respect to x and z. Of course, jxj is not necessarily equal to 1
anymore. Note that if v ˝ a is not an extremal vector, then

(6.1)
�
jxj �m�˛=2

� mX
jD1

jxj j
2
�1=2�

> 0

provided Ex is sufficiently close to v ˝ a (since this function is positive at x D v ˝ a,
see Remark 5.7). The case where v ˝ a is an extremal vector is covered by the following
lemma.

Lemma 6.1. Assume v˝a2W is an extremal vector of the geometric non-local spaceW .
If hx; ai D 1, Ex 2 W is sufficiently close to v ˝ a, and x is sufficiently close to a, then

DISCR
�
jxj
p
st CM.z � jxj/s

�
&
� mX
jD1

jxj � .1C vj /aj
�p

st ;

provided M is sufficiently large; here v D .v1; v2; : : : ; vm/.

Note that
mX
jD1

jxj � .1C vj /aj D
X
j2H

jxj �m
˛aj C

X
j…H

jxj j;

where H is the support of the extremal vector v ˝ a.

Proof. By the reasonings above, it suffices to prove that

(6.2)
�
jxj �m�˛=2

� mX
jD1

jxj j
2
�1=2�

CM
� mX
jD1

jxj j � jxj
�

&
� mX
jD1

jxj � .1C vj /aj
�
;

given the assumptions of the lemma. Let �x WR` ! R` be the orthogonal projection onto
the line spanned by x. The notation �R� Œ�x Œy�� means the negative part of the projection:
it equals j�x Œy�j if hx; yi 6 0 and zero otherwise. Let H be the support of v ˝ a. We
expand the second term on the left-hand side of (6.2) (see the proof of Lemma 2:1 in [4]
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for similar estimates):

mX
jD1

jxj j � jxj D
1

m

� mX
jD1

.jxj j � j�x Œxj �j/C

mX
jD1

.j�x Œxj �j � jxj/
�

&
X
j…H

.jxj j � j�x Œxj �j/C
X
j…H

�R� Œ�x Œxj ��:

Let

(6.3) D D
� mX
jD1

jxj � .1C vj /aj
�
;

which is equivalent to the distance between X and .1Œ1:::m� C v/˝ a. Then,

jxj j
2
D jm˛aj2 C 2hxj �m

˛a;m˛ai CO.D2/; j 2H I

jxj j
2
D O.D2/; j … H I

jxj2 D jaj2 C 2hx � a; ai CO.D2/ D 1CO.D2/;

by our normalization jaj2 D hx; ai D 1. Therefore,

(6.4) jxj �m�˛=2
� mX
jD1

jxj j
2
�1=2

D 1CO.D2/ �m�˛=2
�
m�1 �m1�˛ �m2˛ C

2

m

X
j2H

hxj �m
˛a;m˛ai CO.D2/

�1=2
D 1CO.D2/ �

�
1C

2

m1C˛

X
j2H

hxj �m
˛a;m˛ai CO.D2/

�1=2
D �m�1�˛

X
j2H

hxj �m
˛a;m˛ai CO.D2/:

We use the identity D X
j2H

xj ; a
E
D m �

D X
j…H

xj ; a
E

(which follows from hx; ai D jaj D 1) to rewrite the expression obtained in (6.4) as

�m�1�˛
X
j2H

hxj �m
˛a;m˛ai CO.D2/ D

1

m

D X
j…H

xj ; a
E
CO.D2/:

Thus, �
jxj �m�˛=2

� mX
jD1

jxj j
2
�1=2�

CM
� mX
jD1

jxj j � jxj
�

&
1

m

D X
j…H

xj ; a
E
CM

�X
j…H

.jxj j � j�x Œxj �j/C
X
j…H

�R� Œ�x Œxj ��
�
CO.D2/:(6.5)
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Figure 1. The plane spanned by a and x.

Claim. The assumption that W is a non-local space (together with the normalization
ha; xi D jaj2/ leads to the estimate

(6.6)
X
j2H

jxj � .1C vj /aj D
X
j2H

jxj �m
˛aj .

X
j…H

jxj j:

To prove the claim, consider the linear subspace L of Rm ˝R` formed by the strings
.�1; �2; : : : ; �m/, where �j 2R`, such that .�1 � �; �2 � �; : : : ; �m � �/ 2W and h�; ai D 0;
here, as usual, � D

Pm
jD1 �j . Note that the string formed of vectors xj �m˛a when j 2H

and xj when j … H , belongs to this space. Therefore, it suffices to prove the inequality

(6.7) k„k .
X
j…H

j�j j; „ D .�1; �2; : : : ; �m/ 2 L:

Note that the function on the right hand-side of this inequality is one-homogeneous and
even. It suffices to prove this function is positive outside the origin. In such a case, it is
a norm on L, and the desired inequality (6.7) follows since any two norms on a finite
dimensional space are equivalent. To proveX

j…H

j�j j > 0; „ 2 L n ¹0º;

assume the contrary: let �j D 0 when j …H for some non-zero„ 2 L. SinceW is a non-
local space (see Definition 5.10), this means .�1 � �; �2 � �; : : : ; �m � �/ is proportional
to v ˝ a. In particular, since some of the �j equals zero, � is parallel to a, which, by our
assumption h�; ai D 0, means � D 0. Therefore, „ D 0, a contradiction. Thus, we have
proved the Claim.

In particular, D .
P
j…H jxj j. Therefore, by (6.5), the estimate

(6.8)
X
j…H

jxj j .
1

m

D X
j…H

xj ; a
E
CM

�X
j…H

.jxj j � j�x Œxj �j/C
X
j…H

�R� Œ�x Œxj ��
�

yields (6.2). Assume M > 1, then, without loss of generality, we may replace the xj with
their projections onto the linear plane spanned by x and a (such a procedure will reduce
the values jxj j in the formula above, while all the other quantities will remain the same).
We will argue geometrically using Figure 1. We split the plane spanned by x and y by the
lines hy; ai D ˙1

3
jyj into four regions as it is drawn on Figure 1.
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If xj belongs to the second or the fourth domains, then jxj j . jxj j � j�x Œxj �j (recall
that x is close to a and, thus, lies strictly inside the first domain). If xj lies inside the first
domain, then jxj j . hxj ; ai. Finally, in the third domain,

jxj j . �R� Œ�x Œxj ��;

and thus, the choice of large M implies

jxj j C jhxj ; aij 6 M�R� Œ�x Œxj ��

in this case, which proves (6.8) (in fact, we have proved the individual estimate

jxj j . hxj ; ai CM
�
.jxj j � j�x Œxj �j/C �R� Œ�x Œxj ��

�
provided M is sufficiently large).

6.2. Estimates for jxjt CL.jxj
p

st CM.z � jxj/s/

Proposition 6.2. For sufficiently large L and M , the function

jxj t C L.jxj
p
st CM.z � jxj/s/

is a supersolution.

Proof. We estimate

(6.9) DISCRŒ jxj t C L.jxj
p
st CM.z � jxj/s/�

>
mX
jD1

tj .jxj �m
�˛
jxj j/C Lt

�
jxj �m�˛=2

� mX
jD1

jxj j
2
�1=2
CM

� mX
jD1

jxj j � jxj
��
I

here we have used that sj > tj for all j (and also (6.1)). Similar to the proof of Theo-
rem 4.2, by Lemma 4.5, it suffices to consider the case where Ex is close to some v ˝ a
and x is close to a (the other cases are covered by a combination of a compactness
argument and the flat/convex argument). What is more, we may assume v ˝ a is an
extremal vector (say, by (6.1)). Let H be the support of v. We normalize x in such a
way that hx; ai D 1 and use Lemma 6.1 (or (6.2)):

DISCRŒ jxj t C L.jxj
p
st CM.z � jxj/s/�

>
mX
jD1

tj
�
jxj �m�˛jxj j

�
C Lt

mX
iD1

jxi � .1C vi /aj:

Note that for j … H , the expression in the parenthesis is always non-negative since xj is
close 0 in this case, while x is close to a. Fix some j 2H . Observe that the function X 7!
jxj � m�˛jxj j is Lipschitz on Rm` and vanishes at .1Œ1:::m� C v/ ˝ a, which means its
absolute value is bounded by

L

mX
iD1

jxi � .1C vi /aj;

provided L is sufficiently large (because the latter expression is the distance between X
and .1Œ1:::m� C v/˝ a).
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Thus,

jxj �m�˛jxj j > 0; j … H I(6.10) ˇ̌
jxj �m�˛jxj j

ˇ̌
.

mX
iD1

jxi � .1C vi /aj; j 2H;(6.11)

and the proof is completed by choosing large L.

6.3. End of proof of Theorem 5.12

We rewrite the discrepancy of the first summand:

(6.12) DISCRŒjyjt � D

mX
jD1

�
jyj � jy Cm�˛.'ŒEx�/j j

�
tj :

We will treat this expression as a function of X and T D .t1; t2; : : : ; tm/. Without loss of
generality, we may assume jxj D 1 and t D 1. The estimateˇ̌

jyj � jy Cm�˛.'ŒEx�/j j
ˇ̌

. jXj

permits the application of the flat/convex argument, provided we have good estimates in
neighborhoods of flat configurations, because if the configuration X satisfies (4.8), then
the discrepancy of the fourth term in (5.4) majorizes the discrepancies of the other three
terms. We also note that the set of all "-flat configurations is compact, provided we require
the normalization jxj D 1. In particular, given any flat configuration ..1Œ1:::m�Cv/˝a;T0/,
it suffices to find its neighborhood and a large constant K such that

DISCR
�
jyj t CK

�
jxj t C L.jxj

p
st CM.z � jxj//

��
> 0

when .X; T / lies inside the said neighborhood and y, Z D .z1; z2; : : : ; zm/, and S D
.s1; s2; : : : ; sm/ are arbitrary. If v ˝ a is not extremal, then the term

DISCRŒ jxj t C L.jxj
p
st CM.z � jxj//�

is bounded away from zero (uniformly with respect to Z and S) in a sufficiently small
neighborhood of ..1Œ1:::m� C v/˝ a; T0/ (say, by (6.1)), and the problem reduces to the
choice of sufficiently large K. Assume v ˝ a is extremal. As usual, we renormalize x
to hx; ai D 1. We estimate

DISCRŒjyjt � > �
X
j…H

jXj tj �
X
j2H

� mX
iD1

jxi � .1C vi /aj
�
tj I

this bound comes from (6.12) and from the cancellation condition imposed on ' (for
any j 2H , we have .'.v ˝ a//j D 0; recall also that D given in (6.3) is the distance
between X and .1Œ1:::m� C v/˝ a). The second sum is compensated by the discrepancy of
jxj
p
st CM.z � jxj/s, by Lemma 6.1. As for the first sum, we haveX

j…H

jXjtj .
X
j…H

.jxj �m�˛jxj j/ tj ;

provided x is sufficiently close to v ˝ a. Thus, this part of the discrepancy may be com-
pensated by DISCRŒjxj t � by choosing sufficiently large C1.



D. Stolyarov 22

7. Two examples

Let nowm D �d , where � and d are natural numbers. We equip the set Œ1 : : :m� with the
group structure of .Z�/d ; this also identifies it with the cube Œ0 : : : � � 1�d in a natural
way. Let

ej D .0; 0; : : : ; 0„ ƒ‚ …
j�1 times

; 1; 0; : : : ; 0/ 2 Œ0 : : : � � 1�d ; j D 1; 2; : : : ; d;

be the generators of .Z�/d . It will be convenient to consider complex-valued functions
and martingales, i.e., we set ` D 2l and identify Cl and R` in a natural way. In our two
main examples, l D d . The first example will model the space BV.Rd /,

(7.1)
Wr D

®
g 2V ˝Cd

j 9f 2Rm such that 8x 2 Œ0 : : : � � 1�d ; j 2 Œ1 : : : d �;

gj .x/ D f .x C ej / � f .x/
¯
:

The second will model the space of solenoidal charges,

(7.2) Wdiv D

°
g 2V ˝Cd

ˇ̌̌
8x 2 Œ0 : : : � � 1�d ;

dX
jD1

.gj .x C ej / � gj .x// D 0
±
:

Before we pass to the details, we survey simple facts about translation invariant spaces.

Definition 7.1. We say that a linear subspace W � V ˝ Cl is translation invariant if for
any f 2W and y2 .Z�/d , the function Œ0 : : :�� 1�d 3 x 7! f .xC y/ also belongs toW ;
the addition sign means addition in .Z�/d .

Note that the spaces Wr and Wdiv are translation invariant. Let us define the Fourier
transform of a function f W .Z�/d ! Cl by the formula

Of ./ D
X

x2.Z�/d

e�2�i �x=�f .x/;  2 .Z�/
d ;

where  � x is short for
Pd
jD1 jxj 2Z�, and we interpret this expression as a residue

modulo � (an integer number in Œ0 : : :�� 1�). The inverse Fourier transform is then given
by the formula

Lg.x/ D m�1
X

2.Z�/d

e2�i �x=�g./; x 2 .Z�/
d :

We refer the reader to the book [34] for introduction to abstract Fourier analysis (though
our case of finite groups is elementary, sometimes the abstract intuition seems useful). The
following lemma is simple, so we leave it without proof.

Lemma 7.2. The space W � V ˝ Cl is translation invariant if and only if there exist
linear spaces �./ � Cl ,  2 .Z�/d n ¹0º, such that

W D
®
f 2V ˝Cl

j 8 2 .Z�/
d
n ¹0º; Of ./ 2 �./

¯
:
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Remark 7.3. Since any element of W has mean zero, Of .0/ D 0 for any f 2W . We may
set �.0/ D ¹0º.

In the caseW DWr , the corresponding spaces�./ are complex lines defined by the
formula

(7.3) �r./ D
�
e2�i 1=� � 1; e2�i 2=� � 1; : : : ; e2�i d =� � 1

�
�C;

for  D .1;2; : : : ;d /2 .Z�/d n ¹0º. In the caseW DWdiv, the spaces�./ are complex
hyperplanes

�div./ D
°
� 2 Cl

ˇ̌̌ dX
jD1

�j .e
2�i j =� � 1/ D 0

±
;

for  D .1; 2; : : : ; d / 2 .Z�/d n ¹0º.
IfW is a translation invariant space, the sets��1.a/, where a2Cl , play an important

role:
��1.a/ D ¹ 2 .Z�/

d
j a2�./º;

since these sets contain the spectra of rank-one vectors. By spectrum of a function we
mean the support of its Fourier transform.

Lemma 7.4. Let k 2 Œ0 : : : d �. Assume W is a translation invariant subspace of V ˝Cl

such that

(7.4) #
�
��1.a/ \ .���1.a//

�
6 �k � 1

for any a2Cl n ¹0º. Assume (7.4) turns into equality for at least one vector a, and that for
this special a we have��1.a/D � n ¹0º, where � is a subgroup of index d � k in .Z�/d .
Then, W is a geometric space of order k=d .

Proof. Let v ˝ a 2 V ˝Cl be a rank-one vector. By definition,

Ov./a2�./;  2 .Z�/
d :

Here we treat v as a real valued function on Œ0 : : : � � 1�d . Therefore, a 2�./ when-
ever Ov./ ¤ 0. Since Ov.�/ D Ov./, we have

supp Ov � ��1.a/ \ .���1.a//:

Assume now that v.x/>�1 for any x 2 Œ0 : : :�� 1�d , and letw.x/D 1C v.x/. Then, Ow
is supported in �

��1.a/ \ .���1.a//
�
[ ¹0º

and, since
P
x w.x/ D m and the numbers w.x/ are non-negative, j Ow./j 6 m for any  .

From this information and the bound (7.4), we conclude that

(7.5) jw.x/j D m�1
ˇ̌̌ X
 2 .Z�/d

e2�i  �x=� Ow./
ˇ̌̌

6 �k ; x 2 Œ0 : : : � � 1�d :
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Therefore, by (4.1), �v.0/ 6 k log�. By the convexity of the function �v and the iden-
tity �v.1/ D 0,

�v.�/ 6 k.log�/.1 � �/:

On the other hand, if the set �
��1.a/ \ .���1.a//

�
[ ¹0º

is a subgroup � , then we setw D j�j��? and see that v˝ a 2W for the corresponding v.
For such a choice of v andw, the inequalities (7.5) turn into equalities when x2�?, which
means

�v.�/ D k log�.1 � �/ D
k

d
logm.1 � �/;

and �? is the support of an extremal vector. Thus, the function � is linear and W is a
geometric space.

Remark 7.5. The proof above says that extremal vectors correspond to those a2Cl n ¹0º,
for which the set �

��1.a/ \ .���1.a//
�
[ ¹0º

is a subgroup � of index d � k. If v ˝ a is an extremal vector, then its support is a coset
of �?.

Definition 7.6. A subset `D � .Z�/d is called a combinatorial line generated by a setD�
Œ0 : : : � � 1� provided

`D D
®
x 2 .Z�/

d
j 9b 2 Z� such that xj D 0; j …D; xj D b; j 2D

¯
:

Lemma 7.7. Let W D Wr . Then, for any a2Cd n ¹0º, either

.��1r .a/ \ .��
�1
r .a/// [ ¹0º D `D; for some D � Œ1 : : : d �,

or ��1
r
.a/ \ .���1

r
.a// D ¿.

Proof. Let a2Cl n ¹0º. Assume some points 1; 2; : : : ;  s belong to ��1
r
.a/. By (7.3),

this means there exist non-zero complex numbers �1; �2; : : : ; �s such that

a D �k
�
e2�i 

k
1 =� � 1; e2�i 

k
2 =� � 1; : : : ; e2�i 

k
d
=�
� 1

�
; k D 1; 2; : : : ; s:

Define

(7.6) D D ¹j 2 Œ1 : : : d � j aj ¤ 0º:

Note that kj D 0 for any k 2 Œ1 : : : s� and j …D. If there are at least two distinct non-zero
values aj1 and aj2 , then the ratio

1 ¤
aj1
aj2
D
e
2�ikj1

=�
� 1

e
2�ikj2

=�
� 1
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completely defines the elements kj1 and kj2 (i.e., these values do not depend on k), since
the equation

eix � 1 D ˛.eiy � 1/; x; y 2 .0; 2�/;

has at most one solution when ˛ ¤ 1. Thus, either all non-zero aj are equal, or s D 1. In
the latter case a …�r.�/. In the former case,��1

r
.a/\ .���1

r
.a//D `D withD given

in (7.6).

Corollary 7.8. The space Wr is a geometric space of order 1=d .

Proof. We note that each combinatorial line is a subgroup of index d � 1, and then use
Lemma 7.4.

Remark 7.9. The extremal vectors ofWr are easy to describe: by Remark 7.5, each such
vector is defined by its support, which is a coset of the subgroup `?D , D � Œ1 : : : d �:

(7.7) `?D D
°
x 2 Œ0 : : : � � 1�d

ˇ̌̌ X
j2D

xj D 0
±
I

the corresponding vector a is parallel to
P
j2D ej .

It is harder to describe the sets ��1div .a/ in general. We will only prove that apart from
several exclusions, these sets are small provided � is sufficiently large.

Lemma 7.10. Let a2Cl n ¹0º. Either #��1div .a/ . �d�2, or

9j 2 Œ1 : : : d � such that ��1div .a/ D ¹ 2 .Z�/
d
j j D 0º; or(7.8)

9j1 ¤ j2 2 Œ1 : : : d � such that ��1div .a/ D ¹ 2 .Z�/
d
j j1 D j2º:(7.9)

Remark 7.11. The set (7.8) corresponds to a being the j -th basic vector in Cd (or a
multiple of it), the set (7.9) corresponds to a being the difference of j1-th and j2-th basic
vectors (or a multiple of it). Using Remark 7.5, we may describe the extremal vectors. In
the case (7.8), each such vector is supported by a coset of the subgroup

�? D Z�ej I

in other words, for any extremal vector of this type, there exists x 2 .Z�/d such that it is
supported by x C Z�ej . In the case (7.9), the support of an extremal vector is a coset of
the subgroup

�? D ¹x 2 .Z�/
d
j xj1 C xj2 D 0º:

The proof of Lemma 7.10 will take some time. We need an auxiliary lemma. Let b 2C.
Consider the set

Sa;b D
°
� 2 .Z�/

d
ˇ̌̌ dX
jD1

aj .e
2�i�j =� � 1/ D b

±
:

Lemma 7.12. Let all aj , j D 1;2; : : : ;d , be non-zero. If d > 3, then #Sa;b .�d�2. In the
case d D 2, either #Sa;b 6 2, or a1=a2D e2�i�=� for some �2 Œ0 : : :�� 1�, bD�a1 � a2,
and #Sa;b D � in this case.
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Proof. Let us study the structure of the sets Sa;b in the case d D 2 first.
We rewrite the equation defining Sa;b in the form

e2�i�1=� D �
a2

a1
e2�i�2=� C

a2 C b C a1

a1
�

The left-hand and right-hand sides define two circles in the complex plane. In general,
such two circles intersect by at most two points, which leads to the estimate #Sa;b 6 2.
However, there is one exception: the two circles might coincide; in such a case, we cannot
hope for anything better than #Sa;b 6 � (this estimate is definitely true). If the circles
coincide, then ja1j D ja2j and b D �a1 � a2. Since we search for solutions �1; �2 2
Œ0 : : : � � 1�, we also need a1=a2 D e2�i�=�, where � 2 Œ0 : : : � � 1�, to have #Sa;b D �.
We see that for any pair of non-zero numbers .a1; a2/, there exists at most one b such
that #Sa;b > 2.

Now let us pass to the case d D 3 and prove that in this case #Sa;b 6 3�. We consider
the sets

Sa;b;�1 D
®
.�2; �3/2.Z�/

2
j a2 .e

2�i �2=� � 1/C a3 .e
2�i �3=� � 1/

D b � a1.e
2�i �1=� � 1/

¯
:

We note that since a1 ¤ 0, #Sa;b;�1 6 2 for all but at most one values of �1 (for this special
value, we have #Sa;b;�1 6 �). Summing over all �1, we get #Sa;b 6 3�.

Using induction and a similar ‘slicing’ trick, we prove that #Sa;b 6 3�d�2 for all
larger d .

Proof of Lemma 7.10. Now we allow some of the numbers aj to be equal zero. If d � 1
of them vanish, we have (7.8). If d � 2 of them vanish, let aj1 and aj2 be non-zero. Then,

#��1div .a/ 6 �d�2 #S.aj1 ;aj2 /;0:

If aj1 ¤ �aj2 , then
#S.aj1 ;aj2 /;0 6 2;

by Lemma 7.12. If aj1 D �aj2 , then we arrive at (7.9). Finally, if d � k of the coordinates
of a vanish, k > 2, then

#��1div .a/ . �d�k�k�2 6 �d�2

by Lemma 7.12.

Remark 7.13. We have proved that, apart from the exceptions, #��1div .a/6 3�d�2, which
is less than �d�1 if � > 4.

Corollary 7.14. For � > 4, the space Wdiv is geometric of order .d � 1/=d .

Proof. We note that the sets (7.8) and (7.9) are subgroups of index 1, and then we apply
Lemma 7.4.

Now we pass to verification of the non-locality condition given in Definition 5.10.
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Lemma 7.15. Let k 2 Œ0 : : : d �. AssumeW is a translation invariant subspace of V ˝Cl

such that
#
�
��1.a/ \ .���1.a//

�
6 �k � 1

for any a 2Cl n ¹0º. Assume also that if ��1.a/ D � n ¹0º, where � is a subgroup of
index d � k in .Z�/d , then \

2�

�./ D Ca and(7.10) \
2S

�./ D ¹0º(7.11)

for any coset S ¤ � of � . Then, W is a non-local space of order k=d .

Proof. By Remark 7.5 and translation invariance, it suffices to prove that if the func-
tion c C f , where c is a constant and f 2W , is supported in �? for some subgroup � of
index d � k, � D ��1.a/[ ¹0º, then c C f is proportional to ��? ˝ a. If g D c C f is
supported in �?, then its Fourier transform is constant on each coset of � . In particular,
for any such coset S and any � 2 S ,

Og.�/ 2
\
2S

�./:

By (7.11), Og is supported in � and, by (7.10), Og is proportional to �� ˝ a. Therefore, g is
proportional to ��? ˝ a.

Corollary 7.16. Let � > 4. The space Wr is non-local of order 1=d and the space Wdiv
is non-local of order .d � 1/=d .

Proof. We need to verify the assumptions of Lemma 7.15 for the cases Wr and Wdiv. The
first case follows easily from Lemma 7.7, the second case follows from Lemma 7.10.

Let now 'WW ! V be an operator that commutes with translations. We may extend it
to an operator mapping Rm ˝ Cl to V and then average over translations. The resulting
operator will be translation invariant. In particular, there exists a functionM W .Z�/d !Cl

such that

(7.12) F Œ'Œf ��./ D hM./; Of ./i;  2 .Z�/
d ; f 2 W;

the symbol F means the Fourier transform. Here we use scalar product in Cl . Without
loss of generality, we may assume M./ 2 �./ (in case this relation does not hold for
some  , we may redefine M./ to be the orthogonal projection of M./ onto �./; this
will not change the formula (7.12)). In particular, M.0/ D 0. Using the inverse Fourier
transform, we have

(7.13) 'Œf �.x/ D
X

y2.Z�/d

hK.x � y/; f .y/i; x 2 .Z�/
d
I
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here K D m LM . Assume now that W satisfies the assumptions of Lemma 7.4. Let v ˝ a
be an extremal vector. Then, by translation invariance and the condition

P
x K.x/ D 0,

the cancellation condition from Definition 5.8 is equivalent to

0 D 'Œv ˝ a�.0/ D �˛
X
y2H

hK.y/; ai:

Here we assume v ˝ a is supported by a subgroup H (see Remark 7.5).
In the case W D Wr , this reads as follows:

(7.14) 8D � Œ1 : : : d �;
X

xW
P
j2D

xjD0

hK.x/; eDi D 0; eD D
X
j2D

ej :

Theorem 7.17. Let W be given by (7.1). Let the operator ' be defined by (7.13). Then,
the inequality (3.4) holds true if and only if the operator ' fulfills the cancellation condi-
tion (7.14).

In the case W D Wdiv, the cancellation condition turns into:

8j 2 Œ1 : : : d �;
X
y2Z�

Kj .yej / D 0I(7.15)

8 i ¤ j 2 Œ1 : : : d �;
X
y2Z�

Kj .y.ej � ei // �Ki .y.ej � ei // D 0:(7.16)

Theorem 7.18. Let W be given by (7.2). Let the operator ' be defined by (7.13). Then,
the inequality (3.4) holds true if and only if the operator ' fulfills the cancellation condi-
tions (7.15) and (7.16).

Compare with condition .1:10/ in [33] and Conjecture 1:6 of the same paper. It says
that the inequality

kK � f kL1.�/ . kf kL1.Rd /; divf D 0; K � f D

dX
jD1

Kj � fj ;

holds true for all measures � satisfying the ball growth (or Frostman) condition �.Br .x//
. r , if and only if the kernel KWRd ! Rd that is homogeneous of order �1 satisfies the
condition

dX
jD1

.Kj .x/CKj .�x//xj D 0

for any x 2Rd n ¹0º.
Note that since the kernel K D .K1; K2; : : : ; Kd / is homogeneous of order �1, the

latter condition may be informally interpreted that the (divergent) integral
R

RhK.tx/;xidt

vanishes for any x, which is somehow similar to (7.15) and (7.16). In a similar manner,
Theorem 7.17 leads to another natural conjecture.
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Conjecture 7.19. Assume the kernel KWRd ! Rd is homogeneous of order 1 � d and
smooth outside the origin. The inequality

kK � rf kL1.�/ . krf kL1.Rd /; f 2C10 .R
d /;

holds true for all measures � satisfying the condition �.Br .x// . rd�1 if and only if for
any e 2 Sd�1, Z

e?\Sd�1
hK.�/; ei d� D 0:

The integration is performed with respect to the natural Hausdorff measure on the .d � 2/-
dimensional sphere e? \ Sd�1.

Funding. Supported by the Russian Science Foundation grant no 19-71-30002.
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