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4-manifolds with boundary and fundamental group Z

Anthony Conway, Lisa Piccirillo, and Mark Powell

Abstract. We classify topological 4-manifolds with boundary and fundamental group Z, under
some assumptions on the boundary. We apply this to classify surfaces in simply-connected
4-manifolds with S3 boundary, where the fundamental group of the surface complement is Z.
We then compare these homeomorphism classifications with the smooth setting. For manifolds,
we show that every Hermitian form over ZŒt˙1� arises as the equivariant intersection form of
a pair of exotic smooth 4-manifolds with boundary and fundamental group Z. For surfaces we
have a similar result, and in particular we show that every 2-handlebody with S3 boundary
contains a pair of exotic discs.
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Introduction

In what follows a 4-manifold is understood to mean a compact, connected, oriented,
topological 4-manifold. Freedman classified closed 4-manifolds with trivial funda-
mental group up to orientation-preserving homeomorphism. Other groups � for which
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classifications of closed 4-manifolds with fundamental group � are known, include
� Š Z (see [42, 85, 91]), � a finite cyclic group [52], and � a solvable Baumslag–
Solitar group [53]. Complete classification results for manifolds with boundary essen-
tially only include the simply-connected case [11, 12]; see also [83].

This paper classifies 4-manifolds with boundary and fundamental group Z, under
some extra assumptions on the boundary. We give an informal statement now. Fix a
closed 3-manifold Y , an epimorphism 'W �1.Y /� Z, a non-degenerate Hermitian
form � over ZŒt˙1�, and an additional piece of data specifying how the Alexander
module of Y interacts with �. Then up to homeomorphism fixing Y; there exists a
unique 4-manifold M filling Y inducing the specified data. Uniqueness is a con-
sequence of [27, Theorem 1.10]. Existence is the main contribution of this paper,
Theorem 2.4. We give a similar non-relative classification of suchM in Theorem 2.8.

A feature of our classification, which we shall demonstrate in Section 8, is the
existence of arbitrarily large sets of homeomorphism classes of such 4-manifolds, all
of which have the same boundary Y and the same form �. Recently, this was exten-
ded [20,23], using the results of this paper, to produce infinite sets of homeomorphism
classes with this property. Thus this paper leads to the first classification of infinite
families of orientable 4-manifolds, all with the same, non-trivial, equivariant intersec-
tion form. This can be compared with [14,61] and [70, Theorem 1.2], which produced
infinite families of manifolds homotopy equivalent to RP 4#RP 4 and L.p; q/ � S1

respectively; note that in both cases �2 D 0 and so there is no intersection form.
We apply our results to study compact, oriented, locally flat, embedded surfaces in

simply-connected 4-manifolds where the fundamental group of the exterior is infinite
cyclic; we call these Z-surfaces. The classification of closed surfaces in 4-manifolds
whose exterior is simply-connected was carried out by Boyer [12]; see also [86]. Liter-
ature on the classification of discs inD4 where the complement has fixed fundamental
group includes [19,26,45]. For surfaces in more general 4-manifolds, [27] gave neces-
sary and sufficient conditions for a pair of Z-surfaces to be equivalent. In this work,
for a 4-manifoldN with boundary S3 and a knotK � S3, we classify Z-surfaces inN
with boundary K in terms of the equivariant intersection form of the surface exterior;
see Theorem 1.7. An application to H -sliceness can be found in Corollary 1.9, while
Theorem 1.11 classifies closed Z-surfaces.

Finally, we compare these homeomorphism classifications with the smooth set-
ting. We demonstrate that for every Hermitian form � over ZŒt˙1� there are pairs
of smooth 4-manifolds with boundary, �1 Š Z, and equivariant intersection form �

which are homeomorphic rel. boundary but not diffeomorphic; see Theorem 1.15.
We also show in Theorem 1.17 that for every Hermitian form � satisfying conditions
which are conjecturally necessary, there is a smooth 4-manifold N with S3 boundary
containing a pair of smoothly embedded Z-surfaces whose exteriors have equivari-
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ant intersection form � and which are topologically but not smoothly isotopic rel.
boundary.

1. Statement of results

Before stating our main result, we introduce some terminology. Our 3-manifolds Y
will always be oriented and will generally come equipped with an epimorphism,
which we denote by 'W�1.Y /� Z.

Definition 1.1. An oriented 4-manifold M together with an identification �1.M/ Š

Z is said to be a Z-manifold if the inclusion induced map �1.@M/ ! �1.M/ is
surjective.

When we say that a Z-manifold M has boundary .Y; '/, we mean that M comes
equipped with a homeomorphism @M

Š
��! Y such that the composition

�1.Y /� �1.M/
Š
��! Z

agrees with '. We will always assume that the Alexander module H1.Y IZŒt˙1�/
is ZŒt˙1�-torsion; recall that the Alexander module is the first homology group of
the infinite cyclic cover Y1 ! Y corresponding to ker.'/. The action of the deck
transformation group Z D hti makes the first homology into a ZŒt˙1�-module.

1.1. The classification result

Our goal is to classify Z-manifolds M whose boundary @M Š Y has H1.Y IZŒt˙1�/
torsion, up to orientation-preserving homeomorphism. The isometry class of the equi-
variant intersection form �M on H2.M I ZŒt˙1�/ is an invariant of such M (this
definition is recalled in Section 3.1) and so, to classify suchM , it is natural to first fix
a non-degenerate Hermitian form � over ZŒt˙1�, and then to classify Z-manifolds M
with boundary @M Š Y , and equivariant intersection form �. The fact that � is non-
degenerate implies that the Alexander module H1.Y IZŒt˙1�/ is torsion.

For such a 4-manifoldM; the equivariant intersection form �M onH2.M IZŒt˙1�/
presents the Blanchfield form on H1.Y IZŒt˙1�/ (see Section 3.2)

BlY WH1
�
Y IZŒt˙1�

�
�H1

�
Y IZŒt˙1�

�
! Q.t/=ZŒt˙1�:

We make this algebraic notion precise next. If �WH �H!ZŒt˙1� is a non-degenerate
Hermitian form on a finitely generated free ZŒt˙1�-module (for short, a form), then we
write y�WH !H� for the linear map z 7! �.�; z/, and there is a short exact sequence

0! H
y�
�! H� �! coker.y�/! 0:
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Such a presentation induces a boundary linking form @� on coker.y�/ in the following
manner. For Œx� 2 coker.y�/ with x 2H�, since coker.y�/ is ZŒt˙1�-torsion there exist
elements z 2H and p 2ZŒt˙1� n ¹0º such that �.�; z/Dpx 2H�. Then for Œx�; Œy�2
coker.y�/ with x; y 2 H�, we define

@�
�
Œx�; Œy�

�
WD

y.z/

p
2 Q.t/=ZŒt˙1�:

One can check that @� is independent of the choices of p and z.

Definition 1.2. For T a torsion ZŒt˙1�-module with a linking form `W T � T !

Q.t/=ZŒt˙1�, a non-degenerate Hermitian form .H; �/ presents .T; `/ if there is an
isomorphism hWcoker.y�/! T such that `.h.x/;h.y//D @�.x;y/. Such an isomorph-
ism h is called an isometry of the forms, the set of isometries is denoted Iso.@�; `/.
If .H; �/ presents .H1.Y IZŒt˙1�/;�BlY / then we say .H; �/ presents Y .

This notion of a presentation is well known (see e.g. [28,81]), and appeared in the
classification of simply-connected 4-manifolds with boundary in [11, 12] and in [27]
for 4-manifolds with �1 Š Z. See also [10, 37]. Presentations capture the geometric
relationship between the linking form of a 3-manifold and the intersection form of a
4-manifold filling. To see why the form .H2.M IZŒt˙1�/; �M / presents @M , one first
observes that the long exact sequence of the pair .M; @M/ with coefficients in ZŒt˙1�

reduces to the short exact sequence

0! H2
�
M IZŒt˙1�

�
! H2

�
M; @M IZŒt˙1�

�
! H1

�
@M IZŒt˙1�

�
! 0;

where H2.M IZŒt˙1�/ and H2.M; @M IZŒt˙1�/ are finitely generated free ZŒt˙1�-
modules [27, Lemma 3.2]. The left term of the short exact sequence supports the
equivariant intersection form �M and the right supports Bl@M . As explained in detail
in [27, Remark 3.3], some algebraic topology gives the following commutative dia-
gram of short exact sequences, where the isomorphism DM is defined so that the
right-most square commutes:

0 // H2
�
M IZŒt˙1�

� y�M //

idD
��

H2
�
M IZŒt˙1�

��
//

Š ev�1 ıPD
��

coker.y�M /

DMŠ
��

// 0

0 // H2
�
M IZŒt˙1�

�
// H2

�
M; @M IZŒt˙1�

�
// H1

�
@M IZŒt˙1�

�
// 0:

It then follows that .H2.M IZŒt˙1�/; �M / presents @M , where the isometry @�M Š
�Bl@M is given by DM . For details, see [27, Proposition 3.5].

Thus to classify the Z-manifolds M with boundary @M Š Y , it suffices to con-
sider forms .H; �/ which present Y . In Section 2 we use DM to define an additional
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automorphism invariant

bM 2 Iso.@�;�BlY /=Aut.�/:

Here, as we define precisely in equation (2.1) below, an isometry F 2 Aut.�/ induces
an isometry @F of @�, and the action on h 2 Iso.@�;�BlY / is then by

F � h D h ı @F �1:

Additionally, recall that a Hermitian form .H;�/ is even if �.x;x/D q.x/C q.x/ for
some ZŒt˙1�-module homomorphism qWH ! ZŒt˙1� and is odd otherwise. Our first
classification now reads as follows.

Theorem 1.3. Fix the following data:

(1) a closed 3-manifold Y ;

(2) an epimorphism 'W�1.Y /� Z with respect to which the Alexander module
of Y is torsion;

(3) a non-degenerate Hermitian form �WH �H ! ZŒt˙1� which presents Y ;

(4) if � is odd, k 2 Z2;

(5) a class b 2 Iso.@�;�BlY /=Aut.�/.

Up to homeomorphism rel. boundary, there exists a unique Z-manifoldM with bound-
ary .Y; '/, equivariant intersection form �, automorphism invariant b and, in the odd
case, Kirby–Siebenmann invariant k.

Here two 4-manifoldsM0 andM1 with boundary Y are homeomorphic rel. bound-
ary if there exists a homeomorphism M0

Š
��!M1 such that the restriction composed

with the given parametrisations of the boundary, Y Š @M0
Š
��! @M1 Š Y is the iden-

tity on Y . The uniqueness part of the theorem (which follows from [27]) can be
thought of as answering whether or not a given pair of parametrisations Y Š @Mi

extend to a homeomorphism M0 ŠM1. We refer to Remark 2.9 for a guide to apply-
ing the uniqueness statement of Theorem 1.3. We give the proof of Theorem 1.3
(modulo our main technical theorem) in Section 2.

Remark 1.4. We collect a couple of further remarks about this result.

(i) The automorphism invariant that distinguishes Z-manifolds with the same
equivariant form is non-trivial to calculate in practice, as its definition typically inv-
olves choosing identifications of the boundary 3-manifolds; see Section 2.

(ii) Theorem 1.3 should be thought of as an extension of the work of Boyer [11,
12] that classifies simply-connected 4-manifolds with boundary and fixed intersection
form and an extension of the classification of closed 4-manifolds with �1DZ [42,85].
Boyer’s main statements are formulated using presentations instead of isometries of
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linking forms, but both approaches can be shown to agree when the 3-manifold is a
rational homology sphere [12, Corollary E]. By way of analogy, rational homology
3-spheres are to 1-connected 4-manifolds with boundary as pairs .Y; '/ with torsion
Alexander module are to Z-manifolds.

(iii) For .Y; '/ as above, it is implicit in Theorem 1.3 and in [27] that if M0

and M1 are spin 4-manifolds with �1.Mi / Š Z, boundary homeomorphic to .Y; '/,
isometric equivariant intersection form, and the same automorphism invariant, then
their Kirby–Siebenmann invariants agree. The argument is given in Remark 2.5 below,
whereas Section 5.7 shows that the assumption on the automorphism invariants cannot
be dropped. We refer to [11, Proposition 4.1 (vi)] for the analogous fact in the simply-
connected setting.

Example 1.5. We will show in Proposition 8.5 that there are examples of pairs .Y; '/
for which the set of 4-manifolds with fixed boundary Y and fixed (even) equivari-
ant intersection form, up to homeomorphism rel. boundary, can have arbitrarily large
cardinality (in the recent [20, 23] examples with infinite cardinality were obtained).
Details are given in Section 8, but we note that the underlying algebra is similar to
that which was used in [22] and [21] to construct closed manifolds of dimension
4k � 8 with non-trivial homotopy stable classes. This arbitrarily large phenomenon
also exists for simply-connected 4-manifolds bounding rational homology spheres,
which can be deduced from Boyer’s work [11, 12] with a similar proof. On the other
hand in the simply-connected setting there can only ever be finite such families.

In Theorem 1.3, we fixed a parametrisation of the boundary. By changing the para-
metrisation by a homeomorphism of Y that intertwines ', we can change the invariant
b 2 Iso.@�;�BlY /=Aut.�/ by post-composition with the induced automorphism of
�BlY . This leads to an absolute (i.e. non-rel. boundary) classification analogous to
Theorem 1.3, which we will formalise in Theorem 2.8. For now we highlight the
following example, which contrasts with Example 1.5.

Example 1.6. If Y Š †g � S1 and 'W�1.†g � S1/! �1.S
1/! Z is induced by

projection onto the second factor, then for a fixed non-degenerate Hermitian form �

that presents Y , if � is even there is a unique homeomorphism class of 4-manifolds
with �1 Š Z, boundary Y , and equivariant intersection form �, and if � is odd there
are exactly two such homeomorphism classes. Here we allow homeomorphisms to
act non-trivially on the boundary. The key input is that every automorphism of BlY
can be realised by a homeomorphism of Y that intertwines ' ([27, Proposition 5.6]).
Therefore, given two 4-manifolds for which the rest of the data coincide, by re-
parametrising Y we can arrange for the automorphism invariants to agree.
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In Section 2 we describe the automorphism invariant b from Theorem 1.3, give
the statement of our main technical theorem on realisation of the invariants by Z-
manifolds, and explain how Theorem 1.3 implies a non-rel. boundary version of the
result. But first, in Sections 1.2 and 1.3, we discuss some applications.

1.2. Classification of Z-surfaces in simply-connected 4-manifolds with
S 3 boundary

For a fixed simply-connected 4-manifold N with boundary S3 and a fixed knot K �
@N D S3, we call two locally flat embedded compact surfaces†;†0 �N with bound-
ary K � S3 equivalent rel. boundary if there is an orientation-preserving homeo-
morphism .N; †/ Š .N; †0/ that is pointwise the identity on S3 Š @N . We are
interested in classifying the Z-surfaces in N with boundary K up to equivalence rel.
boundary.

As for manifolds, first we inventory some invariants of Z-surfaces. The genus
of † and the equivariant intersection form �N† on H2.N†IZŒt˙1�/ are invariants of
such a surface †, where N† denotes the exterior N n �.†/. Write EK WD S3 n �.K/
for the exterior of K and recall that the boundary of N† has a natural identification

@N† Š EK [@ .†g;1 � S
1/ DWMK;g :

As discussed previously in Section 1.1, there is a relationship between the equivari-
ant intersection form �N† on H2.N†I ZŒt˙1�/ and the Blanchfield form BlMK;g
on H1.MK;g IZŒt˙1�/: the Hermitian form .H2.N†IZŒt˙1�/; �N†/ presents MK;g .

There is one additional necessary condition for a given form .H;�/ to be isometric
to the intersection pairing .H2.N†IZŒt˙1�/; �N†/ for some surface †. Observe that
we can reglue the neighbourhood of † to N† to recover N . This is reflected in the
intersection form, as follows. We write �.1/ WD �˝ZŒt˙1� Z", where Z" denotes Z

with the trivial ZŒt˙1�-module structure. If W is a Z-manifold, then �W .1/ Š QW ,
where QW denotes the standard intersection form of W ; see e.g. [27, Lemma 5.10].
Therefore, if � Š �N† , then we have the isometries

�.1/ Š �N†.1/ D QN† Š QN ˚ .0/
˚2g ;

where the last isometry follows from a Mayer–Vietoris argument. The following the-
orem (which is stated slightly more generally in Theorem 6.2 below) shows that these
invariants, with these two necessary conditions, are in fact also sufficient once an
automorphism invariant is fixed.

Theorem 1.7. Fix the following data:

(1) a simply-connected 4-manifold N with boundary S3;
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(2) an oriented knot K � S3;

(3) an integer g 2 Z�0;

(4) a non-degenerate Hermitian form .H; �/ over ZŒt˙1� which presents MK;g

and satisfies �.1/ Š QN ˚ .0/˚2g ;

(5) a class b 2 Aut.BlK/=Aut.�/.

Up to equivalence rel. boundary, there exists a unique genus g Z-surface†�N with
boundary K whose exterior N† has equivariant intersection form � and automorph-
ism invariant b.

The action of the group Aut.�/ on the set Aut.BlK/ arises by restricting the action
of Aut.�/ on Aut.@�/ Š Aut.BlMK;g / Š Aut.BlK/˚ Sp2g.Z/ to the first summand.
Here the (non-canonical) isomorphism Aut.@�/ Š Aut.BlMK;g / holds because the
form � presents MK;g , while the isomorphism Aut.BlMK;g / Š Aut.BlK/˚ Sp2g.Z/
is a consequence of [27, Propositions 5.6 and 5.7].

Again, the construction is explicit. The idea is that the set of topological surfaces
(up to equivalence rel. boundary) is in bijection with the set of surface complements
(up to homeomorphism rel. boundary). So this theorem can be recovered from The-
orem 1.3 by taking Y to be MK;g . We detail this in Section 6 where we state the
outcome as a bijection between Aut.BlK/=Aut.�/ and the set of rel. boundary iso-
topy classes of Z-surfaces†�N with boundaryK and equivariant intersection form
�N† Š �. Finally, we note that when N D D4, equivalence rel. boundary can be
upgraded to isotopy rel. boundary via the Alexander trick. See also [77, Theorem F]
for more cases when equivalence can be upgraded to isotopy.

Remark 1.8. Previous classification results of locally flat discs in 4-manifolds include
Z-discs in D4 ([26, 42]), BS.1; 2/-discs in D4 ([26, 45]) and G-discs in D4 (under
some assumptions on the groupG) ([19,45]). In the latter case it is not known whether
there are groups satisfying the assumptions other than Z and BS.1; 2/. Our result
is the first classification of discs with non-simplyconnected exteriors in 4-manifolds
other than D4.

Before continuing with Z-surfaces, we mention an application of Theorem 1.7
to H -sliceness. A knot K in @N is said to be (topologically) H -slice if K bounds a
locally flat, embedded discD inN that represents the trivial class inH2.N; @N /. The
study of H -slice knots has garnered some interest recently because of its potential
applications towards producing small closed exotic 4-manifolds [24, 60, 69, 72–74].
Since Z-slice knots are H -slice (see e.g. [27, Lemma 5.1]), Theorem 1.7 therefore
gives a new criterion for topological H -sliceness. Our results also apply in higher
genus. When N D D4, this is reminiscent of the combination of [36, Theorems 2
and 3] and [9, Theorem 1.1] (and for g D 0 it is Freedman’s theorem that Alexander
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polynomial one knots bound Z-discs [41, 42]). In connected sums of copies of CP 2,
this is closely related to [69, Theorem 1.3]. Compare also [37, Theorem 1.10], which
applies in connected sums of copies of CP 2#CP

2
and S2 � S2.

Corollary 1.9. Let N be a simply-connected 4-manifold with boundary S3 and let
K � S3 be a knot. If BlMK;g is presented by a non-degenerate Hermitian matrix A.t/
such that A.1/ is congruent to QN ˚ .0/˚2g , then K bounds a genus g Z-surface
in N . In particular, when g D 0, K is H -slice in N .

We study Z-surfaces up to equivalence (instead of equivalence rel. boundary).
Note that here an additional technical requirement is needed on the knot exterior
EK WD S

3 n �.K/.

Theorem 1.10. Let K be a knot in S3 such that every isometry of BlK is realised by
an orientation-preserving homeomorphismEK!EK . If a non-degenerate Hermitian
form .H; �/ over ZŒt˙1� presents MK;g and satisfies

�.1/ Š QN ˚ .0/
˚2g ;

then up to equivalence, there exists a unique genus g surface†�N with boundaryK
and whose exterior has equivariant intersection form �.

The classification of closed Z-surfaces then follows from Theorem 1.10. To state
the result, given a closed simply-connected 4-manifold X , we use X† to denote the
exterior of a surface † � X and N WD X n VD4 for the manifold obtained by punc-
turing X . The details are presented in Section 6.3. The idea behind the proof is that
closed surfaces are in bijective correspondence, with surfaces with boundary U , so
we can apply Theorem 1.10.

Theorem 1.11. Let X be a closed simply-connected 4-manifold. If a non-degenerate
Hermitian form .H; �/ over ZŒt˙1� presents †g � S1 and satisfies

�.1/ Š QX ˚ .0/
˚2g ;

then there exists a unique (up to equivalence) genus g surface † � X whose exterior
has equivariant intersection form �.

Note that the boundary 3-manifold in question here, †g � S1, is the same one
that appeared in Example 1.6. We conclude with a couple of remarks on Theor-
ems 1.7, 1.10, and 1.11. Firstly, we note that for each theorem, the uniqueness state-
ments follow from [27]. Our contributions in this work are the existence statements.
Secondly, we note that similar results were obtained for closed surfaces with simply-
connected complements by Boyer [12]. Some open questions concerning Z-surfaces
are discussed in Section 6.4.
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1.3. Exotica for all equivariant intersection forms

So far, we have seen that the data in Theorems 1.3 and 1.7 determine the topological
type of Z-manifolds and Z-surfaces respectively. In what follows, we investigate the
smooth failure of these statements.

One of the driving questions in smooth 4-manifold topology is whether every
smoothable simply-connected closed 4-manifold admits multiple smooth structures.
This question has natural generalisations to 4-manifolds with boundary and with other
fundamental groups; we set up these generalisations with the following definition.

Definition 1.12. For a 3-manifold Y , a (possibly degenerate) symmetric form Q

over Z (resp. Hermitian form � over ZŒt˙1�) is exotically realisable rel. Y if there
exists a pair of smooth simply-connected 4-manifolds M and M 0 with boundary Y
(resp. Z-manifolds with boundary Y ) and intersection form Q (resp. equivariant
intersection form �) such that there is an orientation-preserving homeomorphism
F WM !M 0 (for �1 Š Z, we additionally require that F respects the identifications
of �1.M/ and �1.M 0/ with Z) but no diffeomorphism GWM !M 0.

In this language, the driving question above becomes (a subquestion of) the fol-
lowing: which symmetric bilinear forms over Z are exotically realisable rel. S3?
There is substantial literature demonstrating that some forms are exotically realisable
rel. S3 (we refer to [5,6] both for the state of the art and for a survey of results on the
topic) but there remain many forms, such as definite forms or forms with b2 < 3, for
which determining exotic realisability rel. S3 remains out of reach. For more general
3-manifolds, the situation is worse; in fact, it is an open question whether for every
integer homology sphere Y there exists some symmetric form Q that is exotically
realisable rel. Y [34].

Presently, there only seems to be traction on exotic realisability of intersection
forms if one relinquishes control of the homeomorphism type of the boundary.

Definition 1.13. A symmetric formQ over Z (resp. a Hermitian form � over ZŒt˙1�)
is exotically realisable if there exists pair of smooth simply-connected 4-manifoldsM
and M 0 with intersection form Q (resp. Z-manifolds with equivariant intersection
form �) such that there is an orientation-preserving homeomorphism F WM ! M 0

(for �1 Š Z, we additionally require that F respects the identifications of �1.M/ and
�1.M

0/ with Z) but no diffeomorphism GWM !M 0.

The following theorem, which appears in [3] for n D 0 and [4] for n > 1, shows
that contrarily to the closed setting, every symmetric bilinear form over Z is exotically
realisable.

Theorem 1.14 (Akubulut–Yasui [4] and Akbulut–Ruberman [3]). Every symmetric
bilinear form .Zn;Q/ over Z is exotically realisable.
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Following our classification of Z-manifolds with fixed boundary and fixed equi-
variant intersection form � it is natural to ask which Hermitian forms � are exotically
realisable, with or without fixing a parametrisation of the boundary 3-manifold. We
resolve the latter.

Theorem 1.15. Every Hermitian form .H; �/ over ZŒt˙1� is exotically realisable.

Topologists are also interested in finding smooth surfaces which are topologically
but not smoothly isotopic. While literature in the closed case includes [38, 39, 58,
65–67,75] there has been a recent surge of interest in the relative setting on which we
now focus [29,54–56,62]; see also [1]. Most relevant to us are the exotic ribbon discs
from [54]. In order to prove that his discs in D4 are topologically isotopic, Hayden
showed that their exteriors have group Z and appealed to [26]. From the perspective
of this paper and [27], any two Z-ribbon discs are isotopic rel. boundary because
their exteriors are aspherical and therefore have trivial equivariant intersection form.
To generalise Hayden’s result to other forms than the trivial one, we introduce some
terminology.

Definition 1.16. For a fixed smooth simply-connected 4-manifold N , with bound-
ary S3, a form � over ZŒt˙1� is realised by exotic Z-surfaces in N if there exists a
pair of smooth properly embedded Z-surfaces † and †0 in N , with the same bound-
ary, whose exteriors have equivariant intersection forms isometric to �, and which are
topologically but not smoothly isotopic rel. boundary.

Using this terminology, Hayden’s result states that the trivial form is realised by
exotic Z-discs (in D4). The next result shows that in fact every form is realised by
exotic Z-discs.

Theorem 1.17. Every Hermitian form .H; �/ over ZŒt˙1�, such that �.1/ is realised
as the intersection form of a smooth simply-connected 4-dimensional 2-handlebodyN
with boundary S3, is realised by exotic Z-discs in N .

Remark 1.18. We make a couple of remarks on Theorems 1.15 and 1.17.

(i) The 11=8 conjecture predicts that every integer intersection form which is
realisable by a smooth 4-manifold with S3 boundary is realisable by a smooth 4-
dimensional 2-handlebody with S3 boundary, thus our hypothesis on the realisability
of �.1/ by 2-handlebodies is likely not an additional restriction (a nice exposition on
why this follows from the 11=8 conjecture is given in [59, page 24]).

(ii) The handlebody N is very explicit: it can be built from D4 by attaching 2-
handles according to �.1/. In particular, when � is the trivial form, then N DD4 and
so Theorem 1.17 demonstrates that there are exotic discs in D4. This was originally
proved in [54], and we note that our proof relies on techniques developed there.
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(iii) The proof of Theorem 1.17 also shows that every smooth 2-handlebody with
S3 boundary contains a pair of exotic Z-discs. We expand on this above the statement
of Theorem 7.6.

We briefly mention the idea of the proof of Theorem 1.15. For a given Hermitian
form .H; �/ over ZŒt˙1�, we construct a Stein 4-manifold M with �1.M/ Š Z and
�M Š� that contains a cork. Twisting along this cork produces the 4-manifoldM 0 and
the homeomorphism F WM ŠM 0. We show that if F j@ extended to a diffeomorphism
M ŠM 0, two auxiliary 4-manifoldsW andW 0 (obtained fromM andM 0 by adding
a single 2-handle) would be diffeomorphic. We show this is not the case by proving
that W is Stein whereas W 0 is not using work of Lisca–Matic [71]. This proves that
M and M 0 are non-diffeomorphic rel. F j@. We then use a result of [3] to show that
there exists a pair of smooth manifolds V and V 0, which are homotopy equivalent
to M and M 0 respectively, and which are homeomorphic but not diffeomorphic to
each other. The proof of Theorem 1.17 uses similar ideas.

Organisation. In Section 2 we describe our main technical result and how it implies
Theorem 1.3. In Section 3, we recall and further develop the theory of equivariant link-
ing numbers. In Section 4 we review the facts we will need on Reidemeister torsion.
Section 5, we prove our main technical result, Theorem 2.4. Section 6 is concerned
with our applications to surfaces, and in particular we prove Theorems 1.7, 1.10
and 1.11. Our results in the smooth category, namely Theorems 1.15 and 1.17, are
proved in Section 7. Finally, Section 8 exhibits the arbitrarily large collections prom-
ised in Example 1.5

Conventions. In Sections 2-6 and 8, we work in the topological category with locally
flat embeddings unless otherwise stated. In Section 7, we work in the smooth category.

From now on, all manifolds are assumed to be compact, connected, based and
oriented; if a manifold has a non-empty boundary, then the basepoint is assumed to
be in the boundary.

If P is manifold and Q � P is a submanifold with closed tubular neighbourhood
x�.Q/ � P , then PQ WD P n �.Q/ will always denote the exterior of Q in P , that is
the complement of the open tubular neighbourhood. The only exception to this use of
notation is that the exterior of a knot K in S3 will be denoted EK instead of S3K .

We write p 7! xp for the involution on ZŒt˙1� induced by t 7! t�1. Given a ZŒt˙1�-
module H , we write xH for the ZŒt˙1�-module whose underlying abelian group is H
but with module structure given by p � h D xph for h 2 H and p 2 ZŒt˙1�. We write
H� WD HomZŒt˙1�.H;ZŒt

˙1�/.
If a pullback map F � is invertible we shall abbreviate .F �/�1 to F ��. Similarly,

for an invertible square matrix A we write A�T WD .AT /�1.
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2. The main technical realisation statement

The goal of this section is to formulate our main technical theorem, to explain how it
implies Theorem 1.3 from the introduction, and to formulate its non-relative analogue.
Along the way we also define the automorphism invariant in more detail. We begin
by defining a set of Z-manifolds V0

�
.Y / with boundary Y and intersection form �.

Then we describe a map bWV0
�
.Y /! Iso.@�;�BlY /=Aut.�/. Theorem 1.3 (as for-

mulated in Remark 2.2) then reduces to the statement that b is a bijection. As we will
explain, the injectivity of b follows from [27, Theorem 1.10]. The main technical res-
ult of this paper is Theorem 2.4, which gives the surjectivity of b (and thus implies
Theorem 1.3). We also prove in this section that Theorem 2.8, our absolute (i.e. non-
rel. boundary) homeomorphism classification result, follows from Theorem 1.3. We
finish the section with an outline of the proof of Theorem 2.4.

We start by describing the set V0
�
.Y / from Theorem 1.3 more carefully.

Definition 2.1. Let Y be a 3-manifold with an epimorphism 'W �1.Y /� Z whose
Alexander module is torsion, and let .H; �/ be a Hermitian form presenting Y . Con-
sider the set S�.Y / of pairs .M; g/, where

• M is a Z-manifold with a fixed identification �1.M/
Š
��! Z, equivariant intersec-

tion form isometric to �, and boundary homeomorphic to Y ;

• gW @M
Š
��! Y is an orientation-preserving homeomorphism such that

Y
g�1;Š
����! @M !M

induces ' on fundamental groups.

Define V0
�
.Y / as the quotient of S�.Y / in which two pairs .M1; g1/; .M2; g2/ are

deemed equal if and only if there is a homeomorphism ˆWM1 ŠM2 such that

ˆj@M1 D g
�1
2 ı g1:

Note that such a homeomorphism is necessarily orientation-preserving because g1
and g2 are. For conciseness, we will say that .M1; g1/ and .M2; g2/ are homeo-
morphic rel. boundary to indicate the existence of such a homeomorphism ˆ.

Remark 2.2. Using Definition 2.1, Theorem 1.3 is equivalent to the following state-
ment: If � presents Y , then V0

�
.Y / is non-empty and corresponds bijectively to

• Iso.@�;�BlY /=Aut.�/, if � is an even form;

• .Iso.@�;�BlY /=Aut.�//�Z2 if � is an odd form. The map to Z2 is given by the
Kirby–Siebenmann invariant.

The bijection is explicit and will be constructed in Construction 6.4.
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Additionally, note that since .H; �/ is assumed to present Y , there is an iso-
metry @� Š �BlY and fixing a choice of one such isometry leads to a bijection

Iso.@�;�BlY /=Aut.�/ � Aut.@�/=Aut.�/;

where Aut.@�/ denotes the group of self-isometries of @�. Note however that this
bijection is not canonical as it depends on the choice of the isometry @� Š �BlY .

Construction 2.3 (Constructing the map bWV0
�
.Y /! Iso.@�;�BlY /=Aut.�/). Let Y

be a 3-manifold with an epimorphism 'W�1.Y /�Z whose corresponding Alexander
module is torsion, and let .H; �/ be a form presenting Y . Let .M; g/ be an element
of V0

�
.Y /, i.e. M is a Z-manifold with equivariant intersection form isometric to �

and gW @M Š Y is a homeomorphism as in Definition 2.1.
In the text preceding Theorem 1.3, we showed how M determines an isometry

DM 2 Iso.@�M ;� Bl@M /. Morally, one should think that this isometry DM is the
invariant we associate to M . For this to be meaningful however, we instead need an
isometry that takes value in a set defined in terms of just the 3-manifold Y and the
form .H; �/, without referring to M itself. We resolve this by composing DM with
other isometries, so that our invariant is ultimately an element of Iso.@�;�BlY /. Once
we have built the invariant, we will show it is well defined up to an action by Aut.�/.

We first use g to describe an isometry Bl@M Š BlY . Since on the level of fun-
damental groups g intertwines the maps to Z, [27, Proposition 3.7] implies that g
induces an isometry

g�WBl@M Š BlY :

Next we describe an isometry @� Š @�M . The assumption that M has equivari-
ant intersection form � means by definition that there is an isometry F W � Š �M ,
i.e. an isomorphism F WH ! H2.M IZŒt˙1�/ that intertwines the forms � and �M .
Note that there is no preferred choice of F . Any such F induces an isometry @F 2
Aut.@�; @�M / as follows: F WH ! H2.M IZŒt˙1�/ gives an isomorphism

.F �/�1WH� ! H2
�
M IZŒt˙1�

��
that descends to an isomorphism coker.y�/ Š coker.y�M / and is in fact an isometry;
this is by definition

@F WD .F �/�1W @� Š @�M :

This construction is described in greater generality in [27, Section 2.2]. We shall
henceforth abbreviate .F �/�1 to F ��.

We are now prepared to associate an isometry in Iso.@�;�BlY / to .M; g/2V0
�
.Y /

as follows: choose an isometry F W�M Š � and consider the isometry

b.M;g;F / WD g� ıDM ı @F 2 Iso.@�;�BlY /:
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We are not quite done, because we need to ensure that our invariant is independent of
the choice of F and that b defines a map on V0

�
.Y /.

First, we will make our invariant independent of the choice of F . We require the
following observation. Given a Hermitian form .H; �/ and linking form .T; `/, there
is a natural left action Aut.�/Õ Iso.@�; `/ defined via

G � h WD h ı @G�1 for G 2 Aut.�/ and h 2 Iso.@�; `/: (2.1)

In particular, we can consider

b.M;g/ WD g� ıDM ı @F 2 Iso.@�;�BlY /=Aut.�/:

It is now not difficult to check that b.M;g/ is independent of the choice of F .
The fact that if .M0; g0/ and .M1; g1/ are homeomorphic rel. boundary (recall

Definition 2.1), then b.M0;g0/ D b.M1;g1/ follows fairly quickly. From now on we
omit the boundary identification gW @M Š Y from the notation, writing bM instead
of b.M;g/. This concludes the construction of our automorphism invariant.

We are now ready to state our main technical theorem.

Theorem 2.4. Let Y be a 3-manifold with an epimorphism 'W �1.Y /� Z whose
Alexander module is torsion, and let .H; �/ be a non-degenerate Hermitian form
presenting Y . If b 2 Iso.@�;�BlY /=Aut.�/ is an isometry, then there is a Z-mani-
fold M with equivariant intersection form �M Š �, boundary Y and bM D b. If the
form is odd, then M can be chosen to have either ks.M/ D 0 or ks.M/ D 1.

We now describe how to obtain Theorem 1.3 (as formulated in Remark 2.2) by
combining this result with [27].

Proof of Theorem 1.3 assuming Theorem 2.4. First, notice that Theorem 2.4 implies
the surjectivity portion of the statement in Theorem 1.3. It therefore suffices to prove
that the assignment V0

�
.Y /! Iso.@�;�BlY /=Aut.�/which sendsM to bM is inject-

ive for � even, and that the assignment V0
�
.Y /! .Iso.@�;� BlY /=Aut.�// � Z2

which sends M to .bM ; ks.M// is injective for � odd.
Let .M0; g0/ and .M1; g1/ be two pairs representing elements in V0

�
.Y /. Each

4-manifoldMi comes with an isometry Fi W .H;�/! .H2.Mi IZŒt˙1�/; �Mi / and for
i D 0; 1, the homeomorphisms gi W @Mi ! Y are as in Definition 2.1. We then get
epimorphisms

.gi /� ıDMi ı @Fi ı � WH
�� H1

�
Y IZŒt˙1�

�
:

Here � WH�! coker.y�/ denotes the canonical projection. We assume that bM0DbM1
and, if � is odd, then we additionally assume that ks.M0/ D ks.M1/. The fact that
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bM0 D bM1 implies that there is an isometry F W .H; �/ Š .H; �/ that makes the fol-
lowing diagram commute:

0 // H
y� //

F

��

H�
.g0/�ıDM0ı@F0ı�//

F��

��

H1
�
Y IZŒt˙1�

�
D

��

// 0

0 // H
y� // H�

.g1/�ıDM1ı@F1ı�// H1
�
Y IZŒt˙1�

�
// 0:

But now, by considering the isometryGW�M0 Š �M1 defined by G WD F1 ı F ı F �10 ,
a quick verification shows that .G; idY / is a compatible pair in the sense of [27].
Consequently, [27, Theorem 1.10] shows that there is a homeomorphism M0 Š M1

extending idY and inducing G; in particular, M0 and M1 are homeomorphic rel.
boundary.

Remark 2.5. For .Y; '/ as in Theorem 2.4, we explain the fact (already mentioned
in Remark 1.4) that if M0 and M1 are spin 4-manifolds with �1.Mi / Š Z, bound-
ary homeomorphic to .Y; '/, isometric equivariant intersection form, and the same
automorphism invariant, then their Kirby–Siebenmann invariants agree. As explained
during the proof of Theorem 1.3, these assumptions ensure the existence of a com-
patible pair .G; idY /. This in turn implies that M WDM0 [g0ıg

�1
1
M1 is spin and has

fundamental group Z [27, Theorem 3.12]. The assertion now follows from additivity
of ks and Novikov additivity of the signature:

ks.M0/C ks.M1/ D ks.M/ �
�.M/

8
D
�.M0/ � �.M1/

8
D 0 .mod 2/:

We also use that the signatures ofM ,M0, andM1 can be obtained from the respective
equivariant intersection forms by specialising to t D 1 and taking the signature.

In Section 5.7, we exhibit examples of spin 4-manifolds with boundary homeo-
morphic to �L.8; 1/#.S1 � S2/ and isometric equivariant intersection form that have
different Kirby–Siebenmann invariants, demonstrating that the automorphism invari-
ant was needed in the argument of this remark.

Next we outline the strategy of the proof of Theorem 2.4.

Outline of the proof of Theorem 2.4. The idea is to perform surgeries on Y along a set
of generators of H1.Y IZŒt˙1�/ to obtain a 3-manifold Y 0 with H1.Y 0IZŒt˙1�/ D 0.
The verification thatH1.Y 0IZŒt˙1�/D 0 uses Reidemeister torsion. We then use sur-
gery theory to show that this Y 0 bounds a 4-manifold B with B ' S1; this step relies
on Freedman’s work in the topological category [7,40,42]. The 4-manifoldM is then
obtained as the union of the trace of these surgeries with B . To show that in the odd
case both values of the Kirby–Siebenmann invariant are realised, we use the star con-
struction [42, 83]. The main difficulty of the proof is to describe the correct surgeries
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on Y to obtain Y 0; this is where the fact that � presents BlY comes into play: we
show that generators of H1.Y IZŒt˙1�/ can be represented by a framed link zL with
equivariant linking matrix equal to minus the transposed inverse of a matrix repres-
enting �.

This is a strategy similar to the one employed in Boyer’s classification of simply-
connected 4-manifolds with a given boundary [12]. The argument is also reminiscent
of [10, Theorem 2.9], where Borodzik and Friedl obtain bounds (in terms of a present-
ation matrix for BlK) on the number of crossing changes required to turn K into
an Alexander polynomial one knot: they perform surgeries on the zero-framed sur-
gery Y DMK to obtain Y 0 DMK0 , where K 0 is an Alexander polynomial one knot.

Remark 2.6. As we mentioned in Construction 2.3, ifM0 andM1 are homeomorphic
rel. boundary, then bM0 D bM1 in Iso.@�;� BlY /=Aut.�/. In fact, the same proof
shows more. If two 4-manifolds M0 and M1 that represent elements of V0

�
.Y / are

homotopy equivalent rel. boundary, then bM0 D bM1 in Iso.@�;�BlY /=Aut.�/.

Next, we describe how the classification in the case where the homeomorphisms
need not fix the boundary pointwise follows from Theorem 1.3. To this effect, we
use HomeoC' .Y / to denote the orientation-preserving homeomorphisms of Y such
that the induced map on �1 commutes with 'W�1.Y /� Z and we describe the set
of homeomorphism classes of Z-manifolds that we will be working with.

Definition 2.7. For Y and .H; �/ as in Definition 2.1, define V�.Y / as the quotient
of S�.Y / in which two pairs .M1; g1/; .M2; g2/ are deemed equal if and only if there
is a homeomorphism ˆWM1 ŠM2 such that

ˆj@M1 D g
�1
2 ı f ı g1

for some f 2 HomeoC' .Y /; note that such a homeomorphism ˆ is necessarily orien-
tation-preserving.

We continue to set up notation to describe how the non-relative classification
follows from Theorem 1.3. Observe that the group HomeoC' .Y / acts on V0

�
.Y / by

setting f � .M; g/ WD .M; f ı g/ for f 2 HomeoC' .Y /. Further, observe that

V�.Y / D V0
�.Y /=HomeoC' .Y /: (2.2)

Recall that any f 2HomeoC' .Y / induces an isometry f� of the Blanchfield form BlY .
Thus the group HomeoC' .Y / acts on Iso.@�;�BlY / by f � h WD f� ı h. Finally, there
is a natural left action Aut.�/ � HomeoC' .Y / on Iso.@�;�BlY / defined via

.F; f / � h WD f� ı h ı @F
�1:
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The non-relative classification statement reads as follows.

Theorem 2.8. Let Y be a 3-manifold with an epimorphism �1.Y /� Z whose Alex-
ander module is torsion, let .H; �/ be a non-degenerate Hermitian form over ZŒt˙1�.
Consider the set V�.Y / of Z-manifolds with boundary @M Š Y , and �M Š �, con-
sidered up to orientation-preserving homeomorphism.

If the form .H; �/ presents Y , then V�.Y / is non-empty and corresponds biject-
ively to

(1) Iso.@�;�BlY /=.Aut.�/ � HomeoC' .Y // if � is an even form;

(2) .Iso.@�;�BlY /=.Aut.�/�HomeoC' .Y ///�Z2 if � is an odd form. The map
to Z2 is given by the Kirby–Siebenmann invariant.

Proof. Thanks to Theorem 1.3 (as formulated in Remark 2.2) and (2.2), it suffices to
prove that the map b respects the HomeoC' .Y / actions, i.e. that bf �.M;g/ D f � b.M;g/,
where gW @M Š Y is a homeomorphism as in Definition 2.1 and f 2 HomeoC' .Y /.
This now follows from the following formal calculation:

bf �.M;g/ D b.M;f ıg/ D f� ı g� ıDM ı @F D f � b.M;g/;

where F W �M Š � is an isometry and we used the definitions of the HomeoC' .Y /
actions and of the map b.

Remark 2.9. To make the results as user friendly as possible, we spell out how to
apply them in practice. Fix an oriented 3-manifold Y with torsion Alexander module.
Two orientable Z-manifolds M0 and M1 with boundary Y are homeomorphic if and
only if they have the same Kirby–Siebenmann invariants, and the following hold:

(1) there are identifications  i W�1.Mi /
Š
��! Z for i D 0; 1, and

(2) there are a homeomorphism gi W Y
Š
��! @Mi for i D 0; 1, and a surjection

�1.Y /! Z such that

 i ı incli ıgi D ' for i D 0; 1;

and such that

(3) using the coefficient system induced by the  i , and the orientations induced
by the gi to define the intersection forms, there is an isometry

F W
�
H2
�
M0IZŒt

˙1�
�
; �M0

�
Š
�
H2
�
M1IZŒt

˙1�
�
; �M1

�
;

and

(4) with respect to this isometry we have that

bM0 D bM1 2 Iso.@�M0 ;�BlY /=
�
Aut.�M0/ � HomeoC' .Y /

�
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or, equivalently, there exists an isometry F W �M0 Š �M1 whose algebraic bound-
ary @F W @�M0 Š @�M1 is induced by some orientation-preserving homeomorphism
f WY ! Y that intertwines '. In [27] such a pair .f; F / is called compatible.

The next few sections are devoted to proving Theorem 2.4.

3. Equivariant linking and longitudes

We collect some preliminary notions that we will need later on. In Section 3.1 we fix
our notation for twisted homology and equivariant intersections. In Section 3.2, we
collect some facts about linking numbers in infinite cyclic covers, while in Section 3.3,
we define an analogue of integer framings of a knot in S3 for knots in infinite cyclic
covers.

3.1. Covering spaces and twisted homology

We fix our conventions on twisted homology and recall some facts about equivariant
intersection numbers. We refer the reader interested in the intricacies of transversality
in the topological category to [43, Section 10].

We first introduce some notation for infinite cyclic covers. Given a space X
that has the homotopy type of a finite CW complex, together with an epimorphism
'W �1.X/� Z, we write pWX1 ! X for the infinite cyclic cover corresponding
to ker.'/. If A � X is a subspace, then we set A1 WD p�1.A/ and we will often
write H�.X; AIZŒt˙1�/ instead of H�.X1; A1/. Similarly, since Q.t/ is flat over
ZŒt˙1�, we often writeH�.X;AIQ.t// orH�.X;AIZŒt˙1�/˝ZŒt˙1� Q.t/ instead of
H�.X

1; A1/˝ZŒt˙1� Q.t/.

Remark 3.1. The Alexander polynomial of X , denoted �X is the order of the Alex-
ander module H1.X IZŒt˙1�/. While we refer to Remark 4.3 below for some recol-
lections on orders of modules, here we simply note that �X is a Laurent polynomial
that is well defined up to multiplication by ˙tk with k 2 Z and that if X D MK is
the 0-framed surgery along a knot K, then �X is the Alexander polynomial of K.

Next, we move on to equivariant intersections in covering spaces.

Definition 3.2. Let M be an n-manifold (with possibly non-empty boundary) with
an epimorphism �1.M/� Z. For a k-dimensional closed submanifold A � M1

and an .n � k/-dimensional closed submanifold A0 � M1 such that A and tjA0

intersect transversely for all j 2 Z, the equivariant intersection A �1;M A0 2 ZŒt˙1�



A. Conway, L. Piccirillo, and M. Powell 20

is defined as
A �1;M A0 D

X
j2Z

�
A �M1 .t

jA0/
�
t�j ;

where �M1 denotes the usual (algebraic) signed count of points of intersection. If the
boundary of M is non-empty and A0 � M is properly embedded, then we can make
the same definition and also write A �1;M A0 2 ZŒt˙1�.

Remark 3.3. We collect a couple of observations about equivariant intersections.

(1) Equivariant intersections are well defined on homology and in fact A �1;M
A0 D �.ŒA0�; ŒA�/, where � denotes the equivariant intersection form

�WHk
�
M IZŒt˙1�

�
�Hn�k

�
M IZŒt˙1�

�
! ZŒt˙1�:

The reason A �1;M A0 is equal to �.ŒA0�; ŒA�/ D �.ŒA�; ŒA0�/ instead of �.ŒA�; ŒA0�/ is
due to the fact that we are following the conventions from [27, Section 2] in which the
adjoint of a Hermitian form �WH �H !ZŒt˙1� is defined by the equation y�.y/.x/D
�.x; y/. With these conventions � is linear in the first variable and anti-linear in the
second, whereas �1;M is linear in the second variable and anti-linear in the first.

(2) When @M ¤ ; and A �M is a properly embedded submanifold with bound-
ary, then again A �1;M A0 D �@.ŒA0�; ŒA�/ where this time �@ denotes the pairing

�@WHk
�
M IZŒt˙1�

�
�Hn�k

�
M; @M IZŒt˙1�

�
! ZŒt˙1�:

As previously, �@ is linear in the first variable and anti-linear in the second.

(3) The definition of the pairings � and �@ can be made with arbitrary twisted
coefficients. In order to avoid extraneous generality, we simply mention that there
are Q.t/-valued pairings �Q.t/ and �@Q.t/ defined on homology with Q.t/-coefficients
and that if A;B �M1 are closed submanifolds of complementary dimension, then

�Q.t/

�
ŒA�; ŒB�

�
D �

�
ŒA�; ŒB�

�
;

and similarly for properly embedded submanifolds with boundary.

3.2. Equivariant linking

We recall definitions and properties of equivariant linking numbers. Other papers that
feature discussions of the topic include [9, 68, 80].

We assume for the rest of the section that Y is a 3-manifold and 'W�1.Y /� Z

is an epimorphism such that the corresponding Alexander module H1.Y I ZŒt˙1�/
is torsion, i.e. H�.Y IQ.t// D 0. We also write pW Y1 ! Y for the infinite cyclic
cover corresponding to ker.'/ so that H1.Y IZŒt˙1�/ D H1.Y

1/. Given a simple
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closed curve za � Y1, we write a1 WD
S
k2Z t

kza for the union of all the translates
of za and a WD p.za/ � Y for the projection of za down to Y . This way, the covering
map pWY1 ! Y restricts to a covering map

Y1 n �.a1/! Y n �.a/ DW Ya:

Since the Alexander module of Y is torsion, a short Mayer–Vietoris argument shows
that the vector space H�.YaIQ.t// D Q.t/ is generated by Œz�a�, the class of a mer-
idian of za � Y1.

Definition 3.4. The equivariant linking number of two disjoint simple closed curves
za; zb � Y1 is the unique rational function `kQ.t/.za; zb/ 2 Q.t/ such that

Œzb� D `kQ.t/.za; zb/Œz�a� 2 H1
�
Y n �.a/IQ.t/

�
:

Observe that this linking number is only defined for disjoint pairs of simple closed
curves. We give a second, more geometric, description of the equivariant linking num-
ber.

Remark 3.5. Since H1.Y IZŒt˙1�/ is torsion, for any simple closed curve za in Y1,
there is some polynomial p.t/ D

P
i ci t

i such that p.t/Œza� D 0: Thus there is a sur-
face F � Y1 n �.a1/ with boundary consisting of the disjoint union of ci parallel
copies of t i � za0 and dj meridians of tj � za0 where za0 is some pushoff of za in @x�.za/ and
j ¤ i ; we abusively write @F D p.t/za.

Proposition 3.6. Let Y be a 3-manifold, let 'W�1.Y /� Z be an epimorphism such
that the Alexander module H1.Y IZŒt˙1�/ is torsion, and let za; zb � Y1 be disjoint
simple closed curves.

Let F and p.t/ be respectively a surface and a polynomial associated to za as in
Remark 3.5. The equivariant linking of za and zb can be written as

`kQ.t/.za; zb/ D
1

p.t�1/

X
k2Z

.F � tkzb/t�k D
1

p.t�1/
.F �1;Ya

zb/: (3.1)

In particular, this expression is independent of the choices of F and p.t/.

Proof. As in Section 3.1, write �@ for the (homological) intersection pairing

H1
�
YaIZŒt

˙1�
�
�H2

�
Ya; @YaIZŒt

˙1�
�
! ZŒt˙1�

and �@Q.t/ for the pairing involving Q.t/-homology.

Write ` WD `k.za; zb/ so that Œzb�D `Œz�a�2H1.YaIQ.t//. From this and Remark 3.3,
for a surface F as in the statement, we obtain

F �1;Ya
zb D �@

�
Œzb�; ŒF �

�
D �@Q.t/

�
Œ`z�a�; ŒF �

�
D `�@Q.t/

�
Œz�a�; ŒF �

�
D `.F �1;Ya z�a/ D `p.t

�1/:



A. Conway, L. Piccirillo, and M. Powell 22

The last equality here follows from inspection; since F ,! Y1 n �.a1/ has boundary
along ci copies of t i � za0 and dj copies of tj z�a, each meridian t i � �za intersects F in
ci points. The result now follows after dividing out by p.t�1/.

Just as for linking numbers in rational homology spheres, the equivariant linking
number is not well defined on homology, unless the target is replaced by Q.t/=ZŒt˙1�.
To describe the resulting statement, we briefly recall the definition of the Blanchfield
form.

Remark 3.7. Using the same notation and assumptions as in Proposition 3.6, the
Blanchfield form is a non-singular sesquilinear, Hermitian pairing that can be defined
as follows:

BlY WH1
�
Y IZŒt˙1�

�
�H1

�
Y IZŒt˙1�

�
! Q.t/=ZŒt˙1�;�

Œzb�; Œza�
�
7!

�
1

p.t/
.F �1;Ya

zb/

�
: (3.2)

We refer to [44,79] for further background and homological definitions of this pairing.

We summarise this discussion and collect another property of equivariant linking
in the next proposition.

Proposition 3.8. Let Y be a 3-manifold and let 'W�1.Y /� Z be an epimorphism
such that the Alexander module H1.Y IZŒt˙1�/ is torsion. For disjoint simple closed
curves za; zb � Y1, the equivariant linking number satisfies the following properties:

(1) sesquilinearity: `kQ.t/.pza; qzb/ D xpq`kQ.t/.za; zb/ for all p; q 2 ZŒt˙1�;

(2) symmetry: `kQ.t/.za; zb/ D `kQ.t/.zb; za/;

(3) relation to the Blanchfield form: Œ`kQ.t/.za; zb/�DBlY .Œzb�; Œza�/2Q.t/=ZŒt˙1�.

Proof. The first property follows from (3.1). Before proving the second and third
properties,we note that in (3.1) and (3.2), we can assume that p.t/ D p.t�1/. Indeed,
both formulas are independent of the choice of p.t/ and if q.t/ satisfies q.t/Œza� D 0,
then so does p.t/ WD q.t/q.t�1/. The proof of the second assertion now follows as
in [9, Lemma 3.3], whereas the third follows by inspecting (3.1) and (3.2).

The reader will have observed that the formulas in Proposition 3.6 and 3.8 depend
heavily on conventions chosen for adjoints, module structures, equivariant intersec-
tions and twisted homology. It is for this reason that the formulas presented here might
differ (typically up to switching variables) from others in the literature.
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3.3. Parallels, framings, and longitudes

Continuing with the notation and assumptions from the previous section, we fix some
terminology regarding parallels and framings in infinite cyclic covers. The goal is to
be able to describe a notion of integer surgery for appropriately nullhomologous knots
in the setting of infinite cyclic covers. Our approach is inspired by [12, 13].

Definition 3.9. Let zK � Y1 be a knot, let pW Y1 ! Y be the covering map, and
denote K WD p. zK/ � Y the projection of zK.

(1) A parallel to zK is a simple closed curve � � @x�. zK/ that is isotopic to zK
in x�. zK/.

(2) Given any parallel � of zK, we use x��. zK/ to denote the parametrisation

S1 �D2 Š
��! x�. zK/

which sends S1 � ¹xº to � for some x 2 @D2.

(3) A framed link is a link zL � Y1 together with a choice of a parallel for each
of its components.

(4) We say that the knot zK admits framing coefficient r.t/ 2Q.t/ if there is a par-
allel � with `kQ.t/. zK;�/ D r.t/. We remark that, unlike in the setting of homology
with integer coefficients where every knot K admits any integer r as a framing coef-
ficient, when we work with ZŒt˙1�-homology, a fixed knot zK will have many r.t/ 2
Q.t/ (in fact, even in ZŒt˙1) which it does not admit as a framing coefficient. We will
refer to � as a framing curve of zK with framing r.t/.

(5) A framed n-component link zL which admits framing coefficients r.t/ WD
.ri .t//

n
iD1, together with a choice of parallels realising those framing coefficients,

is called an r.t/-framed link.

(6) The equivariant linking matrix of an r.t/-framed link zL is the matrix AzL
with diagonal term .AzL/i i D ri .t/ and off-diagonal terms .AzL/ij D `kQ.t/. zKi ; zKj /

for i ¤ j .

(7) For a link zL in Y1, we define L1 to be the set of all the translates of zL.
We also set L WD p.zL/. We say that zL is in covering general position if the map
pWL1 ! L is a trivial Z-covering isomorphic to the pullback cover

L1 //

��

R

��

L
c // S1;

where c is a constant map. In particular, each component ofL1 is mapped by p, via a
homeomorphism, to some component of L. From now on we will always assume that
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our links zL are in covering general position. This assumption is to avoid pathologies,
and holds generically.

(8) For an n-component link zL which admits the framing coefficients r.t/ WD
.ri .t//

n
iD1, the r.t/-surgery along zL is the covering space Y1r.t/.zL/! Yr.L/ defined

by Dehn filling Y1 n �.L1/ along all the translates of all the parallels �11 ; : : : ; �
1
n

as follows:

Y1r.t/.
zL/ D Y1 n

� [
k2Z

n[
iD1

�
tkx��i .

zKi /
��
[

� [
k2Z

n[
iD1

.D2
� S1/

�
:

Since zL is in covering general position, for all zKi the covering map pj zKi W
zKi ! Ki

is a homeomorphism, so pj
x�. zKi /
W x�. zKi /! �.Ki / is a homeomorphism. Thus any

parallel �i of zKi projects to a parallel of K, so we may also define r-surgery along L
downstairs:

Yr.L/ D Y n

� n[
iD1

x�p.�i /
�
p. zKi /

��
[

� n[
iD1

.D2
� S1/

�
:

Observe that there is a naturally induced cover Y1r.t/.zL/! Yr.L/ obtained by restrict-
ing pW Y1 ! Y to the link exterior and then extending it to the trivial disconnected
Z-cover over each of the surgery solid tori.

(9) The dual framed link zL0 � Y1r.t/.zL/ associated to a framed link zL � Y1 is
defined as follows:

• the i -th component zK 0i of the underlying link zL0 � Y1r.t/.zL/ is obtained by con-
sidering the core of the i -th surgery solid torus D2 � S1;

• the framing of zK 0i is given by the S1-factor S1 � ¹ptº of the parametrised solid
torus used to define zK 0i .

(10) We also define analogues of these notions (except .6/ and .7/) for a link L
in the 3-manifold Y , without reference to the cover.

The next lemma provides a sort of analogue for the Seifert longitude of a knot
in S3; it is inspired by [13, Lemma 1.2]. The key difference with the Seifert longitude
is that in our setting this class, which we denote by � zK , is just a homology class in
H1.@x�. zK/IQ.t//; it will frequently not be represented by a simple closed curve.

Lemma 3.10. For every knot zK � Y1, there is a unique homology class � zK 2
H1.@x�. zK/IQ.t// called the longitude of zK such that the following two conditions
hold:

(1) the algebraic equivariant intersection number of Œ� zK � and � zK is one:

�@x�.K/;Q.t/
�
Œ� zK �; � zK

�
D 1I
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(2) the class � zK maps to zero in H1.YK IQ.t//.

For any parallel � of zK, this class satisfies

� zK D Œ�� � `kQ.t/. zK;�/Œ� zK �:

Proof. We first prove existence and then uniqueness. For existence, pick any paral-
lel � to zK, i.e. any curve in @x�. zK/ that is isotopic to zK in x�. zK/ and define

� zK WD Œ�� � `kQ.t/. zK;�/Œ� zK �:

Here recall that the equivariant linking r WD `kQ.t/. zK; �/ is the unique element
of Q.t/ such that Œ�� D rŒ� zK � inH1.YK IQ.t//. The two axioms now follow readily.

For uniqueness, we suppose that � zK and �0
zK

are two homology classes as in the
statement of the lemma. Choose a parallel � of zK and base H1.@x�.K/IQ.t// by the
pair .� zK ;�/. This way, we can write � zK D r1Œ� zK �C r2Œ�� and �0

zK
D r 01Œ� zK �C r

0
2Œ��.

The first condition on � zK now promptly implies that r2 D r 02 D 1; formally

1 D �@x�.K/;Q.t/
�
Œ� zK �; � zK

�
D r2�@x�.K/;Q.t/

�
Œ� zK �; Œ��

�
D r2

and similarly for r 02. To see that r1 D r 01, observe that since r2 D r 02, we have that

� zK D �
0
zK
C .r 01 � r1/Œ� zK �:

Recall that Œ� zK � is a generator of the vector spaceH1.YK IQ.t//DQ.t/ and that �0
zK
,

�0
zK

are zero in H1.YK IQ.t//. We conclude that .r 01 � r1/ D 0, as required.

As motivation, we observe that for a link L D K1 [ � � � [ Kn � S
3, the group

H1.ELIZ/ is freely generated by the meridians �Ki and, if L is framed with integral
linking matrix A, then the framing curves �i can be written in this basis as

Œ�i � D

nX
jD1

Aij Œ�Kj � 2 H1.ELIZ/:

The situation is similar in our setting.

Proposition 3.11. Let zL � Y1 be an n-component framed link in covering general
position whose components have framing curves �1; : : : ; �n. Recall that

H1
�
YLIQ.t/

�
D Q.t/n

is generated by the homology classes of the meridians � zK1 ; : : : ; � zKn . The homology
classes of the �i inH1.YLIQ.t//ŠQ.t/n are related to the meridians by the formula

Œ�i � D

nX
jD1

.AzL/ij Œ� zKj
� 2 H1

�
YLIQ.t/

�
:
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Proof. By definition of the equivariant linking matrix AzL, we must prove that

Œ�i � D `kQ.t/. zKi ; �i /Œ� zKi
�C

X
j¤i

`kQ.t/. zKi ; zKj /Œ� zKj
� 2 H1

�
YLIQ.t/

�
(3.3)

for each i . Since the sum of the inclusion induced maps give rise to an isomorphism

H1
�
YLIQ.t/

�
Š

nM
jD1

H1
�
YKj IQ.t/

�
it suffices to prove the equality after applying the inclusion map H1.YLIQ.t// !
H1.YKj IQ.t//, for each j . Since �i is a parallel of zKi , applying Lemma 3.10, we
have

Œ�i � D `kQ.t/. zKi ; �i /Œ� zKi
�C � zKi

2 H1
�
@YKi IQ.t/

�
:

We consider the image of this homology class in H1.YKj IQ.t// for j D 1; : : : ; n.
In the vector space H1.YKi IQ.t// D Q.t/Œ� zKi �, the longitude class � zKi vanishes
(again by Lemma 3.10). For j ¤ i , the class Œ� zKi � vanishes in H1.YKj IQ.t//; thus
the image of Œ�i � in H1.YKj IQ.t// is

`kQ.t/.�i ; zKj /Œ� zKj
� D `kQ.t/. zKi ; zKj /Œ� zKj

�:

This concludes the proof of (3.3).

From now on, we will be working with ZŒt˙1�-coefficient homology both for Y
and for the result Y 0 WD Yr.t/.L/ of surgery on a framed link L � Y . Let W denote
the trace of the surgery from Y to Y 0. We therefore record a fact about the underlying
coefficient systems for later reference.

Lemma 3.12. The epimorphism 'W�1.Y /� Z can be extended to an epimorphism
�1.W /� Z, which by precomposition with the inclusion map induces an epimorph-
ism '0W�1.Y

0/� Z.

Proof. Note that �1.W / is obtained from �1.Y / by adding relators that kill each
of the ŒKi � 2 �1.Y / (indeed W is obtained by adding 2-handles to Y � Œ0; 1� along
the Ki ). Since ' is trivial on the Ki � Y (because they lift to Y1), we deduce that '
descends to an epimorphism on �1.W /.

The composition �1.Y 0/ ! �1.W /� Z is also surjective because �1.W / is
obtained from �1.Y

0/ by adding relators that kill each of the ŒK 0i � 2 �1.Y
0/; indeedW

is obtained by adding 2-handles to Y 0 � Œ0; 1� along the dual knots K 0i .

Remark 3.13. In particular, note from the proof of Lemma 3.12 that the homomorph-
ism '0W�1.Y

0/� Z vanishes on the knots K 0i � Y dual to the original Ki � Y .
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The next lemma proves an infinite cyclic cover analogue of the following famil-
iar statement: performing surgery on a framed link L � S3 whose linking matrix is
invertible over Q results in a rational homology sphere.

Lemma 3.14. Let Y be a 3-manifold and let 'W�1.Y /� Z be an epimorphism such
that the Alexander module H1.Y IZŒt˙1�/ is torsion. If zL � Y1 is an n-component
framed link in covering general position, whose equivariant linking matrix AzL is
invertible over Q.t/, then the result Y 0 of surgery on L satisfies H1.Y 0IQ.t// D 0.

Proof. The result will follow by studying the portion

� � � ! H2
�
Y; YLIQ.t/

� @
�! H1

�
YLIQ.t/

�
! H1

�
Y 0IQ.t/

�
! H1

�
Y 0; YLIQ.t/

�
of the long exact sequence of the pair .Y; YL/ with Q.t/-coefficients, and arguing that
H1.Y

0; YLIQ.t// D 0 and that @ is an isomorphism.
The fact that H1.Y 0; YLIQ.t// D 0 can be deduced from excision, replacing

.Y 0; YL/ with the pair .tnS1 � D2; tnS1 � S1/. For the same reason, the vector
space H2.Y; YLIQ.t// D Q.t/n is based by the classes of the discs�

D2
� ¹ptº

�
i
� .D2

� S1/i

whose boundaries are the framing curves �i . To conclude that @ is indeed an iso-
morphism, note that H1.YLIQ.t// D Q.t/n is generated by the Œ� zKi � (because the
Alexander module of Y is torsion) and use Proposition 3.11 to deduce that with
respect to these bases, @ is represented by the equivariant linking matrix AzL. Since
this matrix is by assumption invertible over Q.t/, we deduce that @ is an isomorphism.
It follows that H1.Y 0IQ.t// D 0, as desired.

The next lemma describes the framing on the dual of a framed link. The statement
resembles [13, Lemma 1.5] and [80, Theorem 1.1].

Lemma 3.15. Let Y be a 3-manifold and let 'W �1.Y /� Z be an epimorphism
such that the Alexander module H1.Y IZŒt˙1�/ is torsion. If zL � Y1 is a framed
link in covering general position whose equivariant linking matrix AzL is invertible
over Q.t/, then the equivariant linking matrix of the dual framed link zL0 is

AzL0 D �A
�1
zL
:

Proof. Consider the exterior YL D Y 0L0 and recall that

H1
�
YLIQ.t/

�
D Q.t/n

is generated by the meridians � zK1 ; : : : ; � zKn of the link zL because we assumed that
H1.Y IQ.t//D 0. Since we assumed thatH1.Y IQ.t//D 0 and det.AzL/¤ 0, we can



A. Conway, L. Piccirillo, and M. Powell 28

apply Lemma 3.14 to deduce that H1.Y 0IQ.t// D 0, and hence

H1
�
YLIQ.t/

�
D H1

�
Y 0L0 IQ.t/

�
is also generated by the meridians � zK0

1
; : : : ; � zK0n

of the link zL0.
Thus the vector space H1.YLIQ.t// D Q.t/n has bases both

� D
�
Œ� zK1 �; : : : ; Œ� zKn �

�
and �0 D

�
Œ� zK0

1
�; : : : ; Œ� zK0n

�
�
;

and we let B be the change of basis matrix between these two bases so that B�D �0.
Here and in the remainder of this proof, we adopt the following convention: if C is a
matrix over Q.t/n and if x D .x1; : : : ; xn/ is a collection of n vectors in Q.t/n, then
we write Cx for the collection of n vectors Cx1; : : : ; Cxn.

Recall that for i D 1; : : : ; n, the framing curves of the zKi and zK 0i are respectively
denoted by �i � Y1 and � 0i � Y

01. Slightly abusing notation, we also write Œ�i � for
the class of �i inH1.YKi IQ.t//. We set�D .Œ�1�; : : : ; Œ�n�/ and� 0D .Œ� 01�; : : : ; Œ�

0
n�/

and use Proposition 3.11 to deduce that

� D AzL�; � 0 D AzL0�
0

Inspecting the surgery instructions, we also have the relations

�0 D ��; � D � 0:

We address the sign in Remark 3.16 below. Combining these equalities, we obtain

� D � 0 D AzL0�
0
D AzL0B�; �0 D �� D �AzL� D �AzLB

�1�0:

Unpacking the equality AzL0B� D �, we deduce that AzL0BŒ� zKi � D Œ� zKi
� for i D

1; : : : ; n. But since the Œ� zK1 �; : : : ; Œ� zKn � form a basis for Q.t/n, this implies that

AzL0B D In:

The same argument shows that �AzLB
�1 D In, and therefore both matrices AzL, AzL0

are invertible, with �AzL D B D A
�1
zL0

.

Remark 3.16. In the above proposition, we were concerned with the relationship bet-
ween the curves .�;�/ and .�0;� 0/, all of which represent classes inH1.@YL;Q.t//.
We know from the surgery instructions that g.�/D � 0. We are free to choose the col-
lection of curves g.�/ so long as we choose each g.�i / to intersect � 0i geometrically
once (as unoriented curves). We choose the unoriented curves ˙�0. Since we know
that the surgery was done to produce an oriented manifold, it must be the case that
the gluing transformation gW @YL ! @YL is orientation-preserving. The fact that g is
orientation-preserving implies that it preserves intersections numbers, we deduce that
ıij D �i � �j D g.�i / � g.�j / D �

0
j � .˙�

0
i /: This forces g.�/ D ��0.
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4. Reidemeister torsion

We recall the definition of the Reidemeister torsion of a based chain complex as well
as the corresponding definition for CW complexes. This will be primarily used in
Section 5.3. References on Reidemeister torsion include [17, 89, 90].

Let F be a field. Given two bases u; v of a r-dimensional F -vector space, we
write det.u=v/ for the determinant of the matrix taking v to u, i.e. the determinant
of the matrix A D .Aij / that satisfies vi D

Pr
jD1Aiju

j . A based chain complex is a
finite chain complex

C D
�
0! Cm

@m�1
���! Cm�1

@m�2
���! � � �

@2
�! C1

@0
�! C0 ! 0

�
of F -vector spaces together with a basis ci for each CiC1. Given a based chain com-
plex, fix a basis bi for Bi D im.@iC1/ and pick a lift zbi of bi to Ci . Additionally, fix a
basis hi for each homology group Hi .C / and let zhi be a lift of hi to Ci . One checks
that .bi ; zhi ; zbi�1/ forms a basis of Ci .

Definition 4.1. Let C be a based chain complex over F and let B D ¹hiº be a basis
for H�.C /. The Reidemeister torsion of .C;B/ is defined as

�.C;B/ D

Q
i det..b2iC1; zh2iC1; zb2i /jc2iC1/Q
i det..b2i ; zh2i ; zb2i�1/jc2i /

2 F n ¹0º:

Implicit in this definition is the fact that �.C;B/ depends neither on the choice of the
basis bi , nor on the choice of the lifts zbi , nor on the choice of the lifts zhi of the hi . It
does depend on B D ¹hiº.

When C is acyclic, we drop B from the notation and simply write �.C /.

Note that we are following Turaev’s sign convention [89, 90]; Milnor’s conven-
tion [76] yields the multiplicative inverse of �.C;B/ (see [90, Remark 1.4 (5)]). The
next result collects two properties of the torsion that will be used later on.

Proposition 4.2. The following statements hold.

(1) Suppose that 0!C 0!C !C 00! 0 is a short exact sequence of based chain
complexes and that B 0;B, and B 00 are bases forH�.C 0/;H�.C / andH�.C 00/
respectively. If we view the associated homology long exact sequence as an
acyclic complex H , based by B;B 0, and B 00 respectively, then

�.C;B/ D �.C 0;B 0/�.C 00;B 00/�.H /:

(2) IfC D .0!C1
@0
�!C0! 0/ is an isomorphism between n-dimensional vector

spaces, so that C is an acyclic based chain complex, then

�.C / D det.A/�1;
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where A denotes the n � n-matrix which represents @0 with respect to the
given bases.

Proof. The multiplicativity statement is proved in [76], The second statement follows
from Definition 4.1; details are in [90, Remark 1.4 (3)].

We now recall the definition of the torsion of a pair of CW complexes. We focus
on the case where the spaces come with a map of their fundamental group to Z. This
is a special case of an analogous general theory for the case of an arbitrary group [90],
and for more general twisted coefficients [46].

Let .X;A/ be a finite CW pair, let 'W�1.X/! Z be a homomorphism, and let B

be a basis for the Q.t/-vector spaceH�.X;AIQ.t//. Write pWX1!X for the cover
corresponding to ker.'/ and set A1 WD p�1.A/. The chain complex C�.X1; A1/
can be based over ZŒt˙1� by choosing a lift of each cell of .X; A/ and orienting it;
this also gives a basis of

C�
�
X;AIQ.t/

�
D C�.X

1; A1/˝ZŒt˙1� Q.t/:

Let E denote the resulting choice of basis for C�.X; AIQ.t//. We then define the
torsion of .X;A; '/ as

�.X;A;B;E/ WD �
�
C�.X;AIQ.t//;B;E

�
2 Q.t/ n ¹0º:

Given p.t/; q.t/ 2Q.t/, we write p.t/ :D q.t/ to indicate that p.t/ and q.t/ agree up
to multiplication by ˙tk , for some k 2 Z. This will enable us to obtain an invariant
that does not depend on the choice of E . We write

�.X;A;B/ WD Œ�.X;A;B;E/� 2
�
Q.t/ n ¹0º

�
=
:
D;

for some choice of E . It is known that �.X; A;B/ is well defined and is invariant
under simple homotopy equivalence preserving B (see [90, Theorem 9.1]). We drop
the B from the notation if H�.X;AIQ.t// D 0.

Additionally, Chapman proved that �.X; A;B/ only depends on the underlying
homeomorphism type of .X; A/ (see [18]), and not on the particular CW structure.
In particular, when .M; N / is a manifold pair, we can define �.M; N;B/ for any
finite CW-structure on .M;N /, We will only consider the Reidemeister torsion of 3-
manifolds, and so every pair .M;N /we consider will admit a CW structure. It will not
be relevant in this paper, but we note that it is possible to define Reidemeister torsion
for topological 4-manifolds not known to admit a CW structure; see [43, Section 14]
for a discussion.
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Remark 4.3. The reason we consider Reidemeister torsion is its relation with Alex-
ander polynomials; see Section 5.3 below. To this effect, we recall some relevant
algebra. Let P be a ZŒt˙1�-module with presentation

ZŒt˙1�m
f
�! ZŒt˙1�n ! P ! 0:

Consider elements of the free modules ZŒt˙1�m and ZŒt˙1�n as row vectors and rep-
resent f by anm� nmatrix A, acting on the right of the row vectors. By adding rows
of zeros, corresponding to trivial relations, we may assume that m � n. The 0-th ele-
mentary ideal E0.P / of a finitely presented ZŒt˙1�-module P is the ideal of ZŒt˙1�

generated by all n� nminors of A. This definition is independent of the choice of the
presentation matrix A. The order of P , denoted �P , is then by definition a generator
of the smallest principal ideal containing E0.P /, i.e. the greatest common divisor of
the minors. The order of P is well defined up to multiplication by units of ZŒt˙1�

and if P admits a square presentation matrix, then �P
:
D det.A/, where A is some

square presentation matrix for P . It follows that for a ZŒt˙1�-module P which admits
a square presentation matrix, one has P D 0 if and only if �P

:
D 1. For more back-

ground on these topics„ we refer the reader to [90, Section 1.4].

5. Proof of Theorem 2.4

Now we prove Theorem 2.4 from the introduction. For the reader’s convenience, we
recall the statement of this result.

Theorem 5.1. Let Y be a 3-manifold with an epimorphism 'W �1.Y /� Z whose
Alexander module is torsion, and let .H; �/ be a non-degenerate Hermitian form
over ZŒt˙1� presenting Y . If b 2 Iso.@�;�BlY /=Aut.�/ is an isometry, then there
is a Z-manifold M with equivariant intersection form �M Š �, boundary Y and
with bM D b. If the form is odd, then M can be chosen to have either ks.M/ D 0

or ks.M/ D 1.

For the remainder of the section, we let Y be a 3-manifold, let 'W�1.Y /� Z be
an epimorphism, and let pWY1! Y be the infinite cyclic cover associated to .Y; '/.
We assume that H1.Y IZŒt˙1�/ WD H1.Y1/ is ZŒt˙1�-torsion. We first describe the
strategy of the proof and then carry out each of the steps successively.

5.1. Plan

Let bW .coker.y�/; @�/! .H1.Y IZŒt˙1�/;�BlY / be an isometry. Precompose b with
the projection H�� coker.y�/ to get an epimorphism � WH�� H1.Y IZŒt˙1�/.
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In particular,

0! H
y�
�! H�

$
�! H1

�
Y IZŒt˙1�

�
! 0

is a presentation of Y . Pick generators x1; : : : ; xn forH and endowH� with the dual
basis x�1 ; : : : ; x

�
n . WriteQ for the matrix of � in this basis. Note thatQD xQT since �

is Hermitian. The strategy to prove Theorem 5.1 is as follows.

Step 1. Prove that one can represent the classes �.x�1 /; : : : ;�.x
�
n/ by an n-component

framed link zL D zK1 [ � � � [ zKn with equivariant linking matrix AzL D �Q
�T .

Step 2. Argue that the result Y 0 of surgery onLD p.zL/ satisfiesH1.Y 0IZŒt˙1�/D 0.

Step 3. There is a topological 4-manifold B ' S1 with boundary Y 0 following [42,
Section 11.6].

Step 4. Argue that the equivariant intersection form of the 4-manifold M defined
below with boundary Y is represented by Q and prove that bM D b. Here, the 4-
manifold M and its infinite cyclic cover M1 are defined via

�M1 WD

��
Y1 � Œ0; 1�

�
[

n[
iD1

[
ji2Z

tjih
.2/
i

�
[Y 01 �B

1;

�M WD

��
Y � Œ0; 1�

�
[

n[
iD1

h
.2/
i

�
[Y 0 �B;

where upstairs the 2-handles h.2/i are attached along the link L1; downstairs, one
attaches the 2-handles along the projection L D p.L1/ of this link.

Step 5. If � is odd, then we use the star construction [42,84] to show that both values
of the Kirby–Siebenmann invariant can occur.

5.2. Step 1: Constructing a link with the appropriate equivariant linking matrix

We continue with the notation from the previous section. In particular, we have a
presentation

0! H
y�
�! H�

$
�! H1

�
Y IZŒt˙1�

�
! 0

and a basis x1; : : : ; xn for H with dual basis x�1 ; : : : ; x
�
n for H�. The aim of this

section is to prove that it is possible to represent the generators �.x�1 /; : : : ; �.x
�
n/

of H1.Y IZŒt˙1�/ by a framed link zL D zK1 [ � � � [ zKn � Y1 whose transposed
equivariant linking matrix agrees with �Q�1; see Proposition 5.4. In other words, we
must have

`kQ.t/. zKj ; zKi / D �.Q
�1/ij and `kQ.t/. zKi ; �i / D �.Q

�1/i i ;
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where �i is the framing curve of zKi . Since the Blanchfield form BlY is represented
by the Q.t/-coefficient matrix �Q�1 (see [27, Section 3]), we know from Proposi-
tion 3.8 that any link representing the �.x�i /must satisfy these relations up to adding a
polynomial in ZŒt˙1�. Most of this section therefore concentrates on showing that the
equivariant linking (resp. framing) of an arbitrary framed link in Y1 can be changed
by any polynomial (resp. symmetric polynomial) in ZŒt˙1�, without changing the
homology classes defined by the components of this link.

We start by showing how to modify the equivariant linking between distinct com-
ponents of a link, without changing the homology class of the link.

Lemma 5.2. Let zL D zK1 [ � � � [ zKn � Y1 be an n-component framed link in cov-
ering general position, with parallels �1; : : : ; �n. For every distinct i; j and every
polynomial p.t/ 2 ZŒt˙1�, there is a framed link

zL0 WD zK1 [ � � � [ zKi�1 [ zK
0
i [
zKiC1 [ � � � [ zKn;

also in covering general position, such that:

(1) the knot zK 0i is isotopic to zKi in Y1. In particular,

Œ zK 0i � D Œ
zKi �

in H1.Y IZŒt˙1�/;

(2) the equivariant linking between zKi and zKj is changed by p.t/, i.e.

`kQ.t/. zK
0
i ;
zKj / D `kQ.t/. zKi ; zKj /C p.t/I

(3) the equivariant linking between zKi and zK` is unchanged for ` ¤ i; j ;

(4) the framing coefficients are unchanged; that is, there is a parallel i for zK 0i
such that

`kQ.t/. zK
0
i ; i / D `kQ.t/. zKi ; �i /:

Proof. Without loss of generality we can assume that p.t/ D mtk for m; k 2 Z. The
new knot zK 0i is then obtained by band summing zKi with m meridians of t�k zKj ,
framed using the bounding framing induced by meridional discs. The first, third, and
fourth properties of zK 0i are immediate: clearly the linking of zKi with zK` is unchanged
for ` ¤ i; j and since the aforementioned meridians bound discs in Y1 over which
the framing extends, we see that zK 0i is framed isotopic (and in particular homologous)
to zKi in Y1. It follows that the framing coefficient is unchanged.

The second property is obtained from a direct calculation using the sesquilinearity
of equivariant linking numbers:

`kQ.t/. zK
0
i ;
zKj / D `kQ.t/. zKi ; zKj /Cm`kQ.t/.t

�k� zKj
; zKj /

D `kQ.t/. zKi ; zKj /Cmt
k :
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Next, we show how to modify the framing of a framed link component by a sym-
metric polynomial p D xp, without changing the homology class of the link.

Lemma 5.3. Let zL D zK1 [ � � � [ zKn � Y1 be an n-component framed link in cov-
ering general position. Fix a parallel �i for zKi . For each i D 1; : : : ; n and every
symmetric polynomial p.t/ D p.t�1/, there exists a knot zK 0i � Y

1 and a parallel i
of zK 0i such that

(1) the knot zK 0i is isotopic to zKi in Y1 n [j¤i zKj , and in particular Œ zK 0i � D Œ zKi �
in H1.Y IZŒt˙1�/;

(2) the framing coefficient of zKi is changed by p.t/, i.e.

`kQ.t/. zK
0
i ; i / D `kQ.t/. zKi ; �i /C p.t/I

(3) the other linking numbers are unchanged: `kQ.t/. zK
0
i ;
zKj / D `kQ.t/. zKi ; zKj /

for all j ¤ i .

Proof. We first prove the lemma when p.t/ has no constant term. In this case, it suf-
fices to show how to change the self-linking number by m.tk C t�k/ for k ¤ 0. To
achieve this, band sum zKi with m meridians of tk zKi . As in the proof of Lemma 5.2,
the first and third properties of zKi are clear. To define i and prove the second prop-
erty, define �0

zKi
to be a parallel of � zKi with `kQ.t/.� zKi

; �0
zKi
/ D 0 in Y1. Define i

to be the parallel of zK 0i obtained by banding �i to m copies of tk�0
zKi

, using bands
which are push-offs of the bands used to define zK 0i , and parallel copies of the meridian
chosen with the zero-framing with respect to the framing induced by the associated
meridional disc. Using the sesquilinearity of equivariant linking numbers, we obtain

`kQ.t/. zK
0
i ; i / D `kQ.t/. zKi ; �i /Cm `kQ.t/.t

k� zKi
; �i /

Cm `kQ.t/. zKi ; t
k�0
zKi
/C `kQ.t/.� zKi

; �0
zKi
/

D `kQ.t/. zKi ; �/Cm.t
k
C t�k/:

We have therefore shown how to modify the self-linking within a fixed homology
class by a symmetric polynomial with no constant term.

The general case follows: thanks to the previous paragraph, it suffices to describe
how to change the self-linking by a constant, and this can be arranged by varying the
choice of the parallel i i.e. by additionally winding an initial choice of i around the
appropriate number of meridians of zK 0i .

By combining the previous two lemmas, we can now prove the main result of this
section.

Proposition 5.4. Let 0!H
y�
�! H�

$
�!H1.Y IZŒt˙1�/! 0 be a presentation of Y .

Pick generators x1; : : : ;xn forH and endowH� with the dual basis x�1 ; : : : ;x
�
n . LetQ
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be the matrix of � with respect to these bases. The classes �.x�1 /; : : : ; �.x
�
n/ can be

represented by simple closed curves zK1; : : : ; zKn � Y1 such that zLD zK1 [ � � � [ zKn
is in covering general position and satisfies the following properties:

(1) the equivariant linking of the zKi satisfy

`kQ.t/. zKj ; zKi / D �.Q
�1/ij for i ¤ j ;

(2) there exist parallels 1; : : : ; n of zK1; : : : ; zKn such that

`kQ.t/. zKi ; i / D �.Q
�1/i i :

In particular, the parallel i represents the homology class �.Q�1/i i Œ� zKi �C � zKi 2

H1.@x�.Ki /IQ.t// and the transpose of the equivariant linking matrix of zL is equal
to �Q�1.

Proof. Represent the classes �.x�1 /; : : : ; �.x
�
n/ by an n-component link in Y1 that

can be assumed to be in covering general position. Use zJ1; : : : ; zJn to denote the
components of this link. Thanks to Lemma 5.2, we can assume that the equivariant
linking numbers of these knots coincide with the off-diagonal terms of Q�1; we can
apply this lemma because for i ¤ j the rational functions `kQ.t/. zJj ; zJi / and the
corresponding �.Q�1/ij both reduce mod ZŒt˙1� to BlY .�.x�i /; �.x

�
j // and thus

differ by a Laurent polynomial p.t/ 2 ZŒt˙1�.
We arrange the framings and last assertion simultaneously. For brevity, from now

on we write ri WD �.Q�1/i i . By Lemma 3.10, for each i , the class ri Œ� zJi �C � zJi can
be rewritten as �

ri � `kQ.t/. zJi ; �i /
�
Œ� zJi

�C Œ�i �

for any choice of parallel �i for zJi . Note that ri � `kQ.t/. zJi ; �i / is a Laurent polyno-
mial: indeed both ri and `kQ.t/. zJi ; �i / reduce mod ZŒt˙1� to BlY .�.Œx�i �/; �.Œx

�
i �//.

Claim. The polynomial ri � `kQ.t/. zJi ; �i / is symmetric.

Proof. We first assert that if � is a parallel of zJi , then `kQ.t/.�; zJi / is symmetric. The
rational function `kQ.t/.�; zJi / is symmetric if and only if

`kQ.t/.�; zJi / D `kQ.t/.�; zJi /:

By the symmetry property of the equivariant linking form mentioned in Proposi-
tion 3.8, this is equivalent to the equality `kQ.t/.�; zJi /D `kQ.t/. zJi ; �/ and in turn this
equality holds because the ordered link .�; zJi / is isotopic to the ordered link . zJi ; �/
in Y1. This concludes the proof of the assertion that `kQ.t/.�; zJi / is symmetric.
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We conclude the proof of the claim. Thanks to the assertion, it now suffices to
prove that ri is symmetric. To see this, note that since the matrix Q�1 is Hermitian
(because Q is) we have

ri .t
�1/ D �.Q�1/i i D �.Q�T /i i D �.Q

�1/i i D ri .t/;

as required.

We can now apply Lemma 5.3 to p.t/ WD ri � `kQ.t/. zJi ; �i / (which is symmetric
by the claim) to isotope the zJi to knots zKi (without changing the equivariant linking)
and to find parallels 1; : : : ; n of zK1; : : : ; zKn that satisfy the equalities �.Q�1/i i D
ri D `kQ.t/. zKi ; i /. This proves the second item of the proposition and the assertions
in the last sentence follow because ri Œ� zKi �C � zKi D Œi � (by Lemma 3.10) and from
the definition of the equivariant linking matrix.

5.3. Step 2: The result of surgery is a ZŒt˙1�-homology S 1 � S 2

Let zL � Y1 be a framed link in covering general position. Let Y 0 be the effect of
surgery on the framed link L D p.zL/ with equivariant linking matrix AzL over Q.t/.
We assume throughout this subsection that det.AzL/ ¤ 0. Our goal is to calculate
the Alexander polynomial �Y 0 in terms of �Y and of the equivariant linking matrix
of zL � Y1. In Theorem 5.8 we will show that

�Y 0
:
D �Y det.AzL/: (5.1)

We then apply this to the framed link zL � Y1 that we built in Proposition 5.4; this
framed link satisfies det.AzL/ D det.Q�T / ¤ 0. Continuing with the notation from
that proposition, we have

det.AzL/ D det.�Q�T / :D
1

�Y

(becauseQ presentsH1.Y IZŒt˙1�/) so in this case (5.1) implies that�Y 0
:
D 1, which

in turn implies that Y 0 is a ZŒt˙1�-homology S1 � S2; see Remark 4.3 and Proposi-
tion 5.9.

We start by outlining the proof of (5.1), which will later be recorded as The-
orem 5.8.

Outline of proof of Theorem 5.8. We plan to compute the Reidemeister torsion �.Y 0/
in terms of the Reidemeister torsion �.Y /, and then, for Z D Y; Y 0 to use the relation

�Z D �.Z/.t � 1/
2 (5.2)
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from [89, Theorem 1.1.2] to derive (5.1). We note that in our setting we are allowed to
write �.Y / and �.Y 0/ for the Reidemeister torsions without having to choose bases B;
this is because bothH�.Y IQ.t//D 0 andH�.Y 0IQ.t//D 0, recall Lemma 3.14 and
Section 4; here note that we can apply Lemma 3.14 because we are assuming that
det.AzL/ ¤ 0.

We will calculate �.Y 0/ from �.Y / by studying the long exact sequence of the
pairs .Y; YL/ and .Y 0; YL/ with Q.t/ coefficients. More concretely, in Construc-
tion 5.5, we endow the Q.t/-vector spaces H�.Y; YLIQ.t//, H�.Y 0; YLIQ.t//, and
H�.YLIQ.t// with bases that we denote by BY;YL ;BY 0;YL , and BYL respectively. In
Lemma 5.6, we then show that

�.Y /�.HL/
�1 :
D �.YL;BYL/

:
D �.Y 0/�.HL0/

�1;

where HL and HL0 respectively denote the long exact sequences in Q.t/-homology
of the pairs .Y; YL/ and .Y 0; YL/. Finally, we prove that �.HL/

:
D 1 and �.HL0/

:
D

det.AzL/. From (5.2) and the previous equation we then deduce

�Y

.t � 1/2 � 1

:
D �.Y /�.HL/

�1 :
D �.Y 0/�.HL0/

�1 :
D

�Y 0

.t � 1/2 � det.AzL/
:

The equality �Y 0
:
D �Y det.AzL/ follows promptly.

We start filling in the details with our choice of bases for the previously men-
tioned Q.t/-homology vector spaces.

Construction 5.5. We fix the bases for H�.Y; YLIQ.t//, H�.Y 0; YLIQ.t//, and
H�.YLIQ.t//, that we will respectively denote by BY;YL , BY 0;YL , and BYL .

(1) We base the Q.t/-vector spacesH�.Y;YLIQ.t// andH�.Y 0;YLIQ.t//. Exci-
sing VYL, we obtain

Hi
�
Y; YLIQ.t/

�
D

nM
iD1

Hi
�
D2
� S1; S1 � S1IQ.t/

�
;

where n is the number of components of L. Similarly, by excising VYL Š VYL0 , we have

Hi
�
Y 0; YLIQ.t/

�
D

nM
iD1

Hi
�
S1 �D2; S1 � S1IQ.t/

�
:

Since the map �1.S1/! Z determining the coefficients is trivial,
nM
iD1

Hi
�
S1 �D2; S1 � S1IQ.t/

�
Š

nM
iD1

H 3�i
�
S1IQ.t/

�
Š

nM
iD1

H 3�i .S1IZ/˝Q.t/:
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These homology vector spaces are only non-zero when i D 2; 3. in which case they
are isomorphic to Q.t/n.

We now pick explicit generators for these vector spaces. Endow S1 � S1 with
its usual cell structure, with one 0-cell, two 1-cells and one 2-cell e2

S1�S1
. Note that

D2 � S1 is obtained from S1 � S1 � I by additionally attaching a 3-dimensional
2-cell e2

D2�S1
and 3-cell, e3

D2�S1
, where on the chain level

@e3
D2�S1

D e2
D2�S1

C e2
S1�S1

� e2
D2�S1

D e2
S1�S1

:

We now fix once and for all lifts of these cells to the covers. It follows that for kD 2;3:

Hk
�
Y; YLIQ.t/

�
D Ck

�
Y; YLIQ.t/

�
D Ck

�
D2
� S1; S1 � S1IQ.t/

�
D

nM
iD1

Q.t/
�
zek
D2�S1

�
i
;

Hk
�
Y 0; YLIQ.t/

�
D Ck

�
Y 0; YLIQ.t/

�
D Ck

�
S1 �D2; S1 � S1IQ.t/

�
D

nM
iD1

Q.t/
�
zek
S1�D2

�
i
:

(2) We now baseH�.YLIQ.t//. SinceH�.Y IQ.t//D 0, a Mayer–Vietoris argu-
ment shows that

H1
�
YLIQ.t/

�
Š Q.t/n;

generated by the meridians � zKi of zL. Mayer–Vietoris also shows that the inclusion of
the boundary induces an isomorphism Q.t/n DH2.@YLIQ.t//ŠH2.YLIQ.t//. We
can then base H2.YLIQ.t// using fixed lifts of the aforementioned 2-cells .e2

S1�S1
/i

generating each of the torus factors of @YL. Summarising, we have

H1
�
YLIQ.t/

�
D

nM
iD1

Q.t/� zKi ; H2
�
YLIQ.t/

�
D

nM
iD1

Q.t/
�
ze2
S1�S1

�
i
:

The next lemma reduces the calculation of �Y 0 to the calculation of �.HL/ and
�.HL0/. Here, recall that �.HL/ and �.HL0/ denote the torsion of the long exact
sequences HL and HL0 of the pairs .Y; YL/ and .Y 0; YL/, viewed as based acyclic
complexes with bases BYL ;BY;YL , and BY 0;YL .

Lemma 5.6. If H1.Y IQ.t// D 0 and det.AzL/ ¤ 0, then we have

�.Y /
:
D �.YL;BYL/ � �.HL/; �.Y 0/

:
D �.YL;BYL/ � �.HL0/:

In particular, we have
�Y 0 � �.HL/

:
D �Y � �.HL0/:
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Proof. We start by proving that the last statement follows from the first. First note
that since the vector spaces H1.Y IQ.t// and H1.Y 0IQ.t// vanish (for the latter we
use Lemma 3.14 which applies since det.AzL/ ¤ 0), the Alexander polynomials of Y
and Y 0 are non-zero. Next, [89, Theorem 1.1.2] implies that �.Y /.t � 1/2 D �Y

and similarly for Y 0. Therefore, �Y 0=�Y D �.Y 0/=�.Y /: The first part of the lemma
implies that �.Y 0/=�.Y / D �.HL0/=�.HL/. Combining these equalities,

�Y 0

�Y
D
�.Y 0/

�.Y /
D
�.HL0/

�.HL/
;

from which the required statement follows immediately.
To prove the first statement of the lemma, it suffices to prove that

�.Y; YL;BY;YL/ D 1;

as well as �.Y 0;YL;BY 0;YL/D 1: indeed, the required equalities then follow by apply-
ing the multiplicativity of Reidemeister torsion (the first item of Proposition 4.2) to
the short exact sequences

0! C�
�
YLIQ.t/

�
! C�

�
Y IQ.t/

�
! C�

�
Y; YLIQ.t/

�
! 0;

leading to

�.Y / D �.YL/ � �.Y; YL;BY;YL/ � �.HL/ D �.YL/ � 1 � �.HL/;

as desired. And similarly for the pair .Y 0; YL/.
We use Definition 4.1 to prove that �.Y; YL;BY;YL/ D 1; again the proof for L0

is analogous. We endow Y and YL with cell structures for which YL and @YL are
subcomplexes of Y , and Y is obtained from YL by attaching n solid tori to @YL. By
definition of the relative chain complex, we have

C�
�
Y; YLIQ.t/

�
D C�

�
Y IQ.t/

�
=C�

�
YLIQ.t/

�
:

Since we are working with cellular chain complexes we deduce that

C�
�
Y; YLIQ.t/

�
D C�

�
Y IQ.t/

�
=C�

�
YLIQ.t/

�
D

nM
iD1

C�
�
D2
� S1IQ.t/

�
=C�

�
S1 � S1IQ.t/

�
:

Using the cell structures described in Construction 5.5, D2 � S1 is obtained from
S1 � S1 by attaching a 2-cell and a 3-cell. By the above sequence of isomorphisms,
this shows that Ci .Y; YLIQ.t//D 0 for i ¤ 2; 3 and gives a basis for C2.Y; YLIQ.t//
and C3.Y; YLIQ.t//. In fact, this also implies that

Ci
�
Y; YLIQ.t/

�
D Hi

�
Y; YLIQ.t/

�
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and that the differentials in the chain complex are zero, as was mentioned in Con-
struction 5.5. Thus, the basis of C�.Y; YLIQ.t// corresponds exactly to the way we
based H�.Y; YLIQ.t// in Construction 5.5. Therefore the change of basis matrix is
the identity and so the torsion is equal to 1. This concludes the proof of the lemma.

Our goal is now to show that �.HL/
:
D 1 and �.HL0/

:
D det.AzL/. We start by

describing the long exact sequences HL and HL0 .

Lemma 5.7. Assume that H1.YLIQ.t// D 0 and det.AzL/ ¤ 0. The only non-trivial
portions of the long exact sequence of the pairs .Y; YL/ and .Y; YL0/ with Q.t/-
coefficients are of the following form:

HL D

�
0! H3

�
Y; YLIQ.t/

�
@L
3
��! H2

�
YLIQ.t/

�
! 0! H2

�
Y; YLIQ.t/

� @L
2
��! H1

�
YLIQ.t/

�
! 0

�
;

HL0 D

�
0! H3

�
Y 0; YLIQ.t/

�
@L
0

3
��! H2

�
YLIQ.t/

�
! 0! H2

�
Y 0; YLIQ.t/

� @L
0

2
��! H1

�
YLIQ.t/

�
! 0

�
:

Additionally, with respect to the bases of Construction 5.5,

• the homomorphism @L
0

2 is represented by �A�1
zL

, i.e. minus the inverse of the
equivariant linking matrix for zL;

• the homomorphisms @L2 , @L3 , and @L
0

3 are represented by identity matrices.

Proof. Since Y1 and Y 01 are connected, we have

H0
�
Y IZŒt˙1�

�
D Z and H0

�
Y 0IZŒt˙1�

�
D Z;

so H0.Y IQ.t// D 0 and H0.Y 0IQ.t// D 0. Since we are working with field coeffi-
cients, Poincaré duality and the universal coefficient theorem imply that

H3
�
Y IQ.t/

�
D 0 and H3

�
Y 0IQ.t/

�
D 0:

As observed in Construction 5.5 above, by excision, the only non-zero relative homo-
logy groups of .Y; YL/ and .Y 0; YL/ are

Hi
�
Y; YLIQ.t/

�
D Q.t/n and Hi

�
Y 0; YLIQ.t/

�
D Q.t/nn

for i D 2; 3. Next, since by assumption H1.Y IQ.t// D 0, duality and the universal
coefficient theorem imply that H2.Y IQ.t// D 0. Since we proved in Lemma 3.14
that

H1
�
Y 0IQ.t/

�
D 0;
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(here we used det.AzL/ ¤ 0) the same argument shows that H2.Y 0IQ.t// D 0. This
establishes the first part of the lemma.

We now prove the statement concerning @L2 and @L
0

2 . Recall from Construction 5.5
that we based the vector spacesH2.Y; YLIQ.t// andH2.Y 0; YLIQ.t// by meridional
discs to the zKi and zK 0i respectively. The map @L2 takes each disc to its boundary, the
meridian � zKi ; since these meridians form our chosen basis for H1.YLIQ.t//, we
deduce that @L2 is represented by the identity matrix. The map @L

0

2 also takes each
meridional disc to its boundary, the meridian z�K0

i
to the dual knot. It follows that @L

0

2

is represented by the change of basis matrix B such that �0 D B�. But during the
proof of Lemma 3.15 we saw that B D �A�1

zL
.

Finally, we prove that @L3 and @L
0

3 are represented by identity matrices. In Con-
struction 5.5, we based H3.Y; YLIQ.t// and H3.Y 0; YLIQ.t// using respectively
(lifts of) the 3-cells of the .D2 � S1/i and .S1 �D2/i . Now both @L3 and @L

0

3 take
these 3-cells to their boundaries. But as we noted in Construction 5.5, these bound-
aries are (algebraically) the 2-cells .e2

S1�S1
/i . In other words both @L3 and @L

0

3 map
our choice of ordered bases to our other choice of ordered bases, and are therefore
represented in these bases by identity matrices, as required. This concludes the proof
of Lemma 5.6.

As we now understand the exact sequences HL and HL0 we can calculate their
torsions, leading to the proof of the main result of this subsection.

Theorem 5.8. If H1.YLIQ.t// D 0 and det.AzL/ ¤ 0, then we have

�Y 0
:
D det.AzL/�Y :

Proof. Use the bases from Construction 5.5. Combine the second item of Proposi-
tion 4.2 with Lemma 5.7 to obtain

�.HL/
:
D

det.@L3 /
det.@L2 /

:
D 1 and �.HL0/

:
D

det.@L
0

3 /

det.@L02 /
:
D det.AzL/:

We deduce that �.HL0/=�.HL/
:
D det.AzL/: Apply Lemma 5.6 to obtain

�Y 0

�Y

:
D
�.HL0/

�.HL/

:
D det.AzL/:

Rearranging yields the desired equality.

As a consequence, we complete the second step of the plan from Section 5.1.

Proposition 5.9. Let 0! H
y�
�! H�

$
�! H1.Y IZŒt˙1�/! 0 be a presentation of Y .

Pick generators x1; : : : ; xn for H and endow H� with the dual basis x�1 ; : : : ; x
�
n .

Let Q be the matrix of � with respect to these bases. The classes �.x�1 /; : : : ; �.x
�
n/
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can be represented by a framed link zL in covering general position with equivariant
linking matrix AzL D�Q

�T . In addition, the 3-manifold Y 0 obtained by surgery on Y
along L satisfies H1.Y 0IZŒt˙1�/ D 0.

Proof. The existence of zL representing the given generators and with equivariant link-
ing matrixAzLD�Q

�T is proved in Proposition 5.4. AsQT presentsH1.Y IZŒt˙1�/,
we have det.Q/ :D �Y , and therefore det.AzL/

:
D 1=�Y . Theorem 5.8 now implies

that �Y 0
:
D 1.

A short argument is now needed to use Remark 4.3 in order to conclude that
H1.Y

0IZŒt˙1�/ D 0: we require that this torsion module admits a square presenta-
tion matrix, i.e. has projective dimension at most 1, denoted pd.H1.Y 0IZŒt˙1�// � 1.
Here recall that a ZŒt˙1�-module P has projective dimension at most k if

Exti
ZŒt˙1�

.P IV / D 0

for every ZŒt˙1�-module V and every i � k C 1, and that for a short exact sequence
0! A! B ! C ! 0 of ZŒt˙1�-modules, the associated long exact sequence in
Ext.�IV / groups implies that:

(a) if pd.C / � 1 and A is free, then pd.B/ � 1;

(b) if pd.B/ � 1 and A is free, then pd.C / � 1.

The following paragraph proves that pd.H1.Y 0I ZŒt˙1�// � 1. As H1.Y I ZŒt˙1�/
and H1.Y 0IZŒt˙1�/ are torsion (for the latter recall Lemma 3.14), a duality argu-
ment implies that H2.Y IZŒt˙1�/ D Z and H2.Y 0IZŒt˙1�/ D Z (see e.g. the first
item of [27, Lemma 3.2]). Since these modules are torsion and since excision implies
that

H2
�
Y; YLIZŒt

˙1�
�
D ZŒt˙1�n and H2

�
Y 0; YLIZŒt

˙1�
�
D ZŒt˙1�n;

H1
�
Y; YLIZŒt

˙1�
�
D 0 and H1

�
Y 0; YLIZŒt

˙1�
�
D 0;

we deduce that the mapsH2.Y IZŒt˙1�/!H2.Y;YLIZŒt˙1�/ andH2.Y 0IZŒt˙1�/!
H2.Y

0; YLIZŒt˙1�/ are both trivial leading to the short exact sequences

0! H2
�
Y; YLIZŒt

˙1�
�
! H1

�
YLIZŒt

˙1�
�
! H1

�
Y IZŒt˙1�

�
! 0;

0! H2
�
Y 0; YLIZŒt

˙1�
�
! H1

�
YLIZŒt

˙1�
�
! H1

�
Y 0IZŒt˙1�

�
! 0:

Next we apply the facts (a) and (b) on projective dimension given above. Since the
torsion module H1.Y IZŒt˙1�/ is presented by .H; �/, it has projective dimension at
most 1 and since H2.Y; YLIZŒt˙1�/ is free, the first short exact sequence implies that
H1.YLIZŒt˙1�/ has projective dimension at most 1. SinceH2.Y 0; YLIZŒt˙1�/ is free,
the second short exact sequence now implies that

pd
�
H1
�
Y 0IZŒt˙1�

��
� 1;

as required.
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As explained above, since pd.H1.Y 0IZŒt˙1�//� 1 and�Y 0
:
D 1, Remark 4.3 now

allow us to conclude that
H1
�
Y 0IZŒt˙1�

�
D 0;

as required.

5.4. Step 3: Every ZŒt˙1�-homology S 1 � S 2 bounds a homotopy circle

The goal of this subsection is to prove the following theorem, which is a generalisation
of a key step in the proof that Alexander polynomial one knots are topologically slice.

Theorem 5.10. Let Y be a 3-manifold with an epimorphism �1.Y /�Z whose Alex-
ander module vanishes, i.e. H1.Y IZŒt˙1�/ D 0. Then there exists a 4-manifold B
with a homotopy equivalence gWB

'
�! S1 so that @B Š Y and �1.Y /� �1.B/

g�
�!

�1.S
1/ Š Z agrees with '.

Proof. This proof can be deduced by combining various arguments from [42, Sec-
tion 11.6], so we only outline the main steps. First we use framed bordism to find
some 4-manifold whose boundary is Y , with a map to S1 realising ', as in [42,
Lemma 11.6B]. This map might not be a homotopy equivalence, but we then we
will use surgery theory to show that W is bordant rel. boundary to a homotopy circle.

To start the first step, recall that every oriented 3-manifold admits a framing of its
tangent bundle. Using the axioms of a generalised homology theory, we have

�fr
3.BZ/ Š �fr

3 ˚�
fr
2 Š Z=24˚ Z=2:

We consider the image of .Y; '/ in �fr
3.BZ/. The first summand can be killed by

changing the choice of framing of the tangent bundle of Y ; see the proof of [42,
Lemma 11.6B] for details. The second summand is detected by an Arf invariant,
which vanishes thanks to the assumption thatH1.Y IZŒt˙1�/D 0; details are again in
the proof of [42, Lemma 11.6B]. Therefore, there exists a framed 4-manifold W with
framed boundary Y , such that the map Y ! S1 associated with ' extends over W .

Now we use surgery theory to show thatW is bordant rel. boundary to a homotopy
circle. Consider the mapping cylinder

X WDM.Y
'
�! S1/: (5.3)

We claim that .X; Y / is a Poincaré pair. The argument is similar to [42, Proposi-
tion 11.C]. As X ' S1, the connecting homomorphism from the exact sequence of
the pair .X;Y / gives an isomorphism @WH4.X;Y /ŠH3.Y /Š Z. We then define the
required fundamental class as

ŒX; Y � WD @�1
�
ŒY �
�
2 H4.X; Y /:
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UsingH1.Y IZŒt˙1�/D 0, one can now use the same argument as in [45, Lemma 3.2]
to show that the following cap product is an isomorphism:

� \ ŒX; Y �WH i
�
X; Y IZŒt˙1�

�
! H4�i

�
X IZŒt˙1�

�
:

This concludes the proof of the fact that .X; Y / is a Poincaré pair.
The end of the argument follows from the exactness of the surgery sequence

for .X; Y / as in [42, Proposition 11.6A] but we outline some details for the reader
unfamiliar with surgery theory. Since .X; Y / is a Poincaré pair, we can consider
its set N .X; Y / of normal invariants. The set N .X; Y / consists of normal bordism
classes of degree one normal maps to X that restrict to a homeomorphism on the
boundary, where a bordism restricts to a product cobordism homeomorphic to Y � I
between the boundaries. The next paragraph uses the map W ! S1 to define an ele-
ment of N .X; Y /.

Via the homotopy equivalence X ' S1, the map Y ! S1 ' X extends to

F WW ! S1 ' X:

It then follows from the naturality of the long exact sequence of the pairs .W; Y /
and .X; Y / that F has degree one. We therefore obtain a degree one map

.F; idY /W .W; Y /! .X; Y /:

To upgrade .F; idY / to a degree one normal map, we take a trivial (stable) bundle
� ! X over the codomain. Normal data is determined by a (stable) trivialisation of
T W ˚ F �� . The framing of W provides a trivialisation for the first summand, while
any choice of trivialisation forF �� can be used for the second summand. We therefore
have a degree one normal map�

.F; idY /W .W; Y /! .X; Y /
�
2 N .X; Y /:

Our goal is to change W to W #`Z, where Z D E8, and then to do surgery on
the interior of the domain .W #`Z; Y / to convert F into a homotopy equivalence
.F 0; idY /W .B; Y /! .X; Y /. Since the fundamental group Z is a good group, surgery
theory says that this is possible if and only if ker.�/ is non-empty [42, Section 11.3].
Here � WN .X; Y /! L4.ZŒt˙1�/ is the surgery obstruction map. Essentially, it takes
the intersection pairing on H2.W IZŒt˙1�/ and considers it in the Witt group of non-
singular, Hermitian, even forms over ZŒt˙1� up to stable isometry, where stabilisation
is by hyperbolic forms  

ZŒt˙1�˚ ZŒt˙1�;

 
0 1

1 0

!!
:
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Shaneson splitting [82] implies that

L4
�
ZŒt˙1�

�
Š L4.Z/˚ L3.Z/ Š L4.Z/ Š 8Z:

The last isomorphism is given by taking the signature. We take the connected sum
of W ! X with copies of .E8 ! S4/ or .�E8 ! S4/, to arrange that the signa-
ture becomes zero. Then the resulting normal map W #`Z ! X has trivial surgery
obstruction in L4.ZŒt˙1�/ (i.e. lies in ker.�/) and therefore is normally bordant to
a homotopy equivalence .F 0; idY /W .B; Y /! .X; Y /, as desired. Since the mapping
cylinder X from (5.3) is a homotopy circle, so is B . This concludes the proof of the
theorem.

5.5. Step 4: Constructing a 4-manifold that induces the given boundary
isomorphism

We begin by recalling the notation and outcome of Proposition 5.9 as follows. We let
b 2 Iso.@�;�BlY / be an isometry of linking forms. Pulling this back toH , we obtain
a presentation

0! H
y�
�! H�

$
�! H1

�
Y IZŒt˙1�

�
! 0

of Y . Pick generators x1; : : : ; xn forH and endowH� with the dual basis x�1 ; : : : ; x
�
n .

Let Q be the matrix of � with respect to these bases. By Propositions 5.4 and 5.9,
the classes �.x�1 /; : : : ; �.x

�
n/ can be represented by a framed link zL � Y1 in cov-

ering general position with transposed equivariant linking matrix �Q�1 and the 3-
manifold Y 0 obtained by surgery on L D p. zY / satisfies H1.Y 0IZŒt˙1�/ D 0. Apply-
ing Theorem 5.10, there is a topological 4-manifold B with boundary Y 0 and such
that B ' S1.

We now define a 4-manifold M with boundary Y as follows: begin with Y � I
and attach 2-handles to Y � ¹1º along the framed link L WD p.zL/ (here recall that
pWY1! Y denotes the covering map), so that the resulting boundary is Y 0. Call this
2-handle cobordism W , and observe that @�W D �Y . We can now cap @CW Š Y 0

with �B . Since W [ �B has boundary �Y , we define M to be �W [ B . We can
then consider the corresponding Z-cover:

�M1 WD

��
Y1 � Œ0; 1�

�
[

n[
iD1

[
ji2Z

tjih
.2/
i

�
[Y 01 �B

1
D W1 [Y 01 �B

1;

�M WD

��
Y � Œ0; 1�

�
[

n[
iD1

h
.2/
i

�
[Y 0 �B DW W [Y 0 �B;

in which the 2-handles are attached along the framed link zL upstairs and its framed
projection L downstairs.
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We begin by verifying some properties of M .

Lemma 5.11. The Z-manifold M has boundary Y .

Proof. We first prove that �1.M/ Š Z. A van Kampen argument shows that �1.M/

is obtained from �1.B/ by modding out the Œ�. zK 0i /� where zK 01; : : : ; zK
0
n denote the

components of the framed link dual to zL and where �W�1.Y 0/! �1.B/ is the inclu-
sion induced map. Recall from Lemma 3.12 and Remark 3.13 that the epimorph-
ism 'W�1.Y /� Z induces an epimorphism '0W�1.Y

0/� Z and that '0.ŒK 0i �/ D 0
for i D 1; : : : ; n. Since Theorem 5.10 ensures that � agrees with '0, we deduce that
the classes Œ�. zK 0i /� are trivial and therefore �1.M/ Š �1.B/ Š Z.

Next we argue that as a Z-manifold M has boundary Y . Since the inclusion
induced map �1.Y / ! �1.W / is surjective, it suffices to prove that the inclusion
induced map �1.W /! �1.M/ is surjective. This follows from van Kampen’s the-
orem: as �1.Y 0/! �1.B/ is surjective, so is �1.W /! �1.M/.

It is not too difficult to compute, as we will do in Proposition 5.13 below, that
H2.M IZŒt˙1�/ is f.g. free of rank n. To complete Step 4, we must prove the following
two claims.

(1) The equivariant intersection form �M of M is represented by Q; i.e. �M is
isometric to �.

(2) The 4-manifold M satisfies bM D b 2 Iso.@�;�BlY /=Aut.�/.

The proof of the first claim follows a standard outline; for the hasty reader we will
give the outline here, and for the record we provide a detailed proof at the end of the
subsection.

Proof outline of claim (1). Since by setup the transposed equivariant linking matrix
of the framed link zL is �Q�1, Proposition 3.15 shows that the transposed equivariant
linking matrix of the dual link zL0 is Q. Thus, it suffices to show that �M is presented
by the transposed equivariant linking matrix of zL0.

While it was natural initially to build W1 by attaching 2-handles to Y1 � I , in
what follows it will be more helpful to view �W1 as being obtained from Y 0 � I

by attaching 2-handles to the framed link zL0 dual to zL. In particular, the components
of zL0 bound the cores of the 2-handles.

Recall that H1.Y 0IZŒt˙1�/ D 0 by Proposition 5.9 and that H2.BIZŒt˙1�/ D 0
by Proposition 5.10. Let †i denote a surface in Y 01 with boundary zK 0i , and let Fi
be the surface in M formed by †i capped with the core of the 2-handle attached
along zK 0i . The proof that H2.M IZŒt˙1�/ is freely generated by the ŒFi � and that the
equivariant intersection form �M is represented by the transposed equivariant linking
matrix of zL0 (which we showed above is Q), is now routine; the details are expanded
in Propositions 5.13 and 5.14 below.
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As promised, the section now concludes with a detailed proof of the claims. Firstly
in Construction 5.12, we give the detailed construction of the surfaces Fi that were
mentioned in the proof outline. Secondly, in Proposition 5.13 we show that these
surfaces lead to a basis of H2.M IZŒt˙1�/. Thirdly, in Proposition 5.14 we conclude
the proof of the first claim by showing that with respect to this basis, �M is represented
by the transposed equivariant linking matrix of zL0. Finally, in Proposition 5.15, we
prove the second claim.

Construction 5.12. For i D 1; : : : ; n, we define the closed surfaces Fi � �W1 �
M1 that were mentioned in the outline. As H1.Y 0IZŒt˙1�/ D 0 (by Step 2), each
component zK 0i of zL0 bounds a surface †i � Y 0

1. Additionally, each zK 0i (considered
in Y 0 � ¹1º) bounds the core of one of the (lifted) 2-handles in the dual handle decom-
position of �W . Define the surface Fi � �W1 � M1 by taking the union of †i
with this core.

The next proposition shows that the surfaces F 0i give a basis for H2.M IZŒt˙1�/.
It is with respect to this basis that we will calculate �M in Proposition 5.14 below.

Proposition 5.13. The following isomorphisms hold:

H2
�
�W IZŒt˙1�

�
D Z˚

nM
iD1

ZŒt˙1�ŒFi �;

H2
�
M IZŒt˙1�

�
D

nM
iD1

ZŒt˙1�ŒFi �:

Proof. These follow by standard arguments using Mayer–Vietoris, which we outline
now.

The first equality follows from the observation that�W1 is obtained from Y 0
1
�

Œ0; 1� by attaching the dual 2-handles to the h.2/i . Morally, since H1.Y 0IZŒt˙1�/ D 0
(Step 2), each dual 2-handle contributes a free generator. The additional Z summand
comes from

H2
�
Y 0 � Œ0; 1�IZŒt˙1�

�
Š Z:

More formally, one applies Mayer–Vietoris with ZŒt˙1�-coefficients to the decom-
position ofW as the union of Y 0 � Œ0; 1� with the dual 2-handles, which since the dual
2-handles are contractible and H1.Y 0IZŒt˙1�/ D 0 yields the short exact sequence:

0! H2
�
Y 0 � Œ0; 1�IZŒt˙1�

�
! H2

�
�W IZŒt˙1�

� @
�! H1

�
x�.L0/IZŒt˙1�

�
! 0:

Since '0.ŒL0�/ D 0, then H1.x�.L0/IZŒt˙1�/ Š
Ln
iD1 ZŒt˙1�, generated by the ŒK 0i �.

Mapping each ŒK 0i � to ŒFi � determines a splitting.
For the second equality, note that sinceB is a homotopy circle and g�W�1.B/!Z

is an isomorphism, B has no (reduced) ZŒt˙1�-homology. The Mayer–Vietoris exact
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sequence associated to the decomposition M D �W [Y 0�¹1º B therefore yields the
short exact sequence

0! H2
�
Y 0IZŒt˙1�

�
! H2

�
�W IZŒt˙1�

�
! H2

�
M IZŒt˙1�

�
! 0:

Appealing to our computation of H2.�W IZŒt˙1�/, we deduce that H2.M IZŒt˙1�/
is freely generated by the ŒFi �.

Now we prove the first claim of the previously mentioned outline.

Proposition 5.14. With respect to the basis ofH2.M IZŒt˙1�/ given by ŒF1�; : : : ; ŒFn�,
the equivariant intersection form �M of M is given by the transposed equivariant
linking matrix of the framed link zL0 dual to zL.

Proof. Recall from Construction 5.12 that for i D 1; : : : ; n, the surface Fi ��W1 �
M1 was obtained as the union of a surface†i � Y 0

1 whose boundary is zK 0i with the
core of a (lifted) 2-handle in the dual handle decomposition of W . For i D 1; : : : ; n,
defineF 0i to be a surface isotopic toFi obtained by pushing the interior of†i intoB1.
Let †0i be such a push-in. Since Fi and F 0i are isotopic for every i D 1; : : : ; n, we can
use the F 0i to calculate �M . Fix real numbers 0 < s1 < � � � < sn < 1. We model †0i in
the coordinates of a collar neighbourhood @B � Œ0; 1� as

†0i WD
�
@†i � Œ0; si �

�
[
�
†i � ¹siº

�
:

We start by calculating the equivariant intersection form �M .ŒF
0
i �; ŒF

0
j �/ for i ¤ j .

Since the aforementioned cores of the dual 2-handles are pairwise disjoint, we obtain

�M
�
ŒF 0i �; ŒF

0
j �
�
D F 0i �1;M F 0j D †

0
i �1;B †

0
j :

Recall that we use AzL0 to be the linking matrix of the framed link L0. It therefore
remains to show that †0i �1;B †

0
j D .AzL0/ij . Assume without loss of generality that

i > j , and so si > sj . Also note that @†i \ @†j D ;. By inspecting the locations of
the intersections, it follows that

†0i �1;B †
0
j D

�
@†i � Œ0; si �

�
�1;B

�
†j � ¹sj º

�
D @†i �1;@B †j D `kQ.t/. zK

0
i ;
zK 0j /;

where the last equality makes use of the definition of the equivariant linking number
in @B D Y 0. For i ¤ j , we have therefore proved that

�M
�
ŒF 0j �; ŒF

0
i �
�
D †0i �1;B †

0
j D `kQ.t/. zK

0
i ;
zK 0j /:

It remains to prove that �M .ŒF 0i �; ŒF
0
i �/ D .AzL0/i i .
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By definition of the dual framed knot zK 0i , we have .AzL0/i i D `kQ.t/. zK
0
i ; �
0
i /,

where � 0i denotes the framing curve of zK 0i .
Perform a small push-off of the surface †0i � B

1 to obtain a surface †00i � B
1

isotopic to †0i � B
1 with boundary @†00i D �

0
i . Cap off †00i with a parallel disjoint

copy of the cocore of the 2-handle, yielding a closed surface F 00i that is isotopic to F 0i ,
and such that all the intersections between the two occur between †0i and †00i . As in
the i ¤ j case, we then have

�M
�
ŒF 0i �; ŒF

0
i �
�
D †0i �1;B †

00
i D `kQ.t/. zK

0
i ; �
0
i /:

We have therefore shown that the equivariant intersection form ofM is represented by
the transposed linking matrix AT

zL0
and this concludes the proof of the proposition.

Finally, we prove the second claim of our outline, thus completing Step 4.

Proposition 5.15. Let Y be a 3-manifold with an epimorphism 'W�1.Y /� Z whose
Alexander module is torsion, and let .H; �/ be a non-degenerate Hermitian form
presenting Y . If b 2 Iso.@�;�BlY /=Aut.�/ is an isometry, then there is a Z-mani-
fold M with equivariant intersection form �M Š �, boundary Y and with bM D b.

Proof. Let M be the 4-manifold with boundary Y constructed as described above.
The manifoldM D�W [Y 0 B comes with a homeomorphism gW@M Š Y , since�W
is obtained from Y � Œ0; 1� by adding 2-handles. We already explained why M has
intersection form isometric to � but we now make the isometry more explicit. Define
an isomorphism F WH !H2.M IZŒt˙1�/ by mapping xi to ŒFi �, where the Fi �M1

are the surfaces built in Construction 5.12. This is an isometry because, by combining
Proposition 5.14 with Lemma 3.15, we get

�M
�
ŒFi �; ŒFj �

�
D .AzL0/j i D �.A

�1
zL
/j i D Qij D �.xi ; xj /:

We now check that bM D b by proving that b D g� ı DM ı @F . This amounts to
proving that the bottom square of the following diagram commutes (we refer to Con-
struction 2.3 if a refresher on the notation is needed):

H�
F��;Š

//

proj

����

H2
�
M IZŒt˙1�

�� PD ı ev�1;Š
//

proj
����

H2
�
M; @M IZŒt˙1�

�
ıM

����

coker.y�/
@F;Š

//

D

��

coker.y�M /
DM ;Š // H1

�
@M IZŒt˙1�

�
g�;Š

��

coker.y�/
b;Š

// H1
�
Y IZŒt˙1�

�
:
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The top squares of this diagram commute by definition of @F and DM . Since the top
vertical maps are surjective, the commutativity of the bottom square is now equivalent
to the commutativity of the outer square. It therefore remains to prove that

g� ı ıM ı .PD ı ev�1/ ı F �� D � I

(recall that by definition � D b ı proj). In fact, it suffices to prove this on the x�i as they
form a basis of H�. Writing ci for the core of the 2-handles attached to Y � Œ0; 1�,
union a product of their attaching circles with Œ0; 1� in Y � Œ0; 1�, note that the ci
intersects Fj in ıij points, since Fj is built from a surface in Y 01 union the cocore of
the j -th 2-handle. We have

g� ı ıM ı .PD ı ev�1/ ı F ��.x�i / D g� ı ıM ı .PD ı ev�1/
�
ŒFi �
�
�

D g� ı ıM
�
Œzci �
�
D Œ zKi � D �.x

�
i /:

Here we use successively the definition of F , as well as the geometric interpretation
of PD ı ev�1, the fact that zg.@zci / D zKi and the definition of the zKi . Therefore, the
outer square commutes as asserted. This concludes the proof that b D g� ıDM ı @F
and therefore bM D b, as required.

5.6. Step 5: Fixing the Kirby–Siebenmann invariant and concluding

The conclusion of Theorem 5.1 will follow promptly from Proposition 5.15 once we
recall how, in the odd case, it is possible to modify the Kirby–Siebenmann invari-
ant of a given 4-manifold with fundamental group Z. This is achieved using the star
construction, a construction which we now recall following [42] and [83]. In what
follows, �CP 2 denotes the Chern manifold, i.e. the unique simply-connected topolo-
gical 4-manifold homotopy equivalent to CP 2 but with ks.�CP 2/ D 1.

Let M be a topological 4-manifold with (potentially empty) boundary, good fun-
damental group � and such that the second Stiefel–Whitney class of the univer-
sal cover w2. zM/ is non-trivial. There is a 4-manifold �M , called the star partner
of M that is rel. boundary homotopy equivalent to M but has the opposite Kirby–
Siebenmann invariant from that of M ([42, Theorem 10.3 (1)]). See [87] or [64,
Proposition 5.8] for a more general condition under which a star partner exists.

Remark 5.16. For fundamental group Z, every non-spin 4-manifold hasw2. zM/¤ 0.
To see this, we use the exact sequence

0! H 2.B� IZ=2/! H 2.M IZ=2/
p�

��! H 2. zM IZ=2/� ;

where � WD �1.M/. This can be deduced from the Leray–Serre spectral sequence for
the fibration zM ! M ! B� ; see e.g. [63, Lemma 3.17]. For � D Z, the first term
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vanishes, so p� is injective. By naturality, p�.w2.M// D w2. zM/, so w2.M/ ¤ 0

implies w2. zM/ ¤ 0, as desired. It follows that for a non-spin 4-manifold M with
fundamental group Z ([42, Theorem 10.3]) applies and there is a star partner.

To describe �M , consider the 4-manifold W WD M#.�CP 2/ and note that the
inclusions M ,! W and �CP 2 ,! W induce a splitting

�2.M/˚
�
�2.�CP

2/˝Z ZŒ��
� Š
��! �2.W /: (5.4)

By [42, Theorem 10.3 (1)] (cf. [64, Proposition 5.8]) there exists a 4-manifold �M
and an orientation-preserving homeomorphism

hWW
Š
��! �M#CP 2

that respects the splitting on �2 displayed in (5.4). The star partner �M is also unique
up to homeomorphism, by [84, Corollary 1.2].

To be more precise about the condition on h, let

�W�2.�CP
2/˝Z ZŒ��! �2

�
M#.�CP 2/

�
D �2.W /

denote the split isometric injection induced by the zigzag �CP 2 �CP 2n VD4!W ,
and let incl�W �2.CP 2/! �2.�M#CP 2/ be defined similarly. Then we say that h
respects the splitting on �2 if for some isomorphism f W �2.�CP 2/

Š
��! �2.CP 2/,

the following diagram commutes:

�2.�CP 2/˝Z ZŒ�� �
� � //

f˝id Š
��

�2.W /

h�Š

��

�2.CP 2/˝Z ZŒ�� �
� incl� // �2.�M#CP 2/:

Since both horizontal maps in this diagram are split, this implies that h� induces an
isomorphism gW�2.M/

Š
��! �2.�M/, and so h� splits as follows:

h� D .g�; f� ˝ id/W�2.M/˚
�
�2.�CP

2/˝Z ZŒ��
�

Š
��! �2.�M/˚

�
�2.CP

2/˝Z ZŒ��
�
:

We recall that M and �M are orientation-preserving homotopy equivalent rel.
boundary. This will ensure that their automorphism invariants agree. The argument is
due to Stong [84, Section 2], and a proof can also be found in [64, Lemma 5.7].

Proposition 5.17. If M is a topological 4-manifold with boundary, good fundamen-
tal group � and whose universal cover has non-trivial second Stiefel–Whitney class,
then M is an orientation-preserving homotopy equivalent rel. boundary to its star
partner �M .
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We are ready to prove Theorem 5.1, whose statement we recall for the reader’s
convenience. Let Y be a 3-manifold with an epimorphism �1.Y /� Z whose Alex-
ander module is torsion, and let .H;�/ be a form presenting Y . If b 2 Iso.@�;�BlY /=
Aut.�/ is an isometry, then there is a Z-manifold M with equivariant intersection
form �M , boundary Y and with bM D b. If the form is odd, then M can be chosen to
have either ks.M/ D 0 or ks.M/ D 1. We now conclude the proof of this theorem.

Proof of Theorem 5.1. In Proposition 5.15, we proved the existence of a Z mani-
fold M with equivariant intersection form �M , boundary Y and with bM D b. It
remains to show that if � is odd, then M can be chosen to have either ks.M/ D 0

or ks.M/ D 1. This is possible by using the star partner �M of M . Indeed Pro-
position 5.17 implies that M and �M are homotopy equivalent rel. boundary, and
therefore Remark 2.6 ensures that b�M D bM is unchanged.

5.7. An example

Remark 2.5 shows that ifM0 andM1 are spin 4-manifolds with �1.Mi /Š Z, bound-
ary homeomorphic to .Y; '/, isometric equivariant intersection form, and the same
automorphism invariant, then their Kirby–Siebenmann invariants agree. The next pro-
position shows that the condition on the automorphism invariant is necessary. After
the proof, we offer an extended example to illustrate the proof of Theorem 2.4 and to
show that it is possible to work with the automorphism invariants and the Q.t/-valued
linking numbers explicitly.

Proposition 5.18. There are two spin 4-manifoldsM0 andM1 with �1ŠZ, equivari-
ant intersection form isometric to � WD .�8/ and boundary homeomorphic to Y WD
�L.8; 1/#.S1 � S2/ that are distinguished both by their Kirby–Siebenmann invari-
ants and their automorphism invariants.

Proof. The manifolds M0, M1 are obtained by boundary connect summing S1 �D3

to simply-connected 4-manifolds V0 and V1 that we now describe. Up to homeo-
morphism, there are two simply-connected 4-manifolds V0 and V1 with intersec-
tion form �0 D .�8/WZ � Z ! Z, and boundary homeomorphic to the lens space
Y 0 WD �L.8; 1/. They are distinguished by Boyer’s simply-connected version of the
automorphism invariant [12, Corollary E]. We construct them explicitly and show
that ks.V0/ ¤ ks.V1/.

The .�8/-trace on the unknot, V0 WDX�8.U /, gives the first of these 4-manifolds.
Towards describing V1, first note that from �L.8; 1/ one can obtain the integer homo-
logy sphere S3C1.T2;3/ by a Dehn surgery along the framed knot K1 illustrated in
Figure 1. Note also that S3C1.T2;3/ bounds a contractible topological 4-manifold C .
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HI E E
�1

�8

1 1

Figure 1. Performing �1 surgery on the blue knot K1 in the lens space L.�8; 1/ yields the
3-manifold obtained by C1 surgery on the right handed trefoil in S3. Each frame of the figure
should be imagined to be vertically braid closed. The first homeomorphism indicated is a Rolf-
sen twist, the second is an isotopy in S3.

We can now build �V1 by beginning with �L.8; 1/ � I , attaching a C1 framed 2-
handle alongK1, and capping off with�C . The resulting manifold�V1 has @.�V1/D
L.8; 1/, so @V1 D �L.8; 1/, as desired.

The manifolds V0 and V1 are simply-connected, spin, have boundary homeo-
morphic to �L.8; 1/, and intersection form isometric to .�8/. We have ks.V0/ D 0
(because V0 is smooth), whereas ks.V1/ D ks.C / D �.S3C1.T2;3// D Arf.T2;3/ D 1.
Here � denotes the Rochlin invariant and the relation between ks and � is due to
Gonzáles-Acuña [50].

The manifolds M0 and M1 are now obtained by setting

M0 WD V0\.S
1
�D3/ and M1 WD V1\.S

1
�D3/:

The manifolds M0 and M1 have �1.Mi / Š Z, boundary homeomorphic to Y D
�L.8; 1/#.S1 � S2/, and equivariant intersection form isometric to

.�8/WZŒt˙1� � ZŒt˙1�! ZŒt˙1�:

The additivity of the Kirby–Siebenmann invariant implies that ks.M0/Dks.V0/D0,
whereas ks.M1/D ks.V1/D 1. The manifolds must have distinct automorphism invar-
iants, since otherwise by the classification (Theorem 2.8) they would be homeo-
morphic and hence would have the same Kirby–Siebenmann invariants.

Example 5.19. To provide an explicit example of our realisation procedure from the
proof of Theorem 2.4, we describe how the manifoldsM0 andM1 realise two distinct,
explicit automorphism invariants.

Fix a model of Y WD �L.8; 1/#.S1 � S2/ as surgery on a 2-component unlink
L1 [ L2 with framings .�8; 0/. Consider the epimorphism

'W�1.Y / Š Z8 � Z! Z
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given by sending the meridian �L1 of L1 to 0 and the meridian �L2 to 1. Fix a
lift z�L1 of �L1 to the infinite cyclic cover and note that it generatesH1.Y IZŒt˙1�/Š
ZŒt˙1�=.8/ and satisfies BlY .z�L1 ; z�L1/ D 1=8: One way to see this latter equality is
to use the calculation of the linking form of lens spaces.

A verification shows that Y is presented by the Hermitian form

�WZŒt˙1� � ZŒt˙1�! Q.t/=ZŒt˙1�;

.x; y/ 7! 8x xy:

Note also that multiplication by 3 induces an isometry of BlY Š �@�. Using the
notation from the proof of Step 1 in Section 5.1, we let x1 be a generator of ZŒt˙1�,
and we let x�1 2 ZŒt˙1�� be the dual generator. In these bases, the matrix of � is
Q D .�8/. We therefore obtain two elements of Iso.@�;�BlY / by considering

b0WZŒt
˙1�=.8/

Š
��! H1

�
Y IZŒt˙1�

�
; Œx�1 � 7! Œz�L1 �;

b1WZŒt
˙1�=.8/

Š
��! H1

�
Y IZŒt˙1�

�
; Œx�1 � 7! 3Œz�L1 �:

Since Aut.�/ D ¹˙tkºk2Z, it follows that b0 and b1 remain distinct in

Iso.@�;�BlY /=Aut.�/:

That they remain in distinct orbits of the action of HomeoC' .Y / requires the following
claim.

Claim. The group HomeoC' .Y / acts on H1.Y I ZŒt˙1�/ as follows: for each  2
HomeoC' .Y /, we have that  � x D ˙tkx for some k 2 Z.

Proof. In [16, Theorem 3] we find the statement that every automorphism of a connec-
ted sum of 3-manifolds is a composition of slides, permutations, and automorphisms
of the factors. That article was an announcement, and the theorem is actually due to
Hendriks–Laudenbach [57, §5, Théorème]. For our purposes the statement in [16] is
easier to apply, which is why we mention it. Permutations are irrelevant here since
there is a unique irreducible factor. Sliding the �L.8; 1/ factor around the generator
of S1 � S2 exactly corresponds to an action by tn. Sliding the handle sends a gener-
ator t 2 �1.S1 � S2/ to g � t where g 2 Z8. However it acts trivially on a generator
of �1.L.8; 1// and hence acts trivially onH1.Y IZŒt˙1�/. It remains to consider auto-
morphisms of the irreducible factor, i.e. of L.8; 1/. Bonahon [8] proved that every
element of HomeoC.L.8; 1// acts by ˙1 on H1.L.8; 1//, and hence such an ele-
ment acts by ˙1 on H1.Y IZŒt˙1�/. Combining these conclusions, we see that every
homeomorphism f 2 HomeoC' .Y / acts by˙tn onH1.Y IZŒt˙1�/, for some sign and
some n 2 Z, as asserted.
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The claim implies that the isometries b0 and b1 determine distinct elements in the
orbit set Iso.@�;�BlY /=Aut.�/�HomeoC' .Y /. We will show that applying the real-
isation process of Theorem 5.1 to these elements results in M0 and M1 respectively.
Following the notation of Section 5.1, for i D 0; 1, precompose bi with the canonical
projection ZŒt˙1�� ! ZŒt˙1�=.8/ to get the epimorphism

$i WZŒt
˙1�� �! ZŒt˙1�=.8/

bi
�! H1

�
Y IZŒt˙1�

�
:

For i D 0; 1, let zKi � Y1 be a framed knot representing $i .x
�
1 / and let Ki � Y be

its projection down to Y . We can assume that

zKi � �L.8; 1/ � .S
2
�R/#k2Zt

k
�
�L.8; 1/

�
D Y1:

Thinking of Y as the .�8; 0/-framed surgery on the unlink L1 [ L2, one can arrange
also for Ki to be disjoint from L1 [ L2. Consider the 3-component link

Ki [ L1 [ L2 � S
3:

Note that Ki [ L2 is split from L1, `k.K0; L1/ D 1 and `k.K1; L1/ D 3: When we
refer to a framing of Ki , it will be as a knot in S3. Let �K1 (resp. �K0) be the .�1/-
parallel of K1 (resp. 0-parallel of K0), and let z� zKi be a lift of �Ki to Y1, which is a
parallel of zKi for i D 0; 1:

The next claim carries out by hand the first step of the plan described in Sec-
tion 5.1.

Claim. For i D 0; 1, the knot zKi � Y1 represents the homology class $i .x
�
1 /, and

the parallel z� zKi satisfies

`kQ.t/. zKi ; z� zKi
/ D

1

8
:

In particular, zKi has equivariant linking matrix A zKi D .1=8/D �.1=� 8/D �Q
�T

for i D 0; 1:

Proof. The assertion concerning the homology class holds by construction and so we
focus on the equivariant linking number calculation. The proofs are similar for M0

and M1, so we give the most details for M1, since that is the more complicated case,
and then we sketch the easier case of M0. We will use the equation

Œz� zK1 � D `kQ.t/. zK1; z� zK1/Œ� zK1 � 2 H1
�
Y n �.K1/IQ.t/

�
(5.5)

from Definition 3.4. The Z-cover Y1 of Y is .S2 �R/#k2Zt
k.�L.8; 1//, and there

is no linking between curves in different L.8; 1/ summands. Thus it suffices to invest-
igate the Q-valued linking number of K1 and �K1 in Y 0 WD �L.8; 1/, and consider
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the result as an element of Q.t/. Formally speaking, we use an isomorphism

H1
�
Y1 n [i2Zt

i
� �. zK1/

�
Š H1

�
Y 0 n �.K1/

�
˝Z ZŒt˙1�;

and then tensor both sides further by �˝ZŒt˙1� Q.t/. We compute in the right-hand
side and translate to a conclusion about the left-hand side.

Since Y 0 WD �L.8; 1/ D S3
.�8/

.L1/, the manifold Y 0 n �.K1/ is obtained from
the exterior of the 2-component link L1 [K1 � S3 by Dehn filling L1 with surgery
coefficient �8. Since `k.L1; K1/ D 3, the homology is therefore

H1.Y
0
n �.K1// Š

Zh�L1i ˚ Zh�K1i

h�8�L1 C 3�K1i
Š Z:

We now express Œ�K1 � as a multiple of Œ�K1 �, as required to calculate the framing
of K1. Since �K1 is a .�1/-parallel of K1 we have Œ�K1 � D 3Œ�L1 � � Œ�K1 �. One
checks that

�
1 3
�3 �8

��
�8
3

�
D
�
1
0

�
; so one can use the invertible matrix

�
1 3
�3 �8

�
to

change coordinates to the presentation

Z

�
1
0

�
��! Z˚ Z! H1

�
Y 0 n �.K1/

�
! 0:

In this presentation, we compute that

Œ�K1 � D proj2 ı
�
1 3
�3 �8

��
0
1

�
D �8 2 Z Š H1

�
Y 0 n �.K1/

�
;

Œ�K1 � D proj2 ı
�
1 3
�3 �8

��
3
�1

�
D �1 2 Z Š H1

�
Y 0 n �.K1/

�
:

Hence, passing to the Z-cover, tensoring up to Q.t/ coefficients, and applying (5.5),
we see that �1 D `kQ.t/. zK1; z� zK1/ � .�8/ so, as asserted

`kQ.t/. zK1; z� zK1/ D
1

8
2 Q.t/:

As indicated above, a similar computation shows the same result for M0. Here are
some details. The space Y 0 n �.K0/ is obtained from the exterior of the link K0 [
L1 � S

3 by Dehn filling L1 with framing �8. Since `k.L1; K0/ D 1, it follows that

H1
�
Y 0 n �.K0/

�
Š

Zh�L1i ˚ Zh�K0i

h�8�L1 C �K0i
Š Z:

We now express Œ�K0 � as a multiple of Œ�K0 �, as required to calculate the framing
of K0. Since �K0 is a 0-parallel of K0 we have Œ�K0 � D Œ�L1 �. Use the invertible
matrix

�
1 8
0 1

�
to change coordinates to the presentation

Z

�
1
0

�
��! Z˚ Z! H1

�
Y 0 n �.K1/

�
! 0:
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In this presentation, we compute that

Œ�K0 � D proj2 ı
�
1 8
0 1

��
0
1

�
D 8 2 Z Š H1

�
Y 0 n �.K0/

�
;

Œ�K0 � D proj2 ı
�
1 8
0 1

��
1
0

�
D 1 2 Z Š H1

�
Y 0 n �.K0/

�
:

Hence, passing to the Z cover, tensoring up to Q.t/ coefficients, one obtains

`kQ.t/. zK0; z� zK0/ D
1

8
2 Q.t/:

This concludes the proof of the claim.

The combination of the claim with Step 2 of the plan from Section 5.1 implies that
surgery along Ki yields a ZŒt˙1�-homology 3-sphere for i D 0; 1: In order to recover
the construction described during the proof of Proposition 5.18 however, we take zKi
(and thereforeKi ��L.8;1/) to be the unknot for i D 0;1: as described in the propos-
ition, surgery on Y along K0 and K1 then yields S1 � S2 and .S1 � S2/#S3C1.T2;3/
respectively. The infinite cyclic covers of these manifolds have vanishing Alexander
modules yielding a “by hand” version of Step 2.

Step 3 is carried out by capping off with S1 � D3 and .S1 � D3/\C respect-
ively; both of these are homotopy S1 �D3s. Thus M0 and M1 are obtained by the
realisation process of our main theorem. It follows that bM0 D b0 ¤ b1 D bM1 , as
asserted.

In summary, the Kirby–Siebenmann invariant of spin 4-manifolds is not always
controlled by the boundary and the intersection form. Rather, the automorphism invar-
iant must be taken into account as well.

An explanation for this is that the automorphism invariant can act non-trivially on
the spin structures. Using b0 to fix an isometry @� Š �BlY , b1 determines an auto-
morphism of BlY . If this automorphism preserved the quadratic enhancement of BlY
determined by a spin structure (or by the presentation of @�Š BlY as the boundary of
an even Hermitian form [81, p. 243], [20, Definition 2.5]) then the induced spin struc-
tures on Y would agree. Then M0 and M1 would be stably homeomorphic and hence
their Kirby–Siebenmann invariants would be the same; see [20, Proposition 4.2].
But when we consider an automorphism of the linking form that does not preserve
the quadratic enhancement, as is the case for b1 above, then the Kirby–Siebenmann
invariants can be different, as with the example just given.

Finally, we note that the example just given, without adding the copies of S1�D3,
is also compelling in the simply-connected case. We gave it for infinite cyclic funda-
mental group since that is the topic of the present paper.
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6. Application to Z-surfaces in 4-manifolds

Recall that a Z-surface refers to a locally flat, embedded surface in a 4-manifold
whose complement has infinite cyclic fundamental group. In this section we apply our
classification of 4-manifolds with fundamental group Z to the study of Z-surfaces in
simply-connected 4-manifolds and prove Theorems 1.7, 1.10, and 1.11 from the intro-
duction. In Section 6.1, we focus on Z-surfaces with boundary up to equivalence rel.
boundary. In the shorter Sections 6.2 and 6.3, we respectively study surfaces with
boundary up to equivalence (not necessarily rel. boundary) and closed surfaces. Sec-
tion 6.4 lists some open problems.

6.1. Surfaces with boundary up to equivalence rel. boundary

Let N be a simply-connected 4-manifold with boundary homeomorphic to S3. We
fix once and for all a particular homeomorphism hW @N Š S3. Let K � S3 be a knot.
Thus K and h determine a knot in @N , which we also denote by K. The goal of
this subsection is to give an algebraic description of the set of Z-surfaces in N with
boundary K up to equivalence rel. boundary.

We begin with some conventions. Given a properly embedded Z-surface†�N in
a simply-connected 4-manifold, denote its exterior by N† WD N n �.†/. Throughout
this section, we will refer to embedded surfaces simply as †, and abstract surfaces
as †g;b , where g is the genus and b is the number of boundary components; we
may sometimes write †g when b D 0. Recall that throughout, †g;b and N will
be oriented. This data determines orientations on S3, K, and every meridian of an
embedding of†g;b . Observe that the �1.N†/Š Z hypothesis implies that Œ†; @†�D
0 2 H2.N; @N / by [27, Lemma 5.1], so the relative Euler number of the normal
bundle of †, with respect to the zero-framing of �.@N /, vanishes [27, Lemma 5.2].
From now on, we choose a framing �.†/ Š † � VD2 Š † � R2 compatible with
the orientation and with the property that for each simple closed curve k � †, we
have k � ¹e1º � N n† is nullhomologous in N n†. We will refer to such a fram-
ing as a good framing. As such, when @† D K � @N , we can identify the boundary
of N† as

@N† Š EK [@ .†g;1 � S
1/ DWMK;g ;

where the gluing @ takes �K to @† � ¹ptº.
We call two locally flat surfaces †;†0 � N with boundary K � @N Š S3 equi-

valent rel. boundary if there is an orientation-preserving homeomorphism of pairs
.N; †/ Š .N; †0/ that is pointwise the identity on @N Š S3. Note that if † � N is
a Z-surface with boundary K, then N† is a Z-manifold with boundary @N† ŠMK;g

(see [27, Lemma 5.4]) and H1.MK;g IZŒt˙1�/ Š H1.EK IZŒt˙1�/˚ Z2g is torsion
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because the Alexander module H1.EK IZŒt˙1�/ of K is torsion [27, Lemma 5.5].
Additionally, note that the equivariant intersection form �N† of a surface exterior N†
must present MK;g .

Consequently, as we did for manifolds, it is natural to fix a form .H; �/ that
presents MK;g and to consider the set Surf.g/0

�
.N; K/ of genus g Z-surfaces in N

with boundary K and �N† Š �.

Definition 6.1. For a non-degenerate Hermitian form .H;�/ over ZŒt˙1� that presents
MK;g , we set

Surf.g/0�.N;K/ WD ¹Z-surfaces † � N for K with �N† Š �º=equivalence rel. @:

There is an additional necessary condition for this set to be non-empty. For con-
ciseness, we write �.1/ WD �˝ZŒt˙1� Z", where Z" denotes Z with the trivial ZŒt˙1�-
module structure. This way, if A.t/ is a matrix that represents �, then A.1/ rep-
resents �.1/. Additionally, recall that if W is a Z-manifold, then �W .1/ Š QW ,
where QW denotes the standard intersection form of W ; see e.g. [27, Lemma 5.10].
Thus, if we take W D N† and assume that � Š �N† , then

�.1/ Š �N†.1/ Š QN† Š QN ˚ .0/
˚2g ;

where the last isometry follows from a Mayer–Vietoris argument. Thus, for the set
Surf.g/0

�
.N;K/ to be non-empty, it is also necessary that �.1/ Š QN ˚ .0/˚2g .

For the final piece of setup for the statement of the main result of the section, we
describe an action of HomeoC.†g;1; @/ on the set Iso.@�;�BlMK;g / as follows. First,
a rel. boundary homeomorphism xW†g;1 ! †g;1 induces an isometry

x00�WBlMK;g Š BlMK;g

as follows. Extend x to a self homeomorphism x0 of†g;1 � S1 by defining x0.s; �/D
.x.s/; �/. Then extend x0 by the identity over EK ; in total one obtains a self homeo-
morphism x00 of MK;g . Now lift this homeomorphism to the covers and take the
induced map on H1 to get

x00�WBlMK;g Š BlMK;g :

The required action is now by postcomposition; for f 2 Iso.@�;�BlMK;g /, define
x � f WD x00� ı f . The main result of this section proves Theorem 1.7 from the intro-
duction. The formulation of the result is different than in the introduction, but clearly
equivalent.

Theorem 6.2. LetN be a simply-connected 4-manifold with boundary @N Š S3 and
let K � S3 be a knot. Given a non-degenerate Hermitian form .H; �/ over ZŒt˙1�,
the following assertions are equivalent:
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(1) the Hermitian form .H;�/ presentsMK;g and satisfies �.1/ŠQN ˚ .0/˚2g ;

(2) the set Surf.g/0
�
.N;K/ is non-empty and there is a bijection

Surf.g/0�.N;K/ � Iso.@�;�BlMK;g /=
�
Aut.�/ � HomeoC.†g;1; @/

�
:

Remark 6.3. We collect some remarks concerning Theorem 6.2.

(i) If .H; �/ presents MK;g , then there is a non-canonical bijection

Iso.@�;�BlMK;g /

.Aut.�/ � HomeoC.†g;1; @//
�

Aut.@�/
.Aut.�/ � HomeoC.†g;1; @//

:

In addition, we have the isomorphism

Aut.@�/ Š Aut.BlMK;g / Š Aut.BlK/˚ Sp2g.Z/;

where the latter is the group of automorphisms of the symplectic intersection pairing
of†g;1 (see [27, Propositions 5.6 and 5.7]). The group HomeoC.†g;1; @/ acts trivially
on the first summand and transitively on the second. Therefore one can express the
quotients above as

Aut.BlK/=Aut.�/;

where the action of Aut.�/ on Aut.BlK/ arises by restricting the action of Aut.�/ on

Aut.@�/ Š Aut.BlMK;g / Š Aut.BlK/˚ Sp2g.Z/

to the first summand. We stress again that the isomorphism Aut.@�/ Š Aut.BlMK;g /
is not canonical. The set Aut.BlK/=Aut.�/ was mentioned in Theorem 1.7 from the
introduction.

(ii) The action of HomeoC.†g;1; @/ on Iso.@�;� BlMK;g / factors through the
corresponding mapping class group

ModC.†g;1; @/ WD �0
�
HomeoC.†g;1; @/

�
:

In particular, Theorem 6.2 could have equally well been stated using ModC.†g;1; @/
instead of HomeoC.†g;1; @/.

(iii) Our surface set Surf.g/0
�
.N; K/ is defined up to equivalence, hence The-

orem 6.2 only gives a classification of surfaces up to equivalence (instead of ambient
isotopy). This is because we prove Theorem 6.2 as a consequence of Theorem 1.3 and
the equivalence on V0

�
.MK;g/ is up to any homeomorphism rel. boundary, not just

homeomorphisms in a prescribed isotopy class. As a consequence, when N admits
homeomorphisms which are not isotopic to the identity rel. boundary, there can be
Z-surfaces that are equivalent rel. boundary but not ambient isotopic. Here is an
example.
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LetK �S3 be a knot with non-trivial Alexander polynomial�K , that bounds a Z-
disc in a punctured CP 2 with intersection form represented by the 1� 1matrix .�K/.
Let N be given by the boundary connected sum with another punctured CP 2 (so
that N is a punctured CP 2#CP 2), and denote the same Z-disc considered in N
byD. There is a self-homeomorphism � WN !N that induces

�
0 1
1 0

�
onH2.N /ŠZ2.

Isotope � to be the identity on @N Š S3. The discs D and �.D/ are equivalent rel.
boundary. But a short computation shows that the equivariant intersection forms of the
exteriors are

�
�K 0
0 1

�
and

�
1 0
0 �K

�
respectively. A straightforward computation shows

that every ZŒt˙1�-isometry between these two forms augments over Z to
�
0 1
1 0

�
. It

follows that there is no ambient isotopy between D and �.D/.

Theorem 6.2 will be proved in three steps.

(1) We define a map ‚ from a set of equivalence classes of embeddings

†g;1 ,! N;

which we denote Emb0�.†g;1;N IK/ and which we will define momentarily, to the set
of manifolds V0

�
.MK;g/ from Definition 2.1. By Theorem 1.3, V0

�
.MK;g/ corresponds

bijectively to the set of isometries Iso.@�;�BlMK;g /=Aut.�/.

(2) We prove that the map ‚ is a bijection, by defining a map ‰ in the other
direction, from the set of manifolds to the set of embeddings, and showing that both
‚ ı‰ and ‰ ı‚ are the identity maps.

(3) In the final step, we describe the set of surfaces Surf.g/0
�
.N;K/ as a quotient

of Emb0�.†g;1;N IK/ by HomeoC.†g;1; @/. We show that this action and the actions
of HomeoC.†g;1;@/ on V0

�
.MK;g/ and Iso.@�;�BlMK;g /=Aut.�/ are all compatible.

Passing to orbits leads to the bijection in Theorem 6.2. This step is largely formal.

Step (1): From embeddings to manifolds. For the first step, we give some defini-
tions and construct the map which will be the bijection in Theorem 6.2.

Consider the following set:

Emb0�.†g;1; N IK/

D

¹eW†g;1 ,! N j e.†g;1/ is a Z-surface for K with �Ne.†g;1/ Š �º

equivalence rel. @
:

Two embeddings e1; e2 are equivalent rel. boundary if there exists a homeomorph-
ism ˆWN ! N that is the identity on @N Š S3 and satisfies ˆ ı e1 D e2.

In what follows, we let 'W �1.MK;g/� Z be the epimorphism such that the
induced map '0WH1.MK;g/� Z is the unique epimorphism that maps the meridian
ofK to 1 and the other generators to zero. When we write V0

�
.MK;g/, it is with respect

to this epimorphism '. Recall also that we have a fixed homeomorphism hW@N ! S3;
whenever we say @N Š S3, it is with this fixed h.
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In addition to our homeomorphism hW @N ! S3, we fix once and for all the fol-
lowing data.

(i) A closed tubular neighbourhood x�.K/ � @N . Since we have already fixed h,
and since we are abusively using K for both the knot K in @N and for the image
h.K/ in S3, this choice of x�.K/ � @N also determines a particular neighbourhood
x�.K/ � S3. We will use EK exclusively to denote the complement of �.K/ in S3.

(ii) A homeomorphism DW @†g;1 � S
1 ! @x�.K/ that takes @†g;1 � ¹1º to the

0-framed longitude of K and ¹ptº � S1 to the meridian of K such that

MK;g D EK [D †g;1 � S
1:

These choices can change the bijection, however we are interested only in the exist-
ence of a bijection, so this is not an issue.

Next we define the map which will be the bijection in Theorem 6.2.

Construction 6.4. We construct a map ‚W Emb0�.†g;1; N IK/ ! V0
�
.MK;g/. Let

eW†g;1 ,! N be an embedding that belongs to Emb0�.†g;1; N IK/. We will assign
to e a pair .Ne.†g;1/; f /, where f W@Ne.†g;1/!MK;g is a homeomorphism. The pair
we construct will depend on several choices, but we will show that the outcome is
independent of these choices up to equivalence in V0

�
.MK;g/.

To cut down on notation we set † WD e.†g;1/ and describe the choices on which
our pair .N†; f / will a priori depend.

(1) An embedding �W x�.†/,!N of the normal bundle of† such that �.x�.†//\@N
agrees with our fixed tubular neighbourhood of K.

(2) A good framing  W x�.†/ Š †g;1 �D2 such that hj ı � ı �1 D D:

@†g;1 � S
1 D //

�1

��

@x�.K/ � EK

�1.@†g;1 � S
1/

�j
// �
�
�1.@†g;1 � S

1/
�
� @N n �.K/:

hj

OO
(6.1)

In this diagram, hj denotes the restriction of our fixed identification hW @N Š S3 and
DW @†g;1 � S

1 ! @x�.K/ is the homeomorphism that we fixed above.

We also record some of the notation that stems from these choices.

(i) The boundary of the surface exterior N† decomposes as

@N† Š
�
@N n �.K/

�
[
�
@�.x�.†// n

�
�.�.†// \ @N

��
: (6.2)

Here the first part of this union is homeomorphic to a knot exterior, while the second
is homeomorphic to †g;1 � S1.
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(ii) Restricting our fixed homeomorphism hW @N Š S3 to the knot exterior part
in (6.2), we obtain the homeomorphism

hjW @N n �.K/! EK �MK;g :

(iii) On the circle bundle part of (6.2), we consider the homeomorphism

 j ı ��1W
�
@�.x�.†// n

�
�.�.†// \ @N

��
! †g;1 � S

1
�MK;g :

Here by the slightly abusive notation ��1, we mean that since �W x�.†/ ,! N is an
embedding, it is a homeomorphism onto its image, whence the inverse.

The diagram in (6.1) ensures that hj and  j ı ��1 can be glued together to give rise
to the homeomorphism we have been building towards:

f W @N† !MK;g ; f WD
�
hj
�
[
�
 j ı ��1

�
: (6.3)

Set ‚.e/ WD .N†; f /. We need to verify that ‚ gives rise to a map

Emb0�.†g;1; N IK/! V0
�.MK;g/:

In other words, we need to check that modulo homeomorphisms rel. boundary, ‚.e/
does not depend on the embedding �W x�.†/ ,! N nor on the particular choice of the
good framing  subject to the condition in (6.1). We also have to verify that equivalent
embeddings produce equivalent manifolds.

(a) First we show that the construction is independent of  and �. Pick another
embedding

�0W x�
�
e.†g;1/

�
,! N

of the normal bundle and another good framing

 0W x�
�
e.†g;1/

�
Š †g;1 �D

2

with the same hypothesis about compatibility withD. This leads to boundary homeo-
morphisms f WD .hj/ [ . j ı ��1/ and f 0 WD .hj/ [ . 0j ı �0

�1
/ and we must show

that the following pairs are equivalent rel. boundary:�
Ne�.†g;1/; f

�
and

�
Ne�0 .†g;1/; f 0

�
: (6.4)

For a moment we are keeping track of the embeddings � and �0 in our notation for
exteriors. More explicitly, we set Ne�.†g;1/ WD N n �.�.e.†g;1/// and similarly for �0.

By uniqueness of tubular neighbourhoods [42, Theorem 9.3D], there is an isotopy
of embeddings �t W†g;1 �D2 ,! N such that �0 D � ı �1 and �1 D �0 ı  0�1 that
fixes a neighbourhood of @†g;1 �D2. Then by the Edwards–Kirby isotopy extension
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theorem [31], there is an isotopy of homeomorphisms Ft WN !N with F1 ı � ı �1D
�0 ı  0�1 and F0 D idN and such that Ft is the identity on a neighbourhood of the
boundary @N for every t 2 Œ0; 1�. We will argue that this F1 restricted to the exteri-
ors Ne�.†g;1/ and Ne�0 .†g;1/ gives a rel. boundary homeomorphism between the pairs
in (6.4).

We wish to argue that the restriction of F1 to the surface exteriors identifies
.Ne�.†g;1/; f / with .Ne�0 .†g;1/; f 0/ as elements of V0

�
.MK;g/. Consider the follow-

ing diagram:

MK;g

D

��

@Ne�.†g;1/
fD.hj/[. jı�

�1/
oo � //

F1

��

Ne�.†g;1/
� //

F1

��

N

F1

��

MK;g @Ne�0 .†g;1/
� //

f0D.hj/[.
0jı�0
�1
/

oo Ne�0 .†g;1/
� // N:

The right two squares certainly commute, while the left square commutes because the
homeomorphism F1WN ! N is rel. boundary and because, by construction,

 j ı ��1 D F1 ı 
0
j ı �0

�1
:

In total, we have

f 0 ı F1 D
�
.hj/ [ . 0j ı �0

�1
/
�
ı F1

D .hj ı F1/ [ .
0
j ı �0

�1
ı F1/ D hj [ . ı �

�1/ D f : (6.5)

(b) We now show that the map ‚ from Construction 6.4 is well defined up to rel.
boundary homeomorphisms of N ; recall that this is the equivalence relation on the
domain Emb0�.†g;1; N IK/. Assume that e; e0W†g;1 ,! N are embeddings that are
homeomorphic rel. boundary via a homeomorphism F WN!N . Pick good framings 
and  0 for x�.e.†g;1// and x�.e0.†g;1// as well as an embedding �0W x�.e0.†g;1// ,! N .
We now consider the embedding � WD F �1 ı �0 ı . 0/�1 ı  . The following diagram
commutes:

†g;1 �D
2 �1;Š

//

D

��

x�
�
e.†g;1/

� �;Š
// �
�
x�
�
e0.†g;1/

�� � //

F j

��

N

F

��

†g;1 �D
2  0

�1
;Š
// x�
�
e0.†g;1/

� �0;Š
// �0
�
x�
�
e.†g;1/

�� � // N:

(6.6)

As in Construction 6.4, the choice of framings leads to boundary homeomorphisms

f D .hj/ [ . j ı ��1/W @Ne�.†g;1/
Š
��!MK;g ;

f 0 D .hj/ [ . 0j ı �0
�1
/W @Ne0

�0
.†g;1/

Š
��!MK;g :
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As in (6.5), using the diagram from (6.6) and the fact that F is a rel. boundary homeo-
morphism, we deduce that F j D f 0�1 ı f and that F restricts to a rel. boundary
homeomorphism

F jWNe�.†g;1/ ! Ne0
�0
.†g;1/

:

We conclude that .Ne.†g;1/; f / is equivalent to .Ne0.†g;1/; f
0/ in V0

�
.MK;g/.

This concludes the verification that the map ‚ from Construction 6.4 is well defined.

Remark 6.5. From now on, we continue to use the notation † WD e.†g;1/ and we
omit the choice of an embedding �W x�.†g;1/ ,! N from the notation since we have
shown that ‚.e/ is independent of the choice of embedding � up to equivalence in
V0
�
.MK;g/. In practice this means that we will simply write x�.†/ � N . Since we

omit � from the notation, we also allow ourselves to think of (the inverse of) a good
framing  as giving an embedding

�1W†g;1 �D
2 ,! x�.†/ � N:

Similarly, given a choice of such a good framing, we now write the homeomorphism
from (6.3) as

f W @N† !MK;g ; f WD .hj/ [ . j/;

once again omitting � from the notation. We sometimes also omit the choice of the
framing  from the notation, writing instead ‚.e/ D .N†; f /.

Step (2): From manifolds to embeddings. We set up some notation aimed towards
proving that‚ is a bijection when the form � is even, and that‚ is a bijection when �
is odd and the Kirby–Siebenmann is fixed. Set " WD ks.N / and write V

0;"
�
.MK;g/

for the subset of those manifolds in V0
�
.MK;g/ whose Kirby–Siebenmann invariant

equals ". Observe that by additivity of the Kirby–Siebenmann invariant (see e.g. [43,
Theorem 8.2]), if � is odd and † � N is a Z-surface, then ks.N†/ D ks.N / D ", so
the image of ‚ lies in V

0;"
�
.MK;g/. The next proposition is the next step in the proof

of Theorem 6.2.

Proposition 6.6. Let N be a simply-connected 4-manifold with boundary @N Š S3,
letK � S3 be a knot and let .H;�/ be a non-degenerate Hermitian form with �.1/Š
QN ˚ .0/

2g .

(1) If � is even, then the map ‚ from Construction 6.4 determines a bijection

Emb0�.†g;1; N IK/! V0
�.MK;g/:

(2) If � is odd, then the map ‚ from Construction 6.4 determines a bijection

Emb0�.†g;1; N IK/! V
0;"
�
.MK;g/;

where " D ks.N /.
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Proof. We construct an inverse ‰ to the assignment

‚W e 7!
�
Ne.†g;1/; f

�
from Construction 6.4; this will in fact take up most of the proof. Let .W;f / be a pair,
where W is a 4-manifold with fundamental group �1.W / Š Z, equivariant intersec-
tion form �W Š � and, in the odd case, Kirby–Siebenmann invariant ks.W / D ",
and f W @W ŠMK;g is a homeomorphism.

The inverse ‰.W; f / is an embedding †g;1 ,! N which we define as follows.
Glue †g;1 �D2 to W via the homeomorphism f �1j†g;1�S1 . This produces a 4-
manifold yW with boundary

@ yW D
�
@W n f �1.†g;1 � S

1/
�
[ .@†g;1 �D

2/;

together with an embedding

�¹0ºW†g;1 ,! yW ; x 7! .x; 0/ 2 †g;1 � ¹0º � †g;1 �D
2:

Note for now that @†g;1 � ¹0º � @ yW bounds a genus g Z-surface in yW (with exter-
ior W ).

We will use the homeomorphism f W @W ! MK;g to define a homeomorphism
f 0W @ yW ! @N and then use Freedman’s classification of compact simply-connected
4-manifolds with S3 boundary, to deduce that this homeomorphism extends to a
homeomorphism F W yW ! N . We will then take our embedding to be

‰.W; f / WD F ı
�
�¹0º

�
W†g;1 ,! N:

The next paragraphs flesh out the details of this construction. Namely, firstly we build
f 0W @ yW ! @N and secondly we argue it extends to a homeomorphism F W yW ! N .

(i) Towards building this f 0, first observe that we get a natural homeomorphism
@ yW ! S3 as follows. Restricting f gives a homeomorphism

f jW @W n f �1.†g;1 � S
1/ Š S3 n �.K/:

Recall that the homeomorphism DW @†g;1 � S
1 ! @x�.K/ sends @†g;1 � ¹ptº to �K

and ¹�º � @D2 to �K , where �K and �K respectively denote the Seifert longitude and
meridian of K � S3. Since �K bounds a disc in x�.K/, this homeomorphism extends
to a homeomorphism

# W @†g;1 �D
2
! x�.K/: (6.7)
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Note that # is well defined up to isotopy. Consider the following diagram:

@W n f �1.†ıg;1 � S
1/

f j;Š
// S3 n �.K/

@†g;1 � S
1

f �1j
@†g;1�S

1

OO

�

��

D;Š
// @x�.K/

�

OO

�

��

@†g;1 �D
2 #;Š

// x�.K/:

The bottom square commutes by definition of # , whereas the top square commutes
because f j is obtained by restricting f W @W !MK;g D .S

3 n �.K//[D †g;1 � S
1.

The commutativity of this diagram implies that f and # combine to a homeomorph-
ism

f j [ # W D @ yW ! S3:

Then h�1 ı .f j [ #/ gives the required homeomorphism

f 0 WD hj�1 ı .f j [ #/W @ yW ! @N:

Further, we observe that f 0.@†g;1/ D K.

(ii) To prove that this homeomorphism extends to a homeomorphism yW Š N ,
we will appeal to Freedman’s theorem that for every pair of simply-connected topo-
logical 4-manifolds with boundary homeomorphic to S3, the same intersection form,
and the same Kirby–Siebenmann invariant, every homeomorphism between the boun-
daries extends to a homeomorphism between the 4-manifolds [40]. We check now that
the hypotheses are satisfied.

We first argue that yW is simply-connected as follows. The hypothesis that W lies
in V0

�
.MK;g/ implies that there is an isomorphism

y'W�1.W /
Š
��! Z

such that ' D y' ı �, where � is the inclusion induced map �1.MK;g/! �1.W / (see
Definition 2.1). Since we required that '.�K/ generates Z, we must have that �.�K/
generates �1.W / Š Z. Since gluing †g;1 � D2 along †g;1 � S1 has the effect of
killing �.�K/, we conclude that yW is simply-connected as claimed.

Next we must show that Q yW is isometric to QN . A Mayer–Vietoris argument
establishes the isometry Q yW ˚ .0/

˚2g Š QW . It then follows from our assumption
on the Hermitian form .H; �/ that we have the isometries

Q yW ˚ .0/
˚2g
Š QW Š �W .1/ Š �.1/ Š QN ˚ .0/

˚2g :

This impliesQ yW ŠQN since both forms are non-singular (indeed @ yW Š @N Š S3).
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In the even case, we deduce that both yW and N are spin. In the odd case, using
the additivity of the Kirby–Siebenmann invariant (see e.g. [43, Theorem 8.2]), we
have ks. yW / D ks.W / D " D ks.N /.

Therefore yW and N are simply-connected topological 4-manifolds with bound-
ary S3, with the same intersection form and the same Kirby–Siebenmann invari-
ant. Freedman’s classification of simply-connected 4-manifolds with boundary S3

now ensures that the homeomorphism f 0W @ yW ! @N extends to a homeomorphism
F W yW !N that induces the isometryQ yW ŠQN and fits into the following commut-
ative diagram�

@W n f �1.†g;1 � S
1/
�
[ .@†g;1 �D

2/
D //

hj�1ı.f j[#j/

��

@ yW
� //

f 0

��

yW

F

���
@N n �.K/

�
[ x�.K/

D // @N
� // N:

(6.8)

As mentioned above, we obtain an embedding as

‰.W; f / WD
�
eW†g;1

�¹0º
���! yW

F;Š
���! N

�
: (6.9)

This concludes the construction of our embedding ‰.W; f /.
We must check that this construction gives rise to a map

‰WV0
�.MK;g/! Emb0�.†g;1; N IK/:

In other words, we verify that, up to homeomorphisms ofN rel. boundary, the embed-
ding e from (6.9) depends neither on the choice of isometryQ yW ŠQN nor the choice
of # from (6.7) nor the homeomorphism yW Š N extending our boundary homeo-
morphism nor on the homeomorphism rel. boundary type of .W; f /.

(i) The precise embedding e depends on the homeomorphism yW Š N chosen
to extend a given f 0. This homeomorphism in turn depends on the choice of iso-
metry Q yW Š QN . However for any two choices F1 and F2 of homeomorphisms
yW Š N extending f 0, the resulting embeddings are equivalent rel. boundary, as can

be seen by composing one choice of homeomorphism with the inverse of the other:

†
Œ�0�
//

D

��

yV
F1 //

D
��

W

F2ıF
�1
1

��

†
Œ�0�
// yV

F2 // W:

So the equivalence class of the surface ‰.W; f / does not depend on the choice of
isometry Q yW Š QN nor on the choice of homeomorphism yW Š N realising this
isometry and extending f 0.
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(ii) Next, we show that the definition is independent of the choice of

# W @†g;1 �D
2
! x�.K/

within its isotopy class. If #0; #1W @†g;1 �D2 ! x�.K/ are isotopic, then so are the
resulting homeomorphisms f 00 WD .f j [ #0j/; f

0
1 WD .f j [ #1j/W @ yW ! @N via an

isotopy f 0s .

Claim. There is an isotopy FsW yW ! N extending f 0s .

Proof. Pick a homeomorphism F0W yW ! N extending f 00 ; note that when we con-
structed ‰.W; f /, we argued that such an F0 exists. There are collars @ yW � Œ0; 1�
and @N � Œ0; 1� such that F0j@ yW�Œ0;1� D f

0
0 � Œ0; 1�. Here it is understood that the

boundaries of yW and N are respectively given by @ yW � ¹0º and @N � ¹0º.
The idea is to implant the isotopy f 0s between f 00 ; f

0
1 in these collars in order to

obtain an isotopy between F0 and a homeomorphism F1 that restricts to f 01 on the
boundary. To carry out this idea, consider the restriction

F0jW yW n
�
@ yW � Œ0; 1�

�
! N n

�
@N � Œ0; 1�

�
:

Define an isotopy of homeomorphisms between the collars via the formula

GsW @ yW � Œ0; 1�! @N � Œ0; 1�;

.x; t/ 7!
�
f 0.1�t/s.x/; t

�
:

Since we have that Gs.x; 1/ D .f 00.x/; 1/ for every s, we obtain the required isotopy
as Fs WD Gs [ F0. By construction Fi restricts to f 0i on the boundary for i D 0; 1,
thus concluding the proof of the claim.

Thanks to the claim, we can use F0 and F1 to define the embeddings

e0 WD F0 ı
�
�¹0º

�
and e1 WD F1 ı

�
�¹0º

�
:

This way, F1 ı F �10 WN ! N is an equivalence rel. boundary between e0 and e1 so
that the definition of ‰ is independent of the choice of # within its isotopy class.

(iii) Next we check the independence of the rel. boundary homeomorphism type
of .W; f /. If we have .W1; f1/ and .W2; f2/ that are equivalent rel. boundary, then
there is a homeomorphism ˆWW1 ! W2 that satisfies f2 ı ˆj D f1. This homeo-
morphism extends to

ŷ WD ˆ [ id†g;1�D2 W yW1 ! yW2;

and therefore to a homeomorphism N ! N that is, by construction rel. boundary.
A formal verification using this latter homeomorphism then shows that the embed-
dings ‰.W1; f1/ and ‰.W2; f2/ are equivalent rel. boundary.
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Now we prove that the maps ‚ and ‰ are mutually inverse.

(i) First we prove that ‰ ı ‚ D id. Start with an embedding eW†g;1 ,! N and
write ‚.e/ D .Ne.†g;1/; f / with f D .hj/ [ . j/W @Ne.†g;1/ ! MK;g the homeo-
morphism described in Construction 6.4. Then ‰.‚.e// is an embedding

†g;1
�¹0º
���! Ne.†g;1/ [f .†g;1 �D

2/
F;Š
���! N:

We showed that the equivalence class of this embedding is independent of the homeo-
morphism F that extends f . It suffices to show that we can make choices so that
‰.‚.e// recovers e. This can be done explicitly as follows. Choose

# WD h ı �1W @†g;1 �D
2
! x�.K/:

Then we have

f 0 D id@Nn�.K/[
�
h�1 ı .h ı �1/

�
D id@Nn�.K/[ j�1;

where the notation is as in (6.8) (with W D Ne.†g;1/). We already know an extension
of f 0, namely idNe.†g;1/ [

�1, which we take to be F . Thus,

‰
�
‚.e/

�
D �1j†g;1�¹0ºW†g;1 ,! N

which, by definition of a normal bundle, agrees with the initial embedding e.

(ii) Next we prove that ‚ ı ‰ D id. This time we start with a pair .W; f / con-
sisting of a 4-manifold W and a homeomorphism f W @W !MK;g . Then ‰.W; f / is
represented by an embedding

eW†g;1
�¹0º
���! yW

F;Š
���! N:

Recall that we write hW @N ! S3 for our preferred homeomorphism and that by con-
struction, on the boundaries, F restricts to

hj�1 ı .f j [ #/W @ yW ! @N

where (the isotopy class of) # W @†g;1 � D2 ! x�.K/ satisfies the properties listed
below equation (6.7).

We frame †g;1 � ¹0º � yW via the unique homeomorphism frW x�.†g;1 � ¹0º/!
†g;1 �D

2 that makes the following diagram commute:

x�
�
†g;1 � ¹0º

� fr //

incl

))

†g;1 �D
2

incl

uu

yW D W [ .†g;1 �D
2/:



4-manifolds with boundary and fundamental group Z 71

We then frame e.†g;1/ � N via

 WD fr ıF �1jW x�
�
e.†g;1/

�
Š †g;1 �D

2:

This framing is good thanks to the definition of 'W �1.MK;g/ ! Z as the unique
epimorphism that maps the meridian ofK to 1 and the other generators to zero: indeed
this implies that the curves on †g;1 � ¹0º are nullhomologous in W and therefore the
same thing holds for e.†g;1/ � N . It can be verified that this framing satisfies the
condition from (6.1).

We then obtain

‚
�
‰.W; f /

�
D
�
N† WD N n �

�
e.†g;1/

�
; hj [  j

�
;

where, as dictated by Construction 6.4, the boundary homeomorphism is

hj [  jW @N† !MK;g :

Here we are making use of the fact that up to equivalence, we can choose any framing
in the definition of ‚.

We have to prove that .N†; hj [  j/ is homeomorphic rel. boundary to .W; f /.
We claim that the restriction of F W yW ! N gives the required homeomorphism. To
see this, consider the following diagram

MK;g

D

��

�
@W n f �1.†g;1 � S

1/
�
[
�
f �1.†g;1 � S

1/
�f;Š

oo D //

f 0WD.hj�1ıf j/[F j

��

@W
� //

F j

��

W
� //

F j

��

yW

F

��

MK;g

�
@N n �.K/

�
[
�
@x�.†/ n

�
�.†/ \ @N

�� D //
hj[ j
oo @N†

� // N†
� // N:

The right two squares certainly commute. In the second-from-left square, we have just
expanded out @W and @N†, as well as written F j explicitly on the regions where we
have an explicit description from the construction of ‰. So this square commutes.

It remains to argue that the left square commutes. By construction, F j
@ yW
D f 0 D

h�1 ı .f j [ #/. Thus on the knot exteriors, we have that F j D h�1 ı f j and so the
left portion of the square commutes on the knot exteriors.

Now it remains to prove that  j ı F j D f . By definition of  D frıF �1, we must
show that fr j D f j on f �1.†g;1 � S1/. First note that fr has domain

x�
�
†g;1 � ¹0º

�
� yW D W [ .†g;1 �D

2/;

so it appears we are attempting to compare maps which have different domains. How-
ever, the definition of yW identifies the portion of the boundary of x�.†g;1/ that we
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are interested in with f �1.†g;1 � S1/ � @W via f �1j ı frj, so it makes sense to
compare f on f �1.†g;1 � S1/ with frj on frj�1 ıf jf �1.†g;1�S1/. These maps are
tautologically equal. Therefore, the left-hand side of the diagram commutes and this
concludes the proof that ‚ ı‰ D id.

We have shown that ‚ and ‰ are mutually inverse, and so both are bijections.
This completes the proof of Proposition 6.6.

Step (3): From embeddings to submanifolds. Now we deduce a description of
Surf.g/0

�
.N; K/ from Proposition 6.6. Note that Surf.g/0

�
.N; K/ arises as the orbit

set
Surf.g/0�.N;K/ D Emb0�.†g;1; N IK/=HomeoC.†g;1; @/;

where the left action of x 2 HomeoC.†g;1; @/ on e 2 Emb0�.†g;1; N IK/ is defined
by x � e D e ı x�1. There is a surjective map

Emb0�.†g;1; N IK/! Surf.g/0�.N;K/

that maps an embedding eW†g;1 ,! N onto its image. One then verifies that this
map descends to a bijection on the orbit set. Next, we note that HomeoC.†g ; @/ acts
on the sets V0

�
.MK;g/ and V

0;"
�
.MK;g/ as follows. A rel. boundary homeomorph-

ism xW†g;1 ! †g;1 extends to a self homeomorphism x0 of †g;1 � S1 by defining

x0.s; �/ D
�
x.s/; �

�
:

Then extend x0 by the identity overEK ; in total one obtains a self homeomorphism x00

of MK;g . The required action is now by postcomposition: for .W; f / representing an
element of V0

�
.MK;g/ or V

0;"
�
.MK;g/, define

x � .W; f / WD .W; x00 ı f /:

The following proposition is now a relatively straightforward consequence of Pro-
position 6.6.

Proposition 6.7. Let N be a simply-connected 4-manifold with boundary @N Š S3,
letK � S3 be a knot and let .H;�/ be a non-degenerate Hermitian form with �.1/Š
QN ˚ .0/

2g .

(1) If � is even, then the map ‚ from Construction 6.4 descends to a bijection

Surf.g/0�.N;K/! V0
�.MK;g/=HomeoC.†g;1; @/:

(2) If � is odd, then the map ‚ from Construction 6.4 descends to a bijection

Surf.g/0�.N;K/! V
0;"
�
.MK;g/=HomeoC.†g;1; @/;

where " D ks.N /.
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Proof. Thanks to Proposition 6.6, it is enough to check that ‚.x � e/ D x � ‚.e/

for x 2 Homeo.†g;1; @/ and eW†g;1 ,! N an embedding representing an element of
Emb0�.†g;1; N IK/. By definition of ‚, we know ‚.x � e/ is .Ne.x�1.†g;1//; feıx�1/
and x �‚.e/ D .Ne.†g;1/; x

00 ı fe/, where the fe; feıx�1 are homeomorphisms from
the boundaries of these surface exteriors to MK;g that can be constructed, up to equi-
valence rel. boundary, using any choice of good framing; recall Construction 6.4. In
what follows, we will make choices of framings so that the pairs

‚.x � e/ D
�
Ne.x�1.†g;1//; feıx�1

�
and x �‚.e/ D

�
Ne.†g;1/; x

00
ı fe

�
are equivalent rel. boundary.

Pick a good framing  W x�.e.†g;1// Š †g;1 �D2, so that

‚.e/ D
�
Ne.†g;1/; fe

�
D
�
Ne.†g;1/; hj [  j

�
:

Since �1W†g;1 �D2 ,! N satisfies �1j†g;1�¹0º D e, we can deduce that �1 ı
.x�1 � idD2/ gives an embedding of the normal bundle of e ı x�1. We can there-
fore choose the inverse eıx WD .x � idD2/ ı  as a good framing for the embedding
e ı x�1. Using this choice of good framing to construct feıx�1 , we have

‚.e ı x�1/ D
�
Neıx�1.†g;1/; hj [

�
.x � idD2/ ı  j

��
:

Using these observations and the fact that x is rel. boundary, we obtain

‚.x � e/ D ‚.e ı x�1/

D
�
Neıx�1.†g;1/; hj [

�
.x � idD2/ ı  j

��
D
�
Neıx�1.†g;1/; x

00
ı .hj [  j/

�
D x �

�
Ne.†g;1/; fe

�
D x �‚.e/:

This proves that‚.x � e/D .Ne.x�1.†g;1//; feıx�1/ and x �‚.e/D .Ne.†g;1/; fe/ are
equivalent rel. boundary and thus concludes the proof of the proposition.

We now deduce our description of the surface set, thus proving the main result of
this section.

Proof of Theorem 6.2. Proposition 6.7 shows that if � is even then the map ‚ from
Construction 6.4 induces a bijection

Surf.g/0�.N;K/! V0
�.MK;g/=HomeoC.†g;1; @/;

while if � is odd, for " WD ks.N /, the map ‚ induces a bijection

Surf.g/0�.N;K/! V
0;"
�
.MK;g/=HomeoC.†g;1; @/:
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Thus the theorem will follows once we show that the map

bWV 0� .MK;g/! Iso.@�;�BlMK;g /=Aut.�/

from Construction 2.3 intertwines the HomeoC.†g;1; @/-actions, that is, it satisfies
bx�.W;f / D x � b.W;f / for every x 2 HomeoC.†g;1; @/ and for every pair .W; f / rep-
resenting an element of V 0

�
.MK;g/.

This follows formally from the definitions of the actions: on the one hand, for
some isometry F W � Š �W , we have bx�.W;f / D b.W;x00ıf / D x00� ı f� ı DW ı @F ;
on the other hand, we have x � b.W;f / is x � .f� ıDW ı @F / and this gives the same
result. This concludes the proof of Theorem 6.2.

6.2. Surfaces with boundary up to equivalence

The study of surfaces up to equivalence (instead of equivalence rel.boundary) presents
additional challenges: while there is still a map‚WEmb�.†g;1;N IK/! V�.MK;g/,
the proof of Proposition 6.6 (in which we constructed an inverse‰ of‚) breaks down
because if W and W 0 are homeomorphic Z-fillings of MK;g , it is unclear whether
we can always find a homeomorphism W [ .†g;1 �D

2/ Š W 0 [ .†g;1 �D
2/. We

nevertheless obtain the following result.

Theorem 6.8. LetN be a simply-connected 4-manifold with boundary @NŠS3, letK
be a knot such that every isometry of BlK is realised by an orientation-preserving
homeomorphism EK ! EK and let .H;�/ be a non-degenerate Hermitian form over
ZŒt˙1�. The following assertions are equivalent:

(1) the Hermitian form � presents MK;g and �.1/ Š QN ˚ .0/˚2g ;

(2) up to equivalence, there exists a unique genus g surface † � N with bound-
ary K and whose exterior has equivariant intersection form �, i.e.

jSurf.g/�.N;K/j D 1:

Proof. We already proved the fact that the second statement implies the first, so we
focus on the converse. We can apply Theorem 6.2 to deduce that Surf.g/0

�
.N; K/ is

non-empty, this implies in particular that Surf.g/�.N; K/ is non-empty. Since this
set is non-empty, we assert that the hypothesis on K ensures we can apply [27, The-
orem 1.3] to deduce that jSurf.g/�.N;K/j D 1.

In contrast to Theorem 6.8, the statement of [27, Theorem 1.3] contains the addi-
tional condition that the orientation-preserving homeomorphism f WEK ! EK be
the identity on @EK . We show that this assumption is superfluous, so that we can
apply [27, Theorem 1.3] without assuming that f j@EK D id@EK .

First, note that since f realises an isometry of BlK , it is understood that f pre-
serves a basepoint x0 and satisfies f .Œ�K �/ D Œ�K �, where Œ�K � 2 �1.EK ; x0/ is the
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based homotopy class of a meridian of K. An application of the Gordon–Luecke the-
orem [51] now implies that f j@EK is isotopic to id@EK ; this isotopy can be assumed
to be basepoint preserving by [35, p. 57]. Implanting this basepoint preserving iso-
topy in a collar neighbourhood of @EK implies that f itself is basepoint preserving
isotopic to a homeomorphism EK ! EK that restricts to the identity on @EK . This
completes the proof that the extra assumption in the statement of [27, Theorem 1.3]
can be assumed to hold without loss of generality.

6.3. Closed surfaces

We now turn our attention to closed Z-surfaces. Let X be a closed simply-connected
4-manifold and let † � X be a closed Z-surface with genus g, whose normal bundle
we frame as in the case with boundary. With this framing, we can now identify the
boundary of X† WD X n �.†/ as

@X† Š †g � S
1:

Two such surfaces † and †0 are equivalent if there exists an orientation-preserving
homeomorphism .X; †/ Š .X; †0/. Again as in the case of surfaces with bound-
ary, X† is a Z manifold and H1.†g � S1I ZŒt˙1�/ Š Z2g is torsion. Addition-
ally, note that the equivariant intersection form �X† of a surface exterior X† must
present †g � S1.

Definition 6.9. For a non-degenerate Hermitian form .H; �/ over ZŒt˙1� present-
ing †g � S1, set

Surf.g/�.X/ WD ¹Z-surface † � X with �X† Š �º= equivalence:

As for Z-surfaces with non-empty boundary, in order for Surf.g/�.X/ to be non-
empty it is additionally necessary that �.1/ Š QX ˚ .0/

˚2g . It was proved in [27,
Theorem 1.4] that whenever Surf.g/�.X/ is non-empty, it contains a single element.
We improve this statement to include an existence clause.

Theorem 6.10. Let X be a closed simply-connected 4-manifold. Given a non-degen-
erate Hermitian form .H; �/ over ZŒt˙1�, the following assertions are equivalent:

(1) the Hermitian form � presents †g � S1 and �.1/ Š QX ˚ .0/˚2g ;

(2) there exists a unique (up to equivalence) genus g Z-surface † � X whose
exterior has equivariant intersection form �; i.e. jSurf.g/�.X/j D 1.

Proof. We have already argued that .2/ ) .1/ and so we focus on the converse.
Use U � S3 to denote the unknot and use N to denote the simply-connected 4-
manifold with boundary S3 obtained from X by removing a small open 4-ball. Note
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thatMU;g D †g � S
1 and thatQN DQX . Since the Blanchfield form of U is trivial,

Theorem 6.8 applies; this shows us that item .1/ in Theorem 6.10 is equivalent to the
existence of a unique (up to equivalence) genus g surface † � N with boundary U
and equivariant intersection form �, in other words:

jSurf.g/�.N;U /j D 1:

Since [27, Theorem 1.4] shows that j Surf.g/�.X/j 2 ¹0; 1º, it suffices to show that
Surf.g/�.X/ surjects onto Surf.g/�.N;U /: this will imply jSurf.g/�.X/j D 1.

Given a closed genus g Z-surface † � X , a Z-surface V† � N with boundary U
can be obtained by removing a . VD4; VD2/-pair from .X;†/. Because �X† Š �N V† and
because an equivalence from † to †0 in X , restricts to an equivalence from V† to V†0

in N , this puncturing operation gives rise to a map

Surf.g/�.X/! Surf.g/�.N;U /:

The surjectivity of this map is straightforward: a pair .N;†/where† has boundary U
can be capped off by a pair .D4; D2/ to get a closed surface in X . As explained
above, .1/ is equivalent to jSurf.g/�.N;U /j D 1, which implies jSurf.g/�.X/j D 1,
as required.

6.4. Problems and open questions

We conclude with some problems in the theory of Z-surfaces, both in the closed case
and in the case with boundary. In what follows, we set

H2 WD

 
0 t � 1

t�1 � 1 0

!
:

We start with closed surfaces in closed manifolds where the statements are a little
cleaner.

Problem 1. Fix a closed, simply-connected 4-manifold X . Characterise the non-
degenerate Hermitian forms .H; �/ over ZŒt˙1� that arise as �X† where † � X
is a closed Z-surface of genus g.

It is known that if � is as in Problem 1, then it must present †g � S1, that �.1/ Š
QX ˚ .0/

˚2g and that �˚H˚n2 Š QX ˚H
˚.gCn/
2 for some n � 0. The necessity

of the first two conditions was mentioned in Section 6.3 while the necessity of third
was proved in [27, Proposition 1.6].

Here is what is known about Problem 1:

• if X D S4 and g ¤ 1; 2, then � Š H
˚g
2 [27, Section 7];
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• forX D CP 2 and g D 0, the equivariant intersection form is necessarily the form
.x; y/ 7! x xy and it follows that Z-spheres in X are unique up to isotopy [25,
Proposition A.1];

• if b2.X/ � j�.X/j C 6, then [86, Theorem 7.2] implies that � Š QX ˚H
˚g
2 .

This leads to the following question, a positive answer to which would solve Prob-
lem 1.

Question 1. Let X be a closed simply-connected 4-manifold and let .H;�/ be a non-
degenerate Hermitian form over ZŒt˙1�. Is it the case that if � presents †g � S1,
�.1/ Š QX ˚ .0/

˚2g and �˚H˚n2 Š QX ˚H
˚.gCn/
2 for some n � 0, then � Š

QX ˚H
˚g
2 ?

If the answer to Question 1 were positive, then using Theorem 6.10 one could
completely classify closed Z-surfaces in closed simply-connected 4-manifolds: for
every g � 0, in a closed simply-connected 4-manifold X , there would exist a unique
Z-surface of genus g in X up to equivalence.

Next, we discuss the analogous (but more challenging) problem for surfaces with
boundary.

Problem 2. Fix a simply-connected 4-manifoldN with boundary S3. Characterise the
non-degenerate Hermitian forms .H;�/ over ZŒt˙1� that arise as �N† , where†�N
is a Z-surface of genus g with boundary a fixed knot K. For brevity, we call such
forms .N;K; g/-realisable.

It is known that if � is .N; K; g/-realisable, then it must present MK;g , sat-
isfy �.1/ Š QN ˚ .0/˚2g as well as �˚H˚n2 Š QN ˚H

˚.gCn/
2 for some n � 0.

The necessity of the first two conditions was mentioned in Section 6.1 while the neces-
sity of third was proved in [27, Proposition 1.6].

Here is what is known about Problem 2:

• if N D D4; g ¤ 1; 2 and K has Alexander polynomial one, then � Š H
˚g
2 [27,

Section 7];

• for N D CP 2 n VD4 and g D 0, the equivariant intersection form � is necessarily
the form .x; y/ 7! x�K xy. After this article appeared, the classification Z-discs
in CP 2 n VD4 was studied in [23].

We conclude by listing consequences of further solutions to Problem 2.

(1) Using Theorem 6.2, a solution to Problem 2 would make it possible to fully
determine the classification of properly embedded Z-surfaces in a simply-connected
4-manifold N with boundary S3 up to equivalence rel. boundary: for every g � 0,
there would be precisely one Z-surface of genus g in N with boundary K for every
element of Aut.BlK/=Aut.�/, where � ranges across all .N;K; g/-realisable forms.
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(2) If one dropped the rel. boundary condition, then one might conjecture that
for every g � 0, in a simply-connected 4-manifold N with boundary S3, there is
precisely one Z-surface of genus g with boundary K for every element of Aut.@�/=
.Aut.�/�HomeoC.EK ; @//, where � ranges across .N;K;g/-realisable forms. If the
conjecture were true, then a solution to Problem 2 would provide a complete descrip-
tion of the set of properly embedded Z-surfaces in a simply-connected 4-manifold N
with boundary S3, up to equivalence.

7. Ubiquitous exotica

In this section we demonstrate the failure of our topological classification to hold in
the smooth setting. In Section 7.1 we set up some preliminaries we will require about
Stein 4-manifolds and corks. In Section 7.2 we give the proofs of Theorems 1.15
and 1.17 from the introduction. In this section, all manifolds and embeddings are
understood to be smooth.

7.1. Background on Stein structures and corks

We will be concerned with arranging that certain compact 4-manifolds with bound-
ary admit a Stein structure. The unfamiliar reader can think of this as a particularly
nice symplectic structure. Abusively, we will say that any smooth 4-manifold which
admits a Stein structure is Stein. The reason for this sudden foray into geometry is
to take advantage of restrictions on the genera of smoothly embedded surfaces rep-
resenting certain homology classes in Stein manifolds. These restrictions will aid us
in demonstrating that two 4-manifolds are not diffeomorphic. In this section, we will
recall both a combinatorial condition for ensuring that a 4-manifold is Stein and the
restrictions on smooth representatives of certain homology classes in Stein manifolds.
We use the conventions and setup of [48] throughout.

We begin by recalling a criterion to ensure that a handle diagram with a unique
0-handle and no 3 or 4-handles describes a Stein 4-manifold. Recall that we can
describe \riD1S

1 �B3 using the dotted circle notation for 1-handles as in the left frame
of Figure 2. It is not hard to show that any link in #riD1S

1 � S2 can be isotoped into
the position shown in the right frame of Figure 2, where inside the tangle marked T
we require that the diagram meet the conventions of a front diagram for the standard
contact structure on S3. For details on front diagrams, see [33]; stated briefly this
amounts to isotoping the diagram so that all vertical tangencies are replaced by cusps
and so that at each crossing the more negatively sloped strand goes over. We note
that front diagrams require oriented links; we can choose orientations on our 2-handle
attaching spheres arbitrarily, since orienting the link does not affect the 4-manifold.



4-manifolds with boundary and fundamental group Z 79

T

Figure 2. The left-hand side shows a handle diagram for a boundary connected sum of S1 �D3.
On the right-hand side, the tangle diagram T satisfies the conventions of a front diagram.

Thus any handle diagram with a unique 0-handle and no 3 or 4-handles can be iso-
toped into the form of the right frame of Figure 2; we say that such a diagram is in
Gompf standard form.

For a diagram in Gompf standard form, letLTi denote the tangle diagram obtained
by restricting the i -th componentLi of the diagram ofL to T . For a diagram in Gompf
standard form, the Thurston–Bennequin number TB.Li / of Li is defined as

TB.LDi / D w.L
T
i / � c.L

T
i /;

where w.LTi / denotes the writhe of the tangle and c.LTi / denotes the number of left
cusps.

In this setup, the following criterion is helpful to prove that handlebodies are Stein.

Theorem 7.1 ([32, 48], see also [49, Theorem 11.2.2]). A smooth 4-manifold X with
boundary is Stein if and only if it admits a handle diagram in Gompf standard form
such that the framing fi on each 2-handle attaching curve Li has fi D TB.Li / � 1.

Figure 3. Stabilising a front diagram.

Remark 7.2. The ‘if’ direction of the Theorem 7.1 holds under the weaker hypothesis
that each 2-handle attaching curve Li has fi � TB.Li / � 1. To see this, observe that
any 2-handleLi can be locally isotoped via the stabilisations demonstrated in Figure 3
and observe that stabilisation preserves the condition on T and lowers the Thurston–
Bennequin number of Li by one. The claim now follows since we can stabilise any
2-handle in a diagram in Gompf standard form to lower its Thurston–Bennequin num-
ber without changing the smooth 4-manifold described.
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We will also make use of the following special case of the adjunction inequality
for Stein manifolds.

Theorem 7.3 ([71]). In a Stein manifold X , any homology class ˛ 2 H2.X/ with ˛ �
˛ D �1 cannot be represented by a smoothly embedded sphere.

Proof. The proof can be deduced by combining [71, Theorem 3.2] with [15, 47];
further exposition can be found in [2, Theorems 1.2 and 1.3].

In order to handily construct pairs of homeomorphic 4-manifolds, we will make
use of cork twisting. Define C to be the contractible 4-manifold in the left frame of
Figure 4, which is commonly refereed to as the Akbulut cork. Observe that @C admits
another contractible filing C 0 given by the right frame of Figure 4, and that there is
a natural homeomorphism � WD .ı0/�1 ı ıW @C ! @C 0 demonstrated in the figure.
Using the work of Freedman [40], the homeomorphism � extends to a homeomorph-
ism T WC ! C 0. As a result, for any 4-manifoldW with �WC ,!W , one can construct
a new 4-manifold W 0 WD W n �.C /[.�j@/ı��1 C

0 and, combining the identity homeo-
morphism idW n�.C/ with T , one sees that W and W 0 are homeomorphic.

ı ı0

0
00

0

Figure 4. Two fillings of the boundary of the Akbulut cork, with boundary homeomorph-
ism ı0�1 ı ı. Here and throughout the rest of the paper, all handle diagrams drawn in this
horizontal format should be braid closed.

Historically, the literature has been concerned with two types of exotic phenom-
ena. If smooth 4-manifoldsX;X 0 with boundary admit a homeomorphism F WX!X 0

but no diffeomorphismGWX ! X 0 such thatGj@ is isotopic to F j@, we callX andX 0

relatively exotic. If smooth 4-manifolds X;X 0 admit a homeomorphism F WX ! X 0

but no diffeomorphism GWX ! X 0 we call X and X 0 absolutely exotic. It is easier to
build relatively exotic pairs in practice. Fortunately, work of Akbulut and Ruberman
shows that all relative exotica contains absolute exotica.

Theorem 7.4 ([3, Theorem A]). LetM ,M 0 be smooth 4-manifolds. Let F WM !M 0

be a homeomorphism whose restriction to the boundary is a diffeomorphism that does
not extend to a diffeomorphism M ! M 0. Then M (resp. M 0) contains a smooth
codimension 0 submanifold V (resp. V 0) which is orientation-preserving homotopy
equivalent toM (resp.M 0) such that V is homeomorphic but not diffeomorphic to V 0.
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If @M and @M 0 are non-empty, then V and V 0 necessarily also have non-empty
boundaries since they are codimension zero submanifolds of manifolds with bound-
ary. We remark that Akbulut–Ruberman’s theorem is only stated when M is diffeo-
morphic to M 0 (hence by applying a reference identification, they can in fact just call
both manifolds M ). However their proof works verbatim when M and M 0 are just
homeomorphic smooth manifolds, which is the hypothesis we take above.

7.2. Proof of Theorems 1.15 and 1.17

We prove Theorem 1.15 from the introduction, which for convenience we state again
here in more detail.

Theorem 7.5. For every Hermitian form .H; �/ over ZŒt˙1� there exists a pair of
smooth Z-manifolds M and M 0 with boundary and fundamental group Z, such that:

(1) there is a homeomorphism F WM !M 0;

(2) F induces an isometry �M Š �M 0 , and both forms are isometric to �;

(3) there is no diffeomorphism from M to M 0.

In other words, every Hermitian form .H; �/ over ZŒt˙1� is exotically realisable.

Hi HiHj Hj

�`

`

k

Figure 5. Arbitrary Hermitian forms can be realised as equivariant intersection forms by
repeatedly performing the following local move, which we illustrate for k D 2.

Proof. Let A.t/ be a matrix representing the given form �, so that A.1/ is an integer
valued matrix. Choose any framed link L D [Li � S3 with linking matrix A.1/ and
let M1 be the 4-manifold obtained from D4 by attaching A.1/i i -framed 2-handles
toD4 along Li . LetM2 be the 4-manifold obtained fromM1 by attaching a 1-handle
(which we will think of as removing the tubular neighbourhood of a trivial disc for
an unknot split from L). Thus �1.M2/ Š Z and both the integer valued intersection
form QM2 and the equivariant intersection form �M2 are represented by a matrix
for �.1/.

Now we will modify the handle diagram of M2 in a way which will preserve the
fundamental group and integer valued intersection form, but will result in an M3

with equivariant intersection form �M3 Š �. For pairs i; j with i < j , for each
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monomial `tk in the polynomial A.t/ij , perform the local modification exhibited
in Figure 5. Observe (for later use) that this move does not change the framed link
type of the link of attaching spheres of 2-handles. Furthermore, the modification does
not change the fundamental group or the integer valued intersection form of M2. We
exhibit in Figure 6 what the cover looks like locally after the modification.

�`

`

zHizHj

"

�`

`

"

�`

`

"

�`

`

"

�`
`

Figure 6. A local picture of the cover after our local modification with k D 2. When k > 0 the
twist parameter " is 1 � k, when k < 0 it is �k � 1.

Recall from Remark 3.3 that for elements Œza�; Œzb� 2H2.M2;ZŒt˙1�/ the equivari-
ant intersection form satisfies

�M2
�
Œzb�; Œza�

�
D

X
k

.za �M1
3
tkzb/t�k :

Thus we see that after each iteration of the local move we have that

�M 0
2
.t/ij D �M2.t/ij � `C `t

k and �M 0
2
.t/j i D �M2.t/j i � `C `t

�k :

For pairs i D j , for each monomial `tk with k > 0 in the polynomialA.t/i i , again
perform the local modification in Figure 5. In this case, one finds that

�M 0
2
.t/i i D �M2.t/i i � 2`C `t

k
C `t�k : (7.1)

The non-constant terms of (7.1) are straightforward to deduce. The constant term
is computed by considering a parallel of Hi downstairs which is 0-framed in the
modification region, lifting the framing curve into the cover, and then computing the
linking of the lift of the framing with zHi .

Once these modifications are complete, we obtain a 4-manifold M3 with �M3
agreeing with � everywhere except a priori on the constant terms of each A.t/ij .
Observe however that since these local modifications do not change the integer valued
intersection form �.1/, we have that �M3 must also agree with � on the constant terms
of each A.t/ij . Thus, when we are finished, we have a smooth 4-manifold M3 with
no 3-handles, �1.M3/ Š Z and �M3 Š �.

Next we will modify the 2-handles of our handle diagram H of M3 to get a Stein
4-manifold M4 with the same fundamental group and equivariant intersection form
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K

0

Figure 7. The knotK in S1 � S2. A handle diagram for the 4-manifoldX is obtained from this
diagram by dotting the black unknot and attaching a 0-framed 2-handle to K.

as M3. We will do this by getting the handle diagram into a form where we can apply
Eliashberg’s theorem 7.1, which requires arranging that each 2-handle has a suitably
large Thurston–Bennequin number. To begin, isotope H into Gompf standard form,
so that we think of the 2-handles of H as a Legendrian link in the standard tight
contact structure on S1 � S2. If any of the 2-handle attaching curves do not have
any cusps, stabilise once so that they do. Let A3.t/ be the equivariant linking matrix
of H ; note that A3.t/ D A.t/ is a matrix representing the equivariant intersection
form �. LetK be the knot in S1 � S2 exhibited in Figure 7. Observe that if we useK
to describe a 4-manifold X via attaching a 0-framed 2-handle to S1 � B3 along K,
then �1.X/ Š Z and the equivariant intersection form �X is represented by the size
one matrix .0/. Observe further thatK has a Legendrian representative K (illustrated
in Figure 7) in the standard tight contact structure on S1 � S2 with TB.K/ D 1. In
our handle diagram H ofM3, let VK be a copy ofK in S1 � S2 which is split from all
of the 2-handles of H , as depicted in the left frame of Figure 8.

H H0

VK

Figure 8. The connect sum band can be taken with a sufficiently positive slope that choosing it
to pass under any strands in the tangle T causes the diagram to remain in Gompf standard form.

Now for any handle Hi of H with A3.1/i i > TB.Hi / � 2 form H 0i by taking
the connected sum of Hi with a split copy of VK in the manner depicted in Fig-
ure 8. Frame H 0i using the same diagrammatic framing instruction that was used to
frame Hi . One computes readily from the right frame of Figure 8 that TB.H 0i / D
TB.Hi /C 1. Repeat this process until A3.1/i i � TB.Hi / � 2 for all 2-handles. Let
M4 be the resulting 4-manifold. Then M4 is Stein by Theorem 7.1 and Remark 7.2.
Further, since X contributes neither to the equivariant intersection form nor to �1, we
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H1 H1

0



Figure 9. The local modification performed on the handle H1 of the manifold M3.

have that M4 has the same equivariant intersection form and �1 as M3. We record
(for later use) the observation that the link in S3 consisting of the attaching spheres of
the 2-handles is unchanged by these modifications; one can see this by ignoring the
1-handle in Figure 8 and doing a bit of isotopy.

Now we will make a final modification to M4 to get a 4-manifold M5 DW M

which we can cork twist to get M 0. Choose any 2-handle, without loss of generality
we choose H1, and perform the local modification described in Figure 9; the resulting
4-manifold is our M .

One can readily check that this local modification does not impact �1 or the
equivariant intersection form. Further, this local diagram can be readily converted
to Gompf standard form, (see the blue and green handles of Figure 10) where we
have A3.1/i i � TB.Hi / � 1 for all 2-handles, hence M is Stein. By construction, M
contains a copy of the Akbulut cork C . Because M has no 3-handles, �1.@M/ sur-
jects �1.M/.

H1

�1

�1



Figure 10. A handle diagram for the manifold W in Gompf standard form.

Now define M 0 to be the 4-manifold obtained from M by twisting C . Since there
is a homeomorphism T WC ! C extending the twist homeomorphism � W @C ! @C ,
then there is a natural homeomorphism F WM !M 0; we let f denote the restriction
f W @M ! @M 0.

It remains to show that M and M 0 are not diffeomorphic. We will begin by
showing the relative statement, i.e. there is no diffeomorphism GWM ! M 0 such
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that Gj@ D f . It would be convenient if at this point we could distinguish M and M 0

directly by showing that one is Stein and one is not. Unfortunately, both are Stein.
So instead we will consider auxiliary manifolds W and W 0 constructed as follows.
Suppose for a contradiction that there were such a diffeomorphism G. Construct a
4-manifold W by attaching a .�1/-framed 2-handle to M along  (where  is the
curve in @M marked in Figure 9) and a second 4-manifold W 0 from M 0 by attaching
a 2-handle to M 0 with attaching sphere and framing given by .f ./;�1/.1 Notice
that the image under f of a .�1/-framing curve for  is in fact a .�1/-framing curve
for f ./. The diffeomorphism G extends to give a diffeomorphism yGWW ! W 0. In
Figure 10, we have exhibited the natural handle diagram for W in Gompf standard
form, from which Theorem 7.1 implies that W admits a Stein structure.

We will finish showing that f does not extend by demonstrating that W 0 does
not admit any Stein structure, thus W cannot be diffeomorphic to W 0. Since W 0 is
obtained from W by reversing the dot and the zero on the handles of C , f ./ is
just a meridian of a 2-handle ofM 0. Thus the final 2-handle of W 0 is attached along a
curve which bounds a disc inM 0, implying that there is a .�1/-framed sphere embed-
ded in W 0. But the adjunction inequality for Stein manifolds (recall Theorem 7.3)
indicates that no 4-manifold which admits a Stein structure can contain an embedded
sphere with self-intersection �1. Hence, W is not diffeomorphic to W 0, thus there
cannot be a diffeomorphism GWM !M 0 extending f .

Now we would like to extend this to a statement about absolute exotica. To do so,
we apply Theorem 7.4 to our M;M 0, and f to produce a pair of smooth 4-manifolds
V and V 0 (both of which have non-empty boundary) which are homeomorphic but
not diffeomorphic. Since V and V 0 are orientation-preserving homotopy equivalent
to M and M 0 respectively, the equivariant intersection forms �V and �V 0 are also
isometric to �, and both V and V 0 have fundamental group Z. Since V and V 0 are
homeomorphic, so are @V and @V 0.

Next, we prove Theorem 1.17 from the introduction, again stated here in more
detail. If one wants to show that any 2-handlebody N with boundary S3 contains a
pair of exotic Z-discs one can run the same proof, where in the first line H 0 is chosen
to be a handle diagram for N ; this was mentioned in Remark 1.18.

Theorem 7.6. For every Hermitian form .H;�/ over ZŒt˙1� such that �.1/ is realised
as the intersection form of a smooth simply-connected 4-dimensional 2-handlebodyN
with @N Š S3, there exists a pair of smooth Z-discs D and D0 in N with the same
boundary and the following properties:

1The .�1/-framing instruction for f ./ requires a diagram of f ./ in @M 0. Because f is
a dot-zero homeomorphism, we can use the exact same diagram as we used for  in @M .
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(1) the equivariant intersection forms �ND and �ND0 are isometric to �;

(2) D is topologically isotopic to D0 rel. boundary;

(3) D is not smoothly equivalent to D0 rel. boundary.

Proof. Let H 0 be a handle diagram for a 2-handlebody with S3 boundary and such
that QN isometric to �.1/. Let D be the standard disc for a local unknot in @N , and
as usual let ND be its exterior, which has handle diagram H WD H 0 [ 1-handle.

Akin to the proof of Theorem 1.15, we will now modify the linking of the handles
of H to get a Stein manifold with equivariant intersection form �. However, we also
want to do so in such a way that the manifold presented by H is still ND0 for some
smooth disc D0 properly embedded in N .

We claim that if we modify only the linking of the 2-handles with the 1-handle,
and not the linking of the 2-handles with each other nor the knot type or framing of the
2-handles, we will have that H presents such anND0 . To prove the claim, first observe
thatX is the exterior of a disc inN if and only ifN can be obtained fromX by adding
on a single 2-handle. Observe that adding a 0-framed 2-handle to the meridian of a
1-handle in dotted circle notation allows us to erase both the new 2-handle and the
1-handle. Thus, if our modifications only change the way the 2-handles of N link the
new one-handle, we will still have the property that after a single 2-handle addition we
obtain N , thus our manifold is the exterior of a disc embedded in N . This concludes
the proof of the claim.

0 0

Figure 11. In both frames the red and blue handles give a non-standard handle diagram forD4,
and in both frames the green knot K � S3 bounds a disc disjoint from the 1-handle; these are
our two discs † and †0 for K in D4. The handle diagrams here present D4

†
and D4

†0
.

Now observe that all of the modifications we performed in the proof of The-
orem 1.15 to get from M2 to M4 modified only the linking of the 2-handles with
the 1-handle, and not the linking of the 2-handles with each other nor the knot type
or framing of the 2-handles. Thus we can again perform those same modifications to
our H to obtain a smooth Z-disc D0 properly embedded in N such that the result-
ing H is a handle diagram for ND0 in Gompf standard form satisfying Eliashberg’s
criteria and such that the equivariant intersection form of the exterior is �ND0 Š �.
Notice in particular that ND0 is Stein.

Now let†, †0 be the pair of slice discs forK inD4 exhibited in Figure 11. These
discs were constructed following the techniques of [54]. It is elementary to check
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T T

00

0 0

 

ıı

Figure 12. The left frame gives a handle diagram for NR, and the right for NR0 . The top black
2-handles and tangle T represent the handle diagram ofND0 in Gompf standard form which we
already constructed.

from the exhibited handle diagrams that both discs have �1.D4
†/ D �1.D

4
†0/ D Z

and are ribbon. It is then a consequence of [26, Theorem 1.2] that † is topologically
isotopic to †0 rel. boundary.

We will construct discs R and R0 in N by taking the boundary connect sum of
pairs .N;R/ WD .N;D0/\.D4;†/, .N;R0/ WD .N;D0/\.D4;†0/. We demonstrate nat-
ural handle decompositions for NR and NR0 in Figure 12. It is straightforward to
confirm that

�1.NR/ Š �1.NR0/ Š Z:

Further, since† is topologically isotopic to†0 inD4 rel. boundary,R is topologically
isotopic in N to R0 rel. boundary. Since † and †0 are Z-discs in D4, their exteriors
are aspherical [27, Lemma 2.1] and so both �N† and �N†0 are trivial. It is then not
hard to show that band summing D0 with † or †0 does not change the equivariant
intersection form, so

�NR Š �NR0 Š �ND0 :

It remains to show thatR is not smoothly equivalent toR0 rel. boundary. IfR were
equivalent to R0 rel. boundary then there would be a diffeomorphism F WNR ! NR0

which is the identity on the boundary. Let  and ı be the curves in @NR D @NR0

demonstrated in Figure 12, and let W (similarly W 0) be formed from NR by attach-
ing .�1/-framed 2-handles along  and ı.

If a diffeomorphism F WNR!NR0 extending the identity exists, thenW is diffeo-
morphic toW 0. Observe thatW 0 does not admit a Stein structure, because the 2-handle
along ı naturally introduces a .�1/-framed 2-sphere embedded in W 0, which viol-
ates the Stein adjunction inequality in Theorem 7.3. However, W admits the handle
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�1
ı

0
T

Figure 13. The black 2-handles here have both framing and TB one less than they had in Fig-
ure 12; since we had already arranged that the tangle T in Figure 12 satisfied the framing criteria
of Theorem 7.1, this handle diagram also satisfies the criteria.

decomposition given in Figure 13, which is in Gompf standard form, so Theorem 7.1
ensures that W admits a Stein structure. Therefore W is not diffeomorphic to W 0, so
there can be no such F , so R is not smoothly equivalent to R0 rel. boundary.

Remark 7.7. In the above proof, R is smoothly isotopic to R0 not rel. boundary,
because † is smoothly isotopic to †0 not rel. boundary. If we wanted to produce R
and R0 which are not smoothly isotopic (without a boundary condition), we could
have instead used a † and †0 which are not isotopic rel. boundary and run a similar
argument. Such† and†0 are produced in [54]; we have not pursued this here because
the diagrams are somewhat more complicated.

8. Non-trivial boundary automorphism set

We prove that there are examples of pairs .Y; '/ for which the set of 4-manifolds with
fixed boundary Y and equivariant intersection form, up to homeomorphism, can have
arbitrarily large cardinality. This was alluded to in Example 1.5. The main step in this
process is to find a sequence of Hermitian forms .Hi ; �i / for which®

jAut.@�i /=Aut.�i /j
¯

is unbounded. The most direct way to achieve this is when H has rank 1. Indeed, in
this case, Aut.@�/=Aut.�/ can be described in terms of certain units of ZŒt˙1�=�, as
we now make precise.

Given a ring R with involution x 7! xx, the group of unitary units U.R/ refers to
those u 2 R such that uxu D 1. For example, when R D ZŒt˙1�, all units are unitary
and are of the form˙tk with k 2 Z.
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In what follows, we make no distinction between rank one Hermitian forms and
symmetric Laurent polynomials. The next lemma follows by unwinding the definition
of Aut.@�/; see also [27, Remark 1.16].

Lemma 8.1. If � 2 ZŒt˙1� is a symmetric Laurent polynomial, then

Aut.@�/=Aut.�/ D U
�
ZŒt˙1�=�

�
=U

�
ZŒt˙1�

�
:

Given a symmetric Laurent polynomial P 2 ZŒt˙1�, use nP to denote the number
of waysP can be written as an unordered product ab of symmetric polynomials a;b 2
ZŒt˙1� such that there exists x; y 2 ZŒt˙1� with ax C by D 1, where the factorisa-
tions ab and .�a/.�b/ are deemed equal.

Lemma 8.2. If P 2 ZŒt˙1� is a symmetric Laurent polynomial, then

U
�
ZŒt˙1�=2P

�
=U

�
ZŒt˙1�

�
contains at least nP elements.

Proof. A first verification shows that if P factorises as P D ab where a; b 2 ZŒt˙1�

are symmetric polynomials and satisfy ax C by D 1, then

ˆ.a; b/ WD �ax C by

is a unitary unit in ZŒt˙1�=2P , i.e. belongs to U.ZŒt˙1�=2P /:

.�ax C by/.�ax C by/ D axaxxx C bxby xy � axxbxy � xaxxby

D axaxxx C bxby xy � ab.x xy C xxy/

� axaxxx C bxby xy C ab.x xy C xxy/

D .ax C by/.ax C by/ D 1:

It can also be verified that ˆ.a; b/ depends neither on the ordering of a; b nor on the
choice of x; y. The former check is immediate from the definition of ˆ because �1 2
U.ZŒt˙1�/. We verify that the assignment does not depend on the choice of x; y.
Assume that ax C by D 1 D ax0 C by0 for x; x0; y; y0 2 ZŒt˙1�. We deduce that

ax0 D 1 D ax mod b and by0 D 1 D by mod a:

But now x0 � .ax/x0 D x.ax0/D x mod b, and similarly y0 D y mod a so that x0 D
x C kb and y0 D y C `a for k; l 2 ZŒt˙1�. Expanding ax0 C by0 D 1, it follows
that k D �l . Therefore,

�ax0 C by0 D �a.x C kb/C b.y � ka/ � �ax C by:
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We will prove that if ˆ.a; b/ D v � ˆ.a0; b0/ for some unit v 2 U.ZŒt˙1�/, then
.a; b/ D ˙.a0; b0/ or .a; b/ D ˙.b0; a0/. It then follows that for any two ways .a; b/
and .a0; b0/ of factorising P , distinct up to sign and up to reordering, the resulting
elementsˆ.a;b/ andˆ.a0; b0/ are distinct inU.ZŒt˙1�=2P /=U.ZŒt˙1�/, from which
the proposition follows.

Assume that x; x0; y; y0 2 ZŒt˙1� are such that

ax C by D 1 D a0x0 C b0y0 and � ax C by D �a0x0 C b0y0 mod 2P:

Next add 2axC 2a0x0v to both sides of the congruence�axC byD v.�a0x0 C b0y0/
mod 2P . Using that ax C by D 1 and a0x0 C b0y0 D 1, we obtain the congruence

2ax C v D 2a0x0v C 1 mod 2P: (8.1)

Similarly, we add �2by C 2a0x0v to both sides of �ax C by D v.�a0x0 C b0y0/
mod 2P . Using that ax C by D 1 and a0x0 C b0y0 D 1, we obtain the equation

�2by C v D 2a0x0v � 1 mod 2P: (8.2)

We deduce from the previous two equations that v C 1 and v � 1 are divisible by 2.
Since v D ˙tk , we deduce that˙tk ˙ 1 is divisible by 2 and so v D ˙1.

First, we treat the case where the unit is v D 1.

Claim 1. We have (i) a divides a0, and (ii) a0 divides a.

Proof. As v D 1, (8.1) implies that 2ax D 2a0x0 mod 2P . Writing 2P D 2ab, and
simplifying the 2s, we deduce that a divides a0x0. Similarly, writing 2P D 2a0b0, and
simplifying the 2s, we deduce that a0 divides ax. Next, multiply the equations 1 D
ax C by (resp. 1 D a0x0 C b0y0) by a (resp. a0) to obtain

a D a2x C aby;

a0 D a0
2
x0 C a0b0y0:

Since a0 divides ax and ab D P D a0b0, it follows that a0 divides a. The same reas-
oning with the second equation shows that a divides a0. This concludes the proof of
the claim.

Using the claim we have aD ua0 for some unit u; this unit is necessarily symmet-
ric since both a and a0 are symmetric. It follows that a0b0 D ab D ua0b with uD˙1.
We deduce b0 D ub and therefore b D b0=u. Thus .a; b/ D u � .a0; b0/ as required, in
the case v D 1.

Next, we treat the case where the unit is v D �1.

Claim 2. We have (i) b divides a0, and (ii) a0 divides b.
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Proof. As v D �1, (8.2) implies that �2by D 2a0x0 mod 2P . Writing 2P D 2ab,
and simplifying the 2s, we deduce that b divides a0x0. Similarly, writing 2P D 2a0b0,
and simplifying the 2s, we deduce that a0 divides by. Next, multiply the equations 1D
ax C by (resp. 1 D a0x0 C b0y0) by b (resp. a0) to obtain

b D abx C b2y;

a0 D a0
2
x0 C a0b0y0:

Since a0 divides by and ab D P D a0b0, it follows that a0 divides b. The same reas-
oning with the second equation shows that b divides a0. This concludes the proof of
the claim.

Using the claim we have b D ua0 for some unit u; this unit is necessarily sym-
metric since both b and a0 are symmetric. It follows that a0b0 D ab D uaa0 with
u D ˙1. We deduce b0 D ua, and therefore a D b0=u. Thus .a; b/ D u � .b0; a0/, as
required, in the case that vD�1. This completes the proof thatˆ.a;b/D v �ˆ.a0; b0/
implies .a; b/D˙.a0; b0/ or .a; b/D˙.b0; a0/, which completes the proof of the pro-
position.

Over Z, it is not difficult to show that if N is an integer that can be factored as a
product of n distinct primes, then U.Z=N/=U.Z/ contains precisely 2n�1 elements.
Using Lemma 8.2, the next example shows that a similar lower bound (which is not
in general sharp) holds over ZŒt˙1�.

Example 8.3. The reader can check that if P is an integer than can be factored
as a product p1 � � � pn of n distinct primes, then nP D 2n�1. Lemma 8.2 implies
that U.ZŒt˙1�=2P /=U.ZŒt˙1�/ contains at least 2n�1 elements.

Remark 8.4. In order to produce examples, there is no need to restrict P an integer.
Take P D q1 � � � qn, where the qi are symmetric Laurent polynomials such that for
every i; j , there exists x;y2ZŒt˙1�with qixC qjy D 1. The latter condition implies,
via a straightforward induction on n, that there exists such x;y for any pair of polyno-
mials qi1 � � � qik and qikC1 � � � qin with ¹i1; : : : ; inº D ¹1; : : : ; nº obtained from factor-
ing P . Then by applying ˆ we can obtain examples of P such that U.ZŒt˙1�=2P /=
U.ZŒt˙1�/ has cardinality at least 2n�1. However, this level of generality is not strictly
necessary, as Example 8.3, in which P is an integer, suffices to prove Proposition 8.5
below.

We now prove the main result of this section that was mentioned in Example 1.5
from the introduction: there are examples of pairs .Y; '/ for which the set of 4-
manifolds with fixed boundary Y and equivariant intersection form, up to homeo-
morphism, can have arbitrarily large cardinality. Recall that V0

�
.Y / and V�.Y / were

defined in Definitions 2.1 and 2.7 respectively.
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Proposition 8.5. For everym� 0, there is a pair .Y; '/ and a Hermitian form .H;�/

so that V0
�
.Y / and V�.Y / have at least m elements.

Proof. Since the cardinality of V0
�
.Y / is greater than that of V�.Y /, it suffices to

prove that the latter set can be made arbitrarily large. However since proof involving
V0
�
.Y / is substantially less demanding, we include it as a quick warm up.
Set � WD 2P where P is an integer than can be factored as a product p1 � � � pk

of k distinct primes with 2k�1 � m. Example 8.3 and Proposition 8.2 imply that
U.ZŒt˙1�=�/=U.ZŒt˙1�/ has at least 2k�1 elements. By Proposition 8.1, this means
that Aut.@�/=Aut.�/ has at least 2k�1 elements. As in the proof of Theorem 7.5,
construct a smooth Z-manifoldW with equivariant intersection form �. In our setting,
where � WD 2P , the manifold produced will be X�.U /\.S1 �D3/, where X�.U / is
the manifold obtained by attaching a �-framed 2-handle to D4 along the unknot U .
Let Y 0 be the boundary of this 4-manifold and let 'W �1.Y 0/! �1.W / Š Z be the
inclusion induced map. Since � presents Y 0, Theorem 1.3 implies that V0

�
.Y 0/ has at

least 2k�1 � m elements, as required.
We now turn to the statement involving V�.Y /.

Claim. There is an integer N > 0 so that for any n > N , there exists a smooth Z-
manifold Wn with equivariant intersection form .n/ and such that @Wn has trivial
mapping class group.

Proof. Let L be the 3-component link in the left frame of Figure 14 and let Z be
the 3-manifold obtained fromL by 0-surgering both the red and blue components, and
removing a tubular neighbourhood of the green component  . Using verified compu-
tations in Snappy inside of Sage, we find that Z is hyperbolic and has trivial mapping
class group.2 By Thurston’s hyperbolic Dehn surgery theorem [88, Theorem 5.8.2],
there exists N > 0 such that for n > N , the manifold Zn obtained by �1=n filling 
is hyperbolic and has trivial symmetry group; for the mapping class group part of this
statement, see for example [30, Lemma 2.2].

Let Wn be the 4-manifold described in the right frame of Figure 14 and observe
that @Wn Š Zn. It is not difficult to verify that Wn is a Z-manifold with equivariant
intersection form .n/. This concludes the proof of the claim.

We conclude the proof of the proposition. Fix m � 0 and choose an integer P
such that

• P can be factored as a product p1 � � �pk of k distinct primes with 2k�1 � m;

• 2P > N , where N is as in the claim.

2Transcripts of the computation are available at [78].
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0

0 n

n


Figure 14. Left frame: the complement of  is a hyperbolic 3-manifold Z with trivial mapping
class group. Right frame: This Z-manifold Wn has equivariant intersection form .n/ and, for n
sufficiently large, boundary @Wn with trivial mapping class group.

Since 2P > N , the claim implies that Y WD @W2P has trivial mapping class group.
The proof is now concluded as in the warm up, but we spell out the details. As we
already mentioned, W2P has equivariant intersection form � WD 2P . Example 8.3
and Proposition 8.2 imply that U.ZŒt˙1�=�/=U.ZŒt˙1�/ has at least 2k�1 elements.
By Proposition 8.1, this means that Aut.@�/= Aut.�/ has at least 2k�1 elements.
Since Y has trivial mapping class group, either of Theorem 1.3 or Theorem 2.8 implies
that V�.Y / D V0

�
.Y / has at least 2k�1 � m elements.
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