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Addendum to “Amenability and acyclicity
in bounded cohomology”

Marco Moraschini and George Raptis

Abstract. We show that a surjective homomorphism 'W� ! K of (discrete) groups
induces an isomorphism H �

b
.KI V /! H �

b
.�I '�1V / in bounded cohomology for

all dual normedK-modules V if and only if the kernel of ' is boundedly acyclic. This
complements a previous result by the authors that characterized this class of group
homomorphisms as bounded cohomology equivalences with respect to R-generated
BanachK-modules. We deduce a characterization of the class of maps between path-
connected spaces that induce isomorphisms in bounded cohomology with respect to
coefficients in all dual normed modules, complementing the corresponding result
shown previously in terms of R-generated Banach modules. The main new input
is the proof of the fact that every boundedly acyclic group � has trivial bounded
cohomology with respect to all dual normed trivial �-modules.

This note concerns improvements and complementary results concerning the following
characterization of boundedly n-acyclic maps shown in our previous work [9]. Following
the conventions of [9], we restrict to path-connected topological spaces that admit a uni-
versal covering whose group of deck transformations is identified with the fundamental
group.

Theorem 1.1 (see Theorem C in [9]). Let f WX ! Y be a map between based path-
connected spaces, let F denote its homotopy fiber, and let n � 0 be an integer or n D1.
We denote by f�W�1.X/! �1.Y / the induced homomorphism between the fundamental
groups. Then the following are equivalent:
(1) f is boundedly n-acyclic, that is, the induced restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is an isomorphism for i � n and injective for i D n C 1 for every R-generated
Banach �1.Y /-module V .

(2) The induced restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is surjective for every R-generated Banach �1.Y /-module V and 0 � i � n.
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(3) F is path-connected and H i
b
.X I f �1� V / D 0 for every relatively injective R-gener-

ated Banach �1.Y /-module V and 1 � i � n.
(4) F is boundedly n-acyclic, that is,H 0

b
.F IR/Š R andH i

b
.F IR/D 0 for 1 � i � n.

For a set S and a Banach space V , we write `1.S;V / for the Banach space of bounded
functions S ! V (in the case of V D R, we simply write `1.S/). For a group � , the
bounded complex of � with respect to trivial coefficients in V (i.e., V regarded as a
�-module equipped with the trivial action) is the cochain complex

0! V
ı0

�! `1.�; V /
ı1

�! `1.�2; V /! � � � ! `1.�n; V /
ın

�! � � �

with the following coboundary operator, see Section 1.7 of [2]: ı0 is the zero map, and for
all n � 1, we have

ın.f /.
1; : : : ; 
nC1/ WD f .
2; : : : ; 
nC1/

C

nX
iD1

.�1/if .
1; : : : ; 
i
iC1; : : : ; 
nC1/C .�1/
nC1f .
1; : : : ; 
n/;(1.1)

where f 2 `1.�n;V / and 
1; : : : ; 
n; 
nC1 2� . We recall that � is boundedly n-acyclic if
the bounded cochain complex .`1.��IR/ ı�/ has trivial cohomology in degrees 1� i � n.

An R-generated Banach �-module is a Banach �-module of the form `1.S/ for some
�-set S (the �-action on `1.S/ is given by 
 � f .s/D f .
�1s/ for all 
 2� and s2S ). As
we remarked in our previous work, see Remark 2.41 in [9], the notion of an R-generated
Banach �-module was motivated by the fact that every boundedly n-acyclic group � sat-
isfiesH i

b
.�IV /D 0 for 1� i � n and every R-generated trivial Banach �-module V , see

Proposition 2.39 in [9]. It turns out that boundedly n-acyclic groups have trivial bounded
cohomology with respect to a larger class of coefficient modules (this also answers our
question in Remark 2.41 of [9]).

Proposition 1.2. Let � be a boundedly n-acyclic group, n� 1, and let V be a dual normed
trivial �-module. Then H i

b
.�IV / D 0 for every 1 � i � n.

The following lemma is the key observation for the proof of Proposition 1.2. We owe
the inspiration for this lemma to the recent work of Glebsky, Lubotzky, Monod and Ranga-
rajan, see Section 4.2 of [3].

We recall that a Banach space X is injective if for every Banach space W with a sub-
space V �W and a bounded linear map f WV !X , there is an extension of f to a bounded
linear map Qf WW ! X , see [5]; equivalently, using the uniform continuity of f and com-
pleteness of X , we may restrict to the case where V is a closed subspace, that is, V is
again a Banach space. The Banach space `1.S/ is injective for any set S (using the Hahn–
Banach theorem, Proposition 2.5.2 in [1]). Moreover, by using an embedding of X (i.e.,
an isomorphism onto its image) into some `1.S/, it follows that X is an injective Banach
space if and only if every embedding of X into a Banach space W has a complement
in W , see Section 3, pp. 92–93, in [4] (see also Theorem 2.7 and Corollary 2.8 in [5]).

Lemma 1.3. Let � be a boundedly n-acyclic group, n�1. For every 1� i� n, im.ıi�1/ is
a closed complemented subspace of `1.� i /. As a consequence, the short exact sequence

0! ker.ıi /! `1.� i /! im.ıi /! 0

splits (as Banach spaces) for every 1 � i � n � 1.
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Proof. Since � is boundedly n-acyclic, we have im.ıi�1/ D ker.ıi / for every 1 � i � n.
Thus, im.ıi�1/ is a closed subspace of `1.� i /. In particular, im.ıi�1/ is a Banach space
for every 1 � i � n (im.ı0/ D ¹0º). Then, using the bounded n-acyclicity of � and the
open mapping theorem, the canonical bounded linear map

`1.� i�1/ = im.ıi�2/! im.ıi�1/

is an isomorphism for 2� i � n. Note that the quotient of an inclusion V �W of injective
Banach spaces is again injective, since it is isomorphic to the complement of V in W and
so the quotient map W ! W=V admits a section. Hence we conclude inductively that
im.ıi�1/ is injective for 1 � i � n, as required. It follows that im.ıi�1/ D ker.ıi / is
a complemented subspace of `1.� i /, and so the inclusion ker.ıi / � `1.� i / admits a
splitting.

Proof of Proposition 1.2. Let V be a dual normed space with the trivial �-action. We need
to show that the bounded complex of � with trivial coefficients in V ,

0! V
ı0V
�! `1.�; V /

ı1V
�! `1.�2; V /

ı2V
�! `1.�3; V /

ı3V
�! � � � ;

has vanishing cohomology in degrees 1� i � n. By assumption, this holds for V DR. For
the general case, suppose that V is the topological dual B.W;R/ of the normed space W
with the trivial �-action. Then we have a natural identification of �-modules

`1.��; V / Š B.W; `1.��//

induced by
f 7!

�
w 7! ..
1; : : : ; 
�/ 7! f .
1; : : : ; 
�/.w//

�
:

Moreover, these identifications yield isomorphic cochain complexes

.V; `1.��; V /I ı�V / Š
�
B.W;R/;B.W; `1.��//IB.W; ı�/

�
:

By Lemma 1.3, the inclusion im.ın�1/D ker.ın/� `1.�n/ has a complementQ and we
denote by qW `1.�n/!Q the canonical projection. Note that there is a bijective bounded
linear mapQ! im.ın/. Further, by Lemma 1.3, the “modified truncation” of the cochain
complex .R; `1.��/I ı�/,

0! R
ı0D0
���! `1.�/! � � � ! `1.�n�1/

ın�1

���! `1.�n/
q
�! Q! 0! � � � ;

is a contractible cochain complex of Banach spaces (it decomposes into a direct sum
of split short exact sequences), and applying the functor B.W;�/ (that preserves split
short exact sequences) yields again a contractible cochain complex. The cohomology of
the latter cochain complex agrees with the cohomology of the original cochain complex
.V; `1.��/I ı�V / in degrees � n, and the result follows.

Proposition 1.2 essentially makes it possible to replace R-generated Banach �-mod-
ules in [9] with dual normed �-modules (as we had actually done originally in an old
preprint version [8] of our paper!). At the same time, the restriction to R-generated Banach
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�-modules and Theorem 1.1 could still be useful as it provides a smaller test set of coeffi-
cient modules for the detection of boundedly acyclic maps. On the other hand, Remark 1.7
will show that a similar result cannot hold if we only restrict to R as coefficients.

The proofs of the following results are the same as those of Theorem 4.1 and The-
orem C in [9], and together they provide a more complete characterization of boundedly
n-acyclic maps that also includes dual normed modules.

Theorem 1.4. Let 'W� ! K be a homomorphism of discrete groups and letH denote its
kernel. Let n � 0 be an integer or n D1. Then the following are equivalent:
(1) The induced restriction map

H i
b.'IV / W H

i
b.KIV /! H i

b.�I'
�1V /

is an isomorphism for i � n and injective for i D n C 1 for every dual normed
K-module V .

(2) The induced restriction map

H i
b.'IV / W H

i
b.KIV /! H i

b.�I'
�1V /

is surjective for 0 � i � n and every dual normed K-module V .

(3) ' is surjective and H i
b
.�I '�1V / D 0 for 1 � i � n and every relatively injective

dual normed K-module V .

(4) ' is surjective and H is a boundedly n-acyclic group.

Theorem 1.5. Let f WX ! Y be a map between based path-connected spaces and let F
denote its homotopy fiber. Let n � 0 be an integer or n D1. We denote by f�W�1.X/!
�1.Y / the induced homomorphism between the fundamental groups. Then the following
are equivalent:

(1) The induced restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is an isomorphism for i � n and injective for i D n C 1 for every dual normed
�1.Y /-module V .

(2) The induced restriction map

H i
b.f IV / W H

i
b.Y IV /! H i

b.X If
�1
� V /

is surjective for 0 � i � n and every dual normed �1.Y /-module V .

(3) F is path-connected and H i
b
.X I f �1� V / D 0 for 1 � i � n and every relatively

injective dual normed �1.Y /-module V .

(4) F is boundedly n-acyclic, that is,H 0
b
.F IR/Š R andH i

b
.F IR/D 0 for 1 � i � n.

Proofs of Theorem 1.4 and Theorem 1.5. Concerning Theorem 1.4, all the implications
(1)) (2)) (3)) (4) are the same as for the corresponding implications of Theorem 4.1
in [9]. The last implication (4)) (1) is also shown similarly by applying Proposition 1.2
instead of Proposition 2.39 in [9]. Theorem 1.5 follows from Theorem 1.4 using the
mapping theorem, similarly to the proof of Theorem C in [9] (see also the proof of Pro-
position 2.11 in [9]).
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Note that the last item in the previous theorems is independent of the choice of coef-
ficient modules. Thus, combining these with Theorem 1.1, we conclude that bounded
acyclicity of maps (as defined in [9]) can also be defined in terms of dual normed mod-
ules.

Corollary 1.6. Let f WX ! Y be a map between based path-connected spaces, and let
n � 0 be an integer or n D 1. We denote by f�W �1.X/ ! �1.Y / the induced homo-
morphism between the fundamental groups. Then the following are equivalent:

(a) The induced restriction mapH i
b
.f IV /WH i

b
.Y IV /!H i

b
.X If �1� V / is an isomorph-

ism for i � n and injective for i D nC 1 for every dual normed �1.Y /-module V .

(b) The induced restriction mapH i
b
.f IV /WH i

b
.Y IV /!H i

b
.X If �1� V / is an isomorph-

ism for i � n and injective for i D n C 1 for every R-generated Banach �1.Y /-
module V .

Remark 1.7. We emphasize that the previous result is specific to the respective classes of
coefficient modules. Indeed, if we consider just R as coefficients or even (semi-)separable
coefficients in the sense of Monod (Section 3.C of [6]), then the resulting notion of
bounded acyclicity is strictly weaker.

More precisely, Monod proved that the restricted wreath product

F2 o Z WD
�M

Z

F2

�
Ì Z

is boundedly acyclic with respect to all dual (semi-)separable coefficients, see [7]. Also, Z
has trivial bounded cohomology for all dual normed coefficient modules. But the groupL

Z F2 is not boundedly acyclic (this already fails in degree 2), so the canonical homo-
morphism F2 o Z! Z does not satisfy the conditions of Theorem 1.4. In fact, one can
show (by using cohomological induction) that if we consider the R-generated Banach
.F2 o Z/-module `1.Z/, then H 2

b
.F2 o ZI `1.Z// ¤ 0, see Section 4.3 in [7].

In this specific example, we also see the different nature of the two classes of coeffi-
cient modules. Indeed, given a group � , the basic example of a semi-separable coefficient
module is the space of essentially bounded functionsL1.�/, where� is a standard Borel
probability space with a measurable measure-preserving �-action, see Section 3.C in [6].
However, R-generated modules are defined through bounded functions over arbitrary dis-
crete �-sets.

The fact that surjective group homomorphisms induce an injective map in degree 2 in
bounded cohomology (Example 4.2 in [9]) extends to the class of dual normed coefficient
modules.

We also have the following version of Corollary 4.3 in [9].

Corollary 1.8. Let n � 1 be an integer or nD1. Let � be a boundedly n-acyclic group,
let H E � be a normal subgroup, and let 'W� ! �=H be the quotient homomorphism.
Then H is boundedly n-acyclic if and only if

H i
b.�I'

�1V / D 0

for every relatively injective dual normed �=H -module V and 1 � i � n.
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