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First isola of modulational instability of Stokes waves
in deep water

Massimiliano Berti, Alberto Maspero, and Paolo Ventura

Abstract. We prove high-frequency modulational instability of small-amplitude Stokes waves in
deep water under longitudinal perturbations, providing the first isola of unstable eigenvalues branch-
ing off from i%. Unlike the finite depth case this is a degenerate problem and the real part of the
unstable eigenvalues has a much smaller size than in finite depth. By a symplectic version of Kato
theory, we reduce to search the eigenvalues of a 2 x 2 Hamiltonian and reversible matrix which has
eigenvalues with nonzero real part if and only if a certain analytic function is not identically zero.
In deep water, we prove that the Taylor coefficients up to order three of this function vanish, but not
the fourth-order one.

Dedicated to Thomas Kappeler, who taught us beautiful mathematics
and to be always grateful for the good things happening in life

1. Introduction and main result

Stokes waves are periodic solutions of the pure gravity water waves equations, traveling at
constant speed. Since their discovery by Stokes [31] in 1847 and their rigorous mathemat-
ical existence proof in [27,29,32], they have been the object of intense studies, regarded as
a key first step toward better understanding of the complicated flow evolution of the water
waves equations. Pioneering experimental and formal works by Benjamin and Feir [3,
4], Lighthill [28], Zakharov [35], and Whitham [33] highlighted, more than fifty years
ago, that Stokes waves are unstable under long wave perturbations, a phenomenon that
nowadays goes by the name of Benjamin—Feir or modulational instability. Rigorous math-
ematical proofs were later given by Bridges—Mielke [9] in finite depth and by Nguyen—
Strauss [30] in deep water. These works prove existence of unstable spectrum near the
origin of the complex plane of the linearized water waves operator £, (see (1.8)) at a
Stokes wave of small amplitude &, when it is regarded as an unbounded operator on L2(R).
We also mention the recent nonlinear modulational instability result in Chen—Su [10].

In a recent series of works, we gave the complete description of the portion of the
spectrum o72(g) (£¢) near the origin of the complex plane both in deep water [6] and finite
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depth [7, 8], proving the existence of an unstable spectral branch of eigenvalues outside
the imaginary axis forming a figure “8”, as first observed numerically by Deconinck—
Oliveras [19] (see also the formal computations in [16]).

The behavior of the spectrum o72g) (L) away from zero is still not sufficiently
investigated, although highly relevant for the stability/instability of the Stokes waves.
Numerical results by Deconinck—Oliveras [19] shed light on the presence of “isolas of
instability”—isolated elliptic shaped islands of unstable eigenvalues away from the
origin—which suggests the appearance of unstable spectrum along the whole imaginary
axis, with real part decreasing exponentially at infinity. Because of the Hamiltonian char-
acter of the operator &£, unstable eigenvalues can occur only as perturbations of multiple
purely imaginary eigenvalues of £(. The nonzero multiple eigenvalues of £ are enu-
merated in literature by an integer p > 2—it turns out they are all double—and we will
follow this convention. Formal expansions describing the first two isolas (p = 2, 3) of
unstable eigenvalues were obtained by Creedon—Deconinck—Tritchenko [17] in both finite
and infinite depth, see also [14, 15,20] for other asymptotic models. A rigorous analytical
result about the first isola of instability p = 2 was given recently by Hur and Yang [24] in
finite depth for pure gravity waves and in [23] for gravity-capillary waves. Unfortunately,
the approach in [24] does not apply in infinite depth, as it relies on spatial dynamics which
fails in deep water (similarly to [9]). We finally mention the very recent paper [ 18] which,
relying on the spectral approach in [6], proved the instability of the Stokes waves under
transversal perturbations.

The goal of this paper is to rigorously prove the existence of the first isola of instability
(p = 2) in the deep-water case, under longitudinal perturbations. As we explain below,
this problem is considerably more difficult than in finite depth, because it is degenerate.
In Theorem 1, we show that the spectrum o7 2(g)(£¢) has a branch of eigenvalues near i %
with non zero real part, forming a very narrow elliptic shaped curve in the complex plane,
see Figures | and 2. Formula (1.4) provides the ellipse which asymptotically approximates
the p = 2-isola of unstable eigenvalues.

Let us now state precisely our main result. Since the operator &£, has 27 -periodic coef-
ficients, arising by the linearization of the water waves equations at a 2w -periodic Stokes
wave, its spectrum is conveniently described via Bloch—Floquet theory, which ensures that

ore® () = | or2r)(Eue).
wel0,d)

where £, o 1= e *¥ £, ¥ Our main result describes the spectrum near i % of the oper-
ator £, ., for any (u, ) sufficiently close to (%, 0), value at which £ 1o has a double
eigenvalue (the closest one to 0).

Notation. Along the paper we denote by r(y™1e"1, ..., y"™rg"r) (the variable y is called
I, 8, v depending on the context) a real analytic function satisfying, for some C > 0 and
for any small value of (y, €), |[r(y™1e"1, ..., y"rer)| < C Zf:l |y|™ |e|™.
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Figure 1. Part of the spectrum of £, in the deep-water case. The figure “8” was proved in [6]. The
two small symmetric isolas (detailed in Figure 2) are the subject of this article.

Theorem 1. There exist 1,89 > 0 and real analytic functions [Lg, L+ [0,€1) — Bgo(%)
with 1+ (¢) < po(e) < (&) of the form

113

4 5
1034 et +r(e’) (1.1)

Bo(e) = § = 2 (), uae) = pole) F -

such that for any (L, €) € Bgo(%) % [0, &1) the following holds true. Defining vy (g) :=
U+ () — po(e), the operator £, ¢ at (L, &) = (o(€) + v, &) possesses two eigenvalues
of the form

/\i(uo(s) +v,¢)

St+isv—iBe?+ir(e3,ve? v?) £ 1/ D(uo(e) +v,¢)
tfv € (v+(£) Vo (8))

— (1.2)
+1—v —1—8 +ir(e3,ve?,v?) + 2\/|D(,u0(e) + v, ¢)|
lfv ¢ (v+(8), v—(e)),
where
4107 16 37
D(po(e) +v,6) = ——e8 — —12 — ——veb 4 (e, ve” 122, v3). (1.3)

65536 9 128

For any fixed € € (0, 1), the pair of unstable eigenvalues A* (11, €) depicts, as y varies
in (u+(g), u—(e)), an ellipse-like curve in the complex plane, i.e., a closed analytic
curve that intersects orthogonally the imaginary axis and encircles a convex region. See
Figure 2.

Let us make some comment on the result.
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Figure 2. First isola depicted by the two symmetric non-purely imaginary eigenvalues of &£, . close

toi %. The isola does not encircle i %.

(1) According to (1.2), for any Floquet parameter u € (4 (g), u—(g)) the eigenvalues
A% (1, €) have opposite real part. As i — i+ (g), the eigenvalues collide on the imaginary
axis. For © < w4 (e) or u > p—(¢), the two eigenvalues are purely imaginary. Being £,
a real operator, also the mirror spectral branch of eigenvalues A% (—pu, &) is present.

(2) By fixing &€ > 0 and letting p vary in the interval (i (g), u—(g)), the two eigenval-
ues A (j, €) depict an ellipse-like curve. By discarding the remainders r (v%), & = 2, 3,
in the expressions (1.2) and (1.3), the real and imaginary parts of the approximate eigen-
values parameterize the ellipse

4107
262144

3 5, 4
(1 4+re), yole) = 1 30° + r(e).
1.4

(3) Theorem 1 actually provides the expansion of the two eigenvalues of &£, ; close
to i 2 for all values of (u.¢) in (3 — 8o, 3 + 80) x [0, &1). The analytic curves /i (e)
in (1.1) divide such rectangle in two separated regions: one where &£, ; has two eigenval-
ues with nonzero real part, and another one where the eigenvalues are purely imaginary.
See Figure 3.

(4) The work [24] describes the first isola in finite depth. Such a case is non-degenerate
(see (2.24)) for almost any depth. On the contrary, the infinite depth case is degenerate, and
its analysis requires the fourth-order expansion of the Stokes waves, as we now explain.

We briefly describe the proof and its difficulties. Exploiting that &, . is a Hamiltonian
and reversible operator, we use a symplectic version of Kato’s similarity transformation
theory to compute a symplectic basis of the two-dimensional invariant subspace V, .
associated with the two eigenvalues of £, ¢ close to i %. The action of £, ¢|v, , is then
represented by a 2 x 2 Hamiltonian and reversible matrix of the form

_ (—ialpn.e)  Blu,e)
L. €) _( B(w.e) iy(/w))’

x2 + %(y - yo(s))z(l +r(?) =

where o (i, €), B(i, €), and y (i, €) are real analytic functions.
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Figure 3. The degenerate instability region. We boxed with black dashed lines the validity box of
Theorem 1. At any fixed ¢, for (i, €) in the colored cusp-shape region, one has the formation of the
isola of instability in Figure 2.

We like to remember that this method, that we initiated in [6, 7], was inspired to us
by the approach that Thomas Kappeler developed in [25], in the context of selfadjoint
operators, to study the spectral gaps of the Lax-operator of the KdV equation (this line of
research was further developed in [2,26]).

After our symplectic reduction one needs only to investigate the eigenvalues of the
matrix L(u, €). In Section 2, we prove a necessary and sufficient condition for a 2 x 2
matrix of this form to have non-purely imaginary eigenvalues. Theorem 9 proves L(u, €)
has two unstable eigenvalues if and only if the real analytic function ¢ > B(uo(¢), &)
is not identically zero, where o(e) is the analytic function such that a(wo(¢), &) +
y(1Lo(e), e) = 0. This instability criterion amounts to prove that 8(iLo(¢), €) has a nonzero
Taylor coefficient at ¢ = 0. The first Taylor coefficients of B(uo(e), &) are computed
in (2.23) in terms of the Taylor coefficients of «(u, €), B(u, €) and y(u, ). In deep water,
it turns out that the coefficient B; in (2.23) vanishes, cf., (5.2b); this is the degeneracy we
mentioned above (whereas 8 is not zero for almost any finite depth). We are then led to
compute the coefficient of £# in (2.23), which depends on a higher-order Taylor expansion
of a(u, €), B(u, ) and y(u, €) given in Theorem 4 and proved throughout Sections 3
and 5. Via a careful analysis to isolate only the relevant terms, we finally prove that the
fourth-order coefficient of (2.23) is 3571*45 = 0. We thus conclude that the eigenvalues of
L(u, &), i.e., the ones of &£, , close to i %, are unstable in a certain region of (u, &) as
stated in Theorem 1.

Theorem 1 is a direct consequence of Theorem 4 that we now rigorously present.
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The water waves equations. We consider the Euler equations for a 2-dimensional incom-
pressible and irrotational fluid under the action of gravity filling the region Dy, := {(x, y) €
T xR :y<n(tx)}, T :=R/2x7Z, with space periodic boundary conditions. The irro-
tational velocity field is the gradient of a harmonic scalar potential ® = (¢, x, y) deter-
mined by its trace ¥ (¢, x) = (¢, x, (¢, x)) at the free surface y = n(¢, x). Actually, ® is
the unique solution of A® = 0 in D, satisfying the Dirichlet condition ®(¢, x, (¢, x)) =
¥ (t,x) and VO(t, x, y) — 0 as y — —oo. The time evolution of the fluid is determined
by two boundary conditions at the free surface. The first is that the fluid particles remain,
along the evolution, on the free surface (kinematic boundary condition), and the second
one is that the pressure of the fluid is equal, at the free surface, to the constant atmospheric
pressure (dynamic boundary condition). Then, as shown in [12, 35], the evolution of the
fluid is determined by the following equations for the unknowns (n(, x), ¥ (¢, x)):

v}

=GOy, Y =-gn-=t+ GV + mevx)’,  (15)

2(1+n3)
where g > 0 is the gravity constant and G(7) denotes the Dirichlet~-Neumann operator
[GY](x) := Dy (x, n(x)) — Px(x, n(x))nx(x). Without loss of generality, we set the
gravity constant g = 1. The equations (1.5) are the Hamiltonian system

nl [V o 1d
TE R e S

where V denote the L2-gradient, and the Hamiltonian J# (1, ¥) := % Jrw Gy +
n?)dx is the sum of the kinetic and potential energy of the fluid. In addition to being
Hamiltonian, the water waves system (1.5) is time reversible with respect to the involution

nx)| . [ n(=x) . oo
Jo [W(X)i| = [—W(—X)i| , le,Hop=H. 1.7

Stokes waves, linearization, and Bloch-Floquet expansion. Equations (1.5) admit an
analytic family of traveling periodic Stokes waves (1:(z, x), Ve (f, X)) = (D(x — cet),
Ye(x — cgt)), where (:(x), ¥ (x)) are 27 -periodic functions of the form

e(x) = ecos(x) + O(e2),  Ve(x) = esin(x) + O(e2), ¢ =1 + O(&?).

In a reference frame moving with the speed c,, the linearized water waves equations at
the Stokes waves turn out to be' the linear system h, = £.h, where £, : H'(T,R?) —
L?(T,R?) is the Hamiltonian and reversible real operator

. [ax o+ p) D ] _ g[ l+am  —(1+ ps(x»ax}
: —(1 + ae(x)) (I + pe(x))0x 0x o (1 + pe(x)) |D]
(1.8)

! After conjugating with the “good unknown of Alinhac” and the “Levi-Civita” transformations, we
refer to [6—8] for details.
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and p.(x), a.(x) are real even analytic functions. We will need their fourth order Taylor
expansion which is

pe(x) = Z &" pp(x) = —2¢ecos(x) + 82(; — ZCos(Zx))

n>1

+ 3¢3 (Cos(x) — cos(Sx))
+ 84(% + 4cos(2x) — ? cos(4x)) + 0(e%), (1.9a)

as(x) = Z &"a,(x) = —2¢ecos(x) + 282(1 — cos(2x))

n>1

+ &3 (4 cos(x) —3 cos(3x))

+&* (—1 + 4cos(2x) — 13—6 cos(4x)) + 0O(e%), (1.9b)

as shown taking the infinite depth limit in [8, (A.59)—(A.60)] (it follows by the fourth-
order expansion of the Stokes waves in [8, (A.1)] or [18, Proposition 2.2]).
By Bloch-Floquet theory, by introducing the Floquet exponent u, the spectrum

o2y (Le) = U or2(1y(£Lpu,e).  where £, 1= eTIHE P el X

nel-3.0)

and if A is an eigenvalue of &£, , with a 2mr-periodic eigenvector v(x), then A(f, x) =
e*Mel Xy (x) is a solution of h; = £,h whose growth in time is determined by Re A.

Remark 2. Being o(£_;,c) = 0(£,,¢) and o(L£,,¢) a 1-periodic set with respect to 1,
we study the L?(T)-spectrum of £, ¢ for i in the “first zone of Brillouin” 0 < p < %

The operator &, ¢ is the complex Hamiltonian and reversible operator
P = [(3x +ip) o (1 + pe(x)) |D + }
e —(1 + a.(x)) (I + pe(x)(9x +ip)

_ [ 0 Id] |: 1+ ag(x) —(1+ pe(x))(0x +ip)
=l 0 [@xtim o+ pea)) D + pl

=g =:8(u,8)=B*(u,e)

}, (1.10)

which we regard as an operator with domain H(T) := H'(T,C?) and range L*(T) :=
L?(T, C?), equipped with the complex scalar product’

(f.g):= %/T(ﬂg_ﬁr fg)dx, Vf = [2] g= E;] e L3(T,C?). (L.11)

2The operator B* (4, €) in (1.10) is the adjoint with respect to the complex scalar product (1.11).
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We also denote || f||> = (f. f). The complex Hilbert space L?(T, C?) is also equipped
with the sesquilinear, skew-Hermitian and non-degenerate complex symplectic form

We: L2(T,C?) x L*(T.C?) — C.  We(f.8) == (§£.9), (1.12)
where { is defined in (1.6). The complex operator &£, . in (1.10) is also reversible, namely,
Lusop=—podyes equivalently B(u,e)op=poB(u,s), (1.13)

where p is the complex involution (cf., (1.7))

5[?7()6)] — [ 1(=x) ] (1.14)

v (x) —¥(=x)
In addition (u, &) — £, € L(H(T), L?(T)) is analytic, and £, ¢ is linear in y, being
|ID 4 pu| = |D| + psgnt (D) VYu >0, (1.15)

where sgn™(j) ;= 1if j > 0andsgn*(j) := —1forany j <O.

We aim to describe a far-from-the-origin spectral branching of eigenvalues of &£, .
out of the imaginary axis. The Hamiltonian structure of &£, ; allows such a branching to
form only as perturbation of a multiple purely imaginary eigenvalue of &£, o.

The spectrum of &£, . The spectrum of the Fourier multiplier matrix operator

Ox +ip [D+ ul
Lpo= 1.16
w0 [ —1 A +ip (1.16)
on L2(T,C?) is given by
Aj(w) =il (w), of(W:=j+pn-—oylj+ul. jeZ o==

wf (W) =% (j +p)i=j+p—0Q;w), Qi :=Q>(+w:=VIj+nu.
(1.17)

Forany j + u # 0,0 = %, we associate to the eigenvalue i w7 (1) the eigenvector
L[] .
R — evr. £ g =iw? (), (1.18
%, (1) [ J=o w0 7 (1) 7 () f7 (), (1.18)
which satisfies, recalling (1.14), the reversibility property

P (W) = [T, pfi(w) =—f (. (1.19)

For any u ¢ Z, the family of eigenvectors (1.18) forms a complex symplectic basis of
L*(T,C?) with respect to the complex symplectic form ‘W, in (1.12), namely, its elements
are linearly independent, span densely L?(T, C?) and satisfy, for any j € Z,

S =

—i ifj =j’ando =0’ = +,
We(fF 0. 7 W) =1i ifj=jando =0 =—, (1.20)

0  otherwise.

The choice of the normalization constant in (1.18) implies (1.20).
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All the multiple nonzero eigenvalues of &, o are given by the following lemma, cf. [1],
where, in view of Remark 2, we consider u € [0, %).

Lemma 3 (Multiple eigenvalues of &£, o away from 0). For any u € [0, %), the spectrum
of £ 0 away from 0 contains only simple or double eigenvalues:

(1) forany w in (0, %) U (%, %) the eigenvalues of £,,0 are all simple;

2) for u = %, the double eigenvalues ofcf% o Jorm the set {i a)ip)} p>2, Where
’ D even

2
—1
0@ =P — PeN; (1.21)

(3) for p = 0, the double eigenvalues of £, form the set {%i w,Ep)} p>3.
p odd

Let p € N, p > 2. The eigenspace associated with the double eigenvalue iw,(f ) is spanned

by the eigenvectors fi~ (i), ka,r (@) in (1.18), where
EZ%’ k=n?>-n, k'=k+p=n%+n, ifp=2niseven, (122)
=0, k=n* k=k+p=@+1)7> if p=2n+1isodd. '
In view of Remark 2, the splitting of the double eigenvalue —i a)ip ) for w1 = 0 can be
obtained by complex conjugation. This paper aims to study the splitting of the closest-to-
zero double eigenvalue of £ Lo Hence, in Section 5, in view of Lemma 3, we will fix

1 3
p=2, k=0 k=2 pu:= 1 and denote wy 1= wiz) =7 (1.23)

We will consider Floquet parameters 4 close to u, so that u ¢ 7. and the family of eigen-
vectors (1.18) forms a complex symplectic basis according to (1.20).

The spectrum o (£,,,0) decomposes into two disjoint parts:
0(Lu0) =0 (L10) U0"(Ly0).  where o' (£,,0) = {i 0} (1.24)

is the double eigenvalue in (1.23) and 0"(£y,0) := {A7 (), (j,0) ¢ X}, where ¥ :=
{(k’,+), (k,—)}, collects the other eigenvalues /\}’ (@) in (1.17).

By Kato’s perturbation theory (Lemma 5) for any (u, €) sufficiently close to (u, 0),
the perturbed spectrum o (£,,,¢) admits a disjoint decomposition o (£,.,¢) = 0'(£ ,; e) U
0" (£,¢), where o’ (£,,s) consists of 2 eigenvalues close to the double eigenvalue i a),.(f )
of &£,.0. We denote by V,, . the spectral subspace associated to ¢’(£,,¢), which has
dimension 2 and it is invariant under &£, .. The next result provides the expansion of
the matrix representing the action of the operator &£, .:V, . — V, .. We denote by
B(r) :={y € R:|y| < r} the real interval of length 2r centered in 0.
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Theorem 4. Assume (1.23). There exist g, o > 0 such that the operator £, c: 'V, s —
Ve forany (1, &) = (% +8,¢8) € Bgo(%) X Bg, (0) is represented by a 2 x 2 matrix with
identical real off-diagonal entries and purely imaginary diagonal entries of the form

i %+i %S—i %ez +iri(e3,8¢2,8%) —%5582——3§f84+r2(85, Se*, 8262, 8%)
—%582—%5844-&(85,584,5282,548) i%+i28+f—682+ir3(83,882,82) .

(1.25)

Theorem 1 follows directly from Theorem 4 as shown in the beginning of Section 5.

2. Perturbation of separated eigenvalues and instability criteria

We briefly recall Kato’s similarity transformation theory as developed in [6, Section 3].
The following result is proved as in [6, Lemmata 3.1, 3.2] with the only difference that
concerns perturbations of a non zero eigenvalue iwip )of £ u,0- We remind that the opera-
tors £, 1 Y C X — have domain Y := HY(T) := H'(T,C?)andrange X := L%(T) :=
L*(T,C?).

Lemma 5. Fix p € N, p > 2. Let I be a closed counterclockwise oriented curve winding
around the double eigenvalue iwip ) of £,0 given by Lemma 3 in the complex plane,
separating o' (£,,,0) and the other part of the spectrum 0" (&£,,0) in (1.24). Then, there

exist &9, 8o > 0 such that for any (i, €) € B, (1) X Bg, (0) the following hold.

(1) The curve T belongs to the resolvent set of the operator £,.:Y C X — X
defined in (1.10). The operators

1
P(u,€) = — ﬁ(:ﬁw —V)7ldA X s Y (2.1

are projectors commuting with £, ¢, i.e., P(u, €)*> = P(i,€) and P(i, &)L e =
LueP(,€). The map (i, ) — P(u,¢) is analytic from Bg,(t) X Bg,(0) to
£(X,Y). The projectors P(u,¢e) are skew-Hamiltonian, namel; FP(u,e) =
P(u,e)* g, and reversibility preserving, i.e., pP(u,e) = P(u, &)p.

(2) The domain'Y of £, ¢ decomposes as the direct sum Y =V, o ® Ker(P(u, €))
of the closed subspaces V,, o := Rg(P(u, €)), Ker(P(u, €)), which are invariant
under &£, ¢, and

0(Lue) N{z €Cinside T} = 0(Lpelv,,) = 0" (Lue)-

(3) The projector P(j,¢) is conjugated to P(u,0) through an operator U(i, €),
bounded and invertible in Y and in X, and

U, &) P(p,0) (2.2)
= P(.)U(. ) = (ld = (P(, ) — P(11,0>) " P(,2) (11, 0),
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The map (., €) = U(p, €) is analytic from Bs, () X Be,(0) to L(Y). The trans-
Sformation operator U(i, &) is symplectic, i.e., U(u, &)*FU (1, ) = &, and revers-
ibility preserving. One has Ve = U(u,€)Vy,0 and dim'Vy, o = dim 'V, 0 = 2.

Remark 6. The proof that P, . is skew-Hamiltonian and reversibility preserving holds
as in [6, Lemma 3.1] choosing y(t) = iwff’) + re'’ so that —y(¢) winds around ia)ff’)

clockwise.

‘We consider the basis

Fo={fTwe). fT(we), [T :=Uw.e)f, [ (we) = Ul fy,
(2.3)
of the subspace V,, ., obtained applying the transformation operators U(u, €) of Lemma 5
to the eigenvectors f,:,' = fkf(ﬁ), S = Ji (w) in (1.18) of £, 0, which, by Lemma 3,

form a basis of the eigenspace Vo associated with iwip ), for any fixed integer p > 2.

Lemma 7 (Matrix representation of £, c on 'V, ¢). Fix p € N, p > 2. The operator &£, ¢ :
Vie = Ve in (1.10) is represented on the basis ¥ in (2.3) by the 2 x 2 Hamiltonian
and reversible matrix

L(u,e) = JB(p,e), J:= (Bi (1)) V(i e) € Bsy (1) % Be, (0),

where

B(. &) = (B, &) f - fr) (B, &) [ [ .:(a(u,a) iﬁ(u,e))
U \@Bwa D) B o )T \SiBe)  vre) )

2.4
the functions o (i, €), B(u, €), y(u, €) are real analytic, and
B(u,e) = P(,0)* U(u,e)* B, e) U, &) P(u,0). (2.5)
Furthermore,
: o+
B(j1.0) = Q(M,O) 1B, 0\ _ [~wp (1) _0 2.6)
—ip(n.0)  y(u.0) 0 o (1)

ith (1) in (1.17), in particular, B(w, 0) = (~** ©
with o (w) in (1.17), in particular, B, )—( , wi”))'

Proof. In view of (1.20) and (1.19), the basis { fk‘f Sy} of V0 is complex symplectic
and reversible and, since U(u, €) is symplectic and reversibility preserving, the basis %
in (2.3) is a complex symplectic and reversible basis of 'V, .. Given a complex symplectic
basis {f*,£7}, any vector f in (f*,£7) verifies f =i(gf,fT)fT —i(Jf.f7)f" whence
we obtain (2.4)-(2.5). The function § is real by the reversibility property (1.13) and (1.19).

Let us prove (2.6). The operator B(u, 0) in (2.5) is a Fourier multiplier, since £ o
in (1.10) is a Fourier multiplier, and so is B(u, 0) in (1.10), P(u,0) in (2.1), and finally
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U(u,0) in (2.2). As a consequence, B(u,0) = (B(u,0) f, fk‘f) = 0. Then, we exploit
that &, o has eigenvectors

LuofE(W) =i (W W, LuofE@) =ik fEW,

in (1.18) and U(u, O)f,:,r and U(u,0) f are also eigenvectors of &£, o which, by conti-
nuity, are multiples, respectively, of ka,r (w) and f~ (@). L]

The eigenvalues of the matrix L(u, €) in (2.4) are

i 1
2 (n.e) = 35(u.e) £ 5 VD(w.e). @7

where

S(/"L"S) = V(Mvg)_a(/"bvg)v (28)
D(p.e) :=4B>(u.e) = T*(u.e),  T(.e) = a(p.&) + y(u.6).  (2.9)
The goal of the next sections is to prove, for (i, €) close to (i, 0), the existence of eigen-

values of the matrix L(j, €) with non zero real part. We now formulate abstract instability
criteria to completely describe the spectrum of a 2 x 2 matrix of the form (2.4).

Abstract instability criteria. We consider a 2 x 2 Hamiltonian and reversible matrix

a(p, e) iﬂ(u,e)) (2.10)

L(u.€) = JB(u.€), B(u.&) = (—iﬂ(,u &) y(u.e)

where a(u, €), B(u, €), y(u, &) are real analytic functions defined in a neighborhood
Bs, (1) x B, (0) of (i, 0), u € R. We make the following.

Assumption 8. The real analytic entries a(i, ), B(i, ), y(1, &) of the matrix (2.10)
admit for (i, &) = (u + 8, €) € Bs, (1) X Be,(0) an expansion of the form

a(pu+8,6) = —ao(8) + are? + r(e3, 862, 82%¢), (2.11a)
Bl +8,e) = B1e% + Ba8e® + Bae* +r(e,8¢3,8%6%, 8%¢), (2.11b)
y(p +38,8) = yo() + v2e2 + r(e3,86%, 6%¢), (2.11¢)
where
@0 (8) = 0P — 18+ 1 (%), yo(8) = 0P + 18 + r(5?) (2.12)
and
ay +y; > 0. (2.13)

In view of Assumption 8, the trace 7'(i, ¢) := TrB(u, &) = a (i, €) + y (i, &) expands
as

T(u+8.6) = T(n+8.0) + Tae® + r(e*,86%,6%)., Ty =z + 72,

5 (2.14)
T(p+38,0)=T16+r), Ti:=ar+y>0.
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D(pe) <0

H(e€)

py(€) :=max{p(€), n_(e)}

o

D(uye) <0 pa(e) = min{pu (), u_(e)}

€

Figure 4. The instability region around the curve o (¢) delimited by the curves v (&) and A (€).

By (2.14) and the analytic implicit function theorem, there exists &; € (0, &9) such that the
zero sets of the trace T (i, &) and of the functions

d+(p,e) :=T(n,e) £2B(u,¢) (2.15)

are, in the set Bg, (1) X Be, (0), graphs of analytic functions

Mo, L+ - (_81"91) = /’LO(S)v [,L:}:(S),
ie.,, T(uo(e),e) =0 and di(us(e),e) =0, (2.16)

satisfying, by (2.14), the Taylor expansions

T T +2
po(e) = = 26 4 @), pale) = p - 2P @) @1
- 1 - 1

Since T7 > 0, the functions d (u, €) are strictly positive (resp., negative) for i > w4 (¢)
(resp., i < u+(€)). In addition, since d4 (io(e), &) = £2B8(uno(¢), &), we deduce that for
any ¢ € (—¢&1,61)

if B(to(e).€) > 0 then 4 (e) < pole) < p—(e),
if B(ko(e).€) <0 then p—(e) < po(e) < (o). (2.18)
if B(o(e). &) = 0 then pro(e) = 114 (e) = p(e).

The graphs of these functions look like in Figure 4. Thus, pA(g) < uo(e) < uv(€), where
pae) = min{pi (). po(©)) and  py(e) == max{u (o). po(0)}.  (2.19)

and the inequalities are strict if and only if B(ug(g), ) # 0.
The following result provides a necessary and sufficient criterion for the existence of
eigenvalues of the matrix L(u, &) with nonzero real part.
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Theorem 9 (Criterion of instability). Assume that the 2 x 2 Hamiltonian and reversible
matrix L, €) = IB(u, &) in (2.10) satisfies Assumption 8. Then, the following hold.

(1) The matrix L(j, €) has eigenvalues with nonzero real part, for (i, €) close to (i, 0),
if and only if the analytic function N

(—e1.61) 2 e > B(uo(e). ) #0 (2.20)

is not identically zero, where |1o(€) is the analytic function defined in (2.16); equivalently

dn
dn € N such that 3 B(uo(e), €)je=0 # 0. 2.21)
e

(i) The spectrum of L(u, €), for (i, &) close to (i, 0), consists of two eigenvalues
A% (1, €) with opposite nonzero real part if and only if (1, €) lies inside the region (see
Figure 4)

R:={(u e) € Bs, (1) X B, (0) : D, ) = —d (. &) d—(u, €) > 0}
= {(1t.€) € Bs, (1) X B¢, (0) : punale) < pu < puy ()}, (2.22)

whereas, for (j, €) ¢ R, the eigenvalues A* (., €) are purely imaginary.

Proof. The eigenvalues of L(u, &) have the form (2.7) and have nonzero real part if and
only if the discriminant D (., &) = 482 (i, ) — T? (1, €) = —dy (i, €)d_ (11, €) is positive.
In view of (2.18) and (2.19), we deduce item (ii). The region R is not empty if and only if
condition (2.20) holds. This proves item (i). [

Let us now show sufficient conditions to verify (2.20). In view of the expansions
(2.11b) and (2.17), we have

T
Bl10(0).0) = s + (o = P )+ 76 .23)
1
Hence, the following conditions imply the instability criterion (2.21):
1 d?
(1) (Non-degenerate case) Ja B(io(e), &)je=0 = B1 # O;
£
. 1 d* T,
(2) (First degenerate case) f1 = 0and —— B(uo(€),&)je=0 = B3 — =PB2 # 0.
4! de* T

(2.24)
We will prove in Section 5 that, for p = 2 and considering the deep water case, the coef-
ficient B; in the expansion (2.11) of the matrix (2.4) vanishes, but 83 — % B2 # 0, hence
we are in the setup of the first degenerate case.
In order to carefully describe the unstable eigenvalues, it is convenient to translate
the Floquet exponent p around the value pg(g), where the T(uo(g), &) = O vanishes,
cf., (2.16), namely, we introduce the new parameter v such that

= po(e) +v, ie,v:i=8+ pu—po(e). (2.25)



First isola of modulational instability of Stokes waves in deep water 15
Accordingly, we write the functions w4 (¢) in (2.17) as u4(¢) = wo(e) + v+ (), where

+r(e?). (2.26)

e (e) = pae) — pole) L F L2

1

Along the proof of Theorem 11, we need the following expansion.

Lemma 10. If 8; = 0, the functions v+ (€) in (2.26) admit the expansion

2 T
vi(e) = For | B3 — o= )e* + (7). (2.27)
T, T
Proof. The function vy (&) solves

di(po(e) +v4(e),8) = T (po(e) + v4(e), &) 4+ 2B(1o(e) + v4(e), &) = 0.

Expanding this identity at © = po(¢), we have

T(pno(e).e)+  (0.T)(1o(e).e)  vi(e) + r(vi(e)
——
=0by (216)  =T;+r(e2) by (2.14) and (2.17) =r(¢5) by (2.26) with B1 =0

+ 2B(1to(e), €) +2(3,8) (1o(e). &) v4(e) =0,
~———— —_————

=2(Bs—Ba72)etHr(e) by 223)  TrEDbYCIID)

which gives (2.27). Analogously, one obtains the expansion of v_(g). ]

We define
va(e) ;= min{vy (), v—(e)} <0, wvy(e) := max{vi(e), v_(e)} = 0. (2.28)

Note that v, (g) and vy (¢) are the points where the discriminant D (o (g) + v, €) in (2.9) of
the matrix L(uo(€) + v, €) vanishes and for v, (&) <v <v\ (¢) the discriminant D (uo(g) +
v, €) is positive. We now describe the first degenerate case.

Theorem 11 (First degenerate case). Assume (2.11a)—(2.11c) and

T
Br=0, Bs— /3272 £0, (2.29)
1

where Ty and T, are defined in (2.14). Then, the matrix L(u, ) in (2.10) possesses two
unstable eigenvalues A* (juo(g) + v, €) for any va(g) < v < vy (), where va(e), vy (g)
are defined in (2.28). The eigenvalues are

AE(1o(e) + v, e)
%S(/Lo(é‘) +v,6) £ %\/|D(,u0(£) +v,8)| ifv=<va(e)orv=>vy(e),
%S(uo(s) +v,e) %‘/D(,uo(s) +v,8)  ifvale) <v <wy(e),

(2.30)
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where [Lo(€) is defined in (2.16) and it has the form (2.17),
D(po(e) +v.¢)
= 4(,33 - ﬂz%)zss — T2 488, (ﬂ3 - ,32%)1)86 + r (&%, ve’ ,v2e?, v3),
1 1 (2.31)
and
S(io(e) +v.¢)

T
= zwip) + (y1—oa)v + ()/2 —ay—(y1 — “1)%)82 + r(33’ ve?, UZ)_ (2.32)
1
The maximum absolute value of the real part of the unstable eigenvalues in (2.30) is

max Re A% (o (e) + v, €) = e*(1 + r(e)). (2.33)

1,
B3 — /3271

(Isola). Assume in addition that the coefficients in (2.11a)—(2.11c) satisfy oy # y1. Then,
for any & small enough, the pair of unstable eigenvalues A*(o(e) + v, €) depicts in the
complex A-plane, as v varies in the interval (VA (), vv(€)) a closed analytic curve which
intersects orthogonally the imaginary axis and encircles a convex region.

Proof. (Unstable eigenvalues) The criterion of instability in Theorem 9 is satisfied in
view of (2.23) and (2.29). By (2.7), (2.11), and (2.25), the eigenvalues of L(u, €) have the
form (2.30). We now prove the expansion (2.31) of the discriminant

D(po(e) + v, &) = 4B%(1o(e) + v, 8) — T (1o (e) + v, ). (2.34)
By (2.16) and (2.14), we get that
T(po(e) +v,8) = 09,T(o(e), &)v + r(v?) = Tyv + r(ve?,v?). (2.35)

By (2.11b) with B1 = 0, (2.17), (2.25), and (2.29),

B(uo(e) +v,¢e) = (,33 — ,32%)84 + Bave? + (e, ved, v2e? v3e). (2.36)

Then, the expansion (2.31) follows by (2.34) and taking the square of (2.35) and (2.36).
The expansion of S(ug(e) + v, €) in (2.32) follows from (2.8), (2.11a)—(2.11c), (2.14)
and (2.17). The absolute-value maximum of the real parts of the eigenvalues is attained at
V = VRe, With Vg such that (9, D)(uo(e) + vre, €) = 0. By (2.31) we have the expansion

T
VRe(€) = 4?—122(,& _ ,32??)86 + r(&7). (2.37)

By plugging (2.37) into (2.30)-(2.31) one obtains expansion (2.33).
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(Isola). In view of (2.30), for any fixed ¢ small enough the unstable eigenvalues branch
off from the imaginary axis at v = v, (€), evolve specularly as v increases and rejoin at
v = vy (¢) thus forming a closed curve. With the hypothesis o; # 1, the imaginary part
of the eigenvalues I(v, ) := Im AT (juo(e) + v, &) = %S(uo(a) + v, &) is monotone w.r.t.
v € (va(e), vy (e)) because its derivative fulfills

dI(v,e) @2 % + (2 v) 0, vale) <v < vy(e). (2.38)

Thus, the map v + I(v, ¢) is a diffeomorphism between (va (), vy (¢)) and its image
(ya(e), yv(e)). Let us denote by v(y, ¢) the inverse of y = I(v, &), with y varying in
yale) <y < yv(e). The curves covered by the two unstable eigenvalues in (2.30) in the
complex plane are the two specular graphs on the imaginary axis

Ty = {(X(7,8),5) 1 yale) < y < yv(e)},

2.39)
[ = {(-X(.6).3) : yale) < ¥ < 3 (@)}, (

where |
X(y,&‘) = E D([,L(y,&‘),é‘), /.L(y,é?) = MO(S) + V(y,é‘). (240)

At the bottom and top of the isola, i.e., at y = yA(¢) and y = y\, (¢), the real parts £ X(y, &)
of the unstable eigenvalues vanish with derivative that tends to infinity. Indeed,

v 1 3, D)(u(y. e),
0y X(y.) "= 3y 2 V/D(u(y.e).e) = (4“ D)((/i‘((yy :)) ;)) Gy (y.e).  (241)

and, by (2.31), (2.27) and (2.40), we have

ydim (9, D)((y.€).€) = (9uD)(po(e) + v (e). £)

= :t4(ﬁ3 —ﬂz%)TléA + 7’(85) 7é 0,

1 (2.38)

s 00 = G e T

and, since D(u(y, €), €) tends to 0 as y — ya(€), yv(e), we deduce that |d, X(y, €)]
in (2.41) tends to 4+o00.

Finally, we claim that the region encircled by the two graphs (2.39) is convex. It is suf-
ficient to prove that dy,, X(y, €) is negative for any y(g) < y < yv(¢). Indeed, by (2.40),

3y X(y.6) = (2.42)
237, D)(u(y, ), )0y (¥, €)* + (3 D) (11(y, €), )35 (v, )] D((y, €), €)= (9 D(1a(y, €), )y (., €))?
8(D(u(y.6).6))3

In view of (2.31) and (2.27) we have, for any yA(e) < y < yv(¢),

(on2)

9 D(u(y,e).e) < =T, [9,D(u(y,¢),8) <8 et (243)
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Moreover, by (2.38), (2.30), and (2.32) there is ¢ > 0 such that, for any v (¢) < v < vy (¢),
1
[0u1(v, )| > Z|Vl —ail, [l 8)] =c,

and therefore, for some C; > 0 and for any yA(g) < y < yv(¢),

Cl Cl
0 L8| = 9yv(y, o) < ——, |0 )| = |0yyv(y,8)] < ———.
|0y u(y, e)| = [9yv(y, &)l i —a| [0yy (v, &) = [9yyv(y, &)l 1 — ]
(2.44)
By (2.44) and (2.43), we have, for some C > 0,
aiD(M(% 8)7 8)(8)’““(_)}5 8))2 + a,uD(/fL(y, 8)7 8)8322/1()7, 8)
CT? c
<— L et <0 (2.45)
(r1—a1)?®  [y1—a
for & small. By (2.42) and (2.45), the function y — X(y, €) is concave. ]

A first approximation Xi(v, ¢) of the eigenvalues A% (uo(e) + v, €) of Lemma 11,
which neglects the remainders r (v3) of D(ug(e) + v, &) in (2.31) and r (v?) of S(uo(e) +
v, &) in (2.32), is

x:=Re A (v,e) (2.46)

= 21, J408s — B )28 (1 + 1 (e) — TPv2(1 +7(62) + 8B2(Bs — fo RIveS(1 +7(2))
y = ImAE (v, e) 1= o) +(25%2 — Oe))e2(] 4y (62)) + LS4y (1 + 7 (e2)).

The functions Ii(v, ¢) are defined for v in the interval Vo (¢) < v < Dy (g), where the
argument of the square root in (2.46) is non-negative. These approximating eigenvalues
describe an ellipse in the (x, y)-plane.

Lemma 12 (Approximating ellipse). Suppose the coefficients oy and yy in (2.46) are
different, i.e., y1 — a1 # 0. As v varies between VA (¢) and v\, (€) the approximating eigen-
values A\E (v, €) in (2.46) form an ellipse of equation

2 2 2
2y DO G e = (Ba=po ) v, a1
Y1 —on) I

centered at (0, yo(€)), where yo(¢) is an analytic function of the form

y2—ox  T(yi—a)
2 2T

yo(e) = 0P + ( )52 1 r(e%). (2.48)
Proof. We invert the second equation in (2.46) and obtain the function

(v — 7)) + r(e?)), (2.49)

v(y,e) =
Y1 — o1
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where

y2—az  Ta(yr —ai1)
2 2Ty

F(e) := ImA%(0,¢) = 0P + ( )82(1 + r(£2)).
By plugging the expansion (2.49) for v = v(y, ) in the equation for x2, obtained by

squaring the first line in (2.46), we get the equation of a conic 0 = e(x, y) := x? —
[Re A£(v(y. &), €)]2, with

T2
e(x.y) i=x*+ ———= (- 7()*(1 + ()
(y1 —a1)
_B, 2
PO et 4 o)) (ﬁ3 - ﬂzﬁ) (1 4+ 7(0)).
Y1 — o T,
Then, one puts the conic into its canonical form (2.47) with yo(g) — j(¢) = r(£%). ]

3. Taylor expansion of B(u, ), P(i,e),and B(u,¢)

In this section, we provide the Taylor expansion of the operators B(u, ) in (1.10), the
projectors P (i, &) and the operators B(u, €) defined in (2.5) around (u, 0).

Notation. For an operator A = A(u, €; x), we denote

1. -
Aij = Aij(p+ 38, ex) = ﬁ(%agA)(ﬁ,O;x)S’s], Ay = Z Ajj. (3.1a)

i+j=k
i,j=0

K]

We also denote by A;[ ; the part of the operator 4;,; with Fourier harmonic eicx e,

W ._ ¢ [T ey (] 1]
A= ?/0 Aij(p+8.8)e dy, A = | Z A (3.1b)
i+j=t
i,j=0
It results
[AM]" = (4%l (3.2)
We will occasionally split 4; ; = Al[e;'] + AE?;M], where Al[e}'] is the part of the operator
A; ; having only even harmonics, whereas AE?;d] is the part with only odd ones.
We denote by O(8™¢e"!,...,8Mre"?), mj, nj € N, analytic functions of (8, &) with

values in a Banach space X which satisfy the estimate |9 (6™ "/ )||x <C Zf:l |61 |g|™
for some C > 0 and for small values of (3, €). For any k € N we denote by O an operator
mapping H ' (T, C2) into L2(T, C?)-functions with size ek, §¢¥=1, ..., §¥~1¢ or §%.

We directly have the following expansion recalling (1.9a)—(1.9b) and (1.15).
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Lemma 13. The operator B(i, ¢) in (1.10) expands as

1)’(&4-5,8)=£0+£1+£2+£3+£4+05,

where

By = Boo = [ax Jlri 1 _|?)xn: ;ﬂ ’ o
Bi = Bort Bro=e [(ax +?lg(>x3 ney 0T iﬁ)}

+98 [? sgn:i(D)} ’ -
Bo = Boz+ Bry =& [(ax +?2g()xz p2(x) _pzm(gx ’ iﬁ)}

o [i ney o (X)] | -
Bs = Bos+ Brp=¢’ :(ax +‘il3g()x3 p3(x) _p3(X)(§x ’ iﬁ):

+8s [i pf(X) B pOZ(X)] ’ -
By = Boat Bra=e' :(ax +?;()xz pa(x) e iﬁ):

+oe L pf(x) B p03 (X)] ’ -

with pr(x) and ag(x), k = 1,....4, in (1.92)~(1.9b).

Note that the functions py (x) and ax (x) in (1.9) have only even (resp., odd) harmonics
when k is even (resp., odd). Consequently, with the notation introduced below (3.2), we
have

B if i ’ . 0 i ’
sy = | TR g [0 TR gy
’ 0 if j is odd, ’ B;,; if j is odd.
We remark that sum and composition of operators satisfying (3.4) still satisfy (3.4).
Analogously, we expand the projectors P(u, €) in (2.1) as
P(u+é,e)=Po+ Pr+ Po+ P3+ Oa,
where
P() = P(&,O), Pl = :‘P[i’gl], P2 =P :Bz]—i—e(/j[:Bl,fBl], (3 5)

P; = j)[i))g,] + 5)[32,31] + j)[i))l,fBz] + J)[fB],e(Bl,:B]],
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and, for any k € N,

PlAr..... Ak]
(_1)k+1
= T omi

1

ﬁ(fﬁﬁ ~2) 7 g A(Lpo—A) T A (Lo —A) AL, (3.6)

with I" the same circuit of Lemma 5. In virtue of (3.5)—(3.6) and (3.4), we obtain

plevl _ {P,-,j if j is even, pload _ {O if j is even, 3.7)

b 0 ifjisodd, */ Pij if j isodd.
Now, we provide the expansion of the operators B (i, €). Let Sym[A] := %A + %A*.

Lemma 14 (Expansion of B(u, €)). The operator B(u, ¢) in (2.5) has the Taylor expan-
sion

B(p +8,6) =Bo + By + B+ Bz + Ba + 05,

where
By 1= P;:(B()P(), B = P&kﬂl Py, By := P(;k Sym[8B, + 81 P1] P, (3.8a)
%3 = P(;k Sym[$3 + £2P1 + 0(81(1(1— Po)Pz]P(), (38b)

%4 = P(;k Sym[§84 + £3P1 + :82(1(1— P())P2 + fBl(Id— P())P3 — 0(81P1P()P2]P(),
(3.8¢)

with B;, j =0,....4,in(3.3)and Pj, j =0,....3, in (3.5).

Proof. The proof follows as Lemma 3.6 of [8], obtaining the same expansions (3.24a)—
(3.24c¢) of [8]. In the present case, the last operator in formula (3.24c) of [8], namely,
Py Sym[)t Py P>] Py, where it := }T(Pz* By — Bo P»), actually vanishes, in view of the
identity P Bo P> Po = Py Py By Py that we now prove. First, we have® By Py = Py By =

—i a)ff’ )g Py, that follows from

(BoPof.g) = (LuoPof. §8) =i (Pof. §g) = —i0P (4P f. g).

This identity, together with § P; = Pj* & (aconsequence of P(u, €) be skew-Hamiltonian),
gives Py BoPj Py = P Pj*JBO Py forany j € N. [ ]

In virtue of (3.1), (3.4), (3.7), and (3.8), we obtain

B; ; if j is even, o 0 if j is even,
23[e‘_,] _ { i,j J Qg[ ad] _ { J (3.9)

b 0 if j is odd, b B, ; if j is odd.

3This identity does not hold in [8] because of the presence of a generalized eigenvector.
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4. Entanglement coefficients

In this section, we introduce the entanglement coefficients that represent how the jets of
the operator B(u, €) act on the unperturbed eigenvector basis (1.18).

4.1. Abstract representation formulas

Take u € R\ Z, so that the eigenvectors {f;’}_iez,o:i, fj‘T = fj"(g) in (1.18), form a
complex symplectic basis of L2(T, C?). Our goal is to describe the action of the operators
F By and P[By,,. .., By,] (recall (3.6)) on a vector fj" of the basis. To do so, we introduce
the entanglement coefficients

B0 = (8]17. £7), teN j.jel o0 =+, (4.1)
where i)’g‘] is the «th Fourier coefficient of the operator By in (3.3) (according to (3.1)).
We stress that in this section ¢ is always a pair £ = (i, j) € NZ.

The entanglement coefficients fulfill

K]0 ip .l . k]oho _ _[—«]o:0’
szj_o if j"# j +« and B, =By 4.2)

The next lemma provides effective formulas to compute the action of the operators § B,
and P[By, . ..., By,] on the vector basis.

Lemma 15. Let B["]fjc denote the entanglement coefficients in (4.1) and f 7 fj" (@)
in (1.18) with p € R\ Z. Then, the following statements hold:

(i) foranyfl e Ng and j,k € Z and 0 = =+ one has

k] po __ _ [x]ono o1 _ :nlk] =0 - [k] +0 + .
g8, 17 = Y BT S =18 S —iBY kg Lt

0'1=:|:
4.3)
(ii)) foranyq e N, {y,....L; € Ng, J Kis...,kq € Z and o = =%, the operator
JD[BZ"], e, i)’(['fll] defined via (3.0), satisfies
[kq] [k1]
J’[!BZ; ,...,i)’(ll ]ff
. [kqg104:04—1 [k2]92:01 L[k1]01.0 ,0:01>--.,0q g,
- Z 01-°0q Biqq Jopdg—1 " 'Blzz J2J1 Bﬁll Jui o : quq’
O1ses0g=% JoJ1se 25 ]g
4.4)
where j1 := ] + K1, jo := j1 t+K2,..., jg = Jg—1 + kg, and
0,01,...,0 —1)4 dA
R f’::( ) 95 : it — (4.5)
JoJ1se-ig 2mi r(A—ief)(A —iw;! ---()L—leqq)
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with T is a circuit winding once around ia),gp ) counterclockwise and a)le =

oF () in (1.17),

. 00,01, - - ,0, . . .
The coefficients R = .q are real and invariant by permutations of the
J0sJ15---5]q

indexes, namely,

00,01,. . .,0q 00,01,. . .,0q
R R

j07j17"'7jq j07j1»"'7jq

’

00,01,. . . ,0, 07(0):07(1)s- - - ,O
R 0,01 7_g 7(0)-07(1) ©(q)

s T=R_ i i for any permutation T of {0, 1,...,q};
JosJ15-- -5 ]q Jz(0)sJz(1)s- - - 2 J2(q)

(4.6)

(iil) foranyq e N, ly,...,Lg41 € Ng, J.J' K1,....kq+1 € Z and 0,0’ = =, one

has

[kg+1] [xq] [k1] ’
(3 wlplale . 8l _,.",f;,’)

Lg+1
= Y a0 plea+119%00 plkg190:0g-1 | pl2] 9201 ply]01.0 £ 0201>- - +-0g
- 1 98,01 Jhig Dlq Jada—1 Ly J2it Pl Jui i j
0’1,...,0’q=:|: ’ rc e Jq
(4.7a)

with j1 == j + k1, jo := j1 +Ka,..., jqg = Jg—1 + K¢, and

(8l 2[8E 8 )

Ly+1

, ’
_ Z 10 B[Kq+1](7,(7q [kq10¢:04—1 . B[K2]U2’Ul [k1]01,0 0',0q,...,01
- 1 95041 JhEg Ty Egq—1 U €261 P4y &) j/ %‘q LB

0'1,4..,(Tq=:i:

(4.7b)
with Eq = j, —Kg+1, qul = Eq —Kg,--- ,%‘1 = Ez — K.

Proof. (i) Since the operator B IEK] shifts the harmonic j to j + « and J leaves it invariant,
there are scalars @ € C such that

$B1 7 =a [+t . 4.8)
Then,

1.20) —

_ . _ — o\ ( .
(#8017 9 ) =0 (fie 81700 ot (fhe 8 ) = =i, (49)
On the other hand,
o - o p— @1 _[k]—
(FB{1 179 1) = (BI7 S =B (4.10)

Similarly, BL”]ffK, = (g8 17,9 1) =it By (4.8), (4.9), and (4.10), we get (4.3).
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(i) By (1.18), we have (£,.,0 — A)flfj" = 1w;7+/1f]0 Thus, in view of (3.6),

P8l 8l e
_ (et 95 (Lpo -
T

27 ia)j‘-f —A

g,ﬁgq]---(:ﬁ&o N7 sl foar.

Now, it is enough to use repeatedly the formula above, setting jo := j and 0¢ := 0,

[k,]0w0—1
L — . (L .Ls 'L— 1 .o .
(Lo =27 FBE ST = 3T oSG (o= e = 1,
o =% Ju

(which follows from (4.3)) to obtain (4.4).
Next, we prove properties (4.6). The second one follows trivially from the defini-
tion (4.5). For the first one, we have, by (4.5),

p0001 0 i9 2" —y/(t)dt

Josjieeeida 21 Jo F@) +iol) - F@) +iog)’

for a closed path y(¢) winding around 1a)(p )

oriented,

counterclockwise. Thus, being —y () reverse

Roo,ol,...,aq i4 dA 00,01, ..,0q

Jodveijq 2T G0 = A (ol = A)  Joujied

whence the first identity in (4.6) follows.
(iii) Identity (4.7a) is a consequence of (4.4) and (4.1). By a similar argument, one
proves (4.7b), using also (4.2) and (4.6). ]

The following identities will be particularly useful to identify expressions of the form
(4.72)—(4.7b) that coincide.

Lemma 16. Let (j,0), (j,0') be such that a)]" = a)j‘.’,/. Then,
[kg+1] [kq] K ] - [K ] [—k2] [ kg+1]
(D‘quil C(P[c(equ [ ] ] fg) ( 511 jg’g)[ﬂez : > e +;I ]fa>
@.11)

Proof. If j' # j + k1 + -+ + kq+1, then both sides of identity (4.11) vanish. Otherwise,
J'=1Jj + 1+ + kg41 and, recalling the definitions of js, & in (4.7a), (4.7b), one has

S,v:j,_Ks—H_"'_Kq—H =j 4K+ FKks = Js VS=1,---,Q~

/
01,....0q __0'.0g.....01

Jodvedq Qg E
Thus, by (4.7a), (4.7b), the two sides of (4.11) are equal. ]

Using (4.5), the second property of (4.6) and a) —a) " then R
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4.2. Entanglement coefficients for p = 2

We conclude this section by giving explicit formulas for the entanglement coefficients
in (4.1) and the residue term in (4.5) for the particular case p = 2, where we assume (1.23),
namely, WeﬁXE = %,k =0,k' =2and wsx = a),(F ),

We first consider the Fourier series expansions of the even functions p,(x), a,(x),
n € N, defined in (1.9),

[—«]
pn(e) = 5o+ Y Pl coster) = 2 pf + 30 2 P s + B—eie,
k>1 k>1
] (4.12)
an(x) = —a 4+ Za[’c] cos(kx) = [O] + Z a" el kX a"Te—in’
k>1 k>1
with pi™ := pl¥and a™ := a! for any k € N. In view of (1.9) forany n = 1,..., 4
the non zero Fourier coefficients p, al! are
pg:l:l] _ E:I:I] = 2. pgo] _ 3, ago] — 4 £:|:2] _ agﬁ] Y
+1 +1 +3 +3
T w
1 + + + + 16
P4[10] = a‘[f)] =2, p£ 2] —a£ 2] _ 4, p£ 4] _ a£ 4] _ -3
In view of (3.1), the operators in (3.3) have jets
0 —i
8l = s, 4.14
1,0 i sgnt(D) (4.14)
and, foranyn = 1,...,4 (recall also (4.12), (4.13))
alf! o +ib]
e T 1, £,
pn (Ox +i7 +1ik) 0
ifi =0, k =n (mod 2), |k]| <n,
=1 [ o —ipH 5 n1 (4.15)
2 i pr[zK—]l 0 ’
ifi =1, k #n(mod?2), k| <n-—1,
0, otherwise.

Lemma 17. Forany j € Z and 06,0’ = %1, the nonzero entanglement coefficients in (4.1)
are as follows.

o Ifi =1,n=0, then

0]oho _ V&;\/Ej / +/ 1 .
[1})].,]. = Tj(oa sgn™(j) — (0 +0")K;)8, (4.16a)

where Qj 1= ,/|j + i|;
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e Ifi=0,n=1,2,3,4« € Z, then

k] 0’50
BO,nj +K,j

1 = . .
= Z\/g“/;w/gjﬂgj (al! — opldQ sen™(j) — o’ plIQ yesgnT(j + k))e"
(4.16b)

if Kk =n (mod?2) and || < n, with constants p,[,K], a,[f] given in (4.13), and vanish

otherwise.
e Ifi=1,n=1,2,3k€Z,then

’ 1 = 1 B

BEK}’;IJ:’I‘/ - _Zﬁ@ j$2 4k (04 + U/Qj)l’r[zk—]lfsgn ! (4.16¢)

if Kk #n (mod?2) and |k| < n — 1, with constants p,[,K] given in (4.13), and vanish
otherwise.

Proof. Recall that fj" = fj"(%) are given in (1.18). In view of (4.14), we have

3[01f_o=£[. —iv=o .]5
OV Gy SNy + V=osen* ()
and by (4.1),

0,1j,J

. 1 —— — ——
Blo 77 = E(«/—a V—=o'sgn(j) +iv—0 Vo' Q; —iﬁv—a’Qj)S.
J
Then, (4.16a) follows because, for any 0,0’ = =+, we have
V=0+v—0' = o0’ Joo,
iv—oVo' =—ooNo, 4.17)
—iov—o' = —a'Jo o'
We now prove (4.16b). In this case, in view of (4.15) and (1.18), we obtain

CdUrox [l s —iy=apl i+ D] L
= . . Kl (: 1 e
2./2%, iVopnIQi(j + K+ %)

Boa Sy

thus, by (4.1), we have

[k] o0 1

= 1
_ 1,klo.o. s 1 ,lklo . ; _
B = s (VO e V9 (7 + )

—F 1
—i«/Ev—a/p,[lk]Qj(j + K+ Z))e".
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Formula (4.16b) follows by (4.17) and

o1 . . 1 .
JH =@t (), et g =Qf e’ (j 4.

Similarly, we prove (4.16¢). By (4.15) and (1.18),

i(j+K)x
[k] . [k] € —0 —1.
i 7 =-irthS e | Vo

thus, by (4.1), we have

[x]

B[K] oo — L(l ‘/_0\/079_1'4»1( —i \/E /—U'Qj>8£n_1,

Lnjt+ij 4 /Qij+K

and by (4.17), we conclude (4.16¢). ]

We now give some effective formulas to compute the residue term in (4.5).

. . . . O-an—l,-~-ao—q
Lemma 18. Let jo, j1,..., jq € No, 00,...,04 = =£. Then, the coefficientR .
JO>J1s- - 7]q
in (4.5) fulfills the following.
@ Ifforany: =0, ...,q one has a)j‘{‘ % W« (no pole), then
00,015- - - 50,
p Ot g, (4.18)
Jos>J15- - -’]q
(IT)  If there is one and only one index t € {0, ..., q} such that w}f‘ = wx (single
pole), then
RO’(),O'],. .0q 1
JosJ1s- -1 Jq (wz)o —Ws) - (w;?:ll - w*)(w;j‘:ll —Ws) - (w;]q - a)*).
(4.19)
(II) ~ Ifthere are two and only two indices 11,12 € {0,. . .,q} such that a)g” = a)g‘2 =
w« (double pole), then
00,01,. ..,0q a 1 1
RO = 3 | [] — “20
Jo J1s- -+ Jq m=0 Pim T )\ koo @i ~Px
m##iy,l k1,0
00,01, - - ,0
avy) Ifq=>1, coj‘.? = -=a);-;q =wx (Le., pole of order g+ 1), then R .0 _1 T=0.
,]0?,]15' . 7,]q

Proof. Apply the residue theorem to formula (4.5). |
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Remark 19. From (4.4), one checks that

(1d— Po)P[8;7,. .. 8l f7

[k1]191,0 ,[k2]92:01 [kg1 +0q-1 0,01, -, F +
Z Gl"'o—q—lB . B L B P fO s
01,...,0¢—1=% bt JuJ Tt Tu0 te Bt j,j1,...,0
q
if j+ Z ki =0,
i=1
= [k1191:0 _[k2]92:01 kgl =0q-1, 001> - o™
— Z Ul"'gqle .. L. --'B P R f2 N
Otrsrg =t Ly Ju) Tl 2t Ly 2Jq—1 Jojiae 2
q
ifj+ > ki =2,
i=1
[q] [#e1] ;
(2] q o
F [ﬂéq s By ]f] , otherwise,
(4.21a)
and
P, j)[gg[’(q] ch[Kl]]fg
0 6, 0Py 1Y)
(k11010 _[k2]02:01 g1 =0q-1 507015+
— Z Gl"'aq—lB M . <.« B 0,jo R fO s
Ot rrsgt = Ly JuJ Ty J2i1 Ly 0Jjg—1 Jijtees0
q
if j+ Z ki =0,
i=1
= [k1]101:0 _[k2] 02,01 [kq]1+04—-1 0,01, -, F +
Z O'l...o'q_lB L 70 ...B P f2 s
Ot rosgt = Cy JuJ Tl J2i1 Ly 2Jq—1 j,j1,~~~,2
q
ifj+ > ki =2,
i=1
0, otherwise.
(4.21b)

5. Taylor expansion of B(u, €)

Let us assume from now on (1.23). The main result of this section is the following expan-
sion of the matrix B(j, &) in (2.4) which directly implies Theorems 4 and 1.

Proposition 20 (Expansion of B(u, €)). The coefficients a(u, €), B(u, €) and y(u, &) of
the 2 x 2 Hermitian matrix B(u, €) in (2.4) admit the expansions at (i, €) = (% +6,¢)

1 1 —_ ~
a(z + 8,8) = a(z + 8,0) + &6 + 008 + @38e + r(83,882,828),
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1 1 ~ ~ ~
,B(Z + 5,8) = ,B(Z + 5,0) + ,318 + ,3182 + ,3288 + /32582 + ,3383 + /3384

+ ,[3;828 +r(°, 8e3, 822, 8%¢),

1 1
V(Z + 6, 8) = V(Z + 5,0) + Pie 4+ 1262 + Pabe + (g2, 862, 8%¢), (5.1
where
(:\?ig = (%0’1f2+, f2+) = 0, &/288 = (%1,1f2+s f2+) = 07
iBre = (Bo,1 fo . /) =0, i1B3e3 = (Bosfy . fo) =0, (5.22)
yie = (Bo1fy . fo) =0, y2be == (Br1fy . fo) =0.
B2de == (Bi1fy . f»7) =0, Bas%e := (Bo1fy . fo7) =0
and 9
aze? 1= (Bo, 2 fo fof ) = )
l
26 = (Boofy . fo) = EEZ»
iB1e? == (Bopofy . fo7) =0, (5.2b)
. 1
iBade” (%1 2fo fz ) = _2_«/§882’
. _ 3943
iBse* = (Boufy . fof) = W84

For any 1, we have B(i4,0) = 0 and a(p,0) = —w, Fw), y(u,0) = wqy (1) (cf. (2.6)).
Proof of Theorems 1 and 4. Theorem 4 follows by (5.1)—(5.2) and using that, by (1.17),

1 9 9
a(1+8’0):_(1+8 Q(4+8)) = —wy + 018 + 1 (8?),
wm(2) 1022
4 3

1 1 1
y(—+5,0) :Z+8+Q(Z+8) = ws + 118 + 1 (8%),

1
y1i= ,(Z) +1 (1. 17) 2.

Furthermore, Assumption 8§ is fulfilled because T; := a1 + 7 = 3. Then, we are in the
2 and B3 — ﬁz% = 3743 . Finally,

first degenerate case of (2.24) since 1 =0, T, =

16 512
Y1 — o = % = 0, then the abstract Theorem 11 applies and proves Theorem 1 together
with (1.4). The expansions in (1.1) descend from (2.17) and (2.27). [

The rest of the section is devoted to the proof of Proposition 20. We first prove (5.2a).
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Lemma 21. The coefficients &1, @2, El, 52, 53, 54, Y1, 2 in (5.2a) vanish.

Proof. Each scalar product in (5.2a) splits into two terms accordingly to the splitting of the
operators in even and odd harmonics defined below (3.2). The term with odd harmonics
vanishes because the difference between the harmonics of fo_ and f;r is 2. Thus, the

coefficients are, respectively, given by (B [ev] LA D, (%le‘{ AL 6D, (%[ev fo D),
@A fH, @5 S D, “]fo, ). @88 S £ B/ fi). and

vanish because, by (3.9), the operators ?BE;“{], ?B[le‘{], %[ev 5806,;], EBE;:‘{], ?B[f:‘{] and ?B[Z‘;]
are zero. "

We now compute the remaining coefficients in (5.2b). We give their algebraic expres-
sion in terms of the entanglement coefficients, and their numerical values exploiting Math-
ematica. The code can be found at the link in footnote*. We start with the quadratic terms.

Computation of ac5. In view of (5.2b), (3.82), since P/*! = P[B!, where by (4.15)
i)’([ﬂ (and similarly P(E'fl]) is nonzero only for k = =1, one has

w2e” = (Boo fo . 151)
= (Boofol fo7) + 1(30 1Porfor f5F) + l(30,1f2+, Poify")
=( 2 2 ’fz ) ( +1]Po 11]f2 vfz ) (:8([) 11]P fz ’fz )

=Aa =:Ab =:Ac

1 1
+ 5 (Boh S P T) + (3},1”f2 P f) = Aat+ Ab + Ac

4.11 4.1
(=)Ac (=)Ab

(for the last two terms we also used (3.2)). One then has, also by using (4.2),

@ _[o] B+ 15 2.
Aa = BO 222 gé‘ 5
[+1] p[— 1] (4.11) [~1] [~1]
(:801 P fz o Ja ) = ($0,1 f2+»Po,1 f2+)
[-119F 2
49619 OB, I _ 15,
= 0f — wy 8 (5.3)
[=1] p[+1] (4.11) +1]
Ac = (530,1 Py f2+,f2+) = ( £ f2+)
[+1]97 2
(@7, (4.19) Z [Bo,1 3.2 | _ 282
wd — ws 8
o=+ 3

We conclude that y, = % as claimed in (5.2b).

4https://git-scm.sissa.it/amaspero/first-isola-of-modulational-instability- of-stokes- waves- \protect\
@normalcr\relaxin-deep-water


https://git-scm.sissa.it/amaspero/first-isola-of-modulational-instability-of-stokes-waves-\protect \@normalcr \relax in-deep-water
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Computatlon of B1. In view of (5.2b), (3.8a), since P[ill [i)’gil]], where by (4.15)
0’1 (and similarly PO,I) is nonzero only for k = +£1, one has

iB1e? = (Boofy . f3)
= (87 5. )+ 5 (Bon Pt Sy 4h) + (i»’éﬁ”foi P AN,

=:Ba =:Bb (@.11)

Bb

(for the last term we also used (3.2)). We have

+2] @.1) _[+2] T~ 4.16)
Ba—( fo,fz) Bozzo =0

Bb = (3 +1]P +1]f0 ’ f2 ) @10 ( +1]f0 ’ 0 1I]f2 ) (5.4)

[+1] 7 [+ [+ o+t
4.7) BO,I 1,0 BO 121 BO 1 1,0 BO 1 2,1 (4.16)

wl_ — Wx a)l — Wx
We conclude that 8; = 0 as claimed in (5.2b).
Remark 22. In the finite depth case the coefficient 81 # 0. In infinite depth the degener-
acy B; = 0 descends from peculiar identities of the expansion of the Stokes wave. These
are coherent with the structure of the completely integrable quartic Birkhoff normal form
of the pure gravity water waves in deep water proved in [5, 11, 13,22], see also [21,34].

Computation of y,. Proceeding in a similar way as for the computation of «», we get

v26" = (Boo fy . fo) = (3([)(,)]2f0_» fo)
———— ———

=:Ca
1+ 1] | A N
5("(8([)1 P&l fo fO) (‘B ]P ]fO fO)
=:Cb =:Cc
1 1] e 1] e
+ 5 (Boh' o Pon 1) + (:3([,,1”](0 Py /) = Ca+ Cb+Ce,
“Lee “Lep
where ;
Ca=(By2fs  fo) = Boagy = 5¢
+1] p[-1] p— ,— 1 1
Cb:(‘B([)l]POI]fO’fO)_( 01]fo’P[ ]fo)
nt 1]~
|B0 ]10| _|B[ ]10| __182
ot — o, W_] — W« 16 (5.5

Ce= (B P £, 157) = (B 7. P )

11772 [+1177 2
|]30110| |B0110| __§82

We conclude that y, = % as claimed in (5.2b).
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We now proceed with the cubic term 5.
Computation of 8. We will use the following identities.

Lemma 23. Forany (j,o) € {(0,—-), (2, +)} we have

PO‘(P[3([),_22]]13+ = PO{P[:B([)O;]f; = PP [£[+2] = PP [:3([)02] o =0, (5.6)
PoP[BEY 1 = PoP[BE. 807 = mP[B0 B 7 =0, )

Proof. Identities (5.6) follow from formula (4.21b) with ¢ = 1 and (j,0) = (2, +) or
(0, —), since in both cases, by (4.5), the residue coefficients R’ i0 , and Ra -t vanish. Identi-
ties (5.7) follow from (4.21b) too, with j + ko + -+ + kg # O 2. [ ]

We claim that the coefficient 8, is a linear combination of the following terms:

0 := (812 /. £ (5.8)

1= (8728 S 55 = (85 . 218N ),

0:= (85572180 1y, £7) = (810 fy. (d— P)PIB1157),
lla:= (Bf l”ﬂ’[ﬂif”lfo‘, 55 =88 . P8 4t )
mo = (8552181, 85 4. 1) = (801 Ay, 2181, 854N,
e := (8% fo. (1d— Po)P[85 1. 85 11141).
md:= (855121850, 8% /57, £7) = e+ (8% £y, Po?185,", 86,"14),
IVa:= (81%51d— P) P85 1y 1) = (85 1y, P18I%1150).
Vb := (8% 1d - P28, 8511 1. £57),
IVc:= (3([)+1]va [53([),11’ 1,0]f2)ZIVb—F(‘BE%PO‘?[ﬁ([)T, +1]]f0,f2 )

where the identities come from (4.11) and (5.6). The claim follows by (3.8b), (3.9),

(3.4), (3.7) together with
e A T v v N
P = (875" + #8535, 810] + P[B1%. 861 ],

whence, setting f’z := (Id — Pgy) P> Py, one has
i,32382 ( 12 0 fz )
+2] ,— +1] p[+1] ,— +1 1]
= (35,2]f0 , f2+) (35 1 ]P[ ]fo > f2+) (58[ ]fo ’ P(gl fz )

=0 =1 =Illa

(BUP P 1, 151) ++ 5 (B2 fo . PIo )

=II =IVa

+

| =
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[+ pl+1] p— o+
(‘BO,I Pl,l fO ’ f2 )
=Ila+IIb+IIId by (5.9), (5.7)

L o]~ 5010 1 o10] pl+2] ,—
+ 5 (‘BO,I fo ’ P1,1 f2+)+§ (:31,01)0,2 fo ’ f2+)

=I+IIb+IVc by (5.9), (5.7) =IVa+IVb
Ul — pl-2] o+
+ 5 (£I,Of0 s Po,z fz )

=II+1IIlc by (5.9)

N =

+

1 1
=0 +I1+1I+la+1Ib+ E(IIIc—i—IIId) +IVa+ E(IVb—i-IVC). (5.10)

By (5.8), (4.7), Lemma 18 and finally (4.16), we obtain
© =gl = —i—882,

1,2 20 V3

[+1]H—5[+1]1 B+ [+1] 55 [+1]1 6 .
B B B Bo1 10 Bi1 21 i

= Boiio Bii o _ 562
a)1+ — W« W] — Wx 43 '
[0] H—5[+2] =+
Bi000 Boz2 20 3 2
M= L0 0220 Vog02
wy — Wx 4
[+1] B [+1]Ht [+1] 55 [+1]1H—
Bi1 1o Bo1 21 Bi1 1o Bo1 21 V3.,
Illa = ™ — = =i—~8¢°,
o] — ws W] — W« 4
[F1==gl0] == (+1]+=  OLF1=— 0] hop 1]+
b — Bo,1i 10 Bron1 Boi 21 Bo,i 10 Bion1 Bosi 21
(0] — ws)? (0] — 0 (@] — 0s)
[+1]t—5[0] B+ [+1]H+ [+1]t—5[0] 5+ [+1]+H—
Bo,i 10 Blon1 Boi21 Boa 1o Biown Bogzi . é&:z
(0] — ws)? (0] — w) (@] — o) 2 '
[0] b—p[+1] bt [+1] 6+ [0] b=+ 5+ [+1]
e — 2rooo Boi o Boi2r Brooo Boaro Borar | 5~/§582
(0f — wi) (@] — wx) (0f — ws) (@] — ) 16 ’
[0] >R [+1] B [+1]1 =+ [0] 5= g[+1] 5o [+1]H—
B1,000 Bo,1 10 Bo,1 21 B 000 Bo,1 1,0 Bo.1 21 C15V3
IId =IIc + - — — > =—i de”,
(CUI —a)*)2 (C()l _C!)*) 16
[+2]=—[0] +—
B B 1
Va— 0220802 _ 562,
a)z —C()* 4\/5
[+1]1=—R[+1] 54 [0] H— [+1]H—g[+1]1 =+ L[0] -
Vb= Bo,i 10 Bi 21 Bioz2 Bog o Boi 21 B2z —i 5 562
(0] — ws)(w; — ws) (a)l+ — wy)(0; — wx) 1643
LH =[] Rm 0] Fb LR+ L]t o] 4
Bo1 10 Bo,1 21 Bio22 Bo,1 1o Bo,1i 21 Bio22 53,
IVc=1IVb + — 5 — - = —i 8e”.
(0 —wx) (0] — w)? 16

By inserting the resulting values in (5.10) we obtain that 8, = _ﬁi as claimed in (5.2b).
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We now conclude with the quartic term 3.

Computation of 83. In this part, to simplify notation, we will simply denote
Bon = Bn,  Pon=Pu. BT =BY17). (5.11)

since all the operators that enter in the computation of B3 have this form. By (3.8¢c), we
have

i:3354 = (580,4f07, f2+) = (534](07’ f2+) + %(£3P1f07’ f2+) + %(£3f07’ P1f2+)

+ §(£2P2f0_7 )+ §(£2f0_’ Pafs") + §($1P3fo_, )

1 _ A 1 _ 1 _
+ 5(£1fo P fh) — 5(311’1 PoPsrfy . fo) — §(£1f0 . PiPyPy f51),
(5.12)
where, for brevity, we denote
Py :=(1d— Py)P,Py, and Ps:= (Id— Py)PsP. (5.13)

Each scalar product in (5.12) is a sum of terms of the form (recall (3.1))

(Bkl e[l 8 f 287 8 ),
which vanishes unless ko + k1 + -+ + kp — Kp11 — kKp4q = 2. To compute the non zero
scalar products, we represent the action of the nine operators in (5.12)—i.e., B4, B3 Pq,
Pl Bs, 56’2]32, 132*32 Bzﬁz, 132* B,, B1P1PyP,, Py Py P B1—on the eigenfunctions
f2+, Jfo in (1.18) through the following graphs, where we only highlight the paths con-
necting f;” to f2+, with the corresponding order in 8¢/ (recall formulas (3.3), (3.5), and
also (3.4), (3.7), (3.2)):

+
‘ > 2 2
f2 e ) 2 2

— 1 B,P,. P} B, — 11—

Iy > 0 0 0

O —— -
x
™

~

fo <
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3 ——3 ——3

f2+ h 2

£3P1,ﬁ;£1 1 / & /

~ - e /
£1P3,P1£3 ]‘//—171

w

1 — =1 —— -1 Jo < 0 0 0
3——3—3
5 2 2 2
B1 Py Po Py 1 1 1
Iy e 0 0 0
+ &2
£ 2 2 2 2
PSP} P} B 1 1 1 )
fo ——0 0 0——0
-1 — 1 — -1

In particular, by (3.5), the only nontrivial terms of order g* involve, besides (5.9), the

terms
P = 28] + 2811, 871 4 28171, 811,
PEEY = P87, 31, 81) 1 P[5, 817, Bl
+ P8, 5, glF)
+2[8Y, 8] 4 28 8l 4 281, 8T (5.14)
+ 287, 857 + 28],

PEY = 28] + 285, 8]+ pa), 857
0[585:&1]’ :85:{:1]’ j)’{il]].

Q2

+
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Indeed, using in (5.15)—(5.16) that Po PLEN Py = P PPy = 0,

. _ 1 _
184[33 = (j3£+2]f0 ,f2+) +§ (££+1]P1[+1]f0 7f2+)

=0 =I
L o431 pl-1] -
+ 5(33 Pl fo ,f2+)
=II
+1 1] +3 — +1
5 @y PN 5 (B P
=Va =Vla
1 _
+ 5 (8 ad— P PE £y 1) + (££“]ad— PP fi, £5F)
=ITa+1Ib (by (5.9)) =IVa+IVb+IVc (by (5.14))
1 _
43 (B aa— PP ) 42 (855 aa— po A
=IVa+Vec (by (5.9) =Ia+Ve+VIc (by (5.14))
1 [+1] p[+1] 41— 1 [—1] p[+3] ,—
+ E (31 P3 fo ,f2+) +§ (31 P3 fo vf2+)
=Va+Vb+\//\c+Vd+\,7\e+Vf+Vg+Vh (by (5.]4)) =VIa+VIb+\/fi\c+VId (by (5.14))
(5.15)
1 1] o~ pl-1] L o1 = pl-3]
+ 5 (31 fo ’ P3 f2+) +§ (31 fo ,P3 f2+)
=I4+V b+ b+VIb-+IVe+V g+V f+VId (by (5.14)) =14V d+IVb+Vh (by (5.14))
(5.16)
1,
§($[+1]P H]P P[O]fo fz ) 2(:5’{ 1]Pl[H]Popz[ﬁ]fo_’f2+)
1 1 _
§(£[+1]P PP S 1 ) - §(££+l]fo_vP1[ 1]P0P2[0]f2+) =:L,
1 _
LB g PR PE ) — (81 PR P £
(5.17)

namely,

1 | 1 1 — 1 1 —

1 1~ 1 1~
+Va+Vb+EVc—i-ch—i-Vd—i—zVe—i-EVe—i-Vf—i-Vg—i-Vh

1 1 —
+VIa+VIb+§VIc+§VIc+VId+L (5.18)
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with, by (4.11),

O = (£[+2]f0—7 f2+)7

II:=
IMTa:=
b :=
b :=
IVa:=
IVb:=
IVc:=
Vb :=
IVc:=
Va:=
Vb :=
Ve:=
Vo=
Vd:=
Ve :=

= (@P A ) O (8 218l A,
B 1) E (8T s 218 ).
(80 ad - Po)P[BL £y, £5F) F (85 /. ad - Po) 2181 1Y),
(80 1d - py) P [3[“ 871 15).
(£[+1 fi. 3 1] B[Ol]fz )_ b + (D@ PoP [£[+1] Q(B[—H 1/ f2 )’
(852 1d - Py) P [£[° 15 1) E (82 o, (d— Py 2B £5),
(85 ad - Py 287 87 A7 1N,
(B 1d - P28, 81 177, £51),
(i'}[ 1f0 , [:B —1] B[ 2]]f+)_IVb+(:B[+2 £[+1] o@[ 1]]f f2 ),
(B sy 2187 B ) =1V er (8 P (3 B Ay ),
(8*e £[+l]fo 50 = (85 S 2180 5.
(£[+1 P 3[0] :B[-f-l]]fo , fz ) (Q(BH—I]fO_, ?[££O],££_l]]f2+)v
(BY £, (1d - Py 2871, 871 1),
(B8l 80 s, 1) = Ve + (80 /5. P2 (8] . 8 1),
(B e8lt 8 ro ity = (85 gy, 21802, 81 1),
(B £y, (1d — P28, 8171 151,

Ve = (B[H [53[ 1 £[+2]]f0 ) fz )
)

+ (8, P8 8l 1,
(3[“ P8 8 B A 5

=( F eeY s e ),

Vg:= (CBEH]J’[CBEH],BE_I],i?{H]]fo_’ £

= (8" sy, 218, 85, 8l 1),

h:= (8Tealtl gt gty pe pt)

— (3[—1]](0—’ 3)[3[_1] i))[_l] £[—1]]f+)

(411)
Via:= (B8UP8L £, 1) =) (8L £y, 218 41,
vib:= (8] 128l 81 1. 47) = (81 . 2807 81T 1),
Vie:= (85 /7, (1d - Py 28171, 811 1),
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= (8218 B A L) = Vie (857 1 o287 B L),

VId = (3[ e “],3{“],3{“ 1fo » /1)
— ( 1+1]fo P [35—1]735—1]’££+1]]f2+).

By Lemma 15, Remark 19, Lemma 18 and (4.2) we represent these expressions in terms
of the entanglement coefficients; we then compute them by means of Lemma 17. We have,

: ion gkl 99" — plk]o’
recalling the notation BOK,nj,j’ = gl e
0= B[“];’O‘ =0, (5.19)
+1]H—5[+1] b+ [+1] o [+1 +—
[— B[l ]1,0 B[s ]21 ~Bi o B[ ] _i5«/§£4
o — ws 0] — W« 32 7
—1]— S [+3] -+ [—1] +3 .
= B[l ]—103[ ]z 1 B —1oB[ ]z 1 _91\/584
ot — . W7 — W« 32 7
[+2] 55 [0]H—
B B
ma @ P2 20 B2 3V3,
Wy — Wx 8
[+1] o [+1] 5L [0] [+1]+ [+1] =+ 401+~
b — By "o Bi 21 B3> _ B} By a1 Bz 22 _ 15\/§84
Ph —w*>(w2 — w.) (w+ —w*)(wz — ) 32
[+1]15— 5 [+1] H—5[0] H+ +1 +1]H+,[0
Th — I b = Bl Lo B[1 ]21 Bglzz B[ ]10 B[ ] B[zlzz _ 75«/584
(0] — ws)? (a)l —a),k)2 128
0 +2 ++
(5.6) B[ ]00 B[ ] V3,
IVa = +— = —i—¢",
Wy — Wx 8
—-11+ +1++ +2 ++ —1 +1+ +2]H+
. AR ANV AN L _ 3,
(a)i'1 —a)*)(a)o —a)*) (0=, —a)*)(a)o — wy) 64
[~11+— [+1] [+2]1+— [1]15~ p[+1] 5 L [+2] B
b —IVh = Bl 101 ) 20 B 101 0l1B3 20 —0
. (wi] _60*)2 (wZ) — w4)? ’
+1+ 1++ +2++ +1] o[- [+2] Bt
P o E R R s
(a)f'—a)*)(a)o —a)*) (0] — o) (g — ) 64 '
- R BT SV e e v
IVc—1IVc = — =0,
(0] — ws)? (0] — ws)?
+— ++ +
B[+1] B[+1]21 B[+1]10 B[+1] .5\/5 \
Va= + = —1—0c¢",

W] — W« W] — W« 32
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[+1]H—5[0]H+ [+1]++ [+1]5— g0l b [+1]Ht
By o Bau1 Bi B o ) B By 1

Vb = 2 11
(a)1+—a)*)2 (0] — w*)(a)f—a)*)
+_
TR TR NI SV UV N _ 5V,
(wl——w*)z (a)l_—a)*)(a)l —w*) 128 °°
[0]+— [+1]++ [+1]++ [0 B R [+1] 5+ [+1] =
VC:BZQOB B} BzooB 1oB 21 =i5x/§84
(a)g'—a)*)(a)l _U)*) (a);—a)*)(a)l — wx) 32
++
Toveo B[O] B[+1]10 B[+1] [20]00 B[+1] B[+1] B 35f
’ (a)1 — w4)? (On —a)*)2 128 ’
1 +2]+H+ +1++ [-1] +2] b= [+1]H+
va o B[ ] 10B[ ]1713[ ] B —1013[ ]1713[ ]Zl
(w7 l—a)*)(a)1 —a)*) (wZ l—a)*)(a)fr—a)*)
11— +2 +1]+ 1 +2 +1 +
[1 ]_10[ ]1—13[ ]2’1 B[ ]—103[ ]1—1B[ ] _i15ﬁ84
o o o) (@ — e —an) e
+2 1 +1 +2 1 +1]+H+
Ve_[]OB[]ZB[ ]2,1 B[]OB[ ]12B[] _115ﬁ4
(w3 _w*)(wl — W4) (w3 — a)*)(wl — Wx) 64
[+2] b p[-1]5F g [+1] [+2]+ [-1]+ [+1]++
— B, B B B B} B
Ve_Ve— zo 1 1,2 . 21 12 —o.
(0] — wx) (cu1 — wy)?
Vil B[+1] B[+1] B[ 1]12 B[+1]++
(0)1 — wy)?
[+115—5[+1]H—5[-1 +1
_ Bl 1o B[1 ]2,1 B[ ]12 B[ ]21
(07 — 0x)?
(0)1 +CL)1 _zw*)B["rl 1o B[+1]21 B[ 1]++B[+1]
(a)f' —ws)? (0] — wx)?
(0 + o7 — 20,8 7RISR gl R

(a)i‘r_w*) (0y — wy)?
B[+1] B[+1] B[ 1] B[+1]

() + —a)*)(a)z —a)*)(wl —a)*)
+1 + +1 1 +1 ++
[ ] B[ ]21 B[ ]12 B[ ]

(a)l —wx)? (@ — wx)

-
Bi" 10 Bl 21 Bi '1s Bj

(07 —a)*)(a)2 —a)*)(a)l —a)*)
+
B[+1]10 B[+1]Zl B[ ]12 B[+1] ~ 7503 \
(0] — wx)? (0 — wx) 256

3
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B[+1] B[ 1] B[+1]10 B[+1]++
Vg=2
(wl _w*)3
+
(a)1 —a)*)3

- - ,
(f + o7 — 20,801 78] 1]01 B[1+1] B[H]

(a)1+ — wi) (0] — wx)?
+ — +1]- 51155 [+1]+ +1]++
(0] + o _2“)*)3[1 ]1,0 B[l ]0,1 B[1 ]1,0 B[l ]2,1
(a)f— - 60*)2(0)1_ — wx)?

[+1]+ [-11+ [+1]++ [+1]H+
B, B; 0,IB Bl 21

_l’_
(a)1 —a)*)z(a)0 — wy)

[+1]— 1 +1 +1
Bl B[ ]ou B[ ] B[ ]
(a)Jr a)*)(a)0 a)*)(a)1 —a)*)

L1l plo1) gl gl b
Bl B 01 B 1,0 B

(a)l_—w*) (wo — Wx)
4 ++
B[1+1]1’0 B[1 1] B[+1] o B[+1]2,1 _125\/384

(a)f‘ — a),k)(a)0 - a)*)(a)1 — W)
B[+1] J

B (a)i_l +a)1 2w*)B[ 1] 1B[+1]+ B[+1];r1+
(w_1 _w*)z(wl _w*)z

[+11=
1B Bl

(@, + o] —2a)*)B[ 1]_10B[+1] [+1]+

(=] — wx)? (0] — w)?
—2w,)B[ ! 10B[+1]0, 1B[+1]10 B[+11++

(0= + C‘)1

(0= — w0)2 (0] — )2

(@, + o — 20,8511 BT B gl

- (w+1 — 0x)? (0] — 0x)?

[ 11+— [+1]++ [+1]++ [+1]H+
By _10B1 1B1 Bl 21

(a)_1 — a)*)(a)o — a)*)(a)1 — W)

1 +1 +1 +1]+H+
B[ 17 Bl gt bl

(0=, _w*)(wo —a)*)(a)l — %)
[=1] +1]H— L [+1 +1
B! —IOB[ ] 1B[ 1= " B[ ]Zl

(wZ; — a)*)(a)o — a)*)(a)l — w*)

11+ R gl gl
B 1By AR AN AR 0

(0, — a)*)(a)o — wx) (0] — wx)
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[+3] b p[-1]Ht+ [+3]—_ [— 1]+_
B; B B B}
Via:= 3+° 23 3 3 =0,
CU3 _a)* 0)3 _(l)*
[+1] [+2] [— 1] [+1] =g [+2] bR [-1] bt
VIb = Bl Lo Bj B Bl 0By 751 Bl 3
(a)1+—a)*)(a)3 _CU*) (a)l_—a)*)(a)3 — wx)
[+1] > p[+2] 1 +1 +2]— 1
Bl 1Bl gl 8 gl gl _
(601_ - w*)(a)3 — W) (a)l a)*)(a)3 — Wx) ’
[+2] =+ [-1]1+ [+2] o[+ + 1+
Vie = By 2L, BLT B ]2,3 B 5 ] Bl ]23 _ 39«/384
(0 — wx) (w3 — wx) (a)2 w*)(w3 —a)*) 64
[+2]+ +1 1 +2 +1 ++ 1
- ‘ Y BV SV AL
VIc—VIc := — - =0,
(a)3 — wy)? (a)3 —a)*)2
[+1]5=g[+1] = +1 +— —-1]+H+ +1 +1 +1]+— 1++
VId = Bl 1o B 21 B[ ] [ 123 [1 ]10 B[ ]zl B[ ]12 B[ 123

(0] — o) (0 —a)*)(a);' —a)*) (‘0;_ — o) (wy —a)*)(a)3 — Wx)

+1 +1 [+1] 1
e

(a)1+ —wx) (w5 — wi) (w3 — ws)

11 gl gl 11+
AR e e

(a)1 a)*)(a)2 ws) (w3 — W)

+1] 5 [+1]

(@] + of — 20,08 Rl ATl g1

(0] — a)*) (a)3 — wy)?

(@ + of — 20,01 TElFH T g BTl BT

() — w)2(] — wi)?

(@f + w3 —20,)p T TR RITI TRl BT

(a)1 —a)*) (w3 — ws)?

(wl +Cl)3 _2(1)*)B[+1 10 B[+1]Zl B[+1] > B[ 1] 1195\/384

(0] — ws)? (03 — wx)? 256
(5.20)

Finally, we compute the last term L in (5.17). By (3.5), (5.14) and (5.6),
P0P2[+2]f0_ — P()?[:BE-FI], 3{4‘1]]]{‘0— — é'l f2+<92,
PPl 5 = o[BI, 8 11 = 6 fy e (5.21)
PO fo =tafo . PoPY S =G fst e,
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with £3, ¢4 € C, and, again by (4.21b) and (4.20),

B[+1] B[+1]+

++
& 21 B[Hllo BHl] 53
1= - =

=i
(a)1 —a)*) (a)l —a)*)z 16
gl (1] =+ 511 6-22)
§_=B 1zB B 1231 0,1 :.5\/§
2 () —a)*)2 (0] — ws)? 16 -
Note that {; = —EZ by (4.2). By (5.21) the term L in (5.17) is given by
2L [+1] pl+1] o= o+ 1 pl+1] 4+ ot
_8_2:§3(£1 Py f07f2)+§1(£1 Py fz’fz)
=Bb=0 =Ac
14 (££+1]P1[_1]f2+, f2+)
=Ab
= - pl-1 = 1] j— pl-1] p—
+a @ P 0 (87 P
=Bb=0 =Cb
+& (8 s PR, (5.23)
=Cc

with Ab, Ac, Bb, Cb and Cc defined and computed in (5.3), (5.4), (5.5) (recall also (5.11)).

We then have
. 305 4
—1—4/3¢&". (5.24)
512

By (5.18), (5.20) and (5.24) we conclude that 83 = —% as stated in (5.2b). This com-
pletes the proof of Proposition 20.
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