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Many partitions of mass assignments

Pavle V. M. Blagojević and Michael C. Crabb

Abstract. In this paper, extending the recent work of the authors with Calles Loperena and Di-
mitrijević Blagojević, we give a general and complete treatment of problems of partition of mass
assignments with prescribed arrangements of hyperplanes on Euclidean vector bundles. Using a
new configuration test map scheme, as well as an alternative topological framework, we are able to
reprove known results, extend them to arbitrary bundles as well as to put various types of constraints
on the solutions. Moreover, the developed topological methods allow us to give new proofs and
extend results of Guth and Katz, Schnider, and Soberón and Takahashi. In this way we place all
these results under one “roof”.

Dedicated to the memory of Frederick R. Cohen, an exceptional mathematician
and an amazing human being.

1. Introduction

Problems of the existence of mass partitions by affine hyperplanes in a Euclidean space
have a long and exciting history since the 1930’s ham-sandwich theorem of Hugo Stein-
haus and Karol Borsuk [27, Prob. 123]. The ham-sandwich theorem claims the existence
of a hyperplane which equiparts d given masses in a d -dimensional Euclidean space. For
more details about history on the ham-sandwich theorem and its interconnection with the
non-existence of antipodal maps between spheres consult [4] or [26]. The followup work
by Branko Grünbaum [18], Hugo Hadwiger [21], David Avis [1], and a bit later by Edgar
Ramos [30], demonstrated how an increase in complexity of mass partition questions nat-
urally creates even more complicated problems related to the non-existence of equivariant
maps. Topological challenges of the Grünbaum–Hadwiger–Ramos hyperplane mass par-
tition problems were discussed recently in [8]. For more information about various types
of mass partition problems see the recent survey by Edgardo Roldán-Pensado and Pablo
Soberón [31].

In order to motivate a study of partitions of mass assignments over Euclidean vector
bundles as a natural extension of classical studies we first briefly recall the original prob-
lem. For the sake of brevity, from now on, we write “GHR” for “Grünbaum–Hadwiger–
Ramos”.
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Figure 1. An illustration of an oriented affine hyperplane, associated half-spaces, arrangement of
two affine hyperplanes, and an orthant OH

.u1;�u2/
where H D .H.u1; 2/;H.u2;�1//.

1.1. What is the GHR problem for masses?

A mass in a Euclidean space V is assumed to be a finite Borel measure on V which
vanishes on every affine hyperplane.

An oriented affine hyperplane H.uI a/ in V is given by

• a unit vector u 2 V, the unit normal to the associated affine hyperplane HuIa, which
in addition determines the orientation of the hyperplane, and by

• a scalar a 2 R which determines the distance of the associated affine hyperplaneHuIa
from the origin in direction u.

The associated affine hyperplane is defined byHuIa WD ¹x 2 VW hx;ui D aº. Furthermore,
the oriented affine hyperplane H.uI a/ defines two closed half-spaces by

Hu
uIa WD

®
x 2 VW hx; ui � a � 0

¯
and H�uuIa WD

®
x 2 VW hx;�ui C a � 0

¯
:

In other words, an oriented affine hyperplane is a triple H.uI a/ D .HuIa;Hu
uIa;H

�u
uIa/.

An arrangement of k (oriented) affine hyperplanes H in V is an ordered collection
H D .H.u1Ia1/; : : : ;H.uk Iak// of k oriented affine hyperplanes in V. Such an arrange-
ment H and a collection of unit normal vectors .v1; : : : ;vk/2 ¹u1;�u1º � � � � � ¹uk ;�ukº
to the elements of the arrangement H determine an orthant as the intersection of the cor-
responding closed half-spaces:

OH
.v1;:::;vk/

WD H v1
u1Ia1

\ � � � \H
vk
uk Iak :

There are 2k D card.¹u1;�u1º � � � � � ¹uk ;�ukº/ orthants determined by the arrange-
ment H . The orthants are not necessarily distinct or non-empty. The arrangement of
hyperplanes H D .H.u1I a1/; : : : ; H.uk I ak// is orthogonal if ur ? us for every 1 �
r < s � k.

Now, we say that an arrangement H D .H.u1I a1/; : : : ; H.uk I ak// in V equiparts a
collection of masses M in V if and only if for every mass � 2M and every .v1; : : : ; vk/ 2
¹u1;�u1º � � � � � ¹uk ;�ukº we have the equality:

�
�
OH
.v1;:::;vk/

�
D

1

2k
�.V /:



Many partitions of mass assignments 43

Furthermore, a collection of masses M in V can be equiparted by an arrangement of k
affine hyperplanes if there exists an arrangement H of k oriented affine hyperplanes in V
which equiparts M.

The GHR problem for masses asks for the minimal dimension d D �.j; k/ of a
Euclidean space V in which every collection M of j masses can be equiparted by an
arrangement of k affine hyperplanes.

The first few values of the function � can be derived from classical results. Indeed,
the ham-sandwich theorem [4] implies that �.d; 1/ D d , an argument of Grünbaum [18]
says that �.1; 2/ D 2, while the seminal work of Hadwiger [21] yields that �.2; 2/ D 3,
�.1; 3/ D 3. Furthermore, Avis and Ramos showed that 2

k�1
k
j � �.j; k/, while Peter

Mani-Levitska, Siniša Vrećica and Rade Živaljević in [25, Thm. 39] proved that�.j;k/�
j C .2k�1 � 1/2blog2 j c. The list of known values of the function � is given in [7].

In our recent paper with Calles Loperena and Dimitrijević Blagojević [6], motivated
by the work of Patrick Schnider [32] and Ilani Axelrod-Freed and Soberón [2], we studied
an extension of the GHR problem for masses to the problem for mass assignments over
Grassmann manifolds.

1.2. What is the GHR problem for mass assignments?

Let MC.X/ be the space of all finite Borel measures on a topological space X equipped
with the weak topology. That is the minimal topology on MC.X/ with the property that
for every bounded and upper semi-continuous function f WX ! R, the induced function
MC.X/! R given by � 7!

R
fd�, is upper semi-continuous. For X D V, a Euclidean

space, the subspace of all masses is denoted by M 0C.V/ �MC.V/.
Let E be a Euclidean vector bundle over a path-connected space B with fibre Eb at

b 2 B . Consider the associated fibre bundle

M 0C.E/ WD
®
.b; �/ j b 2 B; � 2M 0C.Eb/

¯
�! B; .b; �/ 7�! b: (1)

The topology on M 0C.E/ is defined using the local triviality of E and the topology on
fibres we chose. Any cross-section �WB ! M 0C.E/ of the fibre bundle (1) is called a
mass assignment on the Euclidean vector bundle E. In particular, �.b/ is a mass on Eb
for every b 2 B .

More generally, let us now write MC.E/! B for the locally trivial bundle with fibre
at b 2 B the space MC.Eb/ of finite Borel measures on the sphere S.Eb/. A continuous
section � will be called a family of (probability) measures on E if �b 2 MC.Eb/ is a
(probability) measure for each b 2 B . In the following we give an illustrative example of
a family of probability measures on E.

Example 1.1. Let E be a Euclidean vector bundle over a path-connected space B . Sup-
pose thatX!B is a finite cover embedded fibrewise inE, and suppose that p WX! Œ0;1�

is a continuous function such that, for each b 2 B ,
P
x2Xb

p.x/ D 1. For a Borel subset
A � Eb , define �b.A/ WD

P
x2A\Xb

p.x/. Then � defines a family of probability meas-
ures on S.E/.
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The GHR problem for mass assignments on a Euclidean vector bundle E over B asks
for all pairs of positive integers .j; k/ with the property that for every collection of j mass
assignments M D .�1; : : : ; �j / on E there exists a point b 2 B such that the collection of
j masses M.b/ WD .�1.b/; : : : ; �j .b// on Eb can be equiparted by an arrangement of k
affine hyperplanes in Eb . If we denote by�.E/ the set of such pairs .j; k/, then the GHR
problem for mass assignments on E is a question of describing the set �.E/ � N2.

Recently, with Calles Loperena and Dimitrijević Blagojević [6], we studied the GHR
problem for mass assignment over tautological vector bundles over Grassmann manifolds.
In particular, with appropriate reformulation, the result [6, Thm. 1.5] can be stated as
follows.

Theorem 1.2. Let d � 2 and ` � 1 be integers where 1 � ` � d , and let Ed
`

be the
tautological vector bundle over the Grassmann manifold G`.Rd / of all `-dimensional
linear subspaces in Rd . Then®

.j; k/ 2 N2
W 1 � k � `; 2blog2 j c.2k�1 � 1/C j � d

¯
� �.Ed` /:

It is important to observe that the result of Theorem 1.2 does not really depend on the
value of the parameter `. In particular, for ` D d it recovers the upper bound of Mani-
Levitska–Vrećica–Živaljević [25, Thm. 39] for the function �.

In this paper, following the ideas of Bárány and Matoušek [3] and Crabb [14], we
extend mass assignment partition problems in a Euclidean space by affine hyperplane
arrangements to mass assignment partition problems on the unit Euclidean sphere by
arrangements of equatorial spheres. Additionally, we will restrict, and therefore simplify,
our notions of mass and mass assignment.

1.3. What are the GHR problems on spheres and sphere bundles?

First, we show how the GHR problem for masses in Rd induces the corresponding mass
partition problem on the unit sphere in RdC1.

Let d � 1 be an integer. Embed Rd into RdC1 via the embedding x 7! .x;�1/. In this
way Rd coincides with the tangent space to the unit sphere S.RdC1/ Š Sd at the point
y0 WD .0; : : : ; 0;�1/. Let pWRd ! ƒ be the homeomorphism, between Rd and the open
lower hemisphere ƒ WD ¹y 2 S.RdC1/ W hy; y0i > 0º of the sphere S.RdC1/, given by

x 7!
1p

kxk2 C 1
.x;�1/ for x 2 Rd :

Now, every mass � on the Euclidean space Rd induces a measure (mass) �0 on
S.RdC1/ defined by

�0.A/ WD �
�
p�1.A \ƒ/

�
;

where A � S.RdC1/ is an element of the Borel � -algebra on S.RdC1/. In particular,
measure �0 vanishes on each equatorial sphere of S.RdC1/. Here, an equatorial sphere
of S.RdC1/ can be always presented as an intersection of S.RdC1/ and a unique linear
hyperplane in RdC1.
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Figure 2. An illustration of a transition of a mass on R2 into a measure on S2.

Furthermore, every affine hyperplane H in Rd is mapped via p to a part of an equat-
orial sphere of S.RdC1/. More precisely,

p.H/ D span.H/ \ƒ D
®
� � .x;�1/ W � 2 R; x 2 H

¯
\ƒ;

where span denotes linear span in RdC1.
Using the transition of masses on Rd into measures on Sd , and affine hyperplanes in

Rd into equatorial spheres on Sd , we can formulate the GHR problem for masses on a
sphere as follows: determine the minimal dimension d D �S .j; k/ of a unit Euclidean
sphere Sd in which every collection of j masses can be equiparted by an arrangement of
k equatorial spheres. Here, the notions of masses and equipartition of masses are naturally
extended from the affine to the spherical setup.

Motivated by this spherical extension of the classical problem and with a desire to
simplify the treatment of the mass assignments, we restate the GHR problem for mass
assignments in the following way.

Let E be a Euclidean vector bundle over a path-connected space B , and let S.E/
denote the unit sphere bundle associated toE. Now, we are looking for all pairs of positive
integers .j; k/ with the property that for every collection of j continuous real valued func-
tions '1; : : : ; 'j WS.E/! R, there exists a point b 2 B and there exists an arrangement
Hb D .H b

1 ; : : : ;H
b
k
/ of k linear hyperplanes in the fibre Eb of E such that for every pair

of connected components .O0;O00/ of the arrangement complementEb � .H b
1 [ � � � [H

b
k
/

the following statement holdsZ
O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

Here integration is assumed to be with the respect to the measure on the sphere S.Eb/
induced by the metric. Once again, �S .E/ denotes the set of all such pairs .j; k/. Since
Euclidean and spherical partition problems are tightly related, we will not make a partic-
ular distinction between them. From now on instead of a mass assignment we consider a
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Th.2.1. GHR(E; j, k)

Th.2.2. GHR(E;E(1), . . . , E(k); j, k)

Cor.2.3. GHR(E; j, 1)

Prop.2.4. ι1(E)

Cor.2.5. GHR(Ed
` ; j, 1) Cor.2.6. Axelrod-Freed, Soberón

Prop.2.7. ιk(E(1), . . . , E(k))

Cor.2.8. ιk(d− 1, . . . , d− 1) = ιk(Ed
` , . . . , E

d
` )

Cor.2.9. GHR(Ed
` ; j, k) Cor.2.10.

Cor.2.11. GHR(Flagn1,...,nk
(V ) × V,E(1), . . . , E(k); j, k)

Th.2.12. Axelrod-Freed and Soberón
Fairy Bread Sandwich theorem

Th.2.15. OGHR(E; j, k) Cor.2.16. OGHR(V ; j, k)

Figure 3. The main results of the paper and connections between them.

real valued continuous function from the sphere bundle, and instead of an affine hyper-
plane we take a linear hyperplane which induces an equatorial sphere.

2. Statements of the main results

After collecting the first family of results for tautological bundles (Theorem 1.2) it is
natural to ask various followup questions:

• Why not consider partitions of mass assignments on arbitrary vector bundles instead
of only tautological vector bundles?

• Can we constrain our choice of desired partitions on the given vector bundle by forcing
normals of hyperplanes into chosen fixed vector subbundles of the ambient vector
bundle?

• What about partitions with pairwise orthogonal hyperplanes, as was considered in the
classical case?

• And finally, how can we fit all these questions into a common framework?

In the following we present multiple answers to the question we just asked. The intercon-
nection between the main results of the paper is given in Figure 3.

We begin the list of our results with the full generalisation of [6, Thm. 1.1]. In other
words, the old result becomes a special case of the next theorem in the case of tautological
vector bundles. For an n-dimensional Euclidean vector bundle E over a compact and
connected ENR1 B and an integer k � 1 we denote by

Rk.B/ WD H
�.BIF2/Œx1; : : : ; xk �

the ring of polynomials in k variables x1; : : : ; xk of degree 1 with coefficients in the
cohomology ring of the base space H�.BIF2/. Note that by definition an ENR is locally
path-connected and so the assumption of connectedness for an ENR is equivalent with the

1Euclidean Neighbourhood Retract.
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assumption of being path-connected. Classically, we denote by wi .E/, i � 0, the Stiefel–
Whitney classes of the vector bundle E. In addition, we consider the ideal

	k.E/ WD

� nX
sD0

wn�s.E/x
s
r W 1 � r � k

�
� Rk.B/;

and the element

ek.B/ WD
Y

.˛1;:::;˛k/2Fk2�¹0º

.˛1x1 C � � � C ˛kxk/ 2 Rk.B/:

Now a generalisation of Theorem 1.2, which is proved in Section 4.1, can be stated as
follows.

Theorem 2.1. Let E be a Euclidean vector bundle of dimension n over a compact and
connected ENR B , and let k � 1 and j � 1 be integers.

If the element ek.B/j does not belong to the ideal 	k.E/, then .j; k/ 2 �S .E/, or in
other words, for every collection of j continuous real valued functions

'1; : : : ; 'j WS.E/! R;

there exists a point b 2 B and there exists an arrangement Hb D .H b
1 ; : : : ; H

b
k
/ of k

linear hyperplanes in the fibre Eb of E such that for every pair of connected components
.O0;O00/ of the arrangement complement Eb � .H b

1 [ � � � [H
b
k
/ the following statement

holds Z
O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

The first generalisation of Theorem 2.1 is obtained by a restriction of the family of the
arrangements in which we are looking for our partition. Concretely, we ask for the i -th
hyperplane in the arrangement to have its normal vector in a specific vector subbundle.
For that we modify our setup as follows.

Let k � 1 be an integer, and let E.1/; : : : ; E.k/ be Euclidean vector bundles over a
compact and connected ENR B . Denote by ni the dimension of the vector bundle E.i/
for 1 � i � k. We consider the ideal in Rk.B/:

	k
�
E.1/; : : : ; E.k/

�
WD

� nrX
sD0

wnr�s
�
E.r/

�
xsr W 1 � r � k

�
� Rk.B/;

and set

�k
�
E.1/; : : : ; E.k/

�
WD max

®
j W ek.B/

j
… 	k

�
E.1/; : : : ; E.k/

�¯
:

Finally, we say that an arrangement of k linear hyperplanes Hb D .H b
1 ; : : : ; H

b
k
/ in the

fibre Eb is determined by the collection of vector subbundles E.1/; : : : ; E.k/ if a unit
normal of the linear hyperplane H b

i belongs to the fibre E.i/b , for every 1 � i � k.
Now, the generalisation, proved in Section 4.2, says the following.
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Theorem 2.2. Let E be a Euclidean vector bundle of dimension n over a compact and
connected ENRB , k � 1 and j � 1 integers, and letE.1/; : : : ;E.k/ be vector subbundles
of E of dimensions n1; : : : ; nk , respectively.

If j � �k.E.1/; : : : ;E.k//, then for every collection of j continuous real valued func-
tions '1; : : : ; 'j WS.E/! R, there exists a point b 2 B and there exists an arrangement
Hb D .H b

1 ; : : : ; H
b
k
/ of k linear hyperplanes in the fibre Eb of E determined by the

collection of vector subbundlesE.1/; : : : ;E.k/ such that for every pair of connected com-
ponents .O0;O00/ of the arrangement complement Eb � .H b

1 [ � � � [H
b
k
/ the following

statement holdsZ
O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

After a generalisation and an extension of [6, Thm. 1.1], it is natural to ask whether the
algebraic criteria from Theorems 2.1 and 2.2 can be substituted by appropriate numerical
criteria. In other words, is there an appropriate generalisation of Theorem 1.2 in the case of
an arbitrary vector bundle. We start our discussion from the case kD 1, the ham-sandwich.

Let E be a Euclidean vector bundle of dimension n over a compact and connected
ENR B and let k D 1. Since the ideal 	1.E/ D .

Pn
sD0 wn�s.E/x

s
1/ and e1.B/n�1 D

xn�11 … 	1.E/ we conclude that

�1.E/ D max
®
j W x

j
1 … 	1.E/

¯
� n � 1:

The equality �1.E/ D n � 1 is attained in the case when the base space B is a point.
Indeed, whenB D pt then the vector bundleE is a trivial,w.E/D 1, and so 	1.E/D .x

n
1 /

implying that �1.E/ D max¹j W xj1 … .x
n
1 /º D n � 1. We just proved the following ham-

sandwich type result for Euclidean vector bundles.

Corollary 2.3. Let E be a Euclidean vector bundle of dimension n over a compact and
connected ENR B .

If j D n � 1 then for every collection '1; : : : ; 'j W S.E/! R of j continuous real
valued functions, there exists a point b 2 B and there exists a hyperplane H b in Eb such
that for the connected components O0 and O00 of the complement Eb �H b the following
statement holdsZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

The previous result is general and holds for all vector bundles and therefore rather
crude because it must contain the classical ham-sandwich theorem. It is natural to ask how
the topology of the vector bundle E affects the upper bound for the number of functions
we can equipart in a fibre. In other words can we say more about the number �1.E/.

Indeed, the following proposition, proved in Section 5.1, explains a connection between
the topology of E and the number �1.E/.
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Proposition 2.4. Let E be a Euclidean vector bundle of dimension n over a compact and
connected ENR B . Then

�1.E/ D max
®
j W 0 ¤ wj�nC1.�E/ 2 H

j�nC1.BIF2/
¯
:

Here, �E denotes an inverse vector bundle of E. This is a vector bundle E 0, over
the base space of E, having the property that the Whitney sum E ˚ E 0 is a trivial vector
bundle over B . In particular, the inverse vector bundle is not uniquely defined. On the
other hand the Stiefel–Whitney classes of all inverse vector bundles, of a given vector
bundle, do coincide. Finally, for example, the compactness of the base space guarantees
the existence of an inverse bundle of a given vector bundle. (Alternatively, we can take
�E to be a virtual bundle representing the negative of the class of E in the Grothendieck
K-group KO0.B/. Precisely, a virtual bundle is a pair .E0; E1/ of vector bundles over
B , in an appropriate category, and �E is the pair .0; E/. The set of isomorphism classes
of virtual bundles is precisely the Grothendieck group KO0.B/. Hence, the dimension
dim.�E/ D � dimE, and in the K-group Œ�E� D �ŒE� D ŒE 0� � dim.E ˚E 0/.)

As a special case of the previous result we recover the ham-sandwich result for the
tautological vector bundle [6, Cor. 1.2].

Corollary 2.5. Let d � 2 and ` � 1 be integers where 1 � ` � d , and let Ed
`

be the
tautological vector bundle over the Grassmann manifold G`.Rd / of all `-dimensional
linear subspaces in Rd . Then

�1.E
d
` / D d � 1:

Proof. For the proof we use the fact that the inverse bundle �Ed
`

can be realised as the
orthogonal complement vector bundle .Ed

`
/?. In particular, we have that

w.�Ed` / D 1C w1
�
.Ed` /

?
�
C � � � C wd�`

�
.Ed` /

?
�
;

where the orthogonal complement is considered inside the trivial vector bundle G`.Rd /�
Rd . Since wd�`.�Ed` / D wd�`..E

d
`
/?/ ¤ 0 and wi .�Ed` / D wi ..E

d
`
/?/ D 0 for i �

d � `C 1, consult for example [23, p. 523], we have from Proposition 2.4 that

�1.E
d
` / D max

®
j W 0 ¤ wj�`C1.�E

d
` /
¯
D d � 1:

The following spherical version of the result of Axelrod-Freed–Soberón [2, Thm. 1.3],
which was previously conjectured by Schnider [33, Conj. 2.4], is a direct consequence of
our Theorem 2.2 and Corollary 2.5.

Corollary 2.6. Let d � 2 and ` � 1 be integers where 1 � ` � d , and let W be an
arbitrary .` � 1/-dimensional vector subspace of Rd .

If j D d � 1 then for any collection of continuous functions '1; : : : ; 'j WS.Edl /! R,
there exist:

• V 2 G`.R
d / which contains W , and

• U 2 G`�1.R
d /, which is contained in V
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such that for the connected components O0 and O00 of the complement V �U the following
statement holdsZ

O0\S.V /

'1 D

Z
O00\S.V /

'1 ; : : : ;

Z
O0\S.V /

'j D

Z
O00\S.V /

'j :

Proof. Consider the vector bundle E D E.1/ D H.W ?/˚W over P .W ?/ where W D
P .W ?/ � W is the trivial vector bundle over P .W ?/. Recall that here H.W ?/ is the
canonical Hopf line bundle over the projective space P .W ?/. According to Theorem 2.2
in the case k D 1 we have: if j � �1.E/, then for any j continuous functions

'1; : : : ; 'j WS.E/! R

there exists a lineL 2 P .W ?/ and there exists a linear hyperplaneU in V WDL˚W such
that for the connected components O0 and O00 of the complement V � U the following
equalities hold:Z

O0\S.V /

'1 D

Z
O00\S.V /

'1 ; : : : ;

Z
O0\S.V /

'j D

Z
O00\S.V /

'j :

Since w.E/Dw.H.W ?/˚W /Dw.H.W ?// and H.W ?/ŠEd�`C11 Corollary 2.5
implies that �1.E/ D �1.Ed�`C11 / D d � 1. With the assumption j D d � 1 � �1.E/ we
conclude the proof of the corollary.

Further, if E.1/ is an n1-dimensional vector subbundle of the vector bundle E then

�1
�
E.1/

�
� �1.E/:

Indeed, if E.1/? is the orthogonal complement vector bundle of E.1/ in E then

xn1 C w1.E/x
n�1
1 C � � � C wn.E/

D
�
x
n1
1 C w1

�
E.1/

�
x
n1�1
1 C � � � C wn1

�
E.1/

��
�
�
x
n�n1
1 C w1

�
E.1/?

�
x
n�n1�1
1 C � � � C wn�n1

�
E.1/?

��
:

Consequently, xj1 … 	1.E.1// implies xj1 … 	1.E/.
Recall, that

ek.pt/ D
Y

.˛1;:::;˛k/2Fk2�¹0º

.˛1x1 C � � � C ˛kxk/ 2 Rk.pt/ Š F2Œx1; : : : ; xk �:

Now, for positive integers m1; : : : ; mk we define

�k.m1; : : : ; mk/ WD max
®
j W ek.pt/j … .xm11 ; : : : ; x

mk
k
/
¯
:

For example, ifE DRn is a trivial n dimensional real vector bundle over B D pt, then

�k.R
n1 ; : : : ;Rnk / D �k.n1; : : : ; nk/:



Many partitions of mass assignments 51

Notice that the equality holds for all integers n�max¹n1; : : : ;nkº. Indeed, sincew.Rn1/D
� � � D w.Rnk / D 1, it follows that

.x
n1
1 ; : : : ; x

nk
k
/ D 	k.R

n1 ; : : : ;Rnk /:

In general, the following inequality always holds

�k.n1; : : : ; nk/ � �k
�
E.1/; : : : ; E.k/

�
:

In fact, the condition ek.pt/j … .xn11 ; : : : ; x
nk
k
/, for some integer j , implies the existence

of a monomial xm11 � � � x
mk
k

, in the additive presentation of ek.pt/j with respect to the
monomial base of F2Œx1; : : : ; xk �, with the property that m1 � n1 � 1; : : : ; mk � nk � 1.
Since the ideal 	k.E.1/; : : : ;E.k// is generated by polynomials xni1 Cw1.E.i//x

ni�1
1 C

� � � Cwni .E.i//, 1 � i � k, the existence of the monomial xm11 � � �x
mk
k

in the presentation
of ek.pt/j implies that ek.B/j … 	k.E.1/; : : : ; E.k//.

Actually, we can say more, as the following proposition illustrates. For the proof see
Section 5.2.

Proposition 2.7. Let k � 1 be an integer, and let E.1/; : : : ; E.k/ be Euclidean vector
bundles over a compact and connected ENR B . Denote by ni the dimension of the vector
bundle E.i/ for 1 � i � k. If

0 ¤ w�1.E.1//�n1C1
�
�E.1/

�
� � �w�1.E.k//�nkC1

�
�E.k/

�
2 H�.BIF2/;

then
�k
�
�1
�
E.1/

�
C 1; : : : ; �1

�
E.k/

�
C 1

�
D �k

�
E.1/; : : : ; E.k/

�
:

A direct consequence of the previous proposition, in the case when E is a tautological
vector bundle, is the following corollary [6, Lem. 4.1]. For a proof see Section 5.3.

Corollary 2.8. Let d � 2, k � 1, and `� 1 be integers where 1� k � `� d , and letEd
`

be
the tautological vector bundle over the Grassmann manifold G`.Rd / of all `-dimensional
linear subspaces in Rd . Then

�k.d; : : : ; d / D �k.E
d
` ; : : : ; E

d
` /:

The next corollary is a spherical version of [6, Thm. 1.4].

Corollary 2.9. Let d � 2, k � 1, and ` � 1 be integers where 1 � k � ` � d , and let
E D Ed

`
be the tautological vector bundle over the Grassmann manifold G`.Rd / of all

`-dimensional linear subspaces in Rd .
If j D 2t C r where 0 � r � 2t � 1 and d � 2tCk�1 C r , then .j; k/ 2 �S .Ed` /.
In other words, if j D 2t C r where 0� r � 2t � 1 and d � 2tCk�1C r , then for every

collection of j continuous real valued functions '1; : : : ;'j WS.E/!R, there exists a point
b 2 B and there exists an arrangement Hb D .H b

1 ; : : : ; H
b
k
/ of k linear hyperplanes

in the fibre Eb of E such that for every pair of connected components .O0;O00/ of the
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arrangement complement Eb � .H b
1 [ � � � [H

b
k
/ the following statement holdsZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

Proof. From Theorem 2.1 we have that .j; k/ 2 �S .Ed` / if

ek.B/
j
… 	k.E

d
` / D 	k.E

d
` ; : : : ; E

d
` /:

Stated differently .j; k/ 2 �S .Ed` / if

j � �k.E
d
` ; : : : ; E

d
` / D �k.d; : : : ; d / D max

®
j 0 W ek.pt/j

0

… .xd1 ; : : : ; x
d
k /
¯
:

Here the first equality comes from Corollary 2.8 while the second one is just the definition
of �k.d; : : : ; d /.

Since j D 2t C r where 0 � r � 2t � 1 and d � 2tCk�1 C r , then according to
[6, Lem. 4.2] we have that ek.pt/j … .xd1 ; : : : ; x

d
k
/. Thus, indeed j � �k.Ed` ; : : : ;E

d
`
/ and

the proof of the corollary is complete.

We proceed with the next consequence of Proposition 2.7. In this case the base space
of the vector bundle will be the real flag manifold, and so the following statement is
an extension of Corollary 2.8. For the relevant background on the real flag manifold,
associated canonical vector bundles, and a proof of the corollary see Section 6.1.

Corollary 2.10. Let k � 1 and d � 2 be integers, and let 0 D n0 < n1 < � � � < nk�1 <
nk < nkC1 D d be a strictly increasing sequence of integers. For a real d -dimensional
vector space V D Rd let E1; : : : ; EkC1 denote the canonical vector bundles over the
flag manifold Flagn1;:::;nk .V /, with dim.Ei / D ni � ni�1 for 1 � i � k C 1. Set E.i/ WDL
1�r�i Er for all 1 � i � k. Then

�k.d; : : : ; d / D �k
�
E.1/; : : : ; E.k/

�
:

The previous corollary, in the language of GHR problem for mass assignments, with
the help of Theorem 2.2 and the proof of Corollary 2.9, gives the following consequence.
For a proof see Section 6.2.

Corollary 2.11. Let k � 1 and d � 2 be integers, let 0 D n0 < n1 < � � � < nk�1 < nk <
nkC1 D d be a strictly increasing sequence of integers, and let V D Rd be a real d -
dimensional vector space. Let E1; : : : ;EkC1 be the canonical vector bundles over the flag
manifold Flagn1;:::;nk .V /, let E.i/ WD

L
1�r�i Er for all 1 � i � k, and let E WD E.k/.

Assume that j D 2t C r is an integer with 0 � r � 2t � 1 and d � 2tCk�1 C r . Then
for every collection of j continuous real valued functions '1; : : : ; 'j W S.E/! R, there
exists a point b WD .W1; : : : ; WkC1/ 2 Flagn1;:::;nk .V / and there exists an arrangement
Hb D .H b

1 ; : : : ;H
b
k
/ of k linear hyperplanes in

Eb D
M
1�r�k

Wr D W
?
kC1
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such that for every pair of connected components .O0;O00/ of the arrangement complement
Eb � .H

b
1 [ � � � [H

b
k
/ the following statements holdZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j ;

and in addition

H b
1 �

M
2�r�kC1

Wr ; H
b
2 �

M
3�r�kC1

Wr ; : : : ; H
b
k �

M
kC1�r�kC1

WkC1:

Here .W1; : : : ;WkC1/2Flagn1;:::;nk.V /means that dimWiDni�ni�1 for 1� i�kC1,
andWi 0 ?Wi 00 for all 1� i 0 < i 00 � kC 1. For more details on flag manifolds see Section 6.

It should be noticed that once again the numerical assumptions on the parameters
.d; j; k/ in Corollary 2.11 coincide with the upper bound of Mani-Levitska–Vrećica–
Živaljević [25, Thm. 39] for the function �, which can be phrased as the inequality

�.2t C r/ � 2tCk�1 C r; for j D 2t C r and 0 � r � 2t � 1:

We conclude our collection of results related to flags inside a real vector space with
the spherical version of a result by Axelrod-Freed and Soberón [2, Thm. 1.2]. For the so
called Fairy Bread Sandwich theorem we give a new proof in Section 6.3 based on the
CS/TM scheme presented in Section 3.5.

Theorem 2.12. Let d � 1 and k � 1 be integers with d � k, and let V D RdC1 be a real
vector space. Fix a permutation .jk ; : : : ; jd / of the set ¹k; : : : ; dº, and take an arbitrary
collections of functions 'a;b W S.EdC1aC1 /! R, k � a � d , 1 � b � ja, from the sphere
bundle of the tautological vector bundle EdC1aC1 over the Grassmann manifold GaC1.V / to
the real numbers.

There exists a flag .Vk ; : : : ; Vd / 2 Flagk;:::;d .V / such that for every k � a � d and
every 1 � b � ja the following statement holdsZ

¹v2VaC1Whv;uai�0º\S.VaC1/

'a;b D

Z
¹v2VaC1Whv;uai�0º\S.VaC1/

'a;b :

Here the unit vectors uk ; : : : ; ud are determined, up to a sign, by the equality Vr D ¹v 2
VrC1 W hv; uri D 0º, k � r � d , and with VdC1 D V , this means that ur is a unit normal
vector to Vr , considered as a hyperplane inside VrC1.

Returning back to Proposition 2.7 we observe that the numbers �k.m1; : : : ; mk/, in
many cases, imply the existence of equipartitions of mass assignments. Hence, we collect
several properties of these numbers with proofs given in Section 7.1.

Proposition 2.13. Let k � 1 be an integer and let m1; : : : ; mk be a sequence of positive
integers.

(1) If �k�1.m1; : : : ; mk�1/ � m and mk � 2k�1mC 1, then �k.m1; : : : ; mk/ � m.
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(2) If mi � 2i�1mC 1 for all 1 � i � k, then �k.m1; : : : ; mk/ � m.

(3) If m � 1, then �k.mC 1; 2mC 1; 22mC 1 : : : ; 2k�1mC 1/ D m.

(4) Let m � 1 and 1 � r � k � 1 be integers. If

�k�r .m1; : : : ; mk�r / � m and �r .mk�rC1; : : : ; mk/ � 2
k�rm;

then �k.m1; : : : ; mk/ � m.

(5) If �k�1.m1; : : : ; mk�1/ � 2m and mk � mC 1, then �k.m1; : : : ; mk/ � m.

(6) Let k D 2. The m � �2.m1; m2/ if and only if there is an integer i such that
0 � i � m,

�
m
i

�
D 1 mod 2, and 2m �m2 C 1 � i � m1 �m � 1.

(7) If 1 � r � 2t , then �2.2t C 2r; 2tC1 C r/ � 2t C r � 1.

Using the fact that ek.pt/ is the top Dickson polynomial in variables x1; : : : ; xk we
can prove even more. For a proof of the proposition which follows see Section 7.2.

Proposition 2.14. Let k � 1 be an integer and let m1; : : : ; mk be positive integers.

(1) If 0� r � 2t � 1, �k�1.m1; : : : ;mk�1/� 2t C 2r andmk � 2tCk�1C r C 1, then
�k.m1; : : : ; mk/ � 2

t C r .

(2) If 0 � r � 2t � 1, �k�1.m1; : : : ; mk�1/ � 2tC1 C r and mk � 2tCk�1 C r C 1,
then �k.m1; : : : ; mk/ � 2t C r .

(3) If 0 � r � 2t � 1,mi � 2tCk�1C r C 1 for all 1 � i � k, then �k.m1; : : : ;mk/ �
2t C r .

(4) If �k.m1; : : : ; mk/ � m, then �k.2m1; : : : ; 2mk/ � 2m.

The statement (3) in the previous proposition is equivalent to [6, Lem. 4.2].
We continue with results on partitions by orthogonal arrangements—the orthogonal

GHR problem for mass assignments.
First, let us recall the best known results on the orthogonal GHR problem for masses,

or more precisely its generalisation, the so called generalised Makeev problem. The ques-
tion was formulated by Blagojević and Roman Karasev in [9, Sec. 1.2]. For integer para-
meters j �1 and 1�`�k, the minimal dimension d WD�.j; ` W k/, or d? WD�?.j; ` W k/,
of a Euclidean space V such that for every collection M of j masses in V there exists an
arrangement of k affine hyperplanes, or pairwise orthogonal k affine hyperplanes in V,
with the property that every subarrangement of ` hyperplanes equiparts M. In particu-
lar, �.j; k/ D �.j; k W k/. Blagojević and Karasev gave an algebraic constraint on the
parameters j , `, k and the dimensions �.j; ` W k/ and �?.j; ` W k/, see [9, Thm. 2.1].
The state of the art results on the generalised Makeev problem are due to Steven Simon
[35, Thm. 1.1] and Andres Mejlia, Simon and Jialin Zhang [28, Thm. 1.3 and Thm. 1.5].
For example, Simon in [35, Thm. 1.1] showed that

�?.2qC1; 2 W 2/ D 3 � 2q C 1; �?.2qC1 � 1; 2 W 2/ D 3 � 2q � 1;

�?.2qC2 � 2; 2 W 2/ D 3 � 2qC1 � 2; �?.1; 3 W 3/ D 4:
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Coming back to the mass assignments, let E be a Euclidean vector bundle of dimen-
sion n over a compact and connected ENR B , and let k � 1 be an integer. Recall that
we denoted by Rk.B/ the cohomology ring H�.BI F2/Œx1; : : : ; xk �, and by ek.B/ the
cohomology class

Q
.˛1;:::;˛k/2Fk2�¹0º

.˛1x1 C � � � C ˛kxk/. We consider the following
ideals in Rk.B/

Jk.E/ WD .f1; : : : ; fk/ and J0k.E/ WD .
Nf1; : : : ; Nfk/;

where
fi WD

X
0�r1C���Cri�n�iC1

wn�iC1�.r1C���Cri /.E/ x
r1
1 � � � x

ri
i ;

and
Nfi WD

X
0�r1C���Crk�n�iC1

wn�iC1�.r1C���Crk/.E/ x
r1
1 � � � x

rk
k
;

for 1 � i � k.
The first result on orthogonal partitions is an analogue of Theorems 2.1 and 2.2. For

the proof see Section 8.

Theorem 2.15. Let E be a Euclidean vector bundle of dimension n over a compact and
connected ENR B , and let k � 1 and j � 1 be integers. Then the following statements are
true:

(1) Jk.E/ D J0
k
.E/.

(2) If the element ek.B/j does not belong to the ideal Jk.E/ D J0
k
.E/, then for

every collection of j continuous real valued functions '1; : : : ; 'j W S.E/ ! R,
there exists a point b 2 B and there exists an orthogonal arrangement Hb D

.H b
1 ; : : : ; H

b
k
/ of k linear hyperplanes in the fibre Eb of E such that for every

pair of connected components .O0;O00/ of the arrangement complement Eb �
.H b

1 [ � � � [H
b
k
/ the following equalities holdZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

The implication [35, Thm. 5.2] of Simon, which says that

�.j; l/ � d H) �?.d � 1I j / � d � 1;

has an analogue in the mass assignment world.

Proposition 2.16. LetE be a Euclidean vector bundle of dimension n over a compact and
connected ENR B , and let k � 1 and j � 1 be integers. Then, if the element ek.B/jC1

does not belong to the ideal 	k.E ˚R/, the element ek.B/j does not belong to the ideal
Jk.E/.

In the previous proposition R denotes the trivial line bundle B � R. The proof of the
statement is postponed to Section 8.
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In the case when B D pt the previous theorem implies directly the result of Blagojević
and Karasev [9, Thm. 2.1 and Prop. 3.4] with a better description of the set of generators
of the relevant ideal.

Corollary 2.17. Let V be a Euclidean vector space of dimension n, and let k � 1 and
j � 1 be integers. If

ek.pt/ WD
Y

.˛1;:::;˛k/2Fk2�¹0º

.˛1x1 C � � � C ˛kxk/

62

� X
r1C���CriDn�iC1

x
r1
1 � � � x

ri
i W 1 � i � k

�
D

� X
r1C���CrkDn�iC1

x
r1
1 � � � x

rk
k
W 1 � i � k

�
;

then for every collection of j continuous functions '1; : : : ; 'j WS.V /! R, there exists an
orthogonal arrangement H D .H1; : : : ; Hk/ of k linear hyperplanes in V such that for
every pair of connected components .O0;O00/ of the arrangement complement V � .H1 [
� � � [Hk/ the following statement holdsZ

O0\S.V /

'1 D

Z
O00\S.V /

'1 ; : : : ;

Z
O0\S.V /

'j D

Z
O00\S.V /

'j :

In the case of a vector space we collect some numerical results. For that we denote by

!k.n/ WD max
²
j W ek.pt/j …

� X
r1C���CrkDn�iC1

x
r1
1 � � � x

rk
k
W 1 � i � k

�³
:

Using a computer algebra system, like Wolfram Mathematica, we collect some concrete
values of !k.n/:

!k.n/ n 3 4 5 6 7 8 9 10

k
2 0 1 2 2 3 4 4 5

3 0 0 0 1 1 2 2 3

4 0 0 0 0 0 1 1 1

Using the result of Simon [35, Thm. 5.2] or alternatively our extension, Proposi-
tion 2.16, we get the following corollary.

Corollary 2.18. For all integers k � 1 and n � 1 we have

!k.n/ � �k.nC 1; : : : ; nC 1/ � 1:

For example, if 0 � r � 2t � 1, nC 1 � 2tCk�1 C r C 1, then !k.n/ � 2t C r � 1.
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3. From a partition problem to a topological question: The CS/TM
schemes

In this section, based on the work of Crabb [14], we develop an alternative configuration
test map scheme (CS/TM) to the one presented in [6, Sec. 2]. This will be done in two
steps, first for the classical GHR mass partition problem, and then for the mass assignment
partition problem. The new approach allows us a systematic study of mass assignment
partition questions even with addition of constraints.

3.1. The GHR problem for masses

In this part, we reformulate the typical product CS/TM scheme for the classical GHR
problem. The reformulation of the scheme naturally gives rise to a convenient CS/TM
scheme for the GHR problem for mass assignments.

Let V be a Euclidean vector space of dimension d � 1. The unit sphere of the vector
space V will be denoted by S.V/ WD ¹v 2 V W kvk D 1º and the corresponding real pro-
jective space by P .V/. The associated Hopf line bundle isH.V / WD ¹.L; v/ 2 P .V/�V W
v 2 Lº. In particular, S.V/ Š Sd�1 is the space of all oriented 1-dimensional vector
subspaces of V and P .V/ Š RPd�1 is the space of all 1-dimensional vector subspaces
of V . The canonical homeomorphism P .V/ D G1.V/ Š Gd�1.V/, L 7! L?, identifies
the projective space P .V/ with the space of all linear hyperplanes in V , the Grassmann
manifold Gd�1.V/.

The space of all arrangements of k linear hyperplanes in V can be identified with
the product space P .V/�k D P .V/ � � � � � P .V/. On the other hand, the space of all
arrangements of k oriented linear hyperplanes in V is the 2k-fold covering S.H.V//�k D
S.H.V//� � � � � S.H.V// of P .V/�k , whose total space, in particular, is just the product
of spheres S.V/�k D S.V/ � � � � � S.V/. In other words, we have a fibre bundle

S
�
H.V/

��k
! P .V/�k

with a discrete fibre �
S
�
H.V/

��k�
.L1;:::;Lk/

D S.L1/ � � � � � S.Lk/

at .L1; : : : ; Lk/ 2 P .V/�k . Here, S.H.V// denotes the sphere bundle of the Hopf line
bundle H.V/ with fibres homeomorphic to a zero dimensional sphere.

We denote by Ak.V/ the 2k-dimensional real vector bundle over P .V/�k with fibre at
.L1; : : : ; Lk/ 2 P .V/�k defined to be the vector space Map.

Qk
iD1 S.Li /;R/ of all mapsQk

iD1 S.Li /! R. Each vector space Map.
Qk
iD1 S.Li /;R/ is equipped with the natural

.Z=2/k-action given by the antipodal actions on the 0-dimensional spheres S.L1/; : : : ;
S.Lk/. The vector bundle Ak.V/ is isomorphic to the vector bundle

q�1
�
H.V/˚R

�
˝ � � � ˝ q�k

�
H.V/˚R

�
;

where qi WP .V/�k ! P .V/ is the projection on the i -th factor, R denotes the trivial line
bundle, in this case, over P .V/, and q�i .H.V/ ˚ R/ is the pullback vector bundle. In
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particular, the vector bundle

Ak.V/ Š q�1
�
H.V/˚R

�
˝ � � � ˝ q�k

�
H.V/˚R

�
has a trivial line subbundle given by all constant maps

Qk
iD1 S.Li /! R, which we also

denote by R.
Next, let us consider a continuous function 'W S.V/ ! R on the sphere S.V/. It

induces a section s' WP .V/�k ! Ak.V/ of the vector bundle Ak.V/ which is given by

.L1; : : : ; Lk/ 7!

�
s'.L1; : : : ; Lk/W

kY
iD1

S.Li /! R

�
for .L1; : : : ; Lk/ 2 P .V /, where

s'.L1; : : : ; Lk/.v1; : : : ; vk/ WD

Z
Ov1;:::;vk\S.V/

'

for .v1; : : : ; vk/ 2
Qk
iD1 S.Li /. Here, Ov1;:::;vk denotes the following intersection of open

half-spaces in V:

Ov1;:::;vk WD
®
u 2 V W hu; v1i > 0

¯
\ � � � \

®
u 2 V W hu; vki > 0

¯
:

Here the integration is with the respect to the measure on the sphere S.V/ induced by the
metric. Observe that each subset Ov1;:::;vk is actually a (path) connected component of the
arrangement complement V � .L?1 [ � � � [ L

?
k
/.

We have introduced all necessary notions to state and prove the CS/TM scheme the-
orem for the spherical version of the classical GHR problem. This theorem relates to the
similar results in [25, Prop. 6], [10, Prop. 2.2], [8, Prop. 2.1].

Theorem 3.1. Let V be a Euclidean vector space, and let k � 1 and j � 1 be integers.
If the Euler class of the vector bundle .Ak.V/=R/˚j does not vanish, then for every
collection of j continuous functions '1; : : : ; 'j WS.V/!R there exists an arrangement of
k linear hyperplanes H1; : : : ; Hk in V with the property that for every pair of connected
components .O0;O00/ of the arrangement complement V� .H1 [ � � � [Hk/ the following
statement holdsZ

O0\S.V/
'1 D

Z
O00\S.V/

'1 ; : : : ;

Z
O0\S.V/

'j D

Z
O00\S.V/

'j :

In other words,

e
��
Ak.V/=R

�˚j �
¤ 0 H) �S .j; k/ � dim.V/:

Proof. Let us assume that the Euler class the vector bundle .Ak.V/=R/˚j does not vanish.
Then, in particular, every section of the vector bundle .Ak.V/=R/˚j has a zero.
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Let '1; : : : ; 'j WS.V/! R be an arbitrary collection of j continuous functions on the
sphere S.V/. Such a collection induces a section sW P .V/�k ! Ak.V/˚j of the vector
bundle Ak.V/˚j defined by

.L1; : : : ; Lk/ 7!

�
s'r .L1; : : : ; Lk/W

kY
iD1

S.Li /! R

�
1�r�j

:

Recall that we have already defined functions s'r , for 1 � r � j , by

s'r .L1; : : : ; Lk/.v1; : : : ; vk/ D

Z
Ov1;:::;vk\S.V/

'r

for .v1; : : : ; vk/ 2
Qk
iD1 S.Li /.

Let …WAk.V/˚j ! .Ak.V/=R/˚j denote the map of vector bundles induced by the
canonical projection(s). Then the section … ı s of the vector bundle .Ak.V/=R/˚j has a
zero. Hence, there is a point .L1; : : : ; Lk/ 2 P .V/�k in the base space with the property
that s.L1; : : : ; Lk/ belongs to the trivial subbundle R˚j of the bundle Ak.V/˚j . In other
words Z

O0\S.V/
'1 D

Z
O00\S.V/

'1 ; : : : ;

Z
O0\S.V/

'j D

Z
O00\S.V/

'j

for all pairs of the connected components .O0;O00/ of the arrangement complement V �
.L?1 [ � � � [ L

?
k
/. This completes the proof of the theorem.

The non-vanishing of the Euler class .Ak.V/=R/˚j mod 2 was studied over the years
by many authors. For example, Mani-Levitska, Vrećica and Živaljević [25, Thm. 39] gave
a sufficient condition for the non-vanishing of the mod 2 Euler class of .Ak.V/=R/˚j ,
with a complete proof of this result given only now in [6, Lem. 4.3]. It says that: If
dim.V/ � j C .2k�1 � 1/2blog2 j c, then the top Stiefel–Whitney class of the vector bundle
.Ak.V/=R/˚j does not vanish.

Now we focus our attention to the partition problems for mass assignments and the
corresponding solution schemes.

3.2. The GHR problem for mass assignments

The scheme we give in this section is derived from the scheme for the spherical version of
the classical problem presented in Section 3.1. Due to a transition from a Euclidean space
to a sphere, the new scheme differs from the one used in [6, Sec. 2].

Let E be a Euclidean vector bundle over a compact and connected ENR base space B .
The associated unit sphere bundle of E is

S.E/ D
®
.b; v/ W b 2 B; v 2 S.Eb/

¯
:

Next, let P .E/ denote the projective bundle of E, that is

P .E/ D
®
.b; L/ W b 2 B; L 2 P .Eb/

¯
:
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In particular, S.E/=.Z=2/ Š P .E/. Here the fibrewise antipodal action of the sphere
bundle is assumed. Further, let H.E/ be the Hopf bundle associated to the vector bundle
E. That is the line bundle

H.E/ WD
®
.b; L; v/ W b 2 B; L 2 P .Eb/; v 2 L

¯
over the projective bundle P .E/.

The space of all arrangements of k linear hyperplanes which belong to one fibre of E
is the total space of the pullback

P .E/ �B � � � �B P .E/ WD d�
�
P .E/ � � � � � P .E/

�
D d�

�
P .E/�k

�
of the product vector bundle P .E/�k via the diagonal embedding d WB ! B�k , x 7!
.x; : : : ; x/. In other words, there is a pullback diagram

d�
�
P .E/�k

� D
//

��

P .E/�k

��

B
d

// B�k :

Let us denote by …i WP .E/�k ! P .E/, .b; .L1; : : : ; Lk// 7! .b; Li /, the projection
on the i -th factor, and by ‚i the composition …i ıDW d

�.P .E/�k/! P .E/, where 1 �
i � k.

Now, the space of all arrangements of k oriented linear hyperplanes which belong to
one fibre of E is the total space of the pullback

S.E/ �B � � � �B S.E/ WD d
�
�
S.E/ � � � � � S.E/

�
D d�

�
S.E/�k

�
:

The quotient map d�.S.E/�k/! d�.P .E/�k/, induced by taking orbits of the natural
fibrewise free action of .Z=2/k on d�.S.E/�k/, is a 2k-fold cover map with the fibre
S.L1/� � � � � S.Lk/ at .L1; : : : ;Lk/ 2 P .Eb/

�k for some b 2 B. Recall that each sphere
S.L1/; : : : ; S.Lk/ is just a 0-dimensional sphere.

Like in the classical case, the covering d�.S.E/�k/! d�.P .E/�k/ induces a 2k-
dimensional real vector bundle Ak.E/ over d�.P .E/�k/ with fibre at .L1; : : : ; Lk/ 2
P .Eb/

k , for some b 2 B , defined to be the vector space Map.
Qk
iD1 S.Li /;R/ of all real

valued functions on
Qk
iD1 S.Li /. Each fibre is equipped with the natural .Z=2/k-action

given by antipodal actions on the 0-dimensional spheres. There is an isomorphism of
vector bundles

Ak.E/ Š ‚
�
1

�
H.E/˚R

�
˝ � � � ˝‚�k

�
H.E/˚R

�
;

where R denotes the trivial line bundle over P .E/, and ‚�i .H.E/˚ R/ is the pullback
vector bundle. In particular, the vector bundle Ak.E/ has a trivial line bundle determined
by all constant maps

Qk
iD1 S.Li /! R.
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Let us now consider a continuous function 'WS.E/!R. Such a map induces a section
s' W d

�.P .E/�k/! Ak.E/ of the vector bundle Ak.E/ by

�
b; .L1; : : : ; Lk/

�
7!

�
s'
�
b; .L1; : : : ; Lk/

�
W

kY
iD1

S.Li /! R
�

for b 2 B and .L1; : : : ; Lk/ 2 P .Eb/
�k , where

s'
�
b; .L1; : : : ; Lk/

�
.v1; : : : ; vk/ WD

Z
Ob;v1;:::;vk

\S.Eb/

'

for .v1; : : : ; vk/ 2
Qk
iD1 S.Li /. Here, Ob;v1;:::;vk denotes the subset of Eb defined by

Ob;v1;:::;vk WD
®
u 2 Eb W hu; v1i > 0

¯
\ � � � \

®
u 2 Eb W hu; vki > 0

¯
:

Once again, the integration is assumed to be with respect to the measure of the sphere
S.Eb/ induced by the metric on Eb .

Now we can state the CS/TM scheme theorem for the GHR problem for mass assign-
ments, which is analogous to Theorem 3.1.

Theorem 3.2. Let E be a Euclidean vector bundle over a compact and connected ENR
base space B , and let k � 1 and j � 1 be integers.

If the Euler class of the vector bundle .Ak.E/=R/˚j does not vanish, then for every
collection of j continuous functions '1; : : : ; 'j W S.E/ ! R there exists a point b 2 B
and there exists an arrangement of k linear hyperplanes H1; : : : ; Hk in the fibre Eb with
the property that for every pair of connected components .O0;O00/ of the arrangement
complement Eb � .H1 [ � � � [Hk/ the following statement holdsZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

In other words,
e
��
Ak.E/=R

�˚j �
¤ 0 H) .j; k/ 2 �S .E/:

Proof. Our follows in the footsteps of the proof of Theorem 3.1. Assume that the Euler
class of the vector bundle .Ak.E/=R/˚j does not vanish. Consequently, every section of
.Ak.E/=R/

˚j has a zero.
Take a collection

'1; : : : ; 'j WS.E/! R

of continuous functions on the sphere bundle S.E/ and consider the associated section
s D .s'1 ; : : : ; s'j / of the vector bundle .Ak.E/=R/˚j .

Denote by …WAk.E/˚j ! .Ak.E/=R/
˚j the canonical projection. Then, from the

assumption on the Euler class, the section … ı s of the vectors bundle .Ak.E/=R/˚j has
a zero. In other words, there exists a point .b; .L1; : : : ; Lk// 2 d�.P .E/�k/ with the
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property that s.b; .L1; : : : ; Lk// is contained in the trivial vector subbundle R˚j of the
vector bundleAk.E/˚j . This means that for every pair of connected components .O0;O00/
of the arrangement complement Eb � .L?1 [ � � � [ L

?
k
/ the following equalities holdZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

Hence, we have proved the theorem.

3.3. The GHR problem for mass assignments plus constraints

In this section, we extend the CS/TM schemes presented in Section 3.2 to incorporate an
additional constraint. More precisely, we require the normals of the hyperplanes to belong
to specific, not necessarily equal, vector subbundles.

Fix an integer k � 1. Let E be an n-dimensional Euclidean vector bundle over a com-
pact and connected ENR B , and let E.i/ be a vector subbundle of E, for 1 � i � k.
Following the notation from Section 3.2 we denote by P .E.i// the projective bundle of
E.i/, that is

P
�
E.i/

�
D
®
.bIL/ W b 2 B; L 2 P

�
E.i/b

�¯
:

In particular, S.E.i//=.Z=2/ Š P.E.i//. Furthermore, let H.E.i// be the Hopf bundle
associated to the vector bundle E.i/, or in other words

H
�
E.i/

�
WD
®
.b; L; v/ W b 2 B; L 2 P

�
E.i/b

�
; v 2 L

¯
:

The space of all arrangements of k linear hyperplanes which belong to one fibre of E
and are determined by the collection of vector subbundles E.1/; : : : ; E.k/ can be seen as
the total space of the pullback vector bundle

P
�
E.1/

�
�B � � � �B P

�
E.k/

�
WD d�

�
P
�
E.1/

�
� � � � � P

�
E.k/

��
via the diagonal embedding d WB ! Bk . We denote by

DW d�
�
P
�
E.1/

�
� � � � � P

�
E.k/

�
! P

�
E.1/

�
� � � � � P

�
E.k/

��
the pullback map between the bundles. Furthermore, let

…i WP
�
E.1/

�
� � � � � P

�
E.k/

�
! P

�
E.i/

�
be the projection on the i -th factor .b; .L1; : : : ; Lk// 7! .b; Li /, and let ‚i WD …i ıD.

The space of all arrangements of k oriented linear hyperplanes which belong to one
fibre of E and are given by the collection of vector subbundles E.1/; : : : ;E.k/ is the total
space of the pullback

S
�
E.1/

�
�B � � � �B S

�
E.k/

�
WD d�

�
S
�
E.1/

�
� � � � � S

�
E.k/

��
:



Many partitions of mass assignments 63

The quotient map

d�
�
S
�
E.1/

�
� � � � � S

�
E.k/

��
! d�

�
P
�
E.1/

�
� � � � � P

�
E.k/

��
;

induced by taking orbits of the natural fibrewise free action of the group .Z=2/k , is
a 2k-fold cover map with a typical fibre S.L1/ � � � � � S.Lk/ where .L1; : : : ; Lk/ 2
P .E.1/b/ � � � � � P .E.k/b/ for some b 2 B.

This covering induces a 2k-dimensional real vector bundle Ak.E.1/; : : : ; E.k// over
d�.P .E.1// � � � � � P .E.k/// with fibre at .L1; : : : ; Lk/ 2 P .E.1/b/ � � � � � P .E.k/b/,
for some b 2 B , defined to be the vector space Map.

Qk
iD1 S.Li /;R/ of all real valued

functions on
Qk
iD1 S.Li /. There is an isomorphism of vector bundles

Ak
�
E.1/; : : : ; E.k/

�
Š ‚�1

�
H
�
E.1/

�
˚R.1/

�
˝ � � � ˝‚�k

�
H
�
E.k/

�
˚R.k/

�
;

where R.i/ denotes the trivial line bundle over P .E.i//, and ‚�i .H.E.i//˚R.i// is the
pullback vector bundle. In particular, the vector bundle Ak.E.1/; : : : ; E.k// has a trivial
line bundle determined by all constant maps

Qk
iD1 S.Li / ! R, or in other words the

vector subbundle R.1/˝ � � � ˝R.k/. Clearly, Ak.E/ D Ak.E; : : : ; E„ ƒ‚ …
k times

/.

Now we consider a continuous function 'WS.E/! R. It induces a section

s' W d
�
�
P
�
E.1/

�
� � � � � P

�
E.k/

��
�! Ak

�
E.1/; : : : ; E.k/

�
of the vector bundle Ak.E.1/; : : : ; E.k// by

�
b; .L1; : : : ; Lk/

�
7!

�
s'
�
b; .L1; : : : ; Lk/

�
W

kY
iD1

S.Li /! R

�
for b 2 B and .L1; : : : ; Lk/ 2 P .E.1/b/ � � � � � P .E.k/b/, where

s'
�
b; .L1; : : : ; Lk/

�
.v1; : : : ; vk/ WD

Z
Ob;v1;:::;vk

\S.Eb/

'

for .v1; : : : ; vk/ 2
Qk
iD1 S.Li /. Recall, Ob;v1;:::;vk denotes the set:

Ob;v1;:::;vk WD
®
u 2 Eb W hu; v1i > 0

¯
\ � � � \

®
u 2 Eb W hu; vki > 0

¯
:

The CS/TM scheme theorem for the GHR problem for mass assignments with con-
straints is as follows.

Theorem 3.3. Let E be a Euclidean vector bundle over a compact and connected ENR
base space B , k � 1 and j � 1 integers, and let E.1/; : : : ; E.k/ be vector subbundles
of E.

If the Euler class of the vector bundle .Ak.E.1/; : : : ; E.k//=R/˚j does not vanish,
then for every collection of j continuous functions '1; : : : ; 'j W S.E/! R there exists a
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point b 2 B and there exists an arrangement of k linear hyperplanes H1; : : : ; Hk in the
fibre Eb determined by the collection of vector subbundles E.1/; : : : ; E.k/ with the prop-
erty that for every pair of connected components .O0;O00/ of the arrangement complement
Eb � .H1 [ � � � [Hk/ the following statement holdsZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

Proof. A proof is a slight modification of the proof of Theorem 3.2, so we do not repeat
it.

3.4. The orthogonal GHR problem for mass assignments

The scheme for the partitions with orthogonal arrangements is just a “restriction” of the
scheme presented in Section 3.2.

For a Euclidean vector bundle over a compact and connected ENR base space B , and
integers k � 1 and j � 1, we proved the following:

If the Euler class of the vector bundle .Ak.E/=R/˚j over d�.P .E/�k/ does not van-
ish, then for every collection of j continuous functions '1; : : : ; 'j WS.E/!R there exists
a point b 2 B and there exists an arrangement of k linear hyperplanes H1; : : : ; Hk in the
fibre Eb with the property that for every pair of connected components .O0;O00/ of the
arrangement complement Eb � .H1 [ � � � [Hk/ holdsZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

Since we are interested in partitions by specifically orthogonal arrangements the space
of all possible solutions becomes the following subspace of Xk.E/ WD d�.P .E/�k/:

Yk.E/ WD
®�
b; .L1; : : : ; Lk/

�
2 Xk.E/ W Lr ? Ls for all 1 � r < s � k

¯
:

In addition, let us denote by qk the inclusion Yk.E/ ,! Xk.E/. Thus, the vector bundle
we are interested in is the restriction bundle Bk.E/ WD Ak.E/jYk.E/. In particular, there
is an isomorphism of vector bundles

Bk.E/ Š ‰
�
1

�
H.E/˚R

�
˝ � � � ˝‰�k

�
H.E/˚R

�
;

where ‰i D ‚i ı qk for 1 � i � k. Recall H.E/ and R are here the Hopf line and trivial
line bundle over P .E/, respectively.

Now, we get the CS/TM scheme theorem for the GHR problem for mass assignments
by orthogonal arrangements directly from the proof of Theorem 3.2.

Theorem 3.4. Let E be a Euclidean vector bundle over a compact and connected ENR
base space B , and let k � 1 and j � 1 be integers.

If the Euler class of the vector bundle .Bk.E/=R/˚j does not vanish, then for every
collection of j continuous functions '1; : : : ; 'j W S.E/ ! R there exists a point b 2 B
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and there exists an orthogonal arrangement of k linear hyperplanes H1; : : : ; Hk in the
fibre Eb with the property that for every pair of connected components .O0;O00/ of the
arrangement complement Eb � .H1 [ � � � [Hk/ the following statement holdsZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

The proof of this result is a copy of the proof of Theorem 3.2 with Yk.E/ in place of
Xk.E/ and the vector bundle Bk.E/ in place of the vector bundle Ak.E/.

3.5. The Fairy Bread Sandwich theorem

Fix integers d � 1 and k � 1 with d � k, and let V D RdC1. Let .jk ; : : : ; jd / be a
permutation of the set ¹k; : : : ; dº, and let 'a;b WS.EdC1aC1 /! R, k � a � d , 1 � b � ja, be
a collection of functions from the sphere bundle of the tautological vector bundle EdC1aC1

over the Grassmann manifold GaC1.V / to the real numbers.
The space of all potential solutions of the partition problem considered in Theorem 2.12

is the following flag manifold

Flagk;:::;d .V /

D

²
.Vk ; : : : ; Vd / 2

dY
iDk

Gi .V / W 0 � Vk � � � � � Vd � V

³
Š
®
.Wk ; : : : ; WdC1/2Gk.V /�G1.V /

d�kC1
W Wi 0 ? Wi 00 for all k� i 0<i 00�dC1

¯
:

We used the homeomorphism between these two presentations

.Wk ; : : : ; WdC1/ 7!
�
Wk ; .Wk ˚WkC1/; : : : ; .Wk ˚WkC1 ˚ � � � ˚Wd�1/

�
(2)

to identify the corresponding elements. More detail on flag manifolds can be found in
Section 6.

For every k C 1 � i � d C 1 we define a 2-dimensional real vector bundle Ki over
Flagk;:::;d .V / whose fiber over the point

.Wk ; : : : ; WdC1/
(2)
D .Vk ; VkC1; : : : ; Vd / 2 Flagk;:::;d .V /

is the real vector space Map.S.Wi /;R/. The vector bundle Ki decomposes into the direct
sum

Ki Š Ei ˚R;

whereEi , as in Section 6, denotes the canonical line bundle associated to the flag manifold
Flagk;:::;d .V / and R is the trivial line bundle which corresponds to constant functions.

Take an integer k C 1 � i � d C 1, and let 'W S.EdC1i /! R be a continuous real
valued function. It induces a section si;' of Ki defined by

.Wk ; : : : ; Wd /
(2)
D .Vk ; VkC1; : : : ; Vd / 7�!

�
s'.Wk ; : : : ; Wd /WS.Wi / �! R

�
;
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where
si;'.Wk ; : : : ; Wd /.u/ WD

Z
¹v2Vi Whv;ui�0º\S.Vi /

':

The section si;' induces additionally a section s0i;' of the vector bundle Ei by

.Wk ; : : : ; Wd /
(2)
D .Vk ; VkC1; : : : ; Vd / 7!

�
s0i;'.Wk ; : : : ; Wd /WS.Wi /! R

�
;

where

s0i;'.Wk ; : : : ; Wd /.u/ WD si;'.Wk ; : : : ; Wd /.u/ � si;'.Wk ; : : : ; Wd /.�u/:

Now, the CS/TM scheme theorem for the Fairy Bread Sandwich theorem can be stated
as follows.

Theorem 3.5. Let d � 1 and k � 1 be integers with d � k, and let V D RdC1 be a real
vector space. Fix a permutation .jk ; : : : ; jd / of the set ¹k; : : : ; dº, and take an arbitrary
collections of functions 'a;b W S.EdC1aC1 /! R, k � a � d , 1 � b � ja, from the sphere
bundle of the tautological vector bundle EdC1aC1 over the Grassmann manifold GaC1.V / to
the real numbers.

If the Euler class of the vector bundle E WD E˚jk
kC1
˚ E

˚jkC1
kC2

˚ � � � ˚ E
˚jd
dC1

does not
vanish, then there exists a flag .Wk ; : : : ; Wd / D .Vk ; : : : ; Vd / 2 Flagk;:::;d .V / such that
for every k � a � d and every 1 � b � ja the following equality holdsZ

¹v2VaC1Whv;uai�0º\S.VaC1/

'a;b D

Z
¹v2VaC1Whv;uai�0º\S.VaC1/

'a;b :

Here the unit vectors uk ; : : : ; ud are determined, up to a sign, by the equality Vr D ¹v 2
VrC1 W hv; uri D 0º, k � r � d , and with VdC1 D V . This means that ur is a unit normal
vector to Vr , considered as a hyperplane inside VrC1. In other words, ur 2 S.WrC1/ for
all k � r � d .

Proof. Assume that the Euler class of the vector bundle E D E˚jk
kC1
˚ � � � ˚ E

˚jd
dC1

does
not vanish. Hence, every section of E has a zero.

The collections of functions 'a;b WS.EdC1aC1 /! R, k � a � d , 1 � b � ja induces a
section of the vector bundle E in the following way

.Wk ; : : : ; Wd / 7!
M

1�b�jk

s0kC1;'k;b .Wk ; : : : ; Wd /˚ � � � ˚
M

1�b�jd

s0dC1;'d;b .Wk ; : : : ; Wd /:

Thus, there exists a flag .Wk ; : : : ;Wd /D .Vk ; : : : ; Vd / 2 Flagk;:::;d .V / such that for every
k � a � d and every 1 � b � ja the following statement holds

s0aC1;'a;b .Wk ; : : : ; Wd /.u/

D

Z
¹v2VaC1Whv;ui�0º\S.VaC1/

'a;b �

Z
¹v2VaC1Whv;ui�0º\S.VaC1/

'a;b D 0;

for u 2 S.WaC1/. This concludes the proof.
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4. Proofs of Theorems 2.1 and 2.2

For the proofs of the theorems we recall and show the following classical fact, see for
example [13, Satz und Def. VI.6.4], [24, Thm. 17.2.5 and Def. 17.2.6] and [17, (1.13)].

Lemma 4.1. Let E be a Euclidean vector bundle of dimension n over a compact and
connected ENR B , and let P .E/ denote the associated projective bundle of E. Then there
is an isomorphism of H�.BIF2/-algebras

H�.BIF2/Œx�=

� nX
sD0

wn�s.E/ x
s

�
! H�

�
P .E/IF2

�
which maps x to the mod 2 Euler class of the Hopf line bundle H.E/.

For the proof first recall that for m � 2

H�
�
P .Rm/IF2

�
D H�.RPm�1IF2/ Š F2Œx�=.x

m/;

where x D e.H.Rm// is the mod2 Euler class of the Hopf line bundleH.Rm/. In the case
when m D1 we have

H�
�
P .R1/IF2

�
D H�.RP1IF2/ Š F2Œx�;

where x D e.H/ is the mod 2 Euler class of the Hopf line bundle H WD H.R1/.
Second, we point out that for an n-dimensional vector bundle E over a compact and

connected ENR B we can define its Stiefel–Whitney classes in the following way. Con-
sider, the projections

p1WB � P .R1/! B and p2WB � P .R1/! P .R1/;

and the mod2 Euler class of the vector bundle p�1E˝p
�
2H which lives in the cohomology

H�
�
B � P .R1/IF2

�
Š H�.BIF2/˝H

�
�
P .R1/IF2

�
Š H�.BIF2/˝ F2Œx�:

Hence, there exist classes wi 2 H i .BIF2/, 0 � i � n, such that

e.p�1E ˝ p
�
2H/ D

nX
iD0

wi � x
n�i : (3)

Here “�” denotes the cohomology cross product; see for example [12, Thm. VI.3.2].
Then we define the i -th Stiefel–Whitney class of E to be wi for 0 � i � n and 0

otherwise, that is wi .E/ D wi for 0 � i � n and wi .E/ D 0 for i � nC 1; consult for
example [24, Thm. 17.2.5 and Def. 17.2.6]. Thus, the relation (3) becomes

e.p�1E ˝ p
�
2H/ D

nX
iD0

wi .E/ � x
n�i : (4)
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Let us now consider a real line bundleL over a compact ENRB 0, and let p01WB �B
0!

B and p02WB �B
0! B 0 be the projections. The line bundleL is isomorphic to a pull-back

bundle f �H of the Hopf line bundle H for some continuous map f WB 0 ! P .R1/. In
particular, the mod 2 Euler class of L is e.L/ D f �.t/. Consequently, first

p0�1 E ˝ p
0�
2 L Š .id�f /

�.p�1E ˝ p
�
2H/: (5)

Second, the naturality of the Euler class and the description of the map id�f on the level
of cohomology imply that

e.p0�1 E ˝ p
0�
2 L/

(5)
D .id�f /�

�
e.p�1E ˝ p

�
2H/

�
(4)
D .id�f /�

� nX
iD0

wi .E/ � x
n�i

�
D

nX
iD0

wi .E/ � e.L/n�i : (6)

Now, if B 0 D B , and d WB ! B � B denotes the diagonal embedding, we have that
E ˝LŠ d�.p0�1 E ˝ p

0�
2 L/. Consequently, from (6) and the definition of the cup product

[12, Def. VI.4.1], we get

e.E ˝ L/ D e
�
d�.p0�1 E ˝ p

0�
2 L/

�
D d�

� nX
iD0

wi .E/ � e.L/n�i
�

D

nX
iD0

wi .E/ e.L/n�i : (7)

Proof of Lemma 4.1. The powers of the mod 2 Euler class of the Hopf line bundle

e
�
H.E/

�i
2 H i

�
P .E/IF2

�
for 0 � i � n � 1 when restricted to each fibre P .Eb/, b 2 B , of the bundle P .E/
form a basis of H�.P .Eb/I F2/. By the Leray–Hirsch theorem H�.P .E/I F2/ is a free
H�.BIF2/-module with a basis 1; e.H.E//; : : : ; e.H.E//n�1; see [24, Thm. 17.1.1].

We recall that the Hopf line bundle H.E/ is defined as

H.E/ D
®
.b; L; v/ W b 2 B; L 2 P .Eb/; v 2 L

¯
:

In particular, it is a subbundle of the pull-back of E along the projection map

gWP .E/ D
®
.b; L/ W b 2 B; L 2 P .Eb/

¯
! B; .b; L/ 7! b:

Now, note that the line bundleH.E/ can be identified with its dual line bundleH.E/� by
the inner product. So

g�E ˝H.E/ Š g�E ˝H.E/� Š Hom
�
H.E/; g�E

�
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is the vector bundle whose sections are linear mapsH.E/! g�E. The inclusion ofH.E/
into g�E gives a nowhere-zero cross-section of the vector bundle g�E ˝ H.E/. Con-
sequently, we have that

0 D e
�
g�E ˝H.E/

� (7)
D

nX
iD0

wi .g
�E/ e

�
H.E/

�n�i
D

nX
iD0

g�
�
wi .E/

�
e
�
H.E/

�n�i
D

nX
iD0

wi .E/ � e
�
H.E/

�n�i
:

Here “�” refers to the H�.BIF2/-module structure. Therefore,

e
�
H.E/

�n
D

nX
iD1

wi .E/ � e
�
H.E/

�n�i
;

which completely determines the structure ofH�.P.E/IF2/ as anH�.BIF2/-algebra.

Now we proceed with the proofs of Theorems 2.1 and 2.2.

4.1. Proof of Theorem 2.1

LetE be a Euclidean vector bundle of dimension n over a compact and connected ENRB ,
and let the integers k � 1 and j � 1 be fixed. Assume that ek.B/j does not belong to the
ideal 	k.E/.

The proof of the theorem relies on the criterion from Theorem 3.2, that is:

e
��
Ak.E/=R

�˚j �
¤ 0 H) .j; k/ 2 �S .E/:

Observe that the mod 2 Euler class of the vector bundle .Ak.E/=R/˚j , or in other words
the top Stiefel–Whitney class, lives in the cohomology of the pullback bundle, that is
H�.d�.P .E/�k/IF2/. We will prove that

• H�.d�.P .E/�k/IF2/ Š Rk.B/=	k.E/, and

• w.2k�1/j ..Ak.E/=R/
˚j / D ek.B/

j C 	k.E/ 2 Rk.B/=	k.E/.

Assuming these two claims to be true, the criterion from Theorem 3.2 yields:

e
j

k
C 	k.E/ ¤ 	k.E/ in Rk.B/=	k.E/ H) .j; k/ 2 �S .E/:

Thus, the proof of Theorem 2.1 is finished, up to a proof of the two facts we listed.
First, we compute the cohomology of the pullback bundle d�.P .E/�k/ because the

Stiefel–Whitney class w..Ak.E/=R/˚j / belongs to H�.d�.P .E/�k/IF2/.

Claim 4.2. There is an isomorphism of H�.BIF2/-algebras

Rk.B/=	k.E/ D H
�.BIF2/Œx1; : : : ; xk �=

� nX
sD0

wn�s.E/ x
s
r W 1 � r � k

�
! H�

�
d�
�
P .E/�k

�
IF2

�
mapping xr to the mod 2 Euler class of the pullback vector bundle ‚�r .H.E// for all
1 � r � k.
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Proof. The proof proceeds by induction on j where 1� j � k. If j D 1, then the statement
reduces to Lemma 4.1. Let j � 2, and assume that there is an isomorphism

H�.BIF2/Œx1; : : : ; xj�1�=

� nX
sD0

wn�s.E/ x
s
r W 1 � r � j � 1

�
! H�

�
d�
�
P .E/�.j�1/

�
IF2

�
(8)

which maps each class xr to the mod2 Euler class of the pullback vector bundle‚�r.H.E//,
where 1 � r � j � 1.

The pullback bundle d�.P .E/�.j�1// is a bundle over B with the corresponding pro-
jection map pW d�.P .E/�.j�1//! B . Then d�.P .E/�j / is isomorphic to the pullback
bundle p�.P.E// Š P.p�.E// over d�.P .E/�.j�1//. Recall that P .E/ is the projective
bundle associated to E, and therefore a bundle over B . Hence, there is a pullback diagram

d�
�
P .E/�j

�
Š p�

�
P .E/

�
Š P

�
p�.E/

�
//

��

P .E/

��

d�
�
P .E/�.j�1/

� p
// B:

Consequently, by Lemma 4.1, we get an isomorphism ofH�.d�.P .E/�.j�1//IF2/-algeb-
ras

H�
�
d�
�
P .E/�.j�1/

�
IF2

�
Œxj �=

� nX
sD0

wn�s.E/ x
s
j

�
! H�

�
P
�
p�.E/

�
IF2

�
Š H�

�
d�
�
P .E/�j

�
IF2

�
(9)

which maps xj to the mod 2 Euler class of the Hopf line bundle H.p�.E//.
Now, the induction hypothesis (8) in combination with the isomorphism (9) completes

the proof of the claim.

Finally, we evaluate the Stiefel–Whitney class w.2k�1/j ..Ak.E/=R/
˚j /.

Claim 4.3. The mod 2 Euler class of the vector bundle .Ak.E/=R/˚j is equal to:

w.2k�1/j
��
Ak.E/=R

�˚j �
D ek.B/

j
C	k.E/ D

Y
.˛1;:::;˛k/2Fk2�¹0º

.˛1x1C � � � C ˛kxk/
j
C	k.E/2Rk.B/=	k.E/:

Proof. Recall the isomorphism of vector bundles

Ak.E/ Š ‚
�
1

�
H.E/˚R

�
˝ � � � ˝‚�k

�
H.E/˚R

�
;

where R is the trivial line bundle over P .E/, and ‚�i .H.E/ ˚ R/ is a pullback vector
bundle. Now the claim follows from the distributivity of the tensor product over the direct
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sum, the fact that the pullback of a trivial bundle is again a trivial bundle, and the equality
w.˛ ˝ ˇ/ D 1 C .w1.˛/ C w1.ˇ// which holds (only) for line bundles ˛ and ˇ (see
[29, Prob. 7 (A)]). Note that ˛ ˝ ˇ is also a line bundle.

With the claims verified, the proof of Theorem 2.1 is now complete.

4.2. Proof of Theorem 2.2

The proof we present is an extension of the proof of Theorem 2.1, and therefore it is
just outlined. Let k � 1 and j � 1 be fixed integers. We consider a Euclidean vector
bundleE of dimension n over a compact and connected ENR B , and, in addition, k vector
subbundles E.1/; : : : ; E.k/ of � of dimensions n1; : : : ; nk , respectively. Assume that
j � �k.E.1/; : : : ; E.k// D max¹j W ek.B/j … 	k.E.1/; : : : ; E.k//º.

The proof of the theorem uses the criterion from Theorem 3.3. That is, if the Euler
class e..Ak.E.1/; : : : ; E.k//=R/˚j / ¤ 0 does not vanish, then for every collection of j
continuous functions '1; : : : ; 'j W S.E/! R there exists a point b 2 B and there exists
an arrangement of k linear hyperplanes H1; : : : ; Hk in the fibre Eb determined by the
collection of vector subbundles E.1/; : : : ; E.k/ with the property that for every pair of
connected components .O0;O00/ of the arrangement complement Eb � .H1 [ � � � [Hk/
the following equalities holdZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j :

The mod 2 Euler class of .Ak.E.1/; : : : ; E.k//=R/˚j , or in other words the top
Stiefel–Whitney class, lives in H�.d�.P .E.1// � � � � � P .E.k///I F2/. Therefore, we
prove that

• H�.d�.P .E.1// � � � � � P .E.k///IF2/ Š Rk.B/=	k.E.1/; : : : ; E.k//, and that

• w.2k�1/j ..Ak.E.1/; : : : ; E.k//=R/
˚j / D ek.B/

j C 	k.E.1/; : : : ; E.k//.

If these two statements are assumed to be true, then the criterion from Theorem 3.3, in
combination with the theorem assumption j � �k.EIE.1/; : : : ; E.k//, implies that

w.2k�1/j
��
Ak
�
E.1/; : : : ; E.k/

�
=R
�˚j �

D e
j

k
C 	k

�
E.1/; : : : ; E.k/

�
¤ 	k

�
E.1/; : : : ; E.k/

�
:

Hence, e..Ak.E.1/; : : : ; E.k//=R/˚j / ¤ 0, and the proof of Theorem 2.1 is complete.
Indeed, the remaining claims are verified in the same way as in the proofs of Claims 4.2
and 4.3.

5. Proofs of Propositions 2.4 and 2.7

We prove the main facts about the integers �1.E/ and �k.E.1/; : : : ; E.k// stated in Pro-
positions 2.4 and 2.7, as well as two related consequences, Corollaries 2.8 and 2.9.
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5.1. Proof of Proposition 2.4

LetE be a Euclidean vector bundle of dimension n over a compact and connected ENRB .
Since k D 1 we simplify notation by taking x D x1. Hence, e1.B/ D x and 	1.E/ D

.xn C w1.E/x
n�1 C � � � C wn.E//. Set

a WD �1.E/ D max
®
j W xj … 	1.E/

¯
and

b WD max
®
j W 0 ¤ wj�nC1.�E/ 2 H

j�nC1.BIF2/
¯
:

In particular, we have that wb�nC1.�E/¤ 0 and that wr .�E/D 0 for all r � b � nC 2.
Now, we prove that a D b.

Using the Euclidean algorithm in the polynomial ring R1.B/ D H�.BI F2/Œx� we
have that

xb D
�
xn C w1.E/x

n�1
C � � � C wn.E/

�
q C dn�1x

n�1
C � � � C d1x C d0;

where q 2 R1.B/, and for 0 � i � n � 1 the coefficients are given by

di D wb�i .�E/Cw1.E/wb�i�1.�E/C � � � Cwn�i�1.E/wb�nC1.�E/ 2 H
�.BIF2/;

as demonstrated by Crabb and Jan Jaworowski [16, Proof of Prop. 4.1]. Sincewr .�E/¤ 0
for r � b � nC 2 it follows that

di D wn�i�1.E/wb�nC1.�E/ for 0 � i � n � 1;

and so

xb D
�
xn C w1.E/x

n�1
C � � � C wn.E/

�
q

C wb�nC1.�E/
�
xn�1 C w1.E/x

n�2
C � � � C wn�1.E/

�
:

Consequently, from wb�nC1.�E/¤ 0 it follows that xb … 	1.E/ and accordingly b � a.
Let us now assume that b < a, or in other words b � nC 2 � a � nC 1. Recall that

wr .�E/ ¤ 0 for r � b � nC 2, and in particular for r � a � nC 1. Once again we have

xa D
�
xn C w1.E/x

n�1
C � � � C wn.E/

�
q0 C d 0n�1x

n�1
C � � � C d 01x C d

0
0;

where

d 0i D wa�i .�E/C w1.E/wa�i�1.�E/C � � � C wn�i�1.E/wa�nC1.�E/ D 0;

for all 0� i � n� 1. Hence, xa 2 	1.E/, which contradicts the definition of the integer a.
Therefore, b � a.

We have proved that a D b, or in other words that

�1.E/ D max
®
j W 0 ¤ wj�nC1.�E/ 2 H

j�nC1.BIF2/
¯
;

as claimed.
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5.2. Proof of Proposition 2.7

Let k � 1 be an integer, and let E.1/; : : : ; E.k/ be Euclidean vector bundles over a com-
pact and connected ENR B . Set ni to be the dimension of the vector bundle E.i/ for
1 � i � k. Let us denote by

ai WD �1
�
E.i/

�
D max

®
j W 0 ¤ wj�niC1

�
�E.i/

�
2 H j�niC1.BIF2/

¯
;

a WD �k.a1 C 1; : : : ; ak C 1/ D max
®
j W ek.pt/j … .xa1C11 ; : : : ; x

akC1

k
/
¯
;

b WD �k
�
E.1/; : : : ; E.k/

�
D max

®
j W ek.B/

j
… 	k

�
E.1/; : : : ; E.k/

�¯
;

where 1 � i � k, and

	k
�
E.1/; : : : ; E.k/

�
D

� nrX
sD0

wnr�s
�
E.r/

�
xsr W 1 � r � k

�
� Rk.B/:

In the definition of ai we used the characterisation from Proposition 2.4. In particular, we
have that wr .�E.i// D 0 for all r � ai � ni C 2.

With the notation we just introduced the assumption of the proposition reads

wa1�n1C1
�
�E.1/

�
� � �wak�nkC1

�
�E.k/

�
¤ 0;

while the claim of the proposition becomes a D b.
The main ingredients of our proof of Proposition 2.7 are contained in the next two

claims, where the first claim is used for the proof of the second.

Claim 5.1. xa11 � � � x
ak
k
… 	k.E.1/; : : : ; E.k//.

Proof. For simplicity set 	 WD 	k.E.1/; : : : ; E.k//. Once again we use [16, Proof of
Prop. 4.1] and get that for all 1 � i � k:

x
ai
i D

�
x
ni
i C w1

�
E.i/

�
x
ni�1
i C � � � C wni

�
E.i/

��
� qi C dni�1;ix

ni�1
i C � � � C d0;i ;

where for 0 � s � ni � 1:

ds;i D wai�s
�
�E.i/

�
C w1

�
E.i/

�
wai�s�1

�
�E.i/

�
C � � � C wni�s�1

�
E.i/

�
wai�niC1

�
�E.i/

�
:

More precisely, since wr .�E.i// D 0 for all r � ai � ni C 2, we have that

ds;i D wni�s�1
�
E.i/

�
wai�niC1

�
�E.i/

�
:

Consequently,

x
ai
i C 	 D wai�niC1

�
�E.i/

��
x
ni�1
i C � � � C wni�1

�
E.i/

��
C 	;

and so

x
a1
1 � � � x

ak
k
C 	 D

kY
iD1

wai�niC1
�
�E.i/

�
�

kY
iD1

�
x
ni�1
i C � � � C wni�1

�
E.i/

��
C 	:
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From the assumption of the proposition we have that
Qk
iD1wai�niC1.�E.i//¤ 0, and so

x
a1
1 � � � x

ak
k
C 	 ¤ 	 as claimed.

Claim 5.2.

.x
a1C1
1 ; : : : ; x

akC1

k
/

D ker
�
F2Œx1; : : : ; xk �! H�.BIF2/Œx1; : : : ; xk �=	k

�
E.1/; : : : ; E.k/

��
:

Proof. The ring homomorphism we consider

hWF2Œx1; : : : ; xk �! H�.BIF2/Œx1; : : : ; xk �=	k
�
E.1/; : : : ; E.k/

�
is induced by the coefficient inclusion F2 ,! H 0.BI F2/ ,! H�.BI F2/. Furthermore,
denote by J WD ker.h/.

As in the proof of the previous claim we use [16, Proof of Prop. 4.1] and for every
1 � i � k get that

x
aiC1
i D

�
x
ni
i C w1

�
E.i/

�
x
ni�1
i C � � � C wni

�
E.i/

��
� qi

C d 0ni�1;ix
ni�1
i C � � � C d 00;i 2 H

�.BIF2/Œx1; : : : ; xk �:

Here for 0 � s � ni � 1:

d 0s;i D waiC1�s
�
�E.i/

�
C w1

�
E.i/

�
wai�s

�
�E.i/

�
C � � � C wni�s�1

�
E.i/

�
wai�niC2

�
�E.i/

�
:

In this case the fact that wr .�E.i// D 0 for all r � ai � ni C 2 implies that d 0s;i D 0 for
all 0 � s � n � 1 and all 1 � i � k. Consequently, xaiC1i 2 	k.E.1/; : : : ; E.k//, or in
other words, xaiC1i 2 J, for all 1 � i � k. Hence, .xa1C11 ; : : : ; x

akC1

k
/ � J.

Assume that

0 ¤ p D
X

.c1;:::;ck/2C

˛c1;:::;ckx
c1
1 � � � x

ck
k
2 J � .xa1C11 ; : : : ; x

akC1

k
/;

where C � Zk�0 is a finite set of multi-exponents of the polynomial p, and ˛c1;:::;ck 2 F2
are the coefficients. After a possible modification of p, by taking away monomials which
already belong to the ideal .xa1C11 ; : : : ; x

akC1

k
/, we can assume that the set of exponents

satisfies
; ¤ C � Œ0; a1� � � � � � Œ0; ak �:

That is, no monomial in the representation of p belongs to .xa1C11 ; : : : ; x
akC1

k
/.

Let sk WD min¹s 2 Z�0 W ˛c1;:::;ck�1;s ¤ 0º. Then

x
ak�sk
k

p 2 J � .xa1C11 ; : : : ; x
akC1

k
/

with all monomials having degree of xk at least ak . Taking away all monomials in xak�sk
k

p

which already belong to .xa1C11 ; : : : ; x
akC1

k
/ we get a polynomial which still belongs to
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J � .xa1C11 ; : : : ; x
akC1

k
/. Now, repeat the procedure iteratively with variables xk�1; : : : x1,

respectively. At the end we get that

x
a1
1 � � � x

ak
k
2 J � .xa1C11 ; : : : ; x

akC1

k
/:

We have reached a contradiction with Claim 5.1. In particular, this says, that

h.x
a1
1 � � � x

ak
k
/ ¤ 0;

or equivalently xa11 � � � x
ak
k
… ker.h/ D J.

Finally, we complete the proof of Proposition 2.7 as follows. According to the defini-
tion of a we have that

ek.pt/a … .xa1C11 ; : : : ; x
akC1

k
/ D ker.h/;

ek.pt/aC1 2 .xa1C11 ; : : : ; x
akC1

k
/ D ker.h/:

Consequently,

ek.B/
a
C 	k

�
E.1/; : : : ; E.k/

�
D h

�
ek.pt/a

�
¤ 0;

ek.B/
aC1
C 	k

�
E.1/; : : : ; E.k/

�
D h

�
ek.pt/aC1

�
D 0:

From the definition of b we conclude that aD b, as claimed. This argument completes the
proof of Proposition 2.7.

5.3. Proof of Corollary 2.8

In order to prove the statement, according to Proposition 2.7, it is enough to check whether
.wd�`.�E

d
`
//k ¤ 0, because �1.Ed` / D d � 1, as demonstrated in Corollary 2.5. Since

k � ` it suffices to prove that .wd�`.�Ed` //
` ¤ 0. Indeed, the Gambelli’s formula ([23,

p. 523], [22, Prop. 9.5.37]) implies the equality�
wd�`.�E

d
` /
�`
D det

�
wd�`Ci�j .�E

d
` /
�
1�i;j�`

D Œd � `; d � `; : : : ; d � `� ¤ 0:

Here Œd � `; d � `; : : : ; d � `� denotes a Schubert class. Note that wr .�E`/ D 0 for all
r > d � `, and that we assume wr .�E`/ D 0 for r < 0.

5.4. Proof of Corollary 2.9

From Theorem 2.1, we have that .j;k/2�S .Ed` / if ek.B/j …	k.E
d
`
/D	k.E

d
`
; : : : ;Ed

`
/,

or in other words if

j � �k.E
d
` ; : : : ; E

d
` / D �k.d; : : : ; d / D max

®
j 0 W ek.pt/j

0

… .xd1 ; : : : ; x
d
k /
¯
:

Here the first equality comes from Corollary 2.8 while the second one is just the definition
of �k.d; : : : ; d /.

Since j D 2t C r where 0 � r � 2t � 1 and d � 2tCk�1 C r , then according to [6,
Lem. 4.2] we have that ek.pt/j … .xd1 ; : : : ; x

d
k
/. Thus, indeed j � �k.Ed` ; : : : ; E

d
`
/ and

the proof of the corollary is complete.
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6. Proofs of Corollaries 2.10, 2.11 and Theorem 2.12

Before going into the proofs we recall the notion of a real flag manifold by introducing it
in two equivalent ways. Furthermore we give a description of the cohomology ring with
coefficients in F2.

Let k � 1 and d � 2 be integers. Consider a strictly increasing sequence of positive
integers .n1; : : : ; nk/ bounded by d , meaning 1 � n1 < � � � < nk�1 < nk � d � 1. Set in
addition n0 D 0 and nkC1 D d .

Let V be a Euclidean vector space of dimension d . The real flag manifold, of type
.n1; : : : ; nk/, in V is the space Flagn1;:::;nk .V / of all flags 0 � V1 � � � � � Vk � V in V
with the property that dim.Vi / D ni for every 1 � i � k. Alternatively, we can say that
Flagn1;:::;nk .V / is a collection of all .k C 1/-tuples of vector spaces .W1; : : : ;WkC1/ with
the property that

• dim.Wi / D ni � ni�1 for all 1 � i � k C 1, and

• Wi 0 ? Wi 00 for all 1 � i 0 < i 00 � k C 1.

In other words

Flagn1;:::;nk .V /

D
®
.V1; : : : ; Vk/ 2

kY
iD1

Gni .V / W 0 � V1 � � � � � Vk � V
¯

Š

°
.W1; : : : ; WkC1/ 2

kC1Y
iD1

Gni�ni�1.V / W Wi 0 ? Wi 00 for all 1 � i 0 < i 00 � k C 1
±

Š
O.d/

O.n1 � n0/ � O.n2 � n1/ � � � � � O.nkC1 � nk/
:

The homeomorphism between these two presentations is given by

.W1; : : : ; WkC1/ 7�!
�
W1; .W1 ˚W2/; : : : ; .W1 ˚W2 ˚ � � � ˚Wk�1/

�
:

The flag manifold Flagn1;:::;nk .V / is indeed a compact ı-dimensional manifold where ı WDP
1�i 0<i 00�kC1.ni 0 � ni 0�1/.ni 00 � ni 00�1/. In the case when k D d � 1, and consequently

ni D i for all 1� i � kD d � 1, the flag manifold Flag1;2;:::;d�1.V / is called the complete
flag manifold. Furthermore, the flag manifold Flagn1.V / coincides with the Grassmann
manifold Gn1.V / Š Gn1.R

d /.
Over the flag manifold Flagn1;:::;nk .V / there are k C 1 vector bundles E1; : : : ; EkC1

given by

Ei WD
®�
.W1; : : : ; WkC1/; w

�
2 Flagn1;:::;nk .V / � V W w 2 Wi

¯
;

where 1 � i � k C 1. In particular, E1 ˚ � � � ˚ EkC1 is isomorphic to the trivial vector
bundle Flagn1;:::;nk .V / � V . Now, the classical result of Armand Borel [11, Thm. 11.1]
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says that

H�
�

Flagn1;:::;nk .V /IF2
�

Š F2
�
w1.E1/; : : : ; wn1�n0.E1/; : : : ; w1.EkC1/; : : : ; wnkC1�nk .EkC1/

�
=In1;:::;nk ;

where the ideal In1;:::;nk is generated by the identity�
1C w1.E1/C � � � C wn1�n0.E1/

�
� � �
�
1C w1.EkC1/C � � � C wnkC1�nk .EkC1/

�
D 1:

In particular, in the case of the complete flag manifold, equivalently when k D d � 1, we
have that

H�
�

Flag1;:::;d�1.V /IF2
�
Š F2

�
w1.E1/; w1.E2/; : : : ; w1.Ed /

�
=I1;:::;d�1: (10)

In this case E1; : : : ; Ed are all line bundles. Here, the ideal I1;:::;d�1 is generated by the
identity

dY
iD1

�
1C w1.Ei /

�
D 1;

which implies that a generating set for I1;:::;d�1 is the set of all elementary symmetric
polynomials in w1.E1/; w1.E2/; : : : ; w1.Ed / as variables. Thus,

I1;:::;d�1 D
�
�r
�
w1.E1/; w1.E2/; : : : ; w1.Ed /

�
W 1 � r � d

�
; (11)

where �1; : : : ; �d denote elementary symmetric polynomials.
Flag manifolds of different types allow continuous maps between each other induced

by a choice of a subflag. In particular, for any type .n1; : : : ; nk/ there is a continuous map

˛n1;:::;nk WFlag1;:::;d�1.V /! Flagn1;:::;nk .V /;

given by the selection of a subflag

0 � V1 � V2 � � � � � Vd�1 � V 7! 0 � Vn1 � Vn2 � � � � � Vnk � V:

An important feature of this map is that the induced map in cohomology

˛�n1;:::;nk WH
�
�

Flagn1;:::;nk .V /IF2
�
7! H�

�
Flag1;:::;d�1.V /IF2

�
is injective; consult for example [23, pp. 523–524].

6.1. Proof of Corollary 2.10

We apply Proposition 2.7. Thus, we need to compute first �.E.i// for all 1 � i � k. From
Proposition 2.4 we have that

�1
�
E.i/

�
D max

®
j W 0 ¤ wj�dimE.i/C1

�
�E.i/

�
2 H�.BIF2/

¯
;

where in our situation B WD Flagn1;:::;nk .V /.
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Let 1 � i � k. Consider the following commutative diagram of flag manifolds where
all the maps are induced by a selection of the corresponding subflags:

Flagn1;:::;nk .V /
ˇi

// Flagni .V / Š Gni .V /

Flag1;:::;d�1.V /:
˛n1;:::;nk

hh

˛ni

55

Since the induced maps in cohomology ˛�n1;:::;nk and ˛�ni are injective, it follows that the
induced map ˇ�i is also injective. Now, from the injectivity of ˇ�i and the fact E.i/ D
ˇ�i E

d
ni

, in combination with Corollary 2.5 we have that

�1
�
E.i/

�
D �1.E

d
ni
/ D d � 1:

Here, as before,Edni denotes the tautological bundle over the Grassmann manifold Gni .V /.
To conclude the proof of the corollary we verify the criterion from Proposition 2.7,

that is, we prove that the following product does not vanish

u WD

kY
iD1

w�1.E.i//�niC1
�
�E.i/

�
D

kY
iD1

wd�ni
�
�E.i/

�
2 H�.BIF2/:

From the fact that E.i/˚ EiC1 ˚ � � � ˚ EkC1 D B � V is a trivial vector bundle we
get the following equality of total Stiefel–Whitney classes:

w
�
�E.i/

�
D w.EiC1 ˚ � � � ˚EkC1/ D w.EiC1/ � � �w.EkC1/:

Therefore,

wd�ni
�
�E.i/

�
D wd�ni .EiC1 ˚ � � � ˚EkC1/ D wniC1�ni .EiC1/ � � �wnkC1�nk .EkC1/;

because dim.EiC1 ˚ � � � ˚EkC1/D d � ni and dim.Er /D nr � nr�1 for every 1 � r �
k C 1. In particular, each Stiefel–Whitney class wnr�nr�1.Er / is the mod 2 Euler class
e.Er / of the vector bundle Er . We calculate as follows:

u D

kY
iD1

wd�ni
�
�E.i/

�
D

kY
iD1

kC1Y
rDiC1

wniC1�ni .EiC1/ � � �wnkC1�nk .EkC1/

D wn2�n1.E2/ � wn3�n2.E3/
2
� � �wnkC1�nk .EkC1/

k :

Thus, it remains to show that the class

wn2�n1.E2/ � wn3�n2.E3/
2
� � �wnkC1�nk .EkC1/

k

does not vanish in H�.BIF2/.
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For that we apply the homomorphism ˛�n1;:::;nk to the class u and land in the cohomo-
logy of the complete flag manifold H�.Flag1;:::;d�1.V /IF2/, that is

˛�n1;:::;nk .u/ D ˛n1;:::;nk
�
wn2�n1.E2/ � wn3�n2.E3/

2
� � �wnkC1�nk .EkC1/

k
�

D w1.En1C1/ � � �w1.En2/

� w1.En2C1/
2
� � �w1.En3/

2

:::

� w1.EnkC1/
k
� � �w1.EnkC1/

k :

The vector bundles on the farthest right-hand side of the last equality are canonical line
bundles over the complete flag manifold. Here we used the isomorphisms

˛�n1;:::;nkE2 Š En1C1 ˚ � � � ˚En2 ; : : : ; ˛
�
n1;:::;nk

EkC1 Š EnkC1 ˚ � � � ˚EnkC1 :

Now, we observe that the monomial in the cohomology of the complete flag manifold

w1.En1C1/ � � �w1.En2/ w1.En2C1/
2
� � �w1.En3/

2
� � �w1.EnkC1/

k
� � �w1.EnkC1/

k

divides the monomial

w1.E1/
0w1.E2/

1w1.E3/
2
� � �w1.Ed /

d�1:

Thus, in order to prove that ˛�n1;:::;nk .u/ ¤ 0 and consequently conclude u ¤ 0 it suffices
to show that

0 ¤ w1.E1/
0w1.E2/

1w1.E3/
2
� � �w1.Ed /

d�1
2 H�

�
Flag1;:::;d�1.V /IF2

�
Š F2

�
w1.E1/; w1.E2/; : : : ; w1.Ed /

�
=I1;:::;d�1:

Recall that the ideal I1;:::;d�1 D .�r .w1.E1/; : : : ; w1.Ed // W 1 � r � d/ is generated by
elementary symmetric polynomials. Hence

w1.E1/
0w1.E2/

1
� � �w1.Ed /

d�1
¤0” w1.E�.1//

0w1.E�.2//
1
� � �w1.E�.d//

d�1
¤0

for every permutation � 2 Sd . For the sake of brevity we prove that

w1.Ed /
0w1.Ed�1/

1
� � �w1.E1/

d�1
¤ 0 (12)

in H�.Flag1;:::;d�1.V /IF2/.
The proof of (12) proceeds by induction as follows. First, obviously w1.E1/d�1 ¤ 0

in
H�

�
Flag1.V /IF2

�
Š H�

�
P .V /IF2

�
Š F2Œx�=.x

d /;

where x corresponds to w1.E1/d�1. Next, let 1 � k � d � 2 and let

w1.Ek/
d�kw1.Ek�1/

d�kC1
� � �w1.E1/

d�1
¤ 0 (13)
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in H�.Flag1;:::;k Flag1;:::;k.V /IF2/. Finally, the map

Flag1;:::;kC1.V /! Flag1;:::;k.V /;

given by
0 � V1 � � � � � Vk � VkC1 7! 0 � V1 � � � � � Vk ;

is the projective bundle of the vector bundle .E1 ˚ � � � ˚ Ek/? over the flag manifold
Flag1;:::;k.V /, that is P ..E1 ˚ � � � ˚Ek/

?/. From Lemma 4.1 we have that

H�
�

Flag1;:::;kC1.V /IF2
�
Š H�

�
P
�
.E1 ˚ � � � ˚Ek/

?
�
IF2

�
Š H�

�
Flag1;:::;k.V /IF2

�
Œx�=

� d�kX
sD0

wd�k�s x
s

�
;

where wd�k�s D wd�k�s.�.E1 ˚ � � � ˚ Ek// and x D w1.EkC1/. Thus, from assump-
tion (13), that is w1.Ed /0w1.Ed�1/1 � � �w1.E1/d�1 ¤ 0 in H�.Flag1;:::;k.V /I F2/ we
obtain

w1.EkC1/
d�k�1w1.Ek/

d�kw1.Ek�1/
d�kC1

� � �w1.E1/
d�1
¤ 0

in H�.Flag1;:::;kC1.V /I F2/. Consequently (12) holds. This concludes the argument and
completes the proof of the corollary.

Let us also point out that the non-vanishing of the class u can also be deduced using
[15, Rem. 2.8].

6.2. Proof of Corollary 2.11

As in the previous section we assume that k � 1 and d � 2 are integers, and that 0 D
n0 < n1 < � � � < nk < nkC1 D d is a strictly increasing sequence of integers. We take
V D Rd and denote by E1; : : : ;EkC1 the canonical vector bundles over the flag manifold
Flagn1;:::;nk .V /. Furthermore, E.i/ WD

L
1�r�i Er for all 1 � i � k, and E WD E.k/. In

addition, we assume that j D 2t C r is an integer, with 0� r � 2t � 1, and d D dim.V /�
2tCk�1 C r C 1.

In order to prove the existence of the desired partition we use Theorem 2.2. More
precisely, if j � �k.E.1/; : : : ; E.k//, then the theorem guarantees the existence of a
point b WD .W1; : : : ; WkC1/ in the base space Flagn1;:::;nk .V / of the vector bundle E
and an arrangement Hb D .H b

1 ; : : : ; H
b
k
/ of k linear hyperplanes in the fiber Eb such

that for every pair of connected components .O0;O00/ of the arrangement complement
Eb � .H

b
1 [ � � � [H

b
k
/ holdsZ

O0\S.Eb/

'1 D

Z
O00\S.Eb/

'1 ; : : : ;

Z
O0\S.Eb/

'j D

Z
O00\S.Eb/

'j ;

and in addition

.H b
1 /
?
� E.1/b; .H

b
2 /
?
� E.2/b ; : : : ; .H

b
k /
?
� E.k/b :
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Since E.i/b D
L
1�r�i .Er /b D

L
1�r�i Wr for every 1 � i � k, we have that

.H b
i /
?
� E.i/b H) H b

i �
�
E.i/b

�?
D

� M
1�r�i

Wr

�?
D

M
iC1�r�kC1

Wr :

Hence, for the proof of Corollary 2.11 it suffices to verify that

j D 2t C r � �k
�
E.1/; : : : ; E.k/

�
when d D dim.V / � 2tCk�1 C r .

We have from Corollary 2.10 that �k.E.1/; : : : ; E.k// D �k.d; : : : ; d /, so we need to
show that

j D 2t C r � �k.d; : : : ; d / D max
®
j 0 W ek.pt/j

0

… .xd1 ; : : : ; x
d
k /
¯
:

Since d � 2tCk�1 C r , using [6, Lem. 4.2], we get that ek.pt/j … .xd1 ; : : : ; x
d
k
/, and

consequently j � �k.d; : : : ; d /. This completes the proof of the corollary.

6.3. Proof of Theorem 2.12

Fix integers d � 1 and k� 1with d � k, and let V DRdC1. Let .jk ; : : : ; jd / be a permuta-
tion of the set ¹k; : : : ; dº, and take an arbitrary collections of functions 'a;b WS.EdC1aC1 /!

R, k � a � d , 1� b � ja, from the sphere bundle of the tautological vector bundleEdC1aC1

over the Grassmann manifold GaC1.V / to the real numbers.
According to Theorem 3.5, for the existence of the desired partition it suffices to prove

the non-vanishing of the Euler class of the vector bundle

E D E
˚jk
kC1
˚E

˚jkC1
kC2

˚ � � � ˚E
˚jd
dC1

:

For this we show that the related mod 2 Euler class which lives in the cohomology ring
H�.Flagk;:::;d .V /IF2/ is not zero. As already discussed at the beginning of Section 6 we
have that

w.E/ D
�
1C w1.EkC1/

�jk
� � �
�
1C w1.EdC1/

�jd
implying that the mod 2 Euler class of E is e.E/ D w1.EkC1/jk � � �w1.EdC1/jd . Apply-
ing the map ˛�

k;:::;d
, with the usual abuse of notation we have that

˛�k;:::;d
�

e.E/
�
D w1.EkC1/

jk � � �w1.EdC1/
jd ¤ 0

inH�.Flag1;:::;d .V /IF2/, according to (12). Consequently, e.E/¤ 0 and the proof of the
theorem is complete.

7. Proofs of Propositions 2.13 and 2.14

In this section, we verify the properties of integers �k.m1; : : : ; mk/ stated in Proposi-
tions 2.13 and 2.14.
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7.1. Proof of Proposition 2.13

Let k � 1 be an integer and let m1; : : : ; mk be positive integers. Recall that

�k.m1; : : : ; mk/ D max
®
j W ek.pt/j … .xm11 ; : : : ; x

mk
k
/
¯
;

where

ek.pt/ D
Y

.˛1;:::;˛k/2Fk2�¹0º

.˛1x1 C � � � C ˛kxk/ 2 Rk.pt/ Š F2Œx1; : : : ; xk �:

We prove the claims in the order they are listed.
(1) Assume thatmk � 2k�1mC 1 and in addition that �k�1.m1; : : : ;mk�1/�m. Then

ek.pt/m … .xm11 ; : : : ; x
mk�1
k�1

/. We transform as follows

ek.pt/m D ek�1.pt/m
Y

.˛1;:::;˛k�1/2Fk�12

.˛1x1 C � � � C ˛k�1xk�1 C xk/
m

D ek�1.pt/m � x2
k�1m
k C p2k�1m�1 � x

2k�1m�1
k C � � � C p1 � xk C p0;

where p2k�1m�1; : : : ; p1; p0 2 F2Œx1; : : : ; xk�1�. Consequently,

ek.pt/m … .xm11 ; : : : ; x
mk�1
k�1

; x2
k�1mC1
k

/:

Since, mk � 2k�1mC 1 we have that

.x
m1
1 ; : : : ; x

mk
k
/ � .x

m1
1 ; : : : ; x2

k�1mC1
k

/

and thus
ek.pt/m …

�
x
m1
1 ; : : : ; x

mk�1
k�1

; x
mk
k

�
:

Therefore, �k.m1; : : : ; mk/ � m, as claimed.
(2) We prove the claim by induction on k. For k D 1 we assume that m1 � mC 1.

Then
�1.m1/ D max

®
j W e1.pt/j D xj1 … .x

m1
1 /

¯
D m1 � 1 � m:

Now, assume that the claim holds for k � 1 � 1, and assume in addition that

m1 � 2
i�1mC 1 for all 1 � i � k:

Then from the assumption �k�1.m1; : : : ;mk�1/ � m, and consequently by part (1) of this
claim it follows that �k.m1; : : : ; mk/ � m.

(3) In this case we have thatm1 DmC 1;m2 D 2mC 1; : : : ;mk D 2k�1C 1. Accord-
ing to the part (2) of this claim, it follows that

�k.mC 1; 2mC 1; 2
2mC 1 : : : ; 2k�1mC 1/ � m:
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Now, assume that �k.m1; : : : ; mk/ � r � 1 for some sequence of positive integers
m1; : : : ; mk . Hence, ek.pt/r … .xm11 ; : : : ; x

mk
k
/. We expand the transformation from the

proof of part (1) of this claim as follows:

ek.pt/r D ek�1.pt/r
Y

.˛1;:::;˛k�1/2Fk�12

.˛1x1 C � � � C ˛k�1xk�1 C xk/
r

D ek�2.pt/r

�

Y
.˛1;:::;˛k�2/2Fk�22

.˛1x1 C � � � C xk�1/
r

Y
.˛1;:::;˛k�1/2Fk�12

.˛1x1 C � � � C xk/
r

:::

D x2
k�1r
k x2

k�2r
k�1 � � � x

2r
2 x

r
1 C q:

Here q is a polynomial whose additive representation in the monomial basis does not con-
tain the monomial x2

k�1r
k

x2
k�2r
k�1

� � � x2r2 x
r
1 . Since, ek.pt/r … .xm11 ; : : : ; x

mk
k
/ we conclude

that
mk � 2

k�1r C 1;mk�1 � 2
k�2r C 1; : : : ; m1 � r C 1;

implying that

mk Cmk�1 C � � � Cm2 Cm1 � .2
k�1
C 2k�2 C � � � C 2C 1/r C k:

In particular,

mk Cmk�1 C � � � Cm2 Cm1 � .2
k
� 1/�k.m1; : : : ; mk/C k:

Thus, in the case when m1 D mC 1;m2 D 2mC 1; : : : ; mk D 2k�1 C 1, we have that

.2k � 1/mC k � .2k � 1/�k.mC 1; 2mC 1; 2
2mC 1; : : : ; 2k�1mC 1/C k;

or in other words m � �k.mC 1; 2mC 1; 22mC 1; : : : ; 2k�1mC 1/.
Hence, we showed that �k.mC 1;2mC 1;22mC 1; : : : ; 2k�1mC 1/Dm, as claimed.
(4) We start with the following transformation

ek.pt/m D ek�r .pt/m
Y

.˛k�rC1;:::;˛k/2Fr2�¹0º

Y
.˛1;:::;˛k�r /2Fk�r2

.˛1x1 C � � � C ˛kxk/
m

D ek�r .pt/m
Y

.˛k�rC1;:::;˛k/2Fr2�¹0º

Y
.˛1;:::;˛k�r /2Fk�r2

�
.˛1x1 C � � � C ˛k�rxk�r /

C .˛k�rC1xk�rC1 C � � � C ˛kxk/
�m
:

Hence,

ek.pt/m D ek�r .pt/m
Y

.˛k�rC1;:::;˛k/2Fr2�¹0º

.˛k�rC1xk�rC1 C � � � C ˛kxk/
2k�rm

„ ƒ‚ …
Dp

Cq;
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where the sets of (non-zero) monomials in the additive presentations of the polynomials
p and q are disjoint.

The assumptions �k�r .m1; : : : ; mk�r / � m and �r .mk�rC1; : : : ; mk/ � 2k�rm imply
that

ek�r .pt/m …
�
x
m1
1 ; : : : ; x

mk�r
k�r

�
and Y

.˛k�rC1;:::;˛k/2Fr2�¹0º

.˛k�rC1xk�rC1 C � � � C ˛kxk/
2k�rm

…
�
x
mk�rC1
k�rC1

; : : : ; x
mk
k

�
:

Therefore, the polynomial p is the witness that

ek.pt/m …
�
x
m1
1 ; : : : ; x

mk�r
k�r

; x
mk�rC1
k�rC1

; : : : ; x
mk
k

�
;

and consequently �k.m1; : : : ; mk/ � m, as claimed
(5) The polynomial ek.pt/m can be presented as follows:

ek.pt/m D ek�1.pt/mxmk
Y

.˛1;:::;˛k�1/2Fr2�¹0º

.˛1x1 C � � � C ˛k�1xk�1 C xk/
m:

Hence the lowest power of xk in ek.pt/m is xm
k

with coefficient ek�1.pt/2m.
The assumption �k�1.m1; : : : ; mk�1/ � 2m implies that

ek�1.pt/2m … .xm11 ; : : : ; x
mk�1
k�1

/;

and since mk � mC 1 it follows that ek.pt/m … .xm11 ; : : : ; x
mk�1
k�1

; x
mk
k
/.

(6) In the case when k D 2 we have that

e2.pt/m D
�
x1x2.x1 C x2/

�m
D

mX
iD0

�
m

i

�
xmCi1 x2m�i2 : (14)

Ifm� �.m1;m2/ then e2.pt/m … .xm11 ; x
m2
2 /. Hence, there exists a non-zero monomial�

m
i

�
xmCi1 x2m�i2 in the presentation (14) of e2.pt/m which does not belong to the ideal

.x
m1
1 ; x

m2
2 /. This means,

�
m
i

�
D 1 mod 2,mC i �m1 � 1 and 2m� i �m2 � 1 for some

integer 0 � i � m.
Assume the opposite, that there is an integer 0 � i � m such that

�
m
i

�
D 1 mod 2

and 2m � m2 C 1 � i � m1 � m � 1. Then the polynomial e2.pt/m when expressed in
the monomial basis has non-zero monomial

�
m
i

�
xmCi1 x2m�i2 which does not belong to the

ideal .xm11 ; x
m2
2 /. Consequently,

e2.pt/m …
�
x
m1
1 ; x

m2
2

�
:

(7) This is a direct consequence of the previous claim with m D 2t C r � 1, m1 D
2t C 2t , m2 D 2tC1 C r and i D r � 1 because

�
2tCr�1
r�1

�
D 1 mod 2, and

2m �m2 C 1 D r � 1 � i D r � 1 � m1 �m � 1 D r:

We have completed the proof of the proposition.
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7.2. Proof of Proposition 2.14

As before, k � 1 is an integer and m1; : : : ; mk are positive integers. In the proof we use
the fact that the polynomial ek.pt/ is the top Dickson polynomial in variables x1; : : : ; xk .
For more details on Dickson polynomials see for example [38].

(1) LetDk�1;Dk�2; : : : ;D1 be the Dickson polynomials in variables x1; : : : ; xk�1 of
degree 2k�1 � 1;2k�1 � 2; : : : ; 2k�1 � 2k�2, respectively. In particular,Dk�1D ek�1.pt/.
From [38, Prop. 1.1] we have that

D.xk/ WD
Y

.˛1;:::;˛k�1/2Fk�12 �¹0º

.˛1x1 C � � � C ˛k�1xk�1 C xk/

D x2
k�1�1
k CD1 x

2k�2�1
k C � � � CDi x

2k�1�i�1
k C � � � CDk�2 xk CDk�1:

Here D.xk/ is considered as a polynomial in the polynomial ring F2Œx1; : : : ; xk�1�Œxk �,
and so ek.pt/ D ek�1.pt/xkD.xk/.

Let 0 � r � 2t � 1. We compute in F2Œx1; : : : ; xk�1�Œxk � as follows:

D.xk/
2tCr

D
�
x2

k�1�1
k C � � � CDix

2k�1�i�1
k C � � � CDk�2xk CDk�1

�2tCr
D
�
x
2t .2k�1�1/

k
C � � � CD2t

i x
2t .2k�1�i�1/

k
C � � � CD2t

k�2x
2t

k CD
2t

k�1

�
�
�
x2

k�1�1
k C � � � CDix

2k�1�i�1
k C � � � CDk�2xk CDk�1

�r
: (15)

Then, the coefficient of x2
t .2k�1�1/

k
in D.xk/2tCr is Dr

k�1
D ek�1.pt/r , obtained as the

product of x2
t .2k�1�1/

k
from the first factor with Dr

k�1
from the second factor in (15).

Indeed, the only other candidate which might additionally contribute to the coefficient of
x
2t .2k�1�1/

k
is the product

D2t

1 x
2t .2k�2�1/

k
� x
r.2k�1�1/

k
D D2t

1 x
2t .2k�2�1/Cr.2k�1�1/

k

when

2t .2k�1 � 1/ D 2t .2k�2 � 1/C r.2k�1 � 1/” 2tCk�2 D r.2k�1 � 1/:

This cannot be, because 0 � r � 2t � 1. Consequently, the coefficient of x2
k�1CtCr
k

in

ek.pt/2tCr D ek�1.pt/2tCrx2tCr
k

D.xk/
2tCr

is equal to ek�1.pt/2tC2r .
From the assumption �k�1.m1; : : : ; mk�1/ � 2t C 2r we have that

ek�1.pt/2tC2r …
�
x
m1
1 ; : : : ; x

mk�1
k�1

�
;

and since mk � 2tCk�1 C r C 1 we conclude that

ek.pt/2tCr …
�
x
m1
1 ; : : : ; x

mk�1
k�1

; x
mk
k

�
:

Thus, �k.m1; : : : ; mk/ � 2t C r as claimed.
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(2) The claim follows from the previous instance of the proposition because

2tC1 C r D 2t C r C 2t > 2t C r C r D 2t C 2r:

(3) The proof is by induction on k for every pair of integers .2t ; r/with 1� r � 2t � 1.
In the case k D 1, the assumption m1 � 2t C r C 1 implies that

�1.m1/ D m1 � 1 � 2
t
C r C 1 � 1 D 2t C r:

Let us assume that the claim holds for k � 1 � 1 and every pair of integers .2t ; r/ with
1� r � 2t � 1 (the induction hypothesis). Takemi � 2tCk�1C r C 1D 2.tC1/C.k�1/�1C
r C 1 for all 1 � i � k. Applying the induction hypothesis to the first k � 1 inequalities
and the pair .2tC1; r/ we get that

�k�1.m1; : : : ; mk/ � 2
tC1
C r:

Now, the inequalities �k�1.m1; : : : ; mk/ � 2tC1 C r C 1 and mk � 2tCk�1 C r C 1, and
the previous claim of this proposition imply that �k.m1; : : : ;mk/� 2t C r . This completes
the proof.

(4) Since ek.pt/2 D
Q
.˛1;:::;˛k/2Fk2�¹0º

.˛1x
2
1 C � � � C ˛kx

2
k
/, the following equival-

ence holds

ek.pt/2m 2
�
x
2m1
1 ; : : : ; x

2mk
k

�
” ek.pt/m 2

�
x
m1
1 ; : : : ; x

mk
k

�
:

This equivalence implies the claim.

8. Proof of Theorem 2.15

LetE be a Euclidean vector bundle of dimension n over a compact and connected ENRB ,
and let the integers 1 � k � n and j � 1 be fixed. We first prove the equality of the ideals
and then a criterion for the existence of orthogonal partitions.

8.1. Proof of Part (1)

We prove the equality of the ideals

Jk.E/ WD .f1; : : : ; fk/ D . Nf1; : : : ; Nfk/ DW J
0
k.E/; (16)

where

fi WD
X

0�r1C���Cri�n�iC1

wn�iC1�.r1C���Cri /.E/ x
r1
1 � � � x

ri
i ;

Nfi WD
X

0�r1C���Crk�n�iC1

wn�iC1�.r1C���Crk/.E/ x
r1
1 � � � x

rk
k
;

for 1 � i � k.
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To prove the equality of the ideal we first consider the polynomials

XaŒb� WD
X

r1C���CrbDn�aC1

x
r1
1 � � � x

rb
b

for 1 � a � nC 1 and 1 � b � k. It is straightforward to see that the following equality
holds

XaŒb C 1� D XaŒb�C xbC1 �XaC1Œb C 1�: (17)

Indeed, we have that

XaŒb C 1� WD
X

r1C���CrbCrbC1Dn�aC1

x
r1
1 � � � x

rb
b
x
rbC1
bC1

D

X
r1C���CrbC0Dn�aC1

x
r1
1 � � � x

rb
b
x0bC1 C xbC1

X
r1C���CrbC1Dn�a

x
r1
1 � � � x

rbC1
bC1

D XaŒb C 1� D XaŒb�C xbC1 �XaC1Œb C 1�:

Next, using induction on ` � 0, we prove the following identity:

XcCsŒc C `� D
X

c�b�cC`

� X
sbC���CscC`Db�c

x
sb
b
� � � x

scC`
cC`

�
XbCsŒb�: (18)

In case when ` D 0 the equality (18) becomes the identity XcCsŒc� D XcCsŒc�, and so
the induction basis is verified. Now, we assume that the equality (18) holds for the given
fixed integer ` � 1. For the induction step we compute and use the induction hypothesis
as follows:

XcCsŒc C `C 1�
(17)
D XcCsŒc C `�C xcC`C1 �XcCsC1Œc C `C 1�

(18)
D

X
c�b�cC`

� X
sbC���CscC`Db�c

x
sb
b
� � � x

scC`
cC`

�
XbCsŒb�

C xcC`C1 �XcCsC1Œc C `C 1�

D

X
c�b�cC`

� X
sbC���CscC`Db�c

x
sb
b
� � � x

scC`
cC`

�
XbCsŒb�

C xcC`C1 �
X

s1C���CscC`C1Dn�c�s

x
s1
1 � � � x

scC`C1
cC`C1

:

Gathering two terms on the right-hand side of the previous equality under one sum we get
that

XcCsŒc C `C 1� D
X

c�b�cC`C1

� X
sbC���CscC`Db�c

x
sb
b
� � � x

scC`C1
cC`C1

�
XbCsŒb�:

This completes the induction and the proof of the relation (18).
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We proceed with a proof of the equality (16). Observe that for 1 � i � k:

fi D
X

0�s�n�iC1

ws.E/XsCi Œi � and Nfi D
X

0�s�n�iC1

ws.E/XsCi Œk�;

and in particular that fk D Nfk .
Now, using the relation (18) we have that

Nfi D
X

0�s�n�iC1

ws.E/XsCi Œk�

(18)
D

X
0�s�n�iC1

ws.E/
� X
i�b�k

� X
sbC���CskDb�i

x
sb
b
� � � x

sk
k

�
XsCbŒb�

�
D

X
i�b�k

� X
sbC���CskDb�i

x
sb
b
� � � x

sk
k

�� X
0�s�n�iC1

ws.E/XsCbŒb�
�

D

X
i�b�k

� X
sbC���CskDb�i

x
sb
b
� � � x

sk
k

�
fb :

In summary,
Nfr D

X
i�b�k

� X
sbC���CskDb�i

x
sb
b
� � � x

sk
k

�
fb : (19)

Hence, . Nf1; : : : ; Nfk/ � .f1; : : : ; fk/.
On the other hand, since fk D Nfk we have that fk 2 J0

k
.E/ D . Nf1; : : : ; Nfk/. Now, for

1 � r � k � 1 assume that frC1; : : : ; fk 2 J0
k
.E/. Then from the equality (19) it follows

that

Nfr D
X
r�b�k

� X
sbC���CskDb�r

x
sb
b
� � � x

sk
k

�
fb

D fr C
X

rC1�b�k

� X
sbC���CskDb�r

x
sb
b
� � � x

sk
k

�
fb;

and consequently, by assumption, we have

fr D Nfr C
X

rC1�b�k

� X
sbC���CskDb�r

x
sb
b
� � � x

sk
k

�
fb 2 J0k.E/:

Thus, . Nf1; : : : ; Nfk/ � .f1; : : : ; fk/.
We have completed the proof of the equality (16).

8.2. Proof of Part (2)

For the second part of the theorem assume that the class ek.B/j does not belong to the
ideal Jk.E/. The proof relies on the criterion from Theorem 3.4. In other words, it suffices
to prove that

e
��
Bk.E/=R

�˚j �
¤ 0:
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The mod 2 Euler class of the vector bundle
�
Bk.E/=R

�˚j , or in other words the top
Stiefel–Whitney class, lives in the cohomology of H�.Yk.E/IF2/. We show that

• H�.Yk.E/IF2/ Š Rk.B/=Jk.E/, and that

• w.2k�1/j ..Bk.E/=R/
˚j / D ek.B/

j C Jk.E/ 2 Rk.B/=Jk.E/.

The second claim follows from the first claim, the fact that Bk.E/ is the restriction of
Ak.E/, and the related computation of w.2k�1/j ..Ak.E/=R/

˚j / in the proof of The-
orem 3.2. Thus we need to prove only the first statement, that is to compute the cohomo-
logy ring H�.Yk.E/IF2/.

First, we give a description of the space Yk.E/ as a projective bundle at the end of the
tower of projective bundles

Yk.E/ D P .Ek/
pk
�! P .Ek�1/

pk�1
���! � � �

p2
�! P .E1/

p1
�! B; (20)

where E1 WD E and p1 is the projection. The vector bundles E2; : : : ; Ek and the maps
p2; : : : ; pk are defined iteratively as follows.

LetH.E1/ be the Hopf line bundle over P .E1/, and recall that p1WP .E1/! B is the
projection map. Then H.E1/ is a vector subbundle of the pull-back vector bundle p�1E1,
and we set

E2 WD H.E1/
?

to be the orthogonal complement of H.E1/ inside p�1E1. In particular, E2 is a .n � 1/-
dimensional vector bundle over P .E1/. Set p2WP .E2/! P .E1/ to be the projection map.

Next, H.E2/˚ p�1H.E1/ is a vector subbundle of the pull-back vector bundle .p2 ı
p1/
�E1, and so we define

E3 WD
�
H.E2/˚ p

�
1H.E1/

�?
;

and p3 to be the projection map P .E3/! P .E2/.
We continue in the same way. Assume that for 1 � i � k � 1, all the vector bundles

E1; : : : ; Ei , of dimensions n; n � 1; : : : ; n � i C 1, respectively, and the projection maps
p1; : : : ; pi are defined. Notice that

H.Ei /˚ p
�
i H.Ei�1/˚ .pi ı pi�1/

�H.Ei�1/˚ � � � ˚ .pi ı � � � ı p1/
�H.E1/

is a vector subbundle of .pi ı � � � ı p1/�E1. We define the vector bundle EiC1 as the
orthogonal complement

EiC1 WD
�
H.Ei /˚ p

�
i H.Ei�1/˚ � � � ˚ .pi ı � � � ı p1/

�H.E1/
�?
: (21)

The map piC1 is defined to be the standard projection P .EiC1/! P .Ei /. It is clear that
Yk.E/ D P .Ek/.

Now, we use the tower of projective bundles (20), Lemma 4.1, as well as the proof of
Claim 4.2, to describe the cohomology ring H�.Yk.E/IF2/ D H�.P .Ek/IF2/.
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SinceH�.Yk.E/IF2/DH�.P .Ek/IF2/ where P .Ek/ is the projective bundle of the
.n � k C 1/-dimensional vector bundle Ek over P .Ek�1/ from Lemma 4.1 we have that

H�
�
Yk.E/IF2

�
Š H�

�
P .Ek�1/IF2

�
Œxk �=

 
n�kC1X
sD0

wn�kC1�s.Ek/ x
s
k

!
;

where xk corresponds to mod 2 Euler class of the Hopf line bundle H.Ek/. Continuing
to apply Lemma 4.1 for the projective bundles P .Ek�1/; : : : ;P .E1/ we get the following
conclusion

H�
�
Yk.E/IF2

�
Š H�.BIF2/Œx1; : : : ; xk �=

 
nX
sD0

wn�s.E1/ x
s
1; : : : ;

n�kC1X
sD0

wn�kC1�s.Ek/ x
s
k

!
:

(22)

Here xi , for all 1 � i � k, with a bit of abuse of notation, corresponds to the mod 2 Euler
class of the Hopf line bundle H.Ei /, or more precisely to the mod 2 Euler class of the
pull-back line bundle .pk ı � � � ı piC1/�H.Ei /. Set fi WD

Pn�iC1
sD0 wn�iC1�s.Ei / x

s
i for

1 � i � k. Then

H�
�
Yk.E/IF2

�
Š H�.BIF2/Œx1; : : : ; xk �=

�
f1; : : : ; fk

�
:

Now we identify the Stiefel–Whitney classes of the vector bundles E1; : : : ; Ek in
terms of the Stiefel–Whitney classes E. Note that E1 D E by definition, and so w.E1/D
w.E/. Next, from the definition (21) of the vector bundlesEi for 2� i � k, as orthogonal
complements, we get that

w.Ei / D w
�
�
�
H.Ei�1/˚ p

�
i�1H.Ei�2/˚ � � � ˚ .pi�1 ı � � � ı p1/

�H.E1/
��

D w
�
�H.Ei�1/

�
� w
�
� p�i�1H.Ei�2/

�
� � �w

�
� .pi�1 ı � � � ı p1/

�H.E1/
�
:

From Lemma 4.1 we also know that

w
�
H.Ei�1/

�
D 1C xi�1; : : : ; w

�
.pi�1 ı � � � ı p1/

�H.E1/
�
D 1C x1:

Here we assume the expected identifications of the classes x1; : : : ;xi�1 along the sequence
of isomorphisms given in Lemma 4.1. Combining these last two observations we have that

w.Ei / D
1

1C xi�1
�

1

1C xi�2
� � �

1

1C x1
D

X
ri�1�0

x
ri�1
i�1 �

X
ri�2�0

x
ri�2
i�2 � � �

X
r1�0

x
r1
1 ;

for 2 � i � k. Consequently, we have that

fi D

n�iC1X
sD0

wn�iC1�s.Ei / x
s
i

D

X
0�r1C���Cri�n�iC1

wn�iC1�.r1C���Cri /.E/ x
r1
1 � � � x

ri
i

for every 1 � i � k.
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This finishes the proof of the second claim, and so the proof of Theorem 3.4 is com-
plete.

8.3. Proof of Proposition 2.16

LetE be a Euclidean vector bundle of dimension n over a compact and connected ENRB ,
and let k � 1 and j � 1 be integers.

Consider the composition inclusion

Yk.E/ ,�! Xk.E/ ,�! Xk.E ˚R/:

The image, Yk.E/, can be seen as the zero-set of the section s of the vector bundle
Ak.E ˚R/=R which is defined as follows.

The fibre of Ak.E ˚ R/=R over the point .b; .L1; : : : ; Lk// 2 Xk.E ˚ R/ decom-
poses into the direct sum� M

1�i�k

Li

�
˚

� M
1�i<j�k

Li ˝ Lj

�
˚ � � � :

For every 1 � i � k denote by ai the dual of the (linear) projection map given by the
composition

Li ,�! Eb ˚R �! R:

Similarly, for 1 � i < j � k we set a0i;j to be the dual of the (linear) map induced by the
inner product

Li ˝ Lj ,�! .Eb ˚R/˝ .Eb ˚R/ �! R:

Now, define s by .b; .L1; : : : ; Lk// 7! ..ai /1�i�k ; .a
0
i;j /1�i<j�k ; 0; : : : ; 0/. Hence, the

zero-set of the section s is indeed Yk.E/. Additionally, the vector bundle Ak.E ˚R/=R
over Xk.E ˚R/ restricts to the vector bundle Bk.E/=R over Yk.E/.

Consequently, if the Euler class of .Ak.E ˚ R/=R/jC1 is non-zero, then the Euler
class of .Bk.E/=R/j is non-zero. Indeed, see for example [16, Prop. 2.7], which says that
if x is any class in the cohomology of Xk.E ˚ R/ that restricts to zero in the cohomo-
logy of the zero-set, in this case Yk.E/, then the product of x with the Euler class of
Ak.E ˚R/=R is zero. This concludes the proof of the proposition.

9. Even more main results

In this section, we use methods developed in previous sections to give new proofs and to
generalise results of Larry Guth and Nets Hawk Katz [20], Blagojević, Dimitrijević Blago-
jević and Günter M. Ziegler [5], Schnider [34], and Soberón and Yuki Takahashi [36].

Throughout this section B will be a compact, connected ENR, and E will be a Euc-
lidean real vector bundle of dimension n overB . For an integer k � 1,E.1/; : : : ;E.k/will
be finite-dimensional non-zero real vector bundles over B with dimE.i/D ni . As before,
we write S.E.i// for the sphere bundle of E.i/ with fibre at b 2 B the space of oriented
1-dimensional subspaces of E.i/b . Equivalently, S.E.i// is the unit sphere bundle for a
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chosen Euclidean structure. Also, we shall use V for a Euclidean vector space V , and
sometimes see it as a vector bundle over a point.

Recall thatAk.E.1/; : : : ;E.k// is the 2k-dimensional real vector bundle over P .E.1//
�B � � � �B P .E.k//with fibre at .L1; : : : ;Lk/, whereLi 2 P .E.i/b/, b 2B , the real vec-
tor space of all functions S.L1/ � � � � � S.Lk/! R. As a space of real-valued functions,
each fibre of Ak.E.1/; : : : ; E.k// can be equipped with a partial order by setting

f1 � f2 ”
�
8x 2 S.L1/ � � � � � S.Lk/

�
f1.x/ � f2.x/

for f1; f2 2 Ak.E.1/; : : : ; E.k//. Hence, every finite non-empty subset of functions S
has a least upper bound, which we shall denote by max.S/.

9.1. Partitioning by polynomials

Now we give an extension of the results [20, Thm. 4.1], [19, Thm. 0.3] and [5, Thm. 1.3]
to the setting of mass assignments over an arbitrary Euclidean vector bundle E. In the
case of a vector bundle over a point we recover the original results.

For an integer d � 0, let P d .E/ denote the real vector bundle of dimension
�
nCd�1
d

�
overB with fibre at b 2B the vector space of homogeneous polynomial functions vWEb!
R of degree d . It is the dual .SdE/� of the vector bundle obtained from the d -th symmet-
ric power of E. If d D 1, we can identify P 1.E/ D E� with E using the inner product.

In the following, the crucial property of polynomial functions that we shall need is that
for a non-zero homogeneous polynomial function v 2 P d .V /, the zero-set

Z.v/ D
®
x 2 S.V / j v.x/ D 0

¯
is null with respect to the Lebesgue measure on the Riemannian manifold S.V /. It follows
that, for any " > 0, there is an open neighbourhood of Z.v/ in the sphere S.V / with
volume less than ", consult [37].

Now we extend our discussion from Section 3.3. Assume that E.i/ � P d.i/.E/ is a
vector subbundle of the vector bundle of homogeneous polynomial functions of degree
d.i/ � 1. For b 2 B , .L1; : : : ; Lk/ 2 P .E.1/b/ � � � � � P .E.k/b/, and .v1; : : : ; vk/ 2
S.L1/ � � � � � S.Lk/, let us define an analogue of an orthant by

AbIv1;:::;vk WD
®
u 2 S.Eb/ j v1.u/ > 0; : : : ; vk.u/ > 0

¯
:

We note that any real continuous function on the sphere bundle 'WS.E/! R restricts to
a function 'b WS.Eb/! R which can be integrated over the set AbIv1;:::;vk .

The first generalisation of [20, Thm. 4.1], and also at the same time extension of our
Theorem 2.2, can be stated as follows.

Theorem 9.1. Under the hypotheses in the text, for an integer j � 1, given continuous
functions '1; : : : ; 'j WS.E/! R assume that the F2-cohomology Euler class

e
�
Ak
�
E.1/; : : : ; E.k/

�
=R
�j
2 H .2k�1/j

�
P
�
E.1/

�
�B � � � �B P

�
E.k/

�
IF2

�
of the vector bundle Rj˝.Ak.E.1/; : : : ;E.k//=R/Š.Ak.E.1/; : : : ;E.k//=R/

˚j is non-
zero.
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Then there exists a point b 2 B and lines Li 2 P .E.i/b/, 1 � i � k, such that, for
each 1 � ` � j , the function

S.L1/ � � � � � S.Lk/! R; .v1; : : : ; vk/ 7!

Z
AbIv1;:::;vk

.'`/b

is constant.

Proof. As in the Section 3.3, we define for any continuous function 'WS.E/! R a sec-
tion s' of the vector bundle Ak.E.1/; : : : ; Ek/ by

s'
�
b; .L1; : : : ; Lk/

�
.v1; : : : ; vk/ WD

Z
AbIv1;:::;vk

'b :

Continuity of s' follows from the fact that zero sets of polynomial functions are sets of
Lebesgue measure zero on the sphere S.V /. The proof then follows the pattern of the
arguments in the proof of Theorem 3.3.

The result remains true if the functions '` are only assumed to be integrable in an
appropriate sense. Form the locally trivial bundleL1B.S.E/IR/!B with fibre at b2B the
Banach space L1.S.Eb/IR/ of all absolutely Lebesgue integrable functions S.Eb/!R.
If ' is a section of this Banach bundle, then we can integrate 'b 2 L1.S.Eb/IR/ and the
associated section s' is continuous. Next, we extend our results to probability measures.
Let us write MC.S.E//! B for the locally trivial bundle with fibre at b 2 B the space
MC.S.Eb// of all finite Borel measures on the sphere S.Eb/, see Section 1.2. A continu-
ous section � of MC.S.E// will be called a family of probability measures on S.E/ if
�b 2 MC.S.Eb// is a probability measure for each b 2 B . In this more general context
the zero set of a polynomial function can have positive measure.

Now, for each b 2 B and every .L1; : : : ; Lk/ 2 P .E.1/b/ � � � � � P .E.k/b/, we have
2k non-negative real numbers �b.AbIv1;:::;vk / 2 R, .v1; : : : ; vk/ 2 S.L1/ � � � � � S.Lk/,
(the measures of generalised orthants) with sum less than or equal to 1 (the measure of a
zero set can be positive).

The following proposition allows us to transfer our more general setup in the previ-
ously developed topological framework.

Proposition 9.2. Assume that for an integer j � 1 there exist families of probability meas-
ures �1; : : : ;�j on S.E/ with the property that, for each b 2 B and every .L1; : : : ;Lk/ 2
P .E.1/b/� � � � �P .E.k/b/, there is .v1; : : : ; vk/ 2 S.L1/� � � � � S.Lk/ and some ` such
that .�`/b.AbIv1;:::;vk / > 1=2

k .
Then the vector bundle Rj˝.Ak.E.1/; : : : ;E.k//=R/Š .Ak.E.1/; : : : ;E.k//=R/

˚j

has a nowhere zero section.

Proof. For a fixed integer 1 � ` � j , consider the set of points

U` WD
®
x D .bIL1; : : : ; Lk/ 2 P

�
E.1/

�
�B � � � �B P

�
E.k/

�
W�

9.v1; : : : ; vk/ 2 S.L1/ � � � � � S.Lk/
�
.�`/b.AbIv1;:::;vk / > 1=2

k
¯
;
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which is an open subspace of the base space X WD P .E.1// �B � � � �B P .E.k//. From
the assumption it follows that U1; : : : ; Uj forms an open cover of the base space X .

Using the local triviality of the vector bundles, for every point x 2 X we can manu-
facture a (continuous) section sx

`
of Ak.E.1/; : : : ; E.k// and an open neighbourhood U x

`

of x such that for each x0 D .b0IL01; : : : ; L
0
k
/ 2 X the following holds

(i) sx
`
.x0/.v01; : : : ; v

0
k
/ 2 Œ0; 1�, for all .v01; : : : ; v

0
k
/ 2 S.L01/ � � � � � S.L

0
k
/;

(ii) if sx
`
.x0/.v01; : : : ; v

0
k
/ D 1, then .�`/b0.Ab0Iv01;:::;v

0
k
/ > 1=2k ;

(iii) if x0 2 U x
`

, then there is some .v01; : : : ; v
0
k
/ such that sx

`
.x0/.v01; : : : ; v

0
k
/ D 1.

Since X is compact, and U1; : : : ; Uj forms an open cover of X it can be refined to a
compact cover K1; : : : ; Kj of X with the property that K` � U` for 1 � ` � j .

Now, for each `, we can choose a finite subset S` � U` such that K` �
S
x2S`

U x
`

.
This allows as to define a continuous section s` of Ak.E.1/; : : : ;E.k// as s` WD max¹sx

`
W

x 2 S`º. Here the maximum is taken with respect to the partial order on the space of real
valued functions which was introduced at the beginning of this section. The properties
(i), (ii) and (iii) ensure that at each point x 2 K` at least one of the 2k components of
s`.x/ is equal to 1, but that not all are equal to 1. Thus, the associated section Ns` of
Ak.E.1/; : : : ;E.k//=R has no zeros inK`. The sum .Ns1; : : : ; Nsj / is a nowhere zero section
of Rj ˝ .Ak.E.1/; : : : ; E.k//=R/.

Now a generalisation of Theorem 9.1 can be stated as follows.

Theorem 9.3. Under the hypotheses in the text, suppose that for an integer j � 1,�1; : : : ;
�j are families of probability measures on the sphere bundle S.E/. If the F2-cohomology
Euler class

e
�
Ak
�
E.1/; : : : ; E.k/

�
=R
�j
2 H .2k�1/j

�
P
�
E.1/

�
�B � � � �B P

�
E.k/I F2

��
of the vector bundle Rj ˝ .Ak.E.1/; : : : ; E.k//=R/ is non-zero, then there exists a point
b 2 B and lines Li 2 P .E.i/b/, 1 � i � k, such that, for each 1 � ` � j and every
.v1; : : : ; vk/ 2 S.L1/ � � � � � S.Lk/,

�`.AbIv1;:::;vk / �
1

2k
:

Proof. Since the Euler class is non-zero, every section of the vector bundle has a zero. So
the assertion follows from Proposition 9.2.

As an application we give a spherical version of a generalisation in [5, Thm. 1.3]
of [20, Thm. 4.1].

Corollary 9.4. Let V be a real vector space of dimension n. There is a constant Cn with
the property that for integers d � 1 and j � 1, and probability measures �1; : : : ; �j on
the sphere S.V /, there exists a non-zero homogeneous polynomial function v of degree d
on S.V / such that for each component O of the complement in S.V / of the zero set of v

�1.O/ < Cn �
j

dn�1
; : : : ; �j .O/ < Cn �

j

dn�1
:
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Proof. Consider probability measures �1; : : : ;�j and fix an integer k � 1. We shall apply
Theorem 9.3 withB D pt a point, V DRn andE.i/D V.i/�P d.i/.V / a vector subspace
of dimension ni �

�
nCd.i/�1
d.i/

�
.

Let r.i/ � 1 be the least positive integer such that r.i/n�1 > 2i�1j and set

d.i/ D .n � 1/r.i/ and ni D r.i/
n�1:

Take V.i/ to be the ni D r.i/n�1-dimensional space of polynomials with basis, in terms
of the standard coordinate functions �i , the monomials

.�
s1
1 �

r.i/�s1
2 /.�

s2
2 �

r.i/�s2
3 / � � � .�

sn�1
n�1 �

r.i/�sn�1
n /;

where 0 � s1; : : : ; sn�1 < r.i/.
It follows from Proposition 2.13 that �k.n1; : : : ; nk/ � j . By Theorem 9.3, there exist

homogeneous polynomials v1; : : : ; vk of degree d.1/; : : : ; d.k/, respectively, such that
�`.AptIv1;:::;vk / � 1=2

k for all 1 � ` � j . The product v1 � � � vk has degree dk D d.1/C
� � � C d.k/ and each component of the complement of its zero-set is contained in some
AptIv1;:::;vj . Since

2
i�1
n�1 � j

1
n�1 < r.i/ � 2 � 2

i�1
n�1 � j

1
n�1 ;

it follows that

dk D d.1/C � � � C d.k/ � .n � 1/
�
r.1/C � � � C r.k/

�
� 2.n � 1/ � j

1
n�1 �

kX
iD1

2
i�1
n�1 D 2.n � 1/ � j

1
n�1 �

2
k
n�1 � 1

2
1
n�1 � 1

:

So dn�1
k

< C 0n2
kj , where C 0n D .

2.n�1/

2
1
n�1 �1

/n�1.

Now .dk/ is a strictly increasing sequence. If k is chosen so that dk � d < dkC1, then
1=2kC1 < C 0nj=d

n�1
kC1

, and so

1

2k
< Cn �

j

dn�1
kC1

� Cn �
j

dn�1
;

where Cn D 2C 0n. We can multiply v1 � � � vk by any non-zero polynomial of degree d �
d1 � � � dk to produce the required polynomial of degree d .

9.2. Partitioning by affine functions

In this section we give an extension of our results on the spherical GHR problem for
the mass assignments to the broader class of partitions by caps which are not necessarily
hemispheres.

Let V be an n-dimensional real vector space with n � 2. Using the inner product we
can identify the vector space R˚ V with the .nC 1/-dimensional vector space of affine
functions V ! R where the pair .t;w/ 2 R˚ V determines the function u 7! t C hu;wi.
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t < 0 t > 0

0

0

w
‖w‖

w
‖w‖

C(v)

C(−v)

C(v)

C(−v)

Figure 4. The halfspaces defining the caps.

A unit vector v D .t; w/ 2 S.R˚ V / decomposes the sphere S.V / as the union S.V / D
C.v/ [ C.�v/ of two caps:

C.v/ D
®
u 2 S.V / W hu;wi � �t

¯
and C.�v/ D

®
u 2 S.V / W hu;wi � �t

¯
with intersection ¹u 2 S.V / W hu; wi D �tº. For an illustration see Figure 4. If t D 0,
the caps are hemispheres. If t > kwk, then C.�v/ D ;; if t < �kwk, then C.v/ D ;. If
t D kwk, then C.�v/ is the single point �w=kwk, and, if t D �kwk, C.v/ D ¹w=kwkº.
The intersection C.v/ \ C.�v/, if jt j < kwk is a sphere of dimension n � 2 (if n > 1,
which we now assume).

Now suppose that each vector bundleE.i/ is a subbundle of R˚E, regarding a vector
v 2E.i/b �R˚Eb in the fibre at b 2 B as an affine linear functionEb!R. For a point
b 2 B , a collection of lines .L1; : : : ; Lk/ 2 P .E.1/b/ � � � � � P .E.k/b/, and a collection
of vectors .v1; : : : ; vk/ 2 S.L1/ � � � � � S.Lk/, we define another analogue of an orthant
by

CbIv1;:::;vk WD
®
u 2 S.Eb/ W v1.u/ > 0; : : : ; vk.u/ > 0

¯
:

The corresponding equipartition theorem is proved in the usual way by constructing a
section of the vector bundle Rj ˝ .Ak.E.1/; : : : ; E.k//=R/.

Theorem 9.5. Under the hypotheses in the text, suppose that for an integer j � 1 the
function '1; : : : ; 'j WS.E/! R are continuous. If the F2-cohomology Euler class

e
�
Ak
�
E.1/; : : : ; E.k/

�
=R
�j
2 H .2k�1/j

�
P
�
E.1/

�
�B � � � �B P

�
E.k/IF2

��
of the vector bundle Rj ˝ .Ak.E.1/; : : : ; E.k//=R/ is non-zero, then there exists a point
b 2 B and there exist lines Li 2 P .E.i/b/, 1 � i � k, such that, for each 1 � ` � j , the
function

S.L1/ � � � � � S.Lk/! R; .v1; : : : ; vk/ 7!

Z
CbIv1;:::;vk

.'`/b

is constant.



Many partitions of mass assignments 97

9.3. Partitioning by spherical wedge

Next we describe an extension of the results of Schnider [34] and Soberón and Takahashi
[36].

Let V be a vector space of dimension n � 3, and let U � V be a vector subspace of
dimension m � 2. Then V D U ˚ U? is the direct sum of U and its orthogonal com-
plement U? and the unit sphere S.V / D S.U ˚ U?/ is the join S.U / � S.U?/. To be
precise, we also think of the join as the space

S.V / D
®

cos.�/x C sin.�/y j x 2 S.U /; y 2 S.U?/; 0 � � � �=2
¯
:

Just as in the previous section, given v D .t;w/ 2 S.R˚ U/, we have the decomposition
of the sphere S.U / as C.v/ [ C.�v/, where

C.v/ D
®
u 2 S.U / W hu;wi � �t

¯
and C.v/ D

®
u 2 S.U / W hu;wi � �t

¯
:

This leads to a decomposition of the bigger sphere S.V / as the unionW.v;U /[W.�v;U /
of two wedges

W.v; U / D C.v/ � S.U?/

D
®

cos.�/uC sin.�/y W u 2 S.U /; y 2 S.U?/; hu;wi � �t; 0 � � � �=2
¯

and

W.�v; U / D C.�v/ � S.U?/

D
®

cos.�/uC sin.�/y W u 2 S.U /; y 2 S.U?/; hu;wi � �t; 0� � � �=2
¯
:

The intersectionW.v;U /\W.�v;U / is S.U?/ if jt j > kwk, a disc of dimension n�m
if jt j D kwk, and a sphere of dimension n� 2 if jt j< kwk. (The subspace ¹rx W r � 0; x 2
W.v; U /º of V is an m-cone in the sense of [34].)

For example, take U DR2, U? DR, V DR2˚R, so thatmD 2, nD 3. The wedges
W.v; U /, where v D .t; w/ 2 S.R2 ˚R/ with jt j < kwk, are the subsets®�

cos.�/ cos.�/; cos.�/ sin.�/; sin.�/
�
2 S.R2 ˚R/ W ˛ � � � ˇ; ��=2 � � � �=2

¯
;

where 0 � ˛ < ˇ < 2� .
Now suppose that F.i/ � E is a vector subbundle of dimension mi � 2, for every

1 � i � k, and that E.i/ is a subbundle of R˚ F.i/ of dimension ni � mi C 1. For a
point b 2B , lines .L1; : : : ;Lk/ 2 P .E.1/b/� � � � � P .E.k/b/, and vectors .v1; : : : ; vk/ 2
S.L1/ � � � � � S.Lk/, we write

WbIv1;:::;vk WD

k\
iD1

�
S.Eb/ �W

�
� vi ; F .i/b

��
as the intersection of the open subsets S.Eb/ �W.�vi ; F .i/b/ � W.vi ; E.i/b/.

As in all the previous partition problems for mass assignments we derive the following
result in almost identical manner.
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Theorem 9.6. Under the hypotheses in the text, suppose that j � 1 is an integer, the
functions '1; : : : ; 'j WS.E/! R are continuous, and j � �k.E.1/; : : : ; E.k//.

Then there exists a point b 2 B and there exist lines Li 2 P .E.i/b/, 1 � i � k, such
that, for each 1 � ` � j , the function

S.L1/ � � � � � S.Lk/! R; .v1; : : : ; vk/ 7!

Z
WbIv1;:::;vk

.'`/b

is constant.

In the special case of a vector bundle over a point we get the following corollary.

Corollary 9.7. Suppose that j � 1 is an integer, '1; : : : ; �j W S.V /! R are continuous
functions and that j � �k.n C 1; : : : ; n C 1/. Let m1; : : : ; mk be integers in the range
2 � mi � n.

Then there exist vector subspaces U1; : : : ; Uk � V with dim.Ui /D mi and lines Li 2
P .R˚ Ui /, 1 � i � k, such that for each 1 � ` � j , the function

S.L1/ � � � � � S.Lk/! R; .v1; : : : ; vk/ 7!

Z
W.v1;U1/\���\W.vk ;Uk/

'`

is constant.

Proof. Take B to be the product Gm1.V / � � � � � Gmk .V / of Grassmann manifolds and
F.i/ to be the canonical mi -dimensional bundle over the i -th factor. Apply Theorem 9.6
with ni D mi C 1 and E.i/ D R˚ F.i/. Indeed, since �1.R˚ F.i// D n, we have that

�k
�
E.1/; : : : ; E.k/

�
D �k.nC 1; : : : ; nC 1/

by Proposition 2.7.

Remark 9.8. The previous Corollary 9.7 can be sharpened by restricting the base space
in the following way. Replace the Grassmann manifolds Gmi .V /, where V D Rn, by the
its subspace P .Rn�miC1/, embedded by taking the direct sum of a line in Rn�miC1 with
Rmi�1 to get a subspace of Rn D Rn�miC1 ˚ Rmi�1 of dimension mi . Then the vector
bundle E.i/ restricts to Rmi ˚Hi where Hi is the Hopf line bundle H.Rn�miC1/. So
�1.R

mi ˚Hi / D n, because wn�mi .�Hi / 6D 0.

To illustrate the conditions in Corollary 9.7 we spell out the special case nD 3, j D 3,
k D 1, m1 D 2, for which �1.3C 1/ D 3. Suppose that '1; '2; '3WS2 D S.R3/! R are
continuous functions. Then there is a wedge W � R3, specified by a plane U through the
origin in R3 and .t; w/ 2 S.R˚ U/, such thatZ

W

�1 D
1

2

Z
S2
�1;

Z
W

�2 D
1

2

Z
S2
�2;

Z
W

�3 D
1

2

Z
S2
�3:

Furthermore, the k D 1 case of Corollary 9.7 gives [34, Thm. 8], and also the spherical
version of [36, Thm. 1.2 and Thm. 3.2].
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Corollary 9.9. Suppose that '1; : : : ; 'nWS.Rn/! R are continuous functions and m is
an integer, 2 � m � n. Write V D Rn and V 0 D Rm�1 � Rn�mC1 ˚Rm�1 D V .

Then there exists a vector subspaceU � V of dimensionm containing the subspace V 0

and a vector v 2 S.R˚ U/ such thatZ
W.v;U /

'` D
1

2

Z
S.V /

�l D

Z
W.�v;U /

'`

for ` D 1; : : : ; n.

Proof. We just need to recall that �1.nC 1/ D n. The sharpening, to give the restriction
that U should contain V 0, is given by Remark 9.8.

The connection between the affine and spherical cases was discussed in Section 1.3.
We explain how [36, Thm. 1.2] can be deduced from the casem D 2 of our Corollary 9.9.

Corollary 9.10. For an integer n� 2, suppose that 1; : : : ; nWRn�1!R are continuous
functions with compact support with the n integrals

R
Rn�1  `, 1 � ` � n, not all equal to

zero.
Then there exist two distinct parallel hyperplanes in Rn�1 such that the closed regionS

sandwiched between them satisfiesZ
S

 l D
1

2

Z
Rn�1

 `;

for all 1 � ` � n.

(Note that if all the integrals
R

Rn�1 �` are zero, then there is a trivial statement for any
two coinciding hyperplanes.)

Proof. Consider the diffeomorphism

� Wƒ D
®
.x; y/ 2 S.Rn�1 ˚R/ W y > 0

¯
! Rn�1; .x; y/ 7!

x

y
;

which maps intersections of linear subspaces of Rn�1 ˚R with ƒ to affine subspaces of
Rn�1. Each density  ` lifts to a density '` on S.Rn�1 ˚ R/ with support in the open
upper hemisphere ƒ. (To be precise, '.x; y/ D yn .x=y/.)

Let U � Rn�1 ˚ R D V be a 2-dimensional vector subspace and v 2 S.R ˚ U/
a vector as provided by Corollary 9.9 when m D 2. Since some

R
Rn�1  ` is non-zero,

both S.V / � W.�v; U / and S.V / � W.v; U / have to be non-empty. The intersection
W.v; U / \W.�v; U / is, therefore, the union of two discs

¹aº � S.U?/ � S.R � a˚ U?/ and ¹bº � S.U?/ � S.R � b ˚ U?/

meeting in S.U?/. Here a; b 2 S.U /.
The image of the intersection �.W.v;U /\W.�v;U /\ƒ/ is the union of two affine

hyperplanes meeting in �.S.U?/ \ƒ/.
We can prescribe the subspace V 0 in Corollary 9.9 to be the line 0˚R � Rn�1 ˚R.

In that case, S.U?/ \ƒ is empty, and the two hyperplanes are parallel.
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10. Concluding remarks: real flag manifolds

In the final section we make some further remarks on particular arguments used in the
proofs of our results.

For a Euclidean vector space V of dimension n and integers 0D n0 < n1 < � � �< nk <
n, let B WD Flagn1;:::;nk .V / be the manifold of flags .V�/ W 0 D V0 � V1 � � � � � Vk � V
with dimVi D ni . The canonical bundles of dimension ni over B are denoted by E.i/, as
in the statement of Corollary 2.10. Write E for the trivial bundle over B with fibre V .

Proposition 10.1. The F2-Euler classes satisfy

kY
iD1

e
�
E=E.i/

�ni�ni�1
6D 0 2 Hd .BI F2/ D F2;

where n0 D 0 and the dimension d is equal to
Pk
iD1.n � ni /.ni � ni�1/.

Proof. Let .U�/ W 0 D U0 � U1 � � � � � Uk be a fixed flag in V . The general linear group
G D GL.V / acts transitively on B . If H � G denotes the stabiliser of .U�/, we have a
map � WG ! B defined by �.g/ D .gU�/ which describes B as the homogeneous space
G=H .

The derivative of � at 12G is a map from the Lie algebra gDEnd.V / onto the tangent
space ofB at .U�/with kernel the Lie algebra h ofH , that is, the space of endomorphisms
a of V such that a.Ui /� Ui for all i . The tangent bundle of B is the quotient of the trivial
Lie algebra bundle B � GL.V / D GL.F / by the subbundle with fibre at .V�/ 2 B the
quotient of End.V / by the Lie subalgebra, h.V�/ of endomorphisms that preserve the
flag. Using the inner product, we can express h.V�/ as

Lk
iD1 Hom.V ?i ; Vi \ .V

?
i�1//,

which has dimension
Pk
iD1.n � ni /.ni � ni�1/.

Now consider the vector bundle E 0, defined as a quotient of B � End.V /, with the
fibre at .V�/ 2 B the quotient of g D End.V / by the vector subspace h.V�; U�/ of maps
aWV ! V such that a.Vi / � Ui for i D 1; : : : ; k. In metric terms,

E 0 D

kM
iD1

Hom
�
F.i/?; Ui \ .U

?
i�1/

�
;

and its Euler class e.E 0/ is equal to
Qk
iD1 e.E.i/

?/ni�ni�1 2 Hd .BI F2/.
The vector bundle E 0 over the closed connected d -dimensional manifold B has the

same dimension d . We shall prove that e.E 0/ is non-zero by writing down a smooth sec-
tion s of E 0 with exactly one zero and checking that the (mod 2) degree of that zero is
equal to 1.

The section s is defined to have the value at .V�/ given, modulo h.V�; U�/, by the
identity endomorphism 1 2 End.V /. At a zero of s, Vi � Ui for all i , that is, V� D U�. At
this zero, the tangent space of B coincides with the fibre of E 0, and we shall show that the
derivative of s is the identity endomorphism of g=h.
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To do this, we lift from B D G=H to G by the projection � . The pullback ��E 0 is
trivialised by the isomorphism

G � .g=h/! E 0

taking .g; aC h/, where g 2 GL.V /, a 2 End.V /, to ..gU�/; ag�1 C h.gU�//. And the
section s lifts to the map

G ! g=h W g 7! g C h;

for which the derivative at 1 is, transparently, the projection g! g=h. This completes the
proof.

Writing the quotient E=E.i/ D E.i/? as the direct sum
Lk
jDi .E.j C 1/=E.j //,

where E.k C 1/ D E, we can reformulate Proposition 10.1 as follows.

Corollary 10.2. The product of Euler classes

kY
iD1

e
�
E.i C 1/=E.i/

�ni
2 Hd .BI F2/

is non-zero.

This Corollary 10.2 connects with previously given arguments in the following way:

• The case k D 1, shows that e.E.1/?/n�n1 6D 0, and in particular e.E.1/?/ 6D 0, as
used in the proof of Corollary 2.5.

• The statement e.E.1/?/n�n1 6D 0 is the result needed in Section 5.3 for the proof of
Corollary 2.8.

• For general k, we have in particular that
Qk
iD1 e.E.i/?/ 6D 0. This is what is required

in Section 6.1 to prove Corollary 2.10.

• If ni D n � k C i � 1 (that is, n1 D n � k, n2 D n � k C 1, : : : ; nk D n � 1), then

e
�
E.1/?

�k e
�
E.2/?

�k�1
� � � e

�
E.k/?

�1
6D 0:

This is what is needed in Section 6.3 to prove Theorem 2.12. It shows directly that
e.EkC1/k � � �e.EdC1/d 6D 0. The permutation symmetry of the cohomology then gives

e.EkC1/jk � � � e.EdC1/jd 6D 0:

Thus, the different arguments we offered in the proofs can be seen as direct con-
sequences of Corollary 10.2. To the best of our knowledge these implications were not
known until now, and we believe it was worth explaining these connections.
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