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Log canonical thresholds and coregularity

Fernando Figueroa, Joaquín Moraga, and Junyao Peng

Abstract. We prove the ascending chain condition for log canonical thresholds of bounded coregu-
larity.

1. Introduction

The main approach to study algebraic singularities is to introduce invariants that allow us
to measure how singular a point in an algebraic variety is. Once the invariant is introduced,
the next step is to understand what values it can take, whether it detects smoothness, how
the numerical data reflects on the singularity and vice-versa. The best-known invariant of
singularities is the multiplicity. The multiplicity played a fundamental role in the resolu-
tion of singularities [25]. However, it is often too coarse of an invariant to obtain infor-
mation in other contexts. This has led algebraic geometers to search for new invariants
of singularities that could guide further developments in the understanding of algebraic
singularities.

The log canonical threshold, formerly known as complex singularity exponent, was
introduced by Atiyah in the study of the division of distributions using resolution of sin-
gularities [2]. The first properties of log canonical thresholds were proved by Varchenko in
connectionwith the asymptotic expansion of integrals and Hodge structures [54]. Shokurov
realized that the log canonical threshold could be defined purely in terms of the sin-
gularities of the minimal model program [51]. Shokurov conjectured that log canonical
thresholds of the same dimension satisfy the ascending chain condition (ACC), i.e., there
is no infinite increasing sequence. This conjecture follows a common philosophy in alge-
braic geometry: in a fixed dimension, we cannot find an infinite sequence of milder and
milder singularities. The previous principle is not mathematically precise, but it has led to
many important conjectures on the behavior of algebraic singularities (see, e.g., [7, 53]).

Although its modern definition is purely in terms in terms of log discrepancies, the log
canonical threshold has deep connections with other topics in mathematics: the growth of
the number of polynomial solutions in Z=pn [24], dimensions of jet schemes [47], the
theory of D-modules [26], the ˛-invariant and algebraic K-stability [55], vanishing theo-
rems [35], non-rationality of Fano varieties [11], and positive characteristic methods [3].
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It is also worth mentioning that the log canonical threshold is deeply related to the termi-
nation of flips [4, 18, 45].

We briefly recall some of the developments toward the understanding of log canon-
ical thresholds. In [29–31], Kuwata computed log canonical thresholds of hypersurface
singularities, surfaces in C3, and reducible plane curves. In [49, 50], Prokhorov started
the study of accumulation points of log canonical thresholds, conjecturing that they must
come from log canonical thresholds in lower dimensions. de Fernex, Ein, and Mustaţă
drew a connection between the log canonical threshold and multiplicity in [12]. In [10],
Cheltsov studied the log canonical threshold of Fano threefold hypersurfaces and its rela-
tion to birational rigidity. In [13], de Fernex, Ein, and Mustaţă proved the ascending chain
condition for log canonical thresholds in smooth varieties. In that paper, the authors used
an inversion of adjunction for complete intersection varieties [16]. Then, they achieved
the ACC for log canonical thresholds on varieties with bounded singularities in [14]. This
achievement used the theory of ultrafilters. In [19], Hacon, McKernan, and Xu, proved
the ACC for log canonical thresholds. Using ideas from the minimal model program, the
authors reduced this statement to a problem about projective varieties of log Calabi–Yau
type. Then, they improved the Hacon–McKernan developments on birational bounded-
ness of varieties of log general type to prove this global result. In [8], Birkar and Zhang
generalized the results for log canonical thresholds to the context of generalized pairs.
This improvement was vital for the effectivity of Iitaka fibrations and boundedness of
Fano varieties [5, 6, 8]. In [39], McLean proved that the log canonical threshold can be
expressed in terms of Floer cohomology.

Now, we turn to explain the main theorem of this article. When computing log canon-
ical thresholds, it is natural to start with orbifold and toric examples. If .T I t / is the germ
of a toric singularity and � is a reduced torus invariant divisor, then the pair .T; �I t /
is always log canonical. This means that, regardless of the dimension of the germ, the
log canonical threshold is only one. This leads to a natural question: are log canonical
thresholds controlled by the dimension or can they be controlled by a weaker invariant?
Some computations show that the closer to the toric setting we are, the fewer values for
log canonical thresholds we can produce (see Example 5.1). In order to make this notion
precise, we define the coregularity of a log canonical singularity .X;BI x/ to be:

coreg.X;BI x/ WD dimX � dim D.X;BI x/ � 1: (1.1)

Here, D.X;BIx/ is the dual complex of the singularity, whose homotopy type captures the
combinatorial complexity of the exceptional locus of a log resolution (see, e.g., [15, 28]).
The coregularity of a log canonical singularity is an integer between zero and its dimension
minus one (see Definition 2.22). Toric singularities with the reduced toric boundary have
coregularity zero (see Example 5.1). The set of log canonical thresholds of coregularity at
most c, with respect to some coefficient sets I and J , is defined to be (see Definition 2.8):

LCTc.I; J /

WD
®
t j t D lct.X;BI�/; coeff.B/ 2 I; coeff.�/ 2 J; and coreg.X;B C t�/ � c

¯
:
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The main theorem of this article is the following.

Theorem 1. Let c � 1 be a positive integer. Let I and J be two sets of nonnegative real
numbers satisfying the descending chain condition. Then, the set LCTc.I; J / satisfies the
ascending chain condition.

Note that we do not fix the dimension of our germs. Hence, the previous theorem
extends to a great extent the main result of [19]. Indeed, the set LCTc.I; J / contains all
the germs of dimension at most c C 1 but it also contain germs of unbounded dimension
(see Example 5.4). In Example 5.2, we show that both the conditions on the coefficients
and the coregularity are necessary to obtain the ascending chain condition.

Our definition of coregularity in (1.1) is only for the local case; we call it the local
coregularity. In Definition 2.22, we give the definition of the coregularity for a normal
quasi-projective log canonical pair. In a few words, a pair has coregularity c if locally
around its minimal log canonical centers it has coregularity at most c. In the log Calabi–
Yau setting, this condition can be checked at any point of the dual complex. Indeed, the
dual complex of a log Calabi–Yau pair is equi-dimensional [27].

In the minimal model program, it is usual to study singularities by constructing bira-
tional modifications and reducing the problem about the singularity to a problem about
the exceptional locus of this modification. This sort of argument is known as global-to-
local principle in birational geometry. Thus, we reduce the proof of the ACC for lct’s
with bounded coregularity Theorem 1 to the following statement about log Calabi–Yau
varieties.

Theorem 2. Let c be a positive integer. Let I be a set satisfying the descending chain
condition (DCC). There exists a finite subset I0 � I satisfying the following. Let .X; B/
be a projective log canonical pair so that:

(1) the equivalence KX C B � 0 holds;

(2) the set coeff.B/ is contained in I ; and

(3) the coregularity of .X;B/ is at most c.

Then, we have that coeff.B/ � I0.

Statements such as the previous one are known as global ascending chain conditions
(or global ACC, for short). We call the previous theorem the global ACC with bounded
coregularity. As we will show throughout the proof, the advantage of working with log
canonical thresholds of small coregularity is that we can often reduce these computa-
tions to low-dimensional computations. Following this philosophy, we can give a precise
description of the log canonical thresholds of coregularity zero and one (see Theorem 4.4).

Theorem 3. Let I and J be two sets of nonnegative real numbers. Then, we have that

LCT0.I;J / WD
²
1 �

Pm
kD1 nkikPn

kD1mkjk
� 0 jm;n 2Z�0; nk ;mk 2Z>0; ik 2 I; and jk 2 J

³
:
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Note that in the previous theorem the set of log canonical thresholds is described with
no assumptions on I or J . However, it is clear from the description that it is a set of
real numbers satisfying the ascending chain condition if and only if I and J satisfy the
descending chain condition.

Finally, even if the set of log canonical thresholds with bounded coregularity satisfies
the ascending chain condition, it is natural to study its accumulation points, meaning, the
set of infinite decreasing sequences in the set of log canonical thresholds. In [19], the
authors prove that accumulation points of n-dimensional log canonical thresholds come
from .n � 1/-dimensional log canonical thresholds (up to increasing the coefficients set).
In this direction, we prove that the analogous statement holds for log canonical thresholds
with bounded coregularity.

Theorem 4. Let I � Œ0; 1� be a set satisfying the DCC. Assume that 1 2 I is the only
accumulation point and I D IC. Then, we have that the accumulation points of LCTc.I /
are contained in LCTc�1.I /.

In the previous statement, LCT.I / stands for LCT.I;Z>0/, the setD.I/ is the derived
set of I , and IC is the set of positive integral combinations of the elements of I (see
Definition 2.11). In particular, D.I/ and I also satisfy the DCC (see Lemma 2.12).
The set D.I/ emerges from the set I naturally when performing adjunction to a divisor
(see Lemma 2.17).

We prove many of the theorems in this paper in the context of generalized pairs as
in [8]. We presented them in the setting of pairs in the introduction to simplify the exposi-
tion.

As a counterpart of the coregularity, one can define the regularity of a klt singularity
(see Definition 2.22). This definition is motivated by Shokurov and Prokhorov’s work in
the theory of complements for surfaces [48,52]. The regularity of klt singularities has con-
nections with minimal log discrepancies [42–44], boundedness of klt singularities [23,40],
and local fundamental groups [9, 41, 46]. Indeed, the regularity bounds the rank of finite
abelian groups acting on klt germs. We expect further developments in the understanding
of klt and lc singularities from the perspective of regularity and coregularity.

On the techniques of the article

The idea of using projective geometry to study log canonical thresholds dates back to
McKernan and Prokhorov [38]. In [19], this approach, adjunction theory, and the minimal
model program are used to settle the ascending condition for log canonical thresholds
of bounded dimension. In [8], Birkar and Zhang generalized this result to the setting of
generalized pairs. Our article relies on the ideas of both papers [8, 19]. We aim to reduce
Theorem 2 to the usual global ACC for generalized pairs [8, Theorem 1.6]. To do so,
we will apply the strategy of [19] inductively on the coregularity. For this aim, we use
the minimal model program and study how the coregularity behaves under adjunction
(Lemma 2.28) and by passing to the general fiber of a fibration (Lemma 2.30). In the
following subsection, we expand on the details of the proofs.
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Sketch of the proof

In this section, we give a sketch of the proof of our main results (Theorems 1 and 2).
As explained above, Theorem 2 implies Theorem 1 by means of a global-to-local

reduction. However, this requires an argument slightly different than the usual one. For
simplicity, we consider the local setting of a log canonical singularity .X; B C t�I x/
which is strictly log canonical at x, the coefficients of B and � belong to a set I satisfying
the DCC and the coregularity of the pair .X; B C t�I x/ is at most c. Then, we consider
a dlt modification .Y; BY C t�Y C

Pr
iD1 Si / of the previous pair. Here BY (resp. �Y )

is the strict transform of B (rep. �) on Y . Furthermore, the divisors S1; : : : ; Sr are the
divisors extracted by the dlt modification. We denote by �WY !X the projective birational
morphism. In order to apply the global result, we need to choose a component Si which
intersects �Y and perform adjunction to it. This way, we can use the global ACC in order
to control the coefficient t . By Lemma 2.28, we may control the coregularity of the pair
induced on Si . However, to obtain a projective pair, we need to pass to the general fiber
of Si ! �.Si / which may have higher coregularity (see Example 5.3). In order to fix
this issue, we will consider a minimal log canonical center Z of .X; B C t�I x/ which
contains x. We may choose Z so that the support of t� contains Z. By possibly blowing
up our dlt modification further, we may assume that S1 maps ontoZ. By running a suitable
MMP on Y over X , we may assume that �S1 is nef over the base. At this step, we may
lose the dlt condition of the log pair on Y , but it will remain log canonical. Under the
assumption on S1, the set-theoretic preimage of Z on Y equals S1. In particular, t�Y
must intersect S1 and the intersection t�Y \ S1 dominates Z. We may take a further dlt
modification, keeping the previous conditions (after possibly replacing S1 with some other
component of coefficient one). Thus, we are in the situation that t�Y \ S1 dominates Z.
Since Z is a minimal log canonical center, Lemma 2.30 implies that the coregularity of
the log pair induced on the general fiber of S1 ! Z is bounded by c. Thus, we can use
the global ACC to control the coefficient t multiplying the divisor � .

Now, we proceed to sketch the proof of the global ACC. Consider a sequence of log
Calabi–Yau pairs .Xi ; Bi / as in the statement of Theorem 2. However, for each one there
is a prime componentDi �Xi , so that coeffDi .Bi / violates the ascending chain condition,
i.e., it is strictly increasing. If the sequence of varieties Xi has bounded dimension, then
the finiteness statement follows from the global ACC proved in [19]. The aim is to replace
.Xi ; Bi / with a dlt modification and perform adjunction to a component of bBic that
intersects Di . By Lemma 2.27, as far as dimXi > c, the divisor bBic will be non-empty.
A priori, it may happen that bBic \ Di D ;. However, we can always run a minimal
model program for the pair .Xi ; Bi � "iSi / for some prime component Si � bBic and "i
small enough. We argue that, after finitely many steps of this MMP, we are in one of the
following scenarios:

• the strict transform of Di will intersect the strict transform of Si , or

• we obtain a P1-linking structure and both the strict transform of Di and Si are multi-
sections for this bundle.
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In the former case, we will perform adjunction to Si and replace .Xi ;Bi /with the obtained
pair. In the latter case, we will perform adjunction to a general fiber of the P1-linking
structure. When performing adjunction, we may replace Xi with a variety of one dimen-
sion lower. By performing this process for each pair .Xi ; Bi / in the sequence, we obtain
a new sequence .Zi ; BZi / of bounded dimension with coefficients on a DCC set D.I/.
In Lemma 3.2, we will prove that the sequence coeffDi .Bi / violating the ACC induces a
sequence of prime divisors DZi � Zi so that coeffDZi .BZi / also violates the ascending
chain condition. This leads to a contradiction of the usual global ascending chain condi-
tion [19].

2. Preliminaries

We work over an algebraically closed field K of characteristic zero. Unless otherwise
stated, our varieties are normal and quasi-projective over the base field K. In this section,
we introduce some preliminary results regarding generalized pairs, singularities, adjunc-
tion, coregularity, and the global ascending chain condition.

2.1. Generalized pairs and singularities

In this subsection, we recall the basics about birational nef divisors, generalized pairs and
their singularities.

Definition 2.1. For a normal quasi-projective variety X , consider the set of all birational
projective morphisms � W X� ! X , with X� normal. A b-divisor on X is an element of
the inverse limit:

Divb.X/ D lim
 �
�

Div.X�/:

Therefore a b-divisor M can be written as a countable sum
P
i biVi , where each Vi

is a divisorial valuation of K.X/ such that any normal variety Y birational to X has only
finitely many Vi ’s realized as divisors in Y .

The trace of M on a variety Y birational to X is defined as:

MY WD

X
i

biDi ;

where i runs over all valuations Vi with cY .Vi / D Di and codimYDi D 1.
A b-divisor on X is b-R-Cartier if there exists a birational model X 0 of X and an

R-Cartier divisor DX 0 , such that for any birational projective morphism � W Y ! X 0, we
have that MY D �

�DX 0 . The b-divisor M is a b-nef divisor if DX 0 is nef. In the previous
context, we say that X 0 is a model where M descends and we write M0 for the trace of M
on X 0. Note that, a model where M descend can always be replaced by higher models by
blowing-up.
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Let  WX 0 ! X be a model where M descends. Assume that M is R-Cartier on X .
Assume that M0 is a nef R-Cartier divisor. By the negativity lemma, we can write  �M D
M0 C E, where E is an effective exceptional R-divisor. We say that X n  .E/ is the
locus on X where M descends and we say that  .E/ is the locus of X where M does not
descend.

Definition 2.2. A generalized pair .X;B;M/ is a triple, consisting of:

• a normal quasi-projective variety X ;

• an effective divisor B; and

• a b-nef divisor M;

such that KX C B CMX is R-Cartier. We call B and M the boundary and moduli parts,
respectively.

For a generalized pair .X;B;M/ and a projective morphism � W Y !X , we can write:

��.KX C B CMX / D KY C BY CMY :

We will call .Y; BY ;MY / the log pull-back of .X; B;M/ to Y . Note that BY is uniquely
determined by the previous equality.

Definition 2.3. Let .X;B;M/ be a generalized pair and � W Y !X a birational projective
morphism. As above, we can write

KY C BY CMY D �
�.KX C B CM/:

For a prime divisor E on Y , we define the generalized log discrepancy of .X;B;M/ at E
to be:

aE .X;B;M/ D 1 � coeffE .BY /:

We say that .X; B;M/ has generalized log canonical singularities (resp. generalized
Kawamata log terminal singularities) if aE .X;BM/� 0 (resp. aE .X;B;M/ > 0) for any
prime divisor E over X . We write glc (resp. gklt) for short.

Definition 2.4. A germ .X I x/ is said to be of generalized klt type (resp. generalized lc
type) if there exists a boundary B and a b-nef divisor M on X , such that .X; B;M/ is
generalized klt (resp. generalized lc).

Definition 2.5. A generalized log canonical place (resp. generalized non-klt place) of a
generalized pair .X;B;M/ is a prime divisorE overX , for which aE .X;B;M/D 0 (resp.
aE .X;B;M/ � 0).

A generalized log canonical center (resp. generalized non-klt center) of a generalized
pair .X; B;M/ is the center on X of a generalized log canonical place (resp. gener-
alized non-klt place). We abbreviate the set of generalized lc centers of .X; B;M/ as
lcc.X;B;M/.

A generalized log canonical center that is minimal with respect to inclusion among
generalized log canonical centers is said to be a minimal generalized log canonical center.
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Definition 2.6. A generalized log canonical pair .X;B;M/ is generalized divisorially log
terminal, or gdlt for short, if there exists an open set U � X , such that:

• The coefficients of B are less or equal than one;

• the open set U is smooth and bBcjU has simple normal crossing support;

• all generalized non-klt centers of .X; B;M/ intersect U and consist of strata of bBc;
and

• the locus on X where M descends contains the generic points of each strata of bBc.

Definition 2.7. Let .X;B;M/ be a generalized pair and � W Y ! X be a log resolution of
.X;B/. Assume that M descends on Y . Let S be the normalization of a component of bBc
and SY its birational transform in Y . Let .Y; BY ;MY / be the log pull-back of .X; B;M/

and let:
KSY C BSY CMSY D .KY C BY CMY /jSY ;

with BSY D .BY � SY /jSY and MSY DMY jSY .
Let f be the induced projective birational morphism from SY to S , BS D f�BSY , and

MS D f�MSY . Then the following equality is called generalized adjunction:

KS C BS CMS D .KX C B CMX /jS :

Definition 2.8. Let .X;B;M/ be a generalized log canonical pair, let � � 0 be an effective
divisor, and let N be a b-nef divisor, such that � CNX is R-Cartier. Then, the generalized
log canonical threshold of .�;N/ with respect to .X;B;M/ is:

lct.X;B;MI�;N/ D sup
®
t 2 R j .X;B C t�;M C tN/ is generalized log canonical

¯
:

In the previous generalized pair, B C t� is the boundary divisor, and M C tN is the
moduli divisor. We define LCTc.I; J / to be the set of all lct.X;B;MI�;N/, such that the
following conditions are satisfied:

(1) the coefficients of B are in I ;

(2) the coefficients of � are in J ;

(3) we can write M0 D
P
j �jM

0
j where �j 2 I and each M 0j is nef Cartier;

(4) we can write N0 D
P
j �jN

0
j where �j 2 J and each N 0j is nef Cartier; and

(5) the coregularity (see Definition 2.22) of .X;B C t�;M C tN/ is at most c.

The previous set is called the set of log canonical thresholds with indices in I and J and
coregularity bounded above by c.

2.2. Generalized dlt modifications

In this subsection, we recall the existence of generalized dlt modifications and results
regarding the coefficients obtained after adjunction. Some of the results in this subsection
are analogous to those in [8, 19]. In some cases, we give a short proof for the sake of
completeness.
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Definition 2.9. Let .X;B;M/ be a generalized pair, then a generalized pair .Y;BY ;MY /

is a generalized dlt modification of .X; B;M/ if .Y; BY ;MY / is a Q-factorial gdlt pair
and there exists a projective birational morphism � W Y ! X satisfying the following
conditions:

(1) the exceptional locus Ex.�/ is purely divisorial;

(2) all the divisors E on Y exceptional over X satisfy aE .X;B;M/ D 0; and

(3) we have that KY C BY CMY D �
�.KX C B CMX /.

The following lemma is well known to the experts (see, e.g. [17, Theorem 2.9]).

Lemma 2.10. Let .X; B;M/ be a generalized log canonical pair. Then there exists a
generalized dlt modification .Y; BY ;MY / of .X;B;M/.

Definition 2.11. For a set I � R, we define:

IC D ¹0º [

²
i 2 Œ0; 1� j i D

X̀
kD1

jk ; for some j1; : : : ; j` 2 I
³
;

and

D.I/ D

²
a � 1 j a D

m � 1C f

m
; m 2 Z>0; f 2 I

C

³
:

The following lemmas are straightforward from the previous definitions, see for exam-
ple [38, Lemma 4.4].

Lemma 2.12. Let I be a set of nonnegative real numbers satisfying the DCC, then the
sets D.I/ and IC satisfy the DCC.

Lemma 2.13. Let I be a set of nonnegative real numbers, then we have that:

D
�
D.I/

�
D D.I/ [ ¹1º:

Definition 2.14. Let I be a set of nonnegative real numbers. Let d be a real number in
the interval Œ0; 1�. We define:

Dd .I / D

²
a � 1 j a D

m � 1C f C kd

m
; k;m 2 Z>0; f 2 I

C

³
:

Lemma 2.15. Let I be a set of nonnegative real numbers. Let d1 2 Dd .I /, then we have
that Dd1.I / � Dd .I /.

Proof. Any element in Dd1.I / is of the form:

a D
m � 1C f C k1d1

m
;

where m; k1 2 Z>0 and f 2 IC. Similarly d1 is of the form:

d D
n � 1C g C kd

n
;
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where n; k 2 Z>0 and g 2 IC. Thus, we can write

a D
m � 1C f C k1.

n�1CgCkd
n

/

m

D
mn � nC f nC k1n � k1 C k1g C k1kd

mn

D
mn � 1C .k1 � 1/.n � 1/C f nC k1g C k1kd

mn
;

which is in Dd .I /.

The following lemma is [19, Lemma 5.2].

Lemma 2.16. Let J be a finite set and I a set of nonnegative real numbers satisfying the
DCC. Then, the set

I1 D

²
i 2 I j

m � 1C ki C f

m
2 J \ Œ0; 1� for some m; k 2 Z>0; f 2 I

C

³
is also finite.

Proof. We can assume i ¤ 0. We have that ki � 1, so no element of i 2 I1 can be greater
than one, hence we can assume I � Œ0; 1�. As I satisfies the DCC, we have that i is
bounded below, therefore as ik � 1, we have that k is bounded above, so it can only take
finitely many values.

Call ` D m�1CkiCf
m

: If ` D 1, then we can assume m D 1, otherwise we have that `
is bounded above by a number smaller than one, since J is finite. Therefore 1 � 1

m
is

bounded above, and m can only take finitely many values.
For any fixed m; `; k, the set:

Im;`;k WD

²
i j i D

m` �mC 1 � f

k
; f 2 IC

³
is a subset of I . Hence Im;`;k satisfies the DCC. The set Im;`;k also satisfies the ACC as
the only variable f 2 I satisfies the DCC. Therefore, Im;`;k is a finite set. As m; `; k can
only take finitely many possible values, the set I1 is also finite.

The following lemma follows from the proof of [8, Proposition 4.9]. It allows us to
control the coefficients of the boundary part and the moduli part under adjunction to a
divisorial log canonical center.

Lemma 2.17. LetI be a set of nonnegative real numbers satisfying the DCC. Let .X;B;M/

be a generalized dlt pair, with coefficients in I . Let d be a positive real number for which
either:

• there exists a prime component D on X with coeffD.B/ D d , or

• we can write M0 D
P
j �jM

0
j with �j nonnegative real numbers, each M 0j 6� 0 is nef

Cartier, and �j D d for some j .
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Let S be the normalization of a component of bBc with either S \D ¤ ; or S \Mj ¤ ;
with �j D d . Let BS and MS be the boundary and moduli part defined by the generalized
adjunction. Then, we have that either:

(i) the coefficients of BS belong to D.I/,

(ii) for any prime component Q of D \ S we have that coeffQ.BS / 2 Dd .I /, or

(iii) we can write M0SD
P
j �jM

0
S;j with �j nonnegative real numbers, eachM 0S;j 6�

0 is nef Cartier, and �j D d for some j .

Proof. Let .S;BS ;MS / be the pair obtained by generalized adjunction of .X;B;M/ to S
(see, e.g., [8, Definition 4.7]). Condition (iii) follows from the definition of generalized
adjunction. Hence, we need to prove the first and second statement. Since this statement
only depends on codimension one points of S , we may assume that X has dimension 2
and it is Q-factorial. By [51, Corollary 3.10], we can write

KS C B
0
S D .KX C B/jS ;

where the coefficients of B 0S belong toD.I/. More precisely, ifQ is a prime divisor of S ,
we can write

coeffQ.B 0S / D 1 �
1

m
C

P
i mi�i

m
; (2.1)

where the m is the orbifold index of X at Q, the �i ’s belong to I , and mi ’s are positive
integers. In the previous formula, �i is the coefficient in B of a prime divisor P on X
and mi is the multiplicity of P at Q. Let Mj be the push-forward of M 0j to X . Then,
we have that mMX D

P
j �jmMj . Each mMj is Cartier on a neighborhood of Q. Let

� WX 0! X be the projective birational morphism. By the negativity lemma, we can write
��.mMX / D

P
j �jmM

0
j C �jEj where each Ej is Cartier. Hence, we have that

coeffQ.BS / D 1 �
1

m
C

P
i mi�i C

P
j �jmultQ.Ej /

m
:

This finishes the first statement.
Finally, if there is a prime component D of X for which coeffD.B/ D d , then for

any prime Q of D \ S we have coeffQ.B 0S / 2 Dd .I / by (2.1). Thus, we have that
coeffQ.BS / 2 Dd .I / as well. This finishes the proof of the second statement.

The following lemma allows to keep track of a prime divisor D when passing to a dlt
modification.

Lemma 2.18. Let .X;B;M/ be a generalized log canonical pair. LetD be a prime divisor
on X which satisfies:

Supp.D/ \ lcc.X;B;M/ ¤ ;:

Let .Y; BY ;MY / be a generalized dlt modification of .X; B;M/. Let DY be the strict
transform of D. Then, we have that

DY \ bBY c ¤ ;:

In particular, there exists a prime component S � bBY c with DY \ S ¤ ;.
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Proof. Let � W Y !X be the dlt modification. Let p 2D \ lcc.X;B;M/. By definition we
have thatDY \ ��1.p/¤ ;. If dim.��1.p// � 1, we have that ��1.p/ is contained in an
exceptional divisor, therefore ��1.p/�bBY c, as � is a dlt modification. Hence ;¤DY \
��1.p/ � DY \ bBY c. Otherwise ��1.p/ is a point, then ��1.p/ 2 lcc.Y; BY ;MY / D

bBY c, hence ��1.p/ 2 DY \ bBY c.

2.3. Regularity and coregularity

In this subsection, we introduce the regularity and coregularity. We prove some lemmas
regarding the coregularity.

Definition 2.19. Let .X;B;M/ be a generalized log canonical pair. A minimal dlt center
of .X; B;M/ is a minimal log canonical center of any generalized dlt modification of
.X;B;M/.

Definition 2.20. Let .X;B;M/ be a generalized pair. Let � W Y ! X be a generalized dlt
modification such that

KY C BY CMY D �
�.KX C B CMX /;

where MY is the pushforward of M0 on Y . Write

.BY /
D1
D E1 CE2 C � � � CEr ;

which is a simple normal crossing divisor on Y .
The dual complex D.Y; BY ;MY / of the dlt modification is a simplicial complex con-

structed as follows:

• Every divisor Ei corresponds to a vertex vi in D.Y; BY ;MY /. For every subset I �
¹1; 2; : : : ; rº and every irreducible component Z of

T
i2I Ei , Z corresponds to a

simplex vZ of dimension #I � 1.

• For every subset I � ¹1;2; : : : ; rº and every j 2 I , we have the following gluing maps.
Let Z �

T
i2I Ei be any irreducible component, then Z lies in a unique component

W of
T
i2In¹j ºEi . We have a gluing map which is the inclusion of vW into vZ , as the

face of vZ which do not contain vertex vi .

The dimension of D.Y; BY ;MY / is defined to be the smallest dimension of the maximal
simplex, with respect to the inclusion, of D.Y; BY ;MY /.

We define the dual complex D.X;B;M/ associated to .Y;BY ;MY / as D.Y;BY ;MY /

and we define
dim D.X;B;M/ D dim D.Y; BY ;MY /:

If Z � X is an irreducible subvariety with generic point �Z , we define D.X; B;MI �Z/
to be D.U;BjU ;MjU / for a sufficiently small neighborhood U of �Z .

Proposition 2.21. Let .X;B;M/be a generalized log canonical pair. Then dimD.X;B;M/

does not depend on the choice of generalized dlt modifications .Y;BY ;MY / of .X;B;M/.
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Proof. Let �i W .Yi ;BYi ;MYi /! .X;B;M/ be generalized dlt modifications, for i D 1; 2.
Suppose that dim D.Y1;BY1 ;MY1/D r . Then there exists .r C 1/ �1-exceptional divisors
whose intersection is non-empty. Let W be an irreducible component of this intersection
and Z D �1.W /. Then Z is a minimal generalized log canonical center of .X;B;M/. So
dimD.X;B;MI�Z/Dr . By [17, Theorems 1.1 and 1.6], the dimension of D.X;B;MI�Z/
is independent of the choice of the dlt modification. Hence, dim D.Y2; BY2 ;MY2/ � r .
Similarly, we can prove that dim D.Y2;BY2 ;MY2/ � dim D.Y1;BY1 ;MY1/ and hence the
equality holds.

Definition 2.22. Let .X; B;M/ be a quasi-projective normal generalized pair. We define
the regularity of .X;B;M/ to be

reg.X;B;M/ WD dim D.X;B;M/:

On the other hand, we define the coregularity of .X;B;M/ to be

coreg.X;B;M/ WD dimX � dim D.X;B;M/ � 1:

Hence, by definition, we have that

reg.X;B;M/C coreg.X;B;M/ D dimX � 1:

In a few words, a generalized log canonical pair .X;B;M/ has coregularity c if for every
minimal log canonical center of .X;B;M/, we may find a minimal dlt center of dimension
at most c mapping onto it.

Analogously, for Z � X an irreducible subvariety, we define

reg.X;B;MI �Z/ D reg
�
U;BjU ;MjU

�
for a sufficiently small neighborhood U of �Z .

Now, we turn to define the absolute regularity and absolute coregularity of klt singu-
larities and Fano type varieties. This definition is not crucial for this paper, as in the log
canonical and log Calabi–Yau case they agree with the usual regularity and coregularity
(see Remark 2.26). However, it is worth mentioning as it will be considered in forthcoming
research.

Definition 2.23. Let .X;B;M/ be a projective generalized pair. We say that .X;B;M/ is
generalized log Calabi–Yau if the following conditions are satisfied:

• .X;B;M/ has generalized log canonical singularities, and

• KX C B CMX �Q 0.

We say that a generalized pair .X;B;M/ is of log Calabi–Yau type if there exists � � 0 for
which .X;B C �;M/ is a generalized log Calabi–Yau pair. In this case, to abbreviate, we
may say that .X; B;M/ is CY type. For a generalized log Calabi–Yau projective variety
.X;B;M/, two minimal dlt center are birationally equivalent.
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Definition 2.24. Let .X; B;M/ be a projective generalized pair. We define the absolute
regularity of .X;B;M/ to be

yreg.X;B;M/

WD max
®

dim D.X;B C �;M/ j .X;B C �;M/ is generalized log Calabi–Yau
¯
:

If the dual complex D.X;B C �;M/ is empty, then we set dim D.X;B C �;M/ D �1.
If the previous set is empty, then we set reg.X; B;M/ D �1. Hence, a generalized pair
has finite absolute regularity if and only if it is of generalized log Calabi–Yau type. A
generalized pair has absolute regularity �1 if and only if every log Calabi–Yau structure
on it has klt singularities, i.e., absolute regularity �1 is equivalent to being exceptional.
The absolute regularity is nonnegative if and only if we can find a log Calabi–Yau structure
with a log canonical center. If X is n-dimensional, we have that

yreg.X;B;M/ 2 ¹�1;�1; 0; : : : ; n � 1º:

We define the absolute coregularity of .X;B;M/ to be

ycoreg.X;B;M/ WD dimX � yreg.X;B;M/ � 1:

Analogously, a generalized pair has finite absolute coregularity if and only if it is of gener-
alized log Calabi–Yau type. A generalized pair .X;B;M/ has absolute coregularity dimX
if and only if every log Calabi–Yau .X;B C �;M/ structure has klt singularities, i.e., the
generalized pair .X; B;M/ is exceptional. The absolute coregularity c is in the interval
¹0; : : : ; n� 1º if and only if there exists a log Calabi–Yau structure .X;B C �;M/ which
admits a log canonical center. In summary, for a projective variety X of dimension n and
a generalized pair structure .X;B;M/, we have that

ycoreg.X;B;M/ 2 ¹0; 1; 2; : : : ; n;1º:

If the absolute coregularity of .X; B;M/ is in the set ¹0; 1; 2; : : : ; nº then the absolute
coregularity equals the dimension of the smallest minimal dlt center on a log Calabi–Yau
structure of .X;B;M/. If the log Calabi–Yau structure .X;B;M/ is itself klt, then we can
set X formally as a log canonical center.

Definition 2.25. Let .X; B;MI x/ be a generalized log canonical singularity. We define
the absolute regularity of .X;B;M/ at x to be

yreg.X;B;MI x/

WD max
®
dimD.X;B C �;MI x/ j .X;B C �;MI x/ is generalized log canonical

¯
:

We define the absolute coregularity of the klt to be

ycoreg.X;B;MI x/ WD dimX � yreg.X;B;MI x/ � 1:

The following remark says that in our setting, the coregularity and absolute coregular-
ity agree.
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Remark 2.26. If .X;B;M/ is a generalized log Calabi–Yau pair, then

reg.X;B;M/ D yreg.X;B;M/ and coreg.X;B;M/ D ycoreg.X;B;M/:

Analogously, if .X; B;MI x/ is a generalized log canonical singularity for which x is a
log canonical center, then

reg.X;B;MI x/ D yreg.X;B;MI x/ and coreg.X;B;MI x/ D ycoreg.X;B;MI x/:

The following lemma, which is straightforward from the definition, allows us to per-
form adjunction whenever the dimension is larger than the coregularity.

Lemma 2.27. Let .X;B;M/ be a generalized log canonical pair. If dimX>coreg.X;B;M/,
then .X;B;M/ has a non-trivial generalized log canonical center. In particular, if .Y;BY ;
MY / is a generalized dlt modification of .X;B;M/, then bBY c ¤ ;.

Now, we turn to prove some preliminaries regarding how the coregularity behaves
under adjunction, perturbing the boundary, and taking fibrations. The proofs are well
known to the experts. In some cases, we give a short argument. The following lemma
follows from [17, Theorem 1.6].

Lemma 2.28. Let .X;B;M/ be a generalized log Calabi–Yau pair. Let S be the normal-
ization of a component of bBc. Let BS and MS be the boundary and moduli part defined
by generalized adjunction, so that

.KX C B CMX /jS D KS C BS CMS :

Then, we have that coreg.S; BS ;MS / D coreg.X;B;M/.

Lemma 2.29. Let .X; B;M/ be a generalized log canonical pair and V be a minimal
generalized log canonical center of .X; B;M/. Let B0 � B be the sum of all the com-
ponents of B containing V . Write M0 D

P
j M

0
j where each M 0j is a nef Cartier divisor.

Let M00 be the sum of the M 0j that do not descend over the generic point of V and let M0

the push-forward of bM0:0 to X . Then, we have that

coreg.X;B;MI �V / D coreg.X;B0;M0I �V /:

Proof. Since the statement is about coregularity at the generic point of V , we may just
localize at the generic point of V and assume that B0 D B and M0 DM.

Lemma 2.30. Let .X;B;M/ be a generalized log canonical pair and X ! Z be a fibra-
tion. Assume that every generalized non-klt center of .X;B;M/ dominates Z. Let F be a
general fiber of X ! Z and .F;BF ;MF / be the generalized pair induced by adjunction.
Then, we have that

coreg.F; BF ;MF / � coreg.X;B;M/ � dimZ:
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Proof. We may assume that .X; B;M/ is a generalized dlt pair. Let d be the dimension
of X . Since .X; B;M/ has coregularity c, we can find d � c components S1; : : : ; Sd�c
of bBc so that

S1 \ � � � \ Sd�c ¤ ;:

Note that SFi WD Si \ F is a component with coefficient one in BF . Then, we conclude
that

SF;1 \ � � � \ SF;d�c ¤ ;;

as divisors on F . Thus, we have that

coreg.F; BF ;MF / � coreg.X;B;M/ � dimZ

as claimed.

We say that a birational map  W X Ü Y is a birational contraction if  is proper and
 �1 does not contract any divisors.

The following lemma states that the coregularity of a generalized log Calabi–Yau pair
does not change when we run a minimal model program.

Lemma 2.31. Let .X; B;M/ be a generalized log Calabi–Yau pair. Let X Ü X 0 be a
birational contraction. Denote by B 0 the push-forward of B on X 0 and by M0 the trace on
X 0 of the b-nef divisor associated to M. Then, we have that

coreg.X;B;M/ D coreg.X 0; B 0;M0/:

Proof. Since .X; B;M/ is generalized log Calabi–Yau, we can find a common log reso-
lution pWY ! X and qWY ! X 0 for which

KY C BY CMY D p
�.KX C B CMX / D q

�.KX 0 C B
0
CM0X /:

By definition, we have that D.X; B;M/ D D.Y; BD1Y /, where BD1Y denotes the sum
of the components of BY which appear with coefficient one in BY . The same applies
to .X 0; B 0;M0/. Then, we conclude that dim D.X 0; B 0;M0/ D dim D.X; B;M/. This
concludes the proof.

2.4. Global ascending chain condition

In this subsection, we recall the ascending chain condition for generalized pairs. We will
use the global ascending chain condition for varieties of fixed dimension as the base for
an inductive process in the following section. The following result is [8, Theorem 1.6].

Proposition 2.32. Let n be a positive integer. Let I be a set of nonnegative real numbers
satisfying the descending chain condition. Then there is a finite subset I0 � I such that if
.X;B;M/ satisfies the following conditions:

(1) the variety X is a projective variety of dimension n;

(2) the generalized pair .X;B;M/ is generalized log canonical;
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(3) the coefficients of B belong to I ;

(4) we can write M0 D
P
j �jM

0
j where �j 2 I and eachM 0j is a nef Cartier divisor;

(5) �j D 0 whenever M 0j � 0; and

(6) KX C B CMX � 0;

then the coefficients of B and the �j belong to I0.

We note that condition .4/ is written to avoid trivial counter-examples where we add
trivial summands to M0 with arbitrary coefficients in I . Throughout the rest of the paper,
we may assume that no M 0j is numerically trivial, unless otherwise stated.

3. Global ascending chain condition

In this section, we prove the main projective result of this paper. We prove the global
ascending chain condition for log Calabi–Yau pairs of bounded coregularity.

Theorem 3.1. Fix a positive integer c and a set I of nonnegative real numbers satisfying
the DCC. Then there exists a finite subset I0 � I such that if .X; B;M/ satisfies the
following conditions:

(1) the generalized pair .X;B;M/ is generalized log canonical;

(2) the coefficients of B belong to I ;

(3) we can write M0 D
P
j �jM

0
j where �j 2 I and eachM 0j is a nef Cartier divisor;

(4) the numerical equivalence KX C B CMX � 0 holds; and

(5) the variety X is projective with an upper bound coreg.X;B;M/ � c;

then coeff.�/ � I0 and the �j belong to I0.

The following lemma allows to replace a log Calabi–Yau pair .X;B;M/ by one whose
dimension is at most the coregularity of .X; B;M/. Furthermore, we are able to control
the coefficients of the boundary and moduli part of the new log Calabi–Yau pair.

Lemma 3.2. Given a generalized log Calabi–Yau pair .X;B;M/ satisfying the following
conditions:

(1) The coefficients of B belong to I ;

(2) we can write M0 D
P
j �jM

0
j where �j 2 I and eachM 0j is a nef Cartier divisor;

and

(3) the variety X is projective with an upper bound coreg.X;B;M/ � c.

Let d be either one of the �j or in coeff.B/. Then, we can construct a generalized log
Calabi–Yau pair .Z; BZ ;MZ/ of coregularity at most c satisfying the following condi-
tions:

(i) the variety Z has dimension at most c C 1;

(ii) the coefficients of BZ are in D.I/; and
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(iii) we can write M0Z D
P
j �jM

0
Z;j where �j 2 I and each M 0Z;j is a nef Cartier

divisor.

Furthermore, we have that either some d 0 2 coeff.BZ/ satisfies d 0 2 Dd .I / with d 0 < 1
or �j D d for some j . If d 2 coeff.B/, then the former case holds.

Proof. By Lemma 2.27, if .X; B;M/ is generalized klt, then the dimension of X is at
most c, so we are done. Therefore, we can assume that .X; B;M/ is generalized lc but
not generalized klt. By Lemma 2.15, we only have to prove that there exists a pair of
dimension strictly smaller than dimX satisfying the conditions (i)–(iii). Inductively, by
Lemma 2.15 we get the desired pair.

We start by taking a generalized dlt modification .Y;BY ;MY / of .X;B;M/. Let SY be
a prime component of bBY c. Without loss of generality, we assume that d 2 coeff.BY /.
The case in which d is one of the �j proceeds analogously. We call DY a prime com-
ponent of the divisor BY that has coefficient d . Pick " > 0 to be small enough, we run a
.KY C BY � "SY CMY /-MMP. As KY C BY CMY � 0, all the steps of the minimal
model program are SY -positive. By Lemma 2.31 the coregularity of .Y;BY ;MY / remains
constant.

Claim. The divisor SY does not get contracted by any step of the minimal model program.

Proof. Suppose SY gets contracted. Without loss of generality, as all our conditions are
preserved by the MMP, we may assume it is contracted by the very first step of the MMP.
Then, we have a birational contraction �WY ! Y 0. AsKY CBY CMY � 0, we have that

KY C BY CMY D �
���.KY C BY CMY / D �

�.KY 0 C BY 0 CMY 0/:

Here, as usual, BY 0 (resp. MY 0 ) is the push-forward of BY (resp MY ) to Y 0. Therefore
aSY .Y

0; BY 0 ;MY 0/ D 0. However, we have

" D aSY .Y; BY � "SY ;MY / � aSY .Y
0; BY 0 ;MY 0/;

as the log discrepancies only increase after a step of the MMP. A contradiction.

As KY C BY CMY � 0 and Y is projective, we have that KY C BY � "SY CMY

is not pseudo-effective. By [8, Lemma 4.4], we know that this minimal model program
must terminate with a Mori fiber space. We will split into different cases, depending on
the steps and outcome of the minimal model program.

Case 1. The strict transform of the divisor DY gets contracted by a step of the MMP.

Let �1 W Y1! Y2 be the step where the strict transform ofDY is contracted. We denote
by B1 (resp. M1) the push-forward of BY (resp. MY ) to the model Y1. Analogously,
we denote by S1 (resp. D1) the push-forward of SY (resp. DY ) on Y1. As �1 contracts
.KY1 C B1 � "S1 CM1/-negative curves, we have that �1 contracts S1-positive curves.
As some contracted curve C must be contained in D1, we have that

D1 \ S1 � C \ S1 ¤ ;:
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By Lemma 2.18, may replace .Y1; B1;M1/ with a dlt modification and assume that D1
intersects a component S of bB1c. Let .S; BS ;MS / be the generalized pair obtained by
adjunction of KY1 C B1 CM1 to S . By Lemma 2.28, .S; BS ;MS / has coregularity at
most c.

The following conditions are satisfied:

(i) the generalized pair .S; BS ;MS / is generalized log Calabi–Yau,

(ii) the coefficients of BS belong to D.I/, and

(iii) we can write MS 0 D
P
j �jMS 0;j where �j 2 I and each MS 0;j is a nef Cartier

divisor.

Observe that D1 \ S ¤ ; and coeffD1.B1/ D d . By Lemma 2.17, we conclude that any
prime componentQ ofD1 \ S will satisfy that d 0 D coeffQ.BS / 2Dd .I /. Since we are
performing generalized dlt adjunction, we have that d 0 < 1. This finishes the proof in the
case that the minimal model program eventually contracts D.

Case 2. The divisor D is never contracted by the MMP and the MMP terminates with a
Mori fiber space � W Y1 ! Z with general fiber of dimension at least 2.

Here, we have that �.Y1=Z/ D 1. Hence S1 is ample over Z, where S1 is the push-
forward of SY to Y1. We denote byB1 (resp M1) the push-forward ofBY (resp MY ) to Y1.
Analogously, we denote by D1 the push-forward of DY to Y1. As D1 is effective it can
either be vertical over the base or ample over the base. We argue in each of these cases.

Case 2(a). The divisor D1 is numerically trivial over the base Z.
The divisorD1 contains a curve C that gets contracted to a point inZ. Indeed, we can

take a general point P 2 �.D1/ and a curve C � ��1.P /. Therefore C \D1 ¤ ;, but
since D1 is vertical over the base, we have that C �D1 D 0, hence C � D1 is the desired
curve. As S1 is ample over the base C � S1 > 0, so C \ S1 ¤ ;, therefore D1 \ S1 ¤ ;.
Then, we can replace .Y1; B1;M1/ with a dlt modification, perform adjunction to a com-
ponent S of bB1c, and proceed as in the first case.

Case 2(b). The divisor D1 is ample over the base Z.
Let F be the general fiber. The divisorsD1jF and S1jF are ample in F . As dim.D/jF

� 1, we can find a curve C � D1jF . Since S1jF is ample, we have that C � S1jF > 0.
Therefore C \ S1 ¤ ;, so S1 \D1 ¤ ;. Then, we can replace .Y1; B1;M1/ with a dlt
modification, perform adjunction to a component S of bB1c, and proceed as in the first
case.

Case 3. The divisor D is never contracted by the MMP and the MMP terminates with a
Mori fiber space Y1 ! Z with general fiber of dimension one.

If D1 is vertical over the base, we can proceed as in Case 2(a). Otherwise, we restrict
.Y1; B1;M1/ to the general fiber and we obtain a one-dimensional generalized log CY
pair .P1; BP1 ;MP1/ so that d 2 coeff.BP1/ is contained in Dd .I /.
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Remark 3.3. In the proof of Lemma 3.2, if c D 0, then we can always take Z ' P1. On
the other hand, if c � 1, then the projective variety Z can be chosen to have dimension c
or Z ' P1.

Proof of Theorem 3.1. Suppose there is no finite set I0. Then there exists an infinite set
I 0 � I such that for each i 2 I 0, we have that

• the coefficient i is in coeff.B/ for some generalized pair .X; B;M/ satisfying condi-
tions (1)–(5) of the statement, or

• the coefficient i D �k for some generalized pair .X;B;M/ satisfying conditions (1)–
(5) of the statement.

We take an infinite sequence .dj /j�0 of values dj 2 I 0 and generalized pairs .Xj ;Bj ;Mj /

satisfying the conditions (1)–(5) of the theorem and either dj 2 coeff.Bj / or dj D �k;j
for some k; j . Since I satisfies the DCC, we can take a subsequence of .dj /j�0 that is
strictly increasing. By abuse of notation we may also call this sequence .dj /j�0.

Applying Lemma 3.2 to each generalized pair .Xj ;Bj ;Mj /, with either dj 2 coeff.Bj /
or dj D �k;j , we obtain a sequence of generalized pairs .Zj ; BZj ;MZj / satisfying the
following conditions:

• the projective variety Zj has dimension at most c C 1;

• the generalized pair .Zj ; BZj ;MZj / is generalized log Calabi–Yau;

• the coefficients of BZj are in D.I/;

• we can write M0Z D
P
j �k;jM

0
Z;j where �k;j 2 I and each M 0Z;j is a nef Cartier

divisor; and

• either d 0j 2 coeff.BZj / with d 0j 2 Ddj .I / and d 0j < 1 or d 0j D dj D �k;j .

By Lemma 2.12, we know that D.I/ satisfies the descending chain condition. If we have
that d 0j D dj D �k;j for infinitely many j , we get a contradiction of Proposition 2.32.
Otherwise, we assume that each d 0j is of the following form:

d 0j D
Nj � 1Cmj;1dj C

P
k�2mj;kdj;k

Nj

for some positive integers Nj ; mj;1 and mj;k , and that d 0j < 1. By Proposition 2.32, the
coefficients d 0j belong to a finite set I1, so we may assume they are all equal to a fixed
number d 0 2 .0; 1/. As d 0 � 1� 1

Nj
, the integerNj can take only finitely many values. By

abuse of notation, we take a subsequence with constant Nj D N . As mj;1dj < 1, and di
is an increasing sequence, we have that

mj;1 <
1

dj
<
1

d1
:

Therefore,mj;1 can also take finitely many values and we can assume it to be a constantm.
Then, we can write: X

k�2

mj;kdj;k D Nd
0
�N C 1 �mdj :
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The left-hand side is inD.I/, hence it also satisfies the DCC. However, the right-hand side
is strictly decreasing, as the only variable is dj , which we chose to be strictly increasing.
We have a contradiction, so there exists a finite set I0 with the desired property.

4. Proof of the theorems

In this section, we prove the theorems presented in the introduction. In Section 4.1, we
prove the local ascending chain condition for log canonical singularities with bounded
coregularity. In Section 4.2, we prove the ascending chain condition for log canonical
thresholds with bounded coregularity. In Section 4.3, we study the log canonical thresh-
olds of coregularity zero and one. Finally, in Section 4.4, we study the accumulation points
of log canonical thresholds with bounded coregularity.

4.1. Local ascending chain condition

In this subsection, we prove a local version of the ascending chain condition for general-
ized log canonical singularities with bounded coregularity.

Theorem 4.1. Let c be a positive integer. Let I be a set of nonnegative real numbers
satisfying the descending chain condition. Then, there exists a finite subset I0 � I such
that if .X;B;M/ satisfies the following conditions:

(1) the variety X is normal and quasi-projective;

(2) the generalized pair .X;B;M/ is generalized log canonical;

(3) the coefficient of any component of B lies in I ;

(4) on some model X 0 where M descends, we can write the trace of M on X 0 as
M0 D

P
j �jM

0
j , where each �j 2 I and each M 0j is a nef Cartier divisor;

(5) the coregularity of .X;B;M/ is at most c; and

(6) there exists a minimal generalized non-klt center Z � X of .X; B;M/ which is
contained in every component of B and no M 0j descends over the generic point
of Z;

then the coefficient of any component of B lie in I0 and each �j is contained in I0.

Proof. Assume 1 2 I . Let J � I be the finite set we obtain in Theorem 3.1. Let

I1 D

²
i 2 I j

m � 1C ki C f

m
2 J \ Œ0; 1� for some m; k 2 Z>0; f 2 I

³
;

which is finite by Lemma 2.16. Let I0 D I1 [ ¹1º. Without loss of generality, we may
assume that Z is a minimal generalized non-klt center. Let i 2 I be the coefficient of a
component D of B . We show that i must belong to the finite subset I0. By condition (6),
Z is contained in the support of D. Furthermore, after pulled back to a certain log res-
olution, every component of M contributes to the coefficient of some exceptional divisor
with center Z. Thus, an analogous argument would also show that �j belongs to I0.
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If Z is a divisor on X , then B D Z and hence i D 1. Suppose that Z is not a divisor
on X . Let � W .Y; BY ;MY /! .X; B;M/ be a generalized dlt modification, where BY
is the strict transform of B . We denote by DY the strict transform of D on Y . We may
choose � so that the center of some component S of bBY c on X is Z.

Case 1. The divisor DY intersects S over the generic point of Z.

Adjunction formula gives us:

.KY C BY CMY /jS �R KS C BS CMS ;

where .S;BS ;MS / is generalized dlt and the coefficients of BS belong toD.I/. Further-
more, some component of BS , which comes from irreducible components of DY \ S , has
a coefficient inDi .I / and dominates Z by assumption. Since Z is a minimal non-klt cen-
ter of .X;B;M/, every non-klt center of .Y;BY ;MY / dominates Z. By adjunction, every
non-klt center of .S; BS ;MS / also dominates Z. Let .Sz ; BSz ;MSz / be the generalized
pair induced on a general fiber Sz of the morphism S ! Z. Then .Sz ; BSz ;MSz / is gdlt,
KSz CBSz CMSz � 0, and some component of BSz has a coefficient in Di .I /. Further-
more, by Lemma 2.30, the coregularity of .Sz ; BSz ;MSz / is at most c. By Theorem 3.1,
the coefficient of BSz lies in J and hence i 2 I0.

Case 2. The divisor DY does not intersect S over the generic point of Z.

Pick " > 0 to be sufficiently small and run a .KY C BY � "S CMY /-MMP on Y
over X , with scaling of an ample divisor. Since,

KY C BY � "S CMY D �
�.KX C B CM/ � "S �X �"S;

every step of this MMP is S -positive. Furthermore, this MMP terminates with a minimal
model Y0 over X by [8, Lemma 4.4]. The divisor S is not contracted by this MMP (see
Claim of the proof of Lemma 3.2). No component of the divisor BY is contracted by this
MMP since their center on X are divisors.

Let SY0 be the push-forward of S on Y0. Analogously, we denote by BY0 (resp. MY0

and DY0 ) the push-forward of BY (resp. MY and DY ) to Y0. We claim that SY0 is the set-
theoretic preimage of Z with respect to the structure morphism �0 W Y0 ! X . From our
construction, �0.SY0/ D �.S/ D Z, so it suffices to prove ��10 .Z/ � SY0 . Suppose there
is a component of ��10 .Z/ which is not contained in SY0 . Then, we can choose a curve
C 6� SY0 such that �0.C / is a point in Z and C \ SY0 ¤ ;. However, �SY0 is nef over X
because .Y0;BY0 � "SY0 ;MY0/ is a minimal model andKY0 CBY0 CMY0 is numerically
trivial over X . This is a contradiction, so the claim follows.

We note that the image of DY0 in X dominates Z, so DY0 \ SY0 also dominates Z by
the above claim. By Lemma 2.31, the coregularity of .Y0;BY0 ;MY0/ is equal to the coreg-
ularity of .Y; BY ;MY /. Thus, we may replace .Y; BY ;MY / by .Y0; BY0 ;MY0/ to assume
thatDY intersects S over the generic point ofZ,�S is nef overX , and ��1.Z/D S holds
set-theoretically. However, we may lose the property that .Y; BY ;MY / is generalized dlt.
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Let �1W .Y1; BY1 ;MY1/! .Y; BY ;MY / be a generalized dlt modification. Let F D
T1C � � � C Tn be the sum of all the �1-exceptional divisors. Let SY1 be the strict transform
of S on Y1. Write

��1S D SY1 C

nX
jD1

�jTj ;

for some �j � 0. Let  WY1! X be the induced projective birational morphism. We show
that

 �1.Z/ D SY1 [
[
�j>0

Tj ;

holds set-theoretically. We apply a similar argument as before. It suffices to show that

 �1.Z/ � SY1 [
[
�j>0

Tj :

Suppose that the inclusion does not hold. Then, we can find a curve C such that

• C 6� supp.SY1 [
S
�j>0

Tj /,

•  .C/ is a point in Z,

• C intersects non-trivially with either SY1 or some Tj for some �j > 0.

This implies that

��1S � C D

�
SY1 C

nX
jD1

�jTj

�
� C > 0;

which contradicts the fact that �S is nef over X . Hence, there is a prime divisor S1 in
¹SY1º [ ¹Tj W �j > 0º for which DY1 \ S1 dominates Z. This reduces to the first case.
Hence, we conclude that i 2 I0.

4.2. Log canonical thresholds with bounded coregularity

In this section, we state and we prove the ascending chain condition for generalized log
canonical thresholds with bounded coregularity.

Theorem 4.2. Let c be a positive integer. Let I and J be two sets of nonnegative real
numbers satisfying the descending chain condition. Suppose M and N are b-divisors that
descend on some birational model X 0 over X with traces M0 and N0. Let LCTc.I; J / be
the set of thresholds t D lct.X;B;MI�;N/ where the following conditions are satisfied:

• .X;B;M/ is a generalized log canonical pair;

• the coefficients of B lie in I and the coefficients of � lie in J ;

• we can write M0 D
P
j �jM

0
j where �j 2 I and each M 0j is a nef Cartier divisor;

• we can write N0 D
P
j �jN

0
j where �j 2 J and each N 0j is a nef Cartier divisor; and

• the coregularity of .X;B C t�;M C tN/ is at most c.

Then, the set LCTc.I; J / satisfies the ACC.
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Proof. Let tk WD lct.Xk ;Bk ;Mk I�k ;Nk/ be a strictly increasing sequence in LCTc.I;J /.
For each k, let Vk be a minimal generalized log canonical center of .Xk ; Bk C tk�k C
Mk CNk/which is either contained in the support of �k or in the locus where Nk does not
descend. By Lemma 2.29, we may assume that every component of �k and Bk contains
Vk . Furthermore, we may assume that neither N 0

k;j
nor M 0

k;j
descend at the generic point

of Vk . Define

L D
®
i C tkj j i 2 I [ ¹0º; j 2 J [ ¹0º; k 2 Z>0

¯
so that the coefficients of Bk C tk�k lie in L and the coefficients of Mk C tkNk , in the
models where they descend, lie in L. Then, L satisfies the descending chain condition. By
Theorem 4.1, there exists a finite subset L0 � L such that the coefficients of Bk C tk�k
lie in L0 and the coefficients of Mk C tkNk , in the models where they descend, lie in L0.
Passing to a subsequence on tk , we may find ik 2 I and jk 2 J n ¹0º with ik C tkjk D `0
for some fixed `0 2 L0. Thus, tk belongs to the set²

`0 � i

j
W i 2 I [ ¹0º; j 2 J

³
;

which satisfies ACC because both I and J satisfy DCC. This contradicts with ¹tkºk�0
being a strictly increasing sequence. We conclude that the set LCTc.I; J / satisfies the
ascending chain condition.

4.3. Log canonical thresholds of coregularity zero and one

In this subsection, we study the set of log canonical thresholds of coregularity zero and
coregularity one.

Theorem 4.3. Let I and J be two sets of nonnegative real numbers. We have that

LCT0.I; J / D
²
1 � i

j
j i 2 IC \ Œ0; 1�; j 2 JC

³
:

Proof. Denote the set on the right-hand side to be 	. Let t D lct.X; B;MI �;N/ be a
threshold as in the statement. Let V be a minimal generalized lc center of .X; B C t�;
M C tN/ which is either contained in the support of � or the locus where N does not
descend. By Lemma 2.29, we may assume that every component of � contains V and no
N 0j descend over the generic point of V . Denote the set

L D
®
i C tj j i 2 I [ ¹0º; j 2 J [ ¹0º

¯
(4.1)

be the set of all possible coefficient of B C t� and coefficients of M C tN, where it
descends. Let 
 D i C tj be the coefficient of a component of B C t� or M C tN
with j ¤ 0. By the proof of Theorem 4.1, we may find a projective generalized pair
.S; BS ;MS / such that

• .S; BS ;MS / is generalized log canonical,
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• KS C BS CMS � 0,

• the coregularity of .S; BS ;MS / is zero,

• every component of BS has coefficient in D.L/,

• we can write M0S D
P
j �jM

0
S;j where �j 2 L and each M 0S;j is nef Cartier, and

• either component of BS has coefficient in D
 .L/ or 
 D �j for some j .

By Lemma 3.2 and Remark 3.3, we can obtain a generalized pair .P1; BP1 ;MP1/ such
that

(1) the generalized pair .P1; BP1 ;MP1/ is generalized log canonical,

(2) KP1 C BP1 CM
P1
� 0,

(3) the generalized pair .P1; BP1 ;MP1/ has coregularity zero,

(4) every coefficient of BP1 lies in D.L/,

(5) we can write MP1 D
P
s �sMP1;s where �s 2 L and each M 0

P1;s
is nef and inte-

gral, and

(6) either some component of BP1 has coefficient in D
 .L/ or 
 D �j for some j .

Since .P1; BP1 ;MP1/ has coregularity zero, then some coefficient of BP1 equals one.
Now, we have that

deg.KP1 C BP1 CMP1/ D 0:

Expanding this expression, we get an equation of the form

mX
kD1

Nk � 1C dk

Nk
D 1;

where dk 2LC andNk 2Z>0 and the term one comes from the coefficient-one component
of BP1 . Notice that 1 � N�1

k
� 1=2 if Nk � 2 and property (6) implies that dk > 0 for

some k. Hence we have at most one k for which Nk ¤ 1. Suppose Nk D 1 for all k � 2.
Then

d1 CN1.d2 C � � � C dm/ D 1:

Write d 0
k
D N1dk if k � 2 and d 01 D d1. Then d 0

k
2 LC for all k. We further write d 0

k
D

ik C tjk for some ik 2 IC and jk 2 JC. We have

mX
kD1

.ik C tjk/ D 1:

Property (6) ensures that some jk ¤ 0 and hence we can solve

t D
1 �

Pm
kD1 ikPm

kD1 jk
2 	;

as desired. This shows the inclusion LCTc.I; J / � 	 holds.
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Now, let t D .1� i/j�1 with i 2 IC \ Œ0;1� and j 2 JC. We can write iD
Pa
kD1mkik

for mk 2 Z>0 and ik 2 I . We can write j D
Pb
kD1 nkjk for nk 2 Z>0 and jk 2 J . Let

X D Blq.BlpP2/ be a sequence of two blow-ups of P2, where p is a point on P2 and
q is a point on the exceptional divisor of BlpP2 ! P2. Denote the blow-up morphism
X ! P2 as � . Let E1 and E2 be the two exceptional divisors of � , such that the center
of E1 is a divisor on BlpP2. Let p1; : : : ; pa; p01; : : : ; p

0
b
2 E1 nE2 be distinct points. Let

q1; : : : ; qa; q
0
1; : : : ; q

0
b
2 E2 nE1 be distinct points.

For 1 � k � a, let Ck;s and Dk;s be pairwise different curves on X such that:

• Ck;s \E1 D ¹pkº with intersection multiplicity one and Ck;s \E2 D ;; and

• Dk;s \E2 D ¹qkº with intersection multiplicity one and Dk;s \E1 D ;.

For 1 � k � b and 1 � s � nk , let C 0
k;s

and D0
k;s

be pairwise different curves on X such
that:

• C 0
k;s
\E1 D ¹p

0
k
º with intersection multiplicity one and C 0

k;s
\E2 D ;; and

• D0
k;s
\E2 D ¹q

0
k
º with intersection multiplicity one and D0

k;s
\E1 D ;.

Consider the triple

.X;BX I�X / D

�
X;

aX
kD1

mkX
sD1

ik.Ck;s CDk;s/I

bX
kD1

nkX
sD1

jk.C
0
k;s CD

0
k;s/

�
:

Denote B D ��BX and � D ���X . Then the coefficients of B lie in I and the coefficients
of � lie in J . We can compute

��.KP2 C B C t�/

D KX �E1 � 2E2 C BX C

aX
kD1

ikmk.2E1 C 3E2/C t�X C t

bX
kD1

jknk.2E1 C 3E2/

D KX C BX C t�X CE1 CE2:

As a result, � W X ! P2 is a dlt modification of .X;BX C t�X / and coreg.X;BX C t�X /
D 0. Then the triple .P2;BI�/ gives an example with coregularity zero and log canonical
threshold t . We conclude that 	�LCT0.I;J /. This finishes the proof of the statement.

In order to state the theorem for the coregularity one case, we need to introduce some
notation. Let I be a set of nonnegative real numbers. Let p; q; r be three positive integers.
We set

IC
.p;q;r/

WD ¹qri1 C pri2 C pqi3 j i1; i2; i3 2 I
C
º:

We define the set

LCT1;.p;q;r/.I; J / WD
²
qr C pr C pq � pqr � i

j
j i 2 IC

.p;q;r/
and j 2 JC

.p;q;r/

³
:

We call this set, the set of weighted log canonical thresholds of coregularity one.
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Theorem 4.4. Let I and J be two sets of nonnegative real numbers. We have that

LCT1.I; J / WD
[

1
pC

1
qC

1
r >1

LCT1;.p;q;r/.I; J /:

Proof. Let t 2 LCT1.I; J /. Proceeding as in the proof of Theorem 4.3, we can produce a
generalized log Calabi–Yau pair .P1; BP1 ;MP1/ satisfying the following conditions:

(1) the coefficients of BP1 belong to D.L/,

(2) we can write MP1 D
P
s �sMP1;s where �s 2 L and each MP1;s is a nef integral

divisor, and

(3) either some component of BP1 has coefficient in D
 .L/ or 
 D �s for some s.

Above, L is defined as in (4.1) and 
 is an element of the form i C tj with j ¤ 0.
Expanding the equality

deg.KP1 C BP1 CMP1/ D 0;

we obtain an equation of the form

mX
kD1

Nk � 1C dk

Nk
D 2;

where dk 2 LC and Nk 2 Z>0 for each k. Note that 1�N�1
k
� 1=2 if Nk � 2 and prop-

erty (3) implies that dk > 0 for some k. Thus, there are at most three k’s for whichNk � 2.
Assume that Nk D 1 for all k � 4 and m � 3 (add zero terms if m � 2). Denote N1 D p,
N2 D q, and N3 D r . Then, the previous equation becomes

1

p
C
1

q
C
1

r
D 1C

d1

p
C
d2

q
C
d3

r
C

mX
kD4

dk :

In particular, 1=pC 1=qC 1=r > 1. For each k, we write dk D ik C tjk for some ik 2 IC

and jk 2 JC. Then we have

qrCprCpq�pqr D qr.i1C tj1/Cpr.i2C tj2/Cpq.i3C tj3/C

mX
kD4

pqr.ikC tjk/:

Property (3) ensures that some jk ¤ 0, so we can solve

t D
qr C pr C pq � pqr � qri1 � pri2 � pqi3 �

Pm
kD4 pqrik

qrj1 C prj2 C pqj3 C
Pm
kD4 pqrjk

2 IC
.p;q;r/

.I; J /;

as desired. Therefore, we conclude that every element t 2 LCT1.I; J / is contained in a
set LCT1;.p;q;r/.I; J / for some p; q; r 2 Z>0 with p�1 C q�1 C r�1 > 1.

Now, let t 2 IC
.p;q;r/

.I; J / for some p; q; r 2 Z>0 such that 1=p C 1=q C 1=r > 1.
We can write

t D
qr C pr C pq � pqr � .qri1 C pri2 C pqi3/

qrj1 C prj2 C pqj3
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for some i1; i2; i3 2 IC and j1; j2; j3 2 JC. Write

ik D
X
`

mk;`ik;` and jk D
X
`

nk;`jk;`

for some ik;` 2 I , jk;` 2 J , and mk;`; nk;` 2 Z>0.
Let p1; p2 and p3 be three distinct points on P1. Let .X Ix/ be the orbifold cone over

P1 with respect to the Q-divisor 1
p
¹p1º C

1
q
¹p2º C

1
r
¹p3º. Let zX ! X be the blow-up

of x 2X . LetE � zX be the exceptional divisor, isomorphic to P1. The surface zX has three
singularities x1; x2; x3 2 E. These singularities are of type Ap; Aq and Ar , respectively.
For each k D 1; 2; 3 and `, define:

• zBk;` be an irreducible curve on zX such that zBk;`jE D mk;`xk , and

• z�k;` be an irreducible divisor on zX such that z�k;`jE D nk;`xk .

Let
zB D

X
k;`

ik;` zBk;` and z� D
X
k;`

jk;`z�k;`:

Denote B D �� zB and � D ��z� . Then the coefficients of B lie in I and the coefficients
of � lie in J . Note that we have

.K zX C
zB C t z� CE/jE

�Q KE C

�
p � 1C i1 C tj1

p

�
x1 C

�
q � 1C i2 C tj2

q

�
x2 C

�
r � 1C i3 C tj3

r

�
x3:

Thus, the divisor K zX C zB C t z� CE intersects E trivially. Hence, we have that

��.KX C B C t�/ D K zX C
zB C t z� CE:

Then, the pair .X; B C t�I x/ is log canonical but not klt at the vertex. Furthermore,
the pair has coregularity one as E is the only log canonical place. We conclude that t 2
LCT1.I; J /. This finishes the proof.

4.4. Proof of the theorems

In this subsection, we prove the theorems of the introduction. The first three theorems
presented in the introduction are already proved in the previous sections in a broader
context. For the statement about accumulation points, we need a short argument.

Proof of Theorem 1. This follows from Theorem 4.2 for generalized pairs.

Proof of Theorem 2. This follows from Theorem 3.1 for generalized pairs.

Proof of Theorem 3. This follows from Theorem 4.3 for generalized pairs.

In order to prove the last theorem, we need to use the following notation.
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Notation 4.5. We denote by Nc.I; t/ the set of log Calabi–Yau log canonical pairs .X;
B C �/ so that the coefficients of B belong to D.I/, the coefficients of � ¤ 0 belong to
Dt .I /, and coreg.X;B C �/ � c. We set

Nc.I / WD
®
t j Nc.I; t/ is non-empty

¯
:

Analogously, we denote by Ndim�c.I; t/ the set of log Calabi–Yau log canonical pairs
.X;B C �/ so that the coefficients of B belong to D.I/, the coefficients of � ¤ 0 belong
to Dt .I /, and the dimension of X is at most c. We set

Ndim�c.I / WD
®
t j Ndim�c.I; t/ is non-empty

¯
:

Note that Ndim�c.I / � Nc.I / as every log Calabi–Yau pair of dimension at most c has
coregularity at most c.

Proof of Theorem 4. Let t 2 LCTc.I /, by the proof of Theorem 4.2, we deduce that t 2
Nc.I /. By the proof of Theorem 3.1, it follows that t 2 Ndim�c.I /. Thus, we conclude
that we have an inclusion

LCTc.I / � Ndim�c.I /:

As in the proof of Theorem 4.4, taking the orbifold cone over a log Calabi–Yau pair in
Ndim�c.I; t/ gives us the opposite inclusion

Ndim�c.I / � LCTc.I /:

Thus, we conclude that
LCTc.I / D Ndim�c.I /: (4.2)

Now, we take accumulation points at both sides of the previous equality and get

Acc
�
LCTc.I /

�
D Acc

�
Ndim�c.I /

�
;

where Acc.S/ stands for the accumulation points of the set S . By [19, Proposition 11.7],
we have that

Acc
�
Ndim�c.I /

�
� Ndim�c�1.I /;

we conclude that

Acc
�
LCTc.I /

�
D Acc

�
Ndim�c.I /

�
� Ndim�c�1.I / D LCTc�1.I /;

where we used equality (4.2) in the first and last equalities. This finishes the proof of the
theorem.

5. Examples and questions

In this section, we give a couple of examples related to the coregularity of fibrations
and singularities. We also propose some questions for further research. First, we show
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an example of log canonical thresholds on singularities that are closely related to toric
singularities, the so-called complexity one T -singularities (see, e.g., [32–34]).

Example 5.1. Let .X; BI x/ be a toric singularity with reduced boundary B . Let � be a
reduced torus invariant divisor through x. Then, we have that

lct.X;BI�/ 2 ¹0; 1º;

holds independently of the dimension of the germ .X I x/.
Let .X;BIx/ be a complexity one rational log canonical T -singularity withB reduced,

i.e., X is n-dimensional and admits the effective action of a .n � 1/-dimensional torus T
and B is T -invariant. Let � be an effective reduced T -invariant divisor. By [1, Theo-
rem 3.1], we can find a T -equivariant projective birational morphism �W Y ! X so that
��1.x/' P1 DW C . Furthermore, the variety Y admits a good T -quotient toZ ' P1 and
the log pair

��.KX C B C t�/ D KY C BY C t�Y

has toroidal singularities. Furthermore, as we are assuming .X; B C t�/ is strictly log
canonical at x, we may assume that some log canonical center of .Y; BY C t�Y / is con-
tained in C . Hence, we conclude that all the T -invariant divisors of Y which dominate Z
must appear with coefficient one in BY C t�Y . In particular, performing adjunction to C ,
we obtain a one-dimensional dlt pair on C ' P1. Taking the degree of this dlt pair, we
either get a relation of the form�

1 �
1

p

�
C

�
1 �

1

q

�
C

�
1 �

1

r

�
C t D 2;

or �
1 �

1

p
C
t

p

�
C

�
1 �

1

q

�
C

�
1 �

1

r

�
D 2;

for certain positive integers p; q; r . We conclude that t must belong to the set²
1

p
C
1

q
C
1

r
� 1 jp;q; r 2Z>0

³
\ Œ0;1�[

²
p

�
1

p
C
1

q
C
1

r
� 1

�
jp;q; r 2Z>0

³
\ Œ0;1�:

Note that the previous set of log canonical thresholds t is independent of the dimension
of the germ. Indeed, the coregularity of the previous pairs is at most one independently of
their dimension.

The following example shows that the ascending chain condition does not hold if we
do not bound the coregularity or control the coefficients of the involved divisors.

Example 5.2. First, we have lct.A1; i¹0ºI j ¹0º/ D .1 � i/j�1. Then, if either I or J
does not satisfy the descending chain condition, then the set LCT1.I; J / does not satisfy
the ascending chain condition. Thus, the DCC condition for I and J in the statement of
Theorem 1 is necessary.
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Now, we turn to show that the condition on the coregularity in Theorem 1 is also a
necessary one. Let Hn be a smooth hypersurface of degree nC 2 in Pn. Then, we have
that the pair �

Pn;
nC 1

nC 2
Hn

�
is log Calabi–Yau. Let �n be the cone overHn in AnC1. Then, �n is an irreducible divisor
on AnC1 and for every t , the log pair .AnC1; t�n/ has an isolated singularity at the origin.
We have that

tn WD lct.AnC1; �n/ D 1 �
1

nC 2
:

The log pair .AnC1; tn�n/ has coregularity n. Indeed, it has a unique log canonical center
which corresponds to the blow-up of the maximal ideal of AnC1 at the origin. Hence, we
have that

coreg.AnC1; tn�n/ D nC 1 � dim D.AnC1; tn�n/ � 1 D n:

Note that the sequence of tn violates the ascending chain condition. However, the coregu-
larity of the sequence .AnC1; tn�n/ is also unbounded.

In the following example, we show that in a log Calabi–Yau fibration the coregularity
of the general fiber can be arbitrary, even if the coregularity of the log pair in the domain
is zero.

Example 5.3. Consider a maximal Fano degeneration � WX ! A1 of Pn, i.e.,

��1
�
A1 � ¹0º

�
' Pn �

�
A1 � ¹0º

�
and X0 WD ��1.¹0º/ is the union the nC 1 projective toric varieties intersecting along
toric subvarieties and the dual complex of X0 is a n-simplex (see, e.g., [37, Theorem 1.2]).
We consider a general element H 2 j � 2.KX CX0/j,then the pair

.X;X0 CH=2/ (5.1)

is log Calabi–Yau over the base and log canonical. Note that all the log canonical centers
of (5.1) map to zero. The general fiber of this log pair is

.Pn;H jPn=2/

which is a log Calabi–Yau klt pair. Thus, the coregularity of the general fiber is n. How-
ever, the log pair (5.1) has coregularity zero as it is dlt and it has a zero-dimensional log
canonical center contained in X0. Note that this example is over an affine base, however,
it can be turned into a projective example by compactifying at infinity as a product.

In the following example, we show examples of germs with arbitrary dimension and
bounded coregularity.
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Example 5.4. For examples of log Calabi–Yau pairs with coregularity zero and arbitrary
dimension, we can simply consider a log Calabi–Yau toric pair .T; �T /. In the local case,
we can consider toric singularities with the reduced torus invariant boundary. In these
examples, the number of components of the boundary tends to be high. Indeed, we have
exactly dimT C rank ClQ.T / prime components in the boundary.

We show that, in arbitrary dimension, there are examples of log canonical singularities
of coregularity zero with a unique prime component in the boundary and coefficient 1

2
.

Let .X;X0 C H1=2/ and .X;X0 C H2=2/ be two log Calabi–Yaus constructed as in
Example 5.3. Here, H1 and H2 are two different general elements of the linear system
j � 2.KX CX0/j. We let � WY!X be the blow-up of the intersection ofH1 with a com-
ponent of X0. We let E be the exceptional divisor of this projective birational morphism.
We denote by F1 (resp. F2) the strict transform of H1 (resp. H2) on Y, and by Y0 the
strict transform of X0 on Y. Note that we have

��.KX CX0 CH1=2/ D KY C Y0 C F1=2CE=2; (5.2)

��.KX CX0 CH2=2/ D KY C Y0 C F2=2: (5.3)

Due to (5.2), we know that the morphism Y ! A1 is of Fano type. Observe that

KY C Y0 C F1=2C .1 � "/E=2; (5.4)

is dlt and pseudo-effective over the base. We run a minimal model program for (5.4) over
the base A1. Since Y ! A1 is of Fano type, this minimal model program terminates with
a good minimal model over the base. We call this model Z! A1. Let EZ be the push-
forward of E on Z. Analogously, let FZ;i be the push-forward of Fi on Z. Then, we
conclude that the log pair

.Z; FZ;2=2/

is log crepant to the pair (5.3). Thus, it has coregularity zero. Furthermore, this log pair has
a unique irreducible component of coefficient 1

2
. LetX be the cone of�KZ over A1 and �

be the cone over FZ;1. We denote by x 2 X the point corresponding to ¹0º in this cone
with one-dimensional fixed point locus. Then, we have that .X I x/ is an n-dimensional
Q-factorial klt singularity. On the other hand, the pair .X; �=2I x/ is an n-dimensional
Q-factorial pair, � is prime, and the coregularity of .X; �=2I x/ is zero.

A polytopal variant of the log canonical threshold, the so-called log canonical thresh-
old polytopes, were introduced by Libgober and Mustaţă in [36]. Given a projective
variety X and a sequence of Q-Cartier effective divisors D1; : : : ; Ds , we can define the
log canonical threshold polytope, to be

LCT.X ID1; : : : ;Dr / WD
®
.t1; : : : ; ts/ 2 Rs j .X; t1D1 C � � � C tsDs/ is log canonical

¯
:

The ACC for log canonical threshold polytopes of the same dimension and number of
divisors was proved in [22]. This means that there is no infinite sequence of these poly-
topes so each of them strictly contains the previous one. Instead, we can consider log



Log canonical thresholds and coregularity 215

canonical threshold polytopes on which the coregularity is bounded when the thresholds
are computed. Analogously to the main theorem of this article, we can ask.

Question 5.5. Does the ascending chain condition for log canonical threshold polytopes
with bounded coregularity hold?

The study of numerical thresholds naturally leads to the study of pseudo-effective
thresholds, i.e., questions related to the Fujita’s spectrum conjecture (see, e.g., [20, 21]).
Given a log canonical pair .X;�/ and an effective divisor � on X , we define the pseudo-
effective threshold of .X;�/ with respect to � , denoted by p.X;�I�/ to be the smallest
positive real number p for whichKX C�C p� is pseudo-effective. We set p D1 if the
previous divisor is never pseudo-effective and zero ifKX C� is already pseudo-effective.
We can define:

Pc.I;J /WD
®
p j pDp.X;�I�/; coeff.�/2I; coeff.�/2J; and coreg.X;�Cp�/�c

¯
:

Then, it is natural to ask.

Question 5.6. Let c be a positive integer. Let I and J be two sets of nonnegative real
numbers satisfying the descending chain condition. Does Pc.I; J / satisfy the ascending
chain condition?

We expect both previous questions to have positive answers. However, some new ideas
must be introduced in order to prove them.
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