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Frobenius rigidity in A1-homotopy theory

Timo Richarz and Jakob Scholbach

Abstract. We study the homotopy fixed points under the Frobenius endomorphism on the stable
A1-homotopy category of schemes in characteristic p > 0 and prove a rigidity result for cellu-
lar objects in these categories after inverting p. As a consequence we determine the analogous fixed
points on theK-theory of algebraically closed fields in positive characteristic. We also prove a rigid-
ity result for the homotopy fixed points of the partial Frobenius pullback on motivic cohomology
groups in weights at most 1.

1. Introduction

A functor �WCAlgk ! Sp from the category of commutative algebras over a field k to
the1-category of spectra (or the derived category of abelian groups, or groups, or sets) is
called rigid if for any extension F �E of algebraically closed overfields of k, the induced
map

�.F /! �.E/

is an isomorphism. For example, for some proper k-scheme X and some prime number `,
the functor R 7! Hnét.X �k SpecR;Z=`/ given by taking étale cohomology is rigid for all
n 2 Z. Similarly, Suslin’s celebrated rigidity result [43] states that mod-` K-theory R 7!
Kn.R/=` is rigid, provided ` is prime to the characteristic of k. In particular, when F is of
characteristic p > 0 prime to `, Quillen’s computation ofKn.xFp/ gives explicit results for
the mod-` K-groups of F . Suslin’s argument is robust enough to allow for various exten-
sions, including the rigidity result of Röndigs–Østvær [39] asserting the full faithfulness
of the pullback functor SH.F /=`! SH.E/=` between the mod-` stable A1-homotopy
categories, for two algebraically closed fields F � E of characteristic prime to `.

Of course, the full stable A1-homotopy category fails to be rigid, as is visible already
for the first K-group K1.F / D F �. For k D Fp , the present paper studies the idea of
rigidifying various functors by applying (homotopy) fixed points under the Frobenius
endomorphism, as opposed to considering classes modulo `. As a first indication note
that for an algebraically closed field F of characteristic p > 0 the complex

F �
x 7!x=xp

������! F � (1.1)

is quasi-isomorphic to F�p by Kummer theory.
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For an Fp-scheme S , let FrobS W S ! S be the Frobenius endomorphism given by
f 7! f p on functions. If S is understood, we abbreviate FrobS simply by Frob.

Definition 1.1. For an Fp-scheme S , the Frobenius stable A1-homotopy category is the
fixed point category

SH.S=Frob/ WD lim
�
SH.S/

Frob�
�������

id
SH.S/

�
i.e., the homotopy fixed points of Frobenius acting on the stable A1-homotopy category.

Objects in this category are pairs of objectsM 2 SH.S/ together with an isomorphism
M Š Frob�M . By construction, the canonical pullback functor SH.Fp/! SH.S/ factors
through a functor

canS WSH.Fp/! SH.S=Frob/:

The idea of rigidity after taking Frobenius fixed points leads to the following question.

Question 1.2. Is the functor

CAlgFp ! Sp; R 7! MapSH.R=Frob/Œp�1�.canRM; canRN/ (1.2)

rigid for all M;N 2 SH.Fp/Œp�1�?

The main results of this paper exhibit two situations in which we can answer special
cases of this question affirmatively. To state the first, recall that the subcategory

SH.Fp/cell � SH.Fp/

of cellular objects is the full presentable subcategory generated by the motivic spheres
Sm;n for all m; n 2 Z.

Theorem 1.3 (Theorem 5.5). The functor in (1.2) is rigid for allM;N 2 SH.Fp/cellŒp
�1�.

Applying the theorem to cellular spectra (see also Section 5.4 for more examples)
such as the homotopy invariant K-theory spectrum implies the following result, where
amusingly p�1-localization is not necessary.

Corollary 1.4 (Corollary 5.11). For any algebraically closed field F of characteristic
p > 0, one has

�n
�
K.F=Frob/

�
D

8̂̂<̂
:̂

Z n D �1; 0;

F�
pi

n D 2i � 1 > 0;

0 else;

where K.F= Frob/ denotes the homotopy fixed points of the Frobenius endomorphism on
the K-theory spectrum K.F /.

In the formulation of the next result, we denote by SHeff.Fp/ the stable, full subcat-
egory of SH.Fp/ generated under colimits by motives of smooth Fp-schemes, but not
allowing negative Tate twists.
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Theorem 1.5 (Corollary 5.26). The functor in (1.2) is rigid for all M 2 SHeff.Fp/Œp�1�
and N D Sn;nŒp�1� (or, N D ZŒp�1�.n/) for all n � 1.

Let us unwind the meaning of this assertion in terms of Bloch’s cycle complex. For
a smooth Fp-scheme X of finite type, we define the Frobenius–Bloch cycle complex
R�.X � F=FrobF ;Z.n// to be the total complex associated to the two-term double com-
plex

R�
�
X � F;Z.n/

� id�.idX�FrobF /�
�����������! R�

�
X � F;Z.n/

�
; (1.3)

where R�.X�F;Z.n// denotes Bloch’s cycle complex. Equivalently, this is the homotopy
fixed point of the action of the partial Frobenius pullback .idX � FrobF /� on R�.X � F;
Z.n//. If we take F D xFp , and consider étale motivic cohomology R�ét.�;Z.n//, this
recovers Weil-étale cohomology of schemes in characteristic p >0 as introduced by Licht-
enbaum [28] and studied in particular by Geisser [15]. Still for F D xFp , the cohomologies
of the complex in (1.3) were studied under the name of Frobenius cohomology by Geisser
[16]. Geisser conjectured that these groups are finitely generated, which relates to Lichten-
baum’s conjectures on finiteness of Weil-étale cohomology. We (also) refer to the above
concept as Frobenius motivic cohomology (as opposed to Weil motivic cohomology) in
order to emphasize that fixed points under partial Frobenius are considered even for tran-
scendental extensions F over Fp . ForM being the motive ofX andN DZ.n/, the rigidity
asserted above amounts to the claim that the complex R�.X � F= FrobF ;Z.n// is rigid
after inverting p, i.e., is independent, up to quasi-isomorphism, of the choice of an alge-
braically closed field F of characteristic p > 0.

The proof for n D 1 is based on the following observation. Resolution of singularities
(by alterations) allows to reduce to the case of X being smooth and proper over Fp . The
maps

Gm.X/ �Gm.Y /
�
�! Gm.X �F Y /;

Pic.X/ � Pic.Y /
�
�! Pic.X �F Y /

fail to be isomorphisms for algebraically closed fields F in general. However, the “error
terms” are under control, cf. (5.9) and (5.10), and the homotopy fixed points of the action
by a partial Frobenius on these error terms do vanish. From this perspective, Theorem 1.5
shares a kinship with a statement known as Drinfeld’s lemma [9, Proposition 1.1], which
rectifies the failure of étale fundamental groups of Fp-schemes to satisfy a Künneth for-
mula, and is a key point in the Langlands program over fields such as Fp.t/ or Qp [14,27].

One may ask whether Frobenius motivic cohomology is rigid for n� 2 as well. In that
direction, we recall the following result, which is also in the vicinity of Drinfeld’s lemma
[20, Lemma 4.7]: for a finite type Fp-schemeX , and any extension of algebraically closed
fields F � E in characteristic p > 0, the base change

¹constructible subsets of X � F º ! ¹constructible subsets of X �Eº

induces a bijection after restricting to those subsets that are set-theoretically stable under
idX � FrobE , resp. idX � FrobF . In fact, these are precisely the subsets descending to X .
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This result gives control over the degree-wise kernel of .idX � FrobF /� on Bloch’s cycle
complex R�.X � F;Z.n//. The obstacle towards an analogue of Theorem 1.5 for n � 2
is a similar control of the cokernel. For F D xFp , this cokernel was studied by Geisser [16],
who pointed out the relation of these groups to the Parshin conjecture.

We conclude this paper with a short appendix on the homotopy fixed points of the
partial Frobenius on topological Hochschild homology. Frobenius THH is again rigid
(cf. Proposition A.1), with the Artin–Schreier sequence playing the rôle of the Kummer
sequence in the context of Frobenius K-theory.

2. Rigid functors

Let AffSchk be the category of affine schemes over a field k. We identify its opposite cate-
gory AffSchop

k
with the category of commutative k-algebras CAlgk whenever convenient.

Let Ani be the1-category of anima (also called spaces or1-groupoids).

Definition 2.1. A functor �WAffSchop
k
! Ani is called rigid if, for any extension F � E

of algebraically closed fields over k, the map �.F /! �.E/ is an equivalence.

Since equivalences in Ani are detected on homotopy groups, a functor � is rigid if and
only if �n.�.F /; ?/! �n.�.E/; ?/ is a bijection for all base points ?! �.F /. Recall
that a functor is called finitary if it preserves filtered colimits.

Lemma 2.2 (Suslin). Let �WAffSchop
k
! Ani be a finitary functor. Then, the following are

equivalent:

(1) The functor � is rigid.

(2) For any algebraically closed field F over k, any base point ?! �.F /, any con-
nected, smooth, affine F -curve C , any n 2 Z�0 and any ˛ 2 �n.�.C /; ?/, there
exists a non-empty open (automatically affine) subset U˛ � C such that the map
U˛.E/ ! �n.�.E/; ?/, c 7! c�˛ is constant for any algebraically closed field
extension E over F .

Proof. Since the formation of homotopy groups commutes with filtered colimits, we may
and do assume that � takes values in the category of sets.

Let F be an algebraically closed field over k. Then, the map �.F /! �.E/ is injec-
tive for any F -algebra E: by finitariness of �, and expressing E as the filtered colimit of
the finitely generated F -subalgebras, we may assume E is a finitely generated F -algebra.
Since F is algebraically closed, Hilbert’s Nullstellensatz supplies a section of the struc-
tural map F ! E implying the injectivity of �.F /! �.E/. This uses neither (1) nor (2).

Now assume (1) holds. Let C ! Spec F and ˛ 2 �.C / be as in (2). Let K be an
algebraic closure of the function field of C . Then, K D colim QC!C �. zC ;O/ is a filtered
colimit where zC ranges over the connected, smooth, affine F -curves equipped with a flat
(necessarily generically finite) map to C . Using that � is finitary, we get maps of sets

�.F /! �.C /! �.K/ D colim
zC!C

�. zC/;
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whose composition is bijective by (1). Thus, there exists some zC ! C such that the
pullback ˛j zC lies in the image of �.F /! �. zC/. In particular, the map

zC.E/! �.E/; Qc 7! Qc�.˛j zC /

is constant for any F -algebra E where zC.E/ denotes the set of F -maps SpecE ! zC .
Let U˛ be the (necessarily open by flatness) image of QC ! C . Then, Qc�.˛j zC / D c

�˛ for

zC.E/! U˛.E/; Qc 7! c:

So, (2) follows from the surjectivity of zC.E/� U˛.E/ for algebraically closed fields E.
Conversely, assume that (2) holds. Let F � E be an algebraically closed field exten-

sion. It remains to show that the injection �.F / ,! �.E/ is surjective. By finitariness of �,
we reduce to fields E of finite transcendence degree over F , then to transcendence degree
1 by induction. Again, by finitariness of �, any element ˛ 2 �.E/ arises by pullback from
some ˛C 2 �.C / for a connected, smooth, affine F -curve C whose algebraically closed
function field identifies with E. Denote by � 2 C.E/ the canonical map. Using (2) and
replacing C by U˛ if necessary, we may and do assume that the map C.E/ ! �.E/,
c 7! c�˛C is constant. Applying this to c D � gives ��˛C D ˛ by construction. Hence,
choosing any section SpecF ! C and looking at the composition

SpecE ! SpecF ! C

implies (1).

In practice the following corollary is useful.

Corollary 2.3. Let �WAffSchop
k
!Ani be a finitary functor such that for any algebraically

closed field F over k, any connected, smooth, affine F -curve C and any points c0; c1 2
C.F /, the maps

�n
�
�.ci /

�
W�n

�
�.C /; ?

�
! �n

�
�.F /; ?

�
; i D 0; 1

agree for all n 2 Z�0 and all base points ?! �.F /. Then, � is rigid.

Proof. Lemma 2.2 (2) is satisfied with U˛ D C for all ˛ 2 �n.�.C //, noting that F -maps
SpecE ! C are the same as sections of the base change C �F E ! SpecE.

Remark 2.4. Definition 2.1, Lemma 2.2 and Corollary 2.3 admit obvious analogues for
finitary functors �WAffSchop

k
! Sp with values in the1-category of spectra Sp, i.e., the

stabilization of Ani. Indeed, in the proof of Lemma 2.2 one uses the non-degeneracy of the
t -structure on Sp and the commutation of �n with filtered colimits to reduce to functors
valued in the category of abelian groups Ab. The rest of the argument is the same. Like-
wise, for finitary functors �WAffSchop

k
! D.Z/ valued in the derived category of abelian

groups.
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Example 2.5. The following (non-)examples are of interest throughout:

(1) LetM;N 2 SH.k/ be motivic spectra, see Section 4 for the definition of SH. Then,
for any n 2 Z prime to the characteristic of k, the functor CAlgk ! Sp given for
any k-algebra R by the cofiber

cofib
�
MapSH.R/.MR; NR/

n�
�! MapSH.R/.MR; NR/

�
is rigid [39]. The functor is finitary if M is compact.

(2) K-theory defines a finitary functorKWCAlgk! Sp that is not rigid:K1.F /D F �

highly depends on F . In particular, the functor

GmWCAlgk ! Ab; R 7! R�

is not rigid, evidently. This plays well with the fact that for C D A1F � ¹0º and a
point c 2 C.F / D F �, the map

Gm.C / D
�
F Œt˙�

��
D F � � tZ

t 7!c
���! F �

depends on the choice of c. In the subsequent sections, we show that the homotopy
fixed points under the (partial) Frobenius endomorphism are rigid.

3. Fixed point categories

Definition 3.1. For an endofunctor of an1-category 'WC ! C the fixed point category
of ' on C is the1-category

C' WD lim
�
C

'
���
id

C
�
D C �'�id;C�C ;� C :

Remark 3.2. Objects in C' are triples .c1 2 C ; c2 2 C ; .c1; c1/ Š .'c2; c2//. Any such
object is isomorphic to one of the form .c; c; .cŠ 'c; idc//, i.e., one can think of objects as
pairs .c; c Š 'c/. The anima (or space) of maps between two such objects .c; �W c Š 'c/
and .c0; �0W c0 Š 'c0/ is the equalizer in Ani of the following two maps

MapC .c; c
0/

�0�

,,

'
// MapC .'c; 'c

0/
��

// MapC .c; 'c
0/: (3.1)

Thus, maps in C' are maps f W c ! c0 in C together with a commutative diagram:

c

f

��

Š

� // 'c

'f

��

c0
Š

�0 // 'c0:

(3.2)
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Example 3.3. For ' D idC , one has

MapC id.triv c; triv c0/ D MapC .c; c
0/˚MapC .c; c

0/Œ�1�;

since the two maps �� ı ' and �0� in (3.1) agree. In addition, there is a functor

trivWC ! C id; c 7! .c; c
id
�! c/;

which is not fully faithful due to the shifted copy of the mapping spectrum.

Remark 3.4. The fixed point category C' can also be regarded as the limit of the functor
ˆC ;' WBN ! Cat1 sending � 7! C and N 3 1 7! '. In particular, an equivalence of
functors ˇW'! '0 gives rise to an isomorphism of diagramsˆC ;' ŠˆC ;'0 , and therefore
an equivalence

C'
ˇ
�!
Š

C'
0

;
�
c; c

�
�!
Š
'c
�
7!
�
c; c

�
�!
Š
'c

ˇ.c/
���!
Š

'0c
�
:

So, given an equivalence ˇW id
Š
�! ', there is a “twisting” functor

tw WD twˇ WC
triv
��! C id Š

�! C' :

Remark 3.5. If C is a presentably symmetric monoidal (i.e., it is presentable, symmetric
monoidal and the˝-product commutes with colimits in each variable), stable1-category
and ' a symmetric monoidal endofunctor, then so is C' . Indeed, the forgetful functors

CAlg.PrSt/! PrSt
! PrL

! Cat1

preserve limits. See [30, Proposition 3.2.2.1] for the first arrow, [30, Proposition 4.8.2.18]
for the second one, and [29, Proposition 5.5.3.13] for the last one. In addition, if C is
compactly generated and ' preserves compact objects, then C' is compactly generated
[20, Proof of Lemma 2.5]. In the situation of Example 3.3 (or Remark 3.4, where ˇ is
supposed to be an equivalence of symmetric monoidal colimit-preserving functors) the
functors triv (resp. tw) will again be functors in CAlg.PrSt/.

4. Frobenius stable homotopy category

For a scheme S , we denote by SH.S/ the stable A1-homotopy category, i.e., the pre-
sentably symmetric monoidal 1-category given by the P1-stabilization of A1-invariant
Nisnevich1-sheaves of spectra on the category SmS of smooth S -schemes, cf. the dis-
cussion around [23, equation (C.11)], and also [2, Appendix A] for the definition of the
Nisnevich topology in full generality. The construction of SH gives a functor

M WSmS ! SH.S/; (4.1)
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which associates to a smooth S -scheme X its motive M.X/. If S is quasi-compact and
quasi-separated (qcqs), then SH.S/ is compactly generated [23, Proposition C.12], up to
desuspensions, by the motives M.X/ of finitely presented, smooth S -schemes X . If S
is qcqs of finite Krull dimension, then every Nisnevich sheaf is a hypersheaf [5, Theo-
rem 1.7], so the above definition of SH.S/ agrees with more classical definitions using
model categorical language [38, Section 2.4.1]. The construction of the stable A1-homo-
topy category can be upgraded to a functor

SHWSchop
S ! CAlg.PrSt/

using �-pullback functoriality and further to a six functors formalism [24, 25].
We use the following standard notation for the motivic spheres: let S1;1 2 SH.S/ be the

object represented by Gm;S , and denote by S1;0 2 SH.S/ the suspension of the monoidal
unit. By definition of SH.S/, both objects are dualizable. So, the definition

SnCr;n WD .S1;1/˝n ˝ .S1;0/˝r

makes sense for all n; r 2 Z. Note that S0;0 D 1 is the monoidal unit in SH.S/.

4.1. The Frobenius stable homotopy category

Fix a prime number p. For an Fp-scheme S , we denote by FrobS WS ! S the Frobenius
endomorphism given by f 7! f p on functions. If S is understood, we abbreviate FrobS
simply by Frob. The pullback Frob� induces a symmetric monoidal endofunctor of SH.S/,
so the setting of Section 3, in particular Remark 3.5, applies.

Definition 4.1. The Frobenius stable A1-homotopy category of S is the fixed point cate-
gory under the pullback along the Frobenius map:

SH.S=Frob/ WD SH.S/Frob�

Remark 4.2. We use an analogous notation also for other1-categories:

(1) If P is a set of prime numbers, then we denote by SH.S/ŒP�1� the full subcate-
gory in SH.S/ of P�1-localized objects, i.e., M 2 SH.S/ with M ˝ 1=` D 0 for
all ` 2 P . The inclusion is right adjoint to the localization functor

SH.S/! SH.S/ŒP�1�;

see e.g. [31, Section 3.2] for a general discussion. Further, P�1-localization com-
mutes with taking Frobenius fixed points, and we denote by SH.S= Frob/ŒP�1�
the resulting full subcategory of SH.S= Frob/. We apply this to the cases where
P D ¹pº and where P is the set of all primes. The resulting categories of p�1-
localized and rational objects are denoted by SH.S=Frob/Œp�1� and SH.S=Frob/Q
respectively.

(2) Similarly, we consider the category DM.S= Frob/, where DM denotes the cate-
gory of Beilinson motives with rational coefficients [4].
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Remark 4.3. The formation of SH.S= Frob/ is functorial since the Frobenius endomor-
phism is so. That is, for a map sWS 0 ! S , the �-pullback induces a symmetric monoidal
functor

s�WSH.S=Frob/! SH.S 0=Frob/;�
M;M

�
�!
Š

Frob�M
�
7!
�
s�M; s�M

s��
��!
Š

s� Frob�M D Frob� s�M
�
:

Construction 4.4. Remark 4.3 applies to the structural map sWS ! Spec Fp and gives the
symmetric monoidal functor

canS WSH.Fp/
triv
��! SH.Fp=id/

s�

�! SH.S=Frob/;

M 7! .s�M; s�M
id
�! s�M D Frob� s�M/:

using FrobD id over Fp and so s ı FrobD s. We also use the same notation for the variants
in Remark 4.2.

4.2. Twisted Frobenius objects

If t W T ! S is a morphism of Fp-schemes, we consider throughout the usual diagram
involving the relative Frobenius FrobT=S where the square is cartesian:

T
FrobT=S

//

t
  

T 0

t 0

��

// T

t

��

S
FrobS // S:

(4.2)

Example 4.5. The relative Frobenius FrobGm;S=S D FrobGm;Fp
�idS agrees with the p-

multiplication of the S -group scheme Gm;S . The induced map on S1;1 is the multiplication
by

p" WD

p�1X
iD0

˝
.�1/i

˛
2 KMW

0 .Fp/; (4.3)

[1, Corollaire C.9 and proof of Proposition C.5]. After p�1-localization, this element is
invertible, see [1, Section C] and, e.g., [8, Example 2.1.5, Proposition 2.3.1]. Note that
h�1i D h1i D 1 if �1 is a square in F�p , i.e., if p D 2 or p � 1 mod 4. In this case, one
has p" D p.

Proposition 4.6. Let S be an Fp-scheme. Then, there is a canonical isomorphism of sym-
metric monoidal endofunctors on SH.S/Œp�1�,

ˇW id
Š
�! Frob�

given on motives of smooth S -schemes T by the relative Frobenius maps:

ˇ
�
M.T /

�
WM.T /

FrobT=S
�����! M.T �S;Frob S/ D Frob�M.T /:
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Proof. In order to construct ˇ we use the universal property of SH, see [38]. Using the
notation in (4.2) gives a functor

twWSmS ! Fun.�1;SmS /; T 7! .T ! T 0/

whose evaluations at the two endpoints of �1 are the identity, respectively Frob�. This
functor has a symmetric monoidal structure with respect to the pointwise monoidal struc-
ture on the target category. On the unstable A1-homotopy category H.S/ (i.e., on A1-
invariant Nisnevich sheaves of spectra), one has a symmetric monoidal functor H.S/!
Fun.�1;H.S// without inverting p. Its evaluation at the object represented by Gm;S is
the multiplication with p" on S1;1 2 H.S/ (Example 4.5), which becomes invertible upon
passing to p�1-localizations. Thus its image in Fun.�1;SH.S/Œp�1�/ is˝-invertible.

By the universal property of SH(Remark 4.7) it then descends to a symmetric monoidal
functor

SH.S/Œp�1�! Fun
�
�1;SH.S/Œp�1�

�
whose evaluations at the two endpoints of�1 are again id and Frob�. Therefore, we obtain
a natural transformation of symmetric monoidal functors ˇ as stated.

It remains to show that ˇ.M/ is an equivalence for all M 2 SH.S/. It suffices to do
this for M D MS .T / D tŠt

Š1S for some smooth t WT ! S as above. The map FrobT=S is
a universal homeomorphism [45, Tag 0CCB]. So, the functor Frob�T=S W SH.T 0/Œp�1�!
SH.T /Œp�1� is an equivalence [12] with inverse FrobT=S;� D FrobT=S;Š, hence Frob�T=S D
FrobŠT=S as well. We have t D t 0 ı FrobT=S with notation as in (4.2). So, the counit map

FrobT=S;Š FrobŠT=S ! id;

which is an isomorphism, induces the isomorphism

MS .T / D tŠt
Š1S D t

0
Š FrobT=S;Š FrobŠT=S t

0Š1S
Š
�! t 0Š t

0Š1S D MS .T
0/ D Frob�MS .T /:

It agrees with the map induced by FrobT=S WT ! T 0 under the functor (4.1) on motives.

Remark 4.7. We thank the anonymous referee for pointing out the following observation
and minor correction to [38, Corollary 2.39] (and similarly [2, Lemma 4.1]): the universal
property of the symmetric monoidal localization C ŒX�1� of a stable presentably symmet-
ric monoidal 1-category C at a symmetric object X 2 C is that the composition with
C ! C ŒX�1� induces an equivalence, for any symmetric monoidal1-category D,

Fun˝
�
C ŒX�1�;D

� Š
�! Fun˝.C;D/ �evX ;D Pic.D/;

where Pic.D/ denotes the1-groupoid of invertible objects in D.
Indeed, any natural transformation of symmetric monoidal functors F ! G of func-

tors C ŒX�1� ! D is necessarily an isomorphism when evaluated on an invertible (or,
more generally, dualizable) object in C ŒX�1�. In particular, this is true for the evaluation
at X itself.

http://stacks.math.columbia.edu/tag/0CCB
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Applying Remark 3.4 to Proposition 4.6, we get the following result.

Corollary 4.8. For any Fp-scheme S , there is the symmetric monoidal “twisting” functor

twWSH.S/Œp�1�
triv
��! SH.S=id/Œp�1�

ˇ
�!
Š

SH.S=Frob/Œp�1�:

For a smooth Fp-scheme X , one has

tw
�
M.X/

�
D
�
M.X � S/;M.X � S/

FrobX �idS
�������! M.X � S/

�
:

Remark 4.9. The two functors

SH.Fp/Œp�1�
triv
���
tw

SH.Fp=id/Œp�1�

do not agree. Indeed, tw.SrCn;n/ D .SrCn;n; pn" � id/, by Example 4.5.

Remark 4.10. For a map sWS 0! S , the pullback functor from Remark 4.3 together with
the twisting functors give a diagram

SH.S/Œp�1�

s�

��

tw // SH.S=Frob/Œp�1�

s�

��

SH.S 0/Œp�1� tw // SH.S 0=Frob/Œp�1�;

which commutes since forming relative Frobenii is functorial.

5. Frobenius rigidity

Recall the functor canS WSH.Fp/Œp�1�! SH.S=Frob/Œp�1� from Construction 4.4.

Definition 5.1. An ordered pair of objects M;N 2 SH.Fp/Œp�1� is Frobenius rigid if the
functor AffSchop

Fp
! Sp given by

S 7! MapSH.S=Frob/Œp�1�.canSM; canSN/

is rigid. That is, if for any extension of algebraically closed fields f WSpecE ! SpecF in
characteristic p > 0 the induced map

MapSH.F=Frob/Œp�1�.canFM; canFN/
f �

��! MapSH.E=Frob/Œp�1�.canEM; canEN/ (5.1)

is an equivalence.

Remark 5.2. This definition suggests the question to what extent the functor

f �WSH.F=Frob/Œp�1�! SH.E=Frob/Œp�1�
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is fully faithful. On the whole of SH.F= Frob/Œp�1�, f � is not fully faithful, however.
Indeed, using the twisting functor tw, both categories are equivalent to SH.�/Œp�1�id.
By Example 3.3 (and given that the functor f � then identifies with the usual f �, by
Remark 4.10), f � is not fully faithful, compare also Example 2.5 (2).

Remark 5.3. If the pair M; N is Frobenius rigid, then the invariance of SH.�/Œp�1�
under perfection [12] implies a similar rigidity property for any extension of separably (as
opposed to algebraically) closed fields.

Recall the variants of the Frobenius fixed point categories from Remark 4.2.

Lemma 5.4. Let M;N 2 SH.Fp/Œp�1�. The following are equivalent:

(1) The pair M;N is Frobenius rigid.

(2) Their rationalizations MQ; NQ satisfy the property of (5.1) in SH.�=Frob/Q.

(3) The Beilinson motives associated with MQ; NQ satisfy the property of (5.1) in
DM.�=Frob/.

Proof. Let A be the fiber of the map in (5.1). By definition, p-multiplication is invertible.
The arithmetic fracture square [31, (3.17)] implies that A D 0 if and only if both its ratio-
nalization AQD 0 and A=n WD cofib.A

n�
�!A/D 0 for all n prime to p. Röndigs–Østvær’s

version of Suslin rigidity for SH, i.e., the full faithfulness of SH.F /=n! SH.E/=n [39],
ensures that the latter holds for any M;N as above. This proves (1),(2).

For any field containing a square root of �1, in particular for K D E and K D F ,
SH.K/Q DDM.K/ [4, Corollary 16.2.14]. Again passing to homotopy fixed points under
Frobenius pullback shows the equivalence of (2) and (3).

5.1. Frobenius rigidity for cellular objects

Recall, e.g. from [10, Section 2.8] that the subcategory

SH.S/cell � SH.S/

of cellular objects is the stable full subcategory generated under colimits by the spheres
SrCn;n, which lie in the essential image of SH.Fp/ ! SH.S/, for all r; n 2 Z. These
objects are dualizable and, if S is qcqs, also compact.

Theorem 5.5. Any pair of p�1-localized cellular objects M; N 2 SH.Fp/cellŒp
�1� is

Frobenius rigid.

Proof. As SH.Fp/cell is compactly generated by dualizable objects, we may assumeM D
1Fp . Again using compactness, we may then also assume that N D SrCn;n is a com-
pact generator of SH.Fp/cell. Let F � E be an extension of algebraically closed fields in
characteristic p > 0. We have to prove that the map between the p�1-localized mapping
spectra

MapSH.F=Frob/.1; canF SrCn;n/Œp�1�! MapSH.E=Frob/.1; canESrCn;n/Œp�1� (5.2)
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is an isomorphism for all r; n 2 Z. Since S1;0 is the object associated with the constant
presheaf with values the circle, we may assume r D 0.

Letting S denote either SpecF or SpecE, we will show that these mapping spectra are
insensitive to the choice of SpecF or SpecE. By definition, canS1Fp D .1S ; can1S W1S Š
Frob�S 1S /, see Construction 4.4. Abbreviating S WD s�Sn;n, the same description holds
for canSSn;n D .S; canSWS Š Frob�S S/. We have the following canonical identifications,
where all mapping spectra appearing at the right are in SH.S/Œp�1�:

MapSH.S=Frob/Œp�1�.1; canSSn;n/ D lim
�

Map.1;S/
Frob�S .�/ıcan1S
���������������������

canSı�

Map.1;Frob�S S/
�

D lim
�

Map.1;S/
can�1S ıFrob�S .�/ıcan1S
�����������������������������

id
Map.1;S/

�
D lim

�
Map.1;S/

can�1S ıˇ.S/ı�
�������������������

id
Map.1;S/

�
D lim

�
Map.1;S/

pn" ��
�������

id
Map.1;S/

�
:

The first equality follows from (3.1), the second by postcomposing with can�1S , the equal-
ity Frob�S .�/ ı can1S D ˇ.S/ from can1S D ˇ.1S / and the functoriality of ˇ (Proposi-
tion 4.6) and the last from Example 4.5, according to which the composite can�1S ˇ.S/
equals pn" � id. Thus, it remains to show that the fiber of the multiplication with 1 � pn"
on MapSH.S/Œp�1�.1; S/ D MapSH.S/.1; S/Œp

�1� is insensitive to replacing S D Spec F
by S D SpecE.

By Suslin rigidity (Lemma 5.4), we may consider the category of Beilinson motives
DM.�/ instead of SH.�/Œp�1�. Then, each homotopy group of the associated mapping
spectra is a Q-vector space, so multiplication by 1 � pn" ¤ 0 is an isomorphism for
all n ¤ 0. Therefore MapDM.S=Frob/.1; canSQ.n/Œn�/ D 0 in this case. For n D 0, already
the mapping spectra MapDM.S/.Q;Q/ D Q are independent of the chosen S . Passing to
homotopy fixed points under the trivial Frobenius actions preserves that independence.

5.2. Frobenius stable homotopy groups

Recall that the stable A1-homotopy groups of a field F are defined as

�r;n.F / WD HomSH.F /.S
rCn;n; 1/;

where 1 denotes the monoidal unit.
Morel showed that these groups vanish for r < 0 [33, Theorem 4.9]. For r D 0 they

are isomorphic to Milnor–Witt K-groups KMW
�n .F /, which for algebraically closed fields

reduce to the Milnor K-groups KM�n.F /. For odd primes p and any p-power q, the p�1-
localized groups �1;n.Fq/Œp�1� have been computed in [36, Section 8.10]. We also have
KMn .Fq/D 0 for n � 2 [32, Example 1.5]. These computations, and the continuity of SH,
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which allows to pass to xFp D colim Fq , give the following results for �r;n.xFp/Œp�1� and
odd primes p:

n � �2 �1 0 1 2 � 2

r D 1 0 0 .Z=2/˚2 Z=2 Z=24Œp�1� 0
r D 0 0 xF�p ZŒp�1� 0 0 0

Definition 5.6. Let F be a field of characteristic p > 0. The p�1-localized Frobenius
stable A1-homotopy groups are the groups

�r;n.F=Frob/Œp�1� WD HomSH.F=Frob/Œp�1�.canF SrCn;n; 1/:

These groups appear in a long exact sequence:

: : :�r;n.F=Frob/Œp�1�!�r;n.F /Œp�1�
id�Frob
����!�r;n.F /Œp

�1�!�r�1;n.F=Frob/Œp�1� : : :

The Frobenius rigidity of cellular spectra (Theorem 5.5) implies the following com-
putation.

Corollary 5.7. The groups �r;n.F= Frob/Œp�1� are independent of the choice of an alge-
braically closed field F of characteristic p > 0. For small values of r , and odd primes p,
the groups are given by

n � �2 �1 0 1 2 � 2

r D 0 0 F�p .Z=2/˚2 ˚ ZŒp�1� Z=2 Z=24Œp�1� 0

r D �1 0 0 ZŒp�1� 0 0 0

5.3. Frobenius K -theory

Definition 5.8. The FrobeniusK-theory spectrum of S , with respect to an Fp-scheme X ,
is defined as the equalizer in the1-category of spectra

K.X � S=FrobS / WD lim
�
K.X � S/

.idX�FrobS /�
�����������������

id
K.X � S/

�
;

i.e., the homotopy fixed points of the pullback along the partial Frobenius idX � FrobS .
The homotopy groups of this spectrum, denoted by Kn.X � S= FrobS /, appear in a long
exact sequence

: : :Kn.X � S=FrobS /!Kn.X � S/
id�Frob�S
�����!Kn.X � S/!Kn�1.X � S=FrobS / : : : :

(5.3)

In order to relate these groups to the Frobenius fixed points on SH, we place the spec-
trum KGL 2 SH.Fp/ representing homotopy K-theory inside SH.S=Frob/ as follows:

Definition 5.9. For a scheme S of characteristic p > 0, let KGLS= Frob WD canSKGL 2
SH.S=Frob/.
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By Construction 4.4, KGLS= Frob consists of the spectrum KGLS together with the
map

canKGLS WKGLS D s�KGL
id
�! s�KGL D Frob�S s

�KGL;

where sW S ! Spec Fp denotes the structure map. Being the image of a commutative
algebra object in SH.Fp/, the object KGLS=Frob again has the structure of a commutative
algebra object in SH.S=Frob/. This object represents Frobenius K-theory as follows.

Lemma 5.10. Let S be regular Noetherian, and let X be smooth of finite type over Fp .
Then, there is an isomorphism of spectra

K.X � S=FrobS / D MapSH.S=Frob/

�
canSM.X/;KGLS=Frob

�
:

Proof. We have s�M.X/ D M.X � S/. By the assumptions, X � S is regular, so that
there is an identification of mapping spectra

MapSH.S/.s
�M.X/;KGLS / D MapSH.X�S/.1;KGLX�S / D K.X � S/:

By construction [4, Section 13.1], for an endomorphism ' of X � S , such as ' D idX �
FrobS , the map

MapSH.X�S/.1;KGLX�S /
'�

�!Map.'�1; '�KGLX�S /
can�1KGLı.�/ıcan1
���������������������

Š

Map.1;KGLX�S /

identifies with the pullback '� on the K-theory spectrum. (Here at the right can� denotes
again the canonical isomorphisms coming from functoriality of �-pullback, see Construc-
tion 4.4). The following computation is analogous to the proof of Theorem 5.5, where
Map� WD MapSH.�/:

MapSH.S=Frob/

�
canSM.X/; canSKGL

�
D lim

�
MapS

�
M.X � S/;KGLS

� Frob�S .�/ıcanM.X�S/
���������������������������

canKGLı�
MapS

�
M.X � S/;Frob�S KGL

��
D lim

�
MapS

�
M.X � S/;KGL

� can�1KGLıFrob�S .�/ıcanM.X�S/
�������������������������������������

id
MapS

�
M.X � S/;KGL

��
D lim

�
MapX�S .1;KGLX�S /

can�1KGLı.idX�FrobS /�.�/ıcanM.X�S/
�����������������������������������������������

id
MapX�S .1;KGLX�S /

�
D lim

�
K.X � S/

.idX�FrobS /�
�����������������

id
K.X � S/

�
DW K.X � S=FrobS /:

The following result asserts that the Frobenius acts so richly on theK-theory of (large
enough) fields that hardly anything is fixed under Frobenius pullback.

Corollary 5.11. Frobenius K-theory is rigid. That is, for an extension F � E of alge-
braically closed fields in characteristic p > 0, the pullback map

K.F=Frob/! K.E=Frob/
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is an equivalence of spectra. The individual Frobenius K-groups are given by

Kn.F=Frob/ D

8̂̂<̂
:̂

Z n D �1; 0;

F�
pi

n D 2i � 1 > 0;

0 else:

(5.4)

Proof. The statement is clear for n � 0, cf. the discussion around (1.1). By [22, Theo-
rem 5.4], the groups Kn.F / are uniquely p-divisible for n > 0. Thus Kn.F= Frob/ D
Kn.F=Frob/Œp�1� for n > 0. The first statement now follows from the cellularity of KGL
[10, Theorem 6.2], Lemma 5.10 for X D Spec Fp and Theorem 5.5.

To see the concrete values in (5.4), we may assume F D xFp and use Quillen’s com-
putation of K.xFp/ and its Frobenius action, as reported e.g., in [46, Section VI.1, p. 465]:
as an abelian group K2i�1.xFp/ is isomorphic to xF�p , with Frob� acting by raising to the
pi -th power. Then, our statement follows from the Kummer sequence.

Remark 5.12. As communicated to us by Georg Tamme, Corollary 5.11 can be proven
directly by using that for n > 0, the map Frob� on Kn.F / agrees with the p-th Adams
operation, which acts by multiplication with pk on the k-th Adams eigenspace inside
Kn.F /Q. Such an argument seems not applicable to cellular objects other than KGL.

Corollary 5.13. The rationalized Frobenius K-groups of any field F of characteristic
p > 0 are given by

Kn.F=Frob/Q D

´
Q n D �1; 0;

0 else:
(5.5)

In particular, the Beilinson–Soulé vanishing holds for Frobenius K-theory of fields:

Hp
�
F=Frob;Q.q/

�
D K2q�p.F=Frob/.q/Q D 0

for q > 0 and p � 0.

Proof. The cases n D �1; 0 are clear. Suppose now n ¤ �1; 0. To show the claimed
vanishing, we may assume F is perfect, since p�1-localized K-theory is insensitive to
perfection. Let xF be an algebraic closure of F . Combining Corollary 5.11 with finitary-
ness of Frobenius K-theory we have

0 D Kn. xF=Frob/Q D colim
F�L� xF

Kn.L=Frob/Q; (5.6)

where the colimit runs over the finite, separable extensions F � L � xF .
It suffices to show that the transition maps f �WK.F=Frob/Q!K.L=Frob/Q in (5.6)

are injective. By Lemma 5.14 below, the usual f�f � on K-theory extends to Frobenius
K-theory. The maps f�f �WKn.F / ! Kn.F / are equal to ŒL W F � � id [37, Section 7,
Proposition 4.8], and are therefore isomorphisms after passing to rationalizations. So,
f �WK.F=Frob/Q ! K.L=Frob/Q is injective.
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Lemma 5.14. If f W S 0 ! S is a finite étale map, there is a natural pushforward map
f�WK.X � S

0=FrobS 0/! K.X � S=FrobS /, compatible with the usual pushforward on
K-theory. The same holds for pullback along arbitrary maps f .

Proof. The map f � always exists since f � Frob�S D Frob�S 0 f
�WK.X �S/!K.X �S 0/.

For étale maps f , the natural map S 0! S 0 �f;S;FrobS S is an isomorphism [45, Tag 0EBS],
so that the base-change formula

Frob�S f� D f� Frob�S 0 WK.X � S
0/! K.X � S/

implies the existence of the pushforward on Frobenius K-theory.

Recall a conjecture of Beilinson: for all fields F=Fp the canonical map

KM� .F /Q ! K�.F /Q

is an isomorphism. This conjecture is implied by the Bass conjecture or, alternatively, also
by the Tate conjecture, see [17, Introduction] for references. The next result confirms this
conjecture for the Frobenius variants of these two theories. For an abelian group A, we
write A.p/ WD A˝ Z.p/ for the localization at the prime ideal .p/.

Corollary 5.15. For any field F of characteristic p > 0, and any n 2 Z, the map�
KMn .F /.p/

id�Frob
����! KMn .F /.p/

�
!
�
Kn.F /.p/

id�Frob
����! Kn.F /.p/

�
is a quasi-isomorphism.

Proof. By [17, Proof of Theorem 8.1], the natural mapKMn .F /!Kn.F / is injective and
its cokernel C is a ZŒp�1�-module. We therefore have C.p/ D CQ. Thus, we may replace
the localization at .p/ in the statement by the rationalization.

On F � (resp. KMn .F /), the Frobenius is the multiplication by p (resp. by pn). There-
fore, id � Frob is an isomorphism on KMn .F /˝Q for n � 1. Thus, the claim for alge-
braically closed fields follows immediately from Corollary 5.7 and Corollary 5.11.

For arbitrary F , the argument from the proof of Corollary 5.13 carries over: MilnorK-
theory is continuous, and for any finite field extension E � F , the composite KM� .E/!
KM� .F /!KM� .E/ is ŒF W E� � id. (This is one of the joint properties of MilnorK-theory
and K-theory, cf. also [41, Axiom R2d].)

Remark 5.16. The localization at the prime ideal .p/ is necessary in the statement above:
for n > 0, the groupKMn .F2/ vanishes, butK2i�1.F2/D F�

2i
¤ 0 [46, Corollary IV.1.13].

5.4. Further cellular spectra

In addition to 1 and KGL, further cellular spectra include the cobordism spectrum MGL
[10, Theorem 6.4] as well as, for p ¤ 2, hermitian K-theory and Witt theory [40, Theo-
rem 1.1]. Thus, Corollary 5.11 admits analogues for Frobenius cobordism groups, Frobe-
nius hermitian K-groups and Witt groups.

http://stacks.math.columbia.edu/tag/0EBS
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5.5. Motivic cohomology of small weight

An interesting case of Definition 5.1 not covered by the results thus far is the case M D
M.X/Œp�1� andN D Sn;nŒp�1� (orN D ZŒp�1�.n/ or Q.n/, which makes no difference
in view of Lemma 5.4). For an Fp-scheme X of finite type and any field F of character-
istic p > 0, we write R�.X � F;Z.n// for Bloch’s complex of codimension n-cycles on
X � F . Its m-th homology identifies with the higher Chow group CHn.X � F; m/. As
before, we define the Frobenius variant of this by taking homotopy fixed points under the
partial Frobenius pullback:

R�
�
X � F=FrobF ;Z.n/

�
WD lim

�
R�
�
X � F;Z.n/

� .idX�FrobF /�
�����������������

id
R�
�
X � F;Z.n/

��
A concrete representative for this complex is the total complex of a two-step double com-
plex, as in (1.3). The cohomology groups of this complex, denoted by

H�
�
X � SpecF=FrobF ;Z.n/

�
;

again sit in a long exact sequence similar to (5.3).

Theorem 5.17. Let X be smooth, proper Fp-scheme. Then, Frobenius rigidity holds for
the pair M.X/Œp�1� and Sn;nŒp�1� for all n � 1. In particular, the p�1-localized Frobe-
nius motivic cohomology groups

H�
�
X � SpecF=FrobF ;Z.n/

�
Œp�1� (5.7)

are independent of the choice of an algebraically closed field F of characteristic p > 0,
for all n � 1.

After some preparation, the proof will be given at the end of this subsection.

Example 5.18. For F D xFp , the étale version of (5.7) is studied in [15,28] and in [19,20]
for constructible `-adic sheaves.

5.5.1. Rigidity of Frobenius units. Starting with the non-rigid presheaf Gm (Exam-
ple 2.5), we do get a rigid functor once we apply homotopy fixed points under the partial
Frobenius:

Lemma 5.19. For a geometrically connected and geometrically reduced scheme X , the
following functor is rigid:

Gm.X��=Frob�/WCAlgFp!D.Z/; R 7!
�
Gm.X�R/

id�Frob�R
�����! Gm.X�R/

�
: (5.8)

Proof. Since the functor is finitary it suffices to check the criterion in Corollary 2.3. Let
C D SpecR be a connected, smooth, affine curve over an algebraically closed field F .
We first consider the case when X is geometrically integral. We can then apply the unit
theorem due to Sweedler [44] and Rosenlicht [7] to XF and C over F and obtain the
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following short exact sequences:

1 // F �

id�Frob�F
��

// Gm.XF / �Gm.C /

id�.Frob�F ;Frob�C /
��

// Gm.X � C/

id�Frob�C
��

// 1

1 // F � // Gm.XF / �Gm.C / // Gm.X � C/ // 1;

(5.9)

which are compatible with the displayed vertical maps.
Below, we write (co)ker for the (co)kernel of the vertical maps. Using the snake lemma

along with the Kummer sequence, we obtain a short exact sequence and an isomorphism:

1! F�p ! ker
ˇ̌
Gm.XF /˚Gm.C/

! ker
ˇ̌
Gm.X�C/

! 1;

coker
ˇ̌
Gm.XF /˚Gm.C/

Š
�! coker

ˇ̌
Gm.X�C/

:

For f 2 Gm.X � C/ and c 2 C.F /, the pullback c�f 2 Gm.XF / is clearly indepen-
dent of c if f factors over the projection X � C ! XF . Thus, the rigidity of R 7!
.co/kerjGm.X�R/ follows from the one of R 7! co/kerjGm.R/, i.e., we may and do assume
X D Spec Fp . Then, the pullback map

c�W .co/kerjGm.C/ ! .co/kerjGm.F /

is independent of c.
For the kernel, the left-hand group is F�p since C is integral, and the value of constant

functions is clearly independent of c. For the cokernel, it is independent since the target
group coker jGm.F / is trivial because F is algebraically closed.

Corollary 5.20. For a geometrically reduced Fp-scheme X with finitely many geometric
connected components, the rationalization

Gm.X � �=Frob�/QWCAlgFp ! D.Q/

of (5.8) is rigid.

Proof. First off, we have �0.XxFp /D �0.XF / for any algebraically closed field F of char-
acteristic p, see [45, Tag 0363]. Clearly, the rows in diagram (5.9) remain exact when
replacing F � at the left by G WD ZŒ�0.XF /�˝Z F

�. On this group, Frob�F acts as usual
on F � and by permutation on the set �0.XF /. We claim that, after rationalization, the
map id � Frob�F is invertible on GQ. In particular, its cokernel vanishes and the proof of
Lemma 5.19 carries over. To show the claim, let Z act on GQ through 1 7! Frob�F . We
have to show that Hi .Z; GQ/ D 0 for i D 0 (injectivity) and i D 1 (surjectivity). Observe
that .Frob�F /

n acts as the identity on the finite set �0.XF / for some suitable n 2 Z�1.
Thus, the Kummer sequence shows Hi .nZ; GQ/ D 0 for i D 0; 1. This obviously implies
H0.Z; GQ/ D 0. The vanishing of H1 now follows from the inflation-restriction exact
sequence

0! H1
�
Z=nZ;H0.nZ; GQ/

�
! H1.Z; GQ/! H1.nZ; GQ/:

http://stacks.math.columbia.edu/tag/0363
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5.5.2. Verschiebung. To show rigidity of a Frobenius version of the Picard group, we use
some generalities about the Verschiebung of abelian varieties, see, e.g., [11, Section 5.2].
Recall that for an abelian variety A over Fp , the Verschiebung is an isogeny

VAWA! A

of degree pdimA. It commutes with any morphism of abelian varieties A! A0.
Fix a (geometrically) normal, proper Fp-scheme X . We consider the Verschiebung of

the Picard variety A WD Pic0X=Fp ;red, which is an abelian variety over Fp . Indeed, Pic0X=Fp is
a geometrically irreducible, proper Fp-group scheme [13, Lemma 9.5.1, Theorem 9.5.4,
Remark 9.5.6]. Its reduction Pic0X=Fp ;red is geometrically reduced and still an Fp-group
scheme (since Fp is perfect both properties are clear, but also hold over general fields by
[6, Discussion above Theorem 5.1.1]), hence an abelian variety [45, Tag 03RO].

Lemma 5.21. The Verschiebung of A D Pic0X=Fp ;red and the map induced by pulling back
line bundles along the Frobenius FrobX agree:

VA D Frob�X :

Proof. It suffices to see
Frob�X ıFrobA D VA ı FrobA;

because FrobA is an epimorphism (since A is reduced). By construction of the Verschie-
bung, the composition VA ı FrobA is multiplication by p.

The simple, but crucial observation (e.g., [42, Lemme 1.4]) is that the map FrobA
sends a T -point aW T ! A to FrobA ıa D a ı FrobT . Interpreting a as a line bundle L

on X �Fp T , this means that FrobA.L/D .idX � FrobT /�L. Composing this with Frob�X ,
we see that it gets sent to .FrobX �FrobT /�LD Frob�X�T L. Generally, pulling back line
bundles along the total Frobenius on a scheme, such as X � T , sends L to L˝p , as can
be seen by regarding the transition functions, which are raised to their p-th power. Hence,
Frob�X ıFrobA is also the p-multiplication.

Proposition 5.22. For any abelian variety A over Fp , and any � 2 Q, the element

idC �VA

is an isogeny, i.e., an invertible element in End.A/Q.

Proof. Using that the Verschiebung is compatible with any morphism of abelian varieties,
we may replace A by any isogeneous abelian variety A0 to check this claim (since then
End.A/Q D End.A0/Q). Therefore we may assume A D

Q
Ai is a product of simple

abelian varieties Ai=Fp . The morphism id C �VA respects this product decomposition,
so we may assume A is simple. Then End.A/Q is a skew field, so it suffices to show that
idC�VA is a non-zero element in End.A/Q. The case �D 0 being trivial, we now consider
� D r

s
2 Q with r; s 2 Z n ¹0º. If sidA D rVA, then taking degrees (deg VA D pdimA,

http://stacks.math.columbia.edu/tag/03RO
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[11, Proposition 5.20]), we get

s2 dimA
D r2 dimApdimA;

which is a contradiction.

Remark 5.23. If q is an odd p-power, then the analogue of Proposition 5.22 holds for
abelian varietiesA=Fq equipped with their Verschiebung VA=Fq . Indeed, since degVA=Fq D
qdimA the same arguments lead to the equation s2 dimA D r2 dimAqdimA which contradicts
the assumption that logp.q/ is odd.

5.5.3. Rigidity for Frobenius–Picard groups.

Proposition 5.24. Let X be a smooth, proper Fp-scheme. Then, the following functor is
rigid:

Pic.X � �=Frob�/QWAffSchop
Fp
! D.Q/;

S 7!
�

Pic.X � S/Q
id�.idX�FrobS /�
����������! Pic.X � S/Q

�
:

Proof. We have p D Frob�X�S D Frob�X ı Frob�S on Pic.X � S/. In particular, Frob�X
is invertible on the rationalization Pic.X � S/Q. The above complex is therefore quasi-
isomorphic to �

Pic.X � S/Q
p�Frob�X
�����! Pic.X � S/Q

�
:

Let F be an algebraically closed field of characteristic p, C a smooth, affine, con-
nected F -curve, and let c0; c1 2 C.F / be points. Write XF D X � F . In order to show
rigidity, let xC be the smooth compactification of C , and let D D xC n C be the boundary
points. There is an exact sequence

0! Gm.XF �F xC/! Gm.XF �F C/! Z�0.X�D/

! Pic.XF �F xC/! Pic.XF �F C/! 0

using that XF is smooth and proper. The sequence is functorial under Frob�X . On the
rationalization of the middle term, Q�0.X�D/, the map p � Frob�X is easily seen to be
invertible: Frob�X acts through permutation on the finite set �0.X �D/, so its eigenvalues
on Q�0.X�D/ are roots of unity.

Therefore, we may assume C is projective in the sequel.
We compute the Picard group of X � C D XF �F C using the short exact sequence

[6, (5.31)]

0! Pic.XF /˚ Pic.C /! Pic.X � C/! HomAbVarF .B
_; A/! 0; (5.10)

where B D Pic0C=F is the Picard variety of the smooth, projective, connected curve C , B_

its dual abelian variety, and A D Pic0XF =F;red D Pic0X=Fp ;red �F the Picard variety of XF .
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This sequence is compatible with .FrobX �idF /�˚ id, resp. .FrobX �idC /�, resp. the map
A! A induced by pullback along FrobX (and idF ). By Lemma 5.21, the map induced
by pullback along FrobX on the reduced Picard scheme Pic0X=Fp ;red is the Verschiebung;
here we use the assumptions onX . In End.A/Q, the element Œp�A � Frob�X D Œp�A � VA is
invertible by Proposition 5.22, if dimA > 0. This implies that postcomposing with Œp�A �
Frob�X is an isomorphism on Hom.B_; A/Q (if dimA D 0, this Hom-group is trivial).
Thus, the “error term” Hom.B_; A/Q vanishes after passing to homotopy fixed points
under p � Frob�X . The restriction of c�i on the subgroup Pic.XF / ˚ Pic.C / is clearly
independent of the point ci 2 C.F /, since it is the identity on Pic.XF / and 0W Pic.C /!
Pic.F / D 0.

Proof of Theorem 5.17. The case n � 0 is trivial since R�.X � Spec F;Z.n// D 0 for
n < 0 and is quasi-isomorphic to ZŒ0� for n D 0.

We now turn to n D 1, using that Z.1/ D GmŒ�1�. The only non-zero groups

Hr .X � SpecF;Gm/

are for r D 0 and r D 1, so it suffices to show that the two-term complex�
Hr .X � SpecF;Gm/

id�Frob�F
������! Hr .X � SpecF;Gm/

�
is insensitive (up to quasi-isomorphism) to the choice of an algebraically closed field, at
least after p�1-localization. By Suslin rigidity (Lemma 5.4), it suffices to consider the
rationalization of these two-term complexes.

The formation of this complex is finitary in F . Our claim then follows for r D 0 by
Corollary 5.20 and for r D 1 by Proposition 5.24.

Remark 5.25. It would be interesting to apply the above ideas towards Gabber rigidity
for Frobenius motivic cohomology, along the lines of [18, Section 4]. More precisely, one
can ask whether for a Henselian local ring A of a smooth variety over an algebraically
closed field in characteristic p, with residue field k, the map

Hn
�
X � A=FrobA;Z.1/Œp�1�

�
! Hn

�
X � k=Frobk ;Z.1/Œp�1�

�
is an isomorphism.

To round off the discussion concerning Frobenius motivic cohomology of small weight,
we consider the stable, full subcategory SHeff.Fp/ in SH.Fp/ generated under colimits by
motives of smooth Fp-schemes X .

Corollary 5.26. SupposeM 2 SHeff.Fp/Œp�1� and N D Sn;nŒp�1� (or N D ZŒp�1�.n/)
with n � 1. Then, the pair M;N is Frobenius rigid.

Proof. By resolution of singularities (via alterations), it is known that SHeff.Fp/Œp�1� is
the stable, full subcategory generated under colimits by M.X/.e/Œe�, with X=Fp being
smooth and proper, and e � 0 [3, Theorem 2.4.3]. Thus, the corollary follows from Theo-
rem 5.17.
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Appendix: Frobenius topological Hochschild homology

In this aside, we consider homotopy fixed points under Frobenius pullbacks for topolog-
ical Hochschild homology (THH). Since THH is not representable in SH, the following
result is not strictly an example of Frobenius rigidity as in Definition 5.1, but may still be
illustrational.

We fix an Fp-scheme X . Recall, e.g., from [35] the topological Hochschild homology
functor

THH.X � �/WSchop
Fp
! Sp:

We let Frobenius THH be again the homotopy fixed points of partial Frobenius:

THH.X � S=FrobS / WD lim
�

THH.X � S/
.idX�FrobS /�
�����������������

id
THH.X � S/

�
:

Proposition A.1. Let X be an affine Fp-scheme. Then, Frobenius THH with respect to X
is rigid. More precisely, for any algebraically closed field F of characteristic p, the fol-
lowing natural map is an equivalence:

THH.X/
Š
�! THH.X � SpecF=FrobF /:

Proof. We give two proofs for this, the first of which was suggested to us by Markus Land
and Zhouhang Mao.

Using the symmetric monoidality of THH, i.e., the equality

THH.X �Spec Fp SpecF / D THH.X/˝THH.Fp/ THH.F /;

we may assume X D Spec Fp . We then use Bökstedt periodicity, i.e., the fact that the nat-
ural map F ˝Fp THH.Fp/! THH.F / is an isomorphism (in the1-category of spectra)
for any perfect field F [26, Proposition 2.1]. Finally, we conclude using the Artin–Schreier
sequence

0! Fp ! F
x 7!xp�x
������! F ! 0:

The second proof works, as is, for smoothX=Fp: for suchX , the Hochschild–Kostant–
Rosenberg theorem for THH due to Hesselholt [21, Theorem B],1 gives an isomorphism

THHn.X � SpecF / D
M
i�0

�n�2iX�F=F D

M
i�0

�n�2iX=Fp
˝Fp F:

Again, the Artin–Schreier sequence shows that the homotopy fixed points of .idX�FrobF/�

acting on this agree with THHn.X/.
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