
© 2025 European Mathematical Society
Published by EMS Press

J. Eur. Math. Soc. (Online first) DOI 10.4171/JEMS/1594

James B. Martin · Allan Sly · Lingfu Zhang

Convergence of the environment seen from geodesics in
exponential last-passage percolation

Received June 20, 2021; revised August 6, 2022

Abstract. A well-known question in planar first-passage percolation concerns the convergence of
the empirical distribution of weights as seen along geodesics. We demonstrate this convergence
for an explicit model, directed last-passage percolation on Z2 with i.i.d. exponential weights, and
provide explicit formulae for the limiting distributions, which depend on the asymptotic direction.
For example, for geodesics in the direction of the diagonal, the limiting weight distribution has dens-
ity .1=4C x=2C x2=8/e�x , and so is a mixture of Gamma(1; 1), Gamma(2; 1), and Gamma(3; 1)
distributions with weights 1=4, 1=2, and 1=4 respectively. More generally, we study the local envir-
onment as seen from vertices along geodesics (including information about the shape of the path
and about the weights on and off the path in a local neighborhood). We consider finite geodesics
from .0; 0/ to n� for some vector � in the first quadrant, in the limit as n!1, as well as semi-
infinite geodesics in direction �. We show almost sure convergence of the empirical distributions of
the environments along these geodesics, as well as convergence of the distributions of the environ-
ment around a typical point in these geodesics, to the same limiting distribution, for which we give
an explicit description.

We make extensive use of a correspondence with TASEP as seen from an isolated second-class
particle for which we prove new results concerning ergodicity and convergence to equilibrium. Our
analysis relies on geometric arguments involving estimates for last-passage times, available from
the integrable probability literature.

Keywords: last passage percolation, KPZ universality class, exclusion process, empirical measure,
competition interface, geodesic.
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1. Introduction

In this article we study exactly solvable models of planar directed last-passage percol-
ation (LPP), an instance of the more general Kardar–Parisi–Zhang (KPZ) universality
class, which dates back to the seminal work of [42]. The KPZ universality class has been
a major topic of interest both in statistical physics and in probability theory in recent
decades. In [42], the authors predicted universal scaling behavior for a large number of

Fig. 1. An illustration of local environments along a finite geodesic.
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planar random growth processes, including first-passage percolation (FPP) and corner
growth processes; in particular, it is predicted that these models have length fluctuation
exponent 1=3 and transversal fluctuation exponent 2=3. Since then, rigorous progress has
been made only in a handful of cases. The first breakthrough was made by Baik, Deift and
Johansson [4] who established n1=3 fluctuations of the length of the longest up-right path
from .0; 0/ to .n; n/ in a homogeneous Poissonian field on R2, and also established the
GUE Tracy–Widom scaling limit. Then Johansson proved a transversal fluctuation expo-
nent of 2=3 for that model, and also n1=3 fluctuations and a Tracy–Widom scaling limit
for LPP on Z2 with i.i.d. geometric or exponential weights [40,41]. For these models such
results could be obtained due to their exact solvability, using exact distributional formulae
from algebraic combinatorics, random matrix theory, or queueing theory in some cases.
Since then there have been tremendous developments in achieving a detailed understand-
ing of these exactly solvable models, with notable progress concerning scaling limits (see
e.g. the recent works of [24, 45]). For surveys in this direction, see e.g. [21, 48, 56].

In another related direction, there has been great interest in studying FPP with general
weights. In the 2D setting, such models are also conjectured to be in the KPZ universality
class, but much less is known due to the lack of exact formulae. The geometry of the set of
geodesics has been an important tool in the study of these models; see e.g. [3, 46]. When
trying to understand the behavior of large finite or infinite geodesics, a well-known open
question is whether the empirical distributions of weights as seen along geodesics con-
verge; see e.g. [39] where it was proposed by Hoffman during a 2015 American Institute
of Mathematics workshop. Recently, Bates gave an affirmative answer to this question for
various abstract dense families of weight distributions [15]. The proof uses a variational
formula, and does not rely on any exactly solvable structure.

In this paper we study the limiting local behavior for LPP in the exactly solvable
case. We focus on LPP on Z2 with i.i.d. exponential weights. Rather than the weights
along geodesics, we consider the more general ‘empirical environments’ around vertices,
along finite or semi-infinite geodesics, and we show that they converge to a deterministic
measure. By the environment around a vertex, we mean the weights of nearby vertices,
and the path of the geodesic through them. In particular, this positively answers the ques-
tion of Hoffman for a first explicit model. Our approach is different from [15] and relies
on information provided by the exactly solvable structure. In addition to proving con-
vergence results, we also give an explicit description of the limiting distribution, which
depends on the direction of the geodesics considered. Using this description one can com-
pute any limiting local statistics along the geodesics, and we give some first examples in
this paper.

A particular exactly solvable input that we use is the connection between LPP and
the totally asymmetric exclusion process (TASEP), dating back to [49]. We use the cor-
respondence between LPP semi-infinite geodesics and the trajectory of a second-class
particle in TASEP, as developed in a series of works [35, 36, 47]. Then in order to
understand local environments along LPP geodesics, we study stationary distributions
of TASEP as seen from an isolated second-class particle. Models involving second-
class particles have been proved powerful in understanding the evolution of TASEP
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[7, 8, 27, 30, 33, 50, 51], and stationary distributions for multi-type systems have been
widely studied [1, 2, 27, 29, 32, 34, 54]. See also [31] for a recent survey of related ideas.

Before formally stating our results, we remark that (besides this paper and [15]) there
are several other recent works on environments along geodesics in random planar geo-
metry. In [25], the authors study geodesics in the directed landscape, the joint scaling
limit of exponential LPP (see [24, 26]). They proved that when zooming in around a
point in the geodesic, the local environment converges to an object termed ‘the direc-
ted landscape with Brownian–Bessel boundary conditions’ [25, Theorem 1.1]. Back to
the non-exactly-solvable model of general weights FPP, tail estimates for the averaged
empirical distribution of weights along geodesics have been obtained in [23]. In [9], con-
vergence of the empirical distribution of environments along geodesics has been obtained
in the Liouville Quantum Gravity setting.

1.1. Model definition and main results

We study the exponential weight planar directed last-passage percolation (LPP) model,
which is defined as follows. To each vertex v 2 Z2 we associate an independent weight
�.v/ with Exp.1/ distribution. For two vertices u;v 2Z2, we say u� v if u is coordinate-
wise less than or equal to v. For such u; v and any up-right path 
 from u to v, we define
the passage time of the path to be

T .
/ WD
X
w2


�.w/:

Then almost surely there is a unique up-right path from u to v that has the largest passage
time. We call this path the geodesic �u;v , and call Tu;v WD T .�u;v/ the .last-/passage time
from u to v. In this paper we always work under the event that there is a unique geodesic
between any u � v.

For any fixed � 2 .0; 1/, it is known that almost surely the following statements hold
(see [22, 36]). For each u 2 Z2 there is a unique infinite up-right path from u (called the
semi-infinite geodesic and denoted by ��u) asymptotically going to the � WD ..1� �/2; �2/
direction, such that for any v � w contained in ��u , the part of ��u between v and w is the
geodesic �v;w . For any u; v 2 Z2, the semi-infinite geodesics ��u and ��v coalesce, i.e.
both ��u n �

�
v and ��v n �

�
u are finite. Below and whenever we consider a specific �, we

always work under the almost sure event where these statements hold.
Our main results concern the local behavior around vertices along geodesics. For each

v 2 Z2, we denote �¹vº WD ¹�.v C u/ºu2Z2 . For any (finite or semi-infinite) up-right
path 
 we let 
Œi � be the i -th vertex in 
 .

For any u � v in Z2, and each w 2 �u;v , we regard .�¹wº; �u;v � w/ as a point in
RZ2 � ¹0; 1ºZ

2
(equipped with the product topology and the cylinder � -algebra), and we

define the empirical environment along �u;v as

�u;v WD
1

j�u;vj

X
w2�u;v

ı.�¹wº;�u;v�w/;
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where ı.�¹wº;�u;v�w/ is the Dirac measure concentrated on .�¹wº; �u;v � w/. Similarly,
we define the empirical environment along the semi-infinite geodesic ��v as

��vIr WD
1

2r C 1

2rC1X
iD1

ı.�¹��v Œi�º;�
�
v��

�
v Œi�/

for any v 2 Z2, � 2 .0; 1/, and r 2 Z�0. We will show that these empirical environments
converge. For each �, there is a limiting measure �� on RZ2 � ¹0; 1ºZ

2
, which is explicit

and will be defined in Section 4.
For any n 2 Z we denote

n� WD
��

2.1 � �/2n

�2 C .1 � �/2

�
;

�
2�2n

�2 C .1 � �/2

m�
:

We also denote 0 WD .0; 0/. For the following results we fix any � 2 .0; 1/.

Theorem 1.1. Almost surely the measures �0;n� converge to �� weakly as n!1.

Theorem 1.2. Almost surely the measures ��0Ir converge to �� weakly as r !1.

In other words, for any bounded continuous function f WRZ2 � ¹0;1ºZ
2
!R we have

�0;n�.f /! ��.f / as n!1 almost surely, and ��0Ir .f /! ��.f / as r !1 almost
surely.

We also have convergence of distributions.

Theorem 1.3. The laws of .�¹��0 Œi �º; �
�
0 � �

�
0 Œi �/ converge to �� weakly as i !1.

Theorem 1.4. For each 0 < ˛ < 2, the laws of .�¹�0;n� Œb˛nc�º; �0;n� � �0;n� Œb˛nc�/

converge to �� weakly as n!1.

These results in particular imply that the marginal distribution of �� on RZ2 is sin-
gular to the i.i.d. Exp.1/ distribution. Specifically, these convergence results imply that
for .�; 
/ � ��, the path 
 is a bigeodesic for � , i.e. 
 is a bi-infinite up-right path such
that for any u � v contained in 
 , the part of 
 between u and v is the geodesic from u

to v, under the weights �. However, for � being i.i.d. Exp.1/, almost surely there is no
bigeodesic, as proved in [5, 12].

For the limiting measure �� to be defined in Section 4, its construction is explicit,
and from it one can compute any finite-dimensional distributions of ��, thus any limiting
local statistics along exponential LPP geodesics. Here we give a first example, which is
the distribution function of �.0/ under ��.

Proposition 1.5. For .�; 
/ � ��, we have

P Œ�.0/ > h� D
�
1C

�.1 � �/h

.1 � �/2 C �2

�
.1C �.1 � �/h/e�h:

The distribution of �.0/ given in Proposition 1.5 is a mixture of Gamma(1; 1),
Gamma(2; 1), and Gamma(3; 1) distributions. In the case � D 1=2, for example, the
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weights of this mixture are 1=4, 1=2, and 1=4 respectively, and the distribution of �.0/
can be interpreted as that of 2min.E1 C E2; E3 C BE4/ with B � Bernoulli.1=2/ and
.Ei /1�1�4 i.i.d. � Exp.1/ independently of B . Related but slightly less simple represent-
ations can be given for general �. See the discussion after the proof of Proposition 1.6 in
Section 4.

One interesting question in exponential LPP is to derive descriptions for geodesics.
They are known to be different from simple random walks, as their scaling limits are
known be Hölder-2=3� regular [24, 25], and for �0;n� its transversal fluctuation is on the
order of n2=3 [7]. Exact formulae for the geodesic one-point distribution have also been
obtained recently [44]. Our next result implies that �0;n� is not like a simple random walk
even at a small scale, by showing that one step is more likely to follow the same direction
as the previous step than to make a ‘turning’. This follows from the convergence results,
and our explicit construction of the limiting measure ��.

Proposition 1.6. Denote byNn;� the number of ‘corners’ along �0;n� , that is, the number
of v 2Z2 such that ¹v � .1;0/; v;vC .0;1/º � �0;n� or ¹v � .0;1/; v;vC .1;0/º � �0;n� .
Then almost surely we have

Nn;�

2n
!

2�2.1 � �/2.1C 2� � 2�2/

.1 � �/2 C �2
as n!1:

For example, for � D 1=2, the proportion of steps which are ‘corners’ converges
to 3=8. For .�; 
/ � ��, the limiting path 
 can also be described as the ‘competition
interface’ in a growth process with some explicit random initial configurations. See the
discussion at the end of Section 4.

In our proofs of the above results we will use the connection between LPP and the
totally asymmetric exclusion process (TASEP), which can be described as a Markov
process .�t /t2R on the space ¹0; 1ºZ (also equipped with the product topology and the
cylinder � -algebra), where �t .x/ D 1 means that there is a particle at site x at time t ,
whereas �t .x/ D 0 means that there is a hole at site x at time t . If there is a particle at
site x and a hole at site x C 1, they switch at rate 1, independently for all such x. We
shall consider TASEP with a single ‘second-class particle’, which is denoted by � and
can switch with a hole to the right of it, or with a (normal) particle to the left of it. We
prove a corresponding result for TASEP with a single second-class particle as well, which
may be of independent interest.

Theorem 1.7. limt!1ˆ
�
t D ‰

� weakly.

Here ˆ�t and ‰� are measures on ¹0; 1;�ºZ (with the product topology) to be defined
in Section 2, and we describe them here. Consider TASEP with a single second-class
particle, where initially the second-class particle is at the origin, and any other site has
a (normal) particle with probability � independently. Then ˆ�t is the law of such TASEP
at time t , as seen from the only second-class particle. The measure ‰� is the station-
ary distribution of TASEP as seen from an isolated second-class particle, with particle
density �. In proving this theorem, we will also show that the corresponding stationary
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process (of TASEP as seen from an isolated second-class particle) is ergodic in time (Pro-
position 2.2).

1.2. A roadmap of our arguments

There are two main ingredients in our proofs of the above results: geometry of geodesics
in exponential LPP, and TASEP as seen from an isolated second-class particle.

For each � 2 .0; 1/ there is a (density �) stationary distribution for TASEP, where for
each site there is a particle with probability � and a hole with probability 1 � � inde-
pendently (i.e. i.i.d. Bernoulli.�/). Such i.i.d. Bernoulli TASEP corresponds to a growth
process in Z2, which (when rotated by �=4) is a random walk at any time. Dividing the
interface into two competing clusters, this gives a competition interface which corres-
ponds to a semi-infinite geodesic in LPP; see e.g. [35, 47]. On the other hand, such a
competition interface corresponds to a second-class particle in TASEP. Thus, the environ-
ment seen from a semi-infinite geodesic corresponds to TASEP as seen from an isolated
second-class particle. Connections between TASEP and LPP will be discussed in detail in
Section 3.

We will construct the limiting measure �� in Section 4, using the density � stationary
measure of TASEP as seen from an isolated second-class particle, as described in [32] and
to be studied in Section 2; we then prove Propositions 1.5 and 1.6 in Section 4 assuming
the convergence results.

For the convergence results we take the following approach. For Theorem 1.7, in
Section 2.2 we first prove a weak version of convergence in the averaged sense (Pro-
position 2.7), using a coupling argument of interacting particle systems. In Section 6 we
upgrade Proposition 2.7 to Theorem 1.7 using LPP and geometric arguments. In Section 7
we prove weak versions of Theorems 1.1 and 1.2, involving convergence in probability.
Convergence in probability along semi-infinite geodesics (Theorem 7.1) is deduced from
the TASEP convergence result of Theorem 1.7 (or the averaged version, Proposition 2.7)
and ergodicity of the TASEP stationary process, which we have proved as Proposition
2.2 in Section 2.1. From then on we work completely in the LPP setting. In Section 7.2
we prove the convergence in probability version of Theorem 1.1 (Theorem 7.3), by using
Theorem 7.1 and covering a finite geodesic with an infinite one.

The next several sections rely on a generalization of Theorem 7.3, which is Pro-
position 8.1, the main result of Theorem 8. It says that for geodesics whose endpoints
vary along two anti-diagonal segments, their empirical environments converge jointly
(in probability). The proof is via taking a finite (i.e. size not growing) dense family of
geodesics, and showing that each geodesic connecting the two anti-diagonal segments
can be mostly covered by one geodesic in the family. Using this result, in Section 9 we
prove Theorems 1.3 and 1.4, by showing that environments of nearby vertices (along
geodesics) are close to each other in distribution. In Section 10, by covering a long or
semi-infinite geodesic by short ones, we prove that its empirical environment concen-
trates exponentially fast, and thus upgrade Theorem 7.1 to Theorem 1.2 and Theorem 7.3
to Theorem 1.1.
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At the end of this roadmap, we comment on how much our arguments rely on exact
solvability. As mentioned above, while we do not work directly on formulae, we rely on
the structure of the exponential LPP model considered. The construction of �� in Section 4
uses the exact equivalence between exponential LPP and TASEP (as stated in Section 3);
and Section 2 contains purely interacting particle system arguments. Most other proofs in
this paper are via LPP geometric arguments, using basic estimates on passage times and
geometric properties that have appeared in the literature (and are stated in Section 5). For
Section 6, while we prove Theorem 1.7 which is about TASEP, the arguments are mainly
via the connection with LPP and its geometry. Starting from Section 7 all the proofs use
only geometric arguments, except for the short Section 7.1 (where the convergence in
probability of empirical environments along semi-infinite geodesics is quickly deduced
using TASEP results). We point out that the LPP geometric arguments throughout this
paper are robust, with the only inputs from exact solvability being the passage time distri-
bution tail estimates (Theorem 5.2 below), and that the so-called Busemann function (to
be defined in Section 3.1) in an anti-diagonal is a random walk.

1.3. Further applications and questions

With the limiting measure �� one can get any local information along geodesics in LPP.
Before closing the introduction we discuss some questions, which can potentially be
answered using our explicit description of ��, either as direct applications or requiring
some further analysis.

The first question has been communicated to us by Alan Hammond. Given that a ver-
tex on a geodesic has a large weight, how would the local environment behave? For a
vertex with a large weight, it would force the geodesic to go through it. Thus we expect
that conditioned on this, weights of nearby vertices are distributed like i.i.d. Exp.1/ ran-
dom variables. From the TASEP aspect, a large weight corresponds to a long waiting
time between two jumps of the second-class particle, and this is mostly due to a ‘jam’ in
TASEP, i.e. a consecutive sequence of particles to the right of the second-class particle,
and a sequence of holes to the left. This resembles a ‘reversed’ step initial condition.

A related question is about vertices near but off a geodesic. For such vertices we have
the following result.

Lemma 1.8. For .�;
/� ��, and any vertex v¤ 0, the random variable �.v/ conditioned
on v 62 
 is stochastically dominated by Exp.1/.

Proof. For any vertices u � v, any up-right path � from u to v, any vertex w 62 � with
u � w � v, and any x > 0, the events �u;v D � and �.w/ > x are negatively correlated,
by the FKG inequality. Thus the law of �.w/ is stochastically dominated by Exp.1/,
conditioned on �u;v D � . This implies that for any vertex v ¤ 0, n 2 N, the random
variable �.�0;n� Œn�C v/ conditioned on v 62 �0;n� � �0;n� Œn� is stochastically dominated
by Exp.1/. By Theorem 1.4 and sending n!1 we get the conclusion.
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It is then interesting to see if the distribution converges to Exp.1/ as the distance of v
to the geodesic increases to infinity.

The next question is about a slightly different setting, that of LPP with i.i.d. geomet-
ric weights. The main difference is that since the weights are discrete, geodesics are not
necessarily unique in this case. However, one could still consider ‘rightmost’ geodesics.
Geometric LPP corresponds to discrete-time TASEP, and one can similarly construct sta-
tionary measures for such TASEP as seen from an isolated second-class particle. For a
correspondence with rightmost geodesics, in discrete-time TASEP one takes a second-
class particle which is prioritized to jump to the right rather than to the left. One can
similarly construct limiting measures, and thus get local information about the environ-
ment along rightmost geodesics. One question that would be interesting to study is the
proportion of ‘unique geodesic vertices’. For fixed endpoints (or for one fixed endpoint
and a fixed direction), take the intersection of all the geodesics, and call those vertices in
that intersection ‘unique geodesic vertices’. Do these unique geodesic vertices asymptot-
ically make up a positive proportion of the geodesics? Furthermore, does the proportion
converge in probability, and can we compute the limit explicitly? We think such ques-
tions are related to the constructed limiting measures of the environment along rightmost
geodesics, because we expect that a vertex in the geodesics is unlikely to be ‘locally
unique’ without being a unique geodesic vertex in the sense mentioned above. Anomal-
ous ‘locally but not globally unique’ vertices should make up a vanishing proportion of
the geodesics in the limit.

Another direction concerns the scaling limit of the measure ��. As mentioned above,
in [25] the authors constructed the small scaling limit of the local environment around
a vertex in the geodesic, in the directed landscape setting. It is reasonable to expect that
when zooming out, the measure �� would converge to the local environment constructed
there. Also, once this is established, we would like to see if our explicit description of ��

could be used to get some explicit information about the local environment and geodesics
in the directed landscape (see e.g. [25, Problem 4]). In fact, for the geodesic under ��, one
can possibly obtain various information on its large scale behavior using the description
as a competition interface (see the end of Section 4).

We expect that the LPP geometric arguments in this paper can be extended to get
more information on environments along geodesics. For example, it can be shown that,
for any 0 < ˛ < ˇ < 2, the two environments .�¹�0;n� Œb˛nc�º; �0;n� � �0;n� Œb˛nc�/ and
.�¹�0;n� Œbˇnc�º; �0;n� � �0;n� Œbˇnc�/ are asymptotically independent as n!1. A pos-
sible route to prove this statement is as follows. Consider the point-to-line profiles from 0
to ¹.a;b/ W aC bDb.˛� "/ncº and from ¹.a;b/ W aC bDb.˛C "/ncº to n�, i.e. consider
the passage times T0;u and Tv;n� , for u; v varying in these two lines respectively. Here
" > 0 is a small number. These two point-to-line profiles are independent, each converges
(after rescaling) to the so-called Airy2 process [17, 18], which is locally like a Brownian
motion. Then it can be shown that in small neighborhoods of the intersections of the
geodesic �0;n� with these two lines, the point-to-line profiles (after rescaling) are similar
to two independent Brownian motions around the maximum of their sum, or equivalently
R � B; R C B , where R is a Bessel3 process and B is a Brownian motion. (In [25],
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such behavior is observed for geodesics in the directed landscape.) Using coalescence of
geodesics, such picture can be established even conditioned on the environment around
�0;n� Œbˇnc�. One can also show that the part of the geodesic �0;n� between these lines is
stable with respect to small perturbations of the point-to-line profiles. This implies that, no
matter how the environment around �0;n� Œbˇnc� behaves, conditioned on it the distribu-
tion of the environment around �0;n� Œb˛nc� remains roughly the same as n!1. In fact,
such asymptotic independence can be used to give an alternative proof of the convergence
of �0;n� , without using any TASEP arguments or identifying the limit as ��. Indeed, it
implies that for any bounded continuous f the variance of �0;n�.f / decays to zero. To
upgrade such decay of variance to convergence, one needs to cover long geodesics with
short ones, using arguments similar to those in Sections 7–10.

Notations. Throughout the rest of this paper the following notations will be used. For
any x; y 2 R [ ¹�1;1º we denote x _ y D max.x; y/, and x ^ y D min.x; y/, and
Jx; yK is the set Œx; y� \ Z. For each u D .a; b/ 2 Z2, we denote d.u/ D a C b and
ad.u/D a� b. For n 2Z we denote Ln D ¹u 2Z2 W d.u/D 2nº. Unless otherwise stated
(mainly in Section 5), for the rest of this paper we always fix � 2 .0; 1/, and the choice
of all other parameters and constants can depend on �. We denote �D ..1� �/2; �2/. We
also drop � from some notations. Specifically, we write �u for ��u , �vIr for ��vIr , n for n�,
and �, ˆt , ‰ for ��, ˆ�t , ‰

�.

2. Stationary distribution of TASEP with a second-class particle

We start with the totally asymmetric simple exclusion process (TASEP), which is a clas-
sical interacting particle system. For TASEP with second-class particles, we represent it as
a Markov process on ¹1;�; 0ºZ, where the symbols 1, �, and 0 represent particles, second-
class particles, and holes respectively. As in ordinary TASEP, any (normal) particle can
switch with a hole to its right. In addition, any second-class particle can switch with a hole
to its right, and can switch with a (normal) particle to its left. We consider TASEP as seen
from an isolated second-class particle, which is related to LPP semi-infinite geodesics,
as will be explained later in Section 3.3. Namely, suppose that .��t /t2I for some interval
I �R is TASEP containing a single second-class particle, then the process .��t .lt C �//t2I
is the corresponding TASEP as seen from an isolated second-class particle, where lt is
the location of the second-class particle at time t . There is a family of stationary distribu-
tions of TASEP as seen from an isolated second-class particle, constructed in [32]. In this
section we study a particular one ‰ D ‰�, under which the configuration has the same
asymptotic density � of particles in both directions.

We first construct ‰ following [32]. We start by constructing a stationary distribution
for TASEP with infinitely many second-class particles.

Let Y1.x/; x � 1, and Y2.x/; x � 1, be independent collections of i.i.d. Bernoulli.�/
random variables. Let R1.x/ D

Px
yD1 Y1.y/ and R2.x/ D

Px
yD1 Y2.y/. Then we can
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define a symmetric random walk W by

W.x/ D R2.x/ �R1.x/ (2.1)

for x � 0. We also define
M.x/ D sup

0�y�x

W.y/; (2.2)

and E D ¹x � 1 WM.x/ > M.x � 1/º. Then M.x/ D jE \ J1; xKj.
Then we can see M.x/ �W.x/ as a symmetric random walk with steps in ¹�1; 0; 1º

and forced to stay non-negative: if at one step this walk ‘tries’ to go from 0 to �1, it will
be altered and stay at 0. The points of E , i.e. the points of increase of M , are those steps
where such alternation occurs. More precisely, x 2 E if and only ifM.x � 1/DW.x � 1/
and Y2.x/D 1, Y1.x/D 0. By well-known properties of symmetric random walks, we can
show that as x!1, P Œx 2 E� decays like x�1=2, whileM.x/=x1=2 D jE \ J1; xKj=x1=2

converges in distribution to a random variable supported on .0;1/.
Now we define a configuration � on Z�0, by copying Y1 except at points of E . We set

�.0/ D � and, for x � 1,

�.x/ D

8̂̂<̂
:̂
1 if Y1.x/ D 1;

0 if Y1.x/ D 0 and x … E;

� if Y1.x/ D 0 and x 2 E:

(2.3)

(There is a natural interpretation involving the departure process of a discrete-time
M=M=1 queue – see [34].) We wish to extend this to give a configuration �.x/ on the
whole line Z. We can do it in two equivalent ways:

(1) Note that �.x/;x � 0, is a renewal process with renewals at points x where �.x/D�,
i.e. where x 2E . Between successive renewal points, we see an i.i.d. sequence of finite
strings in

S
n�0¹0; 1º

n (but the length of each string has an infinite expectation). We
can extend � to a renewal process on the whole line by extending this sequence of
i.i.d. strings, separated by stars, leftward from the origin also.

(2) Alternatively, we can exploit the symmetry of TASEP under exchanging
holes/particles and left/right. Write �� for the distribution defined above on �.x/,
x � 0. Now generate another configuration Q�.x/; x � 0, from �1��, independently
of � , and for x � 1 set

�.�x/ D

8̂̂<̂
:̂
1 if Q�.x/ D 0;

0 if Q�.x/ D 1;

� if Q�.x/ D �:

The equivalence of these two definitions follows from the random walk construction
above. If we look at the configuration between 0 and the first � to the right of 0, we obtain
a finite string of holes and particles whose distribution is invariant under exchanging both
left/right and hole/particle; this invariance comes from the invariance under reflection of
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the random walk path beginning and ending at level 0 which is used to construct the
configuration.

We also extend the definition of E to the whole line, by saying x 2 E whenever
�.x/ D �.

Now we have defined the distribution of ¹�.x/ºx2Z. From the construction we note
immediately that ¹�.x/ºx2ZC is independent of ¹�.x/ºx2Z� . Also if we consider the
interval J�x; xK, as x ! 1 the density of � in this interval converges to 0 (since
P Œx 2 E�! 0 as x !1), and the densities of 1 and 0 converge to � and 1 � � respect-
ively.

This distribution is stationary for TASEP with second-class particles, as seen from one
of the second-class particles.

Proposition 2.1 ([32, Theorem 1]). Let .�t /t�0 be TASEP with second-class particles,
started from �0 D � . Suppose that at time t � 0, the second-class particle starting from
the origin is at site lt . Then �t .lt C �/ has the same distribution as � .

Given � , there are two related projections of it which involve setting all the � symbols
except for the one at the origin to be either 1s or 0s.

(1) The simpler one consists of setting all � symbols on positive sites (i.e. ZC) to be 0,
and all � symbols on negative sites (i.e. Z�) to be 1. This gives a configuration where
the non-zero sites are i.i.d. Bernoulli.�/.

(2) Alternatively, we can follow the opposite rule of setting all � symbols on positive sites
to be 1 and all � symbols on negative sites to be 0. Specifically, define a configuration
�� by ��.0/ D � and for x ¤ 0,

��.x/ D

´
0 if �.x/ D 0; or if �.x/ D � and x < 0;

1 if �.x/ D 1; or if �.x/ D � and x > 0:

This gives a configuration which, compared to the product measure of Bernoulli.�/,
has a bias towards particles on positive sites and towards holes on negative sites. This
bias decays as one gets further away from the origin.

We define ‰ to be the distribution of this ��. Theorem 2 of [32] says that it is stationary
for TASEP as seen from an isolated second-class particle. The bias above reflects the
tendency created by the dynamics of the process for the second-class particle to get stuck
behind particles and to get stuck in front of holes.

The combination of the two projections above gives a coupling between the configur-
ation �� and the i.i.d. Bernoulli.�/ configuration in which the discrepancies are precisely
the non-zero members of E . The fact that jE \ J1; xKj grows on the order of

p
x implies

that the product measure of Bernoulli.�/ and the stationary distribution of TASEP as seen
from an isolated second-class particle are mutually singular.

For later calculation, it will be useful to look at the position of the first hole to the
right of the origin in �� � ‰ (and similarly the first particle to the left).
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Let XC D min ¹x � 1 W ��.x/ D 0º, which is also min ¹x � 1 W �.x/ D 0º. From the
random walk construction of �.x/; x > 0, one gets

XC D min ¹x � 1 W Y1.x/ D 0; and for some y 2 J1; xK; Y2.y/ D 0º:

That is, to find XC we look for the first 0 in the process Y2, and then we look for the
first 0 in the process Y1 from then on. Since all the variables Y1.x/ and Y2.x/ are i.i.d.
Bernoulli.�/, this implies that XC C 1 is the sum of two Geometric(1 � �) random vari-
ables, and so

P ŒXC D k� D k.1 � �/
2�k�1 (2.4)

for k � 1. Similarly if X� is the location of the first particle to the left of the origin, then

P ŒX� D �k� D k�
2.1 � �/k�1: (2.5)

In the next two subsections, we prove two properties of ‰, respectively: (1) the cor-
responding stationary process of TASEP as seen from an isolated second-class particle is
ergodic in time, and (2) convergence to ‰ starting from the i.i.d. Bernoulli.�/ configura-
tion, in the averaged sense (in other words, a weak version of Theorem 1.7). These two
properties will be key inputs to the rest of this paper.

2.1. Ergodicity

This subsection is devoted to proving the following ergodicity statement. We let .��t /t2R

denote the process of TASEP as seen from an isolated second-class particle, such that
��t � ‰ for each t .

Proposition 2.2. The process .��t /t2R is ergodic in time.

The key step is the following coupling between ‰ and itself.

Lemma 2.3. For any L 2 N and � > 0, there exist an integer M > L, and a coupling
between‰ and itself such that the following is true. Let �.1/ and �.2/ be sampled from this
coupling. Then

(1) restricted to J�L;LK, �.1/ and �.2/ are independent,

(2) with probability>1� �, �.1/ and �.2/ have the same number of particles in J�M;�1K
and in J1;M K, and �.1/ and �.2/ are identical on Z n J�M;M K.

To construct this coupling, we revisit the construction of‰. For �� �‰, recall that we
defined it on ZC using two independent collections of i.i.d. Bernoulli.�/ random variables
Y1.x/; x � 1, and Y2.x/; x � 1; and R1.x/ D

Px
yD1 Y1.y/, R2.x/ D

Px
yD1 Y2.y/. For

x � 1, let

xY1.x/ D �
�.x/ D

´
1; Y1.x/ D 1 or x 2 E;

0; Y1.x/ D 0 and x … E;

xY2.x/ D

´
0; Y2.x/ D 0 or x 2 E;

1; Y2.x/ D 1 and x … E:
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Namely, xY1 is just �� on ZC, and xY2 is ‘paired with’ xY1 such that xY1 C xY2 D Y1 C Y2. To
see why we define xY2, consider

xR1.x/ D

xX
yD1

xY1.x/ D R1.x/CM.x/;

xR2.x/ D

xX
yD1

xY2.x/ D R2.x/ �M.x/:

We have xR1.x/ � xR2.x/ D 2M.x/ � W.x/, where W and M are defined in (2.1)
and (2.2). In particular, xR1.x/ � xR2.x/ for all x. Note that xR1.x/ is the number of
particles of �� in J1; xK. The process xR1 is certainly not Markovian; however, the pro-
cess . xR1.x/; xR2.x//; x � 0, is a Markov chain, and we will exploit this fact.

Consider the transition function T W Z2�0 � Z2�0 ! Œ0; 1� defined by

T..a; b/; .aC 1; b C 1// D �2;

T..a; b/; .aC 1; b// D �.1 � �/
a � b C 2

a � b C 1
;

T..a; b/; .a; b C 1// D �.1 � �/
a � b

a � b C 1
;

T..a; b/; .a; b// D .1 � �/2:

Lemma 2.4. The process . xR1; xR2/ is a Markov chain in Z2�0 with transition probabil-
ity T.

Proof. For any x � 0, we show that

P Œ¹ xR1.y/º
x
yD0 D ¹r1.y/º

x
yD0; ¹

xR2.y/º
x
yD0 D ¹r2.y/º

x
yD0;M.x/ D h�

D �r1.x/Cr2.x/.1 � �/2x�r1.x/�r2.x/ (2.6)

for any integers ¹r1.y/ºxyD0, ¹r2.y/ºxyD0 and h such that

(1) r1.0/ D r2.0/ D 0,

(2) r1.y/� r1.y � 1/; r2.y/� r2.y � 1/ 2 ¹0; 1º, and r1.y/ � r2.y/ for any 1 � y � x,

(3) 0 � h � r1.x/ � r2.x/.

We prove this by induction on x. The base case (of x D 0) is trivial, and now we assume
that it is true for x, and consider x C 1.

Note that x C 1 2 E if the following three conditions all hold: (i) M.x/ D W.x/

(i.e. xR1.x/ � xR2.x/ D M.x/); (ii) Y1.x C 1/ D 0; (iii) Y2.x C 1/ D 1. In that case,
xR1.x C 1/D xR1.x/C 1, xR2.x C 1/D xR2.x/, andM.x C 1/DM.x/C 1. In any other
case, xR1.xC 1/D xR1.x/C Y1.xC 1/, xR2.xC 1/D xR2.x/C Y2.xC 1/, andM.xC 1/
DM.x/.
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Denote y1.x C 1/ D r1.x C 1/ � r1.x/ and y2.x C 1/ D r2.x C 1/ � r2.x/. From
the above transition we deduce that when h � r1.x/ � r2.x/,

P Œ¹ xR1.y/º
xC1
yD0 D ¹r1.y/º

xC1
yD0; ¹

xR2.y/º
xC1
yD0 D ¹r2.y/º

xC1
yD0; M.x C 1/ D h�

D P Œ¹ xR1.y/º
x
yD0 D ¹r1.y/º

x
yD0; ¹

xR2.y/º
x
yD0 D ¹r2.y/º

x
yD0; M.x/ D h�

� P ŒY1.x C 1/ D y1.x C 1/; Y2.x C 1/ D y2.x C 1/�;

where the second probability on the right-hand side equals

�y1.xC1/Cy2.xC1/.1 � �/2�y1.xC1/�y2.xC1/:

When h > r1.x/ � r2.x/, we must have h D r1.x/ � r2.x/ C 1 and y1.x C 1/ D 1,
y2.x C 1/ D 0, and

P Œ¹ xR1.y/º
xC1
yD0 D ¹r1.y/º

xC1
yD0; ¹

xR2.y/º
xC1
yD0 D ¹r2.y/º

xC1
yD0; M.x C 1/ D h�

D P Œ¹ xR1.y/º
x
yD0 D ¹r1.y/º

x
yD0; ¹

xR2.y/º
x
yD0 D ¹r2.y/º

x
yD0; M.x/ D h � 1�

� P ŒY1.x C 1/ D 0; Y2.x C 1/ D 1�;

where the second probability on the right-hand side equals �.1 � �/, which also equals
�y1.xC1/Cy2.xC1/.1 � �/2�y1.xC1/�y2.xC1/. Thus by the induction hypothesis ((2.6)
for x), we get (2.6) for x C 1.

Finally, by summing over all h, we conclude that

P Œ¹ xR1.y/º
x
yD0 D ¹r1.y/º

x
yD0; ¹

xR2.y/º
x
yD0 D ¹r2.y/º

x
yD0�

D .r1.x/ � r2.x/C 1/�
r1.x/Cr2.x/.1 � �/2x�r1.x/�r2.x/:

Using this we conclude that

P Œ xR1.x C 1/ D r1.x C 1/; xR2.x C 1/ D r2.x C 1/ j

¹ xR1.y/º
x
yD0 D ¹r1.y/º

x
yD0; ¹

xR2.y/º
x
yD0 D ¹r2.y/º

x
yD0�

D
r1.x C 1/ � r2.x C 1/C 1

r1.x/ � r2.x/C 1
�y1.x/Cy2.x/.1 � �/2�y1.x/�y2.x/;

which implies the conclusion.

We have the following mixing property of this Markov chain.

Lemma 2.5. For any u; v 2 Z2�0, we have limn!1 kTn.u; �/ � Tn.v; �/k1 D 0.

Proof. Our strategy is to construct a coupling between two Markov chains, each with
transition probability T, starting from u and v respectively.

To construct the coupling, we recursively define a random process

.A.1/; A.2/; B.1/; B.2// W Z�0 ! Z2 � Z2�0:
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For x 2 Z�0, given A.1/.y/, B.1/.y/, A.2/.y/, B.2/.y/ for each y 2 J0; xK, we define
A.1/.x C 1/, B.1/.x C 1/, A.2/.x C 1/, B.2/.x C 1/ as follows. First, we let U0 be a
Bernoulli.2�.1 � �// random variable.

(1) If U0 D 0 we do the following. Let B.1/.x C 1/ D B.1/.x/ and B.2/.x C 1/ D
B.2/.x/. If A.1/.x/ D A.2/.x/, we let

A.1/.x C 1/ D A.2/.x C 1/ D A.1/.x/C 2U1 � 1 D A
.2/.x/C 2U1 � 1I

otherwise we let

A.1/.x C 1/ D A.1/.x/C 2U1 � 1 and A.2/.x C 1/ D A.2/.x/C 2U2 � 1:

Here U1 and U2 are independent Bernoulli. �2

�2C.1��/2
/ random variables, and are

independent of U0.

(2) IfU0D 1we do the following. LetA.1/.xC 1/DA.1/.x/ andA.2/.xC 1/DA.2/.x/.

� If B.1/.x/D B.2/.x/, we let B.1/.x C 1/D B.2/.x C 1/D B.1/.x/C 2U3 � 1D
B.2/.x/C 2U3 � 1.

� If B.1/.x/ ¤ B.2/.x/ and max0�y�x B.1/.y/ � N , we let B.1/.x C 1/ D B.1/.x/
C 2U3 � 1 and B.2/.x C 1/ D B.2/.x/C 2U4 � 1.

� IfB.1/.x/<B.2/.x/ and max0�y�xB.1/.y/<N , we letB.1/.xC 1/DB.1/.x/C
2U3 � 1 and B.2/.x C 1/ D B.2/.x/C 2U3U5 � 1.

� IfB.1/.x/>B.2/.x/ and max0�y�xB.1/.y/<N , we letB.1/.xC 1/DB.1/.x/C
2U4U6 � 1 and B.2/.x C 1/ D B.2/.x/C 2U4 � 1.

Here N > 0 is a number to be determined; and U3, U4, U5, U6 are independent with
distribution being

Bernoulli
�
B.1/.x/C 2

2B.1/.x/C 2

�
;

Bernoulli
�
B.2/.x/C 2

2B.2/.x/C 2

�
;

Bernoulli
�
B.2/.x/C 2

2B.2/.x/C 2
�
2B.1/.x/C 2

B.1/.x/C 2

�
;

Bernoulli
�
2B.2/.x/C 2

B.2/.x/C 2
�
B.1/.x/C 2

2B.1/.x/C 2

�
;

respectively; and they are independent of U0; U1; U2.

The reason behind the construction of .A.1/; A.2/; B.1/; B.2// is that, if we set the initial
condition to be A.1/.0/D d.u/, B.1/.0/D ad.u/, and A.2/.0/D d.v/, B.2/.0/D ad.v/,
for u; v 2 Z2�0, then the processes x 7! .A

.1/.x/CB.1/.x/Cx
2

; A
.1/.x/�B.1/.x/Cx

2
/ and x 7!

.A
.2/.x/CB.2/.x/Cx

2
; A

.2/.x/�B.2/.x/Cx
2

/ are Markov chains with the same transition prob-
ability T, starting from u and v respectively. Indeed, from this construction, it is easy to
check that for each i D 1; 2, .A.i/; B.i// is a Markov chain, with transition probability
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given by

P ŒA.i/.x C 1/ D A.i/.x/C 1; B.i/.x C 1/ D B.i/.x/ j A.i/.x/; B.i/.x/� D �2;

P ŒA.i/.x C 1/ D A.i/.x/ � 1; B.i/.x C 1/ D B.i/.x/ j A.i/.x/; B.i/.x/� D .1 � �/2;

P ŒA.i/.x C 1/ D A.i/.x/; B.i/.x C 1/ D B.i/.x/C 1 j A.i/.x/; B.i/.x/�

D �.1 � �/
B.i/.x/C 2

B.i/.x/C 1
;

P ŒA.i/.x C 1/ D A.i/.x/; B.i/.x C 1/ D B.i/.x/ � 1 j A.i/.x/; B.i/.x/�

D �.1 � �/
B.i/.x/

B.i/.x/C 1
:

(2.7)

From the construction above there are several other key properties to note:

(1) If B.1/.x/ ¤ B.2/.x/ and max0�y�x B.1/.y/ < N , then always

jB.1/.x C 1/ � B.2/.x C 1/j � jB.1/.x/ � B.2/.x/j:

(2) If A.1/.x/ D A.2/.x/ (resp. B.1/.x/ D B.2/.x/), then for any y � x we must have
A.1/.y/ D A.2/.y/ (resp. B.1/.y/ D B.2/.y/).

(3) The processes A.1/ and A.2/ are independent random walks until they are equal;
starting from the first time when B.1/ reaches N , the processes B.1/ and B.2/ are
independent until they are equal.

To show that limn!1 kTn.u; �/ � Tn.v; �/k1 D 0, it now suffices to show that

lim inf
x!1

P ŒA.1/.x/ D A.2/.x/; B.1/.x/ D B.2/.x/� > 1 � � (2.8)

for any � > 0 and some choice of N . First, we have A.1/.x/ D A.2/.x/ for all large
enough x, by the third property above.

We next show that when N is large enough depending on u; v; �, with probability at
least 1 � � we have B.1/.x/ D B.2/.x/ for some large enough x (thus for all large x,
by (2) above). Let x0 D min ¹x 2 Z�0 W B.1/.x/ D N º. We have x0 <1 almost surely,
since B.1/ dominates a simple random walk.

As stated in (3), given B.1/.x0/ and B.2/.x0/, the processes B.1/.x0 C x/ and
B.2/.x0 C x/ for x � 0 are independent (until they are equal); and we further note
that when N is taken large they should be very close to two independent random
walks. To make this more precise, we define proxies of B.1/ and B.2/. For i D 1; 2,
let V .i/ W Z�0 ! Z be a random walk satisfying V .i/.0/ D B.i/.x0/, and

P ŒV .i/.x C 1/ D V .i/.x/ j V .i/.x/� D �2 C .1 � �/2;

P ŒV .i/.x C 1/ D V .i/.x/C 1 j V .i/.x/� D �.1 � �/;

P ŒV .i/.x C 1/ D V .i/.x/ � 1 j V .i/.x/� D �.1 � �/:

(2.9)
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Also we let V .1/ and V .2/ be independent, until V .1/.x1/ D V .2/.x1/ for some x1 > 0,
and let V .1/.x/D V .2/.x/ for all x > x1. For someN1 large enough (depending on u;v;�)
we have P Œx1 < N1� > 1 � �=2, thus

P ŒV .1/.N1/ D V
.2/.N1/� > 1 � �=2: (2.10)

By comparing the transition probabilities (2.7) and (2.9), we can couple B.1/; B.2/ with
V .1/; V .2/ in such a way that for any x � 0, given that B.1/.x0 C x/ D V .1/.x/ and
B.2/.x0C x/D V

.2/.x/, we haveB.1/.x0C xC 1/D V .1/.xC 1/ andB.2/.x0C xC 1/
D V .2/.x C 1/ with probability at least

1 � �.1 � �/

�
1

B.1/.x0 C x/C 1
C

1

B.2/.x0 C x/C 1

�
> 1 �

2�.1 � �/

N � x � ku � vk1
:

Here the inequality is due to that B.1/.x0 C x/ � B.1/.x0/ � x D N � x, and
B.2/.x0 C x/ � B

.1/.x0 C x/ � jB
.1/.0/ � B.2/.0/j � N � x � ku � vk1, using (1)

above. Under this coupling, by taking a union bound over x we find that V .1/.x/ D
B.1/.x0 C x/ and V .2/.x/ D B.2/.x0 C x/ for any 0 � x � N1 with probability at
least 1 � 2�.1��/N1

N�N1�ku�vk1
. By taking N large enough (depending on N1; �; u; v) we can

make this probability > 1 � �=2. From this and (2.10), we have P ŒB.1/.x0 C N1/ D
B.2/.x0 CN1/� > 1 � �. This implies (2.8), and the conclusion follows.

We let S denote the law of a Markov chain starting from .0; 0/ with transition prob-
ability T, i.e. the law of . xR1; xR2/. From the above lemma we can construct a coupling
between S and itself, as follows.

Lemma 2.6. For any L 2 N and � > 0, there exist an integer M > L and a coupling
between S and itself such that the following is true. Let . xR.1/1 ; xR

.1/
2 / and . xR.2/1 ; xR

.2/
2 / be

sampled from this coupling. Then

(1) restricted to J0;LK, . xR.1/1 ; xR
.1/
2 / and . xR.2/1 ; xR

.2/
2 / are independent,

(2) P Œ xR.1/1 .M/ D xR
.2/
1 .M/; xR

.1/
2 .M/ D xR

.2/
2 .M/� > 1 � �.

Proof. We construct the coupling by first allowing . xR.1/1 ; xR
.1/
2 / and . xR.2/1 ; xR

.2/
2 / to evolve

independently for the first L steps. Then conditioned on . xR
.1/
1 .L/; xR

.1/
2 .L// and on

. xR
.2/
1 .L/; xR

.2/
2 .L//, we couple . xR.1/1 .M/; xR

.1/
2 .M// and . xR.2/1 .M/; xR

.2/
2 .M// to maxim-

ize the probability that they coincide. The conclusion follows from Lemma 2.5 by taking
M large enough, since there are only finitely many possible values of . xR.1/1 .L/; xR

.1/
2 .L//

and . xR.2/1 .L/; xR
.2/
2 .L//.

Proof of Lemma 2.3. From the coupling of two copies of xR1 given by Lemma 2.6, we get
a coupling between two copies of xY1, thus two copies of �� � ‰ on ZC. We can similarly
couple two copies of �� � ‰ on Z�. As ‰ on ZC and ‰ on Z� are independent, we get
the desired coupling satisfying the statement of this lemma.

We can now prove ergodicity of the stationary process of TASEP as seen from an
isolated second-class particle, using the coupling given by Lemma 2.3.
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Proof of Proposition 2.2. We assume the contrary. Then there is a measurable set B �
¹0;1;�ºZ invariant under the Markov process (of TASEP as seen from an isolated second-
class particle) with 0 < ‰.B/ < 1. Let �� � ‰. For any L 2 N we consider the random
variable �L.��/ D P Œ�� 2 B j ¹��.x/ºx2J�L;LK�. Note that this is a martingale in L, and
almost surely converges to 1Œ�� 2 B�. Thus for any � > 0, we can take L large enough
such that P Œj�L.��/ � 1Œ�� 2 B�j > �� < �.

For the above L and �, by Lemma 2.3 we can find M > L and a coupling between
‰ and itself. Suppose that �.1/; �.2/ are sampled from this coupling. By the first property
of the coupling, and since �L only depends on the configuration in J�L;LK, we see that
�L.�

.1// and �L.�.2// are independent. Thus

P Œ�L.�
.1// > 1 � �; �L.�

.2// < �� D P Œ�L.�
.1// > 1 � ��P Œ�L.�

.2// < ��:

Note �.1/ 2 B and j�L.�.1// � 1Œ�.1/ 2 B�j < � imply that �L.�.1// > 1 � �, so

P Œ�L.�
.1// > 1 � �� � P Œ�.1/ 2 B� � P

�
j�L.�

.1// � 1Œ�.1/ 2 B�j > �
�

> ‰.B/ � �;

and similarly

P Œ�L.�
.2// < �� � P Œ�.2/ 62 B� � P

�
j�L.�

.2// � 1Œ�.2/ 2 B�j > �
�

> 1 �‰.B/ � �:

Combining the above three inequalities, we have

P Œ�L.�
.1// > 1 � �; �L.�

.2// < �� > ‰.B/.1 �‰.B// � �:

Using P Œj�L.�.1//� 1Œ�.1/ 2B�j> �� < � and P Œj�L.�.2//� 1Œ�.2/ 2B�j> �� < � again,
we have

P Œ�.1/ 2 B; �.2/ 62 B� > ‰.B/.1 �‰.B// � 3�:

Using the second property of the coupling (from Lemma 2.3), and by taking � small
enough, we conclude that with probability > ‰.B/.1 � ‰.B// � 4� > 0, all of the fol-
lowing conditions are satisfied: �.1/ 2 B and �.2/ 62 B , and �.1/ and �.2/ are identical on
Z n J�M;M K, and they have the same number of particles in J�M;�1K and in J1;M K.

Assuming that �.1/ and �.2/ satisfy the above conditions, we next couple two
TASEPs starting from �.1/ and �.2/ at time 0, such that switches happen between
neighboring sites with the same Poisson clocks. With positive probability the follow-
ing happens: from time 0 to time 1, no switch happens between sites x and x C 1, for
x 2 ¹�M � 1;�1; 0;M º; and switches happen between sites x and x C 1, sequentially
for x D �M; : : : ;�2 and for x D 1; : : : ; M � 1, and repeat this for M times. Then at
time 1 the two processes starting from �.1/ and �.2/ would be identical. However, as B
and ¹0; 1;�ºZ nB are assumed to be invariant under the evolution of TASEP as seen from
an isolated second-class particle, we get a subset of ¹0; 1; �ºZ with positive ‰ measure,
and contained (up to a zero measure set) in both B and ¹0; 1; �ºZ n B . This is a contra-
diction.
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2.2. Convergence in the averaged sense

As indicated in the introduction, we consider the process .��t /t�0, which is TASEP with
a single second-class particle such that ��0.x/ are i.i.d Bernoulli.�/ for x 2 Z n ¹0º and
��0.0/D�. We defineˆt to be the law of ��t .lt C �/, where lt is the location of the second-
class particle at time t . In this subsection we prove a weak version of Theorem 1.7, i.e.
the convergence of ˆt to ‰ in the averaged sense.

Proposition 2.7. We have T �1
R T
0
ˆt dt ! ‰ weakly as T !1.

Our strategy to prove this is to construct a coupling between ˆt and ‰ using � , the
stationary configuration of TASEP with infinitely many second-class particles constructed
in (2.3).

Recall that we have the following two projections of � : first, if we set all � symbols on
positive sites to be 0, and all � symbols on negative sites to be 1, we get i.i.d. Bernoulli.�/
on all non-zero sites; second, if we set all � symbols on positive sites to be 1, and all �
symbols on negative sites to be 0, we get a distribution which is stationary for TASEP as
seen from an isolated second-class particle (see the discussion after Proposition 2.1).

Now let .�t /t�0 be TASEP with (infinitely many) second-class particles, and starting
from �0 D � . At time 0, we label all the second-class particles with Z from right to left,
so that the one at the origin is labeled 0. We consider two ways in which the labels evolve:

� Rule (a): for all second-class particles, the labels never change.

� Rule (b): for two second-class particles labeled i > j , if they are at sites x and x C 1,
then with rate 1 they exchange their labels.

We note that when forgetting the labels, the dynamic is unchanged. For each i 2 Z and
t � 0, we denote by la;it the location of the second-class particle labeled by i at time t ,
under Rule (a). Then for each i 2 Z we have la;it > l

a;iC1
t , and there is no other second-

class particle between sites la;it and la;iC1t . We also denote by lb;it the location of the
second-class particle labeled by i at time t , under Rule (b). Define �a;it ; �

b;i
t W Z !

¹0; 1;�º as �a;it .x/ D �t .x C l
a;i
t / and �b;it .x/ D �t .x C l

b;i
t /, which is �t as seen from

the second-class particle labeled by i , under each rule.
Our strategy to construct the coupling between ‰ and ˆt is to project �b;0t in two

different ways, to get these two measures respectively (see Figure 2). For the first way,
we just look at the law of �b;0t without considering the labels. As � is a renewal process,
and � is stationary (Proposition 2.1), we know that �a;it has the same distribution as � .
We next show that the same is true for �b;it .

Lemma 2.8. For each i 2 Z and t � 0, �b;it has the same distribution as � .

Proof. Take any measurable set B � ¹0; 1; �ºZ; it suffices to show that P Œ�b;it 2 B� D
P Œ� 2 B�.

We fix t � 0. As each second-class particle jumps with rate at most 1, for any � > 0
we can findM > 0 such that P Œjla;it � l

b;i
t j >M� < � for any i 2 Z. Take a largeN 2N.
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0

0

0

10

0 3 4 −1−42

ζ∗ ∼ Ψ

σb,0
t

d
= σ

pσb,0
t ∼ Φt

Fig. 2. A coupling between‰ andˆt via �b;0t . The red numbers are labels of second-class particles.
Here �� and p�

b;0
t are the same on J�9; 9K.

For each i with ji j � N �M , if jlb;it � l
a;i
t j �M , we must have lb;it 2 ¹l

a;j
t W i �M �

j � i CM º � ¹l
a;j
t W �N � j � N º, since the set ¹la;jt W i �M � j � i CM º contains

all locations of second-class particles in Jla;it �M; l
a;i
t CM K. We then have

EŒj¹lb;it W �N � i � N º n ¹l
a;i
t W �N � i � N ºj�

D

X
ji j�N

P Œla;it 62 ¹l
a;j
t W �N � j � N º�

� 2M C
X

ji j�N�M

P Œla;it 62 ¹l
a;j
t W �N � j � N º�

� 2M C
X

ji j�N�M

P Œjlb;it � l
a;i
t j > M�

� 2M C 2N�: (2.11)

Since both j¹lb;it W �N � i � N ºj and j¹la;it W �N � i � N ºj equal 2N C 1, we have

j¹l
b;i
t W �N � i � N º n ¹l

a;i
t W �N � i � N ºj

D j¹l
a;i
t W �N � i � N º n ¹l

b;i
t W �N � i � N ºj;

so
EŒj¹la;it W �N � i � N º n ¹l

b;i
t W �N � i � N ºj� � 2M C 2N�:

Thus since � is arbitrarily taken, we have

lim
N!1

1

2N C 1

�
EŒj¹�N � i � N W �a;it 2 Bºj� � EŒj¹�N � i � N W �b;it 2 Bºj�

�
D 0:

Since for each i 2 Z, �a;it has the same distribution as � , we have

lim
N!1

1

2N C 1
EŒj¹�N � i � N W �a;it 2 Bºj� D lim

N!1

1

2N C 1

NX
iD�N

P Œ�a;it 2 B�

D P Œ� 2 B�:
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By combining the above two equalities, we have

lim
N!1

1

2N C 1
EŒj¹�N � i � N W �b;it 2 Bºj� D P Œ� 2 B�:

Now that � is a renewal process, �b;i0 , and thus �b;it , has the same distribution for all i .
Thus the left-hand side in the previous equation equals P Œ�b;it 2 B� for each i 2 Z, and
the conclusion follows.

Now since �b;0t has the same distribution as � , we can just identify all � with 1 in ZC,
and identify all � with 0 in Z�, and get �� � ‰ (by Lemma 2.8). For the other projection
we need to look at the labels. We define p�b;0t W Z! ¹0; 1; �º from �

b;0
t , by identifying

all second-class particles whose labels are < 0 with holes, and all second-class particles
whose labels are > 0 with particles. Formally, we let p�b;0t .0/D �, and p�b;0t .x/D 1 for
any x such that �t .x C l

b;0
t / D 1 or x D lb;it � l

b;0
t for some i > 0; and p�b;0t .x/ D 0

for any x such that �t .x C l
b;0
t / D 0 or x D lb;it � l

b;0
t for some i < 0. See Figure 2 for

an illustration of p�b;0t .

Lemma 2.9. For each t � 0, we have p�b;0t � ˆt .

Proof. We just need to check that .p�b;0t /t�0 is TASEP as seen from an isolated second-
class particle, and p�b;00 is i.i.d. Bernoulli.�/ on all non-zero sites.

We first consider the initial configuration p�b;00 . It is obtained from �0 D � by setting
all � symbols in ZC to be 0 and all � symbols in Z� to be 1. This is because at t D 0, the
second-class particles in ZC have negative labels, and the second-class particles in Z�
have positive labels. Recall (from the discussion after Proposition 2.1) that this implies
that p�b;00 is i.i.d. Bernoulli.�/ on all non-zero sites.

We next consider the evolution of .p�b;0t /t�0. We now define .p�t /t�0 from �t , by
identifying all second-class particles whose labels are < 0 with holes and all second-class
particles whose labels are > 0 with particles. Then p�t .l

b;0
t / D �, and p�t .x/ D 1 for

any x such that �t .x/ D 1 or x D lb;it for some i > 0; and p�t .x/ D 0 for any x such
that �t .x/ D 0 or x D lb;it for some i < 0. Then p�t is precisely p�b;0t shifted by lb;it ,
and it suffices to check that the evolution of .p�t /t�0 is given by TASEP with a single
second-class particle. For .�t /t�0 and the labels evolving under Rule (b), recall that it is
driven by the following generators, independently for all x 2 Z:

(1) If �t .x/ D 1 and �t .x C 1/ D 0, with rate 1 we switch �t .x/ and �t .x C 1/.

(2) If �t .x/ D 1 and �t .x C 1/ D � with lb;it D x C 1 for some i 2 Z, with rate 1 we
switch �t .x/ and �t .x C 1/ and set lb;it D x.

(3) If �t .x/ D � with lb;it D x C 1 for some i 2 Z, and �t .x C 1/ D 0, with rate 1 we
switch �t .x/ and �t .x C 1/ and set lb;it D x C 1.

(4) If �t .x/ D �t .x C 1/ D � with lb;it D x and lb;jt D x C 1 for some i > j , with rate
1 we set lb;it D x C 1 and lb;jt D x.

From the definition of .p�t /t�0, these generators degenerate in the sense that for each
x 2 Z we switch p�t .x/ and p�t .x C 1/ with rate 1, if one of the following happens:
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(a) p�t .x/ D 1 and p�t .x C 1/ D 0.

(b) p�t .x/ D 1 and p�t .x C 1/ D �.

(c) p�t .x/ D � and p�t .x C 1/ D 0.

More precisely: (1) degenerates into (a); (2) degenerates into no change or (b) or (a),
depending on whether i > 0, i D 0, or i < 0; (3) degenerates into (a) or (c) or no change,
depending on whether i > 0, i D 0, or i < 0; (4) degenerates into (c) or (b) or (a) or no
change, depending on whether i D 0, j D 0, ij < 0, or ij > 0. These verify that .p�t /t�0
has the same generators as TASEP with a single second-class particle, so the conclusion
follows.

Now we finish the proof of Proposition 2.7, by using the two projections of �b;0t .

Proof of Proposition 2.7. It suffices to take any cylinder set B D B 0 � ¹0; 1ºZnJ�L;LK �

¹0;1ºZ for someL 2N andB 0 � ¹0;1ºJ�L;LK, and show that T �1
R T
0
ˆt .B/dt!‰.B/.

By Lemma 2.8, from �
b;0
t , by identifying all � with 1 in ZC and all � with 0 in Z�,

we get �� � ‰; and by Lemma 2.9, from �
b;0
t we get p�b;0t � ˆt , by identifying all

negatively labeled � with 0, and identifying all positively labeled � with 1 (see Figure 2).
Then we have

jˆt .B/ �‰.B/j � P Œ�� 2 B; p�b;0t 62 B�C P Œ�� 62 B; p�b;0t 2 B�

� P Œ��jJ�L;LK ¤ p�b;0t jJ�L;LK�:

The event on the right-hand side is equivalent to the event that, in �b;0, each � in J1;LK has
a positive label and each � in J�L;�1K has a negative label. In other words, for any i 2 Z
with lb;it � l

b;0
t 2 J�L;0K, we must have i � 0; and for any i 2Z with lb;it � l

b;0
t 2 J0;LK,

we must have i � 0. So we have

jˆt .B/ �‰.B/j

� 1 � P
�
¹l
b;i
t � l

b;0
t W i > 0º \ J�L; 0K D ¹lb;it � l

b;0
t W i < 0º \ J0;LK D ;

�
� E

�
j¹l
b;i
t � l

b;0
t W i > 0º \ J�L; 0Kj

�
C E

�
j¹l
b;i
t � l

b;0
t W i < 0º \ J0;LKj

�
:

By integrating over t we haveZ T

0

jˆt .B/ �‰.B/j dt

�

X
i2ZC

Z T

0

P
�
l
b;i
t � l

b;0
t 2 J�L; 0K

�
dt C

X
i2Z�

Z T

0

P
�
l
b;i
t � l

b;0
t 2 J0;LK

�
dt: (2.12)

We first bound the first term on the right-hand side. For each i 2ZC we recursively define
a sequence of stopping times: let Ti;1 D inf ¹t � 0 W lb;it � l

b;0
t 2 J�L; 0Kº [ ¹1º; and

given Ti;n <1, let Ti;nC1 D inf ¹t � Ti;n C 1 W l
b;i
t � l

b;0
t 2 J�L; 0Kº [ ¹1º.

It is not difficult to see that there exists ı > 0, depending only on L, such that for any
t � 0 and n 2N we have P Œlb;itC1 > l

b;0
tC1 j Ti;n D t � > ı. Note that since i > 0, if lb;it0 > l

b;0
t0
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for some t0 � 0, we must have lb;it > l
b;0
t for any t > t0. Thus the event lb;iTi;nC1 > l

b;0
Ti;nC1

implies that Ti;nC1 D1. So for any t � 0 and n 2 N, we have

P ŒTi;nC1 <1 j Ti;n D t � < 1 � ı:

Then

P ŒTi;n < T �D P ŒTi;1 < Ti;n < T �� P ŒTi;1 < T and Ti;n <1�� .1� ı/n�1P ŒTi;1 < T �:

Also note that
R T
0
1Œl

b;i
t � l

b;0
t 2 J�L; 0K� dt �

P1
nD1 1ŒTi;n < T �. So we haveZ T

0

P
�
l
b;i
t � l

b;0
t 2 J�L; 0K

�
dt �

1X
nD1

P ŒTi;n < T � �
1X
nD1

.1 � ı/n�1P ŒTi;1 < T �

D ı�1P ŒTi;1 < T �: (2.13)

Next we bound
P
i2ZC

P ŒTi;1 < T �. Take any � > 0. From the renewal construction of � ,

we know that lb;00 � l
b;i
0 is the sum of i i.i.d. positive random variables, each with infinite

expectation. Thus we have

lim
T!1

P Œlb;00 � l
b;d�T e
0 < 3T � D 0: (2.14)

Given ¹lb;i0 ºi2Z satisfying lb;00 � l
b;d�T e
0 � 3T , for each j 2 Z�0, P ŒTd�T eCj;1 < T j

¹l
b;i
0 ºi2Z� is bounded by the probability of the following event: there are two particles

starting from 0 and�d3T e� j respectively, jumping left and right respectively with rate 1
independently, and the first time when they are within distance L of each other is < T .
This is just the probability that the sum of d3T e C j � L independent Exp.2/ random
variables is less than T (since for the distance to decrease by 1, the waiting time is the
minimum of two independent Exp.1/ random variables). Summing such probabilities for
all j and using (2.14), we get

lim
T!1

X
i��T

P ŒTi;1 < T � D 0:

Plugging this into (2.13) and summing over i 2 ZC there, we get

lim sup
T!1

X
i2ZC

Z T

0

P
�
l
b;i
t � l

b;0
t 2 J�L; 0K

�
dt � ı�1�T � 0:

Similarly,

lim sup
T!1

X
i2Z�

Z T

0

P
�
l
b;i
t � l

b;0
t 2 J0;LK

�
dt � ı�1�T � 0:

Adding them up and using (2.12), we get

lim sup
T!1

T �1
Z T

0

jˆt .B/ �‰.B/j dt � 2ı
�1�:

Since � > 0 is arbitrary, the conclusion follows.
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3. Coupling between TASEP and LPP

In this section we connect TASEP and LPP, and other objects such as an up-right growth
process to be defined shortly. These results are mostly from the literature, and will motiv-
ate the construction of the LPP limiting environment in Section 4.

3.1. Semi-infinite geodesics and the Busemann function

We start by introducing a useful tool in studying LPP, namely, the Busemann function,
and its beautiful duality property.

For any u; v 2 Z2, we denote B.u; v/ WD Tu;c � Tv;c, where c 2 Z2 is the coalescing
point of �u and �v , i.e. c is the vertex in �u \ �v with the smallest d.c/. Such B is called
the Busemann function .in direction �/. We also write G.u/ WD B.0; u/. The Busemann
function satisfies the following properties:

(1) For any u; v;w 2 Z2, we have B.u; v/CB.v;w/D B.u;w/. In particular, B.u; v/D
G.v/ �G.u/.

(2) For each u 2 Z2, G.u/ D G.uC .1; 0// ^G.uC .0; 1// � �.u/.
(3) For each u 2 Z2, define the dual weight

�_.u/ WD G.u/ �G.u � .1; 0// _G.u � .0; 1//:

Then its distribution is Exp.1/.

(4) For each u 2 Z2, the distribution of B.u; uC .0; 1// is Exp.�/, and the distribution
of B.u; uC .1; 0// is Exp.1 � �/.

(5) For any down-right path U D ¹ukºk2Z, let U� D ¹uk � .a; a/ W k 2 Z; a 2 Nº
and UC D ¹uk C .a; a/ W k 2 Z; a 2 Nº. Then the following random variables are
independent: B.uk ; uk�1/ for each k 2 Z, �.u/ for each u 2U�, and �_.u/ for each
u 2 UC.

The first two properties are by definition. The third property comes from [35, Lemma 4.2]
(see also [7]). For the last two properties, a proof can be found in [52].

All the semi-infinite geodesics (in direction �) can be characterized by the Busemann
function G and passage times.

Lemma 3.1. For any u� v we have B.u;v/D�G.u/CG.v/� Tu;v � �.v/, and equal-
ity holds if and only if v 2 �u.

Proof. Let c be the coalescing point of �u and �v . Then B.u; v/ D �G.u/ C G.v/ D
Tu;c � Tv;c. From the definition of passage times, we know that Tu;c � Tu;v C Tv;c � �.v/,
and equality holds if and only if v 2 �u;c.

In particular, by taking v D uC .0; 1/ and v D uC .1; 0/ in Lemma 3.1, we must
have G.uC .1; 0// ¤ G.uC .0; 1// for any u 2 Z2. This is true as we have assumed the
existence and uniqueness of all the finite geodesics, and the existence, uniqueness, and
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coalescence of all the semi-infinite geodesics in direction �. These properties are used in
defining the Busemann function and in the proof of Lemma 3.1.

The Busemann function G actually contains all the information to reconstruct all the
semi-infinite geodesics in direction �.

Lemma 3.2. The semi-infinite geodesic �u for any u 2 Z2 can be reconstructed recurs-
ively using G as follows: first let �uŒ1� D u, and then let

�uŒi C 1� D argminv2¹�uŒi�C.1;0/;�uŒi�C.0;1/ºG.v/ for each i 2 N.

This is proved by repeatedly using Lemma 3.1, and we omit the details.
Using the dual weights �_, which are also i.i.d. Exp.1/ (by the third and last

properties of the Busemann function), we define ‘downward semi-infinite geodesics’.
For any u 2 Z2, we let �_u be the semi-infinite geodesic from u in direction �� D
.�.1 � �/2;��2/, under the weights �_. Below we work under the almost sure event
that such �_u exists and is unique, and �_u and �_v coalesce for any u;v 2 Z2. Such down-
ward semi-infinite geodesics can also be constructed recursively using G. More precisely,
we let �_u Œ1� D u, and for each i 2 N we let

�_u Œi C 1� D argmaxv2¹�_u Œi��.1;0/;�_u Œi��.0;1/ºG.v/: (3.1)

By the definition of �_ and using induction, it is straightforward to check that each finite
segment of the path �_u constructed from (3.1) is a geodesic under �_. Also the path �_u
constructed from (3.1) has the same law as ���u (since G and v 7! �G.�v/ have the
same law), so it has the desired asymptotic direction.

A quick observation is the following ‘non-crossing’ property between semi-infinite
geodesics and downward semi-infinite geodesics.

Lemma 3.3. For any �u and �_v we cannot find w 2 Z2 with w; w � .1; 0/ 2 �u and
w;w C .0; 1/ 2 �_v simultaneously, or w;w � .0; 1/ 2 �u and w;w C .1; 0/ 2 �_v sim-
ultaneously. This implies that the path �u C .1=2; 1=2/ divides uC .Z2 n Z2�0/ into two
parts, which are

S
w2�u

.wCZC �Z�0/ and
S
w2�u

.wCZ�0 �ZC/, so that �_v can-
not intersect both. Equivalently, the path �_v � .1=2; 1=2/ divides v C .Z2 n Z2�0/ into
two parts, which are

S
w2�_v

.w C Z� � Z�0/ and
S
w2�_v

.w C Z�0 � Z�/, so that �u
cannot intersect both.

Proof. From the recursive constructions of �u and �_v , the event w; w � .1; 0/ 2 �u
implies G.w/ < G.w C .�1; 1//, while w; w C .0; 1/ 2 �_v implies G.w/ > G.w C
.�1; 1//. Thus the first statement holds. The second statement follows similarly.

3.2. Growth process

The function G can also be used to describe an up-right growth process. For each t 2 R,
we let It WD ¹u 2 Z2 W G.u/ � tº be the set of vertices occupied by time t . Then for any
u 2 Z2, the waiting time for it to be occupied (since the first time when both u � .1; 0/
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and u � .0; 1/ are occupied) is �_.u/, which is i.i.d. Exp.1/ for all u. Thus .It /t2R is a
Markov process such that given It , each vertex u 62 It with u � .0; 1/; u � .1; 0/ 2 It
becomes occupied with rate 1 independently.

We next define several objects that will be useful in proofs in later sections. For any
t 2 R and u 2 Z2, we denote

�_;t .u/ WD G.u/ _ t �G.u � .1; 0// _G.u � .0; 1// _ t:

This can be understood as the waiting time for u to be occupied, starting from It . Note
that for any u such that ¹u � .1; 0/; u � .0; 1/º 6� It , we have �_.u/ D �_;t .u/. A key
property for �_;t is that it is still i.i.d. Exp.1/ outside It .

Lemma 3.4. For any t � 0, conditioned on It and ¹G.u/ºu2It , the random variables
�_;t .u/ are i.i.d. Exp.1/ for all u 62 It .

Proof. Take any down-right path U D ¹ukºk2Z, and denote U� D ¹uk � .a; a/ W k 2 Z,
a 2 Nº, UC D ¹uk C .a; a/ W k 2 Z; a 2 Nº. Let Uc contain all u 2 UC such that
¹u � .1; 0/; u � .0; 1/º 6� UC. Assume that 0 2 U [U�.

We now consider the event It D U [U�. It is equivalent to G.uk/ � t for each
k 2 Z, and G.u/ > t (or equivalently �_.u/ > t �G.u� .1; 0//_G.u� .0; 1//) for any
u 2 Uc . We next study the distribution of ¹�_.u/ºu2UC , conditioned on this event.

By (1)–(2) in Section 3.1, we know that ¹G.u/ºu2U[U� determines ¹B.uk ;uk�1/ºk2Z

and ¹�.u/ºu2U� . We will next show that ¹G.u/ºu2U[U� is also determined by
¹B.uk ; uk�1/ºk2Z and ¹�.u/ºu2U� . Indeed, by (1), for any k 2 Z the value G.uk/ �
G.u0/ D B.u0; uk/ is determined by ¹B.uk ; uk�1/ºk2Z. Then using (2), and the fact
that 0 2 U [U�, we find that for any u 2 U [U�, G.u/ � G.u0/ is determined by
¹B.uk ; uk�1/ºk2Z and ¹�.u/ºu2U� , in particular for u D 0. Since G.0/ D 0, we con-
clude that G.u0/, thus G.u/ for any u 2 U [U�, is determined by ¹B.uk ; uk�1/ºk2Z

and ¹�.u/ºu2U� .
By (3)–(5) in Section 3.1, ¹B.uk ; uk�1/ºk2Z, ¹�.u/ºu2U� , and ¹�_.u/ºu2UC are

independent exponential random variables. Thus conditioned on ¹G.u/ºu2U[U� and the
event It D U [U�, we deduce that

� ¹�_.u/ºu2UC are independent random variables,

� �_.u/ � Exp.1/ for each u 2 UC nUc ,

� for each u 2 Uc , �_.u/ has the distribution of Exp.1/ conditioned on > t �

G.u � .1; 0// _G.u � .0; 1//.
Since an Exp.1/ random variable conditioned on > x for any x � 0 is just x C Exp.1/,
we have

�_.u/ � .t �G.u � .1; 0// _G.u � .0; 1/// � Exp.1/

for each u 2 Uc . We note that (still conditioned on ¹G.u/ºu2U[U� and the event
It D U [U�) we have �_;t .u/ D �_.u/ for any u 2 UC nUc and �_;t .u/ D �_.u/ �
.t �G.u� .1; 0//_G.u� .0; 1///, so ¹�_;t .u/ºu2UC are i.i.d. Exp.1/ random variables.
Thus the conclusion follows.
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Fig. 3. An illustration of the growth process from LPP: the blue and green areas are the two clusters
C1 \ It and C2 \ It respectively, and the red curve is the semi-infinite geodesic �0.

For any t 2 R and u 62 It , the path �_u n It can be constructed as the geodesic with
boundary It , under the weights �_;t . For any u � v, u; v 62 It , let T _;tu;v and �_;tu;v denote
the passage time and geodesic from u to v under the weights �_;t .

Lemma 3.5. For any v 62 It we have

G.v/ � t D max
u�v; u62It

T _;tu;v and �_v n It D �
_;t
u�;v

for u� D argmaxu�v; u62It T
_;t
u;v .

The proof of this lemma is by straightforward induction on u in the up-right direction;
we omit the details.

3.3. The coupling and the competition interface

We now describe the coupling between LPP and TASEP (denoted as a Markov process
on ¹0; 1ºZ). In this subsection we let .�t /t�0 denote TASEP with the following initial
condition: �0.0/ D 0 and �0.1/ D 1, and let �0.x/ be i.i.d. Bernoulli.�/ for all other x.
We label the holes by Z from left to right, with the one at site 0 labeled 0; and label the
particles by Z from right to left, with the one at site 1 labeled 0. For any .a; b/ 2 Z2, if at
time 0 the particle labeled b is to the right of the hole labeled a, we setL.a;b/D 0; other-
wise, we define L.a; b/ > 0 to be the time when the particle switches with the hole. Then
¹L.a; b/º.a;b/2Z2 has the same distribution as ¹G.a; b/ _ 0º.a;b/2Z2 . Indeed, using (5) in
Section 3.1, we can deduce that I0 and ¹.a; b/ W L.a; b/ D 0º have the same distribution;
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Fig. 4. An illustration of the correspondence between TASEP and the growth process.

and given �0, the random variables

L.a; b/ � L.a � 1; b/ _ L.a; b � 1/

for all .a; b/ with L.a; b/ > 0 are i.i.d. Exp.1/, because this is the waiting time for the
particle labeled b and the hole labeled a to switch since the time they are next to each
other. Thus they have the same distribution as ¹�_;0.u/ºu 62I0 conditioned on I0, according
to Lemma 3.4. See e.g. [35, Section 4.2] for more details on the equality in distribution
between L and G _ 0. We couple .�t /t�0 with LPP so that L D G _ 0 almost surely,
and in the rest of this section we work under the event that this equality holds. Then the
TASEP configuration �t can be directly read off from It (see Figure 4).

Lemma 3.6. For any t � 0 and x 2 Z, �t .x/ D 0 if and only if there is some y 2 Z such
that .x C y; y/ 2 It and .x C y; y C 1/ 62 It , and the hole at site x has label x C y;
and �t .x/ D 1 if and only if there is some y 2 Z such that .x C y � 1; y/ 2 It and
.x C y; y/ 62 It , and the particle at site x has label y. Equivalently, if we let ft W Z! Z
be the function such that ft .x/ is the largest integer with .ft .x/C x; ft .x// 2 It , then
ft .x � 1/ � ft .x/ D �t .x/.

Proof. For simplicity of notation we denote by E1 the event where there is y 2 Z such
that .x C y; y/ 2 It and .x C y; y C 1/ 62 It , and by E2 the event where there is y 2 Z
such that .x C y � 1; y/ 2 It and .x C y; y/ 62 It . Note that exactly one of E1 and E2
happens, so it suffices to show that E1 implies �t .x/ D 0, since by symmetry we would
know that E2 implies �t .x/ D 1, and then the conclusion follows.
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If .xC y;y/ 2 It and .xC y;yC 1/ 62 It , thenL.xC y;y/� t andL.xC y;yC 1/
> t under the coupling. This means that at time t , the hole labeled x C y is to the left of
the particle labeled y, but to the right of the particle labeled y C 1. Suppose that at time 0,
the hole labeled x C y is at site z. Since the hole at site 0 is labeled 0, if x C y > 0

we must have z > 1, and there are z � .x C y/ particles between sites 0 and z; and if
x C y < 0 we must have z < 0, and there are .x C y/� z particles between sites z and 0.
In either case, the nearest particle to the left of the hole labeled x C y (at time 0) must be
labeled x C y � z C 1 (since the particle at site 1 is labeled 0). This means that at time t ,
the hole labeled x C y has already swapped with .y C 1/ � .x C y � z C 1/ D z � x
particles. So at time t it is at site x, and �t .x/ D 0.

We next consider the semi-infinite geodesic �0 under this coupling. It actually cor-
responds to the competition interface starting from 0, which we describe now (see e.g.
[35,36]). We define two clusters C1 and C2 for the growth process .It /t�0. Let ZC � ¹0º
� C1 and ¹0º � ZC � C2. For any .a; b/ 2 Z2C let its ‘parent’ be either .a � 1; b/ or
.a; b � 1/, whichever is occupied later; then .a; b/ is in the same cluster as its parent.
Starting from any u and by taking parent repeatedly, we can actually get �_u n I0, by (3.1);
thus we can equivalently define C1 and C2 such that for any u 2 Z2�0, u ¤ 0, we have
u 2 C1 if �_u intersects ZC � ¹0º, and u 2 C2 if �_u intersects ¹0º �ZC. By Lemma 3.5,
such clusters are determined by I0 and ¹�_;0.u/ºu 62I0 , which are i.i.d. Exp.1/ conditioned
on I0. The competition interface Z is defined to be the boundary of these clusters C1
and C2. Namely, we let Z � .1=2; 1=2/C Z2�0 be such that for any v 2 Z, every vertex
in Z2�0 to the upper-left of v is in C2, and every vertex in Z2�0 to the lower-right of v
is in C1. By Lemma 3.3, Z D �0 C .1=2; 1=2/. In words, the competition interface Z
defined from I0 and ¹�_;0.u/ºu62I0 is equivalent to the semi-infinite geodesic �0 defined
from ¹�.u/ºu2Z2 . We also define the process .pt /t�0 such that pt is the last vertex in
�0 \ It (see Figure 3).

In the TASEP side, in .�t /t�0 we keep track of a ‘hole-particle pair’, which is a hole
with a particle next to the right. At t D 0 it is the hole at site 0 and particle at site 1.
Whenever the particle is switched with a hole to the right, we move this pair to the right;
and whenever the hole is switched with a particle to the left, we move this pair to the left
(see Figure 5 for an illustration). We have the following lemma from [36], which says that
the trajectory of this ‘hole-particle pair’ can be mapped to the competition interface.

Lemma 3.7. Under the above coupling between LPP and TASEP, for the hole-particle
pair at time t , let bt be the label of the particle and at be the label of the hole. Then
pt D .at ; bt /.

We note that this hole-particle pair can also be replaced by a second-class particle. For
this, note that at is also the number of times the pair moved to the right up to time t , and
bt is the number of times the pair moved to the left up to time t . Thus at time t the hole-
particle pair is at sites at � bt and at � bt C 1. If we take ��t .x/D �t .x/ for x < at � bt ,
��t .x/ D �t .x C 1/ for x > at � bt , and ��t .at � bt / D �, then .��t /t�0 is TASEP with
a second-class particle, starting from i.i.d. Bernoulli.�/ on Z n ¹0º. So far we have seen
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Fig. 5. An illustration of the evolution of a hole-particle pair in .�t /�0: the numbers above the
particles/holes are the labels, which increase from left to right for holes, and decrease from left to
right for particles. The yellow boxes indicate the tracked hole-particle pairs.

that the process .��t /t�0 contains the same information as G_ 0 (by Lemma 3.6), thus the
same information as I0 and ¹�_;0.u/ºu 62I0 , and the trajectory of the second-class particle
gives the semi-infinite geodesic �0 (Lemma 3.7). Recall from Section 2 that ˆt is the
law of ��t .at � bt C �/, and ‰ is the stationary distribution of TASEP as seen from an
isolated second-class particle. In light of the convergence of ˆt to ‰ as t !1, stated
in Theorem 1.7 or Proposition 2.7, the LPP limiting environment measure � should be
constructed from ‰. We give such construction in the next section.

4. The LPP limiting environment

We are now ready to define �. As before, we use .��t /t2R to denote the process of TASEP
as seen from an isolated second-class particle, such that ��t � ‰ for each t , where ‰ is
the stationary distribution defined in Section 2. The idea is to construct a growth process
from .��t /t2R, then take the environment around the origin. This would give the limiting
environment along the geodesic �0, as seen at a uniform time, i.e. the environment as seen
from pt for a uniform t , where pt is the last vertex in �0 \ It . To get the environment �,
which is as seen from a uniformly chosen vertex, we would do an extra reweighting.

We first replace the second-class particle in .��t /t2R by a hole-particle pair. Namely,
we let .�t /t2R be the process such that �t .x/ D ��t .x/ for x < 0, �t .x/ D ��t .x � 1/ for
x > 1, and �t .0/ D 0, �t .1/ D 1. The process .�t /t2R is then the stationary process of
TASEP as seen from a hole-particle pair. We use Q‰ to denote the law of this process.

We next describe the procedure of obtaining the environment from .�t /t2R. We give
the growth process in terms of the occupation time function, which we also denote by L
as a slight abuse of notation. Similar to the i.i.d. Bernoulli initial setting in Section 3.3,
we label the particles from right to left, and the holes from left to right, so that at time 0
the particle at site 1 and the hole at site 0 are both labeled 0. Let L.a; b/ be the time
when the particle labeled b is switched with the hole labeled a. Unlike the i.i.d. Bernoulli
initial setting, here .�t /t2R is a stationary process and evolves from time �1 to 1, so
L.a;b/may be negative and is well-defined for all .a;b/2Z2. We then useL to define the
limiting weights and path, which we denote by � and 
 by slightly abusing these notations
within this section. We define � via �.a; b/ D L.aC 1; b/ ^ L.a; b C 1/ � L.a; b/, and
define 
 � Z2 as the collection of all .a; b/ such that there is a time t when the particle
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labeled b is at site 1 and the hole labeled a is at site 0 in �t . We let Q� be the measure given
by the law of such .�; 
/ constructed from .�t /t2R � Q‰ .

We next do the reweighting. We let‰ be the measure Q‰ conditioned on L.0/D 0, i.e.
we let

d‰ D lim
�!0C

1ŒL.0/ > ���d Q‰
P Q‰ ŒL.0/ > ���

:

As .�t /t2R under Q‰ is a Markov process, the limit could be computed as Q‰ conditioned
on there being a jump of the hole-particle pair at time 0; i.e. we first reweight Q‰ by
1Œ�0�.2/ D 0�C 1Œ�0�.�1/ D 1�, the events where a jump is allowed, then let the jump
happen at time 0. More precisely, we can describe ‰ as follows. We have

‰ D
P Q‰ Œ�0�.2/ D 0�‰

.1/
C P Q‰ Œ�0�.�1/ D 1�‰

.2/

P Q‰ Œ�0�.2/ D 0�C P Q‰ Œ�0�.�1/ D 1�
D
.1 � �/2‰ .1/ C �2‰ .2/

.1 � �/2 C �2
;

where ‰ .1/ (resp. ‰ .2/) is Q‰ conditioned on a jump of the hole-particle pair to the right
(resp. to the left) happening at time 0. More precisely, we define these measures as fol-
lows. Let .�t /t2R � ‰

.1/. Then the negative time part .�t /t<0 has distribution given by

1Œ�0�.2/ D 0�d
Q‰

P Q‰ Œ�0�.2/ D 0�
I

and given �0� we let �0 be such that �0.�1/ D �0.0/ D 0, �0.1/ D 1, and �0.x/ D
�0�.x C 1/ for any x 62 ¹�1; 0; 1º; and let .�t /t�0 be the Markov process of TASEP as
seen from a hole-particle pair starting from �0. Similarly, for .�t /t2R �‰

.2/, the negative
part .�t /t<0 has distribution given by

1Œ�0�.�1/ D 1�d
Q‰

P Q‰ Œ�0�.�1/ D 1�
I

and given �0� , we have �0.0/ D 0, �0.1/ D �0.2/ D 1, and �0.x/ D �0�.x � 1/ for any
x 62 ¹0; 1; 2º; and .�t /t�0 is the Markov process of TASEP as seen from a hole-particle
pair starting from �0.

From this construction, the laws of �0 under ‰ .1/ and ‰ .2/ can also be described
as follows. Let ‰C be the law of ¹��.x/ºx2N and ‰� be the law of ¹��.�x/ºx2N , for
�� �‰. Under‰ .1/, we have �0.�1/D �0.0/D 0, �0.1/D 1, and ¹�0.xC 1/ºx2N �‰C
and ¹�0.�x � 1/ºx2N � ‰�, and they are independent. Under ‰ .2/, we have �0.0/ D 0,
�0.1/ D �0.2/ D 1, and ¹�0.x C 2/ºx2N � ‰C, ¹�0.�x/ºx2N � ‰�, and they are inde-
pendent.

We define � as the measure given by the law of .�; 
/, obtained using the procedure
above from .�t /t2R � ‰ . By Lemma 4.2 below we can see that �.0/ has exponential tail
under �, so E� Œ�.0/� <1. We then show that Q� is � reweighted by �.0/.

Lemma 4.1. We have

d Q� D
�.0/d�

E� Œ�.0/�
:
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Let us explain why such a relation is expected. Consider the sequence ¹L.u/ºu2
 of
times when the hole-particle pair jumps. Under Q‰ this is a stationary point process in R.
Then � corresponds to the environment as seen from the hole-particle at a typical jump
time. On the other hand, Q� corresponds to the environment as seen from the hole-particle
at time 0. Because of the ‘inspection effect’, this is biased by the length of the interval in
the point process containing time 0, which is �.0/.

Proof of Lemma 4.1. For each s > 0, we let ‰�s be the measure of Q‰ conditioned on
L.0/ D �s, i.e.

d‰�s D lim
�!0C

1Œ�s � � < L.0/ < �s�d Q‰
P Q‰ Œ�s � � < L.0/ < �s�

:

Note that under Q‰ , almost surely L.0; 1/; L.1; 0/ > 0 and L.0/ < 0, since at time 0 the
following objects are ordered from left to right: the particle labeled 1, the hole labeled 0,
the particle labeled 0, and the hole labeled 1. So 1Œ�s � � < L.0/ < �s� D 1Œ�s � � <

L.0/ < �s�1Œ�.0/ > s�. Then since Q‰ is stationary, we have

1Œ�s � � < L.0/ < �s�d Q‰ D .1ŒL.0/ > ���1Œ�.0/ > s�d Q‰/ ı T�s;

where T�s is the time translation operator: for any process P D .Pw/w2R, we denote by
T�sP the process .P�sCw/w2R. By multiplying by ��1 and sending � ! 0C, we have

P Q‰ ŒL.0/ D �s�d‰�s D P Q‰ ŒL.0/ D 0�.1Œ�.0/ > s�d‰/ ı T�s; (4.1)

where

P Q‰ ŒL.0/ D �s� D lim
�!0C

��1P Q‰ Œ�s � � < L.0/ < �s�;

P Q‰ ŒL.0/ D 0� D lim
�!0C

��1P Q‰ ŒL.0/ > ���

are the probability densities. By integrating the left-hand side of (4.1) over s > 0 we
get d Q‰ , under which the law of .�; 
/ is Q�. For the right-hand side of (4.1), we note that
the laws of .�; 
/ are the same under .1Œ�.0/ > s�d‰/ ı T�s or 1Œ�.0/ > s�d‰ . So by
integrating over s > 0 and taking the law of .�; 
/, we get P Q‰ ŒL.0/ D 0��.0/d�. Thus
we conclude that d Q� D P Q‰ ŒL.0/D 0��.0/d�. Since Q� and � are probability measures, by
integrating both sides we get

P Q‰ ŒL.0/ D 0�E� Œ�.0/� D 1;

so the conclusion follows.

The above construction allows us to explicitly compute finite-dimensional distribu-
tions of � and thus local geodesic statistics (assuming the main results of this paper).
For this rest of this section we illustrate such computations, and prove Propositions 1.5
and 1.6.

We start with the following computations on the next jump times.
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Lemma 4.2. For any h � 0 we have

P
‰.1/

ŒL.1; 0/ > h� D .1C �.1 � �/h/e�.1��/h;

P
‰.1/

ŒL.0; 1/ > h� D .1C �h/e��h;

P
‰.2/

ŒL.1; 0/ > h� D .1C .1 � �/h/e�.1��/h;

P
‰.2/

ŒL.0; 1/ > h� D .1C �.1 � �/h/e��h:

Proof. LetDC Dmin ¹x � 1 W �0.xC 1/D 0º, the number of particles between the origin
and the leftmost hole at a positive site. Similarly, letD� D min ¹x � 1 W �0.�x/D 1º, the
number of holes to the right of the rightmost particle at a negative site, up to and including
the origin.

The distribution of DC under ‰ .1/ is that of XC given by (2.4), while the distribu-
tion of DC under ‰ .2/ is that of XC C 1 (which is the distribution of the sum of two
independent Geometric(1 � �) random variables).

Similarly the distribution of D� under ‰ .2/ is that of X� at (2.5), while the distribu-
tion of D� under ‰ .1/ is that of X� C 1.

In order for the particle which is at site 1 at time 0 to jump, the hole starting at site
DC C 1 must switch with each of the DC particles starting in J1;DCK. So given DC, the
distribution of L.1; 0/ is the sum of DC independent Exp.1/ random variables, that is,
a Gamma(DC; 1/ distribution. A random variable V with Gamma(k; 1) distribution has
EŒe�sV � D .1C s/�k , and from this we obtain, for any s > �1C �,

E
‰.1/

Œe�s.L.1;0//� D

1X
kD1

k.1 � �/2�k�1.1C s/�k D
.1C s/.1 � �/2

.1C s � �/2
;

which can be shown to match the expression for P
‰.1/

ŒL.1;0/ > h� given in the statement.
Similarly, in order for the hole which is at site 0 at time 0 to jump, the particle starting

at site �D� must switch with each of theD� holes starting in J�D�C 1; 0K. One obtains

E
‰.1/

Œe�s.L.0;1//� D

1X
kD1

k�2.1 � �/k�1.1C s/�.kC1/ D
�2

.�C s/2
;

which matches the desired expression for P
‰.1/

ŒL.0; 1/ > h�.
Analogous calculations give the probabilities under ‰ .2/.

Now we compute the law of the weights on geodesics.

Proof of Proposition 1.5. It suffices to compute the law of L.1; 0/ ^ L.0; 1/, under the
measure ‰ D .1��/2‰.1/C�2‰.2/

.1��/2C�2
. Note that under either ‰ .1/ or ‰ .2/, the random vari-

ables L.1; 0/ and L.0; 1/ are independent. Thus by Lemma 4.2 we get

P
‰.1/

ŒL.1; 0/ ^ L.0; 1/ > h� D .1C �h/.1C �.1 � �/h/e�h;

P
‰.2/

ŒL.1; 0/ ^ L.0; 1/ > h� D .1C .1 � �/h/.1C �.1 � �/h/e�h;

and the conclusion follows.
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Assuming Theorem 1.1, we can also compute the proportion of ‘corners’ in geodesics.

Proof of Proposition 1.6. Assuming Theorem 1.1, we have

Nn;�

2n
! P� Œ¹.0; 0/; .0; 1/; .�1; 0/º � 
�C P� Œ¹.0; 0/; .0;�1/; .1; 0/º � 
�

almost surely as n!1. From the construction of �, this equals

.1 � �/2P
‰.1/

ŒL.1; 0/ > L.0; 1/�C �2P
‰.2/

ŒL.1; 0/ < L.0; 1/�

.1 � �/2 C �2
:

Since L.1; 0/�L.0; 0/ and L.0; 1/�L.0; 0/ are independent under either ‰ .1/ or ‰ .2/,
by Lemma 4.2 we have

P
‰.1/

ŒL.1; 0/ > L.0; 1/� D �2.1C 2� � 2�2/;

P
‰.2/

ŒL.1; 0/ < L.0; 1/� D .1 � �/2.1C 2� � 2�2/;

and the conclusion follows.

An alternative representation of the weights on geodesics. We also give an outline of
alternative derivation of the formulae in Propositions 1.5 and 1.6, which also leads to
representations of the type mentioned after the statement of Proposition 1.5.

Note that under ‰ .2/, DC takes values in ¹2; 3; : : : º and has the distribution of the
sum of two independent geometric random variables with parameter 1� �. GivenDC, the
random variable L.1; 0/ is the sum of DC independent Exp.1/ random variables. From
this, L.1; 0/ has the same distribution as the sum of two Exp.1 � �/ random variables, or
equivalently of 1

1��
.E1 CE2/ for E1; E2 i.i.d. � Exp.1/.

Meanwhile under ‰ .2/, D� takes values in ¹1; 2; : : : º and has the distribution of
the sum of two independent Geometric(�) random variables minus 1. Note that if X �

Geometric.�/, then X � 1 d
D BX where B � Bernoulli.�/ independently of X . We infer

that L.0; 1/ has the distribution of 1
�
.E3 C BE4/, for B � Bernoulli.�/ and E3; E4 i.i.d.

� Exp.1/ independently of B .
NoteL.0;1/ andL.1;0/ are independent under‰ .2/. So we can combine the previous

two paragraphs to deduce that the distribution of �.0/ D L.0; 1/ ^ L.1; 0/ under ‰ .2/ is
that of

1

1 � �
.E1 CE2/ ^

1

�
.E3 C BE4/

for B � Bernoulli.�/ and .Ei /1�i�4 i.i.d. � Exp.1/ independently of B .
We continue in the particular case � D 1=2. Then the distribution of �.0/ is the

same under ‰ .1/ as under ‰ .2/, and so its distribution under ‰ is again the same, that
of 2..E1 C E2/ ^ .E3 C BE4// for B � Bernoulli.1=2/ and .Ei /1�i�4 i.i.d. � Exp.1/
independently of B .

By elementary arguments involving the memoryless property of exponentials, this
distribution can be seen to be a .1=4; 1=2; 1=4/ mixture of Gamma(1; 1), Gamma(2; 1),
and Gamma(3; 1) distributions.
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A similar but slightly more involved argument can be made for the case of general �,
to give that the distribution of �.0/ is again a mixture of Gamma(1; 1), Gamma(2; 1), and
Gamma(3; 1) distributions, now with weights�

�4 C .1 � �/4

�2 C .1 � �/2
; 2�.1 � �/;

2�2.1 � �/2

�2 C .1 � �/2

�
:

As a function of � 2 .0; 1/, this distribution is stochastically increasing on .0; 1=2�, and
symmetric around 1=2.

The path as a competition interface. As �0 in the i.i.d. Exp.1/ random field, the path 

under � can also be described as a competition interface. For L under ‰ , by slightly
abusing the notations we let I0 WD ¹u 2 Z2 W L.u/ � 0º and

�_;0.u/ WD L.u/ _ 0 � L.u � .1; 0// _ L.u � .0; 1// _ 0

for each u 2Z2. Then like Lemma 3.6, we can show that I0 contains the same information
as �0 (whose law under ‰ is explicitly described using ‰C and ‰� above). Namely, we
have .0; 0/ 2 I0 and .0; 1/; .1; 0/ 62 I0; and for any x 2 Z, �0.x/ D 0 if and only if there
is some y 2 Z such that .x C y; y/ 2 I0 and .x C y; y C 1/ 62 I0, and �0.x/ D 1 if and
only if there is some y 2 Z such that .x C y � 1; y/ 2 I0 and .x C y; y/ 62 I0.

Under ‰ and conditioned on I0, the weights ¹�_;0.u/ºu 62I0 are i.i.d. Exp.1/. This is
because, for any .a; b/ 2 Z2, �_;0.a; b/ is the waiting time for the particle labeled b and
the hole labeled a to switch, since they are next to each other; and that is i.i.d. Exp.1/ for
all .a; b/ 62 I0, given �0.

From I0 and �_;0 under‰ , we define a competition interface, similar to how the com-
petition interface is defined in Section 3.3. Specifically, for any u � v, u; v 62 I0, let T _;0u;v

and �_;0u;v be the passage time and geodesic from u to v under the weights �_;0. For any
v 2Z2�0 n ¹0º, we consider the vertex u� 62 I0 with the maximum T

_;0
u�;v . If �_;0u�;v intersects

ZC � ¹0º we let v 2 C1; otherwise �_;0u�;v intersects ¹0º � ZC and we let v 2 C2. Then
.
 \ Z2�0/C .1=2; 1=2/ is the boundary between C1 and C2, by analogues of Lemmas
3.3 and 3.5.

Using this formulation of 
 and the explicit description of �0 under ‰ , and passage
time estimates (e.g. Theorem 5.2 below) or the convergence of the passage time point-to-
line profile to the so-called Airy2 process (see Theorem 8.7 below), one can possibly show
that 
Œi � has transversal fluctuation on the order of i2=3 for large i (here 
Œi � denotes the
i -th vertex in 
 \ Z2�0), and even obtain exact formulae for the distribution of its scaling
limit. We leave these for future explorations.

5. Geometric estimates for LPP

While so far most arguments are on TASEP and use interacting particle system techniques,
for the rest of this paper we will mainly use various LPP geometric arguments. In this
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section we make some preparations, by providing some useful tools. Most results in this
section have appeared in the literature.

In this section, we do not fix � 2 .0; 1/, and all constants are assumed not to depend
on �, unless otherwise stated. For a; b 2 Z and � 2 .0; 1/, we denote

ha; bi� WD

��
2.1 � �/2a

�2 C .1 � �/2

�
C b;

�
2�2a

�2 C .1 � �/2

�
� b

�
:

Then recall that n� D hn;0i� for any n 2Z. We also write h0;bi WD .b;�b/ for any b 2Z.
We start with a basic geometric property called ordering of geodesics. Note that for

any Z2 vertices u � v, if u0 � v0 and u0; v0 2 �u;v , then �u0;v0 is the part of �u;v between
u0 and v0 (including u0; v0). This immediately leads to the following result.

Lemma 5.1. For any .a1; b1/ and .a2; b2/, write .a1; b1/ � .a2; b2/ if a1 � a2 and
b1 � b2. For any u1, u2 and v1, v2 such that u1 � v1, u2 � v2 and u1 � u2, v1 � v2,
and any w1 2 �u1;v1 , w2 2 �u2;v2 , we cannot have w2 � w1 unless w1 D w2.

We next give estimates on passage times. We know that T0;.m;n/ has the same law as
the largest eigenvalue of X�X where X is an .mC 1/ � .nC 1/ matrix of i.i.d. standard
complex Gaussian entries (see [40, Proposition 1.4]). Hence we get the following one-
point estimates from [43, Theorem 2].

Theorem 5.2. There exist constants c; C > 0 such that for any m � n � 1 and x > 0,

P ŒT0;.m;n/ � .
p
mC
p
n/2 � xm1=2n�1=6� � Ce�cx : (5.1)

In addition, for each  > 1, there exist C 0; c0 > 0 depending on  such that ifm=n <  ,
then

P ŒT0;.m;n/ � .
p
mC
p
n/2 � xn1=3� � C 0e�c

0.x3=2^xn1=3/;

P ŒT0;.m;n/ � .
p
mC
p
n/2 � �xn1=3� � C 0e�c

0x3 ;
(5.2)

and as a consequence

jEŒT0;.m;n/� � .
p
mC
p
n/2j � C 0n1=3: (5.3)

Below we will frequently use parallelograms in R2. For simplicity of notation, in the
rest of this section, for any vertices u� v and x > 0, we let U xu;v denote the parallelogram
in which one pair of opposite sides have length 2x, parallel to the anti-diagonal, and have
midpoints u and v respectively. Formally, we let

U xu;v D ¹uC ˛.v � u/C .y;�y/ W ˛ 2 Œ0; 1�; y 2 Œ�x; x�º:

We next state the following parallelogram estimate.

Proposition 5.3 ([11, Theorem 4.2]). Let U1; U2 be the part of U n
2=3

.�m;m/;.n;n/
below

Lbn=3c and above Ld2n=3e respectively. For each  < 1, there exist constants c; C > 0,
depending only on  , such that when jmj <  n,

P
h

sup
u2U1; v2U2

jTu;v � EŒTu;v�j � xn
1=3
i
� Ce�c.x

3=2^xn1=3/:
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Such a result was first proved as [14, Propositions 10.1, 10.5], in the setting of Pois-
sonian LPP. In the setting of exponential LPP a proof was given in [11, Appendix C],
following the ideas in [14].

We will also need the following estimate on the coalescing probability of two
geodesics, for finite and semi-infinite geodesics respectively.

Proposition 5.4 ([55]). For each  2 .0; 1/, there exists C > 0 such that

P Œ�0;hn;b1i1=2 \ Ln�m D �0;hn;b2i1=2 \ Ln�m� > 1 � Cm
�2=3
jb1 � b2j

for any n;m 2 N and b1; b2 2 Z such that m < n=3 and jb1j; jb2j <  n.

Proposition 5.5 ([13, Theorem 2]). For any � 2 .0; 1/, there is a constant C > 0 such
that for any r 2 N and k > 1, we have P Œ��0 \Lbr3=2kc ¤ �

�

h0;ri
\Lbr3=2kc� < Ck

�2=3.

Similar coalescence estimates have also been obtained in various other papers, such
as [6, 53].

We next give some estimates on transversal fluctuations of geodesics (see Figure 6).
Such geodesic fluctuation estimates have been proved using various methods in the literat-
ure [10,11,13,14,16,19,28,38,55]. We start with an estimate for semi-infinite geodesics,
which is illustrated by Figure 6 (a).

Lr
0

⟨r, 0⟩ρ

Γρ
0

(a) For the semi-infinite geodesic ��0 : Lemma 5.6
states that with probability> 1�Ce�cx

3
, its inter-

section with Lr is within distance xr2=3 of hr; 0i�;
Corollary 5.8 states that with probability > 1 �

Ce�cx
3

, below Lr it is contained in U xr
2=3

0;hr;0i�
.

Lr

0

⟨n, b⟩1/2

⟨r, b′⟩1/2

Γ0,⟨n,b⟩1/2

(b) For the infinite geodesic �0;hn;bi1=2 :
Corollary 5.9 states that with probability
> 1 � Ce�cx

3
, below Lr it is contained

in U xr
2=3

0;hr;b0i1=2
.

Fig. 6. Illustrations of the transversal fluctuation estimates.

Lemma 5.6. For any  2 .0; 1/, there exist c; C > 0 such that the following is true. Let
� 2 . ; 1 �  / and r; br 2 Z be such that ��0 Œ2r C 1� D hr; bri�. Then P Œjbr j > xr2=3�

< Ce�cx
3

for any x > 0.

This bound can be quickly deduced from [28, Theorem 3.1] or [16, Theorem 2.4].
Here we give a proof using the above passage time estimates, and properties of the Buse-
mann function.
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Proof of Lemma 5.6. In this proof we let c; C > 0 denote small and large constants that
depend on  , and whose values can change from line to line. We assume that r and x are
large enough (depending on  ), since otherwise the conclusion is obvious.

For simplicity of notation we denote T �u;v D Tu;v � �.v/ for any vertices u � v. Let
B be the Busemann function in direction �, as defined in Section 3.1. By Lemma 3.1, the
event jbr j > xr2=3 implies that there exists b 2 Z such that jbj > xr2=3, and T �0;hr;bi� C
B.hr; bi�; r�/ > T �0;r� . To bound this event, we denote

Lj WD ¹hr; bi� W jb � 2j br
2=3
cj � r2=3º for j 2 Z.

For each j such that Lj intersects Z2�0, we have

P
h

max
u2Lj\Z2

�0

.T �0;u C B.u; r�// > T �0;r�
i

< P
h

max
u2Lj\Z2

�0

.T �0;u � EŒT �0;u�/ > c0j
2r1=3

i
C P

�
T �0;r� � EŒT �0;r� � < �c0j

2r1=3
�

C P
h

max
u2Lj\Z2

�0

.B.u; r�/C EŒT �0;u�/ � EŒT �0;r� � > �2c0j
2r1=3

i
; (5.4)

where c0 > 0 is a small constant depending only on  , and satisfies several conditions to
be specified below. We next show that each term on the right-hand side of (5.4) is bounded
by Ce�cjj j

3
; then by summing over j 2 Z such that 2jj j C 1 > x and Lj intersects Z2�0

(note that the latter implies that jj j � 2r.2br2=3c/�1 < 2r1=3) we get the conclusion.

� For the first term, we let  0 > 0 be a small number (depending on c0 and  and to be
determined). WhenLj is contained in ¹hr; bi1=2 W jbj< .1� 0/rº, we consider the paral-
lelogram U r

2=3

0;hr;2j br2=3ci�
. Using Proposition 5.3 with this parallelogram we get the desired

bound. When Lj is not contained in ¹hr; bi1=2 W jbj< .1� 0/rº we cannot directly apply
Proposition 5.3, since the above parallelogram may not satisfy the slope condition there.
Instead, we take some small ˛ > 0 (depending on c0 and  and to be determined), and
consider the parallelogram U r

2=3

�hb˛rc;0i1=2;hr;2j br
2=3ci�

. Using Proposition 5.3 with this par-
allelogram we get

P
h

max
u2Lj\Z2

�0

.T �
�hb˛rc;0i1=2;u

� EŒT �
�hb˛rc;0i1=2;u

�/ > 2�1c0j
2r1=3

i
< Ce�cjj j

3

: (5.5)

For any u 2 Lj \ Z2�0 we have T �0;u � T
�
h�b˛rc;0i1=2;u

, and

EŒT �0;u� > EŒT �
h�b˛rc;0i1=2;u

� � 200�1c0 
2r > EŒT �

h�b˛rc;0i1=2;u
� � 2�1c0j

2r1=3;

where the two inequalities are due to the following reasons. The first inequality is by
EŒT �0;u� � 2r and EŒT �

h�b˛rc;0i1=2;u
� < 2r C 200�1c0 

2r , which is due to (5.3) and the
fact that Lj is not contained in ¹hr; bi1=2 W jbj < .1 �  0/rº, and taking  0 and ˛ small
enough (depending on  and c0). The second inequality follows from jj j > 0:1 r1=3,
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which is implied by the fact that Lj is not contained in ¹hr; bi1=2 W jbj < .1� 0/rº. Thus
we have

max
u2Lj\Z2

�0

.T �
�hb˛rc;0i1=2;u

� EŒT �
�hb˛rc;0i1=2;u

�/

> max
u2Lj\Z2

�0

.T �0;u � EŒT �0;u�/ � 2
�1c0j

2r1=3;

so the first term on the right-hand side of (5.4) is bounded as desired by (5.5).

� For the second term we apply Theorem 5.2.

� For the last term, by (5.1) and (5.3) from Theorem 5.2, we have EŒT �0;hr;bi� ��EŒT �0;r� ��

Cr1=3 � b.��1 � .1� �/�1/� c1b
2r�1 for any hr;bi� 2Z2�0, where c1 >0 is determined

by  . By taking c0 < c1, and assuming that both r and jj j are large enough, we have
c1b

2r�1 � Cr1=3 � 2c0j
2r1=3 > c0j

2r1=3 when jb � 2j br2=3cj � r2=3. Then the last
term on the right-hand side of (5.4) is bounded by

P
h

max
jb�2j br2=3cj�r2=3

�
B.hr; bi�; r�/ � b.��1 � .1 � �/�1/

�
> c0j

2r1=3
i
:

Note that b 7! B.hr; bi�; r�/ � b.��1 � .1 � �/�1/ is a (two-sided) centered random
walk, where each step has exponential tail determined by � (see Section 3.1). We can
apply concentration inequalities to get the desired bound.

(For example, we can do a Chernoff type estimate as follows. Take any c2 > 0, small
enough depending on  . Without loss of generality we assume j > 0. Write the random
walk as b 7!

Pb
iD1 Xi for b > 0, where each Xi has exponential tail determined by �.

Consider ec2jr
�1=3

Pb
iD1Xi , which is a supermartingale in b. Let � be the first time after

.2j � 1/br2=3c when this supermartingale is at least ec
3=2
2

j3 , or .2j C 1/br2=3c C 1,
whichever is smaller. Then we have

P
h

max
jb�2j br2=3cj�r2=3

bX
iD1

Xi > c
1=2
2 j 2r1=3

i
� P

h �X
iD1

Xi > c
1=2
2 j 2r1=3

i
D P Œec2jr

�1=3
P�
iD1Xi > ec

3=2
2

j3 �

� e�c
3=2
2

j3EŒec2jr
�1=3

P�
iD1Xi �

� e�c
3=2
2

j3EŒec2jr
�1=3

P.2jC1/br2=3cC1
iD1

Xi � D e�c
3=2
2

j3EŒec2jr
�1=3X1 �.2jC1/br

2=3cC1;

and this is bounded by e�c
3=2
2

j3=2 when c2 is small enough, since EŒec2jr
�1=3X1 � <

eCc
2
2
j2r�2=3 .)

From these bounds the conclusion follows.

In addition to the above one-point bound, we also quote the following uniform bound
on transversal fluctuations of geodesics.
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Lemma 5.7 ([11, Proposition C.9]). For each  2 .0; 1/ there exist constants c; C > 0

such that the following is true. For x > 0, n 2 N, and jbj <  n, the probability that the
geodesic �0;hn;bi1=2 exits U xn

2=3

0;hn;bi1=2
is at most Ce�cx

3
.

The following result for semi-infinite geodesics follows immediately by combining
Lemmas 5.6 and 5.7. See also Figure 6 (a).

Corollary 5.8. For each  2 .0; 1/, there exist constants c; C > 0 such that the follow-
ing is true. Take any r 2 N large enough, any x > 0, and any � 2 . ; 1 �  /. Then
with probability at least 1 � Ce�cx

3
, the part of the geodesic ��0 below Lr is contained

in U xr
2=3

0;hr;0i�
.

We also have such a near-end transversal fluctuation estimate for finite geodesics (see
Figure 6 (b)).

Corollary 5.9. For each  2 .0; 1/, there exist constants c;C > 0 such that the following
is true. Take any integers 0 < r < n that are large enough, any x > 0, and any integer b
with jbj<  n. Let hr; b0i1=2 be the vertex in Lr that is closest to the straight line connect-
ing 0 and hn; bi1=2. Then with probability at least 1 � Ce�cx

3
, the geodesic �0;hn;bi1=2

below Lr is contained in U xr
2=3

0;hr;b0i1=2
.

Proof. Let c; C > 0 denote small and large constants depending only on  , and whose
values can change from line to line. When x > 2r1=3 the conclusion follows obvi-
ously, so we can assume that x � 2r1=3. We now take ��; �C 2 .0; 1/ such that
n�� D hn; b � bcxn1=3ci1=2 and n�C D hn; b C bcxn1=3ci1=2. Take b�; bC 2 Z such
that hn; b�i1=2 2 �

��
0 and hn; bCi1=2 2 �

�C
0 . By Lemma 5.6, with probability at least

1� Ce�cx
3

we have b� < b < bC, thus �0;hn;bi1=2 is sandwiched between ���0 and ��C0
below Lr by ordering of geodesics (Lemma 5.1). By Corollary 5.8, with probability at
least 1 � Ce�cx

3
, ���0 and ��C0 below Lr are both contained in U xr

2=3

0;hr;b0i1=2
, so the con-

clusion follows.

Finally, we have the following estimate on the passage time along a semi-infinite
geodesic. For simplicity of notation, below we denote (recall that � D ..1 � �/2; �2/)

H�
x WD ¹x�C y..1 � �/;��/ W y 2 Rº

for any � 2 .0; 1/ and x 2R. Note that Hx intersects the axes at .0; x�/ and .x.1� �/; 0/.

Lemma 5.10. For each  2 .0; 1/, there exist constants c; C > 0 such that the following
is true. Take any � 2 . ; 1 �  / and l > 0. Let u� be the first vertex in ��0 above the
line H�

l
. Then P ŒjT0;u� � l j > xl

1=3� < Ce�cx for any 0 < x < cl2=3.

Proof. Let c; C > 0 denote small and large constants depending only on  , and whose
values can change from line to line. Let U D U cx

1=2l2=3

hbclc;0i�;hbClc;0i�
. Let V be the set of all

v 2 U that are within distance 1 of the line H�

l
. By Corollary 5.8, with probability at

least 1 � Ce�cx
3=2

, the geodesic ��0 between Lbclc and LbClc is contained in U , thus
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L⌊cl⌋

L⌊Cl⌋

Hρ
l

0

u∗

Γρ
0

Fig. 7. An illustration of Lemma 5.10 and its proof: the yellow region is the parallelogram U D

U cx
1=2l2=3

hbclc;0i�;hbClc;0i�
, and V is the set of vertices within distance 1 of the green segment. When c is

small and C is large (depending on �), if ��0 between Lbclc and LbClc is contained in U , it must
intersect the line H�

l
inside U .

u� 2 U and u� 2 V , since (when c is small and C is large) Lbclc \Z2�0 is below H�

l
and

LbClc \ Z2�0 is above H�

l
(see Figure 7).

By (5.3) in Theorem 5.2, we have jEŒT0;v�� l j < cxl
1=3 for any v 2 V . It remains to

show that
P
h
max
v2V
jT0;v � EŒT0;v�j > cxl

1=3
i
< Ce�cx : (5.6)

For this, we split V into dx1=2e sets V1; : : : ; Vdx1=2e, each with diameter < cl2=3. Since
cx1=2l2=3 < cl , the slope of any line passing through 0 and intersecting V is bounded
away from 0 and1. So we can apply Proposition 5.3 to each Vi to conclude that

P
h
max
v2Vi

jT0;v � EŒT0;v�j > cxl
1=3
i
< Ce�c.x

3=2^xl2=3/:

By a union bound over i we get (5.6), and the conclusion follows.

Combining Corollary 5.8 and Lemma 5.10 we get the following (see Figure 8).

Corollary 5.11. For each 2 .0;1/, there exist constants c;C > 0 such that the following
is true. Take any � 2 . ; 1 �  / and l > 0, and let u� be the last vertex in ��0 with
T0;u� � l . Then for any 0 < x < cl2=9, with probability > 1 � Ce�cx

3
the vertex u� is

between the lines H�

l�x3l1=3
and H�

lCx3l1=3
, and �0;u� � U

xl2=3

0;hl;0i�
.

6. Convergence of TASEP as seen from an isolated second-class particle

Starting from this section, we again always fix � 2 .0; 1/, and the choice of all other
parameters and constants can depend on � unless otherwise stated.
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Hρ

l−x3l1/3

Hρ

l+x3l1/3

Ll

0

u∗

Γρ
0

Fig. 8. An illustration of Corollary 5.11: the yellow region is the parallelogram U xl
2=3

0;hl;0i�
. When

x < cl2=9, the intersections between U xl
2=3

0;hl;0i�
and the lines H�

l�x3l1=3
and H�

lCx3l1=3
are strictly

below Ll . Thus if ��0 below Ll is contained in U xl
2=3

0;hl;0i�
, the part of ��0 between H�

l�x3l1=3
and

H�

lCx3l1=3
must also be contained in U xl

2=3

0;hl;0i�
; and if in addition u� is between H�

l�x3l1=3
and

H�

lCx3l1=3
, we must have �0;u� � U

xl2=3

0;hl;0i�
.

Using geometric arguments and estimates from Section 5, in this section we upgrade
Proposition 2.7 to Theorem 1.7. The general idea is to show that ˆt and ˆtCs are close
when s is much smaller than t .

Proposition 6.1. For anyN 2N, there is a constantC > 0 such that the following is true.
For any s; t > C with t < s1:01, and any continuous function f W ¹0; 1;�ºJ�N;N K! Œ0; 1�,
regarded as a function on ¹0; 1;�ºZ, we have jˆt .f / �ˆtCs.f /j < C.s=t/1=30.

Using this we can deduce Theorem 1.7.

Proof of Theorem 1.7. Take any N 2 N and f W ¹0; 1; �ºJ�N;N K ! Œ0; 1�, regarded as a
function on ¹0; 1;�ºZ; it suffices to show that

lim
t!1

ˆt .f / D ‰.f /: (6.1)

Take any ı > 0. By Proposition 2.7, .ıt/�1
R ıt
0
ˆtCs.f / ds ! ‰.f / as t ! 1. By

Proposition 6.1, for any t > C ,ˇ̌̌̌
ˆt .f / � .ıt/

�1

Z ıt

0

ˆtCs.f / ds

ˇ̌̌̌
� .ıt/�1

Z ıt

t1=1:01
jˆt .f / �ˆtCs.f /j ds C .ıt/

�1t1=1:01 < Cı1=30 C .ıt/�1t1=1:01;

where C is a constant depending on N . Thus lim supt!1 jˆt .f / � ‰.f /j � Cı
1=30,

and by sending ı ! 0 we get (6.1).
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To prove Proposition 6.1, we construct a coupling between ˆt and ˆtCs . For this we
recall the setup of TASEP as seen from a hole-particle pair (or equivalently a second-class
particle).

Let .��t /t�0 and .�Ct /t�0 be two copies of TASEP with ��0 .0/ D �C0 .0/ D 0 and
��0 .1/ D �C0 .1/ D 1; and all ��0 .x/; �

C
0 .x/ for x 2 Z n ¹0; 1º are i.i.d. Bernoulli.�/. In

both copies, we label the holes by Z from left to right, with the hole at site 0 at time 0
labeled 0; and label the particles by Z from right to left, with the particle at site 1 at time 0
labeled 0. Keeping track of the hole-particle pair starting from sites 0 and 1, as described
in Section 3.3, we let p�t D .a

�
t ; b
�
t / and pCt D .a

C
t ; b

C
t / be the labels of the tracked hole

and particle at time t (in .��t /t�0 and .�Ct /t�0 respectively).
For notational convenience, we also denote

O��t D �
�
t .x C a

�
t � b

�
t C �/; O�Ct D �

C
t .x C a

C
t � b

C
t C �/

for any t � 0. Then . O��t /t�0 and . O�Ct /t�0 are TASEPs as seen from a hole-particle pair,
and by replacing the hole-particle pair in O��t or O�Ct by a second-class particle we get the
distribution ˆt (defined in Section 2.2).

Below we fix s > 0. Our general strategy is to couple the processes . O��t /t�0 and
. O�CtCs/t�0 so that they evolve with the same set of waiting times (to be explained shortly).
We implement this via coupling TASEP and LPP as described at the beginning of Sec-
tion 3.3, and coupling the corresponding LPP models. For this, let us set up some useful
notations.

� For any a; b 2 Z, if in ��0 (resp. �C0 ) the particle with label b is to the left of the hole
with label a, we let L�.a; b/ (resp. LC.a; b/) be the time when they switch; otherwise
we set L�.a; b/D 0 (resp. LC.a; b/D 0). Let ¹��.u/ºu2Z2 (resp. ¹�C.u/ºu2Z2 ) be i.i.d.
Exp.1/weights; below we work under the almost sure event that there is a unique geodesic
between any Z2 vertices u � v under these weights, and from any u 2 Z2 there is a
unique semi-infinite geodesic in direction � under these random weights, and all these
semi-infinite geodesics coalesce. We let G� (resp. GC) be the LPP Busemann function
in direction � under these random weights (defined like G in Section 3.1). We couple
.��t /t�0 (resp. .�Ct /t�0) with ¹��.u/ºu2Z2 (resp. ¹�C.u/ºu2Z2 ) so that G� _ 0 D L�

(resp. GC _ 0D LC) almost surely, and below we work under the event that this equality
holds.

� We use I�t , ��;_, ��;_;t , T �u;v , ��u;v , ��u , ��;_u (resp. ICt , �C;_, �C;_;t , TCu;v , �Cu;v , �Cu ,
�
C;_
u ) to denote the objects It (growth process), �_ (dual weights), �_;t (dual weights

from It ), Tu;v (passage time), �u;v (finite geodesic), �u (semi-infinite geodesic), �_u
(downward semi-infinite geodesic) defined in the introduction, and Sections 3.1 and 3.2,
under the weights �� (resp. �C). We shall also work under the almost sure event that these
downward semi-infinite geodesics (under these weights) exist and enjoy uniqueness and
coalescence. In addition, for any t 2 R we let

@ICt WD ¹u 2 I
C
t W G

C.uC .1; 0// _GC.uC .0; 1// > tº;
@I�t WD ¹u 2 I

�
t W G

�.uC .1; 0// _G�.uC .0; 1// > tº:
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� For t � 0, p�t D .a
�
t ; b
�
t / (resp. pCt D .a

C
t ; b

C
t /) is the last vertex in ��0 \ I

�
t (resp.

�C0 \ I
C
t ), by Lemma 3.7.

We first describe the coupling between O��0 and O�Cs . Take r 2 N. For any coupling
between O��0 and O�Cs , we denote by A the event where

O��0 .x/ D O�
C
s .x/;8x 2 Z; jxj > r I

rX
xD�r

O��0 .x/ D

rX
xD�r

O�Cs .x/:

By Lemma 3.6, under A we can find a (unique) p� 2 Z2 such that I�0 \ ¹u 2 Z2 W
jad.u/j> rº D .ICs � p

�/\ ¹u 2Z2 W jad.u/j> rº, and ad.p�/D ad.pCs /. In particular,
this implies that

I�0 n¹u 2Z2 W jad.u/j; jd.u/j � rº D .ICs �p
�/n¹u 2Z2 W jad.u/j; jd.u/j � rº: (6.2)

Lemma 6.2. There is a coupling of O��0 and O�Cs such that P ŒA� > 1 � C.rs�2=3/�1=10

when Cs2=3 < r < s2=3C0:01 and s > C , where C > 0 is a constant.

We leave the construction of this coupling to the next subsection, and proceed to
couple . O��t /t�0 and . O�CsCt /t�0. The idea is actually straightforward: we just couple the
exponential waiting times. Namely, we note that for any .a; b/ 62 I�0 , ��;_;0.a; b/ is pre-
cisely the waiting time for the hole labeled a to switch with the particle labeled b since
they are next to each other; and conditioned on I�0 , ¹��;_;0.u/ºu2Z2nI�

0
are i.i.d. Exp.1/

(see also Lemma 3.4). The same is true for ¹�C;_;s.u/º
u2Z2nICs

conditioned on ICs . So
we just couple these two sets of waiting times (as much as possible), up to a translation
by p�.

We note that, for . O��t /t�0 and . O�CsCt /t�0, we need to couple them conditioned on
O��0 and O�Cs . We next show that, under A, O��0 and O�Cs and p� contain precisely the same
information as I�0 and ICs . (Then conditioned on O��0 and O�Cs and p�, the waiting times
¹��;_;0.u/ºu2Z2nI�

0
and ¹�C;_;s.u/º

u2Z2nICs
are i.i.d. Exp.1/.) Indeed, O��0 is just ��0 ,

which determines I�0 according to Lemma 3.6. Using Lemma 3.6 we also see that O�Cs
determines ICs , up to a translation of Z2; and the translation can be uniquely determined
using p� and the fact that I�0 and ICs � p

� are the same outside a compact set. In the
other direction, given ICs and I�0 we can uniquely find p�, and (by Lemma 3.6) ��0 D O�

�
0

is determined by I�0 , and �Cs is determined by ICs . To get O�Cs we just shift �Cs by ad.p�/.
We now couple . O��t /t�0 and . O�CsCt /t�0. We let O��0 and O�Cs be coupled using the

coupling from Lemma 6.2. If A does not hold, we just couple . O��t /t�0 and . O�CsCt /t�0
(conditioned on O��0 and O�Cs ) arbitrarily. If A holds, we couple . O��t /t�0 and . O�CsCt /t�0
(conditioned on O��0 and O�Cs and p�) so that the event

��;_;0.u/ D �C;_;s.uC p�/; 8u 2 Z2 n .I�0 [ .I
C
s � p

�//; (6.3)

holds with probability 1. Below we work under this event whenever A holds.
We bound the total variation distance between the ¹0; 1; �ºJ�N;N K marginals of ˆt

and ˆtCs (and thus prove Proposition 6.1) by bounding the probability that O��t and O�CtCs
are different in J�N;N C 1K under this coupling.
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In the LPP setting, this is to show that with high probability, for any u around p�t we
have L�.u/ D LC.uC p�/ � s. By Lemma 3.5, this is implied by the fact that for such
u the paths ��;_u n I�0 and �C;_uCp� n I

�
s � p

� are the same path, contained in the area
Z2 n .I�0 [ .I

C
s � p

�// where the weights are coupled. Using the non-crossing property
(Lemma 3.3), this is ensured by coalescence of (upward) semi-finite geodesics. More
precisely, we consider the following events (which are also illustrated in Figure 9).

Take m; r 2 N with r < m.

� Let B� be the event where

9u�;1; u�;2 2 @I
�
0 W ad.u�;1/ < �r; ad.u�;2/ > r; d.u�;1/; d.u�;2/ < 2m;

��u�;1 \ Lm D �
�
u�;2
\ Lm:

� Let BC be the event where A happens (with the same r), and in addition

9uC;1; uC;2 2 @I
C
s W ad.uC;1 � p�/ < �r; ad.uC;2 � p�/ > r;

d.uC;1 � p�/; d.uC;2 � p�/ < 2m;

.��uC;1 � p
�/ \ Lm D .�

�
uC;2
� p�/ \ Lm:

� For any t > 0 we let Ft be the event where d.p�t / > 2mC 2N C 2.

Lemma 6.3. For any t > 0, under B� \ BC \ Ft the process O��t equals O�CtCs in
J�N;N C 1K.

To prove this, we mainly need to establish the following result.

Lemma 6.4. Under B� \BC, we have

(1) L�.u/ D LC.uC p�/ � s for any u 2 Z2 with d.u/ > 2m, u 62 I�0 , uC p� 62 ICs ,

(2) p�t D p
C
tCs � p

� for any t > 0 with d.p�t / � 2m.

Proof. Since r <m, under A we have ¹u2Z2 Wd.u/>2mº \ I�0 D¹u2Z2 Wd.u/>2mº
\ .ICs � p

�/ by (6.2). Denote U D Z2 n .I�0 [ .I
C
s � p

�//.
We first show that, under A \ B�, we must have ��;_u n I�0 � U for any u 2 U

with d.u/ > 2m. Indeed, by the non-crossing property (Lemma 3.3), the path ��u�;1 C
.1=2; 1=2/ divides u�;1 C .Z2 nZ2�0/ into two parts P1;# (the lower-right part) and P1;"
(the upper-left part) such that ��;_u intersects at most one of them, and the path ��u�;2 C
.1=2; 1=2/ divides u�;2 C .Z2 nZ2�0/ into two parts P2;# (the lower-right part) and P2;"
(the upper-left part) such that ��;_u intersects at most one of them. Since ��u�;1 \ Lm D
��u�;2 \ Lm, we must have

¹u W d.u/ > 2mº \ P1;# D ¹u W d.u/ > 2mº \ P2;#;

¹u W d.u/ > 2mº \ P1;" D ¹u W d.u/ > 2mº \ P2;":

For any u 2 U with d.u/ > 2m, depending on whether u 2 P1;"; P2;" or u 2 P1;#; P2;#,
we must have ��;_u n I�0 � P1;" or ��;_u n I�0 � P2;#. Denote the lower endpoint
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0

u+,2

u+,1

0

u−,1

u−,2

Lm

I+s I−0

Fig. 9. An illustration of the events B� and BC, translated and superposed together. The red objects
are for B�, and are constructed from .��t /t�0; and the blue objects are for BC and are constructed
from .�Ct /t�0. The difference between the red 0 and blue 0 is p�.

of ��;_u n I�0 by v0. By Lemma 3.5, we have v0 � .0; 1/; v0 � .1; 0/ 2 I�0 , so v0 2
u�;1 C Z�0 � ZC (if v0 2 P1;") or v0 2 u�;2 C ZC � Z�0 (if v0 2 P2;#). Thus v0 62
ICs � p

�, by (6.2) and the fact that ad.u�;1/ < �r , ad.u�;2/ > r . So v0 2 U , which
implies that ��;_u n I�0 � U .

Similarly, under BC we have �C;_uCp� n I
C
s � p

� � U for any u 2 U with d.u/ > 2m.
According to (6.3) we have ��;_;0.u/ D �C;_;s.u C p�/ for any u 2 U . Then by

Lemma 3.5, for any u 2 U with d.u/ > 2m, since we have shown that ��;_u n I�0 � U

and �C;_uCp� n I
C
s � p

� � U , we must have

��;_u n I�0 D �
C;_
uCp� n I

C
s � p

�; (6.4)

and L�.u/ D LC.uC p�/ � s. Thus statement (1) holds.
We next prove (2). Below we always assume B� \BC. Using the fact that p�t is the

last vertex in ��0 \ I
�
t and pCtCs is the last vertex in �C0 \ I

C
tCs , and statement (1), it

suffices to show that

��0 \ ¹u 2 Z2 W d.u/ > 2mº C p� D �C0 \ ¹u 2 Z2 W d.u/ > 2mC d.p�/º: (6.5)

By the non-crossing property (Lemma 3.3), ��0 \ ¹u 2 Z2 W d.u/ > 2mº is determined
by ��;_u for all u 2 U with d.u/ � 2m. More precisely, we divide the set of u 2 U with
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d.u/ > 2m into two parts, depending on whether the lower endpoint of ��;_u n I�0 is in
Z�0 �ZC or ZC �Z�0, and ��0 \ ¹u 2 Z2 W d.u/ � 2mº C .1=2; 1=2/ is the boundary
of these two parts. Similarly, we can also divide the set of u 2 U with d.u/ > 2m into two
parts, depending on whether the lower endpoint of �C;_uCp� n I

C
s is in pCs C Z�0 � ZC or

pCs CZC �Z�0, and .�C0 � p
�/\ ¹u 2 Z2 W d.u/ � 2mº C .1=2; 1=2/ is the boundary

of these two parts.
To prove (6.5), it then remains to show that, for any u 2 U with d.u/ > 2m,

the lower endpoint of ��;_u n I�0 is in Z�0 � ZC

” the lower endpoint of �C;_uCp� n I
C
s is in pCs C Z�0 � ZC: (6.6)

For this, we denote the lower endpoint of ��;_u n I�0 as v0. By (6.4), v0 C p� is the lower
endpoint of �C;_uCp� n I

C
s . Recall that ad.pCs � p

�/D 0, so v0 is either in both Z�0 �ZC
and pCs � p

� C Z�0 � ZC, or in both ZC � Z�0 and pCs � p
� C ZC � Z�0. Thus we

get (6.6), which implies (6.5), and the conclusion follows.

Proof of Lemma 6.3. The event that O��t equals O�CtCs in J�N;N C 1K can be written as

¹��t .x C ad.p�t //ºx2J�N;NC1K D ¹�
C
tCs.x C ad.pCtCs//ºx2J�N;NC1K:

By Lemma 3.6, this is implied by

.I�t � p
�
t / \ J�N � 1;N C 1K2 D .ICtCs � p

C
tCs/ \ J�N � 1;N C 1K2: (6.7)

Below we assume B� \BC \Ft . For any u 2 J�N � 1;N C 1K2Cp�t , we have d.u/ >
2m by Ft . Since under A the sets I�0 and ICs � p

� are the same outside ¹u 2 Z2 W
jad.u/j; jd.u/j � rº (as stated by (6.2)), and m > r , we have either u 2 I�0 \ .I

C
s � p

�/

or u 62 I�0 [ .I
C
s � p

�/. In the latter case we have L�.u/D LC.uC p�/� s, by Lemma
6.4 (1). Thus we always have either u 2 I�t \ .I

C
tCs � p

�/, or u 62 I�t [ .I
C
tCs � p

�/.
Consequently,

.J�N � 1;N C 1K2 C p�t / \ I
�
t D .J�N � 1;N C 1K

2
C p�t / \ .I

C
tCs � p

�/:

By Lemma 6.4 (2) we have p�t D p
C
tCs � p

�, so we get (6.7), and the conclusion follows.

To prove Proposition 6.1, it remains to lower bound P ŒB��, P ŒBC�, and P ŒFt �. For
this we set up some additional notations. Recall that � D ..1 � �/2; �2/. As in Section 5
(but omitting � from the notation), we set

Hx WD ¹x�C y..1 � �/;��/ W y 2 Rº

for any x 2 R. We also denote

Vx WD ¹.x;�x/C y� W y 2 Rº;

and for any set A � R we define VA WD
S
x2A Vx and HA WD

S
x2A Hx .
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0v1

v2

u−,1

u−,2

I−0

Lm

Γ−
v1

Γ−
v2

(a) Estimating the probability of B�: by Corollary 5.8,
with probability> 1�Ce�cr , the geodesics ��v1 and ��v2
are disjoint from the sets ¹u 2 Z2 W jd.u/j; jad.u/j � rº
and Z�0 � J2r.1 � �/�4;1K and J2r��4;1K � Z�0.

A′A

p+s

0v1

v2

u+,1

u+,2

I+s

Lm + p∗Lm

Γ+
v1

Γ+
v2

Γ+
0

(b) Estimating the probability of A n BC: by Corollaries 5.8 and
5.11, with probability > 1� Ce�cr

3s�2 we have pCs 2 A, and the
geodesics �Cv1 and �Cv2 are disjoint from the setsA0 andACZ�0 �

J2r.1 � �/�4;1K and AC J2r��4;1K � Z�0.

Fig. 10. Illustrations of the proof of Proposition 6.1. The probabilities of the coalescence events are
estimated using Proposition 5.5.
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Proof of Proposition 6.1. In this proof we let c;C > 0 be small and large constants which
depend on N , and their values can change from line to line.

We will show that O��t equals O�CtCs in J�N;N C 1K with probability> 1�C.s=t/1=30,
assuming that t; s are large enough depending on N . We could also assume that t=s is
large enough depending on N , since otherwise we would have 1 � C.s=t/1=30 < 0. For
the parameters in the definition of the events A, B�, BC, and Ft , we takemDbt=10c and
r D bs1=3t1=3c. Denote v1 D .�br��2.1 � �/�2c; 0/ and v2 D .0;�br��2.1 � �/�2c/.

We first lower bound P ŒB��. We take u�;1 to be the last vertex in ��v1 \ I
�
0 , and u�;2

to be the last vertex in ��v2 \ I
�
0 . Then u�;1 2 Z�0 � Z�0 and u�;2 2 Z�0 � Z�0. By

Corollary 5.8, we have

P Œad.u�;1/ < �r�;P Œad.u�;2/ > r� > 1 � Ce�cr ;

and

P
�
u�;1 2 Z�0 � J0; 2r.1 � �/�4K

�
;P
�
u�;2 2 J0; 2r��4K � Z�0

�
> 1 � Ce�cr :

See Figure 10 (a) for an illustration. Since 2r.1 � �/�4; 2r��4 < 2m (as t; s; t=s are
large enough), we have P Œd.u�;1/; d.u�;2/ < 2m� > 1 � Ce�cr . By Proposition 5.5 we
have P Œ��v1 \ Lm D ��v2 \ Lm� > 1 � Crm�2=3. Thus we conclude that P ŒB�� > 1 �
Crm�2=3 � Ce�cr .

We next bound P ŒA nBC� (see Figure 10 (b) for several sets in Z2 to be defined). We
take uC;1 to be the last vertex in �Cv1 \ I

C
s , and uC;2 to be the last vertex in �Cv2 \ I

C
s .

Then by ordering of geodesics (Lemma 5.1), and since pCs , uC;1, and uC;2 are all in @ICs ,
we must have uC;1 2 pCs C Z�0 � Z�0 and uC;2 2 pCs C Z�0 � Z�0.

Let A D V.�r;r/ \H.s�.r3s�2/s1=3;sC.r3s�2/s1=3/. Note that pCs is the last vertex in
¹u 2 �C0 W G

C.u/ � sº, so by Lemma 3.1, pCs � .1; 0/ or pCs � .0; 1/ is the last vertex in
¹u 2 �C0 W T

C
0;u � sº. Then by Corollary 5.11 we have P ŒpCs 2 A� > 1 � Ce

�cr3s�2 .

� When pCs 2 A, we must have ad.uC;1/ < ad.pCs / � r and ad.uC;2/ > ad.pCs /C r ,
unless uC;1 2 A0 or uC;2 2 A0, where

A0 WD AC ¹u 2 R2 W jd.u/j; jad.u/j � rº � V.�2r;2r/ \H.s�Cr;sCCr/:

By Corollary 5.8, we have P ŒuC;1 2 A0�; P ŒuC;2 2 A0� < Ce�cr
3s�2 . Recalling that

under A we have ad.pCs / D ad.p�/, we now conclude that

P Œ¹ad.uC;1/ > ad.p�/ � rº \A�;P Œ¹ad.uC;2/ < ad.p�/C rº \A� < Ce�cr
3s�2 :

� When pCs 2 A, we must also have d.uC;1/ < d.pCs / C 2r.1 � �/
�4 unless uC;1 2

A C Z�0 � J2r.1 � �/�4;1K. By Corollary 5.8 the latter happens with probability
< Ce�cr

3s�2 , so we have

P Œd.uC;1 � p
C
s / � 2r.1 � �/

�4� < Ce�cr
3s�2 :
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When A holds, we can find some w1; w2 2 Z2 with jad.w1/j; jad.w2/j � r C 1 such
that w1 2 .Z� � ZC/ \ .pCs � p

� C Z� � ZC/, and w2 2 .ZC � Z�/ \ .pCs � p
� C

ZC � Z�/. This implies that jd.pCs � p
�/j � 2r . Thus we conclude that

P Œ¹d.uC;1 � p
�/ � 2mº \A� � P Œd.uC;1 � p

C
s / � 2r.1 � �/

�4� < Ce�cr
3s�2 :

Here the first inequality is by 2m � 2r � 2r.1 � �/�4 (due to taking s; t; t=s large).
Similarly, P Œ¹d.uC;2 � p�/ � 2mº \A� < Ce�cr

3s�2 .

� We have shown that A implies jd.pCs �p
�/j � 2r . If in addition pCs 2A, we must have

d.p�/ � d.pCs / � 2r > 0 (since s; t; t=s are taken to be large). So using Proposition 5.5
we have

P Œ¹.�Cv1 � p
�/ \ Lm ¤ .�

C
v2
� p�/ \ Lmº \A�

� P Œ�Cv1 \ Lm ¤ �
C
v2
\ Lm�C P ŒpCs 62 A� < Crm

�2=3
C Ce�cr

3s�2 :

Thus we conclude that P ŒA nBC� < Crm
�2=3 C Ce�cr

3s�2 .
Finally, we consider P ŒFt �. Since p�t is the last vertex in ¹u 2 ��0 W G�.u/ � tº,

Lemma 3.1 implies that p�t � .1; 0/ or p�t � .0; 1/ is the last vertex in ¹u 2 ��0 W T
�

0;u � tº.

Then by Corollary 5.11, with probability > 1 � Ce�ct
2=3

we have p�t 2 H.t=2;2t/ \

V.�t8=9;t8=9/, thus d.p�t / � ..1� �/
2C �2/t=2� t8=9 � t=4� t8=9. Note that sincemD

bt=10c and t is taken large enough depending onN , we have t=4� t8=9 > 2mC 2N C 2.
So P ŒFt � > 1 � Ce�ct

2=3
.

By Lemma 6.3, O��t equals O�CtCs in J�N;N C 1K with probability at least

P ŒB��C P ŒA� � P ŒA nBC�C P ŒFt � � 2

> 1� .C rm�2=3 C Ce�cr /� C.rs�2=3/�1=10 � .C rm�2=3 C Ce�cr
3s�2/� Ce�ct

2=3

> 1 � C.s=t/1=30;

where the first inequality uses the estimates of P ŒB�� and P ŒA n BC� above, and the
estimates on P ŒA� from Lemma 6.2. Thus the conclusion follows.

6.1. The initial step coupling

This subsection is devoted to proving Lemma 6.2.
We define .�t /t2R as the process of stationary TASEP with density �, i.e. for any

t 2 R, �t .x/ is Bernoulli.�/ for each x 2 Z independently. Our strategy is to construct a
coupling between the processes .�Ct /t�0 and .�t /t�0, where (with high probability) O�Cs
and �s are identical outside J�r; rK, and have the same number of particles in J�r; rK. It
would be straightforward to couple O��0 and �s since both are Bernoulli.�/ on Z n ¹0; 1º.

We denote ˛ D .rs�2=3/1=5 and ri D ˛is2=3 for i D 1; 2; 3; 4. Below we assume that
˛ and s are large enough, and also ˛ < r0:01. Recall the notations L�, G�, I�t , @I�t ,
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��;_, ��;_;t , T �u;v , ��u;v , ��u , ��;_u , p�t (resp. LC, GC, ICt , @ICt , �C;_, �C;_;t , TCu;v , �Cu;v ,
�Cu , �C;_u , pCt ) for LPP with weights �� (resp. �C). Also recall the notations Vx , Hx and
VA, HA for x 2 R and A � R.

We now explain the coupling between .�Ct /t�0 and .�t /t�0. One straightforward way
is to couple �C0 and �0 so that they are the same outside a compact interval, and let them
evolve using the same exponential waiting times (just like .��t /t�0 and .�CsCt /t�0 are
coupled). One can show that under this coupling, with high probability �Cs and �s are the
same, as in the proof of Proposition 6.1 assuming Lemma 6.2. However, we need to com-
pare O�Cs and �s instead. For this, we first shift �C0 by ad.pCs /, and then couple it with �0,
so that they are the same outside a compact interval, and then let them evolve using the
same exponential waiting times. One problem is that the number ad.pCs / depends on the
evolution of .�Ct /t�0. To solve this, we exploit the fact that ad.pCs / mostly depends on
the evolution around the hole-particle pair. Specifically, we take the following approach:
we first sample the evolution of .�Ct /t�0 around the pair (which corresponds to sampling
the waiting times �C;_;0 in a tube V.�r1;r1/) to get a proxy of pCs which equals pCs with
high probability. Using that, we could shift �0 and couple the rest of the waiting times
�C;_;0 with the waiting times of .�t /t�0.

We start by defining the proxy of pCs . Denote P D V.�r1;r1/ \ Z2. First we define
LP by letting LP .u/D 0 for u 2 IC0 [ .Z

2 nP /, and setting LP .u/D LP .u� .1; 0//_
LP .u � .0; 1//C �C;_;0.u/ recursively for each u 2 P n IC0 . As in Lemma 3.5, LP .u/
can also be defined as the maximum passage time in Z2 n IC0 to u under the weights
¹�C;_;0.v/1Œv 2 P �º

v2Z2nIC
0

. Then with probability 1, LP .u/ for u 2 P n IC0 are mutu-
ally different, and below we work under this event. Analogously to the inductive construc-
tion of �C0 (see Lemma 3.2), we define �P0 by letting �P0 Œ1� D 0 and

�P0 Œi C 1� D argminv2¹�P0 Œi�C.1;0/;�P0 Œi�C.0;1/º\P L
P .v/ (6.8)

for each i 2 N. Recall that pCs is the last vertex in �C0 \ I
C
s . We let pP be the last vertex

in ¹u 2 �P0 W L
P .u/ � sº. Denote M D ad.pP /. Then M is determined by IC0 \ P and

¹�C;_;0.u/º
u2PnI

C

0

.

We next show that this proxy pP equals pCs with high probability.

Lemma 6.5. P ŒpP D pCs � > 1 � Ce
�c˛3 for some constants c; C > 0.

Proof. According to Lemma 3.5 and as stated above, LC.u/ and LP .u/ are the max-
imum passage times from a vertex in Z2 n IC0 to u, under the weights ¹�C;_;0.v/º

v2Z2nIC
0

and ¹�C;_;0.v/1Œv 2 P �º
v2Z2nIC

0

respectively. Also Lemma 3.5 states that the path with

the maximum passage time to u under the weights ¹�C;_;0.v/º
v2Z2nIC

0

is precisely

�
C;_
u n IC0 . Then LC.u/ D LP .u/ for any u with �C;_u n IC0 � P .

We take

u1 D

��
�
3..1 � �/2 C �2/r1

4�2

�
; 0

�
; u2 D

�
0;

�
�
3..1 � �/2 C �2/r1

4.1 � �/2

��
:
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We let D1 be the event where

�Cu1 \H.�1;2s/ � V.�r1;�r1=2/; �
C
u2
\H.�1;2s/ � V.r1=2;r1/:

Assuming that D1 holds, we denote

S D
� [
v2�
C
u1

.v C ZC � Z�0/
�
\

� [
v2�
C
u2

.v C Z�0 � ZC/
�
\ .H.�1;2s/ n I

C
0 /:

In other words, S is the set consisting of the vertices in H.�1;2s/ n I
C
0 between

�Cu1 and �Cu2 . Take any u 2 S . By the non-crossing property (Lemma 3.3), �C;_u

is disjoint from
S
v2�
C
u1

.v C Z�0 � ZC/. As u1 C Z2�0,
S
v2�
C
u1

.v C Z�0 � ZC/,S
v2�
C
u1

.v C ZC � Z�0/ is a disjoint partition of Z2, and u1 C Z2�0 � IC0 , we

must have �
C;_
u n IC0 �

S
v2�
C
u1

.v C ZC � Z�0/. Since u 2 H.�1;2s/, we fur-

ther have �C;_u n IC0 �
S
v2�
C
u1
\H.�1;2s/

.v C ZC � Z�0/. Similarly �
C;_
u n IC0 �S

v2�
C
u2
\H.�1;2s/

.v C Z�0 � ZC/. Then by D1 we must have �C;_u n IC0 � P , so

LC.u/ D LP .u/.
Let D2 be the event where �C0 \ I

C
s � V.�r1=3;r1=3/ \ H.�1;3s=2/. Under D1 we

have V.�r1=3�1;r1=3C1/ \H.�1;2s/ n I
C
0 � S , so under D1 \D2 we have .�C0 \ I

C
s /C

¹.1; 0/; .0; 1/º � S . Then by the inductive constructions of �C0 and �P0 (Lemma 3.2
and (6.8)), one can inductively show that �C0 Œi � D �P0 Œi � and LC.�C0 Œi � C .1; 0// D
LP .�P0 Œi �C .1; 0//, L

C.�C0 Œi �C .0; 1// D L
P .�P0 Œi �C .0; 1// for all i 2 N such that

LC.�C0 Œi �/ � s. By considering the largest such i we conclude that pP D pCs .
Now P ŒpP D pCs � � P ŒD1 \D2�, and it remains to lower bound P ŒD1� and P ŒD2�.

By Corollary 5.8 we have P ŒD1� > 1 � Ce
�cr3

1
s�2 . For D2, as pCs is the last vertex in

¹u 2 �C0 WG
C.u/ � sº, by Lemma 3.1 we know that pCs � .1; 0/ or pCs � .0; 1/ is the last

vertex in ¹u 2 �C0 W T
C

0;u � sº. Then Corollary 5.11 implies that P ŒD2� > 1� Ce
�cr3

1
s�2

(noting that 3s=2 > sCC.r31 s
�2/s1=3 by our choice of the parameters). Thus the conclu-

sion follows.

We next couple �0 and .�Ct /t�0. We state the coupling by constructing �0 conditioned
on .�Ct /t�0, using the following steps.

(1) Let �0.x �M/ be i.i.d. Bernoulli.�/ for each x 2 J�r2; r2K.

(2) For each x D b�r2c; b�r2c � 1; : : : ; we take �0.x �M/ to be i.i.d. Bernoulli.�/,
until the first x� 2 Z with

P0
xDx�

�C0 .x/ � �0.x �M/ D 0. Then for each x < x�
we take �0.x �M/ D �C0 .x/.

(3) For each x D dr2e; dr2e C 1; : : : ; we take �0.x �M/ to be i.i.d. Bernoulli.�/, until
the first x� 2 Z with

Px�

xD1 �
C
0 .x/� �0.x �M/ D 0. Then for each x > x� we take

�0.x �M/ D �C0 .x/.

As ˛ D r2=r1 is large enough, the set P \ .Z�0 � Z�0 [ Z�0 � Z�0/ is contained
in ¹u 2 Z2 W jad.u/j < r2º. Also note that IC0 \ P is determined by IC0 \ P \
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.Z�0 � Z�0 [ Z�0 � Z�0/, as P \ Z2� � I
C
0 and P \ Z2C is disjoint from IC0 . Then

IC0 \P is determined by IC0 \ ¹u 2Z2 W jad.u/j< r2º, which (by Lemma 3.6) is determ-
ined by ¹�C0 .x/ºjxj<r2 , thus is independent of ¹�C0 .x/ºjxj�r2 . Since M is determined by
IC0 \ P and ¹�C;_;0.u/º

u2PnI
C

0

, we see that M is also independent of ¹�C0 .x/ºjxj�r2 .

Then from the construction of �0, and since ¹�C0 .x/ºjxj�r2 are i.i.d. Bernoulli.�/, it fol-
lows that ¹�0.x �M/ºx2Z are i.i.d. Bernoulli.�/ conditioned on M . Thus ¹�0.x/ºx2Z

are i.i.d. Bernoulli.�/ and independent of M . Conditioned on IC0 , both �0 and M are
independent of ¹�C;_;0.u/º

u2Z2n.P[IC
0
/
.

We wish to let .�t /t�0 evolve using the waiting times ¹�C;_;0.u/º
u2Z2n.P[IC

0
/
. For

this, in �0 we label the holes by Z from left to right, and the particles by Z from right
to left, in such a way that for any x 2 Z n Jx�; x�K, the particle (or hole) at site x �M
has the same label as the particle (or hole) at site x in �C0 . This can be achieved since
�0 and �C0 are the same outside Jx�; x�K, and they have the same number of particles in
Jx�; 0K and J1; x�K, respectively.

Let L� .a; b/ be the time when the particle labeled b switches with the hole labeled a
if in �0 this particle is to the left of this hole, and let L� .a; b/ D 0 otherwise. Note that
unlikeLC, this functionL� does not have the same distribution as the Busemann function
in LPP. However, we can still define a growth process from it. For each t � 0 denote
I �t WD ¹u 2 Z2 W L� .u/ � tº and @I �t WD ¹u 2 I

�
t W L

� .uC .1; 0//_L� .uC .0; 1// > tº.
Then I �0 is the same as IC0 outside a compact set.

Lemma 6.6. For any u 2 .I �0 n I
C
0 / [ .I

C
0 n I

�
0 / we have ad.u/ 2 Jx�; x�K

Proof. Write u D .a; b/. If u 62 IC0 , there is some x � 0 such that .a � x; b � x/ 62 IC0 ,
.a � x � 1; b � x/ 2 IC0 , or .a � x � 1; b � x/ 62 IC0 , .a � x � 1; b � x � 1/ 2 IC0 . Then
by Lemma 3.6, either �C0 .a� b/D 1 and the particle at site a� b (in �C0 ) has label b � x,
or �C0 .a � b/ D 0 and the hole at site a � b (in �C0 ) has label a � x � 1. If u 2 I �0 , we
can similarly deduce that there is some y � 0 such that .a C y C 1; b C y C 1/ 62 I �0 ,
.aC y; b C y C 1/ 2 I �0 , or .aC y; b C y C 1/ 62 I �0 , .aC y; b C y/ 2 I �0 . Then by (an
analogue of) Lemma 3.6, either �0.a � b �M/ D 1 and the particle at site a � b �M
(in �0) has label b C y C 1, or �0.a � b �M/ D 0 and the hole at site a � b �M (in �0)
has label aC y.

Thus if u 2 I �0 n I
C
0 , we must have �C0 .a� b/¤ �0.a� b �M/ or the particles/holes

do not have the same label. So from the coupling between �C0 and �0 we infer that a� b 2
Jx�; x�K, and the conclusion follows. The case where u 2 IC0 n I

�
0 follows from similar

arguments.

We can also define the waiting times by letting

��;_.u/ D L� .u/ � L� .u � .1; 0// _ L� .u � .0; 1//

for any u 2Z2 n I �0 . Given I �0 (equivalently, �0 and the labels), we find that ¹��;_.u/ºu 62I�
0

are i.i.d. Exp.1/, since they are precisely the waiting times for certain particles and holes



Convergence of environment seen from geodesics in last-passage percolation 55

to switch. Then almost surely L� .u/ are mutually different for all u 2 Z2 n I �0 , and below
we assume this event.

We now couple ¹��;_.u/ºu 62I�
0

with .�Ct /�0 in such a way that conditioned on �0 and
.�Ct /t�0, we have ��;_.u/ D �C;_;0.u/ for any u 2 Z2 n .IC0 [ I

�
0 [ P /, and ��;_.u/

for u 2 .P [ IC0 / n I
�
0 are i.i.d. Exp.1/. Under this coupling, we denote by E1 the event

where for any x < �r , �s.x/D O�Cs .x/D �
C
s .xC ad.pCs //, and the particle or hole at site

x has the same label for �s and O�Cs ; denote by E2 the event where the same is true for any
x > r .

Lemma 6.7. We have P ŒE1�; P ŒE2� > 1 � C˛�1=2 when Cs2=3 < r < s2=3C0:01 and
s > C , where C > 0 is a constant.

We can now prove Lemma 6.2 assuming Lemma 6.7.

Proof of Lemma 6.2. Under E1 \ E2, we have �s.x/D O�Cs .x/ for any x 2Z with jxj> r .
Also, note 1C

Pr
xD�r O�

C
s .x/ and 1C

Pr
xD�r �s.x/ are precisely the differences between

the label of the first particle to the left of �r and the label of the first particle to the right
of r in O�Cs and �s respectively, so

Pr
xD�r O�

C
s .x/ D

Pr
xD�r �s.x/ under E1 \ E2.

We can couple O��0 with �s as follows. Conditioned on O��0 , we let �s.x/ for x D 1;2; : : :
be i.i.d. Bernoulli.�/ until some y� 2 Z such that

Py�

xD1 �s.x/ � O�
�
0 .x/ D 0, and for any

x > y� we let �s.x/ D O��0 .x/; we also let �s.x/ for x D 0;�1; : : : be i.i.d. Bernoulli.�/
until some y� 2Z such that

P0
xDy�

�s.x/� O�
�
0 .x/D 0, and for any x < y� we let �s.x/D

O��0 .x/. Let E� be the event jy�j; jy�j � r . Then P ŒE�� > 1 � Cr�1=2 for some constant
C > 0, since O��0 is Bernoulli.�/ on Z n ¹0; 1º. On the other hand, under E� we have
O��0 .x/D �s.x/ for any x 2Z with jxj> r and

Pr
xD�r O�

�
0 .x/D

Pr
xD�r �s.x/. Thus E� \

E1 \ E2 implies A, and P ŒA� > P ŒE1�C P ŒE2�C P ŒE��� 2. Using P ŒE�� > 1�Cr�1=2

and Lemma 6.7, the conclusion follows.

In the rest of this section we prove Lemma 6.7.
For any u 2 .Z2 n I �0 / [ @I

�
0 , we also define the ‘semi-infinite geodesic’ ��u recurs-

ively, by letting ��uŒ1� D u, and ��uŒi C 1� D argminv2¹��u Œi�C.1;0/;��u Œi�C.0;1/º L
� .v/ for

each i 2 N. Note that since L� is not coupled with the LPP Busemann function, these ��u
are not actual geodesics.

We consider the following events (see Figure 11 for an illustration of the geometric
objects).

E3: there exists a vertex uC 2 @IC0 such that ad.uC/ < x� and �CuC \ I
C
s � V.�6r3;�r1/,

and a0C > .1 � �/
2s � r4 for u0C D .a

0
C; b

0
C/ being the last vertex in �CuC \ I

C
s .

E�3 : there exists a vertex u� 2 @I �0 such that ad.u� / < x� and ��u� \ I
�
s � V.�6r3;�r1/,

and a0� > .1 � �/
2s � r4 for u0� D .a

0
� ; b
0
� / being the last vertex in �Cu� \ I

�
s .

E4: for each u D .a; b/ 2 @ICs with ad.u/ � M � r , we have a < .1 � �/2s � r4 � 1,
and uC .1; 0/ 2 V.�1;�6r3/.

The purpose of these events is as follows. E3 and E�3 ensure that for u in a certain
region (around ¹u 2 Z2 W ad.u/ � M � rº \ @ICs ), the downward geodesics �C;_u and
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0

u+

u′+

uτ

u′τ

Iτ0 I+0 Iτs I+s

Q

(a, b) : a = (1− ρ)2s− r4 u : ad(u) = M − r

∂I+s ∩ ∂Iτs

Vr1

V−r1

V−6r3

Fig. 11. The events E3; E
�
3 ; E4, assuming pP D pCs . The shaded region is Q in the proof of

Lemma 6.8.

�
�;_
u are disjoint from P . Thus using Lemma 6.6 and the coupling between ��;_ and
�C;_;0 we have LC.u/ D L� .u/ for these u. Then we can deduce that ¹u 2 Z2 W ad.u/ �
M � rº \ @ICs is the same as ¹u 2 Z2 W ad.u/ � M � rº \ @I �s . Then using pP D pCs
and Lemma 3.6, we find that E1 holds. The event E4 is to define this ‘certain region’. In
summary, we have the following statement.

Lemma 6.8. ¹pP D pCs º \ E3 \ E�3 \ E4 � E1.

Proof. Below we assume that E3 \ E�3 \ E4 holds and pP D pCs . Denote

Q D ¹.a; b/ 2 Z2 W a < .1 � �/2s � r4; .a; b/ 2 V.�1;�6r3/º:

See Figure 11. Then Q n IC0 D Q n I
�
0 . Indeed, otherwise we can find some u 2 Q with

u 2 @I �0 and u 62 IC0 , or u 2 @IC0 and u 62 I �0 . In the first case, u 2 u� C Z�0 � ZC
since u 2 V.�1;�6r3/, u� 2 V.�6r3;�r1/, and both u; u� 2 @I �0 . So we must have ad.u/ <
ad.u� / < x�. But ad.u/ 2 Jx�; x�K by Lemma 6.6, so we get a contradiction. A similar
contradiction can be obtained in the second case.

Now we take any u 2 Q n IC0 D Q n I �0 , and we show that LC.u/ � L� .u/. By
Lemma 3.5 we know that LC.u/ D

P
v2�
C;_
u nI

C

0

�C;_;0.v/, and this is the maximum

passage time to u from a vertex in Z2 n IC0 under the weights �C;_;0. Analogously, L� .u/
equals the maximum passage time to u from a vertex in Z2 n I �0 under the weights ��;_.
It then suffices to show that �C;_u n IC0 is disjoint from P and I �0 , since then �C;_u n IC0
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is an up-right path from a vertex in Z2 n I �0 to u, and for any v 2 �C;_u n IC0 we have
��;_.v/ D �C;_;0.v/, thus

LC.u/ D
X

v2�
C;_
u nI

C

0

�C;_;0.v/ D
X

v2�
C;_
u nI

C

0

��;_.v/ � L� .u/:

We show that .�C;_u n IC0 / \ .P [ I
�
0 / D ;, using the following steps.

Step 1: By Lemma 3.3, the path �CuC C .1=2; 1=2/ divides uC C .Z2 n Z2�0/ into two

parts such that �C;_u intersects at most one of them. By E3 and u 2Q n IC0 , we know
that u must be in the upper-left part, so �C;_u cannot intersect the lower-right part.
In particular, �C;_u is disjoint from uC C ZC � Z�0. Also uC C Z2�0 � I

C
0 since

uC 2 I
C
0 , so �C;_u n IC0 � uC C Z � ZC.

Step 2: If �C;_u n IC0 is not disjoint from I �0 , take any v 2 .�C;_u n IC0 / \ I
�
0 . Then

v 2 uCCZ�ZC according to the previous step. By Lemma 6.6 we have ad.v/� x�,
and E3 states that ad.uC/ < x�. So ad.v/ > ad.uC/, and thus v � uC 2 Z2C.
But this implies that uC C .1; 1/ 2 I �0 n I

C
0 , which contradicts Lemma 6.6 since

ad.uC C .1; 1// D ad.uC/ < x�.

Step 3: Since uC � V.�6r3;�r1/ (by E3), we have P \ .uC CZ�0 �Z�0/D ;. We also
have uC C Z2�0 � I

C
0 since uC 2 IC0 . Thus P n IC0 � uC C ZC � Z. Take any

.a; b/ 2 P n IC0 . If a � .1 � �/2s � r4, we cannot have .a; b/ 2 �C;_u since u 2 Q.
If a < .1 � �/2s � r4, by E3 the point .a; b/ is in the lower-right part from Step 1, so
still .a; b/ 62 �C;_u . Hence P n IC0 is disjoint from �

C;_
u , and equivalently �C;_u n IC0

is disjoint from P .

So far we have shownLC.u/�L� .u/. We can also showLC.u/�L� .u/with essentially
verbatim arguments, using E�3 instead of E3. We then conclude that LC.u/ D L� .u/ for
any u 2 Q n IC0 D Q n I

�
0 .

We then show that E1 holds, using Lemma 3.6. Specifically, take any x 2 Z with
x < �r . We next show that O�Cs .x/ D �.x/, and the particles (or holes) have the same
labels.

We first assume that O�Cs .x/ D 1. Then �Cs .x C ad.pCs // D 1. By pP D pCs we have
M D ad.pCs /, so �Cs .x CM/ D 1. By Lemma 3.6, there is some y 2 Z such that .M C
x C y � 1; y/ 2 ICs and .M C x C y; y/ 62 ICs , and the particle at x in O�Cs has label y.
Since ad.M C x C y � 1; y/ DM C x � 1 �M � r and .M C x C y � 1; y/ 2 @ICs ,
by E4 we have M C x C y < .1 � �/2s � r4 and .M C x C y; y/ 2 V.�1;�6r3/. Thus
.M C x C y; y/; .M C x C y � 1; y/ 2 Q, and

L� .M C x C y; y/ D LC.M C x C y; y/

> s � LC.M C x C y � 1; y/ D L� .M C x C y � 1; y/:

This implies that .M C x C y � 1; y/ 2 I �s and .M C x C y; y/ 62 I �s . Then by (an
analogue of) Lemma 3.6 we have �s.x/ D 1, and the particle at x in �s has label y.
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Similarly, if we assume that O�Cs .x/ D 0, we can deduce that �s.x/ D 0, and the holes
have the same label. By taking x over all integers < �r , we conclude that E1 holds
assuming pP D pCs and E3 \ E4 \ E�3 .

It now suffices to lower bound the probabilities of the events E3, E�3 , E4.

Lemma 6.9. P ŒE3�;P ŒE�3 � > 1 � C˛
�1=2 for constants c; C > 0.

Lemma 6.10. P ŒE4� > 1 � Ce�c˛ for constants c; C > 0.

Using Lemmas 6.8–6.10, we get a lower bound for P ŒE1�. We can lower bound P ŒE2�
similarly. Thus Lemma 6.7 follows.

To prove these estimates we introduce some other setups. For the convenience of nota-
tion, we extend �C;_;0 from Z2 n IC0 to Z2, so that conditioned on IC0 , ¹�C;_;0.v/º

v2I
C

0

are i.i.d. Exp.1/ and are independent of everything else. For any u � v, we let TC;_;0u;v

and �C;_;0u;v be the passage time and geodesic from u to v under the weights �C;_;0.
For any v 62 IC0 we denote �

C;_;0
I;v D �

C;_;0
u�;v and T

C;_;0
I;v D T

C;_;0
u�;v , where u� D

argmax
u�v; u62I

C

0

T
C;_;0
u;v . In words, �C;_;0I;v and TC;_;0I;v are the geodesic and passage time

from boundary IC0 to v, under the weights �C;_;0. By Lemma 3.5 we have �C;_;0I;v D

�
C;_
v n IC0 and TC;_;0I;v D LC.v/.

Proof of Lemma 6.9. We shall write out the proof for P ŒE3� only, as the approach we take
applies to P ŒE�3 � essentially verbatim. We will use c; C > 0 to denote small and large
enough constants whose values can change from line to line.

We consider the following events (see Figure 12):

E5: x� > �r3.

E6: V.�jr4;jr4/ \ @I
C
0 � H

.�j˛r
1=2
4

;j˛r
1=2
4

/
for each j 2 N.

E7: V.�6r3;�r3/ \ @I
C
s � H

.s�2˛r
1=2
4

;sC2˛r
1=2
4

/
.

E8: Let u1 be the intersection of H2s with V�5r3 and u2 be the intersection of H2s

with V�2r3 (rounded to the nearest lattice vertex). Then �C;_;0I;u1
� V.�6r3;�4r3/ and

�
C;_;0
I;u2

� V.�3r3;�r3/.

The events E6 and E7 just say that @IC0 and @ICs behave ‘typically’ in certain regions. The
event E8 is to bound the transversal fluctuation of �CuC (for some uC 2 @IC0 ), using the
non-crossing property of downward and upward semi-infinite geodesics (Lemma 3.3).

We next show that E5 \ E6 \ E7 \ E8 � E3. For this, we take any uC 2 @IC0 \
V.�4r3;�3r3/, and let u0C D .a0C; b

0
C/ be the last vertex in �CuC \ I

C
s . Then we need to

show that ad.uC/ < x�, �CuC \ I
C
s � V.�6r3;�r3/, and a0C > .1 � �/

2s � r4, assuming
E5 \ E6 \ E7 \ E8.

� By E6, and since r3 >C˛r
1=2
4 by our choice of the parameters, we have ad.uC/ <�r3.

So under E5 \ E6 we have ad.uC/ < x�.
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u1

u2

0

u+

u′+

∂I+0

∂I+s

Vr3V−r3V−3r3V−4r3V−6r3

Γ+
u+

Γ+,∨,0
I,u1

Γ+,∨,0
I,u2

V(−6r3,−r3) ∩ H
(s−2αr

1/2
4 ,s+2αr

1/2
4 )

S∗ \ S∗

Fig. 12. The events to lower bound P ŒE3�.

� Under E8, the path �C;_;0I;u1
� .1=2;1=2/ divides .u1C .Z2 nZ2�0// n I

C
s into two parts:

.
S
v2�
C;_;0
I;u1

v C Z� � Z�0/ n ICs and .
S
v2�
C;_;0
I;u1

v C Z�0 � Z�/ n ICs . Then uC must

be in the second part, so by Lemma 3.3, �CuC must be disjoint from the first part, thus
�CuC \ V.�1;�6r3� � u1 C Z2�0. If �CuC \ V.�1;�6r3� \ I

C
s is not empty, we must have

u1 2 I
C
s , which contradicts E7. So under E7 \ E8, �CuC \ I

C
s is disjoint from V.�1;�6r3�,

and similarly also from VŒ�r3;1/. This means that �CuC \ I
C
s � V.�6r3;�r3/.

� ¹�CuC \ I
C
s �V.�6r3;�r3/º \E7 implies that u0C 2H

.s�2˛r
1=2
4

;sC2˛r
1=2
4

/
\V.�6r3;�r3/.

Thus we get a0C > .1� �/
2s � r4 since r4 >Cr3;C˛r

1=2
4 by our choice of the parameters.

It remains to estimate the probabilities of these events and take a union bound.

Bounding P ŒE5�. By the coupling between �0 and .�Ct /t�0 (stated after the proof of
Lemma 6.5), the number �x� is just the time of a symmetric random walk hitting 0
after r2. Thus P ŒE5� � 1 � Cr

1=2
2 r

�1=2
3 D 1 � C˛�1=2.

Bounding P ŒE6�. The event E6 is again on the hitting probability of a random walk.
Indeed, by Lemma 3.6, if we let f .x/ be the largest integer with .f .x/C x; f .x// 2 IC0 ,
we must have f .0/D0, f .x/D

Px
yD1��

C
0 .x/ for any x � 1, and f .x/D

P0
yDxC1 �

C
0 .x/

for any x � �1; and ¹�C0 .x/ºx2Zn¹0;1º are i.i.d. Bernoulli.�/. Thus for each j 2 N we
have P ŒV.�jr4;jr4/ \ @I

C
0 �H

.�j˛r
1=2
4

;j˛r
1=2
4

/
� > 1� Ce�cj˛

2
, so when ˛ > C we have

P ŒE6� � 1 � Ce�c˛
2
.

For P ŒE7� and P ŒE8�, we reduce to estimates on last-passage times and geodesic trans-
versal fluctuations under the weights �C;_;0, and use results from Section 5.
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Bounding P ŒE7�. We note that E7 is implied by the following two events:

� T
C;_;0
I;v D LC.v/ > s whenever v 2 V.�6r3;�r3/ \H

ŒsC2˛r
1=2
4

;1/
\ Z2,

� T
C;_;0
I;v D LC.v/ � s whenever v � .1; 1/ 2 V.�6r3;�r3/ \H

.�1;s�2˛r
1=2
4

�
\ Z2.

These two events imply that V.�6r3;�r3/ \H
.�1;s�2˛r

1=2
4

�[ŒsC2˛r
1=2
4

;1/
is disjoint from

@ICs , so E7 holds.
To estimate the probabilities of these events, we need to bound the passage times

under �C;_;0. For this, we set up the following notations. For each j 2 N we let

Sj D V.�jr4;�.j�1/r4�[Œ.j�1/r4;jr4/ \H
.�j˛r

1=2
4

;1/
;

Sj D V.�jr4;�.j�1/r4�[Œ.j�1/r4;jr4/ \H
Œj˛r

1=2
4

;1/
:

Let S� D
S
j2N Sj and S� D

S
j2N S

j . Then the event E6 precisely says that @IC0 �
S� n S

� (see Figure 12), and implies that S� � Z2 n IC0 � S�.
We consider the following events:

E 07: TC;_;0u;v � s for any vertices u 2 S� and v 2V.�6r3;�r3/ \H
.�1;s�2˛r

1=2
4

�
with u� v.

E 007 : For any v 2 V.�6r3;�r3/ \ H
ŒsC2˛r

1=2
4

;1/
\ Z2, there exists u 2 V.�6r3;�r3/ \

H
.˛r

1=2
4

;1/
\ Z2 such that TC;_;0u;v > s.

Then under E 07 \ E 007 \ E6, the two events above hold, and thus E7 holds.
We next lower bound the probabilities P ŒE 07� and P ŒE 007 �. These bounds are deduced

from the estimates of Theorem 5.2 and Proposition 5.3.
We first consider P ŒE 07�. For each j 2 N, we let Pj be the collection of all vertices

in Z2 that are within distance 1 of V.�jr4;�.j�1/r4�[Œ.j�1/r4;jr4/ \H
�j˛r

1=2
4

, and letP� be

the collection of all vertices in Z2 that are within distance 1 of V.�6r3;�r3/ \H
s�2˛r

1=2
4

.

To lower bound P ŒE 07�, we just need to consider TC;_;0u;v for all u 2
S
j2N Pj and v 2 P�

(see Figure 13 (a)). We note that for any j 2 N and any u 2 Pj and v 2 P� with u � v,
if we write .a; b/ D v � u we have

.
p
aC
p
b/2 < s � c˛r

1=2
4 � c.j � 1/2r24 s

�1: (6.9)

For j > csr�14 C 1, we apply (5.1) in Theorem 5.2 to each u 2 Pj and v 2 P� and take
a union bound to conclude that

P ŒTC;_;0u;v � s; 8u 2 Pj ; v 2 P�; u � v; j > csr
�1
4 C 1� > 1 � Csr3e

�c
p
s :

For any j � csr�14 C 1, the slope of v � u for any u 2 Pj and v 2 P� is bounded away
from 0 and 1. Thus we can split Pj and P� into Cr4s�2=3 and Cr3s�2=3 segments
of length < Cs2=3, and apply Proposition 5.3. Note that using (5.3) from Theorem 5.2
and (6.9), we find that EŒTC;_;0u;v � < s � cj 2˛3s1=3 for any u 2 Pj and v 2 P�. We then
conclude that

P ŒTC;_;0u;v � s; 8u 2 Pj ; v 2 P�� > 1 � C.r3s
�2=3/.r4s

�2=3/e�cj
2˛3 :
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0P1

P2

P2

P3

P3

P∗

S∗ \ S∗

S∗

(a) P .E7/: assuming E6, the event E7 is implied by E 07 \

E 007 , about passage times under the weights �C;_;0. For
P .E 07/, we need to upper bound the passage times fromS
j2N Pj to P�; for P .E 007 /, we need to lower bound the

passage times from around V.�6r3;�r3/ \ H
3˛r

1=2
4

=2
to

V.�6r3;�r3/ \H
sC2˛r

1=2
4

(the blue segments).

0

u1

u′
1u3

u4

u5

∂I+0

V−5r3−3r2

V−5r3−r2

V−5r3+r2

V−5r3+3r2

H
2αr

1/2
4

S∗ \ S∗

(b) P .E8/: under E 08 \ E6, u3 (the lower endpoint of �C;_;0
I;u1

) is in

V.�5r3�r2;�5r3Cr2/. Then if �C;_;0u4;u1 and �C;_;0u5;u1 below H
2˛r

1=2
4

are contained in V.�5r3�3r2;�5r3�r2/ and V.�5r3Cr2;�5r3C3r2/,

respectively, �C;_;0
I;u1

is sandwiched between them, and the trans-

versal fluctuation of �C;_;0
I;u1

is controlled by �C;_;0u4;u1 and �C;_;0u5;u1 .

Fig. 13. Illustrations of bounding P ŒE7� and P ŒE8� in the proof of Lemma 6.9.
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Thus

P ŒE 07� > 1 � Csr3e
�c
p
s
� Cr3r4s

�4=3
X
j2N

e�cj
2˛3

D 1 � Cs5=3˛3e�c
p
s
� C˛7

X
j2N

e�cj
2˛3 :

For P ŒE 007 �, we need to consider TC;_;0u;v for all v 2 Z2 \ V.�6r3;�r3/ within dis-
tance 1 of H

sC2˛r
1=2
4

, and u 2 V.�6r3;�r3/ \H
.˛r

1=2
4

;1/
\ Z2 within distance 1 of v �

.s C ˛r
1=2
4 =2/� (see Figure 13 (a)). For such u and v, the slope of v � u is bounded

away from 0 and1. By (5.3) we have EŒTC;_;0u;v � > s C c˛3s1=3. We then apply Proposi-
tion 5.3 by covering all such u; v with Cr3s�2=3 parallelograms of size Cs � Cs2=3, and
we conclude that P ŒE 007 � > 1 � Cr3s

�2=3e�c˛
3
D 1 � C˛3e�c˛

3
.

In summary and using the fact that Cs2=3 < r < s2=3C0:01 from the statement of
Lemma 6.2 (thus ˛ > C and ˛ < s0:002), we have P ŒE6 n E7� < Ce

�c˛3 .

Bounding P ŒE8�. Let u3 denote the lower endpoint of �C;_;0I;u1
. Consider the event E 08

where

� for any u 2 .S� n V.�5r3�r2;�5r3Cr2// \ Z2, we have TC;_;0u;u1 < 2s � 4˛r
1=2
4 ,

� T
C;_;0

u0
1
;u1

> 2s � 4˛r
1=2
4 , where u01 is the intersection of H

2˛r
1=2
4

with V�5r3 (rounded

to the nearest lattice vertex). Note that u01 2 S
� \ V.�5r3�r2;�5r3Cr2/.

Under E 08 \ E6 we must have u3 2 V.�5r3�r2;�5r3Cr2/, since TC;_;0u3;u1 is the maximum
passage time from IC0 to u1 (see Figure 13 (b)). We can deduce that P ŒE 08� > 1� Ce

�c˛3

similar to how P ŒE 07� and P ŒE 007 � are bounded above using Theorem 5.2 and Proposi-
tion 5.3; we omit the details.

Now let u4; u5 be the intersection points of H
�˛r

1=2
4

with V�5r3�2r2 and V�5r3C2r2 ,

respectively (rounded to the nearest lattice vertex, see Figure 13 (b)). Consider �C;_;0u4;u1 and
�
C;_;0
u5;u1 . By Corollary 5.9 we have

P Œ�C;_;0u4;u1
\H

.�˛r
1=2
4

;2˛r
1=2
4

/
� V.�5r3�3r2;�5r3�r2/� > 1 � Ce

�cr3
2
˛�2r�1

4 ; (6.10)

P Œ�C;_;0u5;u1
\H

.�˛r
1=2
4

;2˛r
1=2
4

/
� V.�5r3Cr2;�5r3C3r2/� > 1 � Ce

�cr3
2
˛�2r�1

4 ; (6.11)

and by Lemma 5.7 we have

P Œ�C;_;0u4;u1
� V.�6r3;�4r3/�;P Œ�

C;_;0
u5;u1

� V.�6r3;�4r3/� > 1 � Ce
�cr3

3
s�2 : (6.12)

When E 08 \ E6 happens, we have u3 2 V.�5r3�r2;�5r3Cr2/ \ H
.�˛r

1=2
4

;2˛r
1=2
4

/
. If the

events on the left-hand side of (6.10) and (6.11) also happen, then �C;_;0I;u1
D �

C;_;0
u3;u1 is

between �C;_;0u4;u1 and �C;_;0u5;u1 , by ordering of geodesics (Lemma 5.1). If in addition the
event on the left-hand side of (6.12) happens, we have �C;_;0I;u1

D �
C;_;0
u3;u1 � V.�6r3;�4r3/.
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We can use similar arguments to study the event �C;_;0I;u2
�V.�3r3;�r3/. Then from P ŒE 08� >

1 � Ce�c˛
3

we conclude that

P ŒE6 n E8� < Ce
�c˛3
CCe�cr

3
2
˛�2r�1

4 CCe�cr
3
3
s�2
D Ce�c˛

3

CCe�cs
4=3

CCe�c˛
9

:

Since Cs2=3 < r < s2=3C0:01 (from the statement of Lemma 6.2), this is bounded by
Ce�c˛

3
.

Putting together the bounds for P ŒE5�;P ŒE6�;P ŒE6 n E7�;P ŒE6 n E8�we conclude that
P ŒE3� > 1 � C˛�1=2.

Proof of Lemma 6.10. We again use c;C > 0 to denote small and large enough constants,
whose values can change from line to line. We consider three events.

E9: jM � .1 � 2�/sj < r2.

E10: for any u D .a; b/ with ad.u/ D a � b < .1 � 2�/s C r2 � r and a � .1 � �/2s �
r4 � 1, we have u 62 ICs .

E11: for any u D .a; b/ with a < .1 � �/2s � r4 and u � .0; 1/ 2 VŒ�6r3;1/, we have
u 2 ICs .

Note that E9 \ E10 \ E11 � E4. Indeed, E9 \ E10 implies that @ICs is disjoint from

¹.a; b/ 2 Z2 W a � b �M � r; a � .1 � �/2s � r4 � 1ºI

and E11 implies that @ICs is disjoint from

¹.a; b/ 2 Z2 W .aC 1; b/ 2 VŒ�6r3;1/; a < .1 � �/
2s � r4 � 1º;

since this set shifted by .1; 1/ is contained in ICs by E11. See Figure 11 for an illustration
of these regions. Thus under E9 \ E10 \ E11, for any u D .a; b/ 2 @ICs with ad.u/ �
M � r we must have a < .1� �/2s � r4 � 1 and uC .1;0/ 2V.�1;�6r3/. So we conclude
that E9 \ E10 \ E11 � E4, and it remains to lower bound P ŒE9�, P ŒE10�, and P ŒE11�.

Bounding P ŒE9�. By Lemma 3.1, pCs � .1;0/ or pCs � .0;1/ is the last vertex in ¹u 2 �C0 W
TC0;u � sº since pCs is the last vertex in ¹u 2 �C0 W GC.u/ � sº. So by Corollary 5.11

we have P Œjad.pCs / � .1 � 2�/sj < r2� > 1 � Ce
�cr3

2
s�2 . Then Lemma 6.5 implies that

P ŒE9� > 1 � Ce�cr
3
2
s�2 � Ce�c˛

3
D 1 � Ce�c˛

6
� Ce�c˛

3
.

To bound P ŒE10� and P ŒE11�, we just need to bound the function LC at certain ver-
tices. For this, we recall the event E6 and the sets S�, S� from the proof of Lemma 6.9.

Bounding P ŒE10�. We take u� D .a�; b�/ where a� D d.1 � �/2s � r4 � 1e and b� D
a� � d.1 � 2�/s C r2 � re. Then E10 is equivalent to LC.u�/ D T

C;_;0
I;u� > s. Denote

u�� D .br4c;br4c/. As u�� 2 S
�, under E6 we have u�� 62 I

C
0 . Thus under E6 n E10 we have

T
C;_;0
u��;u

� � s. Then P ŒE6 n E10� � P ŒTC;_;0u��;u
� � s� < Ce

�cr3=s , where the last inequality is

by the fact that .
p
a� � br4c C

p
b� � br4c/

2 > s C cr and (5.2) in Theorem 5.2.
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Bounding P ŒE11�. Let u� D .a�; b�/ where a� D d.1 � �/2s � r4 � 1e, and b� is the
largest integer such that u� � .0; 1/ 2 VŒ�6r3;1/. Then E11 is equivalent to LC.u/ D
T
C;v;0
I;u�

� s. Under E6 n E11 there is some u 2 S� with u � u� such that TC;v;0u;u� > s. Note
that for any u 2 S� with u � u�, if we let .a; b/ D u� � u, then .

p
aC
p
b/2 < s � cr4.

Then by (5.1) in Theorem 5.2 and a union bound (over all u 2 S� such that u 2 u�CZ2�0
and u � .1; 1/ 62 S�), we have P ŒE6 n E11� < Cse

�cr4s
�1=2

.

Putting together the bounds for P ŒE9�; P ŒE6 n E10�; P ŒE6 n E11� and the bound for
P ŒE6� in the proof of Lemma 6.9, and using the fact that Cs2=3 < r < s2=3C0:01 from
the statement of Lemma 6.2 (thus ˛ > C and Ce�cr

3=s; C se�cr4s
�1=2

< Ce�c˛), we
conclude that P ŒE4� > 1 � Ce�c˛ .

7. Convergence in probability of empirical environments

In this section we prove convergence in probability versions of the main results, Theor-
ems 1.1 and 1.2. The semi-infinite geodesic case (Theorem 7.1 below) follows quickly
from the convergence of TASEP as seen from an isolated second-class particle (Proposi-
tion 2.7 or Theorem 1.7), and ergodicity of the stationary process (Proposition 2.2). The
finite geodesic one (Theorem 7.3) is via geometric arguments, specifically, covering finite
geodesics by semi-infinite geodesics.

7.1. Semi-infinite geodesics

We start with convergence along semi-infinite geodesics and giving a weak version of
Theorem 1.2.

Theorem 7.1. For any bounded continuous function f W RZ2 � ¹0; 1ºZ
2
! R, we have

�0Ir .f /! �.f / in probability as r !1.

We let .��t /t�0 be the process of TASEP starting from i.i.d. Bernoulli.�/ on Z n ¹0º,
and ��0.0/ D �. Then recall (from Section 2.2) that ��t .lt C �/ � ˆt , with lt being the
location of the second-class particle at time t . We also let �� D .��t /t2R be the stationary
process of TASEP as seen from an isolated second-class, i.e. for each t we have ��t � ‰
(defined in Section 2).

For any process P D .Pw/w2R and t 2R, we let TtP denote the process .PtCw/w2R.
By Lemmas 3.7 and 4.1, we can deduce Theorem 7.1 from the following result. To make
things well-defined, we let �� D .��t .lt C �//t2R with ��t D �

�
0 and lt D 0 for each t < 0.

Let ¹0; 1;�ºZ�R be equipped with the product topology.

Proposition 7.2. For any bounded continuous function f W ¹0; 1;�ºZ�R ! R, we have

T �1
Z T

0

f .Tt�
�/ dt ! EŒf .��/� in probability as T !1.
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By Birkhoff’s Ergodic Theorem, this proposition follows from Proposition 2.7 or The-
orem 1.7, and Proposition 2.2.

Proof of Proposition 7.2. Without loss of generality we assume that 0 � f � 1, and for
some s > 0 the function is measurable with respect to the � -algebra generated by A �
¹0; 1ºZ�.�1;�s/[.s;1/ for all measurable A � ¹0; 1ºZ�Œ�s;s�. Take any ı > 0. Then by
Birkhoff’s Ergodic Theorem and Proposition 2.2, we can find r large enough such that

P

�ˇ̌̌̌
r�1

Z r

0

f .Tt�
�/ dt � EŒf .��/�

ˇ̌̌̌
> ı

�
< ı:

For each t � 0, denote

�t D 1

�ˇ̌̌̌
r�1

Z tCsCr

tCs

f .Tw�
�/ dw � EŒf .��/�

ˇ̌̌̌
� ı

�
:

Let F W � 7! EŒ�t j ��t D ��. Then F is the same for all t � 0, and is an upper semi-
continuous function on ¹� W �.0/ D �; �.x/ 2 ¹0; 1º; 8x ¤ 0º � ¹0; 1; �ºZ since f is
continuous. Then by Theorem 1.7 we have

lim sup
N!1

N�1
N�1X
iD0

EŒ�ir � D lim sup
N!1

N�1
N�1X
iD0

EŒF .��ir /�

� EŒF .��0 /� D P

�ˇ̌̌̌
r�1

Z r

0

f .Tt�
�/ dt � EŒf .��/�

ˇ̌̌̌
� ı

�
< ı:

This implies that for any N large enough, we have P Œ
PN�1
iD0 �ir >

p
ıN � <

p
ı, thus

P

�ˇ̌̌̌
.Nr/�1

Z NrCs

s

f .Tt�
�/ dt � EŒf .��/�

ˇ̌̌̌
>
p
ı C ı

�
<
p
ı;

which implies our conclusion since ı > 0 is arbitrary.

7.2. From semi-infinite geodesics to point-to-point geodesics

From convergence in probability along semi-infinite geodesics (Theorem 7.1), we now
deduce convergence in probability along finite geodesics. It can be viewed as a weak
version of Theorem 1.1.

Recall (from Section 5) that we let ha; bi� D .b 2.1��/
2a

�2C.1��/2
c C b; d 2�2a

�2C.1��/2
e � b/.

Since � is fixed, for the rest of this paper we also write ha; bi D ha; bi�.

Theorem 7.3. Let ¹bnºn2N be a sequence of integers with lim supn!1 n
�2=3jbnj <1.

Then for any bounded continuous function f W RZ2 � ¹0; 1ºZ
2
! R, we have

�0;hn;bni.f /! �.f / in probability as n!1.

We explain the strategy of proving this theorem. The general idea is to cover the finite
geodesic �0;hn;bni with a semi-infinite geodesic. More precisely, for any � > 0, we con-
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struct an event that depends only on the i.i.d. random weights � or on the above Ln,
such that (1) this event happens with positive probability (lower bounded uniformly in n)
and (2) assuming this event, with high probability a 1� � portion of �0;hn;bni is contained
in �0. Then by Theorem 7.1, conditioned on this event the empirical environment�0;hn;bni
would be ‘�-close’ to � with high probability for n large enough. On the other hand, since
�0;hn;bni depends mainly on the random i.i.d. weights � below Ln, it is roughly ‘inde-
pendent’ of the event constructed, so it would always be close to � with high probability
for n large enough.

We start by describing the event. Recall B (and also G), the Busemann function in
direction �. The event basically says that the Busemann function B.hn; bn C bi; hn; bni/
decays fast when b is slightly away from 0. By Lemma 3.1 this can force �0 to intersect
Ln near hn;bnC bi, and that �0;hn;bni overlaps with �0 can be deduced using coalescence
and ordering of geodesics (Proposition 5.4 and Lemma 5.1).

We now formally define this event and study its probability. For simplicity of nota-
tion, we shift this event by �hn; bni and look at the Busemann function on L0. Let
Eh;n denote the following event: for any b 2 Z with h�1n2=3 < jbj < hn2=3, we have
G.h0; bi/ C b.��1 � .1 � �/�1/ > hn1=3; and for b 2 Z with jbj � hn2=3, we have
G.h0; bi/ C b.��1 � .1 � �/�1/ > �jbjn�1=3. We show that its probability is lower
bounded uniformly in n.

Lemma 7.4. For any h > 1, there is ı > 0 such that P ŒEh;n� > ı for all n large enough.

Proof. Denote F.b/ D �G.h0; bi/ � b.��1 � .1 � �/�1/. Then F is a (two-sided) ran-
dom walk, where each step is centered with exponential tail. By independence of all the
steps, we have

P ŒEh;n� � P
h

max
h�1n2=3<jbj<hn2=3

F.b/ < �hn1=3
i

� P
h

max
b�hn2=3

�
F.b/ � F.bhn2=3c/ � bn�1=3

�
< hn1=3

i
� P

h
max

b��hn2=3

�
F.b/ � F.�bhn2=3c/C bn�1=3

�
< hn1=3

i
:

As the process F converges to a (two-sided) Brownian motion (weakly in the uniform
topology) on compact sets, the first factor on the right-hand side is lower bounded by a
positive constant. We next lower bound the factor in the second line, and the third line
could be lower bounded in a similar way. The second line is at least

P
h
max
b2N

.F.b/ � bn�1=3/ < hn1=3
i
� P

h
max

b2J0;In2=3K
.F.b/ � bn�1=3/ < hn1=3

i
�

1X
iDI

P
h

max
b2Jin2=3;.iC1/n2=3K

F.b/ � .i C h/n1=3
i
;

where I is a large integer. As n!1, the first term on the right-hand side converges to
the probability that a Brownian motion is bounded below a (sloped) line in Œ0; I �, and that
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probability is lower bounded uniformly in I . For the sum in the second line, the i -th term
is upper bounded by

P ŒF .din2=3e/ � .i C h/n1=3=2�C P
h

max
b2J0;n2=3K

F.b/ � .i C h/n1=3=2
i

� P ŒF .din2=3e/ � .i C h/n1=3=2�C 2P ŒF .bn2=3c/ � .i C h/n1=3=2�;

where the inequality is by the reflection principle. By a Bernstein type estimate for the sum
of independent random variables with exponential tails, this can be bounded by Ce�ci

for some c; C > 0, independent of n. Thus by taking I large enough the conclusion
follows.

Proof of Theorem 7.3. It suffices to show that, for any s 2 N and any continuous f W
RJ�s;sK2 � ¹0; 1ºJ�s;sK

2
! Œ0; 1�, regarded as a function on RZ2 � ¹0; 1ºZ

2
, we have

�0;hn;bni.f /! �.f / in probability.

E ′
h,n

Ah,n,Bh,n

L⌊(1−h−1)n⌋

Ln

0

⟨n, bn⟩
Γ0,⟨n,⌊bn−h−1n2/3⌋⟩

Γ0,⟨n,⌈bn+h−1n2/3⌉⟩

Γ0

Fig. 14. An illustration of the proof of Theorem 7.3. The event E 0
h;n

is on the spiky behavior of
the Busemann function, the event Ah;n is on passage times from 0 to Ln, and the event Bh;n is
on coalescence of geodesics. Under their intersection, most of �0;hn;bni is also in �0. The events
Ah;n and Bh;n happen with high probability, and E 0

h;n
happens with positive probability lower

bounded uniformly in n. The event E 0
h;n

depends only on � in the yellow region, while Ah;n and
Bh;n depend only on � in the remaining region (and roughly so does �0;hn;bni).
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In this proof we use c; C > 0 to denote small and large enough constants, whose
values may change from line to line. Then jbnj < Cn2=3 for any n 2 N. For simplicity of
notation we denote T �u;v D Tu;v � �.v/ for any vertices u � v.

We let E 0
h;n

be Eh;n translated by hn; bni, i.e. E 0
h;n

is the event where

B.hn; bi; hn; bni/ <

8̂̂̂̂
<̂
ˆ̂̂:
.b � bn/.�

�1 � .1 � �/�1/ � hn1=3

for any h�1n2=3 < jb � bnj < hn2=3;

.b � bn/.�
�1 � .1 � �/�1/C jb � bnjn

�1=3

for any jb � bnj � hn2=3:

Denote by hn; b0ni the intersection of �0 with Ln. Take any � > 0. By Theorem 7.1, for
any n large enough (depending on �; f ), we have

P Œj�0;hn;b0ni.f / � �.f /j < �� > 1 � �:

By Lemma 7.4, when � is taken small enough depending on h, we have

P
�
j�0;hn;b0ni.f / � �.f /j < �

ˇ̌
E 0h;n

�
> 1 �

p
� (7.1)

for any n large enough (depending on h; �; f ).
We next study the overlap between �0 and �0;hn;bni under the event E 0

h;n
. We denote

by Ah;n the following event: for any b 2 Z, we have

T �0;hn;bi C b.�
�1
� .1 � �/�1/8̂̂<̂

:̂
> EŒT0;hn;0i� � hn

1=3=2 if jb � bnj � h�1n2=3,

< EŒT0;hn;0i�C hn
1=3=2 if h�1n2=3 < jb � bnj < hn2=3,

> EŒT0;hn;0i� � hn
1=3=2 � jb � bnjn

�1=3 if jb � bnj � hn2=3.

We have P ŒAh;n� > 1� e
�ch for n and h large enough. This can be deduced by applying

(5.1) in Theorem 5.2 to T0;hn;bi for each b 2 J�n; nK with jbj > .�2 ^ .1 � �/2/n, and
splitting ¹hn; bi W b 2 J�.�2 ^ .1 � �/2/n; .�2 ^ .1 � �/2/nKº into segments of length
n2=3 and using Proposition 5.3 for each of them.

We also denote by Bh;n the following event:

�0;hn;bbn�h�1n2=3ci \ Lb.1�h�1/nc D �0;hn;dbnCh�1n2=3ei \ Lb.1�h�1/nc:

By Proposition 5.4, we have P ŒBh;n� > 1�Ch
�1=3 for h < cn2=3 and for h large enough.

Note that Ah;n and Bh;n only depend on the i.i.d. random weights � below Ln, and
E 0
h;n

only depends on � on or above Ln, so the events Ah;n;Bh;n are independent of E 0
h;n

(see Figure 14). Using P ŒAh;n� > 1� e
�ch, P ŒBh;n� > 1�Ch

�1=3, and (7.1), for n large
enough (depending on h; �; f ) we have

P
�
Ah;n;Bh;n; j�0;hn;b0ni.f / � �.f /j < �

ˇ̌
E 0h;n

�
> 1 �

p
� � e�ch � Ch�1=3:
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Under Ah;n \ E 0
h;n

, we have

T �0;hn;bi C B.hn; bi; hn; bni/ < T �0;hn;bni

for any b 2 Z with jb � bnj > h�1n2=3. Thus jbn � b0nj � h
�1n2=3 by Lemma 3.1.

Then under Ah;n \ Bh;n \ E 0
h;n

, we must have �0;hn;bni \ Lb.1�h�1/nc D �0;hn;b0ni \

Lb.1�h�1/nc by ordering of geodesics (Lemma 5.1), and j�0;hn;b0ni.f /� �.f /j<� implies
that

j�0;hn;bni.f / � �.f /j < � C h
�1:

So we have

P
�
j�0;hn;bni.f / � �.f /j < � C h

�1
ˇ̌

E 0h;n
�
> 1 �

p
� � e�ch � Ch�1=3:

Note that �0;hn;bni is determined by the weights � below Ln, so it is independent of E 0
h;n

.
For each v 2 �0;hn;bni with d.v/ < 2n � 2s, f .v/ is determined by the weights � in
v C J�s; sK2, so it is also independent of E 0

h;n
. Thus we conclude that

P Œj�0;hn;bni.f / � �.f /j < � C h
�1
C s=n� > 1 �

p
� � e�ch � Ch�1=3

for any n large enough (depending on h; �; f ). Since h can be taken arbitrarily large and
� is any number small enough depending on h, we conclude that �0;hn;bni.f /! �.f / in
probability.

8. Parallelogram uniform covering

The goal of this section is to prove the following upgraded version of Theorem 7.3. It will
be the key input for the next two sections.

Proposition 8.1. For any h > 0, s 2 N, and any bounded continuous function f W

RJ�s;sK2 � ¹0; 1ºJ�s;sK
2
! R, regarded as a function on RZ2 � ¹0; 1ºZ

2
, we have

max
a;b2Z; jaj;jbj<hn2=3

�h0;ai;hn;bi.f /; min
a;b2Z; jaj;jbj<hn2=3

�h0;ai;hn;bi.f /! �.f /

in probability.

For simplicity of notation, below we write out the proof for �D 1=2, while the general
� case follows essentially verbatim.

We now explain our strategy. We will take two families of vertices, P1 and P2,
around the segment connecting h0;�hn2=3i and h0; hn2=3i and the segment connecting
hn;�hn2=3i and hn;hn2=3i, respectively. Both P1 and P2 are finite, in the sense that their
sizes do not increase as n!1. Then by Theorem 7.3, when n is large enough, with high
probability, for any u 2 P1 and v 2 P2, �u;v.f / is close to �.f /. We will show that with
high probability, for any jaj; jbj < hn2=3, the geodesic �h0;ai;hn;bi is mostly covered by
some �u;v with u 2 P1 and v 2 P2, thus �h0;ai;hn;bi.f / is also close to �.f /.
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The main task is to establish the covering statement. To motivate our arguments, we
start with the following attempt. For a� < aC and b� < bC, if the geodesics �h0;a�i;hn;b�i
and �h0;aCi;hn;bCi coalesce near both ends, then they must mostly stay together; and by
ordering of geodesics (Lemma 5.1), for any a� < a < aC and b� < b < bC, the geodesic
�h0;ai;hn;bi must be covered by �h0;a�i;hn;b�i, except for a small portion. By estimates
on coalescence of geodesics (e.g. Proposition 5.4), if we let bC � b� D aC � a� be
on the order of ı0n2=3 (for some small ı0 > 0), the probability for �h0;a�i;hn;b�i and
�h0;aCi;hn;bCi to stay disjoint within order n distance of their endpoints is on the order
of ı0. Now we take P1 and P2 to be contained in the segment connecting h0;�hn2=3i
and h0; hn2=3i and the segment connecting hn;�hn2=3i and hn; hn2=3i, respectively. Let
these vertices split these two segments into hı�10 small segments, each of length ı0n�2=3.
By taking a union bound over all pairs of such small segments, we conclude that the
probability of there existing some �h0;ai;hn;bi not being mostly covered (by one geodesic
with two endpoints in P1 and P2) is upper bounded by .ı�10 /2ı0, which is too large.

To resolve this issue, we need to get a better bound on the probability of the following
event: there exist a� < a < aC and b� < b < bC such that the geodesic �h0;ai;hn;bi is not
mostly covered by any geodesic with endpoints in P1 and P2. If this probability could
be upper bounded by ı2C�0 for some � > 0 (rather than ı0), then by a union bound and
sending ı0 ! 0, the conclusion follows. Towards this, we need to take P1 and P2 larger
(but still finite). Instead of having them contained in L0 and Ln, we let P1 and P2 have
hı�10 � ı

�1
0 vertices in the rectangles ¹u W 0� d.u/� 2n=3,�2hn2=3 � ad.u/� 2hn2=3º

and ¹u W 4n=3 � d.u/ � 2n, �2hn2=3 � ad.u/ � 2hn2=3º, respectively. Fix some small
� > 0. Using ordering of geodesics (Lemma 5.1) and a union bound, the above task can
roughly be reduced to proving the following statement. For given a�; aC and b�; bC that
are contained in Œ�hn2=3; hn2=3� with bC � b� D aC � a� on the order of ı0n2=3, the
following event happens with probability on the order of at most ı2C�0 for some � > 0:
there exist a� < a < aC and b� < b < bC such that for any u 2 P1 and v 2 P2 in the
same side of �h0;ai;hn;bi, �h0;ai;hn;bi \ �u;v contains no vertex below L2�n.

Now let us consider the scenario where the above event happens. Take any v 2 P2

that is within distance ı0n2=3 of �h0;ai;hn;bi. We find vertices u1; u2; u3; u4; u5 in P1

such that (1) they are between L�n and L2�n; (2) these vertices are on the same side of
�h0;ai;hn;bi as v; (3) each is within distance ı0n2=3 of �h0;ai;hn;bi. Consider the geodesics
from each of these vertices to v; these geodesics are disjoint from �h0;ai;hn;bi below L2�n,
by the above event. We can show that (with high probability), any two geodesics cannot
stay close to each other while being disjoint for a long distance. By choosing the vertices
u5; u4; u3; u2; u1 sequentially and in a multi-scale way (see Figure 17 below for an illus-
tration), we can actually find ˛0 with � < ˛0 2 2� such that for �ui ;v with i D 1; 2; 3; 4; 5
and �h0;ai;hn;bi, their intersections with L˛0n are far from each other (with distances on
the order of at least ı1=1500 n2=3).

However, using �h0;ai;hn;bi and each �ui ;v , (with high probability) one can construct a
path from h0;a�i to hn;b�i, and the difference between its passage time and Th0;a�i;hn;b�i
is at most on the order of ı1=20 n1=3. Indeed, one can just mainly use the path of �ui ;v , and
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switch to �h0;ai;hn;bi only near ui and v, and switch to h0; a�i and hn; b�i near the ends.
One can also just mainly use the path �h0;ai;hn;bi and switch to h0; a�i and hn; b�i near
the ends. This way we get in total six paths from h0; a�i to hn; b�i, each with total
passage time at least Th0;a�i;hn;b�i � ı

1=2
0 n1=3; and they intersect L˛0n at vertices far

away from each other. Now consider the optimal passage time from h0; a�i to hn; b�i
passing through h˛0n; b0i as a function of b0. This is roughly the sum of two independent
point-to-line last-passage profiles (see Section 8.1 below). Its scaling limit is known to
behave like a Brownian motion, and the event that there are six paths with near optimal
passage times is reduced to that, for a Brownian motion in a compact interval one can find
six points such that their distances are at least on the order of ı1=1500 , and the Brownian
motion values at these points are at least the maximum (of the Brownian motion) minus
ı
1=2
0 . This event has probability on the order of at most .ı1=2�1=3000 /5 D ı

5=2�1=60
0 , which

is smaller than ı2C�0 as needed (and this is also why we need to find five alternative paths).
We now explain the organization of the rest of this section. We will first list some

useful ingredients that will be useful in carrying out the above plan; the proofs of some
of these ingredients are delayed to Sections 8.1 and 8.2. Then we will define several
events, each with a small probability. The main arguments are contained in the proof of
Lemma 8.6 below, where we show that under the intersection of the complements of these
events, every �h0;ai;hn;bi is mostly covered by one geodesic in a finite family. Finally, we
deduce Proposition 8.1 using Lemma 8.6.

Ingredients: The first one concerns continuity of the function .a; b/ 7! Th0;ai;hn;bi.

Lemma 8.2. There exist constants c; C > 0 such that the following is true. For h > 0,
0 < � < 1, and t > 1, we have

P
h

max
jaj;ja0j;jbj;jb0j<hn2=3

ja�a0j;jb�b0j<�n2=3

jTh0;ai;hn;bi�Th0;a0i;hn;b0ij>t�
1=2�0:01n1=3CCh�n1=3

i
<Che�ct

when n is large enough .depending on h; �; t/.

The proof of this lemma will be given in Section 8.1.
We next state a bound on transversal fluctuations of geodesics. It actually immediately

follows from the results in Section 5, and we state it here mainly for the convenience of the
proof of Proposition 8.1. For vertices u � v, and 0 � l � d.v/� d.u/, t > 1, let T

u;v
l;t

be
the event where �u;v below uCLl is not contained in a rectangle of width 2tl2=3, or �u;v
above v � Ll is not contained in a rectangle of width 2tl2=3 (see Figure 15). Formally,
we let �u;v be the event where there exists w 2 �u;v with d.u/ � d.w/ � d.u/ C 2l
and jad.w/ � ad.u/j � 2tl2=3, or with d.v/ � 2l � d.w/ � d.v/ and jad.w/ � ad.v/j
� 2tl2=3.

Lemma 8.3. For h > 0, there exist constants c;C > 0 such that the following is true. For
any 0 � l � n large enough, and jbj < hn2=3, t > 1, we have P ŒT 0;hn;bi

l;t
� < Ce�ct

3
.

This lemma can be obtained by applying Corollary 5.9 twice, and we omit its proof.
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Ll

Ln−l

0

⟨n, b⟩

Fig. 15. The complement of the event T
0;hn;bi
l;t

: the geodesic �0;hn;bi is restricted within the green
boxes with width t l2=3, below Ll or above Ln�l .

Our next lemma establishes that, for a geodesic and a path with a ‘near-optimal’ pas-
sage time, it is unlikely for them to stay together for a while but remain disjoint.

For any vertices u � v, andM; l 2 N;m 2 Z with d.u/ � 2m < 2mC 2Ml � d.v/,
and a small enough parameter c0 > 0, we let D

u;v
M;l;m

be the following event (see Fig-
ure 16): there exists an up-right path 
 from Lm to LmCMl such that

� 
 is disjoint from �u;v ,

� the passage time of 
 (i.e. T .
/) is at least 4Ml � c0Ml1=3,

� for each i D 0; 1; : : : ;M , jad.�u;v \ LmCil / � ad.
 \ LmCil /j < 2c0l
2=3.

Lemma 8.4. There exist universal constants c; C > 0 such that the following is true. For
any M; l; n 2 N and m; b 2 Z with l > C , c0 < c, jbj � n, and 0 � m < mCMl � n,
we have P ŒD0;hn;bi

M;l;m
� < Ce�cM .

The last ingredient we need is to bound the probability of multiple peaks in the sum
of two independent point-to-line profiles.

As in previous sections, we denote T �u;v D Tu;v � �.v/ for any vertices u � v (i.e.
remove the weight of the last vertex). For any vertices u � v, and m 2 Z with d.u/ �
2m � d.v/, and �; t > 0, we denote by M

u;v
�;t;m;g

the following event: there exist �g �
b1 < b2 < b3 < b4 < b5 < b6 � g with b2 � b1; b3 � b2; b4 � b3; b5 � b4; b6 � b5 � �
such that Tu;v D T �u;hm;b1i C Thm;b1i;v and

T �u;hm;bi i C Thm;bi i;v > Tu;v � t�
1=2; 8i 2 ¹2; 3; 4; 5; 6º:

Lemma 8.5. For h > 0 and 0 < � < 1=2, there exists a constant C > 0 such that the
following is true. For any � > 0, 0 < t < 1, � < ˛ < 1 � �, jˇj < h, we have

P ŒM0;hn;bˇn2=3ci
�n2=3;t;b˛nc;hn2=3

� < C t5�0:01

for n large enough depending on h; �; t; ˛; ˇ.
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Lm

Lm+l

· · ·

Lm+Ml

u

v

u′

v′

γ

Γu,v

Fig. 16. The event D
u;v
M;l;m

: each green segment has length< c0l2=3, and T .
/� 4Ml � c0Ml1=3.

Lemma 8.4 will be proved in Section 8.2, and Lemma 8.5 will be proved in Sec-
tion 8.1.

Assuming all the lemmas above, we now prove Proposition 8.1. We set up the events
to be used in the proof of Proposition 8.1, for which we first define the parameters.

Parameters: From now on we fix h in the statement of Proposition 8.1. As indicated
above, we will choose vertices u1; u2; u3; u4; u5 in P1 in a multi-scale way. Thus we
define the scales as follows. We take a small number ı > 0, and let ıi D ı100

6�i
for

i D 0; 1; 2; 3; 4; 5. So we have 0 < ı0 < ı1 < ı2 < ı3 < ı4 < ı5 < ı. We also take small
� > 0 and large Oh, and we can assume that ı is small enough depending on � and Oh,
and Oh is large enough depending on h. The values of the parameters ı; �; Oh are to be
determined, but we always ensure that ı�1; ��1; Oh are integers. Then there exists some
integer N such that if we denote N D ¹Nk3 W k 2 Nº, then for any n 2 N the numbers
ı0n; ı0n

2=3; Ohn2=3; �n; ı�1, and all ı�1i ıiC1 for i 2 ¹0; 1; 2; 3; 4º are integers. From now
on we assume that n 2 N is large enough depending on all these parameters. Only inside
the proof of Proposition 8.1 will we treat general large n.

Below we use c; C > 0 to denote small and large enough constants, which can only
depend on Oh and �, and whose values may change from line to line.

Events: We take the two families of vertices as P1 D ¹hiı0n; jı0n
2=3i W i; j 2 Z; 0 �

i � ı�10 =3; jj j < 4 Ohı�10 º and P2 D n � P1. Note that here we take P1 and P2 to be in
rectangles with width on the order of Ohn2=3 rather than hn2=3, because the geodesics (that
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we will study) can potentially have large transversal fluctuations. Consider the following
events:

� Let T be the union of T
u;v

l;ı�1
for all u 2 P1; v 2 P2, and l 2 ı0nZ with 0 � l <

d.v/ � d.u/. By Lemma 8.3 we have P ŒT � < Cı�50 e�cı
�3

.

� Let

T� D T
h0; Ohn2=3i;hn; Ohn2=3i

n; Oh
[ T

h0;� Ohn2=3i;hn;� Ohn2=3i

n; Oh

[ T
h0;3 Ohn2=3i;hn;3 Ohn2=3i

n; Oh
[ T

h0;�3 Ohn2=3i;hn;�3 Ohn2=3i

n; Oh
:

In other words, T c
� is just the event where for each j 2 ¹�3;�1; 1; 3º the geodesic

�
h0;j Ohn2=3i;hn;j Ohn2=3i

is contained in ¹u 2 Z2 W 0 � d.u/ � 2n, jad.u/ � 2j Ohn2=3j �

2 Ohn2=3º. By Lemma 8.3, P ŒT��! 0 as Oh!1, uniformly in n.

� Let F be the event where

jT �
hiı1n;ai;hjı1n;bi

� T �
hiı1n;a0i;hjı1n;b0i

j > ı
1=2�0:02
0 n1=3

for some integers 0� i < j � ı�11 , and jaj; ja0j; jbj; jb0j � 4 Ohn2=3 with ja� a0j; jb � b0j
� ı0n

2=3. By applying Lemma 8.2 to this event with each fixed i; j and taking a union
bound, we have P ŒF � < Cı�2�2=31 e�cı

�0:01
0 .

� Let D be the union of D
u;v

ı�7;l;m
for all u 2 P1, v 2 P2, l 2 ¹ıin W i D 1; 2; 3; 4; 5º,

m 2 ı0nZ such that d.u/ � 2m < 2mC 2ı�7l � d.v/. Here we take c0 to be small
enough as required by Lemma 8.4. Then by applying Lemma 8.4 to each D

u;v

ı�7;l;m
and

taking a union bound, we have P ŒD � < Cı�50 e�cı
�7

.

� Let H denote the event where there exist some m 2 ı0nZ, 0 � m � n, and l 2 ¹ıin W
i D 1; 2; 3; 4; 5º, jaj; jbj < 4 Ohn2=3, ja � bj < ı�6l2=3, such that

Thm;ai;hmCı�7l;bi < 4ı
�7l � c0ı

�6l1=3;

where c0 is as in the event D . By applying Proposition 5.3 via splitting the lines Lm
and LmCı�7l into segments of length ı0n2=3, we have P ŒH � < Cı�30 e�cı

�11=2
.

� Let M be the union of M
u;v

c0.ı1n/2=3;ı
1=2�0:03
0

ı
�1=3
1

;˛n;4 Ohn2=3
for all u 2 P1 \ L0, v 2

P2 \Ln, and ˛ 2 ı1Z with � < ˛ < 1� �, and c0 be as in the event D . By Lemma 8.5,
we have P ŒM� < Cı�20 ı�11 .ı

1=2�0:03
0 ı

�1=3
1 /5�0:01 < Cı0:30 ı

�8=3
1 .

We denote E D T c \ T c
� \ F c \Dc \H c \Mc . These events are designed so that E

happens with high probability, and under E we have covering of geodesics.

Lemma 8.6. Under E , for any jaj; jbj < Ohn2=3, there exist u 2 P1 and v 2 P2 with
d.u/ < 4�n and d.v/ > .1 � 4�/n such that �h0;ai;hn;bi is the same as �u;v between
L2�n and L.1�2�/n.

Proof. Assume E holds, and fix a; b such that jaj; jbj < Ohn2=3. By ordering of geodesics
(Lemma 5.1), �h0;ai;hn;bi is between �

h0;� Ohn2=3i;hn;� Ohn2=3i
and �

h0; Ohn2=3i;hn; Ohn2=3i
. Then
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by T c
� , we have

�h0;ai;hn;bi � ¹u 2 Z2 W 0 � d.u/ � 2n; jad.u/j � 4 Ohn2=3º: (8.1)

Let bC be the smallest number with bC 2 ı0n2=3Z and bC� b. As indicated above, we
now show that we can find u� 2P1 with d.u�/ < 4�n such that there exists u2�h0;ai;hn;bi
with d.u/ D d.u�/ and ad.u/ � ad.u�/ � ad.u/ C 2ı0n2=3, and �u�;hn;bCi intersects
�h0;ai;hn;bi before L2�n.

Indeed, assume that no such u� exists. We will sequentially find the vertices u5;u4;u3;
u2;u1 (as illustrated in Figure 17) and then use them to find some multiple peaks, and thus
get a contradiction with Mc . The idea is to take each ui as the vertex in P1 \L˛in that is
to the right of and closest to �h0;ai;hn;bi. Here ˛i are numbers to be chosen sequentially:
given uiC1, we find ˛i such that the intersections of L˛i with �h0;ai;hn;bi and �uiC1;hn;bCi
are c0.ıiC1n/2=3 apart, using Dc . Finally, we consider the intersections of each �ui ;hn;bCi
with L˛0n; we can ensure that they are still c0.ı1n/2=3 apart, using transversal fluctu-
ation bounds (from the event T c) and the fact that ˛0 � ˛i is chosen to be on the order
of ıi .

Sequential construction. Let us start by choosing u5. We take ˛5 as the smallest number
such that ˛5 2 ı5Z and ˛5 > �, and take u5 2 P1 \ L˛5n being the first one on or to
the right of �h0;ai;hn;bi. In other words, we have 0 � ad.u5/ � ad.�h0;ai;hn;bi \ L˛5n/ <
2ı0n

2=3. Then by (8.1), we have jad.u5/j � 4 Ohn2=3. Consider the path �u5;hn;bCi. Again
by T c

� and ordering of geodesics (Lemma 5.1), it is between �
h0;�3 Ohn2=3i;hn;�3 Ohn2=3i

and
�
h0;3 Ohn2=3i;hn;3 Ohn2=3i

and

�u5;hn;bCi � ¹u 2 Z2 W 0 � d.u/ � 2n; jad.u/j � 8 Ohn2=3º: (8.2)

For each j 2 J0; ı�7K, we have

ad.L.˛5Cjı5/n \ �u5;hn;bCi/ � ad.L.˛5Cjı5/n \ �h0;ai;hn;bi/ � 0;

by ordering of geodesics (Lemma 5.1). We claim that there must exist j5 2 J0; ı�7K such
that the left-hand side above for j D j5 is at least 2c0.ı5n/2=3. Indeed, otherwise we
can show that the event D

h0;ai;hn;bi

ı�7;ı5n;˛5n
holds with the path being �u5;w5 , where w5 D

�u5;hn;bCi \ L.˛5Cı�7ı5/n (see Figure 17). For this we just verify several things:

� By the assumption above (that no such u� exists), �u5;hn;bCi is disjoint from �h0;ai;hn;bi
before L2�n, thus �u5;w5 is disjoint from �h0;ai;hn;bi since by taking ı small enough
depending on � we have ˛5 C ı�7ı5 < 2�.

� We have jad.w5/j � 8 Ohn2=3 by (8.2). By T c we have

jad.u5/ � ad.w5/j < 2ı�1.ı�7ı5n/2=3 D 2ı�17=3.ı5n/2=3:

Then Tu5;w5 � 4ı
�7ı5n � c0ı

�6.ı5n/
1=3 by H c .

Thus the event D
h0;ai;hn;bi

ı�7;ı5n;˛5n
holds, contradicting Dc . So such j5 must exist.
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We next let ˛4 D ˛5 C j5ı5, and take u4 2 P1 \L˛4n being the first one on or to the
right of �h0;ai;hn;bi. Using the same arguments we find 0 � j4 � ı�7 such that

jad.L.˛4Cj4ı4/n \ �h0;ai;hn;bi/ � ad.L.˛4Cj4ı4/n \ �u4;hn;bCi/j � 2c0.ı4n/
2=3:

Then we let ˛3 D ˛4 C j4ı4. Similarly we find j3; j2; j1 2 J0; ı�7K and ˛2 D ˛3 C j3ı3,
˛1 D ˛2 C j2ı2, ˛0 D ˛1 C j1ı1, and vertices u3 2 P1 \ L˛3n, u2 2 P1 \ L˛2n,
u1 2 P1 \ L˛1n, such that for each i D 1; 2; 3 we have

0 � ad.ui / � ad.L˛in \ �h0;ai;hn;bi/ < 2ı0n
2=3 (8.3)

and
ad.L˛i�1n \ �ui ;hn;bCi/ � ad.L˛i�1n \ �h0;ai;hn;bi/ � 2c0.ıin/

2=3: (8.4)

Note that L.˛iCji ıi /n D L˛i�1n for each i D 1; 2; 3; 4; 5, and (8.3) and (8.4) also hold for
i D 4; 5 as stated above. See Figure 17 for (some of) these constructed objects.

u5

u4

u3

w5

LκnL0

L(α5+δ−7δ5)n

Lα0n

L(α5+j5δ5)n = Lα4n

⟨α0n, b5⟩

⟨α0n, b4⟩

⟨α0n, b0⟩

⟨0, a⟩

⟨0, a−⟩

⟨n, b⟩

Γ⟨0,a⟩,⟨n,b⟩

Γu3,⟨n,b+⟩

Γu4,⟨n,b+⟩

Γu5,⟨n,b+⟩

Fig. 17. An illustration of the geodesics �ui ;hn;bCi for i D 5; 4; 3. Their intersections with L˛0n

are separated by c0.ı1n/2=3.
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Multiple peaks event. We denote the intersections of L˛0n with �h0;ai;hn;bi and �ui ;hn;bCi
by h˛0n; b0i and h˛0n; bi i, for i D 1; 2; 3; 4; 5. We next lower bound the differences
between these bi .

From (8.4) we have b1 � b0 � c0.ı1n/2=3. We next show that bi � bi�1 � c0.ı1n/2=3

for each i D 2; 3; 4; 5. By T c and considering �h0;ai;hn;bi above L˛in and �ui ;hn;bCi, and
using (8.3), we have

bi � b0 < ı0n
2=3
C 2ı�1.˛0 � ˛i /

2=3n2=3 < ı0n
2=3
C 2ı�1.2ı�7ıin/

2=3

for each i D 1;2;3; 4; 5, where the last inequality is by ˛0 � ˛i � ı�7
Pi
i 0D1 ıi 0 < 2ı

�7ıi .
Similarly, by T c and considering �h0;ai;hn;bi and �ui ;hn;bCi above L˛i�1n, and using (8.4),
we have

bi � b0 � c0.ıin/
2=3
� 2ı0n

2=3
� 2ı�1.˛0 � ˛i�1/

2=3n2=3

> c0.ıin/
2=3
� 2ı0n

2=3
� 2ı�1.2ı�7ıi�1n/

2=3

for each i D 2; 3; 4; 5. Thus we get

bi � bi�1 > c0.ıin/
2=3
� 3ı0n

2=3
� 4ı�1.2ı�7ıi�1n/

2=3 > c0.ı1n/
2=3

for each i D 2; 3; 4; 5.
Moreover, since jb0j � 2 Ohn2=3 (by (8.1)), we have�2 Ohn2=3 � b0 <b5 < .2 OhC1/n2=3.
To obtain the multiple peaks event at these bi , the remaining task is to bound the

passage times through each h˛0n;bi i, from h0;a�i to hn;b�i, where a�;b� are the largest
numbers satisfying a�; b� 2 ı0n2=3Z and a� � a, b� � b. Recall that we denote T �u;v D
Tu;v � �.v/ for any vertices u � v. For each i D 1; 2; 3; 4; 5, denote u0i D �h0;ai;hn;bi \
L˛in; we have jad.ui /j; jad.u0i /j � 4 Ohn

2=3 by (8.1) and (8.3). We then have

T �
h0;a�i;h˛0n;bi i

C Th˛0n;bi i;hn;b�i

� T �
h0;ai;h˛0n;bi i

C Th˛0n;bi i;hn;bCi � 2ı
1=2�0:02
0 n1=3

� T �
h0;ai;u0

i

C T �
u0
i
;h˛0n;bi i

C Th˛0n;bi i;hn;bCi � 2ı
1=2�0:02
0 n1=3

� T �
h0;ai;u0

i

C T �ui ;h˛0n;bi i C Th˛0n;bi i;hn;bCi � 3ı
1=2�0:02
0 n1=3

D T �
h0;ai;u0

i

C Tui ;hn;bCi � 3ı
1=2�0:02
0 n1=3

� T �
h0;ai;u0

i

C Tu0
i
;hn;bi � 4ı

1=2�0:02
0 n1=3

D Th0;ai;hn;bi � 4ı
1=2�0:02
0 n1=3

� Th0;a�i;hn;b�i � 5ı
1=2�0:02
0 n1=3;

where the second inequality is by T �
h0;ai;h˛0n;bi i

� T �
h0;ai;u0

i

C T �
u0
i
;h˛0n;bi i

which follows
from the definition of passage times, and all the other inequalities are due to F c . Note
that if h˛0n; b�0 i is the intersection of �h0;a�i;hn;b�i with L˛0n, then �2 Ohn2=3 � b�0 � b0
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by T c
� and ordering of geodesics (Lemma 5.1). Thus M

h0;a�i;hn;b�i

c0.ı1n/2=3;ı
1=2�0:03
0

ı
�1=3
1

;˛0n;4 Ohn2=3

holds with b�0 < b1 < b2 < b3 < b4 < b5. Also note that ˛0 � ˛5 > �, and

˛0 � ˛5 C

5X
iD1

ı�7ıi < ˛5 C 2ı
�7ı5 � � C ı5 C 2ı

�7ı5 < 1 � �:

Thus we get a contradiction with Mc . Now we conclude that there exists u� 2 P1 with
d.u�/ < 4�n such that there is u 2 �h0;ai;hn;bi with d.u/D d.u�/ and ad.u/ � ad.u�/ �
ad.u/C 2ı0n2=3, and �u�;hn;bCi intersects �h0;ai;hn;bi before L2�n.

Final steps. Using the same arguments, we can find v� 2 P2 with d.v�/ > .2 � 4�/n

such that there is v 2 �h0;ai;hn;bi with d.v/ D d.v�/ and ad.v/ � ad.v�/ � ad.v/ C
2ı0n

2=3, and �u�;v� intersects �h0;ai;hn;bi after L.1�2�/n. We now consider the geodesics
�h0;ai;hn;bi, �u�;hn;bCi, and �u�;v� between L2�n and L.1�2�/n. By ordering of geodesics
(Lemma 5.1), either �u�;hn;bCi is sandwiched between �h0;ai;hn;bi and �u�;v� , or �u�;v�
is sandwiched between �h0;ai;hn;bi and �u�;hn;bCi. In the former case �u�;hn;bCi inter-
sects �h0;ai;hn;bi before L2�n and after L.1�2�/n, so �h0;ai;hn;bi is the same as �u�;hn;bCi
between L2�n and L.1�2�/n; in the latter case �u�;v� intersects �h0;ai;hn;bi before L2�n
and after L.1�2�/n, so �h0;ai;hn;bi is the same as �u�;v� between L2�n and L.1�2�/n. Thus
the conclusion follows.

We can now finish the proof of Proposition 8.1 using Lemma 8.6.

Proof of Proposition 8.1. As stated above, we write the proof for � D 1=2 for simplicity
of notation.

We now consider general n, i.e. not necessarily in N. We let n0 be the largest number
such that n0 � n and n0 2 N. Then n0 !1 and n0=n! 1 as n!1. We define E 0 as E

for n0 instead of n, and P01, P02 as P1, P2 for n0 instead of n.
By Theorem 7.3, as n!1 we have

max
u2P0

1
; v2P0

2

j�u;v.f / � �.f /j ! 0 in probability.

Thus by Lemma 8.6, and since f is bounded on RJ�s;sK2 � ¹0; 1ºJ�s;sK
2
, we have

P
h
E 0; max

a;b2Z; jaj;jbj< Ohn02=3
j�h0;ai;hn0;bi.f / � �.f /j > 10�kf k1

i
! 0:

Denote
T 0 D T

h0;dhn2=3ei;hn;dhn2=3ei

n�n0; Ohn02=3.n�n0/�2=3=2
[ T

h0;�dhn2=3ei;hn;�dhn2=3ei

n�n0; Ohn02=3.n�n0/�2=3=2
:

By ordering of geodesics (Lemma 5.1), �h0;ai;hn;bi for jaj; jbj < hn2=3 is sandwiched
between �h0;�dhn2=3ei;hn;�dhn2=3ei and �h0;dhn2=3ei;hn;dhn2=3ei; so assuming the comple-
ment of T 0, every �h0;ai;hn;bi with jaj; jbj < hn2=3 intersects Ln0 at some vertex hn0; b0i
with

jb0j � dhn2=3e C Ohn0
2=3
=2 < Ohn0

2=3
;
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where the second inequality is by taking Oh much larger than h. Thus

P
h
E 0 \ T 0

c
; max
a;b2Z; jaj;jbj<hn2=3=2

j�h0;ai;hn;bi.f /� �.f /j > .10� C 2.n� n
0/=n/kf k1

i
tends to 0. Then since .n � n0/=n! 0 as n!1, we have

lim sup
n!1

P
h

max
a;b2Z; jaj;jbj<hn2=3=2

j�h0;ai;hn;bi.f / � �.f /j > 11�kf k1

i
� lim sup

n!1
P ŒT 0�C P ŒE 0c �: (8.5)

By Lemma 8.3, lim supn!1 P ŒT 0� D 0. Also, by the discussion of the events T , T�,
F , D , H , M before Lemma 8.6, lim Oh!1 lim supı!0 lim supn!1 P ŒE 0c � D 0. Thus the
left-hand side of (8.5) equals 0. Since � can be arbitrary, the conclusion follows.

In the next two subsections we prove Lemmas 8.2, 8.4, and 8.5.

8.1. Continuity of passage times and multiple peaks

In this subsection we prove Lemmas 8.2 and 8.5. For both we use the convergence of the
point-to-line profile to the Airy2 process, which is a stationary ergodic process minus
a parabola. Such convergence in the sense of finite-dimensional distributions is from
[17,18]. Using the so-called slow decorrelation phenomenon, and proving equicontinuity
of the point-to-line profile, it also follows that weak convergence holds in the topology of
uniform convergence on compact sets [11, 37]. More precisely, let A2 denote the station-
ary Airy2 process on R, and let us define the stochastic process L W R! R by

L.x/ WD A2.x/ � x
2:

We quote the following result.

Theorem 8.7 ([11, Theorem 3.8]). Consider the function

Ln W x 7! 2�4=3n�1=3.T0;hn;x.2n/2=3i � 4n/;

where we linearly interpolate between points in .2n/�2=3Z. As n!1, we have Ln!L

weakly in the topology of uniform convergence on compact sets.

We shall also use the following (quantitative) comparison between the Airy2 process
and a Brownian motion.

For K 2 R; d > 0, let BŒK;KCd� denote the law of a Brownian motion with diffusiv-
ity 2 on ŒK; K C d�, taking value 0 at K. Let LŒK;KCd� denote the random function on
ŒK;K C d� defined by

LŒK;KCd�.x/ WD L.x/ �L.K/; 8x 2 ŒK;K C d�:

LetC�.ŒK;KC d�;R/ denote the space of all real-valued continuous functions defined on
ŒK;K C d� which vanish atK, with the topology of uniform convergence. The following
result can be obtained from [20].
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Theorem 8.8 ([20, Theorem 1.1]). There exists a universal constant G > 0 such that
the following holds. For any fixed M > 0; there exists a0 D a0.M/ such that for all
intervals ŒK; K C d� � Œ�M;M� and for all measurable A � C�.ŒK; K C d�;R/ with
0 < BŒK;KCd�.A/ D a � a0;

P ŒLŒK;KCd�
2 A� � aeGM.loga�1/5=6 :

Now we prove Lemma 8.2. We start with the following estimate on deviations when
moving one endpoint.

Lemma 8.9. There are constants c;C > 0 such that for any h 2 R, 0 < � < 1, and t > 1,
we have

P
h

max
hn2=3<b;b0<.hC1/n2=3; jb�b0j<�n2=3

jT0;hn;bi � T0;hn;b0ij

> t�1=2�0:01n1=3 C C.jhj C 1/�n1=3
i
< Ce�ct (8.6)

for n large enough .depending on h; �; t/.

Proof. For any continuous function f W R! R, we let

M.f / WD max
2�2=3h�x;x0�2�2=3.hC1/; jx�x0j�2�2=3�

jf .x/ � f .x0/j:

It is straightforward to check that M is a continuous functional on the space of all con-
tinuous real-valued functions on R, with the topology of uniform convergence on compact
sets.

By Theorem 8.8, M.L/ has continuous distribution since this is the case when L is
replaced by a Brownian motion. Thus by Theorem 8.7, as n!1we have P ŒM.Ln/ > x�

! P ŒM.L/ > x� for any x > 0. We note that the left-hand side of (8.6) is bounded by

P ŒM.Ln/ > 2
�4=3t�1=2�0:01 C 2�4=3C.jhj C 1/��:

Thus as n!1, the lim sup of the left-hand side of (8.6) is bounded by

P ŒM.L/ > 2�4=3t�1=2�0:01 C 2�4=3C.jhj C 1/��:

We next show that this is bounded by Ce�ct . When C > 2 it follows that jx2 � x02j <
2�4=3C.jhj C 1/� for all x;x0 with 2�2=3h� x;x0 � 2�2=3.hC 1/ and jx � x0j � 2�2=3� .
Then by stationarity of A2, we can bound this probability by

P
h

max
0�x;x0�2�2=3; jx�x0j�2�2=3�

jL.x/ �L.x0/j > 2�4=3t�1=2�0:01
i
;

where the event only relies on LŒ0;2�2=3�. Using modulus of continuity for Brownian
motions and Theorem 8.8, we can bound this by Ce�ct as desired.

We can now prove Lemma 8.2 by using Lemma 8.9 repeatedly.
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Proof of Lemma 8.2. First, note that we have the following inequality for passage times:

Th0;ai;hn;bi � Th0;ai;hn;b0i � Th0;a0i;hn;bi � Th0;a0i;hn;b0i

for any a� a0;b� b0. Indeed, the geodesics �h0;ai;hn;b0i and �h0;a0i;hn;bi must intersect. By
switching the paths after their first intersection, we get two up-right paths, from h0; ai to
hn; bi and from h0; a0i to hn; b0i, and the sum of their passage times equals Th0;a0i;hn;bi C
Th0;ai;hn;b0i. Thus we get the above inequality from the definition of last-passage times.

Using this inequality, for any jaj; ja0j; jbj; jb0j < hn2=3 we have

jTh0;ai;hn;bi � Th0;ai;hn;b0ij � jTh0;�dhn2=3ei;hn;bi � Th0;�dhn2=3ei;hn;b0ij

_ jTh0;dhn2=3ei;hn;bi � Th0;dhn2=3ei;hn;b0ij

and

jTh0;ai;hn;b0i � Th0;a0i;hn;b0ij � jTh0;ai;hn;�dhn2=3ei � Th0;a0i;hn;�dhn2=3eij

_ jTh0;ai;hn;dhn2=3ei � Th0;a0i;hn;dhn2=3eij:

By adding up these two inequalities and using the triangle inequality, we have

jTh0;ai;hn;bi � Th0;a0i;hn;b0ij � jTh0;�dhn2=3ei;hn;bi � Th0;�dhn2=3ei;hn;b0ij

_ jTh0;dhn2=3ei;hn;bi � Th0;dhn2=3ei;hn;b0ij

C jTh0;ai;hn;�dhn2=3ei � Th0;a0i;hn;�dhn2=3eij

_ jTh0;ai;hn;dhn2=3ei � Th0;a0i;hn;dhn2=3eij:

By symmetry, it now suffices to bound the probability of

max
jbj;jb0j<hn2=3

jb�b0j<�n2=3

jTh0;�dhn2=3ei;hn;bi � Th0;�dhn2=3ei;hn;b0ij >
1

2
.t�1=2�0:01n1=3 C Ch�n1=3/:

For this we split ¹h0;bi W jbj<hn2=3º into overlapping segments of length n2=3, and apply
Lemma 8.9 to each of them to get the desired bound.

We next prove Lemma 8.5. Again, using Theorem 8.7 we reduce the point-to-line
profiles to Airy2 processes, and then by applying Theorem 8.8 we can just prove the
result for Brownian motions.

Proof of Lemma 8.5. Denote by L˛;ˇ W R! R the process given by

L˛;ˇ .x/ WD ˛
1=3L.˛�2=3x/C .1 � ˛/1=3L0

�
.1 � ˛/�2=3.x � 2�2=3ˇ/

�
;

where L0 is an independent copy of L. Denote

Ln;˛;ˇ .x/ WD 2
�4=3n�1=3.T �0;hb˛nc;x.2n/2=3i C Thb˛nc;x.2n/2=3i;hn;bˇn2=3ci � 4n/;

where we linearly interpolate between points in .2n/�2=3Z. Using Theorem 8.7, we can
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deduce that Ln;˛;ˇ ! L˛;ˇ as n!1, weakly in the topology of uniform convergence
on compact sets.

We let � be the set of all continuous functions f W R ! R such that there exist
�21=3h � x1 < x2 < x3 < x4 < x5 < x6 � 2

1=3h with x2 � x1; x3 � x2; x4 � x3; x5 �
x4; x6 � x5 � 2

�2=3� and x1 D argmaxŒ�24=3h;24=3h� f and

f .x1/ � f .xi /C 2
�4=3t�1=2; 8i D 2; 3; 4; 5; 6:

It is straightforward to check that� is a closed set in the space of all continuous functions
with the topology of uniform convergence on compact sets. It is also straightforward to
check that M

0;hn;bˇn2=3ci
�n2=3;t;b˛nc;2hn2=3

implies Ln;˛;ˇ 2 �. So by Theorem 8.7 we have

lim sup
n!1

P ŒM0;hn;bˇn2=3ci
�n2=3;t;b˛nc;2hn2=3

� � lim sup
n!1

P ŒLn;˛;ˇ 2 �� � P ŒL˛;ˇ 2 ��:

We just need to bound the right-hand side. By Theorem 8.8, we can consider the prob-
ability of a (two-sided) Brownian motion (with diffusivity 4) belonging to �. By Lemma
8.10 below this probability is bounded by Ct5 for C > 0 being a universal constant, so
the conclusion follows.

We finally bound the event on Brownian motions.

Lemma 8.10. There exists a universal constant C > 0 such that for any t; � > 0, the
following event holds with probability at most Ct5. For W W Œ�2; 2�! R being a two-
sided Brownian motion, there are �1 < x1 < x2 < x3 < x4 < x5 < x6 < 1 with x2 � x1;
x3 � x2; x4 � x3; x5 � x4; x6 � x5 > � such that x1 D argmaxŒ�2;2�W and

W.x1/ < W.xi /C t�
1=2; 8i D 2; 3; 4; 5; 6:

Proof. Fix T1 2 Œ�1; 1�, and let E be the event where W.T1/ D maxŒ�2;2�W . For i D
2; 3; 4; 5; 6, let Ti D min ¹x � Ti�1 C � W W.x/ � W.x1/ � t�1=2º. It suffices to show
that P ŒT6 � 1 j E� < C t5 for some universal constant C > 0. For i D 2; 3; 4; 5; 6, condi-
tioned on E and the event Ti�1 � 1, and given the values of Ti�1 and W.Ti�1/�W.T1/,
the process x 7! W.Ti�1 C x/ �W.T1/ on Œ0; 2 � Ti�1� has the same law as W 0, which
is a Brownian motion on Œ0; 2� Ti�1� starting fromW 0.0/DW.Ti�1/�W.T1/ and con-
ditioned to stay below zero (for i D 2 this degenerates to a Brownian meander). Using the
reflection principle we find that P ŒmaxŒ�;2�Ti�1�W

0 � �t�1=2� < C 0t for some universal
constant C 0 > 0, so P ŒTi � 1 j E; Ti�1 � 1� < C 0t . Thus P ŒT6 � 1 j E� < .C 0t /5, which
implies the conclusion.

8.2. Disjoint paths

In this subsection we prove Lemma 8.4. The idea is to show that for a path restricted to be
close to another (deterministic) path for a while, its passage time is unlikely to be small
(compared to that of a geodesic with the same endpoints). We then use the FKG inequality
to move from a deterministic path to a geodesic.
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Lemma 8.11. For sufficiently small c0 > 0, there is c1 > 0 such that for l 2 N large
enough .depending on c0/ and any r 2 Z, we have

E
h

max
a;b2J0;c0l2=3K

Th0;ai;hl;rCbi

i
< 4l � c1l

1=3:

Proof. Take u D h�bc3=20 lc; 0i and v D hl C bc3=20 lc; r 0i, where r 0 is the number in
bc0l

2=3cZ with r � r 0 < r C bc0l2=3c. Note that

E
h

max
a;b2J0;c0l2=3K

Th0;ai;hl;rCbi

i
� EŒTu;v� � E

h
min

a2J0;c0l2=3K
Tu;h�1;ai

i
� E

h
min

b2J0;c0l2=3K
ThlC1;rCbi;v

i
:

By Proposition 5.3, we have

E
h

min
a2J0;c0l2=3K

Tu;h�1;ai

i
;E
h

min
b2J0;c0l2=3K

ThlC1;rCbi;v

i
� 4c

3=2
0 l � Cc

1=2
0 l1=3;

where C > 0 is a universal constant. We also claim that for l sufficiently large,

EŒTu;v� � 4.l C 2c
3=2
0 l/ � c2l

1=3 (8.7)

for some small universal constant c2 > 0. Let C 0 > 0 be a large enough universal constant.
When l�2=3jr j > C 0, (8.7) follows from (5.3). When l�2=3jr j � C 0, for each l there
are at most 3C 0=c0 possible values r 0 can take. For each of them, by Theorem 8.7 the
corresponding Tu;v after rescaling converges (as l!1) to one point of the Airy2 process,
whose law is given by the GUE Tracy–Widom distribution. Thus (8.7) (for l large enough)
follows since the GUE Tracy–Widom distribution has negative expectation. By choosing
c0 such that 2Cc1=20 < c2=2 and letting c1 D c2=2, we complete the proof.

For the next lemma, as before we denote T �u;v D Tu;v � �.v/ for any vertices u � v.

Lemma 8.12. For l;M 2 N and any r0; : : : ; rM 2 Z, we have

P
h

max
a0;:::;aM2J0;cl2=3K

M�1X
iD0

T �
hil;riCai i;h.iC1/l;riC1CaiC1i

� 4Ml � cMl1=3
i
< Ce�cM

for some universal constants c; C > 0 when l is large enough.

Proof. In this proof we let c; C > 0 denote small and large enough universal constants,
whose values can change from line to line.

Take c0; c1 > 0 such that Lemma 8.11 holds. For each 0 � i �M � 1 we denote

Si D max
ai ;aiC12J0;c0l2=3K

T �
hil;riCai i;h.iC1/l;riC1CaiC1i

:

Then (by Lemma 8.11) we have EŒSi � < 4l � c1l1=3 for each i when l is large enough.
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Next we apply Proposition 5.3. When jri � riC1j � 0:9l we can apply it directly; and
when jri � riC1j > 0:9l , the slope condition may not be satisfied, so we use the fact that
T �
hil;riCai i;h.iC1/l;riC1CaiC1i

< T �
hil;riCai i;h.iC1/lCb0:1lc;riC1CaiC1i

, and upper bound the

latter using Proposition 5.3. In either case we conclude that P ŒSi > 4l C xl1=3� < Ce�cx

for any x > 0.
Note that Si for each i are independent. Thus by a Bernstein type bound on the sum

of independent random variables with exponential tails, we have

P

�
max

a0;:::;aM2J0;c0l2=3K

M�1X
iD0

T �
hil;riCai i;h.iC1/l;riC1CaiC1i

� 4Ml �
c1

2
Ml1=3

�
< Ce�cM ;

and the conclusion follows.

Proof of Lemma 8.4. Take any up-right path � from 0 to hn; bi. Denote by D� the fol-
lowing event: there exists an up-right path 
 from Lm to LmCMl such that

� 
 is disjoint from � ,

� the passage time of 
 (i.e. T .
/) is at least 4Ml � c0Ml1=3,

� for each i D 0; 1; : : : ;M , jad.� \ LmCil / � ad.
 \ LmCil /j < 2c0l
2=3.

Here c0 > 0 is as in the definition of D
0;hn;bi
M;l;m

. Now we consider the event �0;hn;bi D � .

Under this event, D
0;hn;bi
M;l;m

DD� . Also, �u;v D� is a negative event of the field on Z2 n� ,
while D� is determined by the field on Z2 n � , and is a positive event of the field on
Z2 n � . By the FKG inequality we have

P ŒD0;hn;bi
M;l;m

j �u;v D �� D P ŒD� j �u;v D �� � P ŒD� �:

By Lemma 8.12, P ŒD� � < Ce
�cM when c0 < c and l > C , for c;C > 0 being universal

constants. By averaging over all � we get the conclusion.

9. Convergence of one point distribution

In this section we prove Theorems 1.3 and 1.4. The general idea is to show that the law
of the environment around a specific vertex in the geodesic is close to that of nearby
vertices along the geodesic; and this is achieved by a coalescing argument. Then we use
Proposition 8.1 to argue that a certain time average (of environments along the geodesic)
is close to the stationary measure �.

To prove Theorem 1.3, a key step would be to bound the total variation distance
between .�¹�0Œi �º; �0 � �0Œi �/ and .�¹�0Œi � r�º; �0 � �0Œi � r�/ in a finite box, for any i
large and r much smaller than i . For this, we use translation invariance, and consider the
environment around �vŒr�Œi � r� instead of �0Œi � r�, where

vŒr� D

´
hbr=2c; 0i; r is even;

hbr=2c; 0i C .1; 0/; r is odd:
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We define vŒr� this way so that always d.vŒr�/ D r . We show that with high probability
�vŒr�Œi � r� D �0Œi �, and in a finite box around this vertex the paths �vŒr� and �0 are the
same. Towards this we need the following estimate on coalescence of geodesics, which
directly follows from Proposition 5.5 and Lemma 5.6.

Lemma 9.1. There is a constant C > 0 such that for any r 2 N and k > 2, we have
P Œ�0 \ Lbrkc ¤ �vŒr� \ Lbrkc� < C log.k/k�2=3.

Proof. Denote the intersections of �0 and �vŒr� with Lr as hr; bri and hr; b0ri, respectively.
By Lemma 5.6 and Proposition 5.5, there is a constant C0 > 0 such that

P Œjbr j; jb
0
r j � C0 log.k/r2=3� > 1 � C0k�1

and

P Œ�hr;�bC0 log.k/r2=3c�1i\Lbrkc¤�hr;bC0 log.k/r2=3cC1i\Lbrkc�<C
2
0 log.k/.k�1/�2=3:

Thus the conclusion follows by ordering of geodesics (Lemma 5.1).

Proof of Theorem 1.3. Take any s 2N and any continuous f WRJ�s;sK2 � ¹0; 1ºJ�s;sK
2
!

Œ0; 1�, regarded as a function on RZ2 � ¹0; 1ºZ
2
. We need to show that

lim
i!1

E
�
f .�¹�0Œi �º; �0 � �0Œi �/

�
D �.f /:

For i; r 2 N and k > 2 with i � 2s > 2rk, by Lemma 9.1, with probability at least
1 � C log.k/k�2=3 we have �0Œj � D �vŒr�Œj � r� for any j � i � 2s; thus the pairs
.�¹�0Œi �º; �0 � �0Œi �/ and .�¹�vŒr�Œi � r�º; �vŒr� � �vŒr�Œi � r�/ are the same in J�s; sK2.
Since .�¹�vŒr�Œi�r�º;�vŒr���vŒr�Œi�r�/ have the same joint distribution as .�¹�0Œi�r�º;

�0 � �0Œi � r�/, we must haveˇ̌
E
�
f .�¹�0Œi �º; �0 � �0Œi �/

�
� E

�
f .�¹�0Œi � r�; �0 � �0Œi � r�º/

�ˇ̌
� C log.k/k�2=3:

By averaging over r 2 J0; i=4kK, we have (when i > 4s)ˇ̌
E
�
f .�¹�0Œi �º; �0 � �0Œi �/

�
� EŒ��0Œi�bi=4kc�;�0Œi�.f /�

ˇ̌
� C log.k/k�2=3:

By Lemma 5.6 and Proposition 8.1, for any fixed k > 0, ��0Œi�bi=4kc�;�0Œi�.f /! �.f / in
probability as i !1. Thus

lim sup
i!1

ˇ̌
E
�
f .�¹�0Œi �º; �0 � �0Œi �/

�
� �.f /

ˇ̌
� C log.k/k�2=3:

Since k can be arbitrarily large, the conclusion follows.

The proof of Theorem 1.4 is similar. Again we need the following estimate on coales-
cence of geodesics, which follows from Corollary 5.9 and Proposition 5.4. Recall that we
denote n D n� D hn; 0i D .b 2.1��/

2n

�2C.1��/2
c; d 2�2n

�2C.1��/2
e/ for any n 2 Z.
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Lr L⌊rk⌋

Ln−r

0

n + v[r]

n

v[r]

⟨r,−⌊C0 log(k)r2/3⌋ − 1⟩

⟨n− r,−⌊C0 log(k)r2/3⌋ − 1⟩

⟨r, ⌊C0 log(k)r2/3⌋+ 1⟩

⟨n− r, ⌊C0 log(k)r2/3⌋+ 1⟩

Fig. 18. An illustration of the proof of Lemma 9.2. The geodesics �0;n and
�vŒr�;nCvŒr� are sandwiched between �hr;�bC0 log.k/r2=3c�1i;hn�r;�bC0 log.k/r2=3c�1i and
�hr;bC0 log.k/r2=3cC1i;hn�r;bC0 log.k/r2=3cC1i.

Lemma 9.2. There is a constantC > 0 such that for any r;n2N and k > 2 with n� 2rk,
we have

P Œ�0;n \ Lbrkc ¤ �vŒr�;nCvŒr� \ Lbrkc� < C log.k/k�2=3;

P Œ�0;n \ Ln�brkc ¤ �vŒr�;nCvŒr� \ Ln�brkc� < C log.k/k�2=3:

Proof. Since n � 2rk, we just show the first inequality; the other follows by symmetry.
Denote the intersections of �0;n and �vŒr�;nCvŒr� with Lr as hr; b�i and hr; b0�i,

respectively; and the intersections of �0;n and �vŒr�;nCvŒr� with Ln�r as hn � r; bCi and
hn � r; b0Ci, respectively. There is a constant C0 > 0 such that

P Œjb�j; jb
0
�j � C0 log.k/r2=3�;P ŒjbCj; jb0Cj � C0 log.k/r2=3� > 1 � C0k�1

by Corollary 5.9; and

P Œ�hr;�bC0 log.k/r2=3c�1i;hn�r;�bC0 log.k/r2=3c�1i \ Lbrkc

¤ �hr;bC0 log.k/r2=3cC1i;hn�r;bC0 log.k/r2=3cC1i \ Lbrkc�

� P
�
�hr;�bC0 log.k/r2=3c�1i;hn�r;�bC0 log.k/r2=3c�1i \ Lbrkc

¤ �hr;�bC0 log.k/r2=3c�1i;hn�r;bC0 log.k/r2=3cC1i \ Lbrkc
�

C P
�
�hr;�bC0 log.k/r2=3c�1i;hn�r;bC0 log.k/r2=3cC1i \ Lbrkc

¤ �hr;bC0 log.k/r2=3cC1i;hn�r;bC0 log.k/r2=3cC1i \ Lbrkc
�

< C 20 log.k/.k � 1/�2=3;
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where the last inequality is by Proposition 5.4. Then the conclusion follows by ordering
of geodesics (Lemma 5.1). See Figure 18 for an illustration.

Proof of Theorem 1.4. Take any s 2 N and any continuous f W RJ�s;sK2 � ¹0; 1ºJ�s;sK
2

! Œ0; 1�, regarded as a function on RZ2 � ¹0; 1ºZ
2
. We need to show that

lim
n!1

E
�
f .�¹�0;n Œb˛nc�º; �0;n � �0;n Œb˛nc�/

�
D �.f /:

Without loss of generality we assume that ˛ � 1. For n; r 2 N and k > 2 with ˛n� 2s >
2rk and ˛nC 2s < 2n � 2rk, by Lemma 9.2 we have

P
�
�0;n Œb˛ncC j �D�vŒr�;nCvŒr�Œb˛nc� r C j �º; 8j 2 J�2s;2sK

�
� 1�C log.k/k�2=3:

By translation invariance, .�¹�vŒr�;nCvŒr�Œb˛nc�r�º;�vŒr�;nCvŒr���vŒr�;nCvŒr�Œb˛nc�r�/
have the same joint distribution as .�¹�0;n Œb˛nc � r�º; �0;n � �0;n Œb˛nc � r�/, soˇ̌

E
�
f .�¹�0;n Œb˛nc�º; �0;n � �0;n Œb˛nc�/

�
� E

�
f .�¹�0;n Œb˛nc � r�º; �0;n � �0;n Œb˛nc � r�/

�ˇ̌
� C log.k/k�2=3:

By averaging over r 2 J0; ˛n=.4k/K, we have (when ˛n > 4s)ˇ̌
E
�
f .�¹�0;n Œb˛nc�º; �0;n � �0;n Œb˛nc�/

�
� EŒ��0;n Œb˛nc�b˛n=.4k/c�;�0;n Œb˛nc�.f /�

ˇ̌
� C log.k/k�2=3:

By Corollary 5.9 and Proposition 8.1, for fixed k we have

��0;n Œb˛nc�b˛n=.4k/c�;�0;n Œb˛nc�.f /! �.f / in probability as n!1.

Thus

lim sup
i!1

ˇ̌
E
�
f .�¹�0;n Œb˛nc�º; �0;n � �0;n Œb˛nc�/

�
� �.f /

ˇ̌
� C log.k/k�2=3:

Then the conclusion follows since k can be arbitrarily large.

10. Exponential concentration via counting argument

Using a covering argument, we can prove the following exponential concentration of the
empirical environment, for both finite and semi-infinite geodesics.

Proposition 10.1. For any s 2 N, any bounded continuous f W RJ�s;sK2 � ¹0; 1ºJ�s;sK
2

! R, regarded as a function on RZ2 � ¹0; 1ºZ
2
, and any � > 0, we have

P Œj�0Ir .f / � �.f /j > �� < Ce
�cr

for r large enough, and c; C > 0 depending on s; f; �.
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Proposition 10.2. Let ¹bnºn2N be a sequence of integers with limn!1 n
�2=3jbnj <1.

Then for any s 2 N, any bounded continuous f W RJ�s;sK2 � ¹0; 1ºJ�s;sK
2
! R, regarded

as a function on RZ2 � ¹0; 1ºZ
2
, and any � > 0, we have

P Œj�0;hn;bni.f / � �.f /j > �� < Ce
�cn

for n large enough, and c; C > 0 depending on s; f; �.

From Proposition 10.1 we can deduce Theorem 1.2.

Proof of Theorem 1.2. By Proposition 10.1, for any bounded continuous f W RJ�s;sK2 �

¹0; 1ºJ�s;sK
2
! R (regarded as a function on RZ2 � ¹0; 1ºZ

2
) and � > 0, we haveX

r2N

P Œj�0Ir .f / � �.f /j > �� <1:

So almost surely, there exists some (random) r0 such that j�0Ir .f / � �.f /j � � for any
r > r0. Thus �0Ir .f /! �.f / almost surely. The conclusion follows by taking all s 2N,
and f over a countable dense subset of the space of continuous and compactly supported
functions on RJ�s;sK2 � ¹0; 1ºJ�s;sK

2
with the uniform convergence topology.

Using the same arguments we can deduce Theorem 1.1 from Proposition 10.2. We
omit the details.

To prove the exponential concentration bounds (Propositions 10.1 and 10.2), we cover
the geodesics with short finite ones, and use Proposition 8.1.

We take m 2 N such that m2=3 2 Z. For each i; j 2 Z we denote by Li;j the seg-
ment joining him; .2j � 1/m2=3i and him; .2j C 1/m2=3i. For each integer sequence
j0; j1; : : : ; jk , we let Pj0;:::;jk be the collection of paths from L0;j0 to Lk;jk , intersecting
each Li;ji , 0 � i � k. For any k 2 N and D > 0, we define Pk;D to be the union of
all Pj0;j1;:::;jk such that j0 D 0 and

Pk
iD1.ji � ji�1/

2 > Dk. In words, Pk;D contains
all paths from L0;0 to Lkm with ‘quadratic variation’ > Dk. We next upper bound the
passage times of these paths.

Lemma 10.3. There exists c0 > 0 such that when m; k;D are large enough,

P
h
9
 2Pk;D; T .
/>

2km

.1��/2C�2
�.bC�b�/.�

�1
�.1��/�1/�c0Dkm

1=3

�
<e�c0k ;

where b�; bC 2 Z are such that h0; b�i; hkm; bCi are the intersections of 
 with
L0;Lkm, respectively.

Proof. First, there exist c1; C1 > 0 such that for m large enough and any j 2 Z, x > 0,

E
h

max
h0;bi2L0;0
hm;b0i2L1;j

�
Th0;bi;hm;b0i C .b

0
� b/.��1 � .1 � �/�1/

�i
<

2m

.1 � �/2 C �2
C .C1 � c1j

2/m1=3
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and

P

�
max

h0;bi2L0;0
hm;b0i2L1;j

�
Th0;bi;hm;b0i C .b

0
� b/.��1 � .1 � �/�1/

�
<

2m

.1 � �/2 C �2
C .x � c1j

2/m1=3
�
< C1e

�c1x :

When jj j< .�2 ^ .1� �/2/m1=3 these inequalities follow from Proposition 5.3 and (5.3),
and fundamental computations. When jj j � .�2 ^ .1 � �/2/m1=3 the inequalities can be
obtained by applying (5.1) in Theorem 5.2 to each Tu;v with u 2 L0;0 and v 2 L1;j and
taking a union bound.

Note that

max

2Pj0;j1;:::;jk

T .
/ �

k�1X
iD1

max
u2Li�1;ji�1
v2Li;ji

T �u;v C max
u2Lk�1;jk�1
v2Lk;jk

Tu;v:

Here T �u;v D Tu;v � �.v/ for any u � v 2 Z2. Then by a Bernstein type estimate for
independent random variables with exponential tails, we have

P

�
max


2Pj0;j1;:::;jk

T .
/C .bC � b�/.�
�1
� .1 � �/�1/ >

2km

.1 � �/2 C �2
�
c1

2
Dkm1=3

�
< C2e

�c2
Pk
iD1.ji�ji�1/

2

for any D large (depending on c1; C1) and any integer sequence j0; : : : ; jk with j0 D 0,Pk
iD1.ji � ji�1/

2 > Dk. Here c2; C2 > 0 are constants, and h0; b�i; hkm; bCi are the
intersections of 
 with L0;Lkm. Summing over all such sequences j0; j1; : : : ; jk , the
right-hand side is bounded by

C2e
�c2Dk=2

�X
j2Z

e�c2j
2=2
�k
:

By taking D so large that ec2D=4 >
P
j2Z e

�c2j
2=2, we get the conclusion.

We next prove Proposition 10.1. The general idea is to upper bound the ‘quadratic
variation’ of the first r steps of �0, and use Proposition 8.1 to show that the empirical
environment between each Lim and L.iC1/m is close to �, and use independence to deduce
exponential concentration.

Proof of Proposition 10.1. For any vertices u � v, denote

��u;v WD
1

j�u;vj � 1

X
w2�u;v ;w¤v

ı.�¹wº;�u;v�w/;

i.e. it is the empirical environment along �u;v , excluding the last vertex v. Without loss
of generality we assume that 0 � f � 1, and � is small enough (depending on s and f ).
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We first consider paths with small ‘quadratic variation’. Take D > 0 and m 2 N such
that m2=3 2 Z, and let them be large enough as required by Lemma 10.3. We also choose
m large enough such that

P
h

max
jaj;jbj<��2m2=3

j��
h0;ai;hm;bi.f / � �.f /j > �

2
i
< "; (10.1)

by Proposition 8.1. Here " is a small number depending on D; � and to be determined.
Take any k 2N (also large enough as required by Lemma 10.3), and a sequence j0; : : : ; jk
such that j0 D 0 and

Pk
iD1.ji � ji�1/

2 �Dk. We let I 0 � ¹1; : : : ; kº be the collection of
indices such that jji � ji�1j < ��2=2 � 1 for each i 2 I 0. Then jI 0j > .1 � �=2/k when
� is small enough (depending on D). Next we let I � I 0 be such that for each i 2 I ,

max
u2Li�1;ji�1 ; v2Li;ji

j��u;v.f / � �.f /j � �
2:

By (10.1) we have P Œi 2 I � > 1 � " for each i 2 I 0. Also note that i1 2 I and i2 2 I are
independent for any i1; i2 2 I 0 with i1 � i2 � 2. Then by a Chernoff bound and taking "
small enough (depending on D; �), we can make P ŒjI 0j � jI j > �2k� < .D C 1/�2k .

Let 
 be the path consisting of the first 2km C 1 vertices of �0, i.e. 
 is the part
of �0 on and between L0 and Lkm. Given that 
 2 Pj0;:::;jk and jI 0j � jI j � �2k, for any
r 2 J2km; 2.k C 1/mK we must have j�0Ir .f / � �.f /j � �=2C 2�

2 C 1=.k C 1/. So
when k > ��2 and � is large enough, we have

P Œ
 2 Pj0;:::;jk ; j�0Ir .f / � �.f /j > �� < .D C 1/
�2k :

Thus by summing over all sequences j0; : : : ; jk with j0 D 0,
Pk
iD1.ji � ji�1/

2 � Dk,
we have

P Œ
 62 Pk;D; j�0Ir .f / � �.f /j > �� <

�
bDkc C k � 1

k � 1

�
.D C 1/�2k < e�ck

for some c > 0 depending on D.
Now it remains to bound P Œ
 2 Pk;D�. By Lemma 10.3, we have

P Œ
 2 Pk;D�

< e�c0k C P

�
T .
/ �

2km

.1 � �/2 C �2
� bC.�

�1
� .1 � �/�1/ � c0Dkm

1=3

�
; (10.2)

where hkm; bCi is the intersection of �0 with Lkm, and recall that c0 > 0 is a constant
independent of m; k; D. When the event on the right-hand side of (10.2) happens, (at
least) one of the following must happen:

� jbCj > km
2=3,

� maxjbj�km2=3.B.hkm; bi; hkm; 0i/ � b.��1 � .1 � �/�1// � c0Dkm1=3=3,

� T �0;hkm;0i �
2km

.1��/2C�2
� c0Dkm

1=3=2,
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where T �u;v D Tu;v � �.v/ for any vertices u � v as before, and recall that B is the
Busemann function (defined in Section 3.1). To see this, we assume the contrary, i.e.
none of the above three events happen (while the event on the right-hand side of (10.2)
happens). Then we must have T �0;hkm;0i � T

�
0;hkm;0i > B.hkm; bCi; hkm; 0i/, which con-

tradicts Lemma 3.1.
We claim that we can bound the probability of each of the three events by C 0e�c

0k for
some c0;C 0 >0 depending onm;D. For the first event the bound is by Lemma 5.6. For the
second event, note that b 7! B.hkm; bi; hkm; 0i/ � b.��1 � .1 � �/�1/ is a (two-sided)
centered random walk; for the third event, use Theorem 5.2.

Finally, by sequentially choosing D; �; "; m, and considering all large enough k and
each r 2 J2km; 2.k C 1/mK, the conclusion follows.

We prove Proposition 10.2 using a similar strategy.

Proof of Proposition 10.2. The first half of this proof goes the same way as the proof of
Proposition 10.1. We omit the details, and conclude that the following is true for any
D > 0, � > 0, m 2 N with m2=3 2 Z, and k 2 N, such that D;m are large enough as
required by Lemma 10.3, � is small enough depending on D, and m is large enough
depending on D; �. Take any k 2 N which is > ��2 and large enough as required by
Lemma 10.3, and take any n 2 Jkm; .k C 1/mK. Let 
 be the path from L0 to Lkm,
consisting of the first 2kmC 1 vertices of �0;hn;bni. Then

P Œ
 62 Pk;D; j�0;hn;bni.f / � �.f /j > �� <

�
bDkc C k � 1

k � 1

�
.D C 1/�2k < e�ck

for some c > 0 depending on D. It remains to bound P Œ
 2 Pk;D�. By Lemma 10.3,

P Œ
 2Pk;D�<e
�c0kCP

�
T .
/�

2km

.1��/2C�2
�bC.�

�1
�.1��/�1/�c0Dkm

1=3

�
;

(10.3)

where hkm; bCi is the intersection of �0;hn;bni with Lkm. When the event on the right-
hand side of (10.3) happens, (at least) one of the following must happen:

� maxb2Z.Thkm;bi;hn;bni � .b � bn/.�
�1 � .1 � �/�1// � c0Dkm

1=3=3,

� T0;hkm;bni �
2km

.1��/2C�2
� bn.�

�1 � .1 � �/�1/ � c0Dkm
1=3=2.

To see this, assume that none of the above events happen. Then

T .
/ > T0;hn;bni � Thkm;bCi;hn;bni � T0;hkm;bni � Thkm;bCi;hn;bni

>
2km

.1 � �/2 C �2
� bC.�

�1
� .1 � �/�1/ � 5c0Dkm

1=3=6;

which contradicts the event on the right-hand side of (10.3).
We claim that we can bound the probability of each of the two events by C 0e�c

0k

for some c0; C 0 > 0 depending on m;D. For the first event, note that n � km � m; then
the bound can be obtained by taking a union bound over all up-right paths from Lkm to
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hn; bni (there are at most 22m such paths, and the passage time of each is the sum of at
most 2mC 1 i.i.d. Exp.1/ random variables). For the second event, apply Theorem 5.2.
Thus the conclusion follows.
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