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Bloch–Floquet band gaps for water waves
over a periodic bottom

Christophe Lacave, Matthieu Ménard, and Catherine Sulem

Abstract. A central object in the analysis of the water wave problem is the Dirichlet–Neumann
operator. This paper is devoted to the study of its spectrum in the context of the water wave system
linearized near equilibrium in a domain with a variable bottom, assumed to be a C 2 periodic func-
tion. We use the analyticity of the Dirichlet–Neumann operator with respect to the bottom variation
and combine it with general properties of elliptic systems and spectral theory for self-adjoint oper-
ators to develop a Bloch–Floquet theory and describe the structure of its spectrum. We find that,
under some conditions on the bottom variations, the spectrum is composed of bands separated by
gaps, with explicit formulas for their sizes and locations.

We dedicate this article to the memory of Thomas Kappeler. This work started as
a collaborative project with Thomas, who sadly left us abruptly. We will always be

grateful for his inspiration, generosity, and kindness

1. Introduction

This study concerns the motion of a free surface wave over a variable bottom. There is a
large literature devoted to this subject due to its relevance to oceanography in coastal engi-
neering. Formation of long-shore sandbars along gentle beaches has been observed in open
ocean coasts or bays, and it is important to understand how they affect the propagation of
waves [20]. For mathematical purposes, the variable bottom is often assumed to be peri-
odic or described by a stationary random process. The effect of a fast oscillating bottom
has been studied in many asymptotic regimes [5, 6, 9, 28], where effective equations are
derived using techniques of homogenization and of multiple scales. Here, we restrict our-
selves to the linearized water wave problem near the equilibrium with a periodic bottom. In
this setting, there is a classical phenomenon known as the Bragg resonance reflection phe-
nomenon, in analogy with the Bragg’s law for X-rays in crystallography. In the water wave
setting, it refers to the situation where the bottom has the form y D h.x/, where h.x/D h1
(constant) if x 6 0 and x > ` and is a periodic function of period d for 0 < x < `. Res-
onance happens when the wavelength � of the incident wave is equal to twice that of the
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bottom variation with higher-order resonances for � D 2d=n, n D 2; 3; : : : : This config-
uration leads to strong reflected waves. This phenomenon was observed experimentally
by Heathershaw [11] and derived formally by Mei [19] and Miles [21]. Based on this
analysis, Mei [19] proposed a theory that strong reflection can be induced by sand bars if
the Bragg resonance conditions are met, thus protecting the beach from the full impact of
the waves. Higher-order Bragg reflections have been observed experimentally and numer-
ically by Guazzelli, Rey, and Belzons [10].

The problem under consideration is wave propagation over a periodic bottom of infi-
nite extension. Porter and Porter [23] draw a comparison between scattering by a finite-
length periodic bottom and infinite-length periodic bottom. The two problems have how-
ever a different character: the finite extension one gives rise to a boundary-value problem
and the phenomenon of Bragg resonances while the infinite extension one takes the form
of an eigenvalue problem. They first observed that the scattering properties for a bottom
with an arbitrary number of periods may be obtained from those for the single period
through a transfer matrix technique. On the other hand, they defined an extended Bloch
problem where they not only look for eigenvalues corresponding to propagating waves
over the infinite periodic bottom but also for eigenvalues corresponding to evanescent
waves, which increase or decrease as they cross a single period. They show that the eigen-
values of the extended transfer matrix used in the scattering case approximate those of the
extended Bloch problem (see also Yu and Howard [31]). Other authors pointed out the
close relation between the problems of wave propagation over a periodic bottom of finite
or infinite extension, respectively. We mention the work of Linton [17], who observed a
band-gap structure in the context of water waves propagating over infinite periodic arrays
of submerged horizontal circular cylinders in deep water. He showed that the approximate
location of the band gaps can be obtained from the phase of the transmission coefficient
for a single cylinder. In a more recent reference, Liu, Liu, and Lin [18] considered shal-
low water waves over infinite arrays of parabolic bars. They explicitly calculated the band
gaps and analyzed the influence of the bar height, width, and spacing on band gaps. They
found that if a band gap exists for the spectral problem with an infinite periodic array, it
gives rise, for the associated problem with a finite periodic extension, to a Bragg reso-
nant reflection occurring at the mid-point of the first band gap, providing a more accurate
prediction than the classical Bragg’s law.

1.1. Setting of the problem

The goal of this paper is a detailed study of the Dirichlet–Neumann operator and in par-
ticular the description of its spectrum for general periodic topography through an analysis
of associated elliptic systems and Bloch–Floquet theory.

The starting point of our analysis is the water wave problem written in its Hamiltonian
formulation [7, 32]. The two-dimensional fluid domain is

�".b; �/ D
®
.x; z/ W x 2 R; �hC "b.x/ < z < �.x; t/

¯
;
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where the variable bottom is given by z D �hC "b.x/, and the free surface elevation by
z D �.x; t/. The water wave problem in canonical variables .�; �/, where �.x/ is the trace
of the velocity potential on the free surface ¹z D �.x; t/º, has the form8̂<̂

:
@t� �GŒ�; "b�� D 0;

@t� C g�C
1

2
j@x�j

2
�
.GŒ�; "b�� C @x� � @x�/

2

2.1C j@x�j2/
D 0;

(1.1)

where g is the acceleration due to gravity. The operatorGŒ�;"b� is the Dirichlet–Neumann
operator, defined by

GŒ�; "b�� D
p
1C j@x�j2@nˆjzD� ;

where ˆ is the solution of the elliptic boundary value problem´
@2xˆC @

2
zˆ D 0 in �".b; �/;

ˆjzD� D �; @nˆjzD�hC"b D 0;

The system (1.1), linearized about the stationary solution .�.x/; �.x// D .0; 0/, is´
@t� �GŒ"b�� D 0;

@t� C g� D 0;

where now, and for the remainder of this article, we denoteGŒ0; "b� byGŒ"b�. The surface
elevation � satisfies

@2t �C gGŒ"b�� D 0

and initial conditions

�.x; 0/ D �0.x/; @t�.x; 0/ D �1.x/; x 2 R:

When we look for solutions of the form �.x; t/ D ei!tv.x/, we are led to the spectral
problemGŒ"b�v D �v with �D !2=g. The operatorGŒ"b� is a nonlocal operator depend-
ing on the function b.x/, which we assume to be a 2�-periodic C 2 function. In analogy
with second-order differential operator with periodic coefficients, the goal is to develop a
Bloch–Floquet decomposition to describe its spectrum.

We will recall in Section 2.2 the principle of the Bloch–Floquet theory, where one
decomposes a function as an integral of � -periodic functions; namely, one writes

f .x/ D

Z 1=2

�1=2

Uf .x; �/ d�;

where Uf is � -periodic

Uf .x C 2�; �/ D e2�i�Uf .x; �/;

for the Bloch–Floquet parameter � 2 .�1
2
; 1
2
�. The principle of the Bloch–Floquet decom-

position is to describe the spectrum and the generalized eigenfunctions of GŒ"b� by
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a family, parametrized by � , of spectral problems for G� Œ"b� acting on 2� periodic func-
tions: ´

G� Œ"b��
".x; �/ WD e�i�xGŒ"b�ei�x�".x; �/ D �".�/�".x; �/;

�".x C 2�; �/ D �".x; �/:
(1.2)

Equivalently, G� Œ"b� is defined in terms of the elliptic system (2.4) by (2.5).
The goal of this paper is to describe rigorously the spectrum of the Dirichlet–Neumann

operator in the form of bands separated by gaps, thus expressing the wave elevation as a
sum of Bloch waves. This decomposition shows that there are band gaps within which
Bloch waves cannot exist. A classical model operator that exhibits this behavior is the Hill
operator H D � d

dx2 C V.x/, where V.x/ is a smooth 2�-periodic potential on R. The
associated spectral problem is

�
d'
dx2
C V.x/' D �';

which has been intensively studied. We refer to the books of Eastham [8], Reed and
Simon [25] and the detailed review of Kuchment [13] and references therein.

When the bottom is flat, b D 0, the eigenvalues �p.�/ of G� Œ0� are given explicitly in
terms of the dispersion relation for water waves over a constant depth h D 1 and " D 0:

�p.�/ D
!2.p C �/

g
D .p C �/ tanh.p C �/;

for p 2 Z, and Bloch–Floquet parameter � 2 .�1
2
; 1
2
�. Eigenvalues are simple for �1=2 <

� < 0 and 0 < � < 1=2. For � D 0;1=2, they have multiplicity two. When reordered appro-
priately by their size, the eigenvalues, denoted by �0p.�/, are continuous in � (see Fig-
ure 1 (a)). The spectrum of the Dirichlet–Neumann operatorGŒ0� is the half-line Œ0;C1/.
The goal of this work is to understand how the presence of a small periodic bottom modi-
fies the structure of the Dirichlet–Neumann operator.

1.2. Main results

We will prove that, under certain conditions on the Fourier coefficients of b, the pres-
ence of the bottom generally results in the splitting of double eigenvalues near points of
multiplicity, creating a spectral gap. Yu and Howard [31] computed numerically Bloch
eigenfunctions and eigenvalues of (1.2) for various examples of bottom profiles using a
conformal map that transforms the original fluid domain to a uniform strip, thus identi-
fying the corresponding spectral gaps. Chiadò Piat, Nazarov, and Ruotsalainen [3] gave
a necessary and sufficient condition on the Fourier coefficients of the bottom variations
to ensure the opening of a finite number of spectral gaps of O."/. In [4], a systematic
method, based on the Taylor expansion of the Dirichlet–Neumann operator in powers of
b, was proposed to compute explicitly spectral gaps, allowing spectral gaps of high order.
A simple example of bottom topography was given leading to gaps of order O."4/. In this
paper, we give a full description of the spectrum of GŒ"b�. We first prove that the lower
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Figure 1. Sketch of the first six eigenvalues in order of magnitude: (a) flat bottom " D 0; (b) in
the presence of a small generic bottom perturbation " > 0. The dashed blue (resp., dot black) curve
represents �"2p.�/ (resp., �"2pC1.�/). The spectra of the operators GŒ"b� are represented by the
solid red intervals.

part of the spectrum is purely absolutely continuous and is composed of union of bands.
We then give necessary and sufficient conditions on the Fourier coefficients of b.x/ for
the opening of gaps of order " and "2, based on a rigorous perturbation theory near double
eigenvalues of the unperturbed problem.

The main ingredients of our analysis are elliptic estimates [15], perturbation theory of
self-adjoint operators [16, 25, 27], and the notion of quasi-modes which provides, under
some conditions, a method to construct eigenvalues from approximate ones [2, Proposi-
tion 5.1]. It also strongly relies on the analyticity of the G� Œ"b� and its resolvent with
respect to " and � .

Theorem 1.1 (Structure of the spectrum). Let b 2 C 2.T2�/. There exists "0.b/ > 0 such
that the following holds true for any " 2 Œ0; "0/.

(i) The spectrum �.GŒ"b�/ is composed of a union of bands. Namely,

�.GŒ"b�/ D

1[
pD0

�"p

��
�
1

2
;
1

2

��
;

where the ¹�"p.�/º
1
pD0 are the eigenvalues ofG� Œ"b�, labeled in increasing order,

repeated with their order of multiplicity, and the bands are images of the Lip-
schitz non-negative functions � 7! �"p.�/ on the interval .�1

2
; 1
2
�. Moreover,

�"0.0/ D 0.

(ii) For any p 2 N, there exist "1.b; p/ 2 .0; "0� and Cb;p such that we have

d
�
�"p

��
�
1

2
;
1

2

��
; �0p

��
�
1

2
;
1

2

���
6 Cb;p"; 8" 2 Œ0; "1/:



C. Lacave, M. Ménard, and C. Sulem 6

(iii) The lower part of the spectrum of GŒ"b� is purely absolutely continuous1. More
precisely, for anyM > 0, there exists "M 2 .0; "0� such that, for any " 2 Œ0; "M /,

�.GŒ"b�/ \ Œ0;M � D �ac.GŒ"b�/ \ Œ0;M �;

�pp.GŒ"b�/ \ Œ0;M � D �sc.GŒ"b�/ \ Œ0;M � D ;:

The next results give conditions on the Fourier coefficients of b, defined as

Obp D
1

2�

Z 2�

0

b.x/e�ipx dx;

that ensure the opening of a gap that separates the double eigenvalues �02p�1.0/D �
0
2p.0/

or �02p.
1
2
/ D �02pC1.

1
2
/ corresponding to b D 0. Let us denote

Fp WD

�
p
2

�2
cosh2

�
p
2

� : (1.3)

Theorem 1.2 (Gap opening of order "). Let b 2 C 2.T2�/ and p 2N. There exist positive
numbers "2.b; p/ and Cb;p such that the following holds true.

(i) If p > 0 and Ob2p ¤ 0, then, for all " 2 .0; "2/, the spectrum �.GŒ"b�/ has a gap:

�02p.0/ � g
�
2p;" WD max

� 12<�6 1
2

�"2p�1.�/ < min
� 12<�6 1

2

�"2p.�/ DW �
0
2p.0/C g

C
2p;"

with ˇ̌
g˙2p;" � F2pj

Ob2pj"
ˇ̌

6 Cb;p"
2:

(ii) If Ob2pC1 ¤ 0, then, for all " 2 .0; "2/, the spectrum �.GŒ"b�/ has a gap:

�02p

�
1

2

�
� g�2pC1;" WD max

� 12<�6 1
2

�"2p.�/ < min
� 12<�6 1

2

�"2pC1.�/

DW �02p

�
1

2

�
C gC2pC1;"

with ˇ̌
g˙2pC1;" � F2pC1j

Ob2pC1j"
ˇ̌

6 Cb;p"
2:

If Ob2p D 0 and if another condition on the Fourier coefficients of b is satisfied, then a
gap of size "2 occurs. Let us denote

Jp.b/ D
p2

cosh.p/2
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

�p.0/ � �k.0/
j Obk�pj

2;

Sp.b/ D
p2

cosh.p/2
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

�p.0/ � �k.0/
ObkCp Obk�p:

1For a precise definition of the absolutely continuous spectrum, we refer to [26, Chapter VII.2].
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Theorem 1.3 (Gap opening of "2). Let b 2 C 2.T2�/ and p 2 N�. There exist positive
numbers "3.b; p/ and Cb;p such that the following holds true. If Ob2p D 0 and Sp.b/ ¤ 0,
then, for all " 2 .0; "3/, the spectrum �.GŒ"b�/ has a gap:

�02p.0/C Jp"
2
� g�2p;" WD max

� 12<�6 1
2

�"2p�1.�/

< min
� 12<�6 1

2

�"2p.�/

DW �02p.0/C Jp"
2
C gC2p;"

with ˇ̌
g˙2p;" � jSpj"

2
ˇ̌

6 Cb;p"
3:

If Ob2pC1 D 0, similar conditions on the Fourier coefficients of b lead to the opening
of a gap of order "2 near � D ˙1

2
.

The paper is organized as follows. Section 2 is devoted to the basic properties of
the Dirichlet–Neumann operator. We first introduce the Bloch–Floquet transform which
allows us to represent anyL2-function as the integral over .�1

2
; 1
2
� of � -periodic functions.

Following [13, 25], we express GŒ"b� as a direct integral decomposition of G� Œ"b�. We
then write the variational formulation of the elliptic problem associated to G� Œ"b� and to
its resolvent .1C G� Œ"b�/�1. Section 3 is devoted to general properties of the spectrum
of GŒ"b� and G� Œ"b�. An important property of the Dirichlet–Neumann operator is that it
is analytic with respect to the bottom [15]. We extend it to the analyticity of its resolvent
with respect to " and � . This result is central for the description of the spectrum of the
operator G� Œ"b�. In Section 3.3, using general properties of perturbation of self-adjoint
operators [16, 27], we show that, for � not too close to 0, ˙1

2
, the spectrum of G� Œ"b�

is composed of simple eigenvalues that are close to those of G� Œ0� and give estimates
on their location. It will be useful later to ensure gaps constructed in Section 4 remain
open. We also give a first description of the spectrum of G� Œ"b� near double eigenvalue of
G� Œ0�. We then prove Theorem 1.1 that describe the spectrum of GŒ"b� as union of bands.
In Section 4, we show necessary and sufficient conditions for the opening of a gap at
� D 0; 1=2 of order O."/. The matching of the inner and outer asymptotics on an overlap
region leads to the opening of a gap of order " (Theorem 1.2). In particular, assuming that
Obk ¤ 0 for all jkj < N leads to the opening of N gaps. In Section 5, we extend the above
analysis to construct gaps of order "2.

Our method provides necessary and sufficient conditions on the bottom topography
that lead to opening of gaps of order " and "2. We believe that a higher-order calculation
would lead to opening at higher order in ". Because the smallness " depends on p, we are
only able to exhibit bottom configurations that lead to the opening of a finite number of
gaps. The opening of an infinite number of gaps is an open problem.

We conclude the introduction with some notations:

�" WD ¹.x; z/ 2 R �RI �1C "b.x/ < z < 0º;
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!" WD ¹.x; z/ 2 T2� �RI �1C "b.x/ < z < 0º;

S WD T2� � Œ�1; 0�;  WD T2� � ¹0º:

We denote by T2� WD R=2�Z the flat torus of length 2� and f 2 H s.T2�/ means that
f 2 H s

loc.R/ and is 2�-periodic (namely, f .x C 2�/ D f .x/ for a.e. x 2 R), whereas a
function F belonging in H s.!"/ or in H s.S/ means that ˆ is periodic in the horizontal
direction: F.x C 2�; z/ D F.x; z/.

2. The Bloch–Floquet transform of the Dirichlet–Neumann operator

2.1. Basic properties of the Dirichlet–Neumann operator

The goal is to study the Dirichlet–Neumann operator GŒ"b� WD GŒ0; "b� which naturally
appears when solving the linearized water wave equations in the domain �", where b 2
C 2.R/, bounded, and " satisfies "kbkL1 < 1. Without loss of generality, we assume hD 1
and

R 2�
0
b.x/dx D 0. Note that this domain is bounded in the vertical direction which

allows to have a Poincaré inequality (see [15, equation (2.8)] or Lemma 2.1) and to solve
the following elliptic problem by the Lax–Milgram theorem.

For any � 2 PH 1.R/, let ˆ be the unique variational solution of´
�ˆ D 0 in �";

ˆjzD0 D �; @nˆjzD�1C"b D 0I
(2.1)

see [15, Proposition 2.9]. From ˆ, we define the Dirichlet–Neumann operator GŒ"b� as

GŒ"b�� D @nˆjzD0 :

By elliptic regularity, GŒ"b� is a continuous operator from PH 1.R/ to L2.R/. It is
positive semi-definite, symmetric for the L2 scalar product (see [15, Proposition 3.9]),
and it is also self-adjoint on L2.R/ with domainH 1.R/. This property was shown in [29]
for flat bottom using symbolic analysis and in [15, Appendix A.2] for b 2 H t0C1.R/ for
t0 > 1=2. Looking at the details of the proof in [15, Proposition A.14], we notice that the
decay of b at infinity is not used and that the proposition holds true for periodic b smooth
enough, in C 2 for instance.

Another well-known property for the Dirichlet–Neumann operator on a Riemannian
manifold [30, Section 7.11] and proved in [29, Corollary 3.6] for the fluid domain �" is
that it is a first-order elliptic operator. This property is not used here but just recalled for
sake of completeness.

We conclude this subsection with the standard Poincaré inequality when the domain
is bounded in one direction. Note that important points in the following inequality are that
the constant CP does not depend on ", and the coefficient in front of k@z�kL2 is strictly
smaller than 1.
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Lemma 2.1. There exist "0; CP > 0 such that, for any " 2 Œ�"0; "0� and all � 2 H 1.!"/,

k�kL2.!"/ 6 CP k�.�; 0/kL2.0;2�/ C
3

4
k@z�kL2.!"/: (2.2)

Proof. For � 2 C1.!"/, we write

�.x; z/ D �.x; 0/ �

Z 0

z

@z�.x;w/ dwI

thus,

j�.x; z/j 6 j�.x; 0/j C jzj
1
2

�Z 0

�1C"b.x/

j@z�.x;w/j
2 dw

� 1
2

DW j�.x; 0/j C A.x; z/;

where
kAk2

L2.!"/
6
1

2
.1C j"jkbkL1/

2
k@z�k

2
L2.!"/

which would end the proof if � vanishes on the boundary. For all ı > 0, there is Cı > 0
such that

j�.x;z/j2 6 j�.x;0/j2C 2j�.x;0/jA.x;z/CA.x;z/2 6Cı j�.x;0/j2C .1C ı/A.x;z/2I

hence,

k�kL2.!"/ 6
p
Cı.1C j"jkbkL1/k�.�; 0/kL2.0;2�/

C

r
1C ı

2
.1C j"jkbkL1/k@z�kL2.!"/:

Choosing "0 and ı small enough leads to (2.2) because 1=
p
2 < 3=4.

2.2. Bloch–Floquet transform

The Bloch–Floquet transform, also referred to as Gelfand transform, is defined on �.R/
as

f .x/ 7! Uf .x; �/ WD

1X
nD�1

f .x C 2�n/e�2�i�n:

It satisfies
Uf .x C 2�; �/ D e2�i�Uf .x; �/

and is uniquely extendable to a unity operator from L2.R/ in L2..�1
2
; 1
2
�IL2.0; 2�// by

Fubini and Plancherel theorems (see, for instance, [25, p. 290]). For f 2 �.R/,

f .x/ D

Z 1=2

�1=2

Uf .x; �/ d� in R:
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Denoting g D Uf with f 2 �.R/, there is an explicit formula for U�g only in terms of
the values of g in .�1=2; 1=2� � Œ0; 2��:

.U�g/.x C 2�n/ D

Z 1=2

�1=2

e2i�n�g.x; �/ d� for all .x; n/ 2 Œ0; 2�/ � Z:

This definition of the Bloch–Floquet transform is convenient because it implies that U�g

is an isometry from L2..�1
2
; 1
2
�IL2.0; 2�// in L2.R/. The definition of U� for x outside

Œ0; 2�/ comes from the fact that we do not specify the periodicity condition of g with
respect to x when we only considered g as an element of L2..�1

2
; 1
2
�IL2.0; 2�//. An

important consequence of the isometry property is that we can decompose any f 2L2.R/
as an integral of � -periodic functions (namely, g.x C 2�; �/ D e2�i�g.x; �/). For more
details, we refer to [25, Section XIII.16] and [13, Section 4.2]. Another possible choice of
decomposition is based on Fourier transforms as in [1], which is well adapted to d > 2.

With our choice of direct integral decomposition of functional spaces

L2.R/ D

Z ˚
.� 12 ;

1
2 �

L2� d�; (2.3)

the goal is to decompose the Dirichlet–Neumann operator GŒ"b� into operators G� Œ"b�
acting, for all � , on periodic functions.

Let b 2 C 2.T2�/, and for any � 2H 1.T2�/, letˆ be the unique2 variational solution
of ´

.�� � 2i�@x C �
2/ˆ D 0 in !";

ˆjzD0 D �; .@n C i�nx/ˆjzD�1C"b D 0;
(2.4)

where nx denotes the horizontal component of the outward normal vector n.

Theorem 2.2. There is "0 > 0 such that, for all � 2 Œ�1
2
� "0;

1
2
C "0� and " 2 Œ�"0; "0�,

the linear operator G� Œ"b� defined as

G� Œ"b�� D @nˆjzD0 2 L
2.T2�/ (2.5)

is well defined on H 1.T2�/, closed, symmetric, positive semi-definite, and bounded uni-
formly with respect to � 2 Œ�1

2
� "0;

1
2
C "0� and " 2 Œ�"0; "0�.

Proof. It is proved in [4, Proposition 2.2] thatG� Œ"b� is well defined. We briefly recall the
argument. For � 2 H 1.T2�/ given, we lift the boundary condition on z D 0 by3

F.�/ 2 H 3=2.T2� � .�2; 0//;

2The existence and the uniqueness of ˆ is proved in the proof of Theorem 2.2.
3F is linear and continuous from H 1.T2� / to H 3=2.T2� � .�2; 0// and a possible construction is

F.�/.x; z/D
P
k2Z.

P1
jD0 z

jb�.j /kh.zp1C k2//eikx , where h 2 C1c .Œ0; 1/; Œ0; 1�/, hjŒ0;1=2� D 1; see [14,
Theorem 3.1] and [22, Section 2.5].
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where F.�/jzD0 D �, F.�/jzD�2 D 0 and introduceˆD ẑ CF.�/, where ẑ is the unique
solution in H 1

surf;0.!"/ of the variational formulation

a�;". ẑ ; '/ D �a�;".F.�/; '/ 8' 2 H
1
surf;0.!"/;

where
a�;".‰; '/ WD

Z
!"

�
r‰ � r x' C i�.‰@x x' � x'@x‰/C �

2‰x'
�

and H 1
surf;0.!"/ is the set of functions belonging in H 1.!"/ vanishing at the surface, i.e.,

on ¹z D 0º. The existence and uniqueness of ẑ is a consequence of the Lax–Milgram
theorem and the Poincaré inequality (Lemma 2.1), since the coercivity property

a�;".‰;‰/ D

Z
!"

jr‰j2 � 2� Im.‰@x x‰/C �2j‰j2 > .kr‰kL2.!"/ � j� jk‰kL2.!"//
2

>
�
1 �

3j� j

4

�2
kr‰k2

L2.!"/
> Ckr‰k2

L2.!"/
> zCk‰k2

H1.!"/

holds with C and zC independent of � 2 Œ�1
2
� "0;

1
2
C "0� and " 2 Œ"0; "0�, where "0 is

chosen smaller than 1=2.
As� ẑ 2H�1=2.T2� � .�1=2;0//, by elliptic regularity, we have ẑ ;ˆ2H 3=2.T2��

.�1=4; 0//; thus, the normal trace @zˆjzD0 belongs to L2.T2�/. We then have obtained
that G� Œ"b� is a continuous operator from H 1.T2�/ to L2.T2�/ uniformly with respect
to � 2 Œ�1

2
� "0;

1
2
C "0� and " 2 Œ"0; "0�.

Moreover, for any �;  2 H 1.T2�/, let ˆ, ‰ be the solutions associated to (2.4),
respectively. Then,

.G� Œ"b��;  / D

Z 2�

0

�
G� Œ"b��

�
x 

D

Z
!"

�
rˆ � r x‰ C i�.ˆ@x x‰ � x‰@xˆ/C �

2ˆx‰
�

D .�;G� Œ"b� /;

which implies thatG� Œ"b� is a positive semi-definite operator, symmetric for theL2-scalar
product. The positivity follows from the coercivity:

.G� Œ"b��; �/ > .krˆkL2.!"/ � �kˆkL2.!"//
2:

G� is also closed: let .�n;G� Œ"b��n/n be a sequence of the graph ofG� Œ"b� converging in
L2.0; 2�/ � L2.0; 2�/ to .�; g/; for any test function ‰ 2 C1.!"/, we have, for all n,

.G� Œ"b��n; ‰.�; 0// D

Z
!"

�
rˆn � r x‰ C i�.ˆn@x x‰ � x‰@xˆn/C �

2ˆn x‰
�
:

From the Poincaré inequality, we deduce that .ˆn/n is a bounded sequence in H 1.!"/:

kG� Œ"b��nk
1=2

L2
k�nk

1=2

L2
> .G� Œ"b��n; �n/

1=2 > krˆnkL2.!"/ � �kˆnkL2.!"/
> C1kˆnkH1.!"/ � C2k�nkL2.T2� /



C. Lacave, M. Ménard, and C. Sulem 12

with constants C1 and C2 independent of � 2 Œ�1
2
� "0;

1
2
C "0� and " 2 Œ�"0; "0�, where

"0 is chosen smaller than 1=2. Passing to the limit in the previous equality, .ˆn/n tends
in the sense of distributions to ˆ, solution of (2.4), with ˆjzD0 D � and @nˆjzD0 D g.
From @nˆjzD0 D g 2 L

2, elliptic regularity implies that ˆ 2 H 3=2.!"/, hence that � 2
H 1.T2�/ D D.G� Œ"b�/, which concludes the closure of G� Œ"b�.

An important tool for the study of spectral properties is the resolvent operator .1C
G� Œ"b�/

�1. The next proposition relates the resolvent operator to the trace of the unique
solution in H 1.!"/ of an auxiliary elliptic system. The variational formulation of this
system was introduced in [3, Section 4.a].

Proposition 2.3. Let b 2 C 2.T2�/. There is "0 > 0 such that, for all � 2 Œ�1
2
� "0;

1
2
C "0�, " 2 Œ�"0; "0� and � 2 L2.T2�/, the system8<: .�� � 2i�@x C �2/ˆ D 0 in !";

.@n C 1/ˆjzD0 D �; .@n C i�nx/ˆjzD�1C"b D 0;
(2.6)

has a unique variational solution ˆ 2 H 1.!"/ and

.1CG� Œ"b�/
�1� D ˆjzD0 :

Moreover, .1C G� Œ"b�/�1 is bounded from L2.T2�/ to H 1.T2�/ independently of � 2
Œ�1

2
� "0;

1
2
C "0� and " 2 Œ�"0; "0�.

Proof. The functionˆ is a variational solution of (2.6) if and only if, for any‰ 2H 1.!"/,

aR�;".ˆ;‰/ D L.‰/ WD

Z
T2�

�‰.�; 0/;

where

aR�;".ˆ;‰/ WD

Z
!"

�
rˆ � r x‰ C i�.ˆ@x x‰ � x‰@xˆ/C �

2ˆx‰
�
C

Z


ˆx‰: (2.7)

The operator L is continuous since

jL.‰/j 6 k�kL2.T2� /k‰kL2./ 6 Ck�kL2.T2� /k‰kH1.!"/

and aR
�;"

is a continuous sesquilinear form. In addition, it is coercive:

aR�;".ˆ;ˆ/ > .krˆkL2.!"/ � �kˆkL2.!"//
2
C kˆk2

L2./

> ı.krˆkL2.!"/ � �kˆkL2.!"//
2
C kˆk2

L2./

>
1

2

�p
ı
ˇ̌
krˆkL2.!"/ � �kˆkL2.!"/

ˇ̌
C kˆkL2./

�2
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for all ı 2 .0; 1�; hence, by Poincaré inequality (Lemma 2.1),

.aR�;".ˆ;ˆ//
1=2 >

p
ıC1krˆkL2.!"/ C

�
1
p
2
�
p
ıC2

�
kˆkL2./ > C3kˆkH1.!"/

with C1, C2 and C3 independent of � 2 Œ�1
2
� "0;

1
2
C "0� and " 2 Œ�"0; "0�, where ı is

chosen small enough. By Lax–Milgram theorem, there is a unique solution ˆ 2 H 1.!"/

of aR
�;"
.ˆ; �/ D L. By elliptic regularity4, ˆ 2 H 3=2.T2� � .�

1
2
; 0// and � WD ˆjzD0 2

H 1.T2�/. ˆ is also the unique solution of (2.4), and we have

G� Œ"b�� D @nˆjzD0 D � � �I

that is, we have found � 2 H 1.T2�/ such that .1CG� Œ"b�/� D �. We have thus proved
the surjectivity of .1C G� Œ"b�/ from H 1.T2�/ in L2.T2�/. The injectivity is obvious:
for � in the kernel of .1CG� Œ"b�/, the solution ˆ to (2.4) is solution of (2.6) with � � 0;
hence, ˆ � 0 and � � 0 by uniqueness in (2.6). This ends the proof of the bijectivity of
.1CG� Œ"b�/ and

.1CG� Œ"b�/
�1� D � D ˆjzD0 :

Remark 2.4. In the previous proof, the presence of kˆkL2./ is important to obtain the
coercivity, but choosing ı possibly smaller, we can easily prove that � … �.G� Œ"b�/ for
any � 2 ��1; 0/, only adding �� in front of

R

ˆx‰ in the definition of aR

�;"
.

An important consequence of Proposition 2.3 is the self-adjointness of G� Œ"b� and
properties of its spectrum.

Corollary 2.5. Let b 2 C 2.T2�/. There is "0 > 0 such that, for all � 2 Œ�1
2
� "0;

1
2
C

"0� and " 2 Œ�"0; "0�, the operator G� Œ"b� is self-adjoint with domain H 1.T2�/ and its
spectrum �.G� Œ"b�/ � Œ0;C1Œ.

Proof. This result comes directly from the classical theorem for closed symmetric oper-
ators on Hilbert spaces. Indeed, [24, Theorem X.1] states that the spectrum of G� Œ"b�
is either the closed upper half-plane, the closed lower half-plane, the entire plane, or a
subset of the real axis. In the proof of Proposition 2.3, we obtained that .1C G� Œ"b�/�1

is bounded from L2.T2�/ to H 1.T2�/, which implies that �1 … �.G� Œ"b�/. Thus, the
spectrum of G� Œ"b� is a subset of the real axis. The third statement in [24, Theorem X.1]
claims that, in this case, the operator is also self-adjoint. Remark 2.4 implies that

�.G� Œ"b�/ � Œ0;C1Œ:

4When�ˆD f 2L2.T2� � .�
3
4
; 0// and @nˆD g 2L2.T2� /, we haveˆ 2H 3=2.T2� � .�

1
2
; 0//:

to prove this, we lift the boundary condition by zF .g/.x; z/ D
P
k2Z z Ogkh.z

p
1C k2/eikx so that zF is

linear and continuous fromL2.T2� / toH 3=2.T2� � .�
3
4
; 0// and conclude thatˆ� zF .g/ 2H 3=2.T2� �

.� 1
2
; 0//.
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Remark 2.6. Since its resolvent is compact, the self-adjointness of G� Œ"b� implies that
it has a purely discrete spectrum. There exists an orthonormal basis . n.�; "; �//n>0 of
L2.T2�/ composed of eigenvectors of G� Œ"b�, where the eigenvalues .�n.�; "//n>0 of
G� Œ"b� are real numbers that we can order such that .�n/n is increasing and tends toC1
as n tends to infinity. Their multiplicity is finite and �.G� Œ"b�/D ¹�n.�; "/; n 2 Nº. Note
thatG� Œ"b� n.�; "; �/D �n.�; "/ n.�; "; �/ implies thatˆn, solution of (2.4) with � D n,
is also solution of (2.6) with � D .1C �n/ n and that .1CG� Œ"b�/�1.1C �n/ n D  n,
which means that  n is an eigenfunction of the resolvent with eigenvalue

�n.�; "/ D 1=.1C �n.�; "//:

A second consequence of the self-adjointness is that the definition of G� Œ"b� given in
Theorem 2.2 provides the appropriate integral decomposition ofGŒ"b� as expressed in the
next theorem.

Theorem 2.7. Under the decomposition (2.3), we have

UGŒ"b�U� D

Z ˚
.� 12 ;

1
2 �

ei�xG� Œ"b�e
�i�x d�: (2.8)

Proof. We follow the proof of [25, equation (148), p. 289]. Denote by A the operator on
the right-hand side of (2.8). Since G� Œ"b� is self-adjoint for all � 2 .�1

2
; 1
2
�, it follows

from [25, Theorem XIII.85 (a)] that A is self-adjoint. Since GŒ"b� is also self-adjoint (see
Section 2.1) and since a symmetric operator can at most have one self-adjoint extension,
it is sufficient to show that if � 2 �.R/, then U� 2 D.A/ and UGŒ"b�� D AU�.

For � 2 �.R/, from the definition of U as a convergent sum, U� 2 C1. For every
fixed � 2 .�1

2
; 1
2
�, we have e�i�.xC2�/U�.x C 2�; �/ D e�i�xU�.x; �/; hence, x 7!

e�i�xU�.x; �/ belongs to H 1.T2�/ D D.G� Œ"b�/, which implies that U� 2 D.A/.
Next, we use the definition of G� Œ"b� to consider ˆ� solution of (2.4) for �.x/ D

e�i�xU�.x; �/; then, AU�.�; x/ D ei�x@nˆ� jzD0.x/. On the other hand, let ˆ be the
solution of (2.1), GŒ"b�� D @nˆjzD0 , and

UGŒ"b��.x; �/ D

1X
nD�1

.GŒ"b��/.x C 2�n/e�2�i�n D ei�x@n ẑ � jzD0.x/;

where

ẑ
� .x; z/ D e

�i�x

1X
nD�1

ˆ.x C 2�n; z/e�2�i�n:

Noticing that ẑ � is solution of (2.4) for �.x/ D e�i�xU�.x; �/ allows to conclude that
ẑ
� D ˆ� , which ends the proof.

We conclude this section by noticing that the spectrum of G� Œ"b� is even with respect
to � . Indeed, for any � 2 H 1.T2�/, taking the conjugate of the elliptic problem (2.4)
associated to G� Œ"b��, we observe that x̂ is the solution related to G�� Œ"b�x�; hence,

G�� Œ"b�x� D G� Œ"b��:
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An eigenpair .�n; �n/ of G� Œ"b� gives rise to an eigenpair .�n; �n/ of G�� Œ"b�, which
implies the evenness of �n. It is thus sufficient to restrict the study of the eigenvalues to
� 2 Œ0; 1=2�.

3. Analyticity and general properties of the spectrum of GŒ"b�

3.1. Flat bottom

When the bottom is flat, " D 0, the eigenvalues of G� Œ0� are

�p.�/ D .p C �/ tanh.p C �/

for p 2Z and Bloch parameter � 2 .�1
2
; 1
2
�. The associated eigenfunctions are eipx , where

the solution of the elliptic problem (2.4) (for " D 0 and � D eipx) is

p̂.�; x; z/ D e
ipx cosh..p C �/.z C 1//

cosh.p C �/
: (3.1)

Eigenvalues are simple for�1=2< � < 0 and 0< � < 1=2. For � D 0;1=2, the eigenvalues
�p.�/ have multiplicity two.

When reordered appropriately by their size, the eigenvalues and eigenfunctions of
G� Œ0� are given as follows (see Figure 1 (a)):

For �
1

2
6 � < 0; �02p.�/ D ��p.�/I  2p.�; x/ D

1
p
2�
e�ipx ;

for 0 6 � 6
1

2
; �02p.�/ D �p.�/I  2p.�; x/ D

1
p
2�
eipx ;

and

for �
1

2
6 � < 0; �02p�1.�/ D �p.�/I  2p�1.�; x/ D

1
p
2�
eipx ;

for 0 6 � 6
1

2
; �02p�1.�/ D ��p.�/I  2p�1.�; x/ D

1
p
2�
e�ipx :

The eigenvalues are continuous functions of the Bloch parameter � 2 .�1=2; 1=2�.
As explained in Remark 2.6, the eigenvalues of the resolvent .1CG� Œ0�/�1 are

�0p .�/ D .1C �
0
p.�//

�1

with the same eigenfunctions. As it will be needed in Sections 4 and 5, we conclude this
section by discussing the application Rp;� defined on L2.T2�/ as

Rp;�f WD
�
.1CG� Œ0�/

�1
� �0p .�/

�
f:
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For � D 0 and any p 2 N�, �02p.0/ is of multiplicity two, with the eigenfunctions

 02p.0; x/ D .2�/
�1=2eipx and  02p�1.0; x/ D .2�/

�1=2e�ipx :

Therefore, for any f 2 L2.T2�/, we have

R2p;0f D

C1X
kD0

.�0k .0/ � �
0
2p.0//.f;  

0
k .0; x// 

0
k .0; x/I

that is, for g 2 H 1.T2�/, the equation

R2p;0f D g

has a solution if and only if

g 2 E?
�02p.0/

WD Span. 02p.0; �/;  
0
2p�1.0; �//

?
� L2.T2�/;

i.e., if and only if Z
T2�

g.x/e�ipx dx D
Z

T2�

g.x/eipx dx D 0: (3.2)

In other words, R2p;0 induces an automorphism on E?
�02p.0/

with an inverse defined by

R�12p;0g WD

C1X
kD0;k¤2p;2p�1

.g;  0
k
.0; x//

�0
k
.0/ � �02p.0/

 0k .0; x/: (3.3)

R�12p;0 is then a bounded operator from E?
�02p.0/

to E?
�02p.0/

\H 1.T2�/. We note also that

if ˆ is solution of the Laplace problem associated to G0Œ0�f (i.e., such that ˆjzD0 D f ),
then

kˆkH3=2.S/ 6 Ckf kH1.T2� / 6 CpkgkL2.T2� /:

Similarly, for p 2 N, R2p; 12 f D g has a solution if and only ifZ
T2�

g.x/e�ipx dx D
Z

T2�

g.x/ei.pC1/x dx D 0;

which allows also us to construct R�1
2p; 12

on E�2p. 12 ;0/.

3.2. Analyticity of the resolvent of G�Œ"b� in " and �

It is known that the Dirichlet–Neumann operator b 7! GŒb� is analytic with respect to
the shape of the bottom (see [15, Appendix A]). These results do not directly apply since
we want to keep track of the dependence in the Bloch parameter. The structure of the
forthcoming proof is similar to what is done in [15, Appendix A], but the problem is much
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simpler since we study analyticity with respect to a real parameter " instead of studying
the dependence with respect to the whole bottom function.

The first step to study the behavior ofG� Œ"b� with respect to " is to straighten the fluid
domain in order to see explicitly the "-dependence. We choose one of the simplest ways
to straighten !" to S D T2� � .�1; 0/: let † W S ! !" be the diffeomorphism defined by

†.x; z/ D .x; z � "zb.x//:

Proposition 3.1. Let b 2 C 2.T2�/ and "0 > 0 given in Proposition 2.3. For all � 2 Œ�1
2
�

"0;
1
2
C "0�, " 2 Œ�"0; "0�, and � 2 L2.T2�/, the function ẑ .x; z/Dˆ.†.x; z// 2H 1.S/

is a solution of8̂̂̂̂
<̂
ˆ̂̂:
� div.P.†/r ẑ / � 2i�

�
e1 C "

�
�b.x/

zb0.x/

��
� r ẑ C �2.1 � "b.x// ẑ D 0 in S;

.P.†/r ẑ / � ez � i�"b
0.x/ ẑ D 0 on ¹z D �1º;

.P.†/r ẑ / � ez C ẑ D � on ¹z D 0º;
(3.4)

if and only if ˆ is a solution of (2.6), where

P.†/ D I2 CQ.†/ and Q.†/ D "

 
�b.x/ zb0.x/

zb0.x/ b.x/C".zb0.x//2

1�"b.x/

!
:

Moreover, we have
.1CG� Œ"b�/

�1� D ẑ jzD0 :

The proof is a little long and we leave it to the reader. It consists in replacing ẑ by
ˆ.†/ in (3.4) and inserting the expression of D† and P.†/. For more details about the
straightening, we refer to [15, Section 2.2.3, p. 46].

Remark 3.2. The unique solution ẑ of (3.4) is given by

a
R;S
�;"

. ẑ ; z‰/ D L.z‰/ WD

Z


� z‰.�; 0/ for all z‰ 2 H 1.S/;

where aR;S
�;"

.ˆ.†/;‰.†//D aR
�;"
.ˆ;‰/, with aR

�;"
defined in the proof of Proposition 2.3.

After the change of variable, we obtain the natural sesquilinear form associated to (3.4):

a
R;S
�;"

. ẑ ; z‰/ D

Z
S

�
P.†/r ẑ � r

xz‰ C i�

�
e1 C "

�
�b.x/

zb0.x/

��
� . ẑr

xz‰ �
xz‰r ẑ /

�
C

Z
S

�2.1 � "b/ ẑ
xz‰ C

Z


ẑ xz‰; (3.5)

From the proof of Proposition 2.3, we can state the uniform coercivity of aR;S : there exist
"0 and C such that, for all � 2 Œ�1

2
� "0;

1
2
C "0� and " 2 Œ�"0; "0�,

a
R;S
�;"

.U; U / > CkU k2
H1.S/

:
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The main advantage of (3.4) is to work on a fixed domain S D T2� � .�1; 0/ and to
identify the influences of � and ". For instance, we adapt in the following remark the end
of Remark 2.6 with an elliptic problem satisfied in S .

Remark 3.3. If .�n;  n/ is an eigenpair of G� Œ"b�, then .�n;  n/ is an eigenpair of the
resolvent operator, and the ˆn, solution of (2.4) with � D  n, is the solution of (2.6)
with � D .1C �n/ n. This gives rise to ẑn D ˆn.†/ 2 H 3=2.S/, solution of (3.4) with
� D .1C �n/ n and such that ẑnjzD0 D  n. To summarize, an eigenfunction of G� Œ"b�
is the trace on  of a function ˆ 2 H 3=2.S/ satisfying8̂̂̂̂
<̂
ˆ̂̂:
� div.P.†/rˆ/ � 2i�

�
e1 C "

�
�b.x/

zb0.x/

��
� rˆC �2.1 � "b/ˆ D 0 in S;

.P.†/rˆ/ � ez � i�"b
0ˆ D 0 on ¹z D �1º;

.P.†/rˆ/ � ez D �.�; "/ˆ on ¹z D 0º;

(3.6)

where �.�; "/ is its associated eigenvalue. From Remark 3.2, the above system for .ˆ; �/
is equivalent to

a
R;S
�;"

.ˆ; V / D .1C �.�; "//

Z


ˆ xV for all V 2 H 1.S/: (3.7)

A detailed study of this system will lead in Sections 4 and 5 to the construction of approx-
imate eigenvalues of the resolvent operator for � close to 0 and 1

2
.

The explicit dependence on .�; "/ of the resolvent operator also allows us to prove the
analyticity of the resolvent, with respect to ", uniformly in � 2 Œ�1

2
� "0;

1
2
C "0�.

Proposition 3.4. There exist C0; r > 0 depending only on kbkW 1;1 such that

" 2 .�r; r/ 7! .1CG� Œ"b�/
�1
2 L.L2.T2�/IH

1.T2�//

is analytic. More precisely, there exist bounded operatorsRk.�/2L.L2.T2�/IH 1.T2�//
such that

kRk.�/�kH1.T2� / 6 C0k�kL2.T2� /r
�k ;

8� 2 L2.T2�/; � 2

�
�
1

2
� "0;

1

2
C "0

�
and k 2 N

and

.1CG� Œ"b�/
�1
D

C1X
kD0

"kRk.�/;

where the series converges in L.L2.T2�/IH 1.T2�//.

Proof. Let us fix � 2 L2.T2�/ andˆ the associated solution of (3.4). We write the expan-
sion of P.†/ in terms of ":

P.†/ D I2 C

C1X
kD1

"kQk
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with

Q1 D

�
�b.x/ zb0.x/

zb0.x/ b.x/

�
and Qk D

�
0 0

0 bk.x/C .zb0.x//2bk�2.x/

�
for k > 2:

(3.8)
Including this expression in (3.4), we get that ˆ solves8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

��ˆ � 2i�@xˆC �
2ˆ

� "2i�

�
�b.x/

zb0.x/

�
� rˆ � "�2b.x/ˆ �

C1X
kD1

"k div.Qkrˆ/ D 0 in S;

@zˆ � "i�b
0.x/ˆC

C1X
kD1

"k.Qkrˆ/ � ez D 0 on ¹z D �1º;

@zˆCˆC

C1X
kD1

"k.Qkrˆ/ � ez D � on ¹z D 0º:

Plugging inside an expansion of

ˆ D

C1X
kD0

"kˆk ;

we identify the terms of order 1 to write8̂<̂
:
��ˆ0 � 2i�@xˆ0 C �

2ˆ0 D 0 in S;

@zˆ0 D 0 on ¹z D �1º;

@zˆ0 Cˆ0 D � on ¹z D 0º:

For terms of order "k with k > 1, we obtain8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

��ˆk � 2i�@xˆk C �
2ˆk

D 2i�

�
�b.x/

zb0.x/

�
� rˆk�1 C �

2b.x/ˆk�1 C

kX
jD1

div.Qjrˆk�j / on S;

@zˆk D i�b
0.x/ˆk�1 �

kX
jD1

.Qjrˆk�j / � ez on ¹z D �1º;

@zˆk Cˆk D �

kX
jD1

.Qjrˆk�j / � ez on ¹z D 0º:

(3.9)
These systems correspond to the elliptic problem associated to .1C G� Œ0�/�1, and as in
Proposition 2.3, we identify the variational formulation

aR�;0.ˆ;‰/ D Lk.‰/;
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where aR
�;"

is defined in (2.7), L0.‰/ D
R
S
�‰.�; 0/, and for k > 1,

Lk.‰/ D i�

Z
S

�
�b.x/

zb0.x/

�
� .rˆk�1 x‰ �ˆk�1r x‰/

C �2
Z
S

bˆk�1 x‰ �

kX
jD1

Z
S

Qjrˆk�j � r x‰:

From Proposition 2.3, these systems have a unique solution inH 1.S/. By elliptic regular-
ity,

kˆ0kH3=2.S/ 6 C1k�kL2.T2� /

and, denoting by Fk the term on the right-hand side of the first equation of (3.9),

kˆkkH3=2.S/ 6 CkFkkH�1=2.S/ 6 C1

kX
jD1

kbk
j

W 1;1kˆk�j kH3=2.S/;

where C1 is independent of � 2 Œ�1
2
� "0;

1
2
C "0�.

Setting r D min.1=.2kbkW 1;1/I 1=.2C1kbkW 1;1//, one proves by induction that

kˆkkH3=2.S/ 6 C1r
�k
k�kL2.T2� / 8k > 0:

Setting Rk.�/ W � 7! ˆk.�; 0/ ends the proof.

Remark 3.5. As expected, we note in the previous proof that R0 D .1CG� Œ0�/�1.

Following the strategy of the previous proof and writing

�2 D �20 C 2�0.� � �0/C .� � �0/
2;

we may also prove the analyticity with respect to � uniformly in ".

Proposition 3.6. There exists C0; r > 0 depending only on kbkW 1;1 such that

� 2

�
�
1

2
� r;

1

2
C r

�
7! .1CG� Œ"b�/

�1
2 L.L2.T2�/IH

1.T2�//

is analytic. More precisely, there exist bounded operators

zRk Œ�0; "� 2 L.L2.T2�/IH
1.T2�//

such that

k zRk Œ�0; "��kH1.T2� / 6 C0k�kL2.T2� /r
�k
8� 2 L2.T2�/; 8k 2 N;

for all �0 2 Œ�12 ;
1
2
�, " 2 Œ�"0; "0�, and

.1CG� Œ"b�/
�1
D

C1X
kD0

zRk Œ�0; "�.� � �0/
k ;

where the series converges in L.L2.T2�/IH 1.T2�//.
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3.3. Perturbation theory of self-adjoint operators

The main tool of this section is perturbation theory of the spectrum of self-adjoint opera-
tors. We start with a general result: let A be a self-adjoint operator on its domain D.A/ �
H , where H is a separable Hilbert space, and a1; a2 real numbers in the resolvent set
�.A/ with a1 < a2. Let .B"/"2.0;"0� be a family of symmetric operators onD.A/ such that
B".AC i/

�1 is bounded uniformly with respect to ". Set

"A D inf
"2.0;"0�

�
1

2kB".A � a1/�1k
I

1

2kB".A � a2/�1k
I "0

�
;

which is well defined from the hypotheses above. Indeed, by [16, Corollary 4.6], we have

d.a1; �.A// D min
s2�.A/

js � a1j D k.A � a1/
�1
k
�1;

which implies that

kB".A � a1/
�1
k 6 kB".AC i/�1k

 AC iA � a1


6 kB".AC i/�1k

�
1C

ja1j C 1

d.a1; �.A//

�
: (3.10)

Theorem 3.7. If " 2 .�"0; "0/ 7! B" is analytic in L.D.A/;H/ (in the sense of Propo-
sition 3.4), then, for all j"j < "A, the perturbed operator A C "B" has the following
properties.

(a) a1 and a2 are in the resolvent set of AC "B" for all j"j < "A.

(b) If �.A/\ Œa1; a2� is a set composed of a finite number of eigenvalues and the sum
of their multiplicity is k, then this is also true for �.AC "B"/ \ Œa1; a2� for all
j"j < "A.

This theorem corresponds to [16, Theorem 5.6] when B" does not depend on ". It is
also related to [12, Chapter 7, Theorem 1.8]. Here, we follow the proof of [16, Theo-
rem 5.6] and carefully examine that Theorem 3.7 can be proved in the same way.

(1) The assertion (a) comes from a general theorem which is independent of ", namely,
applying [16, Theorem 5.2] because k"B".A � a/�1k < 1.

(2) We consider C a Jordan curve in C, surrounding Œa1; a2� and crossing the real axis
only in a1 and a2 (for instance, a rectangle @.Œa1; a2� � Œ�M;M�/), and we prove
the following estimate by using the definition of "A:"B".A � z/�1 6

�
1C

a2 � a1

2M

�
j"j

"A
8z 2 C :

For every j"j<"A, choosingM large enough allows to write " 7! .AC "B" � z/
�1

as a convergent series with respect to ":

.AC "B" � z/
�1
D .A � z/�1

X
n>0

.�1/n"n.B".A � z/
�1/n
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but as " 7! B" is analytic, we deduce that " 7! .AC "B" � z/
�1 is analytic, which

is exactly what is needed to finish the proof in Lewin’s lectures notes.

(3) We follow the proof in [16, Theorem 5.6] by establishing the analyticity of the
spectral projector P."/ and by using the fact that the rank of an orthogonal pro-
jector is an entire and continuous function, then remaining constant.

We will apply the above theorem with

A D G� Œ0�; "B" D G� Œ"b� �G� Œ0�; D.A/ D H 1.T2�/; H D L2.T2�/:

From the analyticity of the resolvent (see Proposition 3.4), we write

1CG� Œ"b� D
�
R0

�
1C

X
k>1

"kR�10 Rk

���1
D

�
1C

X
k>1

"kR�10 Rk

��1
R�10 ;

where we notice that R�10 Rk is a bounded operator from L2.T2�/ to L2.T2�/, with a
norm less than C0r�k . Recalling that

R�10 D 1CG� Œ0�;

this allows us to identify B" as an analytic function in L.H 1.T2�/IL2.T2�// and state
that the boundedness in L.L2.T2�// of R�10 .A C i/�1 gives that B".A C i/�1 is uni-
formly bounded.

The first proposition shows that, for � not too close to 0 or 1
2

, p 2 N and " sufficiently
small (depending on b and p),G� Œ"b� has a simple eigenvalue �"p.�/ in an interval outside
the gap we will construct. Recall that Fp is defined in (1.3).

Proposition 3.8 (Perturbation of a simple eigenvalue). Fix p 2 N. There exist "p;1 > 0,
dp;1 > 0, and dp;2 > F2pj Ob2pj C F2pC1j Ob2pC1j C F2pC2j Ob2pC2j depending on p and b
such that, for all " 2 Œ0; "p;1/, and dp;1" 6 � 6 1

2
� dp;1", we have

�.G� Œ"b�/ \
�
�02p.0/; �

0
2pC2.0/

�
D ¹�"2p.�/; �

"
2pC1.�/º; (3.11)

where �"2p.�/ and �"2pC1.�/ are simple. Moreover,

0 6 �"2p.�/ 6 �02p

�
1

2

�
� dp;2" if p D 0;

�02p.0/C dp;2" 6 �"2p.�/ 6 �02p

�
1

2

�
� dp;2" if p > 0;

�02p

�
1

2

�
C dp;2" 6 �"2pC1.�/ 6 �02pC2.0/ � dp;2";

and
max

kD2p;2pC1
max

dp;1"6�6 1
2�dp;1"

ˇ̌
�"k.�/ � �

0
k.�/

ˇ̌
6 dp;2":
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The condition dp;2 >F2pj Ob2pj CF2pC1j Ob2pC1j CF2pC2j Ob2pC2j does not appear nat-
urally in the proof, but it will be necessary for the opening of the gap proved in Section 4.

Proof. Fix p 2 N. As it was noted before Proposition 3.8 that B".AC i/�1 is uniformly
bounded, we have also that k"B".AC 1/�1k < 1 for all " 2 Œ0; "0.b//. We set

Rp WD �
0
2pC2.0/C 1; �" WD 1 �

"B".AC 1/�1 (3.12)

which verifies 1 6 Rp < �"=k"B".AC 1/
�1k for " small enough (depending only on b

and p). We choose dp;2 larger than F2pj Ob2pj C F2pC1j Ob2pC1j C F2pC2j Ob2pC2j such that

R2pk"B".AC 1/
�1k

�" �Rpk"B".AC 1/�1k
6 dp;2" 8" 2 Œ0; "p;1�; � 2

�
0;
1

2

�
;

where "p;1 > 0 is chosen small enough, depending only on b and p. As d�0
k

d� .0/ ¤ 0 if

k > 0 and d�0
k

d� .
1
2
/ ¤ 0 if k > 0, we can fix dp;1 > 0 such that5

�00.�/ < �
0
0

�
1

2

�
� 2dp;2" for � 2

�
0;
1

2
� dp;1"

�
;

�02k.0/C 2dp;2" < �
0
2k.�/ < �

0
2k

�
1

2

�
� 2dp;2" for 0 < k 6 p

and � 2
�
dp;1";

1

2
� dp;1"

�
;

�02k

�
1

2

�
C 2dp;2" < �

0
2kC1.�/ < �

0
2kC2.0/ � 2dp;2" for 0 6 k 6 p

and � 2
�
dp;1";

1

2
� dp;1"

�
;

(3.13)
We assume now that p > 0, and we will comment later on the case p D 0.
Let a1 D �02p.0/ and a2 D �02p.

1
2
/which clearly belong to the resolvent set ofAwhen

� 2 .0; 1=2/. For � 2 Œdp;1"; 12 � dp;1"�, the previous inequalities imply that

d.a1; �.G� Œ0�// > 2dp;2"; d.a2; �.G� Œ0�// > 2dp;2"I

hence, by (3.10),

kB".G� Œ0� � a1/
�1
k 6

Cb;p

2dp;2"
; kB".G� Œ0� � a2/

�1
k 6

Cb;p

2dp;2"
:

5For instance, for k > 0, d�0
2k

d� .0/;
d�0
2k

d� .
1
2
/¤ 0 implies that �0

2k
.0/C ck� 6 �0

2k
.�/6 �0

2k
. 1
2
/� ck.

1
2
�

�/ for all � 2 Œ0; 1=2�.
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As for Theorem 3.7, we set

"A D inf
�

1

2kB".A � a1/�1k
I

1

2kB".A � a2/�1k
I "0

�
> min

�
dp;2"

Cb;p
I "0

�
:

Without any loss of generality, we can assume that dp;2 was chosen large enough such
that dp;2 > Cb;p . Therefore, for any " 2 Œ0; "p;1/ and dp;1" 6 � 6 1

2
� dp;1", we have

0 6 " < "A;

so Theorem 3.7 implies that there exists a unique eigenvalue inside Œ�02p.0/; �
0
2p.

1
2
/�.

Moreover, it is simple and strictly included in this interval. Applying the same argu-
ment with a1 D �02p.

1
2
/ and a2 D �02pC2.0/, there exists a unique eigenvalue inside

Œ�02p.0/; �
0
2p.

1
2
/�. Moreover, it is simple and strictly included in this interval.

For p D 0, we simply consider a1 D �1 and a2 D �02p.
1
2
/, which means that, for

� 2 Œ0; 1
2
� dp;1"�, there is a unique eigenvalue inside Œ�1; �00.

1
2
/�. Moreover, it is simple,

strictly included in this interval, and non-negative by the positivity of G� Œ"b�. Therefore,
choosing p 7! "p;1 decreasing, we can count the eigenvalues and conclude the proof of
(3.11).

Next, we apply [16, Theorem 5.2] with a D �1, Rp and �" defined in (3.12), to state
that

sup
k62pC2

inf
j2N
j�"j .�/ � �

0
k.�/j 6

R2pk"B".AC 1/
�1k

�" �Rpk"B".AC 1/�1k
6 dp;2";

sup
j62pC2

inf
k2N
j�"j .�/ � �

0
k.�/j 6

R2pk"B".AC 1/
�1k

�" �Rpk"B".AC 1/�1k
6 dp;2":

Using (3.13), we conclude that the infimum is reached for j D k, which ends the proof of
the proposition.

Remark 3.9. If p D 0, we note in the previous proof that we have the information for
�"0.�/ up to � D 0; namely, for all " 2 Œ0; "p;1/ and � 2 Œ0; 1

2
� dp;1"�, one has

�.G� Œ"b�/ \

�
0; �00

�
1

2

��
D ¹�"0.�/º;

where �"0.�/ is simple, belongs to Œ0; �00.
1
2
/ � dp;2"�, and is such that

max
06�6 1

2�dp;1"

ˇ̌
�"0.�/ � �

0
0.�/

ˇ̌
6 dp;2":

The next proposition provides a first description of the spectrum ofG� Œ"b� for " small,
and � close to 0 or 1

2
, where G� Œ0� has an eigenvalue of multiplicity two. The next section

will give conditions on the bottom b that lead to the separation of the double eigenvalue
into two simple eigenvalues, creating a gap.
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Proposition 3.10 (Perturbation of a double eigenvalue). Fix p 2 N�. There exist "p;2 2
.0; "p;1� and dp;3 > 0 depending on p and b such that, for all " 2 Œ0; "p;2�, and 0 6 � 6
dp;1", we have that

�.G� Œ"b�/ \

�
�02p�1

�
1

2

�
; �02p

�
1

2

��
contains exactly two eigenvalues counted with multiplicity �"2p�1.�/6 �"2p.�/. Moreover,

max
kD2p�1;2p

max
06�6dp;1"

ˇ̌
�"k.�/ � �

0
k.�/

ˇ̌
6 dp;3":

Proof. The proof follows the strategy of the proof of Proposition 3.8 but is much simpler
as �02p.�/ is far from �02p.

1
2
/ for � 2 Œ0; dp;1"�. Fix p 2 N�; then,

�02p�1

�
1

2

�
C
1

8
< �02p�1.�/ 6 �02p.�/ < �

0
2p

�
1

2

�
�
1

8
for � 2 Œ0; dp;1"�

for all " small enough, depending on p and dp;1.
Let a1 D �02p�1.

1
2
/ and a2 D �02p.

1
2
/ which clearly belong to the resolvent set of A

when � 2 Œ0; dp;1"�. As d.a1; �.G� Œ0�//; d.a2; �.G� Œ0�// > 1=4, (3.10) gives

kB".G� Œ0� � a1/
�1
k 6 Cb;p; kB".G� Œ0� � a2/

�1
k 6 Cb;p:

As for Theorem 3.7, we set

"A D inf
�

1

2kB".A � a1/�1k
I

1

2kB".A � a2/�1k
I "0

�
> min

�
1

2Cb;p
I "0

�
:

Therefore, for any "2 Œ0;"p;2/, where "p;2 is small enough, and 06 � 6 dp;1", we have 06
" < "A, so Theorem 3.7 implies that there exist two eigenvalues counted with multiplicity
inside Œ�02p�1.

1
2
/; �02p.

1
2
/�. Moreover, they are strictly included in this interval.

Choosing p 7! "p;2 decreasing, we can count the eigenvalues and conclude that they
correspond to �"2p�1.�/ and �"2p.�/.

We next use again that, for " 2 Œ0; "p;1�, we have k"B".AC 1/�1k < 1 and

1 6 Rp < �"=k"B".AC 1/
�1
k;

where
Rp D �

0
2pC2.0/C 1; �" WD 1 � k"B".AC 1/

�1
k:

So, [16, Theorem 5.2] with a D �1 gives that

sup
k62pC2

inf
j2N
j�"j .�/ � �

0
k.�/j 6

R2pk"B".AC 1/
�1k

�" �Rpk"B".AC 1/�1k
6 dp;2";

sup
j62pC2

inf
k2N
j�"j .�/ � �

0
k.�/j 6

R2pk"B".AC 1/
�1k

�" �Rpk"B".AC 1/�1k
6 dp;2":

The first inequalities established in this proof end the proof of the proposition because
j�02p.�/ � �

0
2p�1.�/j 6 Cpdp;1" for all � 2 Œ0; dp;1"�.
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The previous proof can be directly adapted in the neighborhood of 1=2.

Proposition 3.11 (Perturbation of a double eigenvalue). Fix p 2 N. There exist "p;3 2
.0; "p;1� and dp;4 > 0 depending on p and b such that, for all " 2 Œ0; "p;3�, and 1

2
� dp;1"6

� 6 1
2

, we have that
�.G� Œ"b�/ \

�
�02p.0/; �

0
2pC2.0/

�
contains exactly two eigenvalues counted with multiplicity �"2p.�/6 �"2pC1.�/. Moreover,

max
kD2p;2pC1

max
1
2�dp;1"6�6 1

2

ˇ̌
�"k.�/ � �

0
k.�/

ˇ̌
6 dp;4":

3.4. Proof of Theorem 1.1

To see more clearly the role of parameters � and ", we use in this section the notation
�p.�; "/ for �"p.�/, and �p.�; "/ for �"p.�/.

Theorem 1.1 will follow from general perturbation theory for analytic operators. We
recall that the compactness and self-adjointness of the resolvent .1C G� Œ"b�/�1 provide
eigenvalues .�n.�; "//n for G� Œ"b� (see Remark 2.6) and the associated eigenfunctions
. n.�; "//n form a complete orthonormal basis of L2.T2�/.

For any fixed ", the analyticity of the resolvent with respect to � (Proposition 3.6)
allows us to apply in [27, Chapter II, Theorem 1] or [12, Chapter VII, Theorem 3.9] to
state that there is a reordering .z�n; z n/ of .�n;  n/ such that the functions � 7! z�n.�; "/
and � 7! z n.�; "/ are analytic in a neighborhood of Œ�1

2
; 1
2
� (a necessary reordering near

crossing eigenvalues, see Figure 1).
As illustrated in Figure 1, having analytic eigenvalues with respect to � in the neigh-

borhood of a crossing point means that .z�n/n is not necessarily an increasing sequence for
all � . Alternatively, we can redefine the functions � 7! .�n;  n/.�; "/ so that the eigen-
values are in increasing order, but, in this case, we can only say that the eigenvalues are
Lipschitz with respect to � 2 .�1

2
; 1
2
�. This is the choice made in [16, Theorem 7.3].

We now prove the relation given in Theorem 1.1 between the spectrum of GŒ"b� and
�n, using general argument of the Bloch–Floquet theory. A way to verify this statement
is to extend the proof of such an equality for the Schrödinger operator [16, Theorem 7.3].
We start with the inclusion from right to left. Define f� WD n.�; "/ 2H 1.T2�/ the eigen-
function associated to the eigenvalue �n.�; "/ of G� Œ"b� and set

g�.x/ WD �
1=2ei�xf� .x/�.�x/ 2 H

1.R/;

where � 2 C1c .R;RC/ and
R
�2 D 1. It is proved therein that kg�kL2 ! .2�/�1=2 as

�! 0. The only point to adapt is the fact that .GŒ"b� � �n/g� tends to zero in the limit
� ! 0. For this, let us consider ‰�.x; z/ D �1=2ei�xˆ� .x; z/�.�x/, where ˆ� is the
solution of the elliptic problem (2.4) associated to G� Œ"b� n, and verify that it satisfies in
the sense of distributions´
��‰� D ��

5=2ei�xˆ��
00.�x/ � 2�3=2ei�x.i�ˆ� C @xˆ� /�

0.�x/ in �";

‰�jzD0 D g�; @n‰�jzD�1C"b D �
3=2nxe

i�xˆ��
0.�x/; @n‰�jzD0 D �ng�;
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whereas the solution ˆ of the elliptic problem (2.4) associated to GŒ"b�g� satisfies´
��ˆ D 0 in �";

ˆjzD0 D g�; @nˆjzD�1C"b D 0:

This implies that

k.GŒ"b� � �n/g�kL2.R/

D k.@nˆ � @n‰�/jzD0kL2.R/ 6 Ckˆ �‰�kH3=2.�"/

6 Ck � �5=2ei�xˆ��
00.�x/ � 2�3=2ei�x.i�ˆ� C @xˆ� /�

0.�x/kH1=2.�"/

C Ck�3=2nxe
i�xˆ��

0.�x/kL2.@�"/:

The right-hand side term tends to zero as in [16, Theorem 7.3], which implies, from Weyl’s
criterion (see [26, Theorem VII.12]), that �n 2 �.GŒ"b�/.

For the converse, we notice that Theorem 2.7 together with the isometry of U gives

kGŒ"b�f k2
L2.R/ D

Z 1

0

Z 2�

0

ˇ̌
G� Œ"b�Uf .�; �/

ˇ̌2
.x/ dx d�;

so the rest of the proof of [16, Theorem 7.3] can be readily applied.
Notice that G0Œ"b�1 D 0 so �"0.0/ D 0.
Part (ii) of Theorem 1.1 is a direct consequence of Proposition 3.8, Remark 3.9, and

Propositions 3.10 and 3.11 by setting "1.b; p/ D min."1;p; "2;p; "3;p/.
We now prove (iii). We first fix N1 such that, for all � 2 Œ�1

2
; 1
2
�, �0N1C1.�/ >M C 2.

By Part (ii) of the theorem, there exists "1.b; N1/ such that, for all " 6 "1.b; N1/ and for
all � 2 Œ�1

2
; 1
2
�, �"N1C1.�/ > M C 1. Therefore, for all n > N1 C 1,

�"n.�/ > M C 1:

Furthermore, there also exists N such that, for all n > N C 1,

z�"n.�/ > M C
1

2
: (3.14)

We need the above estimate on z�"n.�/ in order to reproduce the proof of [25, Theorem
XIII.86] and obtain the purely absolutely continuous character of the lower part of the
spectrum of �.GŒ"b�/. To prove (3.14), we proceed by contradiction. Assume that, for all
N , there exist n > N C 1 and �n 2 Œ�12 ;

1
2
� such that z�"n.�n/ < M C

1
2

; i.e., there is an
infinite number of z�"n passing from z�"n.0/ D �

"
n.0/ > M C 1, to values less than M C 1

2
.

There is no subsequence such that .�n/ is constant (say equal to �0) because this would
imply that there is an infinite number of eigenvalues at �0 less thanM C 1. Therefore, we
can extract a subsequence .�n/ which is increasing or decreasing, say increasing, where
z�n.�n/ < M C

1
2

. Denote by �1 2 Œ�12 ;
1
2
� the limit of .�n/. Since there is only a finite

number of eigenvalues .z�"n.�1// less than M C 1, an infinite number of z�"n have to exit
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Œ0;M C 3
4
�; i.e., there are cn 2 Œ�n; �1/ such thatM C 1> z�"n.cn/>M C 3

4
. As z�"n can be

defined only from N1 C 1 functions �"n, there is an index '.n/ 2 Œ0; N1� and some values
an, bn of the parameter � such that �n 6 an 6 bn 6 cn and j�"

'.n/
.bn/ � �

"
'.n/

.an/j >
1

4.N1C1/
. As '.n/2 Œ0;N1�, we can extract a sequence such that '.n/ is constant (sayN1),

which is impossible because �"N1 is Lipschitz. Therefore, (3.14) holds.
We define

Hn WD

²
h 2 L2

��
�
1

2
;
1

2

�
;T

�
I h.�/ D f .�/ z "n.�; "/; f 2 L

2

��
�
1

2
;
1

2

��³
and Gn W Hn ! Hn as the multiplication by the function z�n.�; "/.

We use Propositions 3.8, 3.10, and 3.11 to state that there exists "2.N; b/ such that
for all n 6 N and for all " 6 "2.N; b/ and � 2 Œ�1

2
; 1
2
�, jz�"n.�/ � z�

0
n.�/j 6 CN;b". Since

z�0n.�/ D .r C �/ tanh.r C �/ for some r 2 N, we get that, for " small enough and for all
n6N , z�"n.�/ is not constant. The proof of [25, Theorem XIII.86] then ensures thatGn has
only absolutely continuous spectrum. Note also that �.Gn/ D z�"n.Œ�

1
2
; 1
2
�/, so by Part (i)

of the theorem and (3.14), we have

�.GŒ"b�/ \ Œ0;M � D

N[
nD0

�.Gn/ \ Œ0;M �

and therefore (iii).

4. Gap opening of order "

Theorem 1.1 shows that the spectrum of GŒ"b� is composed of union of bands that may or
may not overlap. In this section, we show that, for a given p, if Ob2p ¤ 0, a gap of size "
occurs between �"2p�1 and �"2p , namely,

max
� 12<�6 1

2

�"2p�1.�/ D max
06�6 1

2

�"2p�1.�/ < min
� 12<�6 1

2

�"2p.�/ D min
06�6 1

2

�"2p.�/;

where we have used the evenness of the spectrum.
In the case of one-dimensional Schrödinger operators with periodic potentials, bands

cannot overlap due to the key property that the eigenvalues, labeled in increasing order,
are strictly monotone functions of � , and studying the opening of a gap then reduces to
studying the splitting of the eigenvalues at � D 0; 1=2. However, for G� Œ"b�, the mono-
tonicity of the �p.�; "/ with respect of � is unknown. The opening of gaps happens in the
neighborhood of � D 0; 1=2, and a detailed matching of the inner and outer regions must
be done to ensure that the gap indeed exists.

The main idea of this section and Section 5 is the construction of approximated eigen-
values, and we will use the approximation lemma below which is an extension of a result
of Bambusi, Kappeler, and Paul, [2, Proposition 5.1] for operators on finite-dimensional
spaces to compact operators on Hilbert spaces.
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Lemma 4.1. Let K be a compact positive semi-definite self-adjoint operator on a sepa-
rable Hilbert space H .

If .�app; uapp/ 2 RC �H satisfies kuappk D 1 and kKuapp � �appuappk 6 E , then there
exists an eigenvalue � of K such that j� � �appj 6 E .

Proof. Let ¹�nºn2N be the set of eigenvalues ofK (counted with multiplicity), associated
to an orthonormal basis of unitary eigenvectors ¹unºn2N :

Kuapp
� �appuapp

D

X
n

�n.u
app; un/un �

X
n

�app.uapp; un/un:

Therefore,

kKuapp
� �appuapp

k
2
D

X
n

.�n � �
app/2.uapp; un/

2 > inf
n2N
j�n � �

app
j
2:

Thus, infn2N j�n � �
appj 6 E . Let .�nk / � RC be a subsequence such that

j�nk � �
app
j �����!
k!C1

inf
n2N
j�n � �

app
j:

Since there is no accumulation of eigenvalues outside zero and as �app C E > 0, there
exists k such that �nk 2 Œ�

app � E; �app C E�.

4.1. Perturbation of double eigenvalues

Fix p 2 N�. We will prove that, under the assumptions of Theorem 1.2 part (i) and for �
small enough, the spectrum of G� Œ"b� near �02p.0/ is composed of two eigenvalues �p˙
separated by a gap of size ". We will use asymptotic expansions to create two approximate
eigenvalues �app

p˙ separated by a gap of size " and show that �pC (resp., �p�) is in an "2

neighborhood of �app
pC (resp., �app

p�). This argument relies on Lemma 4.1.
To construct an approximate solution of System (3.6) for " small and � 2 Œ0; d1;p"�,

we use an idea of Chiadò Piat et al. [3, Section 3] and consider simultaneously the two
small parameters " and � .

Fix � D ı" with ı 2 Œ0; d1;p� (d1;p > 0 is given in Proposition 3.8 and may be large),
and write the following Ansatz for the approximate eigenpair .�app

p˙; U
app
p˙ / in the neigh-

borhood of � D 0:´
�p˙.� D ı"; "/ � �

0
2p.0/C "�

0
p˙.ı/ DW �

app
p˙.ı; "/;

ˆ.� D ı"; "; x; z/ � U 0p˙.x; z/C "U
0
p˙.ı; x; z/ DW U

app
p˙ .ı; "; x; z/:

(4.1)

Note however that, in contrast with the analysis of [3], our parameter ı does not depend
on ". Like many constants involved, it depends on p, the label of the double eigenvalue
under consideration, which has been fixed. This expansion will be rigorously justified in
Proposition 4.4. Inserting (4.1) into (3.6), and formally identifying terms of order 1 D "0,
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we find that U 0p˙ solves the spectral problem for flat bottom with periodic boundary con-
ditions: ´

��U 0p˙ D 0 in S;

@zU
0
p˙ D 0 on ¹z D �1º; @zU

0
p˙ D �

0
2p.0/U

0
p˙ on ¹z D 0º:

(4.2)

From Section 3.1,U 0p˙D˛
˙
C p̂ C ˛

˙
�ˆ�p , with ˛˙C ;˛

˙
� 2R, and p̂.x;z/ WD p̂.0;x;z/

given in (3.1) with � D 0.
Identifying the terms of order ", we request that U 0p˙.ı; x; z/ solves8̂̂<̂
:̂
��U 0p˙.ı/ D div.Q1rU 0p˙/C 2iı@xU

0
p˙ in S;

@zU
0
p˙.ı/ D �.Q1rU

0
p˙/ � ez on ¹z D �1º;

@zU
0
p˙.ı/ D �

0
2p.0/U

0
p˙.ı/ � .Q1rU

0
p˙/ � ez C �

0
p˙.ı/U

0
p˙ on ¹z D 0º;

(4.3)

where Q1 is given in (3.8). Before proving the validity of the approximation, we identify
the values of �0p˙.ı/ for which (4.3) has a solution.

Proposition 4.2. The system (4.3) has a variational solution if and only if

Mp

�
˛˙C
˛˙�

�
D �0p˙.ı/

�
˛˙C
˛˙�

�
(4.4)

with

MpD

0@ Kpı Ob2pF2p

Ob2pF2p �Kpı

1A ; F2pD

�
p

cosh.p/

�2
; KpD

p

cosh.p/2

�
1C

sinh.2p/
2p

�
:

In this case, we have
�0p˙.ı/ D ˙

�
K2pı

2
C F 22pj

Ob2pj
2
� 1
2 : (4.5)

Proof. A solution U 0p˙.ı/ of (4.3) satisfies, for all V 2 H 1.S/,Z
S

rU 0p˙.ı/ � r
xV � �02p.0/

Z


U 0p˙.ı/
xV

D �

Z
S

Q1rU
0
p˙ � r

xV C 2iı

Z
S

@xU
0
p˙
xV C �0p˙.ı/

Z


U 0p˙
xV WD L.V /: (4.6)

By Riesz representation theorem, there exists a unique function W 2 H 1.S/ such that

L.V / D .W; V /H1.S/ D

Z
S

rW � r xV C

Z


W xV :

Therefore,Z
S

r.U 0p˙.ı/ �W / � r
xV C

Z


.U 0p˙.ı/ �W /
xV D

1

�02p.0/

Z


U 0p˙.ı/
xV
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with �02p.0/ D .1C �
0
2p.0//

�1, or equivalently,

a
R;S
0;0 .U

0
p˙.ı/ �W;V / D

1

�02p.0/

Z


U 0p˙.ı/
xV ;

where aR;S0;0 is the Hermitian form defined by (3.5). By Remark 3.2 and Proposition 3.1, the
previous inequality implies that U 0p˙.ı/ �W is the solution of the elliptic problem (3.4)
(when � D " D 0) for � D 1

�02p.0/
� 0p˙.ı/ WD

1

�02p.0/
U 0p˙.ı/jzD0 ; hence,

1

�02p.0/
.1CG0Œ0�/

�1� 0p˙.ı/ D .U
0
p˙.ı/ �W /jzD0

and �
.1CG0Œ0�/

�1
� �02p.0/

�
� 0p˙.ı/ D ��

0
2p.0/WjzD0 : (4.7)

From (3.2), equation (4.7) has a solution if and only ifZ
T2�

W.x; 0/e˙ipx dx D 0:

Using that ˆ˙p satisfies (4.2), we get that

L.ˆ˙p/ D

Z
S

rW � rˆ˙p C

Z


Wˆ˙p D .1C �
0
2p.0//

Z


Wˆ˙p;

and therefore, (4.7) has a solution if and only if L.ˆ˙p/ D 0; that is,

�0p˙.ı/

Z


U 0p˙ p̂ D

Z
S

Q1rU
0
p˙ � r p̂ C 2iı

Z
S

U 0p˙@x p̂;

�0p˙.ı/

Z


U 0p˙ˆ�p D

Z
S

Q1rU
0
p˙ � rˆ�p C 2iı

Z
S

U 0p˙@xˆ�p:

(4.8)

We haveZ


U 0p˙ p̂ D

Z


.˛˙C p̂ C ˛
˙
�ˆ�p/ p̂ D 2�˛

˙
C ;

Z


U 0p˙ˆ�p D 2�˛
˙
� : (4.9)

To compute the first term on the right-hand sides of (4.8), we use the following lemma
whose proof is given in Appendix A.

Lemma 4.3. The following equalities are satisfied:Z
S

Q1r p̂ � r p̂ D

Z
S

Q1rˆ�p � rˆ�p D 0; (4.10)Z
S

Q1r p̂ � rˆ�p D 2�
� p

cosh.p/

�2
Ob2p; (4.11)Z

S

Q1rˆ�p � r p̂ D 2�
� p

cosh.p/

�2
Ob2p: (4.12)
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We are left to compute

2iı

Z
S

U 0p˙@x p̂ D 2i.�ip/ı

Z
S

.˛˙C p̂ C ˛
˙
�ˆ�p/ p̂

D 4�pı˛˙C

Z 0

�1

cosh.p.z C 1//2

cosh.p/2
dz

D 2�ı˛˙C
p

cosh.p/2

Z 0

�1

.1C cosh.2p.z C 1/// dz

D 2�ı˛˙C
p

cosh.p/2

�
1C

sinh.2p/
2p

�
(4.13)

and

2iı

Z
S

U 0p˙@xˆ�p D �2�ı˛
˙
�

p

cosh.p/2

�
1C

sinh.2p/
2p

�
: (4.14)

Using (4.9), (4.11), (4.13), and (4.14), we can rewrite (4.8) as (4.4). We find the value of
�0p˙.ı/ given by Proposition 4.2 by computing the eigenvalues of Mp .

Denote �app
p˙ WD U

app
p˙ jzD0, � app

p˙ WD .1C �
app
p˙/
�1. The next result shows that .� app

p˙; �
app
p˙/

are approximate eigenpairs of the resolvent operator.

Proposition 4.4. Under the assumptions of Proposition 4.2, and assuming that " is small
enough (depending only on b and p), we have for all ı 2 Œ0; dp;1�

k.1CGı"Œ"b�/
�1�

app
p˙ � �

app
p˙�

app
p˙kL2.T2� / 6 Cb;p"

2
k�

app
p˙kL2.T2� /:

Proof. Inserting U app
p˙ D U

0
p˙ C "U

0
p˙ in (3.5), we find that, for V 2 H 1.S/,

a
R;S
ı";"

.U
app
p˙ ; V / D

Z
S

P.†/rU
app
p˙ � r

xV C ı2"2
Z
S

.1 � "b.x//U
app
p˙
xV

C

Z


U
app
p˙
xV C iı"

Z
S

�
e1 C "

�
�b.x/

zb0.x/

��
� .U

app
p˙r

xV � xV rU
app
q˙ /

D .�
app
p˙ C 1/

Z


U
app
p˙
xV C zL.V /;

where

zL.V / D �"2�0p.ı/

Z


U 0p˙.ı/
xV C "2

Z
S

zQrU
app
p˙ � r

xV C "2
Z
S

Q1rU
0
p˙.ı/r

xV

C ı2"2
Z
S

.1 � "b.x//U
app
p˙
xV C iı"2

Z
S

�
�b.x/

zb0.x/

�
� .U

app
p˙r

xV � xV rU
app
p˙ /

C i"2ı

Z
S

.U 0p˙.ı/@x
xV � xV @xU

0
p˙.ı//
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and "2 zQ D P.†/ � I2 � "Q1. By Lax–Milgram, there exists zW such that aR;S
ı";"

. zW ; �/ D

zL.�/. Using that � app
p˙ D .1C �

app
p˙/
�1, we get

a
R;S
ı";"

.U
app
p˙ �

zW ;V / D
1

�
app
p˙

Z


U
app
p˙
xV : (4.15)

From Remark 3.2 and Proposition 3.1, the previous inequality implies that U app
p˙ �

zW is
the solution of the elliptic problem (3.4) (when � D ı") for � D 1

�
app
p˙

�
app
p˙ D

1

�
app
p˙

U
app
p˙ jzD0;

hence,
1

�
app
p˙

.1CGı"Œ"b�/
�1�

app
p˙ D .U

app
p˙ �

zW /jzD0I

thus,

k.1CGı"Œ"b�/
�1�

app
p˙ � �

app
p˙�

app
p˙kL2 6 Cpk zW kH1.S/ 6 CpkzLkH1.S/0 ; (4.16)

with
kzLkH1.S/0 6 Cb"

2.kU 0p˙kH1.S/ C kU
0
p˙.ı/kH1.S//: (4.17)

Using (4.7), we may choose U 0p˙.ı/jzD0 D �
0
p˙.ı/ D ��

0
2p.0/R

�1
2p;0.WjzD0/, where R�12p;0

is the operator defined in (3.3). Therefore,

kU 0p˙.ı/kH1.S/ 6 CpkW kH1.S/ 6 Cb;pkLkH1.S/0 6 Cb;pkU
0
p˙kH1.S/;

where L is defined in (4.6), and it follows that

kzLkH1.S/0 6 Cb;p"
2
kU 0p˙kH1.S/

and if " is small enough (depending on p and b),

kU
app
p˙kH1.S/ > kU 0p˙kH1.S/.1 � Cb;p"/ >

1

2
kU 0p˙kH1.S/: (4.18)

From (4.15) and the coercivity of aR;S
�;"

independently of � and ", we get that if " is small
enough,

k�
app
p˙kL2.T2� / > cb;p.kU

app
p˙kH1.S/ � k

zW kH1.S// > cb;pkU
0
p˙kH1.S/:

Estimate of Proposition 4.4 results from combining the above equation with (4.17) and
(4.16).

Proof of Theorem 1.2. Let ı 2 Œ0;d1;p�, �Dı" 2 Œ0;d1;p"�, and uapp
p˙D�

app
p˙=k�

app
p˙kL2.T2� /.

We now apply Lemma 4.1 for operatorK� ."/D.1CG� Œ"b�/�1 with pairs .� app
pC.ı;"/;u

app
pC/

and .� app
p� .ı; "/; u

app
p�/.

If " < "p (for some "p depending only on b and p), there exist two eigenvalues �"p˙.�/
of .1C G� Œ"b�/�1 such that j�"p˙.�/ � �

app
p˙.�"

�1; "/j 6 Cp"
2. Consequently, there exist
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two eigenvalues �"p˙.�/ of G� Œ"b� such that j�"p˙.�/ � �
app
p˙.�"

�1; "/j 6 Cp"
2. Using

expression (4.5) for �0p˙.ı/, we get

j�"p˙.�/ � �
0
2p.0/j 6 Cp"

2
C Cp" 6 2Cp" <

1

8

for " 6 "p . By Proposition 3.10, the spectrum of G� Œ"b� has exactly two eigenvalues in a
neighborhood of �02p.0/; therefore, �"2p�1.�/D �

"
p�.�/ and �"2p.�/D �

"
pC.�/. Note that

�"2p.�/ > �
app
pC.ı; "/ � j�

"
pC.�/ � �

app
pC.�"

�1; "/j

> �02p.0/C "�
0
pC.ı/ � Cp"

2 > �02p.0/C F2pj
Ob2pj" � Cp"

2;

and similarly,

�"2p�1.�/ 6 �02p.0/ � F2pj
Ob2pj"C Cp"

2:

Thus, for 0 6 � 6 dp;1", we have obtained a lower bound for the separation between the
two eigenvalues of �.G� Œ"b�/ in the vicinity of � D 0, if Ob2p ¤ 0:

�"2p.�/ � �
"
2p�1.�/ > 2F2pj Ob2pj" � Cp"

2:

Let us note that it is the first time in this section that we need Ob2p ¤ 0.
A last step is needed to show that the gap remains open for � far from 0. For this,

we return to estimates for the perturbation of simple eigenvalues. In Proposition 3.8, we
proved that, for sufficiently small ", and dp;1" 6 � 6 1

2
� dp;1", �"2p.�/ is larger than

�02p.0/C F2pj
Ob2pj" and �"2p�1.�/ is smaller than �02p.0/ � F2pj Ob2pj".

Finally, to find the precise size of the gap, we take � and ı very small, say ı 6 ", hence
� D ı" 6 "2. From (4.5),

�0p˙.ı/ D ˙F2pj
Ob2pj CO."/; �

app
p˙ D �

0
2p.0/˙ "F2pj

Ob2pj CO."2/

and

j�"p˙.�/ � .�
0
2p.0/˙ F2pj

Ob2pj"/j 6 Cp"
2:

This gives the precise size of the gap opening, centered at �02p.0/ of length 2"F2pj Ob2pj
plus small corrections.

For the proof of Theorem 1.2 (ii), setting ˆ� WD ei�xˆ, we observe that the spectral
problem (3.6) can be written asZ

S

P.†/rˆ� � r xV D �.�; "/

Z


ˆ� xV for all V 2 H 1
� .S/;

where ˆ� 2 H 1
�
.S/, the space of H 1

loc.R/ functions that are � -periodic in x (that is,
ˆ� jxD2� D e

2i��ˆ� jxD0).
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Set ˇ D 1
2
� � and ẑ � WD eiˇxˆ� ; then, ẑ � 2 H 1

1
2

.S/ (i.e., ẑ � antiperiodic). As we
did in Proposition 3.1 and Remark 3.2, we can show that the spectral problem above is
equivalent toZ

S

�
P.†/r ẑ � � r xV � iˇ

�
e1 C "

�
�b.x/

zb0.x/

��
� . ẑ �r xV � xV r ẑ � /

�
C

Z
S

ˇ2.1 � "b/ ẑ � xV D �

�
1

2
� ˇ; "

�Z


ẑ
�
xV for all V 2 H 1

1
2

.S/:

Then, as for the periodic case, we use the Ansatz ˇ D ı" and8̂<̂
: �p˙.ˇ D ı"; "/ � �

0
2p

�
1

2

�
C "�0p˙.ı/ DW �

app
p˙.ı; "/;

ẑ
� .ˇ D ı"; "; x; z/ � zU

0
p˙.x; z/C "

zU 0p˙.ı; x; z/ DW
zU

app
p˙ .ı; "; x; z/;

where zU 0p˙ D ˛
˙
C‰p C ˛

˙
�‰p , with ˛˙C ; ˛

˙
� 2 R and

‰p.x; z/ D
cosh

��
p C 1

2

�
.z C 1/

�
cosh

�
p C 1

2

� ei
�
pC 1

2

�
x

and its conjugate are the eigenvectors associated to �02p.
1
2
/ D �02pC1.

1
2
/. The rest of the

proof proceeds as in the periodic case with very similar computations.

5. Gap opening of order "2

When Ob2p D 0, a higher-order asymptotic expansion for the study of eigenvalues close to
� D 0 is required to open a gap. We will construct an expansion valid for � 2 Œ0;M"2� for
any M > 0. In order to show that the gap does not close for � 2 ŒM"2; dp;1"�, (a region
not covered in Proposition 3.8), we use the end of Section 4 in the special case Ob2p D 0
which will be sufficient to control the separation of eigenvalues in this region. As it was
made in Proposition 3.8 with the condition on dp;2, we will need at the end of this section
that the eigenvalues are enough separated. For this purpose, we set

Mp WD 1C jJp.b/j C jSp.b/j;

where Jp.b/ and Sp.b/ are defined in Theorem 1.3.

Proposition 5.1 (Perturbation of a simple eigenvalue). Fix p 2 N� and assume Ob2p D 0.
There exist "p;5 > 0 and dp;5 > 0 depending on p and b such that, for all " 2 .0; "p;5/,
and dp;5"2 6 � 6 dp;1", we have

�.G� Œ"b�/ \

�
�02p�1

�
1

2

�
; �02p

�
1

2

��
D ¹�"2p�1.�/; �

"
2p.�/º;

where �"2p�1.�/ and �"2p.�/ are simple. Moreover,

�"2p�1.�/ 6 �02p.0/ �Mp"
2; �"2p.�/ > �02p.0/CMp"

2:
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Proof. As noted at the end of Section 4, we can use the analysis developed therein to state

�"2p.�/ > �
app
pC.�; "/ � j�

"
pC.�/ � �

app
pC.�"

�1; "/j

> �02p.0/C "�
0
pC.ı/ � Cp"

2
D �02p.0/CKp� � Cp"

2

for � 2 Œ0; dp;1"�, where we have now used Ob2p D 0 in expression (4.5) of �0p˙.ı/, and
similarly,

�"2p�1.�/ 6 �02p.0/ �Kp� C Cp"
2:

For � > dp;5"
2, we conclude the proof of this proposition by choosing

dp;5 WD .Mp C Cp/=Kp:

Thanks to the previous proposition, we only need to construct approximate solutions
of (3.7) for � 2 Œ0; dp;5"2� (instead of Œ0; dp;1"� as in Section 4) and we therefore write the
following Ansatz:´

�p˙.� D ı"
2; "/ � �02p.0/C "

2�00p˙.ı/ DW �
app
p˙.ı; "/;

ˆ.� D ı"2; "; x; z/ � U 0p˙.x; z/C "U
0
p˙.x; z/C "

2U 00p˙.ı; x; z/ DW U
app
p˙ .ı; "; x; z/:

As in Section 4, if we insert this Ansatz in (3.6) and formally identify the terms of order 1,
we find that U 0p˙ solves the spectral problem for flat bottom with periodic boundary con-
ditions (4.2) and therefore, U 0p˙ D ˛

˙
C p̂ C ˛

˙
�ˆ�p , with ˛˙C ; ˛

˙
� 2 R and p̂.x; z/ WD

p̂.0; x; z/ given in (3.1) with � D 0.
Identifying the terms of order ", we request that U 0p˙ solves8̂̂<̂

:̂
��U 0p˙ D div.Q1rU 0p˙/ in S;

@zU
0
p˙ D �Q1rU

0
p˙ � ez on ¹z D �1º;

@zU
0
p˙ D �

0
2p.0/U

0
p˙ �Q1rU

0
p˙ � ez on ¹z D 0º:

(5.1)

Using (3.2) as we did to obtain (4.8), we get that this system has a solution if and only if

0 D

Z
S

Q1U
0
p˙ � r p̂ D

Z
S

Q1U
0
p˙ � rˆ�p:

Since Ob2p D 0, Lemma 4.3 implies that the above condition is always satisfied. The next
lemma provides an explicit formula for the solution U 0p˙. The details of the computations
are given in Appendix B.

Lemma 5.2. A particular solution of (5.1) is given by

U 0p˙.x; z/ D E˙.x; z/C
X

k…¹0;p;�pº

.ˇk cosh.k.z C 1//C k sinh.k.z C 1///eikx ;

where

k D
p

cosh.p/
.�˛˙C

Obk�p C ˛
˙
�
ObkCp/; ˇk D

k2 � �k.0/�p.0/

k.�p.0/ � �k.0//
k ;
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and E˙ D ˛˙CEp C ˛
˙
�E�p , with

E˙p WD �
p

cosh.p/
z sinh.p.z C 1//b.x/e˙ipx : (5.2)

Now, we identify the terms of order "2 and request that U 00p˙ solves8̂̂<̂
:̂
��U 00p˙ D div.Q1rU 0p˙/C div.Q2rU 0p˙/C 2iı@xU

0
p˙ in S;

@zU
00
p˙ D �.Q1rU

0
p˙/ � ez � .Q2rU

0
p˙/ � ez on ¹zD�1º;

@zU
00
p˙D�

0
2p.0/U

00
p˙�.Q1rU

0
p˙/�ez�.Q2rU

0
p˙/�ezC�

00
p˙.ı/U

0
p˙ on ¹zD0º:

The orthogonality conditions to solve this system are similar to (4.8) and take the form

�00p˙.ı/

Z


U 0p˙ p̂ D

Z
S

Q1rU
0
p˙ � r p̂ C

Z
S

Q2rU
0
p˙ � r p̂

C 2iı

Z
S

U 0p˙@x p̂;

�00p˙.ı/

Z


U 0p˙ˆ�p D

Z
S

Q1rU
0
p˙ � rˆ�p C

Z
S

Q2rU
0
p˙ � rˆ�p

C 2iı

Z
S

U 0p˙@xˆ�p:

(5.3)

We now compute the values of �00p˙.ı/ for which these conditions are satisfied.

Proposition 5.3. The orthogonality conditions (5.3) are satisfied if and only if

Np

 
˛˙C

˛˙�

!
D �00p˙.ı/

 
˛˙C

˛˙�

!
; (5.4)

where

Np D

 
.Kpı C Jp.b// �Sp.b/

�Sp.b/ .�Kpı C Jp.b//

!
;

Jp.b/ D
p2

cosh.p/2
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

�p.0/ � �k.0/
j Obk�pj

2;

Sp.b/ D
p2

cosh.p/2
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

�p.0/ � �k.0/
ObkCp
xObk�p:

In this case, we have

�00p˙.ı/ D Jp.b/˙
q
K2pı

2 C jSp.b/j2:

Proof. The first term on the right-hand side of (5.3) takes the formZ
S

Q1rU
0
p˙ � rˆˇp D

Z
@S

U 0p˙.Q1rˆˇp/ � En �

Z
S

U 0p˙ div.Q1rˆ�ˇp/



C. Lacave, M. Ménard, and C. Sulem 38

for ˇ 2 ¹C;�º. Using div.Q1rˆ�ˇp/ D ��E�ˇp (see (B.1)), we write

�

Z
S

U 0p˙ div.Q1rˆ�ˇp/ D
Z
S

U 0p˙�E�ˇp

D

Z
S

�U 0p˙E�ˇp C

Z
@S

.U 0p˙@nE�ˇp �E�ˇp@nU
0
p˙/

D

Z
S

�E˙E�ˇp C

Z
@S

U 0p˙@nE�ˇp

since Eˇp D 0 on @S . A calculation (see proof in Appendix C) shows thatZ
S

�E˙Eˇp D �

Z
S

Q2rU
0
p˙ � rˆˇpI (5.5)

thus, Z
S

Q1rU
0
p˙ � rˆˇp D

Z
@S

U 0p˙.Q1rˆˇp/ � En �

Z
S

Q2rU
0
p˙ � rˆˇp

C

Z
@S

U 0p˙@nE�ˇp:

We now return to orthogonality condition (5.3) which becomes

�00p˙.ı/

Z


U 0p˙ˆˇp D

Z
@S

U 0p˙.Q1rˆˇp/ � EnC

Z
@S

U 0p˙@nE�ˇp C 2iı

Z
S

U 0˙p@xˆˇp

D �

Z
¹zD�1º

U 0p˙
�
.Q1rˆˇp/ � ezC@zE�ˇp

�
C2iı

Z
S

U 0˙p@xˆˇp;

where we have used �.Q1rˆˇp/ � ez D ��p.0/b.x/e�iˇpx D @zE�ˇp on ¹z D 0º; see
(B.2)–(B.3). With (B.2)–(B.3), we compute the boundary term for ˇ D C and ˇ D �,
respectively,

�

Z
¹zD�1º

U 0p˙.Q1rˆ�p � ez C @zE�p/

D �

X
k…¹0;p;�pº

ˇk

Z 2�

0

�
ip

cosh.p/
b0.x/C

p2

cosh.p/
b.x/

�
ei.k�p/x dx

D �2�
X

k…¹0;p;�pº

ˇk
kp

cosh.p/
Obk�p

D 2�
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

k.�p.0/ � �k.0//

p

cosh.p/
.˛˙C
Obk�p � ˛

˙
�
ObkCp/

kp

cosh.p/
Obk�p

D ˛˙C
2�p2

cosh.p/2
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

�p.0/ � �k.0/
j Obk�pj

2

� ˛˙�
2�p2

cosh.p/2
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

�p.0/ � �k.0/
ObkCp Obk�p

D 2�Jp.b/˛
˙
C � 2�Sp.b/˛

˙
�
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and

�

Z
¹zD�1º

U 0p˙.Q1r p̂ � ez C @zEp/

D

X
k…¹0;p;�pº

ˇk

Z �
ip

cosh.p/
b0.x/ �

p2

cosh.p/
b.x/

�
ei.kCp/x dx

D 2�
X

k…¹0;p;�pº

ˇk
kp

cosh.p/
ObkCp

D 2�
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

k.�p.0/ � �k.0//

p

cosh.p/
.�˛˙C

Obk�p C ˛
˙
�
ObkCp/

kp

cosh.p/
ObkCp

D �˛˙C
2�p2

cosh.p/2
X

k…¹0;p;�pº

k2 � �k.0/�p.0/

�p.0/ � �k.0/
Obk�p ObkCp

C ˛˙�
2�p2

cosh.p/2
X

Qk…¹0;p;�pº

Qk2 � � Qk.0/�p.0/

�p.0/ � � Qk.0/
j Ob
� QkCp

j
2

D �2�Sp.b/˛
˙
C C 2�Jp.b/˛

˙
� ;

where we set Qk D �k in the last sum. Using (4.9), (4.13), and (4.14) (with the definition
of Kp given in Proposition 4.2), we get that (5.3) can be written as (5.4).

Let �app
p˙ WD U

app
p˙ jzD0, � app

p˙ WD .1C �
app
p˙/
�1, where U app

p˙ , �app
p˙ are defined just before

(5.1). The next result shows that .� app
p˙; �

app
p˙/ are approximate eigenpairs of the resolvent

operator.

Proposition 5.4. Under the assumptions of Theorem 1.3 and assuming that " is small
enough, we have for all ı 2 Œ0; dp;5�

k.1CGı"2 Œ"b�/
�1�

app
p˙ � �

app
p˙�

app
p˙kL2.T2� / 6 Cb;p"

3
k�

app
p˙kL2.T2� /:

Proof. Inserting

U
app
p˙ D U

0
p˙ C "U

0
p˙ C "

2U 00p˙

in (3.5), we find that, for V 2 H 1.S/,

a
R;S

ı"2;"
.U

app
p˙ ; V / D

Z
S

P.†/rU
app
p˙ � r

xV C ı2"4
Z
S

.1 � "b.x//U
app
p˙
xV

C

Z


U
app
p˙
xV C iı"2

Z �
e1 C "

�
�b.x/

zb0.x/

��
� .U

app
p˙r

xV � xV rU
app
p˙ /

D .�
app
p˙ C 1/

Z


U
app
p˙
xV C zL.V /;
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where ("3 zQ D P.†/ � I2 � "Q1 � "2Q2)

zL.V / WD �"3�00p˙.ı/

Z


.U 0p˙ C "U
00
p˙/
xV C "3

Z
S

zQrU
app
p˙ � r

xV

C "3
Z
S

Q2r.U
0
p˙ C "U

00
p˙/ � r

xV C "3
Z
S

Q1rU
00
p˙ � r

xV

C ı2"4
Z
S

.1 � "b/U
app
p˙
xV C iı"3

Z
S

�
�b.x/

zb0.x/

�
� .U

app
p˙r

xV � xV rU
app
p˙ /

C iı"3
Z
S

.U 0p˙ C "U
00
p˙/@x

xV � xV @x.U
0
p˙ C "U

00
p˙/:

Proceeding as we did to prove (4.16), we get

k.1CGı"2 Œ"b�/
�1�

app
p˙ � �

app
p˙�

app
p˙kL2.T2� / 6 CkzLkH1.S/0

6 Cb;p"
3.kU 0p˙kH1.S/ C kU

0
p˙kH1.S/ C kU

00
p˙.ı/kH1.S//:

Using the operator R�12p;0 (defined by (3.3)), we can show that

kU 0p˙kH1.S/ 6 Cb;pkU
0
p˙kH1.S/;

kU 00p˙kH1.S/ 6 Cb;pkU
0
p˙kH1.S/;

and therefore,

k.1CGı"2 Œ"b�/
�1�

app
p˙ � �

app
p˙�

app
p˙kL2.T2� / 6 Cb;p"

3
kU 0p˙kH1.S/:

Similar to (4.18), if " is small enough, kU app
p˙k > 1

2
kU 0p˙k, and

k�
app
p˙kL2.T2� / > cb;pkU

0
p˙kH1.S/:

Proposition 5.4 follows.

We are now ready to establish the existence of a gap as we did at the end of Section 4.
For ı 2 Œ0; dp;5�, hence � 2 Œ0; dp;5"2�, Lemma 4.1 gives that

�"2p.�/ > �02p.0/C "
2Jp.b/C jSp.b/j"

2
� Cp"

3;

�"2p�1.�/ 6 �02p.0/C "
2Jp.b/ � jSp.b/j"

2
C Cp"

3:

This gap remains open for � 2 Œdp;5"2; dp;1"� by Proposition 5.1 and for

� 2

�
dp;1";

1

2
� dp;1"

�
by Proposition 3.8. The precise size of the gap is derived by considering small ı and � ,
say � D ı"2 6 "3, which concludes the proof of Theorem 1.3. Note that the center of the
gap is displaced from the unperturbed value �02p.0/.
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A. Proof of Lemma 4.3

Write p̂.x; z/ D �p.z/e
ipx with �p.z/ D

cosh.p.zC1//
cosh.p/ . We have

r p̂ D

�
ip�p.z/e

ipx

�0p.z/e
ipx

�
:

From Q1 given in (3.8), we have

Q1r p̂ D

 
�ip�p.z/b.x/C z�

0
p.z/b

0.x/

ipz�p.z/b
0.x/C �0p.z/b.x/

!
eipx ; (A.1)

Q1r p̂ � r p̂ D b.x/.�
0
p.z/

2
� p2�p.z/

2/:

Since
R 2�
0
b.x/dx D 0, we have

R
Q1r p̂ � r p̂ D 0. Now, let us compute

Q1r p̂ � rˆ�p D Q1r p̂ � r p̂

D b.x/.�0p.z/
2
C p2�p.z/

2/e2ipx C 2ipz�p.z/�
0
p.z/b

0.x/e2ipx ;

and notice that 2ip yb0�2p D 4p2 Ob�2p and thatZ 0

�1

z�0p.z/�p.z/ dz D
1

2

�
z�2p.z/

�0
�1
�
1

2

Z 0

�1

�2p.z/ dz:

Therefore,Z
S

Q1r p̂ � rˆ�p D 2� Ob2p

Z 0

�1

�0p.z/
2
� p2�p.z/

2 dz C 2
p2

cosh2.p/
2� Ob2p:

Finally,

�0p.z/
2
� p2�p.z/

2
D

p2

cosh2.p/
.sinh2.p.z C 1// � cosh2.p.z C 1/// D �

p2

cosh2.p/
:

We have thus obtained (4.11) and its conjugate (4.12).

B. Proof of Lemma 5.2

From (A.1) and its complex conjugate, we have

Q1rU
0
p˙ D ˛

˙
CQ1r p̂ C ˛

˙
�Q1rˆ�p

D ˛˙C

 
�ip�p.z/b.x/C z�

0
p.z/b

0.x/

ipz�p.z/b
0.x/C �0p.z/b.x/

!
eipx

C ˛˙�

 
ip�p.z/b.x/C z�

0
p.z/b

0.x/

�ipz�p.z/b
0.x/C �0p.z/b.x/

!
e�ipx I
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hence,

div.Q1rU 0p˙/ D ˛
˙
C

�
2p2�p.z/b.x/C 2ipz�

0
p.z/b

0.x/C z�0p.z/b
00.x/

�
eipx

C ˛˙�
�
2p2�p.z/b.x/ � 2ipz�

0
p.z/b

0.x/C z�0p.z/b
00.x/

�
e�ipx :

A direct calculation on E˙p D �z�0p.z/b.x/e
˙ipx shows that

��Ep.x; z/ D div.Q1r p̂/; ��E�p.x; z/ D div.Q1rˆ�p/I (B.1)

hence, ��E˙ D div.Q1rU 0p˙/, with E˙ defined in (5.2). It is thus natural to introduce
the function V D U 0p˙ �E˙. We find ��V D 0. In order to rewrite (5.1) as a system for
V , we compute the boundary conditions. On the one hand,

@zE˙ D �.z�
00
p.z/C �

0
p.z//b.x/.˛

˙
Ce

ipx
C ˛˙� e

�ipx/

implies

@zE˙.x;�1/ D
p2

cosh.p/
b.x/.˛˙Ce

ipx
C ˛˙� e

�ipx/;

@zE˙.x; 0/ D ��p.0/b.x/.˛
˙
Ce

ipx
C ˛˙� e

�ipx/:

(B.2)

On the other hand,

�Q1rU
0
p˙ � ez D� ˛

˙
C.ipz�p.z/b

0.x/C �0p.z/b.x//e
ipx

� ˛˙� .�ipz�p.z/b
0.x/C �0p.z/b.x//e

�ipx

gives

�Q1rU
0
p˙ � ez.x;�1/ D ˛

˙
C

ip

cosh.p/
b0.x/eipx � ˛˙�

ip

cosh.p/
b0.x/e�ipx ;

�Q1rU
0
p˙ � ez.x; 0/ D ��p.0/b.x/.˛

˙
Ce

ipx
C ˛˙� e

�ipx/:

(B.3)

We finally find that V satisfies the system8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

��V D 0 in S;

@zV D ˛
˙
C

�
ip

cosh.p/
b0.x/ �

p2

cosh.p/
b.x/

�
eipx

C ˛˙�

�
�

ip

cosh.p/
b0.x/ �

p2

cosh.p/
b.x/

�
e�ipx on ¹z D �1º;

@zV D �p.0/V on ¹z D 0º:

Denoting Vk.z/ D yV .k; z/, the Fourier coefficients of V in the x-variable, we have8̂<̂
:
Vk.z/ D ˇk cosh.k.z C 1//C k sinh.k.z C 1//;

V 0k.0/ D �p.0/Vk.0/; V 0k.�1/ D
kp

cosh.p/
.�˛˙C

Obk�p C ˛
˙
�
ObkCp/:
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For k ¤ 0;˙p,

k D
p

cosh.p/
.�˛˙C

Obk�p C ˛
˙
�
ObkCp/; ˇk D

k2 � �k.0/�p.0/

k.�p.0/ � �k.0//
k :

When k D ˙p, ˙p D 0, but there is no condition on ˇ˙p . It means that the function
.x; z/ 7! cosh.˙p.z C 1//e˙ipx belongs to the kernel of the system, and one solution is
given by choosing p̌ D ˇ�p D 0. Finally, when k D 0, V 00.�1/D �p.0/V0 gives ˇ0 D 0.

C. Proof of (5.5)

For ˇ 2 ¹C;�º, we have by (B.1)Z
S

�E˙Eˇp

D �

Z
S

div.Q1rU 0p˙/Eˇp

D ˛˙C

Z
S

�
2p2�p.z/b.x/C2ipz�

0
p.z/b

0.x/Cz�0p.z/b
00.x/

�
z�0p.z/b.x/e

i.pCˇp/x dx dz

C ˛˙�

Z
S

�
2p2�p.z/b.x/�2ipz�

0
p.z/b

0.x/Cz�0p.z/b
00.x/

�
z�0p.z/b.x/e

i.ˇp�p/x dx dz

DW ˛˙CIˇC C ˛
˙
� Iˇ�:

Now, we compute Q2rU 0q˙, where

Q2 D

�
0 0

0 b.x/2 C .zb0.x//2

�
:

We findZ
S

Q2rU
0
p˙ � r p̂ D ˛

˙
C

Z
S

�0p.z/
2.b2.x/C .zb0.x//2/ei.pCˇp/x dx dz

C ˛˙�

Z
S

�0p.z/
2.b2.x/C .zb0.x//2/ei.ˇp�p/x dx dz

DW ˛˙CIIˇC C ˛
˙
� IIˇ�:

Using
R 2�
0
b.x/b0.x/ dx D 0,

R 2�
0
b.x/b00.x/ dx D �

R 2�
0
.b0.x//2 dx and that

2ip

Z 2�

0

b.x/b0.x/e2ipx dx D �
Z 2�

0

.b.x/b00.x/C .b0.x//2/e2ipx dx;Z 0

�1

2p2z�p.z/�
0
p.z/ dz D

Z 0

�1

2z�00p.z/�
0
p.z/ dz D �

Z 0

�1

.�0p.z//
2 dz;

we show that IˇC C IIˇC D Iˇ� C IIˇ� D 0, implying (5.5).
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