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Stability of weighted norm inequalities

Michel Alexis, José Luis Luna-Garcia, Eric Sawyer and
Ignacio Uriarte-Tuero

Abstract. We show that while individual Riesz transforms are two-weight norm
stable under biLipschitz change of variables on A, weights, they are two-weight
norm unstable under even rotational change of variables on doubling weights. More
precisely, we show that individual Riesz transforms are unstable under a set of rota-
tions having full measure, which includes rotations arbitrarily close to the iden-
tity. This provides an operator theoretic distinction between Ao, weights and dou-
bling weights. More generally, all iterated Riesz transforms of odd order are rotation-
ally unstable on pairs of doubling weights, thus demonstrating the need for character-
izations of iterated Riesz transform inequalities using testing conditions as appearing
in the work of Nazarov, Treil and Volberg, and other works by subsets of the authors
Alexis, Lacey, Sawyer, Shen, Uriarte-Tuero and Wick, as opposed to the typically
stable ’bump’ conditions.
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1. Introduction

We begin by describing two stability theorems for operator norms, given three decades

apart, that motivate the main results of this paper.
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1.1. Previous stability results

Thirty-five years ago, Johnson and Neugebauer (see Theorem 2.10 (a) in [18], see also
the preceding Remark 1) characterized the smooth homeomorphisms ®: R” — R” that
preserve Muckenhoupt’s A, (R") condition for a weight w under pushforward by @, as
precisely those quasiconformal maps ® having their Jacobian J = |det D ®| in the inter-
section () ;1 4, (R™) of the A, classes over r > 1. A variant of the one-dimensional case
of this beautiful characterization, see Theorem 2.7 of [18] with & = 1, can be reformu-
lated in terms of stability of the ‘Muckenhoupt’ one-weight norm inequality for the Hilbert
transform under homeomorphisms of the real line.

Theorem 1.1. Suppose that w: R —[0, 00) is a nonnegative weight on the real line R,
that ¢: R — R is an increasing homeomorphism with ¢ and ¢~ absolutely continuous,
and that H is the Hilbert transform, H f (x) = p.v. ffgo fO)/(y —x).

For 1< p <oo, denote by N . p[w] the operator norm of the map H: LP (w)—L?(w),
i.e., the best constant C in the inequality

[iar@iruear=cr [ 1r@irue ax
R R
Then there is a positive constant Cy, such that

Napl(wo )] < C1Ny p[w],  for all weights w,

ifand only if ¢’ € (r>14,(R).

More recently, Tolsa (see the abstract of [42]) characterized the ‘Ahlfors—David’ one-
weight inequality for the Cauchy transform, equivalently for the 1-fractional vector Riesz
transform R!-2 in the plane R? (defined in (1.1) below), in the case p = 2, namely,

[ RGP i) = 90a0) [ 17 0F duc)
R2 R2

in terms of a growth condition and Menger curvature. As a consequence, Tolsa obtained
stability of the operator norm Jlg12.,(1) under biLipschitz pushforwards of the mea-
sure . Even more recently, in papers by Dabrowski and Tolsa [9], and Tolsa [43], this
result was extended to higher dimensions, and as a consequence they obtained stability
of the operator norm Ngia., (1) of the 1-fractional vector Riesz transform R!” under
biLipschitz pushforwards of the measure u in R”, see the comment at the top of page 6
of [9], and see [43] as well. As an important application of norm stability, they obtain the
stability of removable sets for Lipschitz harmonic functions under biLipschitz mappings,
see Corollary 1.6 of [43] and the discussion surrounding it.
Here we define the a-fractional vector Riesz transform in R” by

Y _
(1.1)  R*f(x) =can p.V-/Rn Tnij—l—a fdy, xeR", 0<a<n.

Let R%" = (RY",..., Ry"), where we refer to the components R%” as individual a-
fractional Riesz transforms in R”. We are primarily concerned with the classical case
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o = 0 in this paper, so we will usually drop the superscript & and write R = (Ry, ..., Ry)
when the dimension #n is understood, and refer to the components R; as Riesz transforms.

The main problem we consider in this paper is the extent to which the above theorems
hold in the setting of two-weight norm inequalities, and to include more general operators
in higher dimensions. The complexities inherent in dealing with two-weight norm inequal-
ities —mainly that they are no longer characterized simply by A,-like conditions or more
generally by conditions of ‘positive nature’, but require testing conditions of ‘singular
nature’ as well — suggests that we should limit ourselves to consideration of biLipschitz
maps. Indeed, this much smaller class of maps is much more amenable to current two-
weight techniques, and allows for a rich theory where stability holds in certain ‘nice’
situations, while failing in small perturbations of these ‘nice’ situations. We also show in
Appendix A that any reasonable group of transformations under which the two-weight A,
condition is stable is contained in the group of biLipschitz transformations.

Our analysis will be mainly restricted to the case p = 2 and iterated Riesz transforms
of odd order in R”, where we show that stability of the two-weight norm inequality is
sensitive to the distinction between doubling and A, weights, even when the biLipschitz
maps are restricted to rotations of R”.

1.2. Description of results

The two-weight norm inequality for an operator T with a pair (o, ) of positive locally
finite Borel measures on R” and exponents 1 < p < g < oo is informally

a2 ([ i) <se( [ 1rra)”. serro.

See Definition 5.5 for a formal definition of the two-weight norm inequality. In the case
p = q = 2, we first establish a distinction between weighted norm inequalities for positive
operators 7 in (1.2), such as the maximal function and fractional integrals, on the one
hand; and singular integral operators 7 in (1.2), such as the individual Riesz transforms
and iterated Riesz transforms, on the other hand. Namely, that the former are two-weight
norm stable under biLipschitz change of variables for arbitrary locally finite positive Borel
measures, while the latter are not in general, even on pairs of doubling measures.

Our main result, Theorem 1.4, shows that while individual Riesz transforms are two-
weight norm stable under biLipschitz change of variables on pairs of Ay, weights, they
are two-weight norm unstable under even a rotational change of variables on doubling
weights. This provides an operator theoretic distinction between A, weights and doubling
weights.'

We also show that all iterated Riesz transforms of odd order are rotationally unstable
on pairs of doubling weights, thus demonstrating the need for characterizations of iterated
Riesz transform inequalities using unstable conditions, such as the testing conditions in
[4,21,24,31,37,38], as opposed to the typically stable ‘bump’ conditions, see Section A.3.

'In 1974, C. Fefferman and B. Muckenhoupt [10] constructed an example of a doubling weight that was
not Ao using a self similar construction, on which many subsequent results have been based.
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1.3. BiLipschitz and rotational stability
In this section, we precisely define stability.
Definition 1.2. Let ®: R” — R” be continuous and invertible.

(1) @ is biLipschitz if

O(x) — P(y) > (x) =71 (y)
| ®]lbiLip = sup M + sup | V)l < 00.
x,yeR” |X _y| x,yeR” |x _yl

(2) @ is arotation if ® is linear and ®®* = [ and det ® = 1.

Let X be a group of continuous invertible maps on R”, such as the group of biLipschitz
or rotation transformations, which we denote by XpiLip and X, respectively.2 Denote
by M the space of positive Borel measures on R”, and by @, the pushforward of € M
by a continuous map ®: R” — R”, i.e., Py u(B) = u(®~1(B)). We say that a subclass
S C M of positive Borel measures is X-invariant if ®,p € § forall u € § and ® € X.
Of course, M itself is X -invariant for the group X¢ontinv Of all continuous invertible maps,
but less trivial examples of biLipschitz invariant classes include

S4, ={p € M :du(x) = u(x)dx withu € Ay} forl < p < oo,
Sa, ={p e M:du(x) =u(x)dx withu € Ax},
Sdoub = {4 € M : u is a doubling measure},
Saps = {0 € M : p is Ahlfors—David regular of degree s},
SipB = {0 € M : 1 is alocally finite positive Borel measure}.

To each of the above classes §, we can associate a functional || ||s for which § = {u € M :
ltlls < oo}. For example, we take

ks, = e = 00157 [ e [ m ).

and || it]| 840, = Caoub (1) as in Definition 2.1. In the case that § = Sj5g, there is no ‘natural’
choice of || - ||s that measures the ‘size’ of the measure w, and so instead we may, for

instance, define
1 if u € Sips,
”/’L”Slpr =

oo otherwise.

We also define
[@llbicip  if X = XpiLip,
Pl =41 if X = X and ® € X1,
%) if X = Xyor and @ & X1

Here is the main stability definition for a function ¥ on measure pairs, a group X €
{ XbiLip> Xror} and an X-invariant class S (or to be precise, for (S, || - [|s)).

2See Lemma A.8 in Appendix A for a justification of considering subgroups of biLipschitz transformations.
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Definition 1.3. Let X € { Xpivip, Xrot}, S C M be X-invariant, andlet F: 8§ x § — [0, o0]
be a nonnegative extended real-valued function on the product set § x §. We say that the
function F is X-stable on § if there is a function §: [0, 0c0)* — [0, o0), which maps
bounded subsets of [0, c0)* to bounded subsets of [0, o), such that

(1.3) F(Py0, Puw) < G([[@llx, F (0, 0), [lols, [@]s),
forall o,w € §, such that ¥ (0, w) < co and all ® € X.

Note that to check that § maps bounded sets to bounded sets, it suffices to show
for instance, that ¢ is continuous. Typically, we will take ¥ to be an operator norm on
weighted spaces, in which case we say an operator T is (un)stable on a class of measures S
if its two-weight operator norm is (un)stable on §. One may also take ¥ to be a common
two-weight bump condition.

A simple example of a biLipschitz stable function on the class S is the classical
two-weight A, characteristic for a pair of measures, namely,

F(0,0) = Ax(0,0) =  sup 1Qls |Q|w
cubes Q in R” |Q| |Q|

Indeed,
|Q|¢’*U |Q|<I>*w _ |q)_lQ|0 |®_1Q|w ~ |(D_1Q|a |®_1Q|w

ol 10 0] o] " j@-lo| @'l

since ®~! is biLipschitz, and observe that there is a cube P such that P C ®~1Q C pP
for some p > 1 by quasiconformality of ®, see Lemma 3.4.5 in [5], where p depends only
on || ®||piLip. Thus, we have

Qlo,0 1Q10ve _ 0PIy 1Pl

o1 12l ™ [eP| |pP]
and by taking supremums over cubes gives

1.4) Az (Pyo, Piw) < G(||P|lbiLip, A2(0, w), ||(7||31pr’ ”a)”SlrpB)
= G(||®lpiLip, A2(0, w), 1, 1)

for §(w, x,y,z) = cw*"x, where ¢ > 0 is independent of ®, o and w.
The reader can also check that all of the usual ‘Orlicz bump’ conditions

< Az(0,w),

4

—1
sup [[u'/?|4,0llv™"/?||B,0 < oc.
Q aball

I lla.0 = inf{2 > 0: |;7/BA('J’Y)')W},

on a pair of absolutely continuous measures o (x) dx and w(x) dx on R” as in the con-
jecture of Cruz-Uribe and Pérez [8] (proved by Lerner, see [26]), are biLipschitz stable on
any biLipschitz invariant subclass §, e.g., Neugebauer’s bump condition,

Ay r(o,0) = sup <|—;|/Qo(x)r dx)l/r(|—;|/ga)(x)r dx)l/r,

cubes Q in R”

where

where 1 < r < 0o, see Appendix A.3.
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More recently, additional variants of bump condition, such as entropy bumps and sep-
arated bumps, have arisen in work of Treil and Volberg [45], Lacey and Spencer [23]
to mention just a few. The sufficiency of these bump conditions for two-weight singular
integral inequalities all go through the boundedness of sparse operators, see Lerner [26]
for a proof of the optimal result to date, and a history of this fascinating subject. In
Appendix A.3, we show that no such bump conditions can characterize the two-weight
norm inequality for an iterated Riesz transform 7" of odd order even when the measures
are doubling (or for any Calderén—Zygmund operator 7 that is biLipschitz unstable on
doubling measures).

We mention in passing that the following form of the two-weight A, condition on the

real line,
N A )
g 1S /N S or =t

I an interval

has been proved stable under an increasing homeomorphic change of variable ¢ (with
both ¢ and ¢! absolutely continuous) if and only if ¢’ € A4} (R), see Corollary 4.4 in [18],
but this condition is no longer equivalent to boundedness of the Hilbert transform for two
weights, and moreover, the definitions of stability of A, (v, w) and A, (0, ®) considered
above are a priori different since composition and pushforward do not commute, e.g.,
when p = 2, ®,v # (®.v~!)"! in general.

1.3.1. Main results. Our main result below on both stability and instability involves
Riesz transforms and doubling measures, as well as Stein elliptic Calderén—Zygmund
operators. Recall that if K is a Calderén—Zygmund kernel, i.e., it satisfies

|K(x. »)| < Cez lx — y| ™",

(1.5) o
VK (x, )|+ |Vy K(x, y)| S Cezlx — y| 7",

and if T is a bounded linear operator on unweighted L?(R"), we say that T is associated
with the kernel K if

Tf(x) = / K(x,y)f(y)dy forallx € R"\ supp f.

and we refer to such operators as Calderon—Zygmund operators. Note, in particular, that
a Calderén-Zygmund operator 7 is bounded on unweighted L?(R") by definition. Fol-
lowing equation (39) on p. 210 of [41], we say that a Calder6n—Zygmund operator 7 is
elliptic in the sense of Stein if there is a unit vector ug € R” and a constant ¢ > 0 such that

|K(x,x + tug)| = clt|™ forallt € R,

where K(x, y) is the kernel of T'.

Note that a function ¥ being X -stable means the estimate (1.3) holds across all mea-
sure pairs and all functions in the class X, while to show a function ¥ is not X-stable,
it suffices to construct a sequence of measure pairs and a sequence of functions in X for
which the arguments of § in (1.3) remain bounded, but ¥ diverges to oo, i.e., (1.3) fails
for any choice of §. For this last point, in this paper we will always prove instability via
this last strategy. In this paper, we consider norms as in (1.2) for p = g = 2.
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Theorem 1.4. The two-weight operator norms for individual Riesz transforms R;, and,
more generally, any Stein elliptic Calderon—-Zygmund operator, are biLipschitz stable
on S4.,. The individual Riesz transforms, as well as iterated Riesz transforms of odd order,
are not even rotationally stable on S 4ou,, and even when the measures are restricted to have
doubling constants Cqoup arbitrarily close to 2".

In fact, we can prove the following stronger rotational instability for iterated Riesz
transforms of odd order, which, in particular, shows that instability can hold for rotations
arbitrarily close to the identity.

Theorem 1.5. Iterated Riesz transforms of odd order are unstable on S under a set of
rotations having full measure.

In contrast to the instability assertions in these theorems, most positive operators, such
as maximal functions and fractional integral operators, are easily seen to be biLipschitz
stable on $4,,, $4,,> Saoub and Sigpp.

For example, if T = I is the fractional integral of order 0 < & < n, and if ®: R" — R”"
is biLipschitz, then

oo/ Brcouny = [, | [ 1= 31" 1) 40| i)

:/n

~ [ =i o070 da)] do

= ”Ta(f © qD_l)”iZ(w)

[ 10— ey @) do )] do)

and
1 By = [ S0P d®u00) = [ 1f@ 9P do) =1/ 007 s

A similar proof holds for the case when T is a fractional maximal operator of order
O0<aua<n.

1.4. History of stability

The class of Calder6n—Zygmund kernels K (x, y) satisfying (1.5) has long been known to
be invariant under biLipschitz change of variable x = ®(u). For example, if K¢ (u,v) =
K(®(u), ®(v)), then the chain rule gives

IVuKo(u,v)| = [D®u)(VxK)(u, v)]|
S ID®oo Cez lu — v ™1 < [|@llbivip Cez lu — v ™71,
It follows that if a Calderén—Zygmund operator T associated with such a kernel K sat-
isfies the two-weight norm inequality (1.2), then the pullback T¢ with kernel K¢ is also

a Calder6n—Zygmund operator (by a simple change of variables using that the Jacobian
of @ is bounded between two positive constants), and satisfies the inequality (1.2) with
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the pair of measures (o, w) replaced by the pair of pushforwards (®.0, ®.w). This raises
the question of when T itself satisfies (1.2) with the pair of pushforwards (®.0, ®.w)
when @ is biLipschitz. Roughly speaking, our results show that the answer is yes if the
measures o, w are A, weights, but no in general if the measures o, @ are just doubling.

In [22], it was mentioned that the two-weight norm inequality for the Hilbert transform
is “unstable,” in the sense that for w equal to the Cantor measure, and ¢ an appropriate
choice of weighted point masses in each removed middle third, the norm of the operator
could go from finite to infinite with just arbitrarily small perturbations of the locations of
the point masses, while the 4, condition remained in force. In Appendix A, we use this
example to show that the Hilbert transform is two-weight norm unstable under biLipschitz
pushforwards of arbitrary measure pairs, and this instability extends to Riesz transforms in
higher dimensions in a straightforward way. Thus, the Riesz transforms in higher dimen-
sions are biLipschitz unstable on arbitrary weight pairs, something which already shows
that the more familiar bump-type conditions, e.g., Theorem 3 in [33], cannot characterize
the two-weight problem for Riesz transforms alone.

On the other hand, we show below that Riesz transforms are biLipschitz stable under
pairs of Ao, weights. So on one hand, for pairs of arbitrary measures we have instability,
and on the other hand for pairs of A, weights, we have stability. This begs the question,
what side-conditions on the weights in our weight pairs will give stability/instability for
Riesz transforms? Now it is trivial that A,, weights are doubling weights, but it was not
until the famous construction of Fefferman and Muckenhoupt in [10] that one knew the
two classes were in fact different. Because of this, doubling is often considered to be the
next more general condition on a weight than A.

The main result of this paper is that individual Riesz transforms are biLipschitz —and
even rotationally— unstable for pairs of doubling weights. This provides an operator-
theoretic means of distinguishing Ao, weights from doubling weights, sharpening the
result of Fefferman and Muckenhoupt, by showing that stability differentiates the two
classes.

1.4.1. Our methods and their history. In 1976, Muckenhoupt and Wheeden showed
in [29] that the two-weight norm inequality for the maximal function M implies the
one-tailed #, condition, and conjectured that it was sufficient. Then in 1982, the third
author disproved that conjecture in [34] by starting with a pair of simple radially decreas-
ing weights V, U constructed by Muckenhoupt in [28], that were essentially constant on
dyadic intervals Iy = [27%~1, 27¥] and failed the two-weight inequality for M. Then
the weights were disarranged into weights v and u, i.e., dilates and translates of the
weights restricted to the dyadic intervals I were essentially redistributed onto the unit
interval [0, 1] according to a self-similar “transplantation” rule. The resulting weights sat-
isfied the one-tailed #4, condition on [0, 1], but failed the two-weight norm inequality
for M. However, such weights were not doubling, as follows from calculations in [34].
This significant obstacle remained until the pioneering work of Nazarov [30], and Nazarov
and Volberg [32], to which we now turn.

3The reader can easily check that for a discretized version of these weights, the dyadic square function
defined in Section 2 also has infinite two-weight norm.
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Some years later, Treil and Volberg showed in [44] that the two-weight norm inequality
for the Hilbert transform H implies the two-tailed 4, condition, and Sarason conjec-
tured the two-tailed condition was also sufficient, see Section 7.9 in [14]. Shortly after
that, Nazarov disproved the conjecture in [30] (which we were unable to locate till very
recently, using the references in [19]), even using doubling weights, in a beautiful proof
involving the Bellman technique and a brilliant supervisor, or remodeling, argument, see
also [32] for the details. This use of doubling weights here turns out to be crucial for
our purposes. More specifically, Nazarov’s method consisted of first using the Bellman
technique in a delicate argument to construct a weight pair (v, u) on T that failed to sat-
isfy the two-weight inequality for the discrete Hilbert transform, but satisfied both dyadic
doubling, with constant arbitrarily close to that of Lebesgue, and dyadic A,. Then he
transplanted highly oscillating functions according to a certain self-similar ‘supervisor’
rule having roots in [6], that resulted in a pair of weights (v, u) on T that satisfied the
two-tailed +4, condition, with doubling constant arbitrarily close to that of Lebesgue mea-
sure, and for which the testing condition was increasingly unbounded. Nazarov’s argument
requires the clever use of highly oscillatory functions in order to deal with the singular-
ity of the Hilbert transform, and the use of holomorphic function theory to prove weak
convergence results for these increasingly oscillatory functions.

Very recently, it has come to our attention that Kakaroumpas and Treil extended
Nazarov’s results to p # 2 using a non-Bellman and ‘remodeling’ construction [19]. More
precisely, Kakaroumpas and Treil first began with a pair of discretized weights with the 4,
condition under control, a bilinear form involving the Haar shift having increasingly large
norm, but doubling constant just as large. They then apply an iterative disarrangement
of these weights to then construct new weights for which the 4, condition and the norm
of the bilinear form remain essentially unchanged, but the dyadic doubling constant of
the weights is much closer to that of Lebesgue measure. This clever disarrangement is
one of the innovative ideas which replaces Nazarov’s Bellman construction, and provides
weights for which one can compute explicit quantities. It is possible that our Riesz trans-
form results can be proved using the Haar shift scheme of Kakaroumpas and Treil in place
of the square function scheme of Nazarov, but we have not checked the details.

Note that the rotational stability problem is only significant in dimension two or higher,
since in one dimension the only rotation is reflection about the origin, and that preserves
the Hilbert transform. Our proof of rotational instability in higher dimensions begins by
using the Bellman construction in [32], and is then inspired by Nazarov and Volberg’s
supervisor argument with highly oscillatory functions. In particular, we extend Nazarov’s
supervisor/remodeling construction to higher dimensions, which we call “transplanta-
tion”, and which makes explicit how v and u are constructed by transplanting averages
of V.and U.

We also need to extend Nazarov’s weak convergence results to higher dimensions,
where holomorphic function theory is no longer available. This requires the new argu-
ments in Section 4, comprising much of the technical difficulty of the present paper. We
must also prove that testing conditions hold at all scales for one of the Riesz transforms,
something not considered in [32]. Finally, in Appendix A, we provide proofs of those por-
tions of the supervisor argument required for our theorem that not detailed in [32]; one
may also consult [19] for additional arguments.
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Remark 1.6. In our construction, we show that a given iterated Riesz transform Ty of
order N = 2m + 1 fails one of the testing conditions, while all other iterated Riesz trans-
forms T of order N = 2m + 1 satisfy both testing conditions. Thus, at this point, we have
doubling measures satisfying the A, condition with doubling constant arbitrarily close to
that of Lebesgue measure and both testing conditions for 7. We now need to conclude
that 7" is two-weight bounded. Since the doubling constants can be taken arbitrarily close
to that of Lebesgue measure, the A, condition implies the classical energy condition [12],
and so one can apply the T1 theorem of [38]; see Theorem 5.7 below for a more precise
statement and a proof.

1.5. Proof of stability

We present here a simple proof of stability in Theorem 1.4, using a few classical facts on
weights from [33] and [7]. The case of A, weights in Lemma 1.8 below is folklore from
decades ago, but seems to have first been recorded in Hytonen and Lacey [17], where they
also prove a sharp dependence on the characteristics using much deeper tools. We begin
with the following lemma of Neugebauer.

Lemma 1.7 (Theorem 3 in [33]). Let (u,v) be a pair of nonnegative functions. Then there
exists W € Ap withcou < W < cpv if and only if there is r > 1 such that

i V) <

Recall that a weight w is a weak Ao, weight, written w € weak A, if any of the
following equivalent conditions hold for all cubes Q and subsets E (see, e.g., [35]):

(C1) there exists R < oo and ¢(¢) / with lim,\ o ¢ (t) = 0 such that Ely < d)(@),

[ROT», — T\IO|
(C2) for all R > 1, there exists C, & > 0 such that ‘kEngfw < C(%)g,

(C3) there exists r > 1 such that (f, w)'/" < 7 [, w.

Lemma 1.8 (Theorem 1.2 in [17]). Suppose that T is a sufficiently regular* Calderén—
Zygmund operator, and that both @ and o are weak Ao, weights. Then T satisfies the
two-weight norm inequality

ITs f 172wy < CIS 7200
if Az(0,w) < oo.

Proof. Since o and w each satisfy the weak reverse Holder condition (C3) for some r > 1,

we have
1 r, 1 1/r
Az (0, @) = sup —/ " —/ o”
’ Q<|Q| 0 ) (IQI 0 )

1 1
< Slle(@ /2Q w><@ /2Q o) = Ay (0, w).

“See Section 6.13 on p. 221 of [41] for definitions, and for the nature of the ‘sufficiently regular’ assumption.
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Now we apply Neugebauer’s lemma with p = 2 to the weight pair (4, v) = (w,07 ') to
obtain that there exists W € A, with c;w(x) < W(x) < c,0(x)~L. Then the extension of
the weighted inequality of Coifman and Fefferman [7] for Calder6n—Zygmund operators
given in Section 6.13 on p. 221 of [41] shows that

176 f 72wy < €1 1To f 7200y < Cer 110N 20 < Cer 2l fO 721y
(@) (w) (w) (e7h
ie.,
||T6f||22(w) = Ccflcz||f||1%2(0),
for all Calder6n—Zygmund operators 7 . ]

Remark 1.9. We say that a measure pair (0, @) is universal (for boundedness of smooth
Stein-elliptic Calderén—Zygmund operators) if a smooth Stein-elliptic Calderén—Zygmund
operator T is bounded from L?(c) to L?(w) if and only if all such operators are also
bounded. Lemma 1.8 above shows that pairs of Ao, weights are universal, and Theo-
rem 1.4 above shows that not all pairs of doubling measures are universal.

Proof of stability in Theorem 1.4. Let us suppose that the norm inequality || 75 f |17, @ =
Nr(o, w)?| f ||22(U) holds for a Calder6n—Zygmund operator T associated with a ker-
nel K, and a pair of A weights (o, w). Since (1.4) implies the biLipschitz stability of
Ay (0, ), and since the Aoo-characteristics [0]4,, and [@]4,, are easily seen to be biLips-
chitz stable as well (in fact, they are stable under the more general class of quasiconformal
change of variables, Theorem 2 of [46]), we conclude that the norm inequality also holds
for the Calderén—Zygmund operator T with kernel

Ko (x,y) = K(®(x), D(y)).

As mentioned at the beginning of Section 1.4, T is a Calderén—Zygmund operator when-
ever T is, i.e., when it satisfies (1.5) and is bounded on unweighted L2(R"). Thus, we
conclude from Lemma 1.8 that T is bounded on the weight pair (®«0, P,w).

We can also be more precise in our proof of stability, since Theorem 1.2 of [17] implies
that the function

g(w,x,y,2) = Cw**x(yPx 4 zBx)

satisfies (1.3) for the functional ¥ = Nr (0, w), where ax and fx are appropriately
chosen exponents. ]

Remark 1.10. Let 7" be a strongly elliptic vector of Calderén—Zygmund operators as
in Theorem 2.6 of [37]. Then two-weight boundedness of 7" implies the two-weight A,
condition, see Lemma 4.1 in [37]. Thus, if 0 and w are weak A, weights, then Lemma 1.8
shows that the two-weight norm inequality for 7" holds if and only if the A, condition
holds. It follows that T is biLipschitz stable on

Sweak Ao, = {pt € M 1 dp(x) = u(x) dx with u € weak Ao}
We do not know if all Stein elliptic Calder6n—Zygmund operators are biLipschitz stable
on Sweak Aco
The proof of instability in Theorem 1.4 is much more complicated.

¢ In Section 2, we show there exist dyadically doubling weights U, V on [0, 1]” which
fail a square function testing condition.
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* In Section 3, we describe Nazarov’s “supervisor” disarrangement of the weights U, V'
into doubling weights u, v on [0, 1], and we see how the weights u, v are a linear

combination of the oscillatory functions s}z"r’P .

* In Section 4, we study how the Riesz transforms interact with these oscillatory func-
tions.

¢ In Section 5, we show that the norm inequality for R; fails on the weights (v, u) by
showing the testing condition on [0, 1] is at least as large as the square function testing
condition for (V, U), while the dyadic testing conditions for R, holds for the weight
pair (1, v). We then extend u, v to all of R”, and using that u, v are doubling with
doubling constant close to that of Lebesgue measure, we get that dyadic testing for R,
implies the norm inequality for R,.

¢ In Section 6, we then extend our results to show that individual iterated Riesz trans-
forms of odd order are rotationally unstable.

1.6. Open problems

The question of stability of operator norms for singular integrals on weighted spaces is in
general wide open. Here are two instances that might be more accessible.

(1) Only iterated Riesz transforms of odd order are treated in Theorem 1.4. Are Riesz
transforms of even order, such as the real and imaginary parts of the Beurling trans-
form, stable under rotations, or more generally biLipschitz pushforwards?

(2) While the individual Riesz transforms R; are unstable under rotations of R”, the
vector Riesz transform R = (Ry, Ry, ..., Ry) is clearly rotationally stable since
it is invariant under rotations. In fact, as mentioned at the beginning of the paper,
Dabrowski and Tolsa (see the top of page 6 of [9], and [43]) have demonstrated
biLipschitz stability in the Ahlfors—David one-weight setting for the 1-fractional vec-
tor Riesz transform R'”. This motivates the question of whether or not the vector
Riesz transform R of fractional order O is biLipschitz stable on S4oy in the two-
weight setting.

2. Preliminaries: Grids, doubling, telescoping identities and dyadic
testing

We begin by introducing some notation, Haar bases and the telescoping identity. Then we
recall the beautiful Bellman construction used in [32] to obtain the dyadic weights V, U.

2.1. Notation for grids and cubes

Given a cube J, let D(J) denote the collection of dyadic subcubes of J, and for each
m > 0 let D,,(J) denote the dyadic subcubes I of J satisfying £(I) = 27™{(J). Let
P (J) denote the collection of subcubes of J with sides parallel to the coordinate axes,
and £° = £([0, 1]"). Unless otherwise specified, any cube mentioned in this paper is
assumed to be axis-parallel, and we denote the collection of such cubes in R” by $”. We
also define D° = D([0, 117).
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Given a cube I C R”, we will use the notational convention
I =1 xI, x---x 1.

Given a cube I C R”, we let €¥)(I') denote the k-th generation dyadic grandchildren
of I, and €(I) = €M (I). And given a dyadic grid O and a cube I in the grid, we
let mp I denote the parent of I in £. The same notation extends to arbitrary grids X, like
in Section 3, where 7w I denotes the K -parent of /.

In dimension 1, given an interval I C R, let /_ denote the left half and 7 denote the
right half; for convenience, given a cube / C R”, we alsolet I+ = (I1)+ X I X -+ x I.

It will also be useful to keep track of the location of the children of / in higher dimen-
sions. In R”, let ® denote the 2" locations a dyadic child cube can be in relative to its
parent. For instance, when n = 2, we can take ® = {NW, NE, SW, SE} the set of four
locations of a dyadic square Q within its £-parent wp Q, where NW stands for North-
west, NE denotes Northeast, etc. Given a cube I and 8 € ®, we adopt the notation that /g
denotes the dyadic child of I at location 6.

As usual we let |J|, = [; du for any positive Borel measure 4 in R”. If y is not
specified in the subscript, then |J| denotes the Lebesgue measure of J. Also we define
the expectation Eju = ﬁ / 7 dp. Given a locally integrable function U in R”, we often
abbreviate the absolutely continuous measure U(x) dx by U as well. We call U a weight
if 0 < U(x) < oo forall x € R”.

2.2. Doubling

We say that two distinct cubes Q1 and Q, in R” are adjacent if there exists a cube Q for
which Q; and Q, are dyadic children of Q.

Definition 2.1. Recall a measure p on R” is doubling if there exists a constant C such
that

n(2Q) < Cu(Q) forall cubes Q.

The smallest such C is called the doubling constant for u, denoted Cyoyp. Equivalently,
if ¢ is a doubling measure, then there exists A > 1 such that for any two dyadic children /
and J of an arbitrary cube K

Ein om0,

Ejn
The smallest such A, denoted A,qj, is referred to as the doubling ratio or adjacency constant
of u.

One may also consider the dyadic adjacency constant Aggja 4 for a measure M, which
is defined as above except that we that we additionally restrict /, J to belong to a fixed
dyadic grid D, the last of which will be clear from context.

Given t € (0, 1), we say a doubling measure u is 7-flat if its adjacency constant A
satisfies A, A1 € (1 — 7, 1 4+ 7). One can make a similar definition in the dyadic setting.

For a doubling measure u on R”, the closer the doubling ratio of w is to 1, the
closer Cyoup 18 to 2": more precisely, for every € > 0, there exists a § > 0 such that for all
doubling measures p on R”, if [A.q(p) — 1] < 8, then |Cyour — 27| < &.

One can make similar definitions replacing R” by an open subset, and modifying the
definitions accordingly.
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2.3. Telescoping identity

2.3.1. Working in the plane. We begin by discussing the telescoping identity in the
plane where matters can easily be made more explicit. For each square Q in the plane
define the 1-dimensional projection E o by

Eof =(Egf)1g,

where Eg f = @ /, 0 f is the average of f on Q. Denote the four dyadic children of
a square Q in the plane by Onw, Ong, Osw, Osg, where NW stands for the northwest
child, etc. Then define an orthonormal Haar basis {h‘g, hg", h“Qh“k} associated with Q by

valy hlgr Hlow —low + 1ogy — 1og::
V10| hVQert = —lgyy — 1oy + 1ggw + 1oy
V10| h(gxk = +low — low: —losy + 1o

where we associate the three matrices [i “LIX*] [f n ], with hlé’r, h"Qe”, hCQh“k, which
change sign horizontally, vertically and in a checkerboard pattern, respectively. Thus, we
also refer to these three matrices as the horizontal matrix, vertical matrix and checkerboard
matrix. Let A g denote Haar projection onto the 3-dimensional space of functions that are
constant on children of Q, and that also have mean zero. Then we have the linear algebra
formula

2.1 AQf = <f’ hlgr> hlé’f + (ﬁ h\gl‘t) hVQCrl + (f’ hCQheCk) hcéqeck
— A}é)rf‘FAVQenf'f‘A%leCkf,

where A'é’r f is the rank one projection { f, hg’r) h'gr, etc.
Now given two cubes P and Q in O(P), with Q & P, define

(Q.P]={I1eDP):0SICP}

to be the tower of cubes from Q to P that includes P but not Q. Similarly, define the
towers (Q, P), [Q, P], [Q, P). Then, for (Q, P], we have the well-known telescoping
identity

(]EQf—EPf)1Q=( > AIf)lQ

1€(Q,P]

= ( Z (f. hk}or)hl}or)lg +< Z (f. h;ert)h}ert)lg +< Z (f, h;heck)h;heck>1Q

I1€(Q,P] I€(Q,P] I€(Q,P]

:( > A?orf)lQJr( > A;ertf)IQJr( 3 A‘}heckf)lg.

I€(Q,P] Ie(Q.P] I€(Q,P]

2.3.2. In higher dimension. Turning now to dimension 7, we note that a similar tele-
scoping identity holds in R”. In particular, given a cube Q C R”, if we let Ao denote



Stability of weighted norm inequalities 15

the Haar projection onto the space of functions constant on the dyadic children of Q with

mean 0, then
d(n) d(n)

Aof =) (fhpyhy =D 0pf
j=1 j=1

where {h }d(") is a choice of L?(Q) orthonormal basis for the range of A g, and d(n) =
2" —1is the dimension of this space. One of course has an analogue to the telescoping
identity above. In our apphcatlons for n > 2, we will be interested in the case that h1 =
hh"r where for Q = Q; x --- x Q,, we define the horizontal Haar wavelet

1 ifxeQ_,
VIOl () = { -1 ifx e 0.,

0 otherwise.

We will not care about the choice of h2Q h3 b hd(") for each cube Q, although we could
simply take the orthogonal Haar basis {3} to be the ‘standard’ Haar basis {g; ® -+ ® g, }
consisting of all product functions g (xl) X +++ X gn(x,) in which g; is either the Haar
function /1; on Q;, or the normalized indicator \/\IQ_I 1p;, and where the constant func-
tion on Q is discarded. Note that !

1 1 1
2.2) ST @ ———10,® - ®

2 —1 n
NI V102 ° NI

2.4. Horizontal dyadic testing

Given weights V' and U on a cube J, define
1
PO = o 3 I8PV I E1U = T 3 WV R EU

I1€D(J) I €D(J)

If O is the dyadic grid, define the dyadic horizontal testing constant
hor V, U; J
Thor(y, u) = sup M
jeo  EjV

Remark 2.2. The testing constant T"°" (v, u) is the L?(V) — L?(U) testing condition
for the ‘localized’ horizontal dyadic square function

| Ak 2, e
hor L2(R7?) hor 2 I
fo= | 3 —= = LS AP e
1DW): 1] 1eD(J) 7]
X€
Indeed, we compute
or or I(x)
/,'S3 W V)OPUE) dx = / > AP Ay UG~ d

I1eD(J)

= > AP WMo ErU = [Ty (V.U D),
I1€eD(J)
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and so the square of the dyadic testing condition for the localized horizontal square func-
tion is
S 1S5 A V) ()P Ux) dx Y (v.u,J)
sup =sup ————

u
JeD f; V(x)dx jeo  EjV

2.5. The Bellman construction of the dyadic weights

Definition 2.3. Given weights V and U on a cube J in R4, we define the dyadic A,
constant relative to J by

Agyadic(V’ U;J)= sup (EfU)(E[V).
IeD(J)

Following the Bellman construction used in [32] gives the following key result.’

Theorem 2.4. Given a cube J in R" and arbitrary constants T" > 0, t € (0, 1), there exist
t-flat weights V and U on J, with V and U constant on all cubes I € Dy, (J) for some
m > 0, such that

APV UL ) <1, YV U T) > T(ESV).
Furthermore, U and V are in the linear span of the finite set

{17} ULRE Y o) eanys2-om-ne(ry-
In particular, when n = 2, the last conclusion implies
(2.3) AFU = AU =0, APV = APV =0, 1eD(J).

Proof. The dimension n = 1 case follows from Nazarov’s Bellman argument in [30].°

For dimension n > 2, we show matters reduce to the n = 1 case. We show this for
dimension n = 2, and a similar argument shows the same for dimension n > 3. Let
J = J1 x J be a square. So, given parameters I' and 7, suppose our 1-dimensional the-
orem gives us weights (Vp, Up) defined on J;. Define U by U(x1, x2) = 1, (x2) Up(x1),
and similarly for V. Then note that

ErU = EIIU(), E;V = E11 Vo, for [G@(J)

Since Uy and V) are t-flat, and Agyadic(Vo, Uy; J1) < 1, the above equation shows the same
must be true for V and U on J.
Then the 2-dimensional testing is given by

I
YOV.U )~ Y il (EnwwV + E1V — EnV — Er,V)?E[U

I1eD(J) |J|

o0
=Y Y 2(EnyV + ErV — EngV — E1gV)’E1U
k=0 I€D(J)

5 A simpler Bellman proof is provided in [30]; one can also likely obtain the key result by using the disar-
rangement argument of [19].

6See also Section 3 of [32] for a stronger conclusion not used here, but which requires more difficult Hessian
computations, and also requires an argument to show that their set of admissible weight pairs ¥ is nonempty,
the details of which can be found in, e.g., an earlier preprint of this article, see Lemma 12 in [1].
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Z Z Z 2_2k(EK VO—EKJrVo) ExU,

KeDi(J1) 1€Dr(J):
=K

Z Z 27M(Ex_Vo — Ex, Vo)*ExUs
k=0 KeDy(J1)

. K|
=> 177 (Ex-Vo— Ex. Vo) ExUs
k=0 KE@k(Jl)

Y Vo, Uo; 1),

which is at least I'(E7, Vo) = ['(Es V), which yields the first conclusions after relabel-
ing I'.

To see the claim about the span, since U, V' are constant on squares in D, (J ), then U
and V are bounded, and so are L2(J) functions. But the space of L?(J) functions which
are constant on elements of Dy, (J) has orthonormal basis

1
{\/m } U R Y™ b Y ¢ o0y ey a-m-ecny-

Thus, to show the claim about the span, it suffices to show
(hi,U) =(h;,V) =0,

for any function A that is orthogonal to hh‘” has mean 0, is supported on /, and is constant
on the dyadic children of 7. Let iy be such a function. Since /7 is piecewise constant on
the dyadic children of I, we may expand (U, hy) as

/U(x)hl(x)a’xz EINWU/ hl(x)dx—i—EISWU/ h;(x)dx+E1NEU/ hr(x)dx
I INW Isw INE

+ £, U hr(x)dx.

Isg

Substituting averages of U for averages of Uy, taking a = E(;)_Uy and b = E (1), Uy
for convenience, we get that this equals

b
a[lhl(x)dx+b/1+ hy (x) dx = %/Ihl(x)dx

+ 224

hp(x)dx — /1, hp(x) dx).

Iy

Since iy has mean 0, the first integral on the right vanishes. Since (k7 h?"r) = (0, then the
last term vanishes too, and thus (U, h;) = 0. Similarly for V. [

We will now adapt the supervisor argument of Nazarov to construct a pair of doubling
weights (v, u), first on a cube in R” and eventually on the whole space R”, satisfying
Az (v,u) <1 and such that the first Riesz transform R; has operator norm Ng, (v,u) > T,
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while the other Riesz transforms Rj, j > 2, have operator norm Jt R; (v,u) < 1. Thus,
the individual Riesz transform R; is not stable under rotations of doubling weights in
the plane. We will view the supervisor map more simply as a transplantation map that
readily exploits telescoping properties of projections. To make such conclusions about the
norm inequalities, we will compute a testing condition, and if V' and U are t-flat for ¢
sufficiently small, then the classical pivotal condition holds [12], and so we can apply
the 7'1 theorem in [38] in order to deduce g, (v, u) < 1 from the testing conditions. See
Theorem 5.7 below for more details.

3. The supervisor and transplantation map

We again begin our discussion in the plane where matters are more easily pictured. We will
construct our weight pair (v, u) on a square Q° C R? from the dyadic weight pair (v, u) by
adapting the supervisor argument of Nazarov [32] as follows.” Let {k;}%2 | be an increas-
ing sequence of positive integers to be fixed later, and let D° denote the collection of
dyadic subsquares of Q°. We denote by K; = K;(Q°) the collection of dyadic sub-
squares Q of Q0 in DO whose side lengths satisfy £(Q) = 27¥1==%:£(00), and then
define
K = K(Q0) = X:(Qo).
teN

a subgrid of the dyadic grid DO. Recall that we have ® = {NW, NE, SW, SE}, the set of
four locations of a dyadic square Q within its D-parent 79 Q.

3.1. The informal description of the construction

Here is an informal description of the transplantation argument, that we will give pre-
cisely later on. Given a nonnegative integrable function U € L'(Q%) and t € N, we will
define u,(x) to be a step function on Q0 that is constant on each square in the 7-th level X,
of KX, and where the constants are among the expected values of U on the squares in the
t-th level D? of DO, but ‘scattered” according to the following plan.

To each square Q in K, there is associated a unique descending ‘K-tower’ T =
(Ty,...,Ty) € X! = K x--- x K, with T; = Q, where the square T} is the unique
square in K containing Q. To each component square 7y of T, there is associated a
unique 8y € ©, which describes the location of 7, within its 9-parent 7o T;. We then
define $(Q) to be the square L in H? which is obtained from Q° via the following
algorithm:

(1) Set L = QY.
(2) For{ =1,...,t, replace L by its dyadic child with location 6; within L.
(3) Output L.

In the terminology of Nazarov [32], § (Q) is the supervisor of Q. We then ‘transplant’
the expected value Eg(pyU of U on the supervisor to the cube Q in K, that is being

7A simpler form of ‘disarranging’ a weight was used in [34] to provide a counterexample to the conjecture
of Muckenhoupt and Wheeden, see p. 281 in [29], that a one-tailed 4, condition was sufficient for the norm
inequality for M, but the weights were not doubling.
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supervised. For example, when k; = 1 for all £, this construction yields the identity

u; =E,U = > (EqU)1p,
0eD:£(0)=2"1£(Q%)

and when the ks are bigger than 1, the values @ /, o U are ‘scattered’ throughout Q0.
Now we give precise details of the ‘scattering’ construction.

3.2. The supervisor map

We define a map
S: K, — DY,
for every ¢ > 0. Given a cube K € J;, $(K) is called the supervisor of K. We define it

as follows. Let K € K;.Ift = 0, then K = Q° and so we define S (K) to be 0°.
Ift > 1, define 6, € ®, 1 < £ < ¢, to be the unique location for which the K -parent

P =nl""k

satisfies
(rp Pe)g, = Py.
Then define
S(K) = (...((Q%e))e, - e,
using the notation introduced at the beginning of Section 2.

Note that the supervisor map § is many-to-one, indeed Q € D? has C, x, ...k, preim-
ages under §. Furthermore, we note that § (mx Q) = 79 S(Q), i.e., 7w and § commute.

3.3. The formal construction in the plane

Let U € L'(Q°) be a nonnegative integrable function, and let t € N. We construct u,
by ‘transplanting’ the expected value Eg(o)U of U on the supervisor $(Q) € DY to the
cube Q € K; that is being supervised. Here are the precise formulas written out using
the parent grid J°, where for convenience we will use superscripts to track the level of a
square in the grid D:

uo(x) = (EgoU)1go(x), and u,(x)= Z (EsoyU)1g(x) fort > 1.
QeX,;

The weights u, are nonnegative on Q°, since u, is constant on each square Q in X,

and the value of this constant is the expectation EggyU of U on the supervisor $(Q),

which is of course nonnegative. We also note the following useful fact: |u,| is bounded

by a constant independent of the choice of {k;};>0, namely, ||u;||p < ||U||L, since the

only values u, can take on are precisely the expectations of U over supervising cubes Q.
Recall the Haar projection A g associated with Q satisfies

3.1 AQfE( > EQ’f)_]EQf=< > (EQ’f)lQ’>_(EQf)1Q-
0'€6(Q) 0'€6(Q)
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Given cubes Q and P, let ¢p_. o denote the unique translation and dilation that
takes P to Q, and define

HSTTPI(x) = K" ($p 0 (x)).

Note that this function does not have L2(P) norm equal to 1. We can also make the same
definition for 25" [P], hCQheCk[P]. Finally, define

A0lP1f(x) = (Do ) ($rro (X))
= (£ HS) RTTPIC) + (£ h5) S P + (£ he) heH[P)(x)
= AIPIF() + DFPIS) + AGHPIF ().

Then, using (3.1) for ¢ > 1, the first order differences of the weights u; are given by

v -—um= Y {( X > (EsoyU)1g()

0eX: pegkir1—-D(Q) Q'€C(P)

—(Eso)U) IQ(X)}

=D { > > (ES(Q’)U_ES(Q)U)IQ’(X)}

QeX; pe(g(kz+1*1)(Q) Q’eC(P)

= > { > AS(Q)[P]U(X)}~

QeX: pegi+1-Y(Q)

Let B denote a set indexing our choice of Haar basis. Since we are working in dimen-
sion 2, we take
B = {hor, vert, check}.

For a square Q and an integer M € N, we define three alternating functions, one for each
pattern € B:

(3.2) sﬁ’pa“em(x) = Z V00| h‘gitem, pattern € 8.
Q'eCM-1(Q)

Note that each of these three alternating functions is a constant 1 on grandchildren
P’ e €M) () of depth M, and when restricted to a grandchild Q' € €M~V (), each
alternating function st’h"r, st"’ert and st’CheCk has the arrangement of %1, given respec-
tively by [i "I+ F]and [T + |. For instance, st hor j5 the function on Q consisting
of +1 arranged in the following fashion:

+ 4+ +
+ 4+ +
+ 4+ +

s,? hor  the 2% x 2K matrix ,
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and similarly,

+ 4+ + + + +
SQ,verl |+ + + + - + +
k . . . .
L+ + + + + +]
and B _
+ - + - + -
-+ - + - +
+ - + - + -
Q,check - 4+ - 4+ - 4+
S ~
4+ - 4+ = e 4+ =
- + - + - = 4]

Remark 3.1. Notice that the matrix for s@*"" is given by transplanting 22¥=2 copies of
the 2 x 2 matrix [ ~ ], which corresponds to the tensor product of a 1-dimensional Haar
function with matrix [+ -], and an indicator function with matrix [+]

We now write the projections AgU as a sum of the horizontal, vertical and checker-
board components as in (2.1) to obtain, for ¢ > 1,

(33 wm@-w@= Y Y { Y algrue)

patterne B Qe X; pegki+1—D 0)

=Y Y| T washmeew)

patterneB Qe X; pegki+1—1 0)

_ Z Z paltern 1 SQ,pattern
- S k :
(Q) /|S Q)] e

patterne B Q € K

3.4. The construction in dimensionn = 1

In dimension n = 1, we can do the above transplantation construction, with the simple
substitution

B = {hor}.

Then the transplantation construction reduces to the ‘supervisor and alternating function’
construction by Nazarov and Volberg [32]. Since there is only one choice of pattern B
in one dimension, or alternatively, only one choice of Haar wavelet basis in one dimen-
sion, {j:hQ"“’r}, we will use the simplified notation

(3.4) sg =52

ho

in dimension 1, where s,-" is defined as in (3.2).
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3.5. The construction in higher dimensions

Turning now to general dimension n, we may define

st’hor(x) =5, 21(x)) 10, %0, (X25 -+ Xn),

where st is the 1-dimensional alternating function as in (3.4). Again, the horizontal

direction indicates the direction of sign change. All of the calculations above extend to
dimension n using s1 Qhor o part of an otherwise arbitrarily chosen basis of Haar functions
for the cube O = Q1 x -+ x Q. Again, we could consider the ‘standard’ Haar basis
{g1 ® --- ® gn} consisting of all product functions g;(x7) X --- X gn (x») in which g;
is either the Haar function h on Q;, or the normalized indicator ——=— «/@ 1p. s and where
the constant function on Q is discarded; we recall the definition of the horizontal Haar

wavelets (2.2).

4. Weak convergence properties of the Riesz transforms

We let H denote the Hilbert transform on R, i.e.,
S (x — y)
Hf () = /

and we let R; denote the j-th individual Riesz transform onR”, i.e

Vi "3
4.1) R; f(x) =cq p.v./Rn MT]H f(x—y)dy, wherec, = H(Tzl)/z

Note that with these choices of constants, the symbols of the operators H and R; are
—i sgn& and —i §;/|&|, respectively. In what follows, all singular integrals are understood
to be taken in the sense of principal values, even when we do not explicitly write p.v. in
front of the integral. If we apply the Riesz transform R; in the plane to the difference
Ury1 — Uy in (3.3), we obtain

1 .
R (ut+1 ut) = Z Z [e;d(tthr)n RjSthfldllem
patterne B Q€KX |S(Q)|

and, in particular, if AR"U, AR"V, A$*U and A¥“*V vanish for all P, then we have
both

1
42) Rilues —u) = 37 (U M) —es Ry
o ()]
1 .
43) Rij(ep1—ve) = Y (V.hip) |S—(R,~s,§~’,ff.
o )]

In Section 5, we will wish to establish three key testing estimates, for an arbitrarily large I":
(1) supy ﬁ fQ|R1 1ov|>u > T,
(2) supg ﬁ fQ|R21Qv|2u 1,
(3) supg ﬁ JolR2 loul?v < 1.

IA

IA
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As in [32], the first estimate is accomplished by inductively choosing the rapidly
increasing sequence {k;}7., of positive integers so that at each stage of the construction
labeled by ¢, the discrepancy

f|R1(v,+1)|2u[+1 —/|R1<vt>|2u,

looks like > 5y |l A?‘“VHZE] U, whose sum over ¢ exceeds I'. As suggested by (4.2)
and (4.3), it turns out one must then understand the convergence properties of

[0 .
R,~skt+1°r forj = 1,2,

which we do in this section. For j = 2, we show this converges to O strongly from an
application of the alternating series test to exploit the cancellation in s,? hor Byt for j =1,
the issue is more subtle. In dimension 1, Nazarov proved H s,ﬁ — 0 weakly, and other
subtle weak convergence properties using holomorphic function theory on the unit disc. To
extend these considerations to higher dimensions, we have not managed to escape the need
for holomorphic function theory, so instead we reduce the study of R 1slg J:‘lor to H st:+1
using the alternating series test to exploit cancellation in the st’h"r functions, from which
point we can then use Nazarov’s techniques. But a considerable amount of preparation is
needed to prove these convergence properties. We begin with a discussion of the notion of
weak convergence, which we use in connection with the alternating functions introduced
in Section 3.

Given 1 < p < oo, recall f; — 0 weakly in L? (R") if for all functions b € L? (R"),
we have

4.4) lim / fi(x)b(x)dx = 0.
1—>00 Rn

Bounded operators on L?(R") send weakly convergent sequences to weakly convergent
sequences. If { f;} is uniformly bounded in L?(R") and X is a dense subset of L? (R"),
then f; — 0 weakly if and only if (4.4) holds for all b € X. We will apply this last result
when X equals L°(R”) N L? (R"), or when X is the space of compactly supported
functions on R” which are constant on dyadic cubes of fixed size.

We now turn to some lemmas in dimension n = 1 that we will use for establishing the
three key testing estimates listed above.

4.1. Weak convergence properties of the Hilbert transform

In Nazarov’s supervisor argument in [32], the weak limits appearing in Lemma 4.2 below,
for the alternating functions s,ﬁ, were proved using holomorphic function theory. While
the results of this subsection already appear in [30, 32], to keep this paper self-contained,
we provide the proofs here along with details omitted in previous articles.

If f € LP(R), then for every z € R, define the Poisson extension P f(z) of f by

Pf(2)=Pf(x+iy) = /R F(0) Posiy (0 d1.



M. Alexis, J. L. Luna-Garcia, E. T. Sawyer and 1. Uriarte-Tuero 24

where
y

(x —1)2+ 2
is the Poisson kernel. A key observation in [30, 32] was the following lemma.

Lemma 4.1. Given p € (1,00), let { fi. }x in L? (R) be a bounded sequence. Then fi — 0
weakly in LP (R) if and only if limg_,oo P fx(z) = 0forall z € Rﬁ_.

Py tiy () =

Proof. If fi — 0 weakly in L?(R), then it is immediate that limg_, o, P fx(z) = 0 for
all z € ]Rﬁ_.

If, on the other hand, limy_, o, P fr(z) = 0 for all z € Rﬁ_, then because finite lin-
ear combinations of Poisson kernels are dense® in the dual space L? (R), and the norms
| fkllLzr) are uniformly bounded in L? (R), we get fx — 0 weakly in L?(R). |

In what follows, given 1 < p < oo, let H?(C™) denote the functions f on R which
are the nontangential boundary values of an analytic function on the upper-half plane

Ct:={(x,y)eR?:y >0},

which we call f, such that

*© 1/p
sup(/ |f(x+iy)|”dx) < 00.
y>0 —00
If1 < p <oo,andif f € LP(R) is real-valued, then
f+iHf e HP(C™H).
Lemma 4.2 (Section 4 of [32]). Suppose p € (1, 00). With s,ﬁ as above, we have
s,{ — 0, Hs,{ — 0, s,{Hs,{ — 0, s,{(Hs,ﬁ)z — 0, (Hs,ﬁ)2 — 17,

weakly in LP(R) as k — o0o. More generally, for nonnegative a, b not both zero, there
exist positive constants cg p, with co» = 1, such that

Ia Ib 0 if a or b is odd, )
(s3)“(Hsp)” — . weakly in L? (R) as k — oo.
cap 11 if aandb are even,

Proof. Since limg_, o0 [ s,ﬁ (t)g(t)dt = 0 for all dyadic step functions g on R, and since
finite linear combinations of dyadic step functions are dense in L? (R), we conclude that
s,ﬁ — 0 weakly in L?(R). Since H is bounded on L” (R), we also have Hs,i — 0 weakly
in L?(R). Let fkl = s,i + iHs,{ € HP(C*). By an application of Lemma 4.1 using

8 Hint: Consider the unit circle T = [0,2x). Let f € C(T) and & > 0. For r < 1 sufficiently close to 1, and
for n sufficiently large depending on r, we have

n—1 27 (k+1)/n

preso =S - e

k=0
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fk — 0 weakly in L?(R), followed by the fact that (P fk )? is holomorphic and must
be the Poisson extension of ( fk )2, since they share the same boundary values, and then
finally writing ( fk )2 in terms of its real and imaginary parts, we get

0= lim P fkl(z)] = lim P[(£))?(z) = lim P[(s{)* — (Hs{)* +i2s] Hs}](2)
k—o0 k—o0 k—o0
forall z € C*. By Lemma 4.1 again,

s,ﬁ Hs,i — 0 weakly in L?(R),
17— (Hs))? = (s)* — (Hs{)> - 0 weakly in L?(R),

since (s,{)2 = 1;. Similarly, we see that the real part of ( fkl )3 goes to 0 weakly in L?(R),
ie.,
(s1)? = 3(s))(Hs[)?> > 0 weakly in L?(R),

which gives s,ﬁ (Hslf 2 — 0 weakly in L?(R), since (slg 2 =1; and slg — 0 weakly
in L?(R).
The more general statement involving powers a and b follows similar arguments. m

To carry out Nazarov’s supervisor argument in [32], one also needs to understand
the weak convergence of mixed terms s,f (H s,{ Y(H s,f ), where I, J and K are dyadic
intervals of same side length. We will often make use of the trivial observation that if
I, I, ..., Iy are pairwise disjoint sets, and the functions a’/ are supported on I; i, then
ZN_I ay —0 Weakly in L?(R) as k — oo if and only if a,{c — 0 weakly in L?(R) for
eachj =1,2,...,N.

Lemma 4.3. Suppose p € (1,00). Let I, J and K be dyadic intervals all of equal side-
length. Then

4.5) s,ﬁ (Hs,{) — 0 weakly in L? (R) as k — oo,
(4.6) (Hs[)(Hs]) — 0 weaklyin LP(R) ask — oo if [ # J,
4.7 s,ﬁ (Hs,f)(Hs,f) — 0 weakly in L? (R) ask — oo.

Proof. Let us first show (4.5). If I = J, this follows by Lemma 4.2, so assume / # J.
Write f,! = s{ + iHs}, and similarly for J. Since f f/ € H?(C™) (because H is
bounded on, e.g., L??(R)), the method of proof of Lemma 4.2 combined with Lemma 4.1
1mphes that the real and imaginary parts of fk fk go to 0 weakly in L? (R). In particular,
since sk sk = 0 because of their disjoint support, we get

—(Hs,ﬁ)(Hs,{) — 0 weakly in L?(R),

(4.8)
sk Hsk + i Hsk — 0 weakly in L?(R).

Then (4.5) follows from the second identity in (4.8); since I and J are disjoint, it follows
that s{ Hsi — 0 weakly in LP(R) and s{ Hs} — 0 weakly in L?(R). As for (4.6), it
follows immediately from the first identity of (4.8).

Now let us show (4.7). Define £, £,/ and £;X as above. We will expand f;! ! /,X
into its real and imaginary parts, which by Lemma 4.1 go to 0 weakly in L?(R). We will
consider various cases involving the dyadic intervals 7, J and K.
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Case 1: I = J = K. Then s{ (Hs}/)(HsX) = s] (Hs[)?> — 0 weakly in L?(R) by
Lemma 4.2.

Case 2: I # J = K. Then using that |s,€ |2 = 1y, and similarly for J, we compute the
real part

Re(f i fE) =Re(ff (fI)?) = Re((sg + iHsp) (s +iHs))?)
= —2(Hs{)s{ (Hs{) — s{ (Hs{)>.
Since the real part is the sum of two functions with disjoint support, by Lemma 4.1,
st (Hsi)> — 0 weakly in L7 (R).

Case3:1 =J # K or I = K # J. Assume without loss of generality that I = J # K.
Using that 5] s& = 0 because they have disjoint supports, we get £/ £,/ £,X has real part

—2s] (Hsi ) (HsX) —s&(Hs{)> - 0 weakly in L?(R),
by Lemma 4.1. But the two terms have disjoint support J and K, so each goes to 0 weakly

in L (R).

Case 4: I, J and K are pairwise disjoint. We compute the real part of fkl ka ka
equals

—sp(Hsi)(HsE) — (Hsh)s{ (Hs&) — sK(Hsf)(Hs) — 0 weakly in L7 (R),

by Lemma 4.1. Since the three terms have pairwise disjoint support, then each individual
term goes to 0 weakly in L? (R). |

4.2. From Hilbert to Riesz

In analogy with (Hsf)? — 1; weakly in L2(R"), we want to show that (Rysf*"")? —
c1p weakly in L2(R") for some positive constant ¢, and also that R, s£*"" — 0 strongly
in L2, even L2, as k — oo. Using real variable techniques, we will calculate matters in
such a way that our claim for R; reduces to that of the Hilbert transform H, where the
holomorphic methods used by Nazarov are available, while the claim for R, does not need
reduction to H.

The following notation will also be useful.

Notation 4.4. Given a sequence { fx }p=, of functions in L%(R"), we write

weakl
Je= Ok_a,og(l)

lim / fe(®)g(t)dt =0 forall g € L>(R"),
k—o0 JRn
and we write 1
1§
fie = 0,55 (1)
if
lim / | fe(@)|P dt =0 forall p € (1,00).
k—o0 JRn
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We first need an elementary consequence of the alternating series test.
Lemma 4.5. If b is a bounded function on [0, 1] and there exists a partition
{Z()EO<ZI <+ <IN-1 <ZNEI}

such that b is monotone, and of one sign, on each subinterval (z;,zj1), then
]/b(x)s,[j””(x) dx‘ < CN27*|b) oo

Proof. If b is monotone on [0, 1], and if say 5(0) > b(1) > 0, then

2k Jl2*
(4.9) ‘/b(x)s,[j””(x) dx‘ - ‘Z(—l)j/( b(x) dx
j=1

j—1)/2%
1/2%
5/ b)) dx < 2% bloc.
0

by the alternating series test. More generally, we can apply this argument to the subinter-
val [Zm—1, zm] if the endpoints lie in {j27% %’;0, the points of change in sign of s,[co’l].
In the general case, note that if we denote by j,m—1/2% (or j./2F) the leftmost (or
rightmost) point of the form j/2% in [z,,_1. Z,], then the integrals in each one of the
intervals [Zm—1, jm—1/21, im—1/2%, jm/2¥], and [j,n /2%, z,n] all satisfy the same bound
as (4.9). [

We will use Lemma 4.5 to prove the following results, which encompass the technical
details for the estimates in this section. In particular, Lemmas 4.9 and 4.10 below, while
technical, will allow for cleaner proofs of the main results Lemma 4.11 and Lemma 4.12
of this section. The reader should keep in mind Lemmas 4.9 and 4.10 essentially follow
from an application of the alternating series test Lemma 4.5. We first need to establish
some notation.

Definition 4.6. A function g on [a, b] is M -piecewise monotone if there is a partition
{a=t <th<---<ty =b}

such that g is monotone and of one sign on each subinterval (f¢, ¢ +1), 1 <k < M.
Notation 4.7. For x € R” and P = P; X --- X P, acube in R”, we write

X=Xt X)) = (X1, X) = (01, x2,X7) = (8, x0) = (01, %, Xn),

P=P x-xP,=P xP =P xP,xP'=PxP,=P xPxP,.
Definition 4.8. The common definition of the §-halo of a cube P is given by

HY = {x e R" : dist(x,dP) < §¢(P)}.
Given a cube Q D P, we define the Q-extended halo of P by
HSP;Q = {x € Q :dist(x;0P;) < §{(P) forsome | < j < n}.

We also write s in place of s,E_l’I].
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Lemma 4.9. Let p € (1,00) and M > 1. Let P = Py X P’ be a subcube of a cube
Q = 01 x Q' C R xR"™L. Furthermore, suppose that

F:QxP;x P> R
satisfies the following three properties:

(A1) yy = F(x,y1,¥) is M-piecewise monotone for each (x,y) € (Q \ HSP;Q) x P
forall0 <§ < 1/2,

(A2) sup(x,yl,y;)e(Q\Hf?Q)xPl><13 |[F(x,y1,Y)] < Cs <00 forall0 < § < 1/2,
(A3) 1ur2(x) [ [p, [F(x,y1, 7)) dy1 d§ — 0 strongly in LP(Q) as § — 0.
Then

/~/ F(x,y1,P)sk(y1)dy1dy — 0 strongly in LP(Q) as k — oo.
PJp

Proof. Write

[ [ oo s dinds = {lyre ) + 1, yroo)
1

x / / Fxoyr, sk Gn) dyn d5.
B Jp
For the first term, use
e [ [ P a0 dnds] < typew [ [ 1Feespldyds
8 P JP, s P JP

and assumption (A3).

For the second term we will use the alternating series test, Lemma 4.5, adapted to
the interval Py on the integral | p F (x, y1, ¥) sk (y1)dy1, together with assumptions (A1)
and (A2). Indeed, by (A1) and Lemma 4.5, we have that for (x.7) € (Q\HIQ)x P,
there exists a partition {tg, 1, ..., } of P; depending on (x,y), but with M independent
of (x, y), such that

M-1 .y
(/ F(x,yl,i)Sk(yl)dyl‘ < Z‘/ F(x,y1,7)sk(y1) dy1| < CMC527%,
P j=0 tj

where the final inequality follows from assumption (A2). Thus, away from the halo we
have uniform convergence to zero, and altogether we obtain the desired conclusion. [

We will also need a version of the previous lemma in which some of the y variables
have been integrated out.

Lemma 4.10. Let p € (1,00) and M > 1. Let P = [—1, 1]", which we will sometimes
write as Py x P', and assume P is subcube of a cube Q = Q1 x Q' C R x R"™!. Fur-
thermore, suppose that

F:0xP—R

can be written as

F(x,y1) = / Fyr(x, y1)dy”,
[—1,1]n-2
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where for each fixed x, the function y1 — Fy»(x, y1) does not change sign, and where the
following three properties hold.

(A1) y1 — Fyr(x,y1) is M -piecewise monotone for each x € Q,y" € [-1,1]"72,
(A2) SUP(, 1 )e(Q\HP©)x Py |[F(x,y1)| <Cs <ooforall0<§<1/2,
(A3) 1m}2(x) fP1 |F(x,y1)| dy1 — O strongly in LP(Q) as § — 0.
Then
[ F(x,y1)sk(y1)dyr — 0 strongly in L?(Q) as k — oc.
Py

Proof. This short proof is virtually identical to that of the previous lemma, but we include
it for convenience. Write

[ s i = {lyre ) + 19, ro() [ Flynsn i,
1 1
For the first term use
e [ Feonscondn| < 1ypee [ 1Fesnldn
8 Py s P

and assumption (A3’).

Next, the alternating series test on the integral | p, Fy7(x, y1) s (y1)dy1 will be used
together with (A1) and (A2’) for the second term. Indeed, by (A1’), there exists a partition
{to,t1,...,tpr} of Py depending on x and y”, but with M independent of x and y”, and
then from Lemma 4.5 we have, forx € Q \ H 8P Q that

[ reosonan|=[ [ ([ Beesnsonan)a
1 —1 1

)
[-1,1]2

M-1 Li+1
< S| [T Brwosonan| o
=1 YU

— -2
L2

M-l 1j+217k tj+1
[ [ imeenidnay
[_1,1]n72j t: t: k

=1 i j1—21

tj+2'7¢ tj+1
([ [ hreooian = cucrt
tj tj

41217k

[P Fyr (x5 0n) dyi [ dy”
1

IA

M-1

IA

j=1
where the penultimate inequality follows since Fy» does not change sign, and the final
inequality follows from the second assumption. ]

Here is our main reduction of the action of Riesz transforms on s ,f hor () to that of the

Hilbert transform H on s,f 1(x1).
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Lemma 4.11. Givenn > 1, a cube P C R" and p € (1, 00), we have, for x = (x1,x’) €
Rl x R* 1
Rlslf’hor(x) = HnHS,f‘ (x1) 1pr(x') + Errf (x),

where

M, = cnApAp—1--- A1, dz >0,

1
An =/R(] +Z2)(n+l)/2

with ¢, as in (4.1), and where the error Erlr,iD tends to 0 strongly in LP (R"), i.e.,

lim |[Errf [|r@®m) = 0.
k—00
Proof. We prove the lemma by induction on the dimension n > 1. Since [1; = 1, the case
n = 1is a tautology (with the understanding that Ry = H on R, note that the constants in
front of the integrals match) and so we now suppose that n > 2, and assume the conclusion
of the lemma holds with n — 1 in place of .

Let ¢ > 0. For every M > 1, we have

Rlslf’hor(x) = lMP (x)RISIJ:,hOF(x) + IR”\MP (X)Rlslf’hor(x).

We note that the second term 1r»\arp ()C)Rls,iD hor(x) goes to 0 strongly in L?(R") as
M — o0, since

1 P
/ |R1s:’h°r(x)|pdx < C/ ([ —dy) dx
RI\MP r\Mp \Jp X — y["

EC/ (L)de,
re\mp | dist(x, P)|"

which goes to 0 as M — oo, uniformly in k. In particular, we choose M such that
fRn\MP |R1s,f’h°’(x)|1’dx < g/2 for all k > 0. With Q = MP, it will suffice to show
that limg o0 ||Elr1fliD 7o) < /2 for k sufficiently large, where Er1r,iD is implicitly defined
as in the statement of the lemma.

Without loss of generality, we assume P = [—1, 1]". Recalling that X =(xy,...,Xn—1),
Yy =1,-..,Yn-1), We write

RisP ) =0 [ s oD
1 =y S T — y0)2 £ — ez T et

/[A 1,171 qj()?’x”’yA)sl[c_l’I](yl)df’

where, by the change of variables z = (x, — y,)/|X — y|, we have

1

~ ~ X1 — )1
U(X,x,,y)=c / —— dy
n n . [lx — y|2 ¥+ |xn _ yn|2](n+1)/2 n
(xa+1)/|X=7] 1

c 1], ~ -~
= _"KE" ll(x_y)

— =z,
cn1 Gn—1)/[7—5] (1 +z2)+D/2
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and where K {m] is the kernel of the first individual Riesz transform Rgm] in m dimensions.

Note that
1 (xXn+1)/|12=7 1
PN, x,,Y) = f I
) Gen—1)/[5—5] (1 +z2)(r+D/2

is a bounded function of (X, x,, ¥), with

1
n—1 —
I "WSAWdZ—AWO-

With I, (x, ) = (xn — 1)/IX — y] and u,(x, y) = (xn + 1)/|X — 3|, we may further
decompose ®"~1(X, x,,, 7) as

0 Un 1
U, I Ve

|1, [24n] 1
= {—sgn(x,, — 1)/0 +sgn(x, + 1)/0 }_(1 1 22)a D)2 dz

ln] | A
= Aulp, (x,) — sgn(x, — 1)([0 T e 22)(n+1)/2dz - 7")

[un] 1 Ay
+Sgn(xn+1)(/0 mdz—7>

= Anlp, (xn) = sgn(xn = 1)Ly (x. §) + sgn(xa + DL (x. 9).
Relating the above computations to RE"_I] and RE"], we obtain

or C — — A~
R () = c—"AnRE" Yo @ 1y, ) (@) 1p, (1)

n—1

-sgnCe, — 1) [ TN s ) d
1,1]n-1 |x |

Cn—

+ " sgn(x, + 1) = L2(x. H) sy Mo dF
Cn—1 [-1,1]n—1 |X— |

c -1, - -
= C_ ARV @ 15)(R) 1, () + Errf (x) + Ere (x).
n—1
We now apply our induction hypothesis to the term R[n 1]( 11 1 5)(X) to obtain
Ay RIIGE @ 15)(R) 1p, (6) = T Hs ' (x1) 15(xa, - ., Xn)
n—1

AnErrf () 1p, (xn),

Cn—1

where Err}ca (X) 1p, (x,) tends to 0 strongly in L?(Q) by the induction hypothesis.
So it remains only to show that both Err}{ (x) and Erri (x) go to O strongly in L?(Q),
and by symmetry it suffices to consider just Erri (x). We have

Ll 1 A, 00 1
Ly(x.y) = /(; (I + 22)0+072 dz —— = _[un| (1 + z2)n+D/2 dz,

where we recall that |u,| = |x, + 1]/|x — |
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We now see that it suffices to verify (A1)—(A3) of Lemma 4.9 for the cube Q and the
function

(4.10) F( Gy = L1 /oo ! d
. X, Y1,Y) = = ————=dz.
1X = 31" Jixut11/5—5) (1 +z2)@+D/2

We first turn to verifying property (Al), and since we only require upper bounds at
this point, we will not keep track of absolute constants. The case n = 2 turns out to be
rather special and easily handled so we dispose of that case first. We have when n = 2 that

o0 1 1
F(x,y1) = / —————dz, whereus(x,y1)| = M

X1 =1 Jus ey (14 22)3/2 lx1 — 1

For any fixed x, |uz(x, y1)| is monotone as a function of |x; — y;|. We now claim that
the function F(x, y;) is M -piecewise monotone for M = 7 as a function of y;. Since
F(x, y1) only changes sign once, to see this it suffices to show that, with s = |u»(x, y1)/|,
the function

o0
1
Hﬁ(s)zsf (1—|—12)_ﬂdt forse(—oo,oo),ﬁ>§,
N

has three changes in monotonicity on (—oco, co). We compute
HY(s) = 2{(B — 1)s* = 1}(1 + s P71,

which has at most 2 zeros in (—oco, 00), hence H l; (s) has at most 3 zeros, which proves
our claim.
Now we turn to the more complicated case n > 3. Let t = x — y. Then we may write

~ 151 |xn+1|
F(x,y1,7) = s V( ! )
D) =G s @ e

where

o 1
V = .
n(w) /;U (14 z2)mn+D/2 47

Note that the antiderivative

1 1 sec2 6
/ (1 + 22)+D/2 dz = /(1 ¥ tan? )72 dtanf = (sec2 §)n+ D)2 d6
4.11) = /cos”_l9d9=C,,9+R,,(z,\/l+zz), z =tané,

where R, is a rational function of z = tan 0 and +/1 + z2 = sec, and C,, = 0 when 7 is
even. Indeed, one can use the well-known recursion

1 —1
/cosm 0do = —cos™ ' 0sinh + m—/cosm_2 0do
m m

1 -1
— tan 0 + n [cosm_2 0do.
m sec™ 6 m
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Then, setting

z =tanf =

|xn+l| =<xn+1)2 _ |f|
E+ipz T ) T T e

and using (4.11), we may write (4.10) as

o 151 >
F(x,y1,9) = —(tlz B {Rn(z, V1422 4+ Co0 + C}

= E;tan" ! 0/ Ey — tan2 G{R,,(Z, V1+2z2)+C,0 + C} = D, ;(0).

At this point, we employ the convention that R, T},, U,, are rational functions which
may change line to line, or instance to instance, but their degree will be bounded a con-
stant depending only on the dimension 7, where the degree is the sum of degrees of the
numerator and denominator. Similarly, we will take M to be an integer which may change
line to line or instance to instance, but will only depend on the dimension n. We also recall
the fact that the function R, (z, /1 + z2) can equal 0 or oo at most M times: indeed, R,
is a rational function of z and /1 + z2, which is in turn a nontrivial rational function
of sin # and cos 0, with degree depending only on n. Thus, the number of zeros or poles
it possesses is at most a constant depending only the degree, i.e., a constant which only
depends 7.

Now fix x and 7, or equivalently x and 7, and let us only consider the case when
t1 = x1 — y1 > 0, as the case #; < 0 will be similar. Then since #; — 6(#;) is a decreasing
injective map from R4 — (0, 7/2), then y; +— F(x, y1, y) is M -piecewise monotone on
{y1 €R:y; <x1}if 0 = D, 7(0) is M -piecewise monotone on (0, /2). Since 71 > 0,
then F is positive and so is D, ; when 6 > 0, since both functions possess the same sign.
Since u > u? is increasing for u > 0, then D, 7(0) is M -piecewise monotone if and only
if Dx,;(Q)2 is M -piecewise monotone, which we will now show below.

In the reasoning that follows, we assume all rational functions we consider below
are non-constant; in the case one of them is constant or even identically O, the proof of
M -piecewise monotonicity is even simpler than the proof below, the details of which we
leave to the reader. We have

Dx,;(e)2 = E?[Eg —tan® 0] [R,(z, V1 + z2) tan" ' 6 + (C,0 + C) tan" ! 9]?
=Ru(z, V1+22)0%> + T, (z, V1 + 22)0 + Upn(z. V1 + z2).

To check D, ;(6)* is M monotone, it suffices to show D, 7(6)* has at most M critical
points. For this we compute

% Dx,f(9)2 =Rz, V1+22)0? + T, (z, V1 +22)0 + U, (z, V1 + 22)
=R,(z,V1+ 22){92 + Tn(z. V1 +22)0 + Uy(z, V1 + 22)},

which equals 0 or oo if

Ry(z,V1+42z2)=0 or oo,
02+ 6R,(z, V1 +22)+ Tz, V1 4+22) =0 or oo.

or
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The first equality can clearly only hold for at most M values of 6. To show that the

function
0% 4+ R, (2, V1 4+ 22) + T (z, V1 + 22)

can equal 0 or oo at most M times, it suffices to show that this function also has at most M
critical points.
Its derivative is of the form

R,(z,V1+22)(0 + Ty, (z, V1 + z2)),

which we claim equals 0 or co at most M times. Indeed, R, equals O or co at most M

times, and the function
0+ Tz, vV1+z2)

equals O or co at most M times because its derivative is given by

14+ Ty(z, V1 + z2),

which in turn equals 0 or co at most M times.

Thus, y; — F(x, y1,y) is M -piecewise monotone for some M depending only on n,
and not on the additional parameters x and y», ..., y,. This completes the verification of
property (Al) in Lemma 4.9.

We now verify property (A2). For any x € Q, we have from (4.10) and from |u,| =
[T 4+ x,|/|X — y| that

~ x1—yil [ 1
F(x, , < —F dz
|F e,y 9| < R Ju| (1 +22)0+0R
_ |x1—J’1||u " > ! dz
BTNl ST e

We claim that

ual [ s 42 < C
U1 J (U 22072 45 =

Indeed, when |u,| < 1, this follows from integrability of the integrand, and when |u,| > 1,
this follows from a direct computation using the fact that (1 + z2)®*+1/2 & z7+1 Thus,

|F(x,y1,Y)| < Cy X1 = 1l <Cnos whenye P xeQ)\ H8P;Q.

1+ xa|" —
Finally, we verify property (A3). To show that

1
IHBP;Q(X)/ /[ | 2|F(x,y1,)7)|d)7dy1 — 0 strongly in L? (R") as § — 0,
—1J[-1,1~

we split
1
tyre) [ [ IFGon iy
8 -1 J[~1,1]72

<1,r0(x) |F(x,y1.5)|d§
8 {(Fe[-1,1]"1:|Z=F|>|1+x,|}

1,0 (x) |F(x.y1 9| d5.
§ {yel-1,1]""1:|x=P|<[1+xx4 [}
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To bound the first term, we use the estimate

Y-l [ ! dz
|)’C‘_)’}|n it (1+22)(n+1)/2

- 1 o 1 dz <C
=Ry (L 2y T

|F(x,y1,9)| <

and polar coordinates to get

/. Py lds
{e[-1,1]1""L|Z=P[>[1+xa}

1
< Cn/ IS
Fel-1,11 2 —5]>1+x,0} |X — V|

|x — y|r-1

C ol drdf < Cyl —1
< Z < ,
- /Sn*Z ~/|‘l+xn| P arar ="t dist(x,, OP,)

where we have used the fact that |X — J| < cg. Thus,

1, ri0(x) [F(x,y1,9)dy — 0

{Pel-1,11""L:|X=FI>|1+xa[}

strongly in L?(Q) as § — 0.
As for the second term, for |u,| > 1, we estimate

[x1—y1l [ 1 s
IX=P1" S, (1422 +D/2

|F e,y 9| =<

- 1 *© 1 J
- |55_5;|n—1 it (1+22)(n+1)/2 z

Jun " /Oo 1 dz < Cn
= z s
1" gy (1 22)ED2 507 L

and so

/.  FeonPldd
el-1,11""LZ=F|<[1+xa [}

1
< Cn/ TR
Gel-1,1 - 2—F|<1+x, 0y |1+ Xnl”

Thus,

dy < C,.

1ri0(x) [F(x,y1,9)dy =0

{Pel-1,11" L:|X=yI<|1+xa[}

strongly in L?(Q) as § — 0.

The next lemma is an extension of the one-dimensional lemma of Nazarov in [32].
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Lemma 4.12. Suppose p € (1,00). Let a and b be nonnegative integers, not both zero.
Given a cube P = P; x P, x --- x P, C R", we have:

(1) limg—oo fgn (58 (x)) (RysPM(x))? f(x) dx = 0 for all functions f € L?(R")
when a or b is odd

(2) limg—oo [ga (ST (xX))*(R1sF P (x))? f(x)dx = Cuyp [p f(x)dx for all functions
f € LP(R"), when both a and b are even, and C,p, > 0 and Co 5 = T12.

3) st,f’hor(x) tends to 0 strongly in LP?(R") as k — oo for all p € (1, 00), for all
2<j<=n

Remark 4.13. A careful reading of the proofs of Lemma 4.10 and part (3) above show
that for all k > 1 and M > 1, we have the pointwise inequality

1 _
|R> SP "(x)] < Cn dist(s. 9P3) Ldist(xa,0P5) <8} (X) + C52 kl{dist(xz,aPz)ztg}(x)s

forxe MP.
Proof. (1) and (2): By Lemma 4.11 , we may write
(50" (0)) (Ris ™" (x))? f(x)
= 4G o) (H s (x1)) f(x) 1p/(x') + Enrp 74P (x),

where Err,f’f’“’b(x) — 0 strongly in L!(Q),and P’ = Py x ---x Py and x = (X2....,Xp).
Thus, integrating over R” and using Lemma 4.2 yields the conclusions sought.

(3) By permuting variables, we can assume without loss of generality that j = 2.
Let ¢ > 0. Arguing as in the proof of Lemma 4.11, for every M > 1, we have

st]f hor(x) R, s: hOr(x) 1yp(x) + Ry sP hor(x) 1rm\ pp ().

We note that the second term stP hor(x) 1gm\arp () goes to O strongly in L?(R")
as M — oo, since

1
/ IR, sPhor(x)|1’ dx < C/ (/ —dy)pdx
R7\MP rR\MP \Jp |x —y|"

<c / (L)de,
R"\MP |dlst(x,P)|"

which goes to 0 as M — o0o. So choose M such that fR,, yp | RSP (x)|Pdx < /2.
Thus, with Q = M P, it remains to show that || Ry sf> hor|| Lr(@) < &/2 for k sufficiently
large, which we show below.

Again we may assume that P = [—1, 1]". We have

P.hor (2 — yz)Sk Hom) ,
Rys; 7 (x) = / / / "1 — y1)? F [ =y 2D dy1dy

— /_1 Fx,y) st () dys.
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For each fixed y” € [—1, 1]"2, define the function

xz—l t

4.12 Fyn(x, = — dt
w b =a | e

[x2—1] t
= —cn/ dt,
at1] [(x1 —y1)2 412 + |x7 — y7 2]+ D/2

where the second line follows from oddness of the kernel, and thus using the substitution
! = X, — Y2, we have

Flx.y1) = / Fyr(x, 1) dy”.
[_lal]n—z

Thus, to show || R, SkP’hor”Lp(Q) — 0as k — oo, it suffices to show that Fy» (x, y1) satisfies
conditions (A1")—(A3’) of Lemma 4.10, noting that for each fixed x, this function of y;
does not change sign.

Condition (A1’). Note that

[x2—1] t

Fyr(x, y1) = —cn/

dt,
o1l [(x1 = y1)? 4+ 12 4 |x7 — y7|2| (4 D/2
and so differentiating in y; yields
[x2—1] t

0
— Fy(x, =c' (x1 — dt.
T R [ e o ey

The integral above is of one sign, and so %Fyn (x, y1) only changes sign at y; = xj.
Thus, Fy#(x, y1) has at most 1 critical point in y;, and so is 2-monotone.
Condition (A2). By (4.12), we have

|F(x, y1)l
max{|x2+1],[x2—1[} t ”
- {/ a’t}dy
n [—1,1]”2 min{lxa+1],lxa—1)}  [(X1 — y1)2 + 12 4 |x" — y//|2](n+1)/2

/ max{|x2+1[,[x2—1[} t Y
< { / —a’t}dy ,
" Uningro s 11—y 87!

sinceif x € Q \ HSP;Q, then ¢ > § by separation. Thus,

1
[To\ar2(x)F(x,y1)| = C S

Condition (A3'). Let
Ax = {1 y") e [-L 1" s (g = y1.x” =) > 11— xa},
By ={(y1.y") € [L1]"7 |(x1 — y1.x" = ¥ < |1 = xal},

and assume without loss of generality that |x; — 1] < |x, + 1].
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For x € HgP;Q, we have
1
[ iFeoian
-1

1 [e’s)
t
< { / dt}dy”dy1
/—1 /[—1,1]"-2 min{lxa+1]1xa—1)) [(X1 — y1)2 + 12 + [x7 — y” 2|1+ D72

1 1 1
dy" d
n—1 /_1 /[.—1,1]"—2 [(xl _ y1)2 + (1 —X2)2 + |x// _ yulz](n—l)/z Y Y1
1
< d , "
L e rar e e

1 1
= d(y1,y" +/ — _dy. Y.
= /Ax [(x1 — y1)? + |x" — y//|2](n—1)/2 1, ¥") TG 1, 9")

X

By a crude estimate the second integral is bounded by

1 1
—————d(y1,)Y") < Cy|By| ————— < Cy.
/Bx [1—xp|"! Oy = Gl x||1—xz|"_l -

As for the first integral, integration using polar coordinates yields the upper bound

Cn rn—2 c
c/ dr =cln ——— € L?(Q).
1—xa| 7" 11— x2

Similar estimates hold when |x; + 1| < |x — 1| and x € H, 8P ‘2 Hence, we can conclude
that 177:¢ (x) f_ll | F(x, y1)| dy1 goes to 0 strongly in L?(Q) as § — 0. n

Theorem 4.14. The conclusions of Lemma 4.3, namely, (4.5), (4.6) and (4.7), hold if one
replaces H by Ry and s}t by st and similarly for J, K.

Proof. One argues as previously in the proofs of Lemma 4.12 parts (1) and (2), in partic-
ular using Lemmas 4.11 and Lemma 4.3. ]

5. Boundedness properties of the Riesz transforms

We now are equipped with the convergence results we need to complete the proof of the
main theorem by following the supervisor argument of Nazarov in [32]. We begin with a
short formal argument, then we adapt Nazarov’s supervisor argument for the Hilbert trans-
form to the transplantation of Riesz transforms, and then complete the proof by extending
our weights to all of R” and showing the Riesz transform R; has large norm for this
weight pair, while R, has small norm.

5.1. A brief overview of the argument

We now take Q° = [0, 1] to be the unit cube in R”, and let V and U be as in Theorem 2.4.
We apply the transplantation argument of Section 3 to V' and U to obtain weights v; and u,
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forall 1 <t <m, withu = u,,, v = v,,. We will compute the R;-testing conditions for
(v, u) by first estimating them for the pair (v;41 — vy, uy). Since both V' and U have Haar
support on finitely many horizontal Haar wavelets in Q°, by the estimates of Section 4, we
obtain that in the limit only the diagonal terms in [Ry (v;+1 — v;)]? survive the integration
with u,. Indeed, recall that

1 or
Ri(vees =) = 3 (Vi) —emss RS
QeX;

and the vanishing weak convergence results of Section 4 yield, for k;4+1 > C(ky, ..., k;)
and Q, Q’ dyadic subcubes of [0, 1]",

/ 0 if !
/Rlst horRlsQ hory, . — ) 1 Q7 Ql on [0, 1],
1+1 (I1,,) fQ u, ifQ =0

where IT,, is the constant appearing in Lemma 4.11, and so using once again the vanishing
weak convergence results of Section 4, for k;4+1 > C(kq, ..., k;), we get

T 1 h 2
/[RI(UH-I_UZ)]Z“I :/ Z ) EO(Q) Rlstt;—lor:I Ui

= H@]

1
Z / (v, hg"(rQ) 1st:‘1“] u, + offdiagonal
ocK, ! BX(9]

— 2 hhor
(M) 3 (Vi) IS(Q)I/

QeX;

and if we now sum in 7, pigeonhole cubes Q based on their supervisor S, use the fact that

Eou; = EsU, and finally " gex, 1§ =1, we obtain

$(Q)=S8

m—1

[[Rl Z(Ut+l —v,) Z/[R (ve+1 —Ut)] Ut
t=1
2 hor 1
~ 7S Y W) |S(Q)|/Q”’

t=1 QeX;

m—1
—MP Y Y Y W Eu Y

t=1 SeD; QeX;
$(Q)=S

m—1
=@M)*) Y. > (VhE)Es '|§|'
t=1 SeD; QeX,
$(Q)=S
m—1
= (M)* Y Y (V.Y EsU > (I1,)* T (Ep,12 V).
t=1 SeD;
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which shows that testing for R; blows up, and hence two-weight norm for R; blows up
as well. On the other hand, we will see that dyadic testing for R, is controlled by the
dyadic A, condition, namely,

/|R21Qv| u+  sup /|R21Qu|2v <Adydd‘°(u v;[0,1]M),

sup
0eD([0,11") 101y 0eD([0,1]") 101u

for k1, ks, ..., kn all chosen large enough in an inductive fashion. To make this formal
argument precise in the next subsection, we follow the scheme in [32] for R;, while the
scheme for R, is our own.

This gives us weights (v, u) in the unit cube [0, 1]”. We then extend these weights
periodically to the plane (with an additional small decay term), so that they continue to fail
the norm inequality for R; (since the testing condition is large), while the dyadic testing
condition for R, holds. However, our weights will be doubling with doubling constant
close to Lebesgue measure. So we will be able to leverage the T'1 theorem of [38] and
doubling to show that dyadic testing for R, implies that the norm inequality holds for R».
Thus, we will have constructed a weight pair for which R, is norm bounded, but R; is
not, i.e., this weight pair will be rotationally unstable.

5.2. The Nazarov argument for Riesz transforms

We now continue to carry out our adaptation of Nazarov’s supervisor argument to the
higher-dimensional setting of the supervisor and transplantation map. Equipped with the
supervisor and transplantation map, and the weak convergence results above, this remain-
ing argument follows the proof in [32] for Ry, but we include additional details that were
omitted in [32] which will clarify the presentation here. The argument for R, is new,
however.

Recall that {k;}72, is a strictly increasing sequence of nonnegative integers k; € Z
with ko = 0, and whose members will be chosen sufficiently large in the arguments below.
We define

K =) K: where Ko ={0° = {[0.1]"}

(G

0

~
Il

and
K ={0 € D(Q°) : £(Q) =27 Fikamhey =y >

Proposition 5.1 (Nazarov [32] in the case of the Hilbert transform). For every I' > 1 and
0 < T < 1, there exist positive weights u, v on the unit cube Q° = [0, 1]" satisfying

/ |[Riv(x)[?u(x)dx > F/ v(x)dx,

[0,1]" [0,1]

/|R211v(x)|2u(x) dx < / v(x)dx  for all dyadic cubes I € D°,
I I

/|R211u(x)|2v(x) dx < /u(x) dx  forall dyadic cubes I € D°,
I I

1
1 j s1eD°
(|I| /u(x)a’x)(u| [v(x)dx) <1 forall dyadic cubes I € D",
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and

Eju Ejv

, <1+t foradjacent dyadic cubes J, K € D°,
EKM EKU

(5.1 l-7<

where J and K in (5.1) need not be dyadic siblings, only adjacent.

Proof. Let V and U be as arising from Theorem 2.4 with y(V, U, QO)/(EQo V) >T'
sufficiently large. We apply the transplantation argument of Section 3 to V' and U to
obtain nonnegative weights v, and u, with 1 < < m, and set

U= Up, U=Un,
where m is as in Theorem 2.4. It will be convenient to denote, respectively, the differences
Ni+1 = Usp1 —Ug,  Spp1 = Vpg1 — Vs

Note that, by (2.3) and (3.3), n; and §; are of the form

Qhor_ weakly
Z CQ—F—— |3(Q)| kr+1 _Okt+1—>00(1)’
QeX;

because the constants cg depend only on the levels 1 through ¢ of the construction and the
number of terms in the sum only depends on k1, ..., k;. We may then write

1
u=(EgU)lgo + Z Z , EO(TQ) SQ,hor’

k
s S
I
hr Q hor
”_(EQOV)IQ°+Z > (Vi) TS0 ke
t=0 QeX;

We will now focus on the ‘testing’ constants

1 / 5
_— |[Ryv(x)|[“u(x)dx
110, 11" |v Jio.1n
and
sup /|R21Qv| u, sup /|R21Qu| v,
0en(on) 121w 0en(09) |0l

and show that the first is large, and second and third are small, provided we take the
integers k, sufficiently large in an inductive fashion. To tackle the first testing constant,
define the discrepancy for R; on Q° = [0, 1]* by

Disc(r) = /Q (R 1gui1(0)urn (x) dx - /Q (Ri1gui ()i (x) d.
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We begin with the decomposition
Disc(t) = /O(Rl 1Q08¢+1 + RllQov,)zut_H _/O(Rl IQOUt)ZMt
Qo Qo
2/0(R11Q03t+1)2ut+1 +/O{Z(Rl1Q05t+1)(R11Q01)t)}(Mt + Nr+1)
o o

+/QO(R11Q00t)2(uz+1 —Uy)

= ((Rl 1Q08t+1)2» ut+1)L2(Q°) + 2((R1 1Q081+1)(R1 IQOU;), ut)Lz(QO)

+ 2<(R1 1Q08t+1)(R1 IQOUt), '7t+1>L2(Q°) + ((R] IQOUt)z, '7t+1)L2(Q°)
=A+B+C+D.

‘We first claim that
t
Disc(t) = (T,)* Y. (APVEU) + Y 0k iy soo(D).
I1€D: L(I)=2"" r=0

We will see in a moment that A is the main term. Using that v;, u; and 8,41, ;41 are
supported in [0, 1],

B =2((Ryv))us, Ridi+1)12(0,11) = —2(Ri[(Riv)ue], Se1)12(0.11) = Okiy1—o00(1),
since the function R;[(R;vs)u;] € LP(R") for all p € (1, 00), and in particular belongs

to L2(R"), and is independent of k1, and finally since 8,41 = oxe™,  (1). Similarly,
since Rjv; € L*(R?), we have

D = ((R1v)?. 0e41)L2([0.1]7) = Okyrs1—o0(1)-

For term C, we have

2((R18:+1)(R1v1), Me1) L2(f0,1)7)

_2/ ’hhor )RI—SQ’hor (Ryvy)
0 l]n S(Q) |S(Q)| kt+1 )

QEJ(,
T 1 4
X( > (UHo)) —=—= sttL}lmr)
orek, 1SN
1 1 ,
=2 Rher WU, b )/ Ry ————— s 21" (Ryv,) ——— s 2her
S( $(Q) 1 k 1Y k
QQZEx R N IR [S(@n]
= UkHl%oo(l)y

by Theorem 4.14, since JX; and R;v, are both independent of k1, while

(Rys2mr) 52" 0 weakly in L2(R").

kit1 7 kit
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Finally, for term A, we have

A= (R840 ur11) L2((0,11m)
1 2
Q ,hor
= (V,thI’ )R Ky ) ’u+1> .
<(Q;<, SO sty ke ) o

We first note that if the sum is taken outside the square, so that we consider only the
‘diagonal’ terms, we have

1 or 2
< Z ((V’hgo(rQﬂRl—SQ’h ) ,Mt+1>

s S(Q)] Fr
= |S(Q)| Voo P { RS ) + (Ris, mi)|
QekX;
o]
=(Hn)2{Q§C( hfé(Q))2|S(Q)| S(Q)U}

{ Z |S(Q)| v, g‘o(rQ)) ((Rlstt’flor)z,r]t+1)}-|-0kt+1_>oo(])

=F+ G + 0kt+1—)m(1)7

by Lemma 4.12 (2) for k,4; sufficiently large, and since @ fQ u; = Ego)U. To com-
pute F, we pigeonhole the cubes Q € K; according to their supervisors S = §(Q),

F i ol
N — , or E U
T2 Z Z S(Q) |S(Q)| $(Q)

SeD; QeXK;
$(Q)=S
= Z (V.2 EsU Z ;&: Z (V, ¥ EsU.
SeD; QeX; | (Q)| SeD;

$(Q)=S
However, to compute G, using the definition ;41 = >_ oex, (U, hgo(rQ)) | Sl( ) ‘sttfl"r we
have
1

G= 2 5oV i) U hSion (Risg %58 ™) = Oksion (D).
0,0'eX,

by Theorem 4.14, and thus we conclude that the sum of the diagonal terms equals

t
2 > (V) ESU + Y ok, —o0(1).
SeD; r=0

Turning now to the sum of the off diagonal terms,

1 1 or or
X T T P e IR Ky e
Q#Q'eX;

we see that they all tend to O weakly as k;+; — oo by Theorem 4.14. Indeed, we write

Ury1 = Us + N+1, and split ;41 into a linear combination of functions s,];t:':‘l’r, noting that
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the resulting number of terms in the above display is independent of k;4; and that each
such term tends to 0 as k;+; — oo by Theorem 4.14. Thus, we can choose the components
of the sequence {k,}L, sufficiently large that

/[.0 1]n |R1U(x)|2 u(x) dx 2 (F/ — CA;yadic(V’ U, [0’ 1]}1)) /[.0 1]n U(X) dx’

since we also have

[ | Ryvo(x)|%uo(x) dx = /
[0,1]" [0

1] ,

= (Eo,1}» V)Z(E[o,unU)/[ | |Ri1p,1p|* dx
0,11

] |R11[0,1]n E[O,l]” V|2 1[0,1]” E[O,l]” U dx
ln

= C(Epo.1p V)X (EapU) < CAY (V.U [0, 1) Eg 1 V.

Our next task is to show that the two testing conditions for R, are finite. They are
symmetric, so it suffices to show the bound only for the testing condition with u outside
the operator. We will argue so using Lemma 4.12 (3) and Theorem 4.14. Let Q € D°, and
for convenience let kg = 0. We first consider the case that there exists ¢ = ¢(Q) such that
2~ko—ki—ka——ki < p(Q) < 2 ko—ki—ka—-—ki-1 We will deal later with the remaining
cubes Q for which such a ¢ does not exist. Note that at each stage ¢, there are only finitely
many cubes Q € DO such that £(Q) > 2~ ko—ki—ka=—k: and hence will only have to
consider finitely many error terms which are o, , 00(1). Writing u = u; + > 4, | s
and v = v, + Y 1, 8, we then compute

f | R 1Qv(x)|2 u(x)dx
o

s/Q|R21Q(vt><x)|2u(x>dx+/Q\Rzlg(sgl&)(x)\zuu)dx

= [ IR10w0@Pu)dx + [ R10w)@P( 3 m(w)dx

s=t+1
m 2
+ / ‘R21Q< Z 85)()()’ u(x)dx
0 s=t+1
= |Q|y(main + Err; 4 Erry).
We first claim Err, can be made arbitrarily small, so long as kyy1, k¢+2, ...,k are all

chosen sufficiently large. Indeed, we use u(x) < ||U||« independent of the choice of
ki1,...,km, which gives, using Lemma 4.12 (3),

o [t 3 sl ura

s=t+1

Erry

U - 2
0 [ Reto( 3 8.)0of dx =0 askins > o0 = 1.2, m—,
|Q|v o s=t+1

where we recall that t = 7(Q).
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As for Erry, it too can be made arbitrarily small by choosing &, sufficiently large,
and using the strong convergence of 7;4 ; — 0in L?(R") forall j > 1 by Lemma4.12 (3),
as R, 1gv; only depends on ko, k1, ..., k; and is hence independent of k; ; for j > 1.

So we are left with estimating the term main. Note now that Egv, = Egv = Egg+)V,
where Q* is the unique cube in J; containing Q. Note as well that v, is constant on each
I € K;+1, and satisfies the pointwise estimate

1o (X)v,(x) < (EsonV)(1 + 1),

since v; inherits dyadic t-flatness from V'; similarly for u;. Then applying the pointwise
estimate to u,, followed by the estimate || Rz 1gv;|z2(rny < [[1oV¢|lz2(rn) by bounded-
ness of R, and then the pointwise estimate applied to v;, we get

/;J(Rlevt)zut dx <(1+ r)(Eg(Q*)U)/‘Q(Rzlgvt)2 dx
=10 (Esi@al) [ (002 = (140 EsonU)(Esion V20
Since A;yadiC(V, U; 0% < 1, the above is controlled by
(140 (EsonV)10] = 1+ 2 (Egn)10] = (1407 [ v

Finally, we consider cubes Q for which 7(Q) does not exist, i.e., cubes Q such
that £(Q) < 2 *o—ki—k2a==—km Then v,y are constant on Q with Eov = Egg+V and
Eou = Egp+U, where Q* is the unique cube in X, which contains Q. Thus,

f(Rzlgv)zu = (ES(Q*)V)z(ES(Q*)U)/ (R219)* < (Es(onV)| 0] =/ v,
0 0 0

where in the inequality we used (Eso+)V)(Eso»U) < 1 and || Ra||12rr)—12®n) = 1.

Since 7 € (0, 1), we obtain that the dual testing constant for R, on dyadic cubes is
bounded; similarly for the testing constant on dyadic cubes.

Finally, to remove the restriction that J and K must be dyadic siblings from (5.1), one
can modify the transplantation argument following [32], as described in Appendix A.4.
However, complete proofs were not provided in [32] and we invite the reader to consult
Appendix A.4 for missing details, namely, Lemma A.17; see also [30] and [19]. We also
explicitly point out that this modification of transplantation will not affect any of the limit-
ing arguments above involving taking k, sufficiently large for each ¢, and by Remark A.16,
the dyadic A, condition will be unaffected.

Finally, by multiplying v, u by an appropriate (small) positive constant, we obtain the
statements in the theorem with the required constants. ]

Remark 5.2. The weights u(x), v(x) in [0, 1]* constructed in the proof of Proposition 5.1
depend only on the first variable x; of x.

Remark 5.3. A careful reading of the proof shows that our weights v, u satisfy the L?-
testing and dual LP?-testing conditions for the operator R, when p € (1, 00). Thus, if
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there was a 7’1 theorem for L? with doubling weights, our results regarding R, would
extend to L?. See [40] for a vector-valued T'1 theorem, where the norm inequality holds
if vector-valued analogues of the testing and A, conditions hold.

In order to complete the proof of Theorem 1.4, we need to extend our doubling con-
clusions to classical doubling, and remove the restriction to dyadic cubes in our testing
conditions for the weight pair (v, #) in Proposition 5.1.

5.3. Classical doubling, A, and dyadic testing in R”

By Proposition 5.1, we have constructed a pair of weights (v,u) on Q% = [0, ]]", which we
relabel here as (0,), that satisfy the flatness condition (5.1) on Q°, the 49*%(q, w;[0,1]")
condition as well as the dyadic testing conditions

f Ri(1go@) do > |0,
QO
and for all Q € D°,
/Q|R2(1Q0)|2dw§ 101, [Q|R2(19w)|2das 10l

We extend these measures to the entire space by reflecting in each coordinate separately
to obtain an extension to [0, 2]", and then by adding translates [0, 2]" + 2(«1, @2, ..., 0y),
o € Z", so as to be periodic of period two on the entire space R”. After this reflection pro-
cess, note that adjacent cubes from neighboring dyadic cubes of side length 1 also satisfy
the adjacent doubling condition, and with constant 1 since they have equal measures by
the reflection extension process, and so for any adjacent dyadic cubes /1 and I,, we have
Ero/Epo € (1 —1,1+ 1), and similarly for w. In particular, one can show this implies
that o and w are both 0;_,¢(1) flat, and hence doubling, see Lemma 4.2 in [32]. We also
note that after this reflection process, the pair (o, w) satisfies the dyadic A, condition

(5.2) (é /Q o(x)> (é /Q a)(x)) <1 forall dyadic cubes Q € D.

Because o and w are doubling, from (5.2) we obtain that A, (o, w) < 1. By multiplying o
and w by an appropriate constant, we may assume without loss of generality that

Ar(o,w) < 1.

Furthermore, after this reflection process, the pair (o, w) also satisfy the dyadic testing
conditions for all D-dyadic cubes of side length at most 1. We now set

04 =1[0,1]" + (1,2, ...,ay) foralla € Z".

Let ¢ € (0, 1) be as in Proposition 5.1 and multiply each of these measures by the
factor

(Pr(x) = ZaalQa(x),
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where
1 dx

Ay = —— d and du;(x) = ————,
« |Qa| 0. Mt e (x) (1+|x|)r
and consider the measure pairs (0, w;) with oy = ¢;(x)do(x) and w; = ¢, (x)dw(x).
We set A = |[0, 1]"|, and B = |[0, 1]*|,. Note that A = |Qy|e and B = |Q4|, for all
ae€Z" and AB < A(0,w) < 1.

Lemma 5.4. The measures 0, w, are both o.—¢(1)-flat, i.e., the adjacent doubling con-
stant of each measure tends to 1 as t \ 0.

Proof. If Q4 and Q' are two adjacent cubes of the form Q4 = [0, 1]" + (a1, @2, ..., %),
then
anO-‘r _ ClanuO' _ aaA _ -/Qa d“«r
an/ or dg an/ o agA fQ(x’ diy
tends to 1 as 7 \ 0 independent of the pair (Q, Q). since i is a doubling weight on R”

with adjacent doubling constant roughly 1 + O, (7). If instead we consider adjacent
cubes P and P’ that are each a union of cubes Q,, then

prr . Z(x:QacPaa|Qa|0 . Za:QaCPan dpis _ fp dur

Jpr0c Za’:Qa/cP/ aw|Quls Za’:Qa/cP/ an, dpe Jpr i

)

which again tends to 1 as T N\ 0 independent of the pair (P, P’). Therefore, for any
adjacent dyadic cubes Iy and I, we have Ej,0./(Er,0:) € (1 — 1,1+ 7). A standard
argument shows that o, has adjacent doubling constant equal to 1 + o(1) as 7 \ 0, and
similarly for w;. ]

Next we turn to the final task of establishing the testing conditions for R, on the dou-
bling measure pair (0, ®;) uniformly for any t € (0, 1), which then leads to boundedness
of R, via the main result of Theorem 2 in [38] for r > 0 sufficiently small, since if a pair
doubling measures with doubling constant sufficiently close to Lebesgue satisfies the A,
condition, then they will satisfy the energy condition, Section 1.7 of [38]. Of course, test-
ing fails for R;. To state this formally, we will need the definition of a weighted norm
inequality as used in [37,38].

We follow the approach in [39], p. 314. So we suppose that K¢ is a standard smooth «-
fractional Calderén—Zygmund kernel, and o,  are locally finite positive Borel measures
on R”, and we introduce a family {n‘g’ R}0<,g< R<oo Of nonnegative functions on [0, co) so
that the truncated kernels Kg‘, (X, y) = ng" g(x = y[)K*(x, y) are bounded with compact
support for fixed x or y, and uniformly satisfy the smooth Calder6n—Zygmund kernel
estimates (1.5). Then the truncated operators

Ty af () = [ KRG f()daty). xR

are pointwise well defined when f is bounded with compact support, and we will refer to
the pair
(Kay {rlg,R}0<8<R<oo)
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as an «-fractional singular integral operator, which we typically denote by T'%, suppress-
ing the dependence on the truncations. In the event that & = 0 and 7° is bounded on
unweighted L2(R"), we say that T = T? is a Calder6n—Zygmund operator.

Definition 5.5. An a-fractional singular integral operator 7% = (K*,{n§ p}o<s<R<co) I8
said to satisfy the norm inequality

(5.3) 1T fllL2@) < Nre(o. o) flr2@). f € L?*(0).

if 97« (0, w) is the best constant N for which

ITSs g f 2@ < R flle2@). f € L*(0).0<8 <R < oo.

Independence of truncations. In the presence of the classical Muckenhoupt condi-
tion A5, the norm inequality (5.3) is independent of the choice of truncations used, includ-
ing nonsmooth truncations as well, see Section 2.1 of [21].

Now we introduce the testing conditions for Calder6n—Zygmund operators.

Definition 5.6. For an a-fractional singular integral operator 7% = (K% ,{n§ p}o<s<R<co)
define the testing constants

Tre(0,0)? = (1g0)* dw,

Q

Tres(w,0)? = sup /lT“’*(lQa))lsz.

QePy |Q|w

We also define the dyadic testing constants by

ri”ﬁ (o,w)” = 2 = sup

oebs |Q|U / IT* (gl do < oo,
€

0
?ﬁ,*(a),a)z = sup

U 0] /|T°""(1Qa))|2 o < oo.
€ [0

We say T satisfies the (dyadic) testing conditions if both (dyadic) testing constants for
each admissible truncation are finite, and the constants are bounded uniformly over all
admissible truncations.

The following 7T'1 theorem, whose proof we include in Appendix A.5, is a corollary
of Theorem 2 in [38]. In particular, if t is sufficiently small, it can be applied to the
measure pair (0, w;). Recall that a Calder6n—Zygmund operator 7% is (1 4 §)-smooth if
in addition to having a kernel K¢ satisfying (1.5), we also have

X — § _
VK (r3) = VRG] = Coz (B2 ) -y

whenever
|x — X'

S

N =

lx =yl
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Theorem 5.7 (T'1 theorem for flat doubling measures). Suppose o and w are doubling
measures with doubling constant at most 2" ¢ for some & € (0, 1), and let T be a (1 + §)-
smooth Calderon—Zygmund operator of fractional order 0. Then

Nr(o,w) £ VAx(0,0) + Tr(0o,w) + Tr+(w, 0).

Finally, we record an estimate from [36] that will be used in proving the next lemma.
Lemma 5.8 (Lemma 23 in [36]). If u is a doubling measure and P is a cube, then for
every § € (0,1/2), we have

[{x € P : dist(x,dP) < 8L(P)}|, < 1P|,

1
In(1/6)
Lemma 5.9. For all © > 0 sufficiently small, the second Riesz transform R, satisfies the
norm inequality for the measure pair (0¢, w¢), i.e.,

Nr,(0r,0) S 1.

Proof. Let 1 be sufficiently small so that the doubling constants for o and w are at most
2"+1/2 and so Theorem 5.7 applies. Fix a dyadic cube Q € D. If Q has side length at
most 1, then Q is contained in one of the cubes O, where we have already shown that the
testing conditions for (o, ) hold in Proposition 5.1. In particular, we have the following
inequality that will be used repeatedly below:

(5.4) / Ry (1o, 00) dws = a? / IR(10,0) do
[

o

< Cyxaq|Qule = Cx|Q4lo,, a€Z".

Suppose Q has side length 2% with k > 1 for some k € N. Then Q is a finite pairwise
disjoint union of cubes Qg, say Q0 = UB:|5|52" Op, where | 8| = max{B1, B2, ..., Bu}.
We will suppose that Q = [0, 2%]" as the general case follows the same argument. Finally,

we note that :

Aoy ~ —M.
T+ abT
Now we write
65 [ IRgmPdo= 3 [ Rallo,o0Ralo, 00 do
Q a1,02,03€Z" Q"‘l
0<la;|<2¥

<

~

)3 / |R2(1g,,0)[ [R2(1g,,0)|  dw
wn= don T TF D T+l T+ ]
0<laj|<2*

We split the sum into several different configurations of (o, a2, ov3), which we consider
separately. In what follows, we will not specify the configurations considered explicitly
within the sum, instead we mention in words which configuration we sum over before
estimating the sum.
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First, assume that we only sum over the configuration of multi-indices (o1, o2, «3)
satisfying |z — 1| > 2 and |a3 — 1| > 2, so that what we need to bound is

Z I+ o= )7"(A + ez —a1]) ™" Qo | Qaslo| Qe o ,
(1 + Ja2)*(1 + |az])® (1 + |oa])®

o1,0,03€Z"
0<lotj| <2

where we suppress the specified conditions |a; — «1| > 2 and |a3 — «1| > 2 in the sum.
Summing first over o3 and using | Qg |c = A, we deduce that the above term is dominated
by

Z (I + ez —o)™"(1 + |az — a1 )" AlQa,lo|Qalw

s (1 + fe2)7(1 + |es|)® (1 + fa1])®

0<laj|<2¥
<4 Z Z (1+|063—0l1|)_"] (I + oz =)™ | Qa0 Qa lw
- (1 + |as|)* (1 + |az2])* (1 + |og])*

a1,0p€Z" a3z €Z"
0<la;j|<2* 0<|as|<2¥

LIPS (D SEESD DD s et

oy,a€Z" azeZ” azEL” a3 EZ”
0<laj|<2* lasl<iloa| Flerl<las]<2len|  2leal<les]

(1 + |Ol2 — all)_n |Qa2|U|Qa1 |a)
At laDt (L +]ar)e
ln(2 + |0‘1|) (1 + |052 — Oll|)_n |Q0tz|U|Q¢¥1 |a)
A .
42 | Grenr) army Gt

1,0 €L
0<|aj|<2¥

Now summing over ¢/, using that |Q, |, = B and that AB < A,(0, ), we obtain in a
similar way that the final line above is at most a constant times

M) Y [1“(2+|“2|)]|Qa2|g=A2(o,a)) 3 [M]@mot

o Lt a2’ o Lt e
Os\azlszk 0<laz|<2¥
< CA(0,0) Y |Qulo. = CA2(0,0)| 0o,
oy e
0<l|az|<2k

where we used that AB < A,(0¢, wy).

The relatively simple case we just proved is case (6) in the following exhaustive list
of cases, which we delineate based on the relationship of the indices o, and a3 to the
distinguished index o;:

(D) a1 = =03,

(2) a1 = az and Qg,, Qq, are separated,

(3) a1 = a3 and Qg,, Qq, are separated,

4) Qu,, Qq, are adjacent and Qy,, Qq, are separated,
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(5) Qa;. Oqs are adjacent and Qg , Qq, are separated,
(6) Qa,, Oq, are separated and Qg,, Qq, are separated,
(7) and finally,

a1 = az and Qg,, Qq, are adjacent,
a1 = az and Qg, . Qq, are adjacent,
Qa,, Oa, are adjacent and @, , Qq, are adjacent.
where we say that Oy, and Q, are separated if |ty —ot2| > 2, and of course Q, and Qq,

are adjacent if and only if |a; — oz| = 1.
In the first of these seven cases, the right-hand side of (5.5) equals

3 [ |R>(1g,00) dox < C. Z |Qalo, = CalQlor.
aeZ” la]=1
0<|a|<2k
independent of t € (0, 1) by (5.4).
In the second of these cases, we will use the separation between O, and Q;,, as well
as the fact that

1/2
([ IRtg,00P dwc)” Viul,

Qo
AB

< Ve V1Qelor VIQalor 5 V/Ce e

where the second inequality follows from reasoning using (5.4), similar to the previous
display. Thus, recalling that AB < A,(0, w), we dominate the right-hand side of (5.5),
using (5.6), by

|R2(1Qa10)|(1 +laz —a1)) 7" Qaslo dw
Z / + e )T(1 + |as|)® (1 + far])®

(5.6) ( /Q Ry(1g,, ;) do

oy,a3€Z” Qq
0<|aj| <2k

2k o
< A2(0,0)/Cy Z Qo Z (1 + |az —oq])

ot (1 + |as])® o1 ]=0 (1 + g )™
0<|a3|<2F
|Qaslo In(2 + |az|)
< Ay(0,w)/Cx Z a(310+ PRI < CA2y/C«|Qlo, .
a3 €Z"
0§I3¥3|§2k

To handle the cases where O, is adjacent to one of the cubes Qg, or Qq, or both,
we use Lemma 5.8, i.e., that doubling measures charge halos with reciprocal log control.
Indeed, in the fourth case above, namely, |3 — 2| = 1 and |o; — o3| > 2, we follow the
same argument just used except that in place of the testing condition in (5.6), we use

/ Ra(lg,,07) dow, = {/ +/ }R2(1Qa2ar)da)r =1+1L
2, =500, )0 \1-8)04

1
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We control the first term I by §-separation between (1 — §) Qq, and Qq,:

I < /( 50 |Q0t2|ar do, < C — §n |Qa2|az|Q(x1|wr
Yo

1 AB 1 As
—Cc— <C— :
8" (1 + lag)T(1 + |az])® 8" (1 + o DT(1 + |aa])®

We control the second term II by using Lemma 5.8:

| < / IRs(1g,,00)| do
Qo \(1-8)Qq,

= SRRZ(Urya)r)\/|Qot2|zn|Q0t1 \ ( _8)Q0¢1|(Ur

< L NRr, (07, w7) VAVB

= /18 e T )+ laa)) 2
C VA

= im0 T A )

Altogether, our replacement for (5.6) is

< (Ca‘\/—+

VA2

mRz(OT’a)f)) At onD”

(5.7) (/ Ry(1g,,00) do

2 0a T B ‘/ln(l/S)
since |y — 2| = 1. Now the previous argument can continue using (5.7) in place of (5.6),
which proves the fourth case since there are just 3" — 1 points o, for each fixed point .
Indeed, we have

Z / |R2(1g,,0)|(1 + |az —a1) 7" Qaslo dw
w1 anezn ) Qu (1 + Jog )*(1 + |os])® (1 + loq ])®
0<|oj| <2k
_1Qaslo (1 + Joz —ar)™"
C b+ — Oz, @
= (G + (1/8) Nraor.00) PO e D (UL
3EZ a1EZL
0<\a3|<2k 0<lar; |<2*

(C“/—+1 1/s)

The third and fifth cases are symmetric to those just handled. So it remains to consider
the remaining seventh case, where one of the following three subcases holds:

SnRz (UT’ w‘f)) | Q |Ut

ay =ay and |o; —oaz| =1,
ay =a3 and |o; —op| =1,
|061 —Olz| =1 and |Ol1 —Ol3| =1.

In all three of these subcases, there is essentially only the sum over oy, since for each
fixed o, there are at most 32" pairs (ay, a3) satisfying one of the three subcases. If
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both Qg, and Q,, are adjacent to Qg,, we write

fQ Ry(1g,,00) Ra(1g,,07) dwg = / Ra(Li_5)04,0) Ra(11 )04, 02) dve
ﬂl o

1

+f R2(1(1-8)0,, 0t) R2(10,,\(1-8) 043 07) d0r

1

+/ R>(19,,\(1-8)04, 0t) R2(1g,, 07) dw; -
QDtl

The first term of the right-hand side is handled by the §-separation between Q,, and
(1 —8)Qgq,, as well as between Qg, and (1 — 8)Qy,, together with the A, condition
AB <1, to obtain

1
‘/ R2(1(1—5)Qa2Ur)RZ(l(l—S)Qa3 or)dor| < C SE/ |Qaslo|Qaslo, dwe
Qotl Q“l

and | |
C W|Q(¥3|01AB =C W|Qa3|cﬂ42(0» w),

and since for each fixed a3, there are at most 3%” pairs (a1, @2), we can sum to obtain the
bound

1
C 8Tn|Q|0'r

To handle the terms involving a halo Qg; \ (1 —§)Qq;, we use Lemma 5.8 together
with the norm constant Nt g, = g, (0, w;). For example,

| /Q Ra(lou\(1-8)04, 0%) Ra(lo,, 02) dwg
o]

1/2 1/2
2 2
< (/Qal|R2(1Qaz\(l—3)Qa20t)| dwr) (/Qalle(lQ%Ur)l dwr)

<N V10, \ (1 = 8) Qs e N, (|0 lo,) />
C
= N, ——= 100, Qas o

and again we can sum to obtain the bound
C
In(1/6)

because the indices «; are at distance one from each other. The other terms are handled
similarly and we thus obtain in this seventh case that

(Nr,)? 1Qlo-

2k
1 Nr,)?
EC(_AH&

§2n VIn(1/8)

[, Rlon00R0,,00) do. )10,
o

lee ] lazl,|az|=0
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The cases where just one of the cubes is adjacent to Q,, are handled similarly. Alto-
gether we now have

(S)}Rz)2

Jin(1/51)

R0 = swp [ [Relloon P doc = ot +
QeD |Q |crr 0 51
for any choice of §; € (0, 1), where the constant Cy arises in (5.4).

Now we turn to the case of a general cube Q. In this case we first fix M € N large to
be chosen later, and write Q as a union of roughly 2M” dyadic subcubes {Qq }o of side
length 8, = £(Q)/2M > 0, in such a way that the remaining portion of Q is contained
in the 565-halo of Q. Then the above argument shows that the testing condition holds
except for the terms that arise from the halo. But by Lemma 5.8 these leftover terms in
(JolR2(1g07)[? dw;)'/? are dominated by

(5.8) Tgr,(07, 1)

< Cs, TR (0c ) + C

1
FCUC R

1 Ne )2 \1/2 N ’
£ Coa(Cut CuCo iy + 28D )17 o P00 )

§2n VIn(1/8;) Vin(1/82)

1 Cs C
<Cs, :vVCx + Cs,—+/As + 2 + Nr, (07, w7).
" R (mn(l/sl) VIn(1/52)> rale )

Note that the two-weight norm N g, (07, w;) is finite, as both weights o, w, are bounded
step functions, and so by the boundedness of the principal value interpretation of R, on
Lebesgue spaces, we have

NR, (07, w7) < |07 ||ocllwr|loo < 00.

Thus, by boundedness of maximal truncations (see e.g., Proposition 1 on p. 31 of [41])
together with the independence of truncations mentioned above, the above arguments actu-
ally prove that (5.8) holds uniformly over all admissible truncations of R, which is the
hypothesis used in [4,37,38]. Thus, noting Definition 5.5, we can apply Theorem 5.7 to
obtain

EnRz(Uta wr) = CV AZ(Ury a)r) + C?Rz(at, wr) + C?Rz(wrv Gr)
1
< CVA(0c 00) +2{Cope/Co 4 Coy 55 V/Aa(0r.00)
1
C C
+ (=2 +
Vin(1/81)  /In(1/82)

for any admissible truncation of R,. Thus, with §; > 0 chosen sufficiently small that

C/+/In(1/8,) < 1/4, and then §; > 0 chosen sufficiently small that Cs,/+/In(1/6;) <

1/4, an absorption completes the proof that the norm inequality for R, holds (recall that
truncations of R, are a priori bounded). ]

) Rz (07, 00) .

We have thus proved the following special case of Theorem 1.4 for the individual
Riesz transforms R; and R,.
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Proposition 5.10. For every I' > 1 and 0 < © < 1, there is a pair of positive weights
(0, w) in R” satisfying

/ |R1(1[0,1]no)(x)|2(x)dw(x)zr/ do(x),

R” [0,1]"
[|R2110(x)|2 do(x) < /d(f(x) for all cubes I € P",
I I

/|R211a)(x)|2d0(x) < /da)(x) for all cubes I € P",
1 1

(ﬁ/do’)(ﬁ[da)) <1 for all cubes I € P",
1 1

E JOo E Jw . i n
11—t < =——,—=—— <1+t forarbitrary adjacent cubes J, K € P".
Exo Exw
The argument used in proving this proposition also shows that in any two-weight 7'1
theorem for doubling pairs (o, ), the testing may be carried out over only cubes in any

fixed dyadic grid O, and here is one possible formulation of this improvement.

Theorem 5.11. Suppose 0 < a < n, and let T* be an a-fractional Calderon—Zygmund
singular integral operator on R™ with a smooth a-fractional kernel K®. Assume that o
and w are doubling measures on R”. Finally, fix a dyadic grid O on R".

If the two-weight norm Nre (0, ®) satisfies

Nre(o,w) < Ca,n(\/ Ag + Tre + %(T“)*)y

where AS is the classical Muckenhoupt constant and the constant Cy , depends on the
Calderon—Zygmund kernel and the doubling constants of the measures o and w, then

Stre = Clp(VAE + 22+ Tuy),

where the constant Co’[,n also depends on the Calderon—Zygmund kernel and the doubling
constants of o and w, and ’i‘ﬁ , ?E?a)* are the D-dyadic testing constants.

In order to complete the proof of Theorem 1.4, we need to consider iterated Riesz
transforms.

6. Iterated Riesz transforms

Throughout Section 4 and 5, we considered Riesz transforms of order 1. However, our
results extend to arbitrary iterated Riesz transforms of odd order in R”. We will extend the
results of Section 4 to their appropriate analogues to make the reasoning of Section 5 hold
for the appropriate iterated Riesz transforms, and we begin by establishing the following
theorem.

Theorem 6.1. The odd order pure iterated Riesz transforms R%m"'l are unstable on R"
for pairs of doubling measures under 90° rotations in any coordinate plane. In fact, there
exists a measure pair of doubling measures on which R%mH is unbounded, and all iter-
ated Riesz transforms of order 2m + 1 that are not a pure power of R1, are bounded.
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Proof. Recall the notation T, f = T'(fo'). We begin first by considering Riesz transforms
of arbitrary order, even or odd. Using the identity

R 4.+ R2 =1,
and for N > 2, we have for an arbitrary positive measure o that
n
(RV)s = (RY 2R} = —(RY )6 = D (RY R0
j=2

Iteration then yields, for N > 1,

m n
o+ Y [ + Y (RY* R}.)(,] if N = 2m is even,
6.1 (RY)s = =0 T,
t(R)o + Y [:l: Z(R{V—ZkR})g] if N = 2m + 1 is odd.
k=0 j=2
For the weight pairs (o7, ®;) constructed in Section 5, and with N = 2m + 1 odd, the
second line in (6.1) yields

IR o, lL2(00)> L2 (@0)

m n
> (R o, | 22(00) > L2 () — Z Z ||(R{V—2kR]2-)or lL2(00)—L2(wr)
k=0 j=2
m n
=T - Z Z IRy ¥ RJZ)O'I 22 () > L2 (@o)

k=0 j=2

where T is the constant in the construction of the weight pair (o;, w;). Note that the
operator norm dominates the testing constant, which was shown to exceed I'.

We now claim that the double sum of the operator norms on the right-hand side is
bounded independently of T, i.e.,

m n
DY IRY* R0, L2600 L2(wr) = O(1).
k=0 j=2

In fact, if j > 2 and R* = R{'R3? .-+ Ry" with oj > 0, then, by Lemma 4.12 (3),

lim sup/|Rj R"‘s]f’hor(x)|2 dx

k—o00

= lim sup‘ / (R s () (Ry B2 D7) (x) dx‘

k—o00

< \/limsup/|st:’h°r(x)|2 dx \/Iimsup/|R,-R2°‘s,f’h°r(x)|2 dx

k—o00 k—o00

< \/limsup[|stlf’h°r(x)|2 dx - |Rj R*| p2®ny>r2@®n vV |P| =0 forall N € N.

k—o00
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Therefore, the reasoning in Proposition 5.1 and Lemma 5.9 shows that iterated Riesz
transforms of order N, which are not pure powers of Ry, have dyadic testing constants
on the weight pairs (o, ;) that are O(1). Then Theorem 5.11 shows that the operator
norms of such operators, including R{V —2k R?, are O(1), which proves our claim, and
completes the proof of the second assertion of the theorem. The first assertion regarding
R2™+1 now follows from the fact that a rotation in the (x1, x;)-plane interchanges R2™*1
and R%m + [

The key to our proof of Theorem 6.1 is the construction of weight pairs (o, @)
satisfying the inequality

(6.2) ||(R{V)Ut lz2(0,)—>L2(w,) = T for I arbitrarily large,

when N is odd. In fact, the inequality (6.2) actually fails for the weight pairs we con-
struct when N is even. Indeed, from the first line in (6.1), and the fact that the proof of
Theorem 6.1 shows that

m n
DY T IRY R, 12600y 120y = O(1).
k=0 j=2
we get
IRV)oellL2 (0> L2@e) < Mo llL2 @) L2(@e) + O().
The right-hand side of the above display is bounded since the operator norm of /I, is

bounded by A, (0, ;). Indeed, when ¢ and w are weights, we have |ow| o0 < A2(0, ®)
by the Lebesgue differentiation theorem, and so

o f iy = [ 12070 = 4a00) [ 20 =11 1Esgy-

Moreover, it is easily shown that ||/5|/12(¢)—12(w) = A2(0, w) for arbitrary weights o
and w. Thus, Rf’ must then satisfy the testing conditions for the measure pair (o, ®).

In the next subsection we show that every odd order iterated Riesz transform Rf =
Rb R2/32 .- RBr i unstable under rotations, by showing that R’fl Rgz .-~ RPr is some rota-
tion of R(B.0---0) whenever B # |B|ex for some k. When B = |B|ex some k, then we
may assume without loss of generality that k = 2.

6.1. Rotations

Let B8 be a multi-index of length || = N. The symbol of the iterated Riesz transform
RP = RBIRE2 ... RPn ig
1 2 n
BigBo | eBn
NS1 52 n_

§IV

We already know that RV:0-0) is unstable, and the following lemma will be used to
show all R? are unstable.

Lemma 6.2. If P(§) is a nontrivial homogeneous polynomial of degree N that does not
contain the monomial Efv , then there is a set of rotations of full-measure A, and for any
rotation ® € A, we have &€ = On such that P(®n) contains the monomial n{v .
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Proof. In dimension n = 2, we have

N
P(£1,&) = Z cm &1 év_’", where not all ¢, = 0,
m=1

and the restriction of this polynomial to the unit circle cannot vanish identically (other-
wise P itself would vanish identically by homogeneity, a contradiction). Thus, there is
0 € [0, 2m) such that

N
0 # P(cos6,sinf) = Z m cos™ @ sinV 7™ 9.
m=1

However, if we make the rotational change of variable, i.e.,

&1 _ (cos® —sinf) (n1\ _ [ni1cos® —nysinf
€] \sinf cosO ) \na) ~ \nisin® +nycosb )’

then
N N
P(1.6) = Z cm & év_m = Z cm (11 cos @ — 1, sin 6)™ (17 sin @ + 1, cos )N ™
m=1 m=1
N
=N Z cm cos™ @ sinV " 0 + Z n f5(6)
m=1 B#erlBl=N
where
N
Z em cos™ 0 sinV =™ 9 £ 0.
m=1
The case n > 3 is similar. n

6.2. Completion of proofs of main Theorems 1.4 and 1.5

To complete the proof of Theorem 1.4 we use the above Lemma, together with Propo-
sition 5.10, and we see that any iterated Riesz transform R? of odd order N = |B]| with
B # (N,0,...,0),is bounded on the higher-dimensional analogue of the weight pair (o, ®)
constructed in Proposition 5.10, and can be rotated into a sum S of iterated Riesz trans-
forms that includes RV-%--9 and hence S is unbounded on the weight pair (o, ®). Since
stability under rotational change of variables is unaffected by rotation of the operator,
this completes our proof that all iterated Riesz transforms R? of odd order are unstable
under rotational changes of variable, even when the measures are doubling with adjacency
constant A,q; arbitrarily close to 1. This completes the proof of the main Theorem 1.4.

To prove Theorem 1.5, suppose R? is an odd order iterated Riesz transform; without
loss of generality, assume that Rf # Rllﬂ 3 Then, by Lemma 6.2, there is a set A of rota-
tions of full measure such that for each ® € A, ® rotates R? to c(@)Rllﬂ ! plus mixed
iterated Riesz transforms, where ¢(®) # 0. Then our construction yields a weight pair
(0, ) for which the norm inequality for R? is bounded, but the norm inequality for the
rotated operator can be made arbitrarily large.
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A. Appendix

We begin by using the counterexamples in [22] to show that the Hilbert transform is two-
weight norm biLipschitz unstable on Sjspp. Then we demonstrate that the notion of stability
that is maximal for preserving the classical A, condition, is that of biLipschitz stability.
Next, we show that all sparse bump functionals are biLipschitz stable on the pairs of
doubling measures. After that, we give the details for arguments surrounding classical
doubling which were omitted from [32]. And finally, we give the proof of the T'1 Theo-
rem 5.7.

A.1. BiLipschitz instability of the Hilbert transform for arbitrary weight pairs

Here we show that the Hilbert transform H is two-weight norm unstable under biLipschitz
transformations. We consider the measure pairs (o, w) and (6, w) constructed in [22],
where (0, w) satisfies the two-weight norm inequality for H, while (6, w) does not,
although it continues to satisfy the two-tailed Muckenhoupt +, condition. The measure w
is the standard Cantor measure on [0, 1] supported in the middle-third Cantor set E. The
measures 0 = y Sy 82 andé =) Sy Szk are sums of weighted point masses located
at positions Zk and Zk w1th1n the component G removed at the k-th stage of the construc-
tion of E, and satlsfy

dist(zF, 9G¥) dist(z¥, 9G¥)

(A.1) 0<cr < ,
G| |G¥|

<cp <1,

independent of k, j. See [22] for notation and proofs.

It remains to construct a biLipschitz map ®: R — R such that (6, w) = (®x0, D).
For thls we first define biLipschitz maps ®: Gk — Gk so that ® fixes the endpoints of Gk
and ? Z dD(zk) and note that this can be done with bounds independent of k, j by (A. l)
Now we extend the definition of ® to all of R by the identity map, and it is evident that ®
is biLipschitz and pushes (o, w) forward to (¢, w).

A.2. Beyond biLipschitz maps for 4, stability

Here we initiate an investigation of how general a map can be, and still preserve the two-
weight A, condition for all pairs of measures (o, w). We begin by defining some of the
terminology we will use in this subsection.

Definition A.1. Let u be a locally finite positive Borel measure on R”. Let ®: R” — R”
be a Borel measurable function. We define the pushforward of the measure p by the map ®
as the unique measure @, 4 such that

/ D = / wu  for all Borel sets £ C R”.
E >1(E)

In the case du(x) = w(x) dx is absolutely continuous, its pushforward for & suffi-
ciently smooth is given by

d
(@210() = w(@() | det 5 ().
X
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Definition A.2. A map ®: R"” — R” is A,-stable if there exists a constant C > 0 such
that for every pair of locally finite positive Borel measures o, @, we have

Ar(®y0, Duw) < CAz(0, w).

Definition A.3. A map ®: R"” — R” (not necessarily invertible) is shape-preserving if
there exists K > 1 such that for every cube Q9 C R”, we can find cubes Qgyan and Qyig
with the following properties:

(Qns) _

-1 .
Osman C 77 (Q) C Qvig and L(OQsman) — K

We call such a set ®~1(Q) an almost cube.

Note that homeomorphisms on the real line are automatically shape-preserving, as are
quasiconformal maps in R”, see Lemma 3.4.5 in [5].

Theorem A.4. Let ©:R" — R” be shape-preserving and Borel-measurable. Then the
following two conditions are equivalent:

(1) There exists a constant Cy > 0 such that |®~1(Q)| < C1|Q| for every cube Q.

(2) ®is A,-stable.

Remark A.5. If @ is sufficiently regular that the usual change of variables formula holds,
e.g., ® ! is locally Lipschitz, then condition (1) becomes |det D®~!| < 1.

Proof. Assume condition (1) holds, where ® is shape-preserving with constant K, and
let Q be an arbitrary cube in R”. Then

Ay (Bu0, Do) = sup(fQ d(b*g)(fQ dq)*w) = slép(qu(g) d”)(fqﬂ(g) d‘”)

0 0] |O] 10| O]
Jo-1c0y 40 / [p-1(0) d®@
2 (9) o-1(Q)
= chan(Tgor) (asigr)
fQ~ do fQ- dw
< C2K*"su e e < CEK?*Ay(0, w).
! Qp( | Obig| )( | Obig| ) ! 2

Conversely, if condition (2) holds, then with both measures o and w equal to Lebesgue
measure, and for any cube Q, we have

-1 2 Jo-100y X\ 7 Jp-1(0y dxX Jo d®xo\ /[y dPsw
(|¢|Q(|Q)|>:( I(QQI) ) I(ET ):<Q|Q| ><Q|Q|

Remark A.6. If the pair (®.0, P.w) is in A, for the single choice of weights do(x) =
dw(x) = dx, then the above proof shows that ® preserves all A, pairs under the side
assumption of shape-preservation.

)=cC.

Corollary A.7. Assume ®:R" — R” is a shape-preserving invertible Lipschitz map with
|DP|loo < 1. Then ® is A,-stable if and only if ® is biLipschitz.
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Proof. Using Theorem A.4 and Remark A.5, we see that ® is A,-stable if and only if
|det D®| = 1. But then 1 < C|det D®| < C'|D®|", together with || D®||s < 1, shows
that ® is A,-stable if and only if ® is biLipschitz. ]

Corollary A.8. Assume ®:R" — R” is Borel-measurable and invertible, and that both ®
and ®~' are shape-preserving. Then both ® and ®~' are A,-stable if and only if ® is
biLipschitz.

Proof. 1f both ® and ®~! are A,-stable, then from Theorem A.4, we obtain that

|®~1(Q)| < C1|Q]| for every cube Q,
|®(Q)| < C1|Q| for every cube Q.

Thus, if Q is a minimal cube containing both x and y, then the almost cube ®~1(Q)
contains both ®~!(x) and ®~!(y), and so

|27 (x) — 27 ()| _ diam@~1(Q) _ [@7'(Q)] _
lx =yl ~ diamQ T |0 T
and since the almost cube ®(Q) contains both ®(x) and ®(y),

() = @()| _ diam@(Q) _ |9(Q)] _
=y " damQ ~ o

Cl?

Cl. |

A.3. Stability and sparse operators

Recall that a grid of dyadic cubes § is called n-sparse, 0 < 1 < 1, if for every Q € §, there
are subsets Eg C Q such that |[Eg| > n|Q| and the sets { Eg } ges are pairwise disjoint.
Note that such an § satisfies the following %—Carleson condition:

> 1<

Q'es:Q'CcO

1
Z |Q'| < — || for all open sets 2.
Q'es:0'cQ g

1
Y. |Egl<-1Q| forallQ €S,
Q'es:Q'cQ n

= | =

Conversely, if § satisfies the A-Carleson condition
> Q1< AlQ] forall Q €S,
Q'es:Q'CcO
then § is %—sparse, see e.g., [27].

Definition A.9. Given a sparse grid of cubes §, we define the associated sublinear sparse
operator S by

(A2) Sf(x) = Z(é/glfl)lg(x), x e R",

Qes

and we say that S is n-sparse if S is n-sparse.
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Definition A.10. Let U be a biLipschitz invariant set of locally finite positive Borel mea-
sures on R”. A functional 8B(o, w) on pairs of measures (o, w) is called a sparse bump
functional on U if for every n € (0, 1), there exists a continuous increasing function
I'y: (0, 00) — (0, 0o) such that for all n-sparse operators S,

Ns(o,w) < T'y(B(o,w)) forallo,w) e U x U.

Clearly, no biLipschitz stable (bump) condition can characterize a biLipschitz unstable
weighted norm inequality. Here we will show that no sparse bump functional can either.
Note that it is shown in [26] that all (separated) Orlicz or entropy bump conditions, that are
currently known to imply boundedness of singular integrals, are sparse bump functionals
on any such U. Here is the main result of this section.

Theorem A.11. Let Ugou, be the biLipschitz invariant set of doubling measures on R"
(called Sqouy in the introduction), and let B (o, w) be a sparse bumpfunctional on Ugoup.
Then for any smooth Calderon—Zygmund operator T that is biLipschitz unstable on pairs
of doubling weights, there is no continuous increasing function I': (0, 00) — (0, 00), such
that

(A3) B(o,w) < TNr(0o,w)) forall (0,w) € Udoub-

In particular, by Theorem 1.4, we can take T to be an iterated Riesz transform of odd
order.

Remark A.12. This theorem, together with Theorem A.13 below, shows that no sparse
bump functional 8 (o, ) can characterize the two-weight norm inequality for an iterated
Riesz transform of odd order on doubling measures.

To prove Theorem A.11, we will use a special case of the groundbreaking sparse dom-
ination principle of Lerner. Recall that a Dini-regular Calder6n—Zygmund operator 7" with
kernel K is an operator where the kernel, rather than satisfying the size and smoothness
estimates (1.5), instead satisfies

|K(x. y)| = Cezlx —yI™",

KGr3) = K6/ )+ KO0 = K] = fez (=17,

where the nonnegative function fcz satisfies the Dini condition

1
/ fcz(t) ? < 00.
0

Theorem A.13 (Lerner [25]). Let T be a Dini-regular Calderon—Zygmund operator, and
let f € LY(R™) be compactly supported. Then with n, = m there is an ny,-sparse
grid § depending on f, such that

ITf(x)| < Cor Sf(x) forae x € R",

where Sf is as in (A.2).
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Now we can give the proof of Theorem A.11.

Proof of Theorem A.11. Suppose in order to derive a contradiction that (A.3) holds for
some sparse bump functional 8 (o, @) on U in R”. Then, for any BiLipschitz map ®, we
have N7 (Px0, Pxw) = N, 7 (0. ), and so if a compactly supported function f € L?(o)
is chosen to be a near extremizer for the norm N, 7 (0, w), we have from Lerner’s the-
orem, applied to the Dini-regular Calderon—-Zygmund operator @, 7T, that there is an
Nn-sparse operator S, such that

[®+T(fo)llL2(w) IS(fo)llL2(w)
I/ 220 I/ 220
<2GCu 10| Ns(0.®) = Cy 10| T, (B(o,w))

< Curjo I, (TN (o, w))),

where the first line uses Theorem A.13, the second line uses the definition of sparse bump
functional and the assumed inequality (A.3). Thus, two-weight norm inequalities for Dini-
regular operators are biLipschitz stable, as defined in Definition 1.3. But by Theorem 1.4,
the inequality for T equal an individual Riesz transform cannot be biLipschitz stable. This
contradiction proves the theorem. ]

No,7(0,0) <2 =2Cu1,) 0|

A.4. Modification of transplantation to achieve classical doubling

In Section 3, we constructed functions v, ¥ on a cube QO such that both v, u are dyadi-
cally z-flat on Q. However, dyadic doubling does not imply continuous doubling on Q°.
As such, we will need to modify the transplantation argument to smooth out v, u into
weights v’, u’ which are classically doubling, as done in [32]. See also [19,30].

We will describe how to attain u’ from u, as the process for v’ and v is identical.
Recall, in Proposition 5.1, we define u by

1
_ hor Q ,hor
u= (EQOU) 1Q0 + E E S(Q) 5 sk,+10’
1=0 QeX, 1S(Q)|

where i, , is constant on cubes in K.

Define the grid X from X inductively as follows. First set J%o = Ko. Now given Q €
K, acube R € K41 is called a transition cube for Q if Q = 7 x R and (drp R) N 3Q is
non-empty; as such, define X ++1 to consist of the cubes P € K41 suchthat mx P € X !
and P is not a transition cube. Finally, set K= U p X .

One can see that X consists of the cubes in K not contained in a transition cube. This
implies that if R is a transition cube, then 7 x R € K. It also implies that no two transition
cubes have overlapping interiors. Visually, the union of the transition cubes for a cube QO
forms a “halo” for Q. Recalling that two distinct dyadic cubes in D of the same size are
adjacent if their boundaries intersect, we then note that two adjacent cubes in K must
then have the same K -parent, and so are close to each other in the tree distance of J. The
proof of the following lemma is left to the reader, who is encouraged to draw a picture. It
helps to note that in R, if two transition intervals R; and R, are at levels s and s + 2, then
there must be a transition interval R at level s + 1 such that R lies between Ry and R;.
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Lemma A.14. Let R, € K be a transition cube.

(1) If Ry € K, is a transition cube such that the interiors of R, and R, are disjoint,
but not their closures, thent € {s — 1,s,s + 1}.

2) IfK e X ¢ is such that the interiors of K and R are disjoint, but not their closures,
thent € {s — 1,s}. And if t = s, then tx K = nxR;.

With this in mind, given Q € X ¢, define

r
ki1

Q.hor ) _ slgrfr(x) if x is not contained in a transition cube for Q,
1o otherwise.

Now we may define

1

Jyhor 0 ,hor

u[_(EQoU)lQo—i— E E s"(Q) |S(Q)|rk‘+‘ ., 0<tl<m,
=0 geX,

A / A
u =u, and v =v,,.

Given x € QO and £ < m, if we define

() ¢t if x is contained in a transition cube belonging toJX; for some ¢t < £,
X) =
{ otherwise,

then pointwise we have

t(x)—1

i or 1 ,hor
wy(x) = (EgoU) 1go(x) + > > (U.T,) ] 2™ (x), 0<l<m.
t=0 QEJ{

The function u’ is nearly a transplantation of U, as exhibited by the following lemma,
whose proof we leave to the reader. The reader should note that for each cube contained in
a transition cube, the value of u, is equal to its average on the transition cube containing it.
Lemma A.15. Let K be as above.

(1) If P € K is not contained in a transition cube, then Ep u% = Egp)U.
(2) If P € X is contained in a transition cube R, then Ep u’e = Es@z,pU.
(3) If P € D is a cube for which K;+1 & P C Ky, where K; 1 € K41 and K; € K,
then Epu/e = EK,M/e-
Remark A.16. From the above lemma, it follows that

AdYadic(u27v2) < Adyadic(U V) <1.

Lemma A.17. If Py, P, are adjacent dyadic subcubes of Q°, then £
Similarly, forv'.

o u,e(l 7,14 1).

Proof of Lemma A.17. Let Py, P, be adjacent dyadic subcubes of Q°. By Lemma A.15
part (3), it suffices to check the case when Py, P, € K. We consider various cases.
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Case 1. Neither P; nor P, is contained in a transition cube, i.e., both belong to X. Then
Py and P, must have a common J - parent, meaning

oS (P1) = S(nxP1) = S(wx P2) = npS(P2)

and so $(P;) and S(P,) must be equal or dyadic siblings. From the first formula of
Lemma A.15, we get Ep,u’/Ep,u’ € (1 — 1,1+ 7).

Case 2. Exactly one of the cubes, say P, is contained in a transition cube R;. Since P; is
not in a transition cube, then the only way for P;, P, to be adjacent is for both to have the
same K -parent. And since P, is not contained in a transition cube, then R; must in fact
equal Py, i.e., P; is a transition cube. Indeed, if P; were a level below R; in the grid X,
then the only way P, can be adjacent to P; is by being in a transition cube adjacent to R
or in R itself, but the latter cannot happen by assumption on P,.

Altogether, the above yields that S (mx P1) = S (nx P2) = mpS (P»). Thus, by Lem-
ma A.15 parts (1) and (2), dyadic r-flatness of U, and the fact that P; is a transition cube,
we have

Epu E U E U
Py = SrxP)Y _ TrpS(P) e(l—t,1+1).
Ep,u Esp)U Esip)U

Case 3. Both Py and P, are contained within transition cubes, say R; and R, respec-
tively. Using Lemma A.15, it suffices to show the ratio

Epu'  Eg@,r)U

Ep’  Es(uyrnU

lies between 1 — 7 and 1 + 7. Note that adjacency of Py, P, implies R; and R, have
disjoint interiors, but not closures, or they are equal.

Case 3(a). Ry = R,. Then we get Ep,u’/Ep,u’ = 1.

Case 3 (b). R; and R, are of the same sidelength, but R; # R;. Then both Ry and R,
are adjacent, and so S (7w R1) and S (wx R;) must be equal or dyadic siblings. In either
case, by the formula above, Ep,u’/Ep,u’ € (1 — 7,1+ 1).

Case 3 (c). Ry and R; are of different sidelengths, say £(R;) > £(R5). Since P; and P,
are adjacent, then R; and R, have disjoint interiors, but not closures. It follows that
if Ry € Ky, then R, € K41, by Lemma A.14. Thus, R; is adjacent to wx R,. In fact,

since R; is a transition cube but wx R, is not, then by Lemma A.14 (2), we have that
xR = n%)Rz, and so

S(xRi) = S(nPRy) = mpS (7 Ra).

Thus,
/
EPlu/ _ EsaxroU _ BrpseacknU oy 4y
Epu’ Es@xryU  Es@yr)U
This completes the proof. ]

Showing u’ has relative adjacency constant 1 + 0,1 (1) as 7 — 0 on Q° follows from
Lemma A.17 and a standard argument, and similarly for v’.
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A.5. Proof of the T1 Theorem 5.7
By Theorem 2 in [38], we have

Nr(o,w) S VAr(o,w) + Tr(o,w) + Tr+(w,0) + &(0,w) + E(w, 0),

where the two-tailed 4, condition is given by

wo wo
wroor= s ([ (Garsiv—egr) ) L@@yt iv—eam) @)

and the energy condition is defined by

E(o,w)? = sup ZP(J,,0)2|J,|w E(J,, »)2,
1=, J, | |G r=1
where the supremum is taken over all cubes / € " and all disjoint decompositions of

I € " into disjoint cubes (-, J-. Within the energy condition we also have the Poisson
average P(J, 0), which is defined by

o]J)

PO = o @D + e —es

and we also define

E(J,, 0)* =

1
= A /szw(z).

Since E(J;, w)? < 1, the energy condition is bounded by the pivotal condition

|Jrlo

r

V(o,w)? = sup

| ZP(J,,0)2|J|w,
9 r=1

By Theorem 4 of [12], if 0 and w are doubling, then the tailed 4, condition is equiv-
alent to the classical A, condition, i.e.,

Az(0,0) < Az(0, w);

see also Proposition 39 of [2] for further details.
As for the pivotal condition, a dyadic decomposition yields that the Poisson average
of o on Q is controlled by the expectation of o on Q, i.e.,

101, £(0)
, d
Q-9 = o1 +Z/k+lg\2kg Q) + [x —coly 1 7

) )
< %01, ——=2 < 10|, H(n+e)k
”,;' Cle are(gyym =19 ,;) QT

o0

7—(1—o)k < Ko |Q|o
0]




Stability of weighted norm inequalities 67

where the third inequality follows by the hypothesis on the doubling constants, and the
last inequality follows because ¢ < 1 implies the geometric series converges. Thus, we
can estimate

J 2
S P00 bl < s LSl
L 5 11T 2171

V(o,w)*> < sup
I=U,Jr| |0

S Ax(0.@) sup Z [Trlo S A2(0. ).
I=\J, Jr 1/ |o r=1

Combining all the above estimates with the corresponding dual estimates yields the theo-
rem.

Alternatively, rather than applying Theorem 2 in [38], one can apply Theorem 2.6 (1)
in [37], and then in our particular situation where both measures o and w are doubling,
one can dispose of the weak-boundedness property using an argument similar to that of
Lemma 2.4 in [16], or to that in the proof of Lemma 14 in [2].
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