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Stability of weighted norm inequalities

Michel Alexis, José Luis Luna-Garcia, Eric Sawyer and
Ignacio Uriarte-Tuero

Abstract. We show that while individual Riesz transforms are two-weight norm
stable under biLipschitz change of variables on A1 weights, they are two-weight
norm unstable under even rotational change of variables on doubling weights. More
precisely, we show that individual Riesz transforms are unstable under a set of rota-
tions having full measure, which includes rotations arbitrarily close to the iden-
tity. This provides an operator theoretic distinction between A1 weights and dou-
bling weights. More generally, all iterated Riesz transforms of odd order are rotation-
ally unstable on pairs of doubling weights, thus demonstrating the need for character-
izations of iterated Riesz transform inequalities using testing conditions as appearing
in the work of Nazarov, Treil and Volberg, and other works by subsets of the authors
Alexis, Lacey, Sawyer, Shen, Uriarte-Tuero and Wick, as opposed to the typically
stable ’bump’ conditions.
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1. Introduction

We begin by describing two stability theorems for operator norms, given three decades
apart, that motivate the main results of this paper.
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1.1. Previous stability results

Thirty-five years ago, Johnson and Neugebauer (see Theorem 2.10 (a) in [18], see also
the preceding Remark 1) characterized the smooth homeomorphisms ˆWRn ! Rn that
preserve Muckenhoupt’s Ap.Rn/ condition for a weight w under pushforward by ˆ, as
precisely those quasiconformal maps ˆ having their Jacobian J D jdetDˆj in the inter-
section

T
r>1Ar .Rn/ of the Ar classes over r > 1. A variant of the one-dimensional case

of this beautiful characterization, see Theorem 2.7 of [18] with ˛ D 1, can be reformu-
lated in terms of stability of the ‘Muckenhoupt’ one-weight norm inequality for the Hilbert
transform under homeomorphisms of the real line.

Theorem 1.1. Suppose that wWR!Œ0;1/ is a nonnegative weight on the real line R,
that 'WR! R is an increasing homeomorphism with ' and '�1 absolutely continuous,
and that H is the Hilbert transform, Hf.x/ D p.v.

R1
�1

f .y/=.y � x/.
For 1<p<1, denote by NH IpŒw� the operator norm of the mapH WLp.w/!Lp.w/,

i.e., the best constant C in the inequalityZ
R
jHf.x/jpw.x/ dx � Cp

Z
R
jf .x/jpw.x/ dx:

Then there is a positive constant C1, such that

NH IpŒ.w ı '/'
0� � C1NH;pŒw�; for all weights w;

if and only if '0 2
T
r>1Ar .R/.

More recently, Tolsa (see the abstract of [42]) characterized the ‘Ahlfors–David’ one-
weight inequality for the Cauchy transform, equivalently for the 1-fractional vector Riesz
transform R1;2 in the plane R2 (defined in (1.1) below), in the case p D 2, namely,Z

R2

jR1;2.f�/.x/j2 d�.x/ � N2
R1;2I2.�/

Z
R2

jf .x/j2 d�.x/;

in terms of a growth condition and Menger curvature. As a consequence, Tolsa obtained
stability of the operator norm NR1;2I2.�/ under biLipschitz pushforwards of the mea-
sure �. Even more recently, in papers by Dąbrowski and Tolsa [9], and Tolsa [43], this
result was extended to higher dimensions, and as a consequence they obtained stability
of the operator norm NR1;nI2.�/ of the 1-fractional vector Riesz transform R1;n under
biLipschitz pushforwards of the measure � in Rn, see the comment at the top of page 6
of [9], and see [43] as well. As an important application of norm stability, they obtain the
stability of removable sets for Lipschitz harmonic functions under biLipschitz mappings,
see Corollary 1.6 of [43] and the discussion surrounding it.

Here we define the ˛-fractional vector Riesz transform in Rn by

(1.1) R˛;nf .x/ � c˛;n p:v:
Z

Rn

x � y

jx � yjnC1�˛
f .y/ dy; x 2 Rn; 0 � ˛ < n:

Let R˛;nj D .R
˛;n
1 ; : : : ; R

˛;n
2 /, where we refer to the components R˛;nj as individual ˛-

fractional Riesz transforms in Rn. We are primarily concerned with the classical case
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˛ D 0 in this paper, so we will usually drop the superscript ˛ and write RD .R1; : : : ;Rn/
when the dimension n is understood, and refer to the components Rj as Riesz transforms.

The main problem we consider in this paper is the extent to which the above theorems
hold in the setting of two-weight norm inequalities, and to include more general operators
in higher dimensions. The complexities inherent in dealing with two-weight norm inequal-
ities – mainly that they are no longer characterized simply by Ap-like conditions or more
generally by conditions of ‘positive nature’, but require testing conditions of ‘singular
nature’ as well – suggests that we should limit ourselves to consideration of biLipschitz
maps. Indeed, this much smaller class of maps is much more amenable to current two-
weight techniques, and allows for a rich theory where stability holds in certain ‘nice’
situations, while failing in small perturbations of these ‘nice’ situations. We also show in
Appendix A that any reasonable group of transformations under which the two-weight A2
condition is stable is contained in the group of biLipschitz transformations.

Our analysis will be mainly restricted to the case p D 2 and iterated Riesz transforms
of odd order in Rn, where we show that stability of the two-weight norm inequality is
sensitive to the distinction between doubling and A1 weights, even when the biLipschitz
maps are restricted to rotations of Rn.

1.2. Description of results

The two-weight norm inequality for an operator T with a pair .�; !/ of positive locally
finite Borel measures on Rn and exponents 1 < p � q <1 is informally

(1.2)
� Z

Rn

jT .f �/jq d!
�1=q
� NT

� Z
Rn

jf jp d�
�1=p

; f 2 Lp.�/:

See Definition 5.5 for a formal definition of the two-weight norm inequality. In the case
pD q D 2, we first establish a distinction between weighted norm inequalities for positive
operators T in (1.2), such as the maximal function and fractional integrals, on the one
hand; and singular integral operators T in (1.2), such as the individual Riesz transforms
and iterated Riesz transforms, on the other hand. Namely, that the former are two-weight
norm stable under biLipschitz change of variables for arbitrary locally finite positive Borel
measures, while the latter are not in general, even on pairs of doubling measures.

Our main result, Theorem 1.4, shows that while individual Riesz transforms are two-
weight norm stable under biLipschitz change of variables on pairs of A1 weights, they
are two-weight norm unstable under even a rotational change of variables on doubling
weights. This provides an operator theoretic distinction betweenA1 weights and doubling
weights.1

We also show that all iterated Riesz transforms of odd order are rotationally unstable
on pairs of doubling weights, thus demonstrating the need for characterizations of iterated
Riesz transform inequalities using unstable conditions, such as the testing conditions in
[4,21,24,31,37,38], as opposed to the typically stable ‘bump’ conditions, see Section A.3.

1In 1974, C. Fefferman and B. Muckenhoupt [10] constructed an example of a doubling weight that was
not A1 using a self similar construction, on which many subsequent results have been based.
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1.3. BiLipschitz and rotational stability

In this section, we precisely define stability.

Definition 1.2. Let ˆWRn ! Rn be continuous and invertible.
(1) ˆ is biLipschitz if

kˆkbiLip � sup
x;y2Rn

jˆ.x/ �ˆ.y/j

jx � yj
C sup
x;y2Rn

jˆ�1.x/ �ˆ�1.y/j

jx � yj
<1:

(2) ˆ is a rotation if ˆ is linear and ˆˆ� D I and detˆ D 1.

Let X be a group of continuous invertible maps on Rn, such as the group of biLipschitz
or rotation transformations, which we denote by XbiLip and Xrot, respectively.2 Denote
by M the space of positive Borel measures on Rn, and byˆ�� the pushforward of � 2M

by a continuous map ˆWRn ! Rn, i.e., ˆ��.B/ � �.ˆ�1.B//. We say that a subclass
� �M of positive Borel measures is X-invariant if ˆ�� 2 � for all � 2 � and ˆ 2 X.
Of course, M itself is X-invariant for the group Xcont inv of all continuous invertible maps,
but less trivial examples of biLipschitz invariant classes include

�Ap � ¹� 2M W d�.x/ D u.x/ dx with u 2 Apº for 1 � p <1;
�A1 � ¹� 2M W d�.x/ D u.x/ dx with u 2 A1º;
�doub � ¹� 2M W � is a doubling measureº;
�ADs � ¹� 2M W � is Ahlfors–David regular of degree sº;
�lfpB � ¹� 2M W � is a locally finite positive Borel measureº:

To each of the above classes � , we can associate a functional k�k� for which � �¹�2M W

k�k� <1º. For example, we take

k�k�A1 D Œ��A1 � sup
Q

� 1

jQj

Z
Q

�
�

exp
� 1

jQj

Z
Q

ln
1

�

�
;

and k�k�doub DCdoub.�/ as in Definition 2.1. In the case that � D �lfpB, there is no ‘natural’
choice of k � k� that measures the ‘size’ of the measure �, and so instead we may, for
instance, define

k�k�lfpB D

´
1 if � 2 �lfpB;

1 otherwise:

We also define

kˆkX D

8̂<̂
:
kˆkbiLip if X D XbiLip;

1 if X D Xrot and ˆ 2 Xrot;

1 if X D Xrot and ˆ 62 Xrot:

Here is the main stability definition for a function F on measure pairs, a group X 2

¹XbiLip;Xrotº and an X-invariant class � (or to be precise, for .� ; k � k� )).

2See Lemma A.8 in Appendix A for a justification of considering subgroups of biLipschitz transformations.
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Definition 1.3. Let X 2 ¹XbiLip;Xrotº, � �M be X-invariant, and let F W� � �! Œ0;1�

be a nonnegative extended real-valued function on the product set � � � . We say that the
function F is X-stable on � if there is a function G W Œ0;1/4 ! Œ0;1/, which maps
bounded subsets of Œ0;1/4 to bounded subsets of Œ0;1/, such that

(1.3) F .ˆ��;ˆ�!/ � G .kˆkX ;F .�; !/; k�k� ; k!k� /;

for all �; ! 2 � , such that F .�; !/ <1 and all ˆ 2 X.

Note that to check that G maps bounded sets to bounded sets, it suffices to show
for instance, that G is continuous. Typically, we will take F to be an operator norm on
weighted spaces, in which case we say an operator T is (un)stable on a class of measures �

if its two-weight operator norm is (un)stable on � . One may also take F to be a common
two-weight bump condition.

A simple example of a biLipschitz stable function on the class �lfpB is the classical
two-weight A2 characteristic for a pair of measures, namely,

F .�; !/ D A2.�; !/ D sup
cubesQ in Rn

jQj�

jQj

jQj!

jQj
�

Indeed,

jQjˆ��

jQj

jQjˆ�!

jQj
D
jˆ�1Qj�

jQj

jˆ�1Qj!

jQj
�
jˆ�1Qj�

jˆ�1Qj

jˆ�1Qj!

jˆ�1Qj
,

since ˆ�1 is biLipschitz, and observe that there is a cube P such that P � ˆ�1Q � �P
for some � > 1 by quasiconformality ofˆ, see Lemma 3.4.5 in [5], where � depends only
on kˆkbiLip. Thus, we have

jQjˆ��

jQj

jQjˆ�!

jQj
.
j�P j�

j�P j

j�P j!

j�P j
� A2.�; !/;

and by taking supremums over cubes gives

A2.ˆ��;ˆ�!/ � G .kˆkbiLip; A2.�; !/; k�k�lfpB ; k!k�lfpB/(1.4)

D G .kˆkbiLip; A2.�; !/; 1; 1/

for G .w; x; y; z/ D cw4nx, where c > 0 is independent of ˆ, � and !.
The reader can also check that all of the usual ‘Orlicz bump’ conditions

sup
Q a ball

ku1=pkA;Qkv
�1=p
kB;Q <1;

where

kf kA;Q � inf
°
� > 0 W

1

jBj

Z
B

A
�
jf .x/j

�

�
dx
±
;

on a pair of absolutely continuous measures �.x/ dx and !.x/ dx on Rn as in the con-
jecture of Cruz-Uribe and Pérez [8] (proved by Lerner, see [26]), are biLipschitz stable on
any biLipschitz invariant subclass � , e.g., Neugebauer’s bump condition,

A2;r .�; !/ D sup
cubesQ in Rn

� 1

jQj

Z
Q

�.x/r dx
�1=r� 1

jQj

Z
Q

!.x/r dx
�1=r

;

where 1 < r <1, see Appendix A.3.
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More recently, additional variants of bump condition, such as entropy bumps and sep-
arated bumps, have arisen in work of Treil and Volberg [45], Lacey and Spencer [23]
to mention just a few. The sufficiency of these bump conditions for two-weight singular
integral inequalities all go through the boundedness of sparse operators, see Lerner [26]
for a proof of the optimal result to date, and a history of this fascinating subject. In
Appendix A.3, we show that no such bump conditions can characterize the two-weight
norm inequality for an iterated Riesz transform T of odd order even when the measures
are doubling (or for any Calderón–Zygmund operator T that is biLipschitz unstable on
doubling measures).

We mention in passing that the following form of the two-weight Ap condition on the
real line,

zAp.v; w/ � sup
I an interval

� 1
jI j

Z
I

w
�� 1
jI j

Z
I

1

vp
0�1

�p�1
;

has been proved stable under an increasing homeomorphic change of variable ' (with
both ' and '�1 absolutely continuous) if and only if '0 2A1.R/, see Corollary 4.4 in [18],
but this condition is no longer equivalent to boundedness of the Hilbert transform for two
weights, and moreover, the definitions of stability of zA2.v; w/ and A2.�; !/ considered
above are a priori different since composition and pushforward do not commute, e.g.,
when p D 2, ˆ�v ¤ .ˆ�v�1/�1 in general.

1.3.1. Main results. Our main result below on both stability and instability involves
Riesz transforms and doubling measures, as well as Stein elliptic Calderón–Zygmund
operators. Recall that if K is a Calderón–Zygmund kernel, i.e., it satisfies

(1.5)
jK.x; y/j � CCZ jx � yj

�n;

jrxK.x; y/j C jryK.x; y/j . CCZ jx � yj
�n�1;

and if T is a bounded linear operator on unweighted L2.Rn/, we say that T is associated
with the kernel K if

Tf .x/ D

Z
K.x; y/f .y/ dy for all x 2 Rn n suppf;

and we refer to such operators as Calderón–Zygmund operators. Note, in particular, that
a Calderón–Zygmund operator T is bounded on unweighted L2.Rn/ by definition. Fol-
lowing equation (39) on p. 210 of [41], we say that a Calderón–Zygmund operator T is
elliptic in the sense of Stein if there is a unit vector u0 2Rn and a constant c > 0 such that

jK.x; x C tu0/j � c jt j�n for all t 2 R;

where K.x; y/ is the kernel of T .
Note that a function F being X-stable means the estimate (1.3) holds across all mea-

sure pairs and all functions in the class X, while to show a function F is not X-stable,
it suffices to construct a sequence of measure pairs and a sequence of functions in X for
which the arguments of G in (1.3) remain bounded, but F diverges to1, i.e., (1.3) fails
for any choice of G . For this last point, in this paper we will always prove instability via
this last strategy. In this paper, we consider norms as in (1.2) for p D q D 2.
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Theorem 1.4. The two-weight operator norms for individual Riesz transforms Rj , and,
more generally, any Stein elliptic Calderón–Zygmund operator, are biLipschitz stable
on �A1 . The individual Riesz transforms, as well as iterated Riesz transforms of odd order,
are not even rotationally stable on �doub, and even when the measures are restricted to have
doubling constants Cdoub arbitrarily close to 2n.

In fact, we can prove the following stronger rotational instability for iterated Riesz
transforms of odd order, which, in particular, shows that instability can hold for rotations
arbitrarily close to the identity.

Theorem 1.5. Iterated Riesz transforms of odd order are unstable on �doub under a set of
rotations having full measure.

In contrast to the instability assertions in these theorems, most positive operators, such
as maximal functions and fractional integral operators, are easily seen to be biLipschitz
stable on �Ap , �A1 , �doub and �lfpB.

For example, if T D I˛ is the fractional integral of order 0< ˛ < n, and ifˆWRn!Rn

is biLipschitz, then

kTˆ��f k
2
L2.ˆ�!/

D

Z
Rn

ˇ̌̌ Z
Rn

jx � yj˛�nf .y/ dˆ��.y/
ˇ̌̌2
dˆ�!.x/

D

Z
Rn

ˇ̌̌ Z
Rn

jˆ�1x �ˆ�1yj˛�nf .ˆ�1y/ d�.y/
ˇ̌̌2
d!.x/

�

Z
Rn

ˇ̌̌ Z
Rn

jx � yj˛�n.f ıˆ�1/.y/ d�.y/
ˇ̌̌2
d!.x/

D kT� .f ıˆ
�1/k2

L2.!/

and

kf k2
L2.ˆ��/

D

Z
Rn

jf .y/j2 dˆ��.y/ D

Z
Rn

jf .ˆ�1y/j2 d�.y/ D kf ıˆ�1k2
L2.�/

:

A similar proof holds for the case when T is a fractional maximal operator of order
0 � ˛ < n.

1.4. History of stability

The class of Calderón–Zygmund kernels K.x; y/ satisfying (1.5) has long been known to
be invariant under biLipschitz change of variable x D ˆ.u/. For example, if Kˆ.u; v/ D
K.ˆ.u/;ˆ.v//, then the chain rule gives

jruKˆ.u; v/j D jDˆ.u/.rxK/.u; v/j

. kDˆk1 CCZ ju � vj
�n�1

� kˆkbiLip CCZ ju � vj
�n�1:

It follows that if a Calderón–Zygmund operator T associated with such a kernel K sat-
isfies the two-weight norm inequality (1.2), then the pullback Tˆ with kernel Kˆ is also
a Calderón–Zygmund operator (by a simple change of variables using that the Jacobian
of ˆ is bounded between two positive constants), and satisfies the inequality (1.2) with
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the pair of measures .�; !/ replaced by the pair of pushforwards .ˆ��;ˆ�!/. This raises
the question of when T itself satisfies (1.2) with the pair of pushforwards .ˆ��; ˆ�!/
when ˆ is biLipschitz. Roughly speaking, our results show that the answer is yes if the
measures �; ! are A1 weights, but no in general if the measures �; ! are just doubling.

In [22], it was mentioned that the two-weight norm inequality for the Hilbert transform
is “unstable,” in the sense that for ! equal to the Cantor measure, and � an appropriate
choice of weighted point masses in each removed middle third, the norm of the operator
could go from finite to infinite with just arbitrarily small perturbations of the locations of
the point masses, while the A2 condition remained in force. In Appendix A, we use this
example to show that the Hilbert transform is two-weight norm unstable under biLipschitz
pushforwards of arbitrary measure pairs, and this instability extends to Riesz transforms in
higher dimensions in a straightforward way. Thus, the Riesz transforms in higher dimen-
sions are biLipschitz unstable on arbitrary weight pairs, something which already shows
that the more familiar bump-type conditions, e.g., Theorem 3 in [33], cannot characterize
the two-weight problem for Riesz transforms alone.

On the other hand, we show below that Riesz transforms are biLipschitz stable under
pairs of A1 weights. So on one hand, for pairs of arbitrary measures we have instability,
and on the other hand for pairs of A1 weights, we have stability. This begs the question,
what side-conditions on the weights in our weight pairs will give stability/instability for
Riesz transforms? Now it is trivial that A1 weights are doubling weights, but it was not
until the famous construction of Fefferman and Muckenhoupt in [10] that one knew the
two classes were in fact different. Because of this, doubling is often considered to be the
next more general condition on a weight than A1.

The main result of this paper is that individual Riesz transforms are biLipschitz – and
even rotationally – unstable for pairs of doubling weights. This provides an operator-
theoretic means of distinguishing A1 weights from doubling weights, sharpening the
result of Fefferman and Muckenhoupt, by showing that stability differentiates the two
classes.

1.4.1. Our methods and their history. In 1976, Muckenhoupt and Wheeden showed
in [29] that the two-weight norm inequality for the maximal function M implies the
one-tailed A2 condition, and conjectured that it was sufficient. Then in 1982, the third
author disproved that conjecture in [34] by starting with a pair of simple radially decreas-
ing weights V; U constructed by Muckenhoupt in [28], that were essentially constant on
dyadic intervals Ik D Œ2�k�1; 2�k � and failed the two-weight inequality for M . Then
the weights were disarranged into weights v and u, i.e., dilates and translates of the
weights restricted to the dyadic intervals Ik were essentially redistributed onto the unit
interval Œ0; 1� according to a self-similar “transplantation” rule. The resulting weights sat-
isfied the one-tailed A2 condition on Œ0; 1�, but failed the two-weight norm inequality
for M .3 However, such weights were not doubling, as follows from calculations in [34].
This significant obstacle remained until the pioneering work of Nazarov [30], and Nazarov
and Volberg [32], to which we now turn.

3The reader can easily check that for a discretized version of these weights, the dyadic square function
defined in Section 2 also has infinite two-weight norm.
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Some years later, Treil and Volberg showed in [44] that the two-weight norm inequality
for the Hilbert transform H implies the two-tailed A2 condition, and Sarason conjec-
tured the two-tailed condition was also sufficient, see Section 7.9 in [14]. Shortly after
that, Nazarov disproved the conjecture in [30] (which we were unable to locate till very
recently, using the references in [19]), even using doubling weights, in a beautiful proof
involving the Bellman technique and a brilliant supervisor, or remodeling, argument, see
also [32] for the details. This use of doubling weights here turns out to be crucial for
our purposes. More specifically, Nazarov’s method consisted of first using the Bellman
technique in a delicate argument to construct a weight pair .v; u/ on T that failed to sat-
isfy the two-weight inequality for the discrete Hilbert transform, but satisfied both dyadic
doubling, with constant arbitrarily close to that of Lebesgue, and dyadic A2. Then he
transplanted highly oscillating functions according to a certain self-similar ‘supervisor’
rule having roots in [6], that resulted in a pair of weights .v; u/ on T that satisfied the
two-tailed A2 condition, with doubling constant arbitrarily close to that of Lebesgue mea-
sure, and for which the testing condition was increasingly unbounded. Nazarov’s argument
requires the clever use of highly oscillatory functions in order to deal with the singular-
ity of the Hilbert transform, and the use of holomorphic function theory to prove weak
convergence results for these increasingly oscillatory functions.

Very recently, it has come to our attention that Kakaroumpas and Treil extended
Nazarov’s results to p¤ 2 using a non-Bellman and ‘remodeling’ construction [19]. More
precisely, Kakaroumpas and Treil first began with a pair of discretized weights with theAp
condition under control, a bilinear form involving the Haar shift having increasingly large
norm, but doubling constant just as large. They then apply an iterative disarrangement
of these weights to then construct new weights for which the Ap condition and the norm
of the bilinear form remain essentially unchanged, but the dyadic doubling constant of
the weights is much closer to that of Lebesgue measure. This clever disarrangement is
one of the innovative ideas which replaces Nazarov’s Bellman construction, and provides
weights for which one can compute explicit quantities. It is possible that our Riesz trans-
form results can be proved using the Haar shift scheme of Kakaroumpas and Treil in place
of the square function scheme of Nazarov, but we have not checked the details.

Note that the rotational stability problem is only significant in dimension two or higher,
since in one dimension the only rotation is reflection about the origin, and that preserves
the Hilbert transform. Our proof of rotational instability in higher dimensions begins by
using the Bellman construction in [32], and is then inspired by Nazarov and Volberg’s
supervisor argument with highly oscillatory functions. In particular, we extend Nazarov’s
supervisor/remodeling construction to higher dimensions, which we call “transplanta-
tion”, and which makes explicit how v and u are constructed by transplanting averages
of V and U .

We also need to extend Nazarov’s weak convergence results to higher dimensions,
where holomorphic function theory is no longer available. This requires the new argu-
ments in Section 4, comprising much of the technical difficulty of the present paper. We
must also prove that testing conditions hold at all scales for one of the Riesz transforms,
something not considered in [32]. Finally, in Appendix A, we provide proofs of those por-
tions of the supervisor argument required for our theorem that not detailed in [32]; one
may also consult [19] for additional arguments.
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Remark 1.6. In our construction, we show that a given iterated Riesz transform T0 of
order N D 2mC 1 fails one of the testing conditions, while all other iterated Riesz trans-
forms T of orderN D 2mC 1 satisfy both testing conditions. Thus, at this point, we have
doubling measures satisfying the A2 condition with doubling constant arbitrarily close to
that of Lebesgue measure and both testing conditions for T . We now need to conclude
that T is two-weight bounded. Since the doubling constants can be taken arbitrarily close
to that of Lebesgue measure, the A2 condition implies the classical energy condition [12],
and so one can apply the T1 theorem of [38]; see Theorem 5.7 below for a more precise
statement and a proof.

1.5. Proof of stability

We present here a simple proof of stability in Theorem 1.4, using a few classical facts on
weights from [33] and [7]. The case of A1 weights in Lemma 1.8 below is folklore from
decades ago, but seems to have first been recorded in Hytönen and Lacey [17], where they
also prove a sharp dependence on the characteristics using much deeper tools. We begin
with the following lemma of Neugebauer.

Lemma 1.7 (Theorem 3 in [33]). Let .u;v/ be a pair of nonnegative functions. Then there
exists W 2 Ap with c1u � W � c2v if and only if there is r > 1 such that

sup
Q

� 1

jQj

Z
Q

ur
�� 1

jQj

Z
Q

vr.1�p
0
�p�1

<1:

Recall that a weight w is a weak A1 weight, written w 2 weakA1, if any of the
following equivalent conditions hold for all cubes Q and subsets E (see, e.g., [35]):

(C1) there exists R <1 and �.t/% with limt&0 �.t/ D 0 such that jE jw
jRQjw

� �. jE j
jQj
/,

(C2) for all R > 1, there exists C; " > 0 such that jE jw
jRQjw

� C. jE j
jQj
/",

(C3) there exists r > 1 such that .
R
Q
wr /1=r � 1

j2Qj

R
2Q
w.

Lemma 1.8 (Theorem 1.2 in [17]). Suppose that T is a sufficiently regular4 Calderón–
Zygmund operator, and that both ! and � are weakA1 weights. Then T satisfies the
two-weight norm inequality

kT�f k
2
L2.!/

� Ckf k2
L2.�/

if A2.�; !/ <1.

Proof. Since � and ! each satisfy the weak reverse Hölder condition (C3) for some r > 1,
we have

A2;r .�; !/ � sup
Q

� 1

jQj

Z
Q

!r
�1=r� 1

jQj

Z
Q

� r
�1=r

. sup
Q

� 1

j2Qj

Z
2Q

!
�� 1

j2Qj

Z
2Q

�
�
D A2.�; !/:

4See Section 6.13 on p. 221 of [41] for definitions, and for the nature of the ‘sufficiently regular’ assumption.
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Now we apply Neugebauer’s lemma with p D 2 to the weight pair .u; v/ D .!; ��1/ to
obtain that there exists W 2 A2 with c1!.x/ � W.x/ � c2�.x/�1. Then the extension of
the weighted inequality of Coifman and Fefferman [7] for Calderón–Zygmund operators
given in Section 6.13 on p. 221 of [41] shows that

kT�f k
2
L2.!/

� c�11 kT�f k
2
L2.w/

� Cc�11 kf�k
2
L2.w/

� Cc�11 c2kf�k
2
L2.��1/

;

i.e.,
kT�f k

2
L2.!/

� Cc�11 c2kf k
2
L2.�/

;

for all Calderón–Zygmund operators T .

Remark 1.9. We say that a measure pair .�; !/ is universal (for boundedness of smooth
Stein-elliptic Calderón–Zygmund operators) if a smooth Stein-elliptic Calderón–Zygmund
operator T is bounded from L2.�/ to L2.!/ if and only if all such operators are also
bounded. Lemma 1.8 above shows that pairs of A1 weights are universal, and Theo-
rem 1.4 above shows that not all pairs of doubling measures are universal.

Proof of stability in Theorem 1.4. Let us suppose that the norm inequality kT�f k2L2.!/ �
NT .�; !/

2kf k2
L2.�/

holds for a Calderón–Zygmund operator T associated with a ker-
nel K, and a pair of A1 weights .�; !/. Since (1.4) implies the biLipschitz stability of
A2.�; !/, and since the A1-characteristics Œ��A1 and Œ!�A1 are easily seen to be biLips-
chitz stable as well (in fact, they are stable under the more general class of quasiconformal
change of variables, Theorem 2 of [46]), we conclude that the norm inequality also holds
for the Calderón–Zygmund operator Tˆ with kernel

Kˆ.x; y/ � K.ˆ.x/;ˆ.y//:

As mentioned at the beginning of Section 1.4, Tˆ is a Calderón–Zygmund operator when-
ever T is, i.e., when it satisfies (1.5) and is bounded on unweighted L2.Rn/. Thus, we
conclude from Lemma 1.8 that T is bounded on the weight pair .ˆ��;ˆ�!/.

We can also be more precise in our proof of stability, since Theorem 1.2 of [17] implies
that the function

G .w; x; y; z/ � Cw˛Xx.yˇX C zˇX /

satisfies (1.3) for the functional F D NT .�; !/, where ˛X and ˇX are appropriately
chosen exponents.

Remark 1.10. Let T be a strongly elliptic vector of Calderón–Zygmund operators as
in Theorem 2.6 of [37]. Then two-weight boundedness of T implies the two-weight A2
condition, see Lemma 4.1 in [37]. Thus, if � and ! are weakA1 weights, then Lemma 1.8
shows that the two-weight norm inequality for T holds if and only if the A2 condition
holds. It follows that T is biLipschitz stable on

�weakA1 � ¹� 2M W d�.x/ D u.x/ dx with u 2 weakA1º:

We do not know if all Stein elliptic Calderón–Zygmund operators are biLipschitz stable
on �weakA1 .

The proof of instability in Theorem 1.4 is much more complicated.
• In Section 2, we show there exist dyadically doubling weights U; V on Œ0; 1�n which

fail a square function testing condition.
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• In Section 3, we describe Nazarov’s “supervisor” disarrangement of the weights U; V
into doubling weights u; v on Œ0; 1�n, and we see how the weights u; v are a linear
combination of the oscillatory functions shor;P

k
.

• In Section 4, we study how the Riesz transforms interact with these oscillatory func-
tions.

• In Section 5, we show that the norm inequality for R1 fails on the weights .v; u/ by
showing the testing condition on Œ0; 1� is at least as large as the square function testing
condition for .V; U /, while the dyadic testing conditions for R2 holds for the weight
pair .u; v/. We then extend u; v to all of Rn, and using that u; v are doubling with
doubling constant close to that of Lebesgue measure, we get that dyadic testing for R2
implies the norm inequality for R2.

• In Section 6, we then extend our results to show that individual iterated Riesz trans-
forms of odd order are rotationally unstable.

1.6. Open problems

The question of stability of operator norms for singular integrals on weighted spaces is in
general wide open. Here are two instances that might be more accessible.
(1) Only iterated Riesz transforms of odd order are treated in Theorem 1.4. Are Riesz

transforms of even order, such as the real and imaginary parts of the Beurling trans-
form, stable under rotations, or more generally biLipschitz pushforwards?

(2) While the individual Riesz transforms Rj are unstable under rotations of Rn, the
vector Riesz transform R D .R1; R2; : : : ; Rn/ is clearly rotationally stable since
it is invariant under rotations. In fact, as mentioned at the beginning of the paper,
Dąbrowski and Tolsa (see the top of page 6 of [9], and [43]) have demonstrated
biLipschitz stability in the Ahlfors–David one-weight setting for the 1-fractional vec-
tor Riesz transform R1;n. This motivates the question of whether or not the vector
Riesz transform R of fractional order 0 is biLipschitz stable on �doub in the two-
weight setting.

2. Preliminaries: Grids, doubling, telescoping identities and dyadic
testing

We begin by introducing some notation, Haar bases and the telescoping identity. Then we
recall the beautiful Bellman construction used in [32] to obtain the dyadic weights V;U .

2.1. Notation for grids and cubes

Given a cube J , let D.J / denote the collection of dyadic subcubes of J , and for each
m � 0 let Dm.J / denote the dyadic subcubes I of J satisfying `.I / D 2�m`.J /. Let
P .J / denote the collection of subcubes of J with sides parallel to the coordinate axes,
and P 0 � P .Œ0; 1�n/. Unless otherwise specified, any cube mentioned in this paper is
assumed to be axis-parallel, and we denote the collection of such cubes in Rn by P n. We
also define D0 � D.Œ0; 1�n/.
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Given a cube I � Rn, we will use the notational convention

I D I1 � I2 � � � � � In:

Given a cube I � Rn, we let C.k/.I / denote the k-th generation dyadic grandchildren
of I , and C.I / � C.1/.I /. And given a dyadic grid D and a cube I in the grid, we
let �DI denote the parent of I in D . The same notation extends to arbitrary grids K , like
in Section 3, where �KI denotes the K-parent of I .

In dimension 1, given an interval I � R, let I� denote the left half and IC denote the
right half; for convenience, given a cube I � Rn, we also let I˙ � .I1/˙ � I2 � � � � � In.

It will also be useful to keep track of the location of the children of I in higher dimen-
sions. In Rn, let ‚ denote the 2n locations a dyadic child cube can be in relative to its
parent. For instance, when n D 2, we can take ‚ � ¹NW;NE; SW; SEº the set of four
locations of a dyadic square Q within its D-parent �DQ, where NW stands for North-
west, NE denotes Northeast, etc. Given a cube I and � 2 ‚, we adopt the notation that I�
denotes the dyadic child of I at location � .

As usual we let jJ j� �
R
J
d� for any positive Borel measure � in Rn. If � is not

specified in the subscript, then jJ j denotes the Lebesgue measure of J . Also we define
the expectation EJ� � 1

jJ j

R
J
d�. Given a locally integrable function U in Rn, we often

abbreviate the absolutely continuous measure U.x/ dx by U as well. We call U a weight
if 0 < U.x/ <1 for all x 2 Rn.

2.2. Doubling

We say that two distinct cubes Q1 and Q2 in Rn are adjacent if there exists a cube Q for
which Q1 and Q2 are dyadic children of Q.

Definition 2.1. Recall a measure � on Rn is doubling if there exists a constant C such
that

�.2Q/ � C�.Q/ for all cubes Q:

The smallest such C is called the doubling constant for �, denoted Cdoub. Equivalently,
if � is a doubling measure, then there exists � � 1 such that for any two dyadic children I
and J of an arbitrary cube K

EI�

EJ�
2 .��1; �/:

The smallest such �, denoted �adj, is referred to as the doubling ratio or adjacency constant
of �.

One may also consider the dyadic adjacency constant �dyad
adj for a measure �, which

is defined as above except that we that we additionally restrict I; J to belong to a fixed
dyadic grid D , the last of which will be clear from context.

Given � 2 .0; 1/, we say a doubling measure � is � -flat if its adjacency constant �
satisfies �; ��1 2 .1 � �; 1C �/. One can make a similar definition in the dyadic setting.

For a doubling measure � on Rn, the closer the doubling ratio of � is to 1, the
closer Cdoub is to 2n: more precisely, for every " > 0, there exists a ı > 0 such that for all
doubling measures � on Rn, if j�adj.�/ � 1j < ı, then jCdoub � 2

nj < ".
One can make similar definitions replacing Rn by an open subset, and modifying the

definitions accordingly.
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2.3. Telescoping identity

2.3.1. Working in the plane. We begin by discussing the telescoping identity in the
plane where matters can easily be made more explicit. For each square Q in the plane
define the 1-dimensional projection EQ by

EQf � .EQf / 1Q;

where EQf � 1
jQj

R
Q
f is the average of f on Q. Denote the four dyadic children of

a square Q in the plane by QNW; QNE; QSW; QSE, where NW stands for the northwest
child, etc. Then define an orthonormal Haar basis ¹hhor

Q ; h
vert
Q ; hcheck

Q º associated withQ byp
jQj hhor

Q � C1QNW � 1QNE C 1QSW � 1QSE ;p
jQj hvert

Q � �1QNW � 1QNE C 1QSW C 1QSE ;p
jQj hcheck

Q � C1QNW � 1QNE � 1QSW C 1QSE ;

where we associate the three matrices ŒC �
C �

�; Œ
� �
C C �; Œ

C �
� C

�; with hhor
Q ; h

vert
Q ; hcheck

Q , which
change sign horizontally, vertically and in a checkerboard pattern, respectively. Thus, we
also refer to these three matrices as the horizontal matrix, vertical matrix and checkerboard
matrix. Let4Q denote Haar projection onto the 3-dimensional space of functions that are
constant on children of Q, and that also have mean zero. Then we have the linear algebra
formula

4Qf D hf; h
hor
Q i h

hor
Q C hf; h

vert
Q i h

vert
Q C hf; h

check
Q i hcheck

Q(2.1)

D 4
hor
Q f C4

vert
Q f C4check

Q f;

where4hor
Q f is the rank one projection hf; hhor

Q i h
hor
Q , etc.

Now given two cubes P and Q in D.P /, with Q ¤ P , define

.Q;P � � ¹I 2 D.P / W Q ¤ I � P º

to be the tower of cubes from Q to P that includes P but not Q. Similarly, define the
towers .Q; P /, ŒQ; P �, ŒQ; P /. Then, for .Q; P �, we have the well-known telescoping
identity

.EQf � EPf / 1Q D
� X
I2.Q;P �

4If
�

1Q

D

� X
I2.Q;P �

hf; hhor
I ih

hor
I

�
1QC

� X
I2.Q;P �

hf; hvert
I ih

vert
I

�
1QC

� X
I2.Q;P �

hf; hcheck
I ihcheck

I

�
1Q

D

� X
I2.Q;P �

4
hor
I f

�
1Q C

� X
I2.Q;P �

4
vert
I f

�
1Q C

� X
I2.Q;P �

4
check
I f

�
1Q:

2.3.2. In higher dimension. Turning now to dimension n, we note that a similar tele-
scoping identity holds in Rn. In particular, given a cube Q � Rn, if we let 4Q denote
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the Haar projection onto the space of functions constant on the dyadic children of Q with
mean 0, then

4Qf D

d.n/X
jD1

hf; h
j
Qih

j
Q �

d.n/X
jD1

4
j
Qf;

where ¹hjQº
d.n/
jD1 is a choice of L2.Q/ orthonormal basis for the range of4Q, and d.n/ D

2n � 1 is the dimension of this space. One of course has an analogue to the telescoping
identity above. In our applications for n � 2, we will be interested in the case that h1Q D
hhor
Q , where for Q D Q1 � � � � �Qn, we define the horizontal Haar wavelet

p
jQjhhor

Q .x/ �

8̂<̂
:

1 if x 2 Q�;
�1 if x 2 QC;
0 otherwise:

We will not care about the choice of h2Q;h
3
Q; : : : ;h

d.n/
Q for each cubeQ, although we could

simply take the orthogonal Haar basis ¹hjQº to be the ‘standard’ Haar basis ¹g1 ˝� � �˝ gnº
consisting of all product functions g1.x1/ � � � � � gn.xn/ in which gj is either the Haar
function hj on Qj , or the normalized indicator 1p

jQj j
1Qj , and where the constant func-

tion on Q is discarded. Note that

(2.2)
1p
jQj

s
Q;hor
1 D h1 ˝

1p
jQ2j

1Q2 ˝ � � � ˝
1p
jQnj

1Qn :

2.4. Horizontal dyadic testing

Given weights V and U on a cube J , define


hor.V; U IJ / �
1

jJ j

X
I2D.J /

k4
hor
I V k2

L2.Rn/
EIU D

1

jJ j

X
I2D.J /

jhV; hhor
I ij

2EIU:

If D is the dyadic grid, define the dyadic horizontal testing constant

T hor.v; u/ � sup
J2D


hor.V; U IJ /

EJV
�

Remark 2.2. The testing constant T hor.v; u/ is the L2.V /! L2.U / testing condition
for the ‘localized’ horizontal dyadic square function

Shor
J f .x/ �

q X
I2D.J /W
x2I

k4
hor
I f k2

L2.Rn/

jI j
D

p X
I2D.J /

k4
hor
I f k2

L2.Rn/

1I .x/
jI j
�

Indeed, we computeZ
J

jShor
J .1JV /.x/j2U.x/ dx D

Z
J

X
I2D.J /

k4
hor
I .1JV /k2L2.Rn/

U.x/
1I .x/
jI j

dx

D

X
I2D.J /

k4
hor
I .1JV /k2L2.Rn/

EIU D jJ j

hor.V; U; J /;
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and so the square of the dyadic testing condition for the localized horizontal square func-
tion is

sup
J2D

R
J
jShor
J .1JV /.x/j2 U.x/ dxR

J
V.x/ dx

D sup
J2D


hor.V; U; J /

EJV
�

2.5. The Bellman construction of the dyadic weights

Definition 2.3. Given weights V and U on a cube J in Rd , we define the dyadic A2
constant relative to J by

A
dyadic
2 .V; U IJ / � sup

I2D.J /

.EIU/.EIV /:

Following the Bellman construction used in [32] gives the following key result.5

Theorem 2.4. Given a cube J in Rn and arbitrary constants � > 0, � 2 .0; 1/, there exist
� -flat weights V and U on J , with V and U constant on all cubes I 2 Dm.J / for some
m > 0, such that

A
dyadic
2 .V; U IJ / � 1; 
hor.V; U IJ / > �.EJV /:

Furthermore, U and V are in the linear span of the finite set

¹1J º [ ¹hhor
I ºI 2D.J /;`.I /�2�.m�1/`.J /:

In particular, when n D 2, the last conclusion implies

(2.3) 4
vert
I U D 4check

I U D 0; 4vert
I V D 4check

I V D 0; I 2D.J /:

Proof. The dimension n D 1 case follows from Nazarov’s Bellman argument in [30].6

For dimension n � 2, we show matters reduce to the n D 1 case. We show this for
dimension n D 2, and a similar argument shows the same for dimension n � 3. Let
J D J1 � J2 be a square. So, given parameters � and � , suppose our 1-dimensional the-
orem gives us weights .V0; U0/ defined on J1. Define U by U.x1; x2/ � 1J2.x2/U0.x1/,
and similarly for V . Then note that

EIU D EI1U0; EIV D EI1V0; for I 2D.J /:

SinceU0 and V0 are � -flat, andAdyadic
2 .V0;U0IJ1/� 1, the above equation shows the same

must be true for V and U on J .
Then the 2-dimensional testing is given by


hor.V; U IJ / �
X

I2D.J /

jI j

jJ j
.EINWV CEISWV �EINEV �EISEV /

2EIU

D

1X
kD0

X
I2Dk.J /

2�2k.EINWV CEISWV �EINEV �EISEV /
2EIU

5A simpler Bellman proof is provided in [30]; one can also likely obtain the key result by using the disar-
rangement argument of [19].

6See also Section 3 of [32] for a stronger conclusion not used here, but which requires more difficult Hessian
computations, and also requires an argument to show that their set of admissible weight pairs Fx is nonempty,
the details of which can be found in, e.g., an earlier preprint of this article, see Lemma 12 in [1].
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�

1X
kD0

X
K2Dk.J1/

X
I2Dk.J /W
I1DK

2�2k.EK�V0 �EKCV0/
2EKU0

D

1X
kD0

X
K2Dk.J1/

2�k.EK�V0 �EKCV0/
2EKU0

D

1X
kD0

X
K2Dk.J1/

jKj

jJ j
.EK�V0 �EKCV0/

2EKU0

� 
hor.V0; U0IJ1/;

which is at least �.EJ1V0/ D �.EJV /, which yields the first conclusions after relabel-
ing � .

To see the claim about the span, since U;V are constant on squares in Dm.J /, then U
and V are bounded, and so are L2.J / functions. But the space of L2.J / functions which
are constant on elements of Dm.J / has orthonormal basis° 1p

jJ j
1J
±
[ ¹hhor

I ; hvert
I ; hcheck

I ºI 2D.J / W`.I/�2�.m�1/`.J /:

Thus, to show the claim about the span, it suffices to show

hhI ; U i D hhI ; V i D 0;

for any function hI that is orthogonal to hhor
I , has mean 0, is supported on I , and is constant

on the dyadic children of I . Let hI be such a function. Since hI is piecewise constant on
the dyadic children of I , we may expand hU; hI i asZ
I

U.x/hI .x/ dx D EINWU

Z
INW

hI .x/ dxCEISWU

Z
ISW

hI .x/ dxCEINEU

Z
INE

hI .x/ dx

CEISEU

Z
ISE

hI .x/ dx:

Substituting averages of U for averages of U0, taking a � E.I1/�U0 and b � E.I1/CU0
for convenience, we get that this equals

a

Z
I�

hI .x/ dx C b

Z
IC

hI .x/ dx D
aC b

2

Z
I

hI .x/ dx

C
b � a

2

� Z
IC

hI .x/ dx �

Z
I�

hI .x/ dx
�
:

Since hI has mean 0, the first integral on the right vanishes. Since hhI ; hhor
I i D 0, then the

last term vanishes too, and thus hU; hI i D 0. Similarly for V .

We will now adapt the supervisor argument of Nazarov to construct a pair of doubling
weights .v; u/, first on a cube in Rn and eventually on the whole space Rn, satisfying
A2.v;u/� 1 and such that the first Riesz transformR1 has operator norm NR1.v;u/ > � ,
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while the other Riesz transforms Rj , j � 2, have operator norm NRj .v; u/ � 1. Thus,
the individual Riesz transform R1 is not stable under rotations of doubling weights in
the plane. We will view the supervisor map more simply as a transplantation map that
readily exploits telescoping properties of projections. To make such conclusions about the
norm inequalities, we will compute a testing condition, and if V and U are � -flat for �
sufficiently small, then the classical pivotal condition holds [12], and so we can apply
the T1 theorem in [38] in order to deduce NR2.v; u/ � 1 from the testing conditions. See
Theorem 5.7 below for more details.

3. The supervisor and transplantation map

We again begin our discussion in the plane where matters are more easily pictured. We will
construct our weight pair .v;u/ on a squareQ0�R2 from the dyadic weight pair .v;u/ by
adapting the supervisor argument of Nazarov [32] as follows.7 Let ¹ktº1tD1 be an increas-
ing sequence of positive integers to be fixed later, and let D0 denote the collection of
dyadic subsquares of Q0. We denote by Kt D Kt .Q

0/ the collection of dyadic sub-
squares Q of Q0 in D0 whose side lengths satisfy `.Q/ D 2�k1�����kt `.Q0/, and then
define

K DK.Q0/ D
[
t2N

Kt .Q0/;

a subgrid of the dyadic grid D0. Recall that we have ‚ � ¹NW;NE; SW; SEº, the set of
four locations of a dyadic square Q within its D-parent �DQ.

3.1. The informal description of the construction

Here is an informal description of the transplantation argument, that we will give pre-
cisely later on. Given a nonnegative integrable function U 2 L1.Q0/ and t 2 N, we will
define ut .x/ to be a step function onQ0 that is constant on each square in the t -th level Kt

of K , and where the constants are among the expected values of U on the squares in the
t -th level D0

t of D0, but ‘scattered’ according to the following plan.
To each square Q in Kt , there is associated a unique descending ‘K-tower’ T D

.T1; : : : ; Tt / 2 K t D K � � � � �K , with Tt D Q, where the square T` is the unique
square in K` containing Q. To each component square T` of T, there is associated a
unique �` 2 ‚, which describes the location of T` within its D-parent �DT`. We then
define �.Q/ to be the square L in D0

t which is obtained from Q0 via the following
algorithm:

(1) Set L D Q0.
(2) For ` D 1; : : : ; t , replace L by its dyadic child with location �` within L.
(3) Output L.

In the terminology of Nazarov [32], �.Q/ is the supervisor ofQ. We then ‘transplant’
the expected value E�.Q/U of U on the supervisor to the cube Q in Kt that is being

7A simpler form of ‘disarranging’ a weight was used in [34] to provide a counterexample to the conjecture
of Muckenhoupt and Wheeden, see p. 281 in [29], that a one-tailed Ap condition was sufficient for the norm
inequality for M , but the weights were not doubling.
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supervised. For example, when k` D 1 for all `, this construction yields the identity

ut D EtU �
X

Q2D W`.Q/D2�t`.Q0/

.EQU/1Q;

and when the k0
`
s are bigger than 1, the values 1

jQj

R
Q
U are ‘scattered’ throughout Q0.

Now we give precise details of the ‘scattering’ construction.

3.2. The supervisor map

We define a map
� WKt ! D0

t ;

for every t � 0. Given a cube K 2 Kt , �.K/ is called the supervisor of K. We define it
as follows. Let K 2Kt . If t D 0, then K D Q0 and so we define �.K/ to be Q0.

If t � 1, define �` 2 ‚, 1 � ` � t , to be the unique location for which the K-parent

P` � �
.t�`/

K
K

satisfies
.�DP`/�` D P`:

Then define
�.K/ � .: : : ..Q0/�1/�2 : : :/�t ;

using the notation introduced at the beginning of Section 2.
Note that the supervisor map � is many-to-one, indeed Q 2 D0

t has Ct;k1;:::;kt preim-
ages under � . Furthermore, we note that �.�KQ/ D �D�.Q/, i.e., � and � commute.

3.3. The formal construction in the plane

Let U 2 L1.Q0/ be a nonnegative integrable function, and let t 2 N. We construct ut
by ‘transplanting’ the expected value E�.Q/U of U on the supervisor �.Q/ 2 D0

t to the
cube Q 2 Kt that is being supervised. Here are the precise formulas written out using
the parent grid P , where for convenience we will use superscripts to track the level of a
square in the grid D :

u0.x/ D .EQ0U/ 1Q0.x/; and ut .x/ D
X
Q2Kt

.E�.Q/U/ 1Q.x/ for t � 1:

The weights ut are nonnegative on Q0, since ut is constant on each square Q in Kt ,
and the value of this constant is the expectation E�.Q/U of U on the supervisor �.Q/,
which is of course nonnegative. We also note the following useful fact: jut j is bounded
by a constant independent of the choice of ¹ktºt�0, namely, kutkL1 � kU kL1 , since the
only values ut can take on are precisely the expectations of U over supervising cubes Q.

Recall the Haar projection4Q associated with Q satisfies

(3.1) 4Qf �
� X
Q02C.Q/

EQ0f
�
� EQf D

� X
Q02C.Q/

.EQ0f /1Q0
�
� .EQf /1Q:
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Given cubes Q and P , let �P!Q denote the unique translation and dilation that
takes P to Q, and define

hhor
Q ŒP �.x/ � h

hor
Q .�P!Q.x//:

Note that this function does not have L2.P / norm equal to 1. We can also make the same
definition for hvert

Q ŒP �; hcheck
Q ŒP �. Finally, define

4QŒP �f .x/ � .4Qf /.�P!Q.x//

D hf; hhor
Q i h

hor
Q ŒP �.x/C hf; h

vert
Q i h

vert
Q ŒP �.x/C hf; hcheck

Q i hcheck
Q ŒP �.x/

� 4
hor
Q ŒP �f .x/C4

vert
Q ŒP �f .x/C4check

Q ŒP �f .x/:

Then, using (3.1) for t � 1, the first order differences of the weights ut are given by

utC1.x/ � ut .x/ D
X
Q2Kt

°� X
P2C.ktC1�1/.Q/

X
Q02C.P /

.E�.Q0/U/ 1Q0.x/
�

� .E�.Q/U/ 1Q.x/
±

D

X
Q2Kt

° X
P2C.ktC1�1/.Q/

X
Q02C.P /

.E�.Q0/U �E�.Q/U/ 1Q0.x/
±

D

X
Q2Kt

° X
P2C.ktC1�1/.Q/

4�.Q/ŒP �U.x/
±
:

Let B denote a set indexing our choice of Haar basis. Since we are working in dimen-
sion 2, we take

B � ¹hor; vert; checkº:

For a square Q and an integer M 2 N, we define three alternating functions, one for each
pattern 2 B:

(3.2) s
Q;pattern
M .x/ D

X
Q02C.M�1/.Q/

p
jQ0j h

pattern
Q0 ; pattern 2 B:

Note that each of these three alternating functions is a constant ˙1 on grandchildren
P 0 2C.M/.Q/ of depth M , and when restricted to a grandchild Q0 2C.M�1/.Q/, each
alternating function sQ;hor

k
, sQ;vert
k

and sQ;check
k

has the arrangement of ˙1, given respec-
tively by Œ C �

C �
�; Œ
� �
C C � and Œ C �

� C
�. For instance, sQ;hor

k
is the function on Q consisting

of˙1 arranged in the following fashion:

s
Q;hor
k

� the 2k � 2k matrix

26666666664

C � C � � � � C �

C � C � � � � C �

C � C � � � � C �

C � C � � � � C �

:::
:::

:::
:::

:::
:::

C � C � � � � C �

C � C � � � � C �

37777777775
;
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and similarly,

s
Q;vert
k

�

26666666664

� � � � � � � � �

C C C C � � � C C

� � � � � � � � �

C C C C � � � C C

:::
:::

:::
:::

:::
:::

� � � � � � � � �

C C C C � � � C C

37777777775
and

s
Q;check
k

�

26666666664

C � C � � � � C �

� C � C � � � � C

C � C � � � � C �

� C � C � � � � C

:::
:::

:::
:::

:::
:::

C � C � � � � C �

� C � C � � � � C

37777777775
:

Remark 3.1. Notice that the matrix for sQ;hor
k

is given by transplanting 22k�2 copies of
the 2 � 2 matrix ŒC �

C �
�, which corresponds to the tensor product of a 1-dimensional Haar

function with matrix ŒC � �, and an indicator function with matrix ŒC
C
�.

We now write the projections 4QU as a sum of the horizontal, vertical and checker-
board components as in (2.1) to obtain, for t � 1,

utC1.x/ � ut .x/ D
X

pattern2B

X
Q2Kt

° X
P2C.ktC1�1/.Q/

4
pattern
�.Q/

ŒP �U.x/
±

(3.3)

D

X
pattern2B

X
Q2Kt

° X
P2C.ktC1�1/.Q/

hU; h
pattern
�.Q/
i h

pattern
�.Q/

ŒP �.x/
±

D

X
pattern2B

X
Q2Kt

hU; h
pattern
�.Q/
i

1p
j�.Q/j

s
Q;pattern
ktC1

:

3.4. The construction in dimension n D 1

In dimension n D 1, we can do the above transplantation construction, with the simple
substitution

B � ¹horº:

Then the transplantation construction reduces to the ‘supervisor and alternating function’
construction by Nazarov and Volberg [32]. Since there is only one choice of pattern B

in one dimension, or alternatively, only one choice of Haar wavelet basis in one dimen-
sion, ¹˙hQ;horº, we will use the simplified notation

(3.4) s
Q

k
� s

Q;hor
k

in dimension 1, where sQ;hor
k

is defined as in (3.2).
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3.5. The construction in higher dimensions

Turning now to general dimension n, we may define

s
Q;hor
k

.x/ D s
Q1
k
.x1/ 1Q2�����Qn.x2; : : : ; xn/;

where sQ
k

is the 1-dimensional alternating function as in (3.4). Again, the horizontal
direction indicates the direction of sign change. All of the calculations above extend to
dimension n using sQ;hor

1 as part of an otherwise arbitrarily chosen basis of Haar functions
for the cube Q D Q1 � � � � � Qn. Again, we could consider the ‘standard’ Haar basis
¹g1 ˝ � � � ˝ gnº consisting of all product functions g1.x1/ � � � � � gn.xn/ in which gj
is either the Haar function hj on Qj , or the normalized indicator 1p

jQj j
1Qj , and where

the constant function on Q is discarded; we recall the definition of the horizontal Haar
wavelets (2.2).

4. Weak convergence properties of the Riesz transforms

We let H denote the Hilbert transform on R, i.e.,

Hf.x/ �
1

�
p:v:

Z
R

f .x � y/

y
dy;

and we let Rj denote the j -th individual Riesz transform on Rn, i.e.,

(4.1) Rjf .x/ � cn p:v:
Z

Rn

yj

jyjnC1
f .x � y/ dy; where cn D

�.nC1
2
/

�.nC1/=2
�

Note that with these choices of constants, the symbols of the operators H and Rj are
�i sgn � and �i �j =j�j, respectively. In what follows, all singular integrals are understood
to be taken in the sense of principal values, even when we do not explicitly write p.v. in
front of the integral. If we apply the Riesz transform Rj in the plane to the difference
utC1 � ut in (3.3), we obtain

Rj .utC1 � ut / D
X

pattern2B

X
Q2Kt

hU; h
pattern
�.Q/
i

1p
j�.Q/j

Rj s
Q;pattern
ktC1

and, in particular, if4vert
P U ,4vert

P V ,4check
P U and4check

P V vanish for all P , then we have
both

Rj .utC1 � ut / D
X
Q2Kt

hU; hhor
�.Q/i

1p
j�.Q/j

Rj s
Q;hor
ktC1

;(4.2)

Rj .vtC1 � vt / D
X
Q2Kt

hV; hhor
�.Q/i

1p
j�.Q/j

Rj s
Q;hor
ktC1

:(4.3)

In Section 5, we will wish to establish three key testing estimates, for an arbitrarily large �:
(1) supQ

1
jQjv

R
Q
jR11Qvj2u � � ,

(2) supQ
1
jQjv

R
Q
jR21Qvj2u � 1,

(3) supQ
1
jQju

R
Q
jR21Quj2v � 1.
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As in [32], the first estimate is accomplished by inductively choosing the rapidly
increasing sequence ¹ktºmtD1 of positive integers so that at each stage of the construction
labeled by t , the discrepancyZ

jR1.vtC1/j
2utC1 �

Z
jR1.vt /j

2ut

looks like
P
`.I/D2t k4

hor
I V k2EIU , whose sum over t exceeds � . As suggested by (4.2)

and (4.3), it turns out one must then understand the convergence properties of

Rj s
Q;hor
ktC1

for j D 1; 2,

which we do in this section. For j D 2, we show this converges to 0 strongly from an
application of the alternating series test to exploit the cancellation in sQ;hor

k
. But for j D 1,

the issue is more subtle. In dimension 1, Nazarov proved HsI
k
! 0 weakly, and other

subtle weak convergence properties using holomorphic function theory on the unit disc. To
extend these considerations to higher dimensions, we have not managed to escape the need
for holomorphic function theory, so instead we reduce the study of R1sQ;hor

ktC1
to HsQ

ktC1
using the alternating series test to exploit cancellation in the sQ;hor

k
functions, from which

point we can then use Nazarov’s techniques. But a considerable amount of preparation is
needed to prove these convergence properties. We begin with a discussion of the notion of
weak convergence, which we use in connection with the alternating functions introduced
in Section 3.

Given 1 < p <1, recall fi ! 0 weakly in Lp.Rn/ if for all functions b 2 Lp
0

.Rn/,
we have

(4.4) lim
i!1

Z
Rn

fi .x/b.x/ dx D 0:

Bounded operators on Lp.Rn/ send weakly convergent sequences to weakly convergent
sequences. If ¹fiº is uniformly bounded in Lp.Rn/ and X is a dense subset of Lp

0

.Rn/,
then fi ! 0 weakly if and only if (4.4) holds for all b 2 X . We will apply this last result
when X equals L1.Rn/ \ Lp

0

.Rn/, or when X is the space of compactly supported
functions on Rn which are constant on dyadic cubes of fixed size.

We now turn to some lemmas in dimension nD 1 that we will use for establishing the
three key testing estimates listed above.

4.1. Weak convergence properties of the Hilbert transform

In Nazarov’s supervisor argument in [32], the weak limits appearing in Lemma 4.2 below,
for the alternating functions sI

k
, were proved using holomorphic function theory. While

the results of this subsection already appear in [30, 32], to keep this paper self-contained,
we provide the proofs here along with details omitted in previous articles.

If f 2Lp.R/, then for every z 2 R2C, define the Poisson extension Pf .z/ of f by

Pf .z/ D Pf .x C iy/ �

Z
R
f .t/PxCiy.t/ dt;
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where
PxCiy.t/ �

y

.x � t /2 C y2

is the Poisson kernel. A key observation in [30, 32] was the following lemma.

Lemma 4.1. Given p 2 .1;1/, let ¹fkºk inLp.R/ be a bounded sequence. Then fk! 0

weakly in Lp.R/ if and only if limk!1 Pfk.z/ D 0 for all z 2 R2C.

Proof. If fk ! 0 weakly in Lp.R/, then it is immediate that limk!1 Pfk.z/ D 0 for
all z 2 R2C.

If, on the other hand, limk!1 Pfk.z/ D 0 for all z 2 R2C, then because finite lin-
ear combinations of Poisson kernels are dense8 in the dual space Lp

0

.R/, and the norms
kfkkLp.R/ are uniformly bounded in Lp.R/, we get fk ! 0 weakly in Lp.R/.

In what follows, given 1 � p <1, let Hp.CC/ denote the functions f on R which
are the nontangential boundary values of an analytic function on the upper-half plane

CC WD ¹.x; y/ 2 R2 W y > 0º;

which we call f , such that

sup
y>0

� Z 1
�1

jf .x C iy/jp dx
�1=p

<1:

If 1 < p <1, and if f 2Lp.R/ is real-valued, then

f C iHf 2Hp.CC/:

Lemma 4.2 (Section 4 of [32]). Suppose p 2 .1;1/. With sI
k

as above, we have

sIk ! 0; HsIk ! 0; sIkHs
I
k ! 0; sIk .Hs

I
k /
2
! 0; .HsIk /

2
! 1I ;

weakly in Lp.R/ as k !1. More generally, for nonnegative a; b not both zero, there
exist positive constants ca;b , with c0;2 D 1, such that

.sIk /
a.HsIk /

b
!

´
0 if a or b is odd,

ca;b 1I if a and b are even,
weakly in Lp.R/ as k !1:

Proof. Since limk!1

R
R s

I
k
.t/g.t/dt D 0 for all dyadic step functions g on R, and since

finite linear combinations of dyadic step functions are dense in Lp.R/, we conclude that
sI
k
! 0 weakly in Lp.R/. SinceH is bounded on Lp.R/, we also haveHsI

k
! 0 weakly

in Lp.R/. Let f I
k
� sI

k
C iHsI

k
2 Hp.CC/. By an application of Lemma 4.1 using

8Hint: Consider the unit circle T D Œ0; 2�/. Let f 2 C.T / and " > 0. For r < 1 sufficiently close to 1, and
for n sufficiently large depending on r , we haveˇ̌̌

Pr � f .x/ �

n�1X
kD0

� Z 2�.kC1/=n

2�k=n

f
�
Pr

�
x �

2�k

n

�ˇ̌̌
� ":
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f I
k
! 0 weakly in Lp.R/, followed by the fact that .Pf I

k
/2 is holomorphic and must

be the Poisson extension of .f I
k
/2, since they share the same boundary values, and then

finally writing .f I
k
/2 in terms of its real and imaginary parts, we get

0 D
�

lim
k!1

Pf Ik .z/
�2
D lim
k!1

P Œ.f Ik /
2�.z/ D lim

k!1
P Œ.sIk /

2
� .HsIk /

2
C i2sIkHs

I
k �.z/

for all z 2 CC. By Lemma 4.1 again,

sIkHs
I
k ! 0 weakly in Lp.R/;

1I � .HsIk /
2
D .sIk /

2
� .HsIk /

2
! 0 weakly in Lp.R/;

since .sI
k
/2 D 1I . Similarly, we see that the real part of .f I

k
/3 goes to 0 weakly in Lp.R/,

i.e.,
.sIk /

3
� 3.sIk /.Hs

I
k /
2
! 0 weakly in Lp.R/;

which gives sI
k
.HsI

k
/2 ! 0 weakly in Lp.R/, since .sI

k
/2 D 1I and sI

k
! 0 weakly

in Lp.R/.
The more general statement involving powers a and b follows similar arguments.

To carry out Nazarov’s supervisor argument in [32], one also needs to understand
the weak convergence of mixed terms sI

k
.HsJ

k
/.HsK

k
/, where I , J and K are dyadic

intervals of same side length. We will often make use of the trivial observation that if
I1; I2; : : : ; IN are pairwise disjoint sets, and the functions aIj

k
are supported on Ij , thenPN

jD1 a
Ij
k
! 0 weakly in Lp.R/ as k !1 if and only if aIj

k
! 0 weakly in Lp.R/ for

each j D 1; 2; : : : ; N .

Lemma 4.3. Suppose p 2 .1;1/. Let I , J and K be dyadic intervals all of equal side-
length. Then

sIk .Hs
J
k /! 0 weakly in Lp.R/ as k !1;(4.5)

.HsIk /.Hs
J
k /! 0 weakly in Lp.R/ as k !1 if I ¤ J;(4.6)

sIk .Hs
J
k /.Hs

K
k /! 0 weakly in Lp.R/ ask !1:(4.7)

Proof. Let us first show (4.5). If I D J , this follows by Lemma 4.2, so assume I ¤ J .
Write f I

k
� sIk C iHs

I
k , and similarly for J . Since f I

k
f J
k
2 Hp.CC/ (because H is

bounded on, e.g., L2p.R/), the method of proof of Lemma 4.2 combined with Lemma 4.1
implies that the real and imaginary parts of f I

k
f J
k

go to 0 weakly in Lp.R/. In particular,
since sI

k
sJ
k
D 0 because of their disjoint support, we get

(4.8)
�.HsIk /.Hs

J
k /! 0 weakly in Lp.R/;

sIkHs
J
k C s

J
kHs

I
k ! 0 weakly in Lp.R/:

Then (4.5) follows from the second identity in (4.8); since I and J are disjoint, it follows
that sIkHs

J
k ! 0 weakly in Lp.R/ and sJkHs

I
k ! 0 weakly in Lp.R/. As for (4.6), it

follows immediately from the first identity of (4.8).
Now let us show (4.7). Define f Ik , f Jk and f Kk as above. We will expand f Ik f

J
k f

K
k

into its real and imaginary parts, which by Lemma 4.1 go to 0 weakly in Lp.R/. We will
consider various cases involving the dyadic intervals I , J and K.
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Case 1: I D J D K. Then sI
k
.HsJ

k
/.HsK

k
/ D sI

k
.HsI

k
/2 ! 0 weakly in Lp.R/ by

Lemma 4.2.
Case 2: I ¤ J D K. Then using that jsI

k
j2 D 1I , and similarly for J , we compute the

real part

Re.f Ik f
J
k f

K
k / D Re.f Ik .f

J
k /

2/ D Re..sIk C iHs
I
k /.s

J
k C iHs

J
k /
2/

D �2.HsIk /s
J
k .Hs

J
k / � s

I
k .Hs

J
k /
2:

Since the real part is the sum of two functions with disjoint support, by Lemma 4.1,
sI
k
.HsJ

k
/2 ! 0 weakly in Lp.R/.

Case 3: I D J ¤K or I DK¤ J . Assume without loss of generality that I D J ¤K.
Using that sJ

k
sK
k
D 0 because they have disjoint supports, we get f I

k
f J
k
f K
k

has real part

�2sJk .Hs
J
k /.Hs

K
k / � s

K
k .Hs

J
k /
2
! 0 weakly in Lp.R/;

by Lemma 4.1. But the two terms have disjoint support J andK, so each goes to 0 weakly
in Lp.R/.

Case 4: I , J and K are pairwise disjoint. We compute the real part of f I
k
f J
k
f K
k

equals

�sIk .Hs
J
k /.Hs

K
k / � .Hs

I
k /s

J
k .Hs

K
k / � s

K
k .Hs

I
k /.Hs

J
k /! 0 weakly in Lp.R/;

by Lemma 4.1. Since the three terms have pairwise disjoint support, then each individual
term goes to 0 weakly in Lp.R/.

4.2. From Hilbert to Riesz

In analogy with .HsIk /
2 ! 1I weakly in L2.Rn/, we want to show that .R1sP;hor

k /2 !

c1P weakly in L2.Rn/ for some positive constant c, and also that R2 sP;hor
k ! 0 strongly

in L2, even Lp , as k !1. Using real variable techniques, we will calculate matters in
such a way that our claim for R1 reduces to that of the Hilbert transform H , where the
holomorphic methods used by Nazarov are available, while the claim forR2 does not need
reduction to H .

The following notation will also be useful.

Notation 4.4. Given a sequence ¹fkº1kD1 of functions in L2.Rn/, we write

fk D o
weakly
k!1

.1/

if
lim
k!1

Z
Rn

fk.t/g.t/ dt D 0 for all g 2 L2.Rn/;

and we write
fk D o

strongly
k!1

.1/

if
lim
k!1

Z
Rn

jfk.t/j
p dt D 0 for all p 2 .1;1/:
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We first need an elementary consequence of the alternating series test.

Lemma 4.5. If b is a bounded function on Œ0; 1� and there exists a partition

¹z0 � 0 < z1 < � � � < zN�1 < zN � 1º

such that b is monotone, and of one sign, on each subinterval .zj ; zjC1/, thenˇ̌̌ Z
b.x/s

Œ0;1�

k
.x/ dx

ˇ̌̌
� CN2�kkbk1:

Proof. If b is monotone on Œ0; 1�, and if say b.0/ > b.1/ � 0, thenˇ̌̌ Z
b.x/s

Œ0;1�

k
.x/ dx

ˇ̌̌
D

ˇ̌̌ 2kX
jD1

.�1/j
Z j=2k

.j�1/=2k
b.x/ dx

ˇ̌̌
(4.9)

�

Z 1=2k

0

jb.x/j dx � 2�kkbk1;

by the alternating series test. More generally, we can apply this argument to the subinter-
val Œzm�1; zm� if the endpoints lie in ¹j 2�kº2

k

jD0, the points of change in sign of sŒ0;1�
k

.
In the general case, note that if we denote by jm�1=2k (or jm=2k) the leftmost (or
rightmost) point of the form j=2k in Œzm�1; zm�, then the integrals in each one of the
intervals Œzm�1; jm�1=2k � , Œjm�1=2k ; jm=2k �, and Œjm=2k ; zm� all satisfy the same bound
as (4.9).

We will use Lemma 4.5 to prove the following results, which encompass the technical
details for the estimates in this section. In particular, Lemmas 4.9 and 4.10 below, while
technical, will allow for cleaner proofs of the main results Lemma 4.11 and Lemma 4.12
of this section. The reader should keep in mind Lemmas 4.9 and 4.10 essentially follow
from an application of the alternating series test Lemma 4.5. We first need to establish
some notation.

Definition 4.6. A function g on Œa; b� is M -piecewise monotone if there is a partition

¹a D t1 < t2 < � � � < tM D bº

such that g is monotone and of one sign on each subinterval .tk ; tkC1/, 1 � k < M .

Notation 4.7. For x 2 Rn and P D P1 � � � � � Pn a cube in Rn, we write

x D .x1; : : : ; xn/ D .x1; x
0/ D .x1; x2; x

00/ D .yx; xn/ D .x1; Qx; xn/;

P D P1 � � � � � Pn D P1 � P
0
D P1 � P2 � P

00
D yP � Pn D P1 � zP � Pn:

Definition 4.8. The common definition of the ı-halo of a cube P is given by

HP
ı � ¹x 2 Rn W dist.x;@P / < ı`.P /º:

Given a cube Q � P , we define the Q-extended halo of P by

H
P IQ

ı
� ¹x 2 Q W dist.xj;@Pj / < ı`.P / for some 1 � j � nº:

We also write sk in place of sŒ�1;1�
k

.
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Lemma 4.9. Let p 2 .1;1/ and M � 1. Let P D P1 � P
0 be a subcube of a cube

Q D Q1 �Q
0 � R �Rn�1. Furthermore, suppose that

F W Q � P1 � zP! R

satisfies the following three properties:

(A1) y1 ! F.x; y1; Qy/ is M -piecewise monotone for each .x; Qy/ 2 .Q nHP IQ

ı
/ � zP

for all 0 < ı < 1=2,

(A2) sup
.x;y1; Qy/2.QnH

P IQ
ı

/�P1� zP
jF.x; y1; Qy/j � Cı <1 for all 0 < ı < 1=2,

(A3) 1HP IQ
ı

.x/
R
zP

R
P1
jF.x; y1; Qy/j dy1 d Qy ! 0 strongly in Lp.Q/ as ı ! 0.

Then Z
zP

Z
P1

F.x; y1; Qy/sk.y1/ dy1 d Qy ! 0 strongly in Lp.Q/ as k !1:

Proof. WriteZ
zP

Z
P1

F.x; y1; Qy/sk.y1/ dy1 d Qy D
®
1
H
P IQ
ı

.x/C 1
QnH

P IQ
ı

.x/
¯

�

Z
zP

Z
P1

F.x; y1; Qy/sk.y1/ dy1 d Qy:

For the first term, use

1
H
P IQ
ı

.x/
ˇ̌̌ Z
zP

Z
P1

F.x; y1; Qy/sk.y1/ dy1 d Qy
ˇ̌̌
� 1

H
P IQ
ı

.x/

Z
zP

Z
P1

jF.x; y1; Qy/j dy1 d Qy

and assumption (A3).
For the second term we will use the alternating series test, Lemma 4.5, adapted to

the interval P1 on the integral
R
P1
F.x; y1; Qy/sk.y1/dy1, together with assumptions (A1)

and (A2). Indeed, by (A1) and Lemma 4.5, we have that for .x; Qy/ 2 .Q nHP IQ
ı

/ � zP ,
there exists a partition ¹t0; t1; : : : ; tM º of P1 depending on .x; Qy/, but withM independent
of .x; Qy/, such thatˇ̌̌ Z

P1

F.x; y1; Qy/sk.y1/ dy1

ˇ̌̌
�

M�1X
jD0

ˇ̌̌Z tjC1

tj

F.x; y1; Qy/sk.y1/ dy1

ˇ̌̌
� CMCı2

�k ;

where the final inequality follows from assumption (A2). Thus, away from the halo we
have uniform convergence to zero, and altogether we obtain the desired conclusion.

We will also need a version of the previous lemma in which some of the y variables
have been integrated out.

Lemma 4.10. Let p 2 .1;1/ and M � 1. Let P � Œ�1; 1�n, which we will sometimes
write as P1 � P 0, and assume P is subcube of a cube Q D Q1 �Q0 � R �Rn�1. Fur-
thermore, suppose that

F W Q � P1! R

can be written as
F.x; y1/ D

Z
Œ�1;1�n�2

Fy00.x; y1/ dy
00;
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where for each fixed x, the function y1! Fy00.x; y1/ does not change sign, and where the
following three properties hold:

(A10) y1 ! Fy00.x; y1/ is M -piecewise monotone for each x 2 Q;y00 2 Œ�1; 1�n�2,

(A20) sup
.x;y1/2.QnH

P IQ
ı

/�P1
jF.x; y1/j � Cı <1 for all 0 < ı < 1=2,

(A30) 1HP IQ
ı

.x/
R
P1
jF.x; y1/j dy1 ! 0 strongly in Lp.Q/ as ı ! 0.

Then Z
P1

F.x; y1/sk.y1/ dy1 ! 0 strongly in Lp.Q/ as k !1:

Proof. This short proof is virtually identical to that of the previous lemma, but we include
it for convenience. WriteZ

P1

F.x; y1/sk.y1/ dy1 D
®
1
H
P IQ
ı

.x/C 1
QnH

P IQ
ı

.x/
¯ Z

P1

F.x; y1/sk.y1/ dy1:

For the first term use

1
H
P IQ
ı

.x/
ˇ̌̌ Z
P1

F.x; y1/sk.y1/ dy1

ˇ̌̌
� 1

H
P IQ
ı

.x/

Z
P1

jF.x; y1/j dy1

and assumption (A30).
Next, the alternating series test on the integral

R
P1
Fy00.x; y1/sk.y1/dy1 will be used

together with (A10) and (A20) for the second term. Indeed, by (A10), there exists a partition
¹t0; t1; : : : ; tM º of P1 depending on x and y00, but with M independent of x and y00, and
then from Lemma 4.5 we have, for x 2 Q nHP IQ

ı
, thatˇ̌̌ Z

P1

F.x; y1/sk.y1/ dy1

ˇ̌̌
D

ˇ̌̌ Z
Œ�1;1�n�2

° Z
P1

Fy00.x; y1/sk.y1/ dy1

±
dy00

ˇ̌̌
�

Z
Œ�1;1�n�2

ˇ̌̌ Z
P1

Fy00.x; y1/sk.y1/ dy1

ˇ̌̌
dy00

�

Z
Œ�1;1�n�2

M�1X
jD1

ˇ̌̌ Z tjC1

tj

Fy00.x; y1/sk.y1/ dy1

ˇ̌̌
dy00

�

Z
Œ�1;1�n�2

M�1X
jD1

° Z tjC2
1�k

tj

C

Z tjC1

tjC1�21�k

±
jFy00.x; y1/j dy1 dy

00

�

M�1X
jD1

° Z tjC2
1�k

tj

C

Z tjC1

tjC1�21�k

±
jF.x; y1/j dy1 � CMCı2

�k;

where the penultimate inequality follows since Fy00 does not change sign, and the final
inequality follows from the second assumption.

Here is our main reduction of the action of Riesz transforms on sP;hor
k

.x/ to that of the
Hilbert transform H on sP1

k
.x1/.
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Lemma 4.11. Given n � 1, a cube P � Rn and p 2 .1;1/, we have, for x D .x1; x0/ 2
R1 �Rn�1,

R1s
P;hor
k

.x/ D …nHs
P1
k
.x1/ 1P 0.x0/C ErrPk .x/;

where
…n D cnƒnƒn�1 � � �ƒ1; ƒn �

Z
R

1

.1C z2/.nC1/=2
dz > 0;

with cn as in (4.1), and where the error ErrP
k

tends to 0 strongly in Lp.Rn/, i.e.,

lim
k!1
kErrPk kLp.Rn/ D 0:

Proof. We prove the lemma by induction on the dimension n � 1. Since…1 D 1, the case
nD 1 is a tautology (with the understanding that R1 DH on R, note that the constants in
front of the integrals match) and so we now suppose that n� 2, and assume the conclusion
of the lemma holds with n � 1 in place of n.

Let " > 0. For every M > 1, we have

R1s
P;hor
k

.x/ D 1MP .x/R1sP;hor
k

.x/C 1RnnMP .x/R1s
P;hor
k

.x/:

We note that the second term 1RnnMP .x/R1s
P;hor
k

.x/ goes to 0 strongly in Lp.Rn/ as
M !1, sinceZ

RnnMP

jR1s
P;hor
k

.x/jp dx � C

Z
RnnMP

� Z
P

1

jx � yjn
dy
�p
dx

� C

Z
RnnMP

�
jP j

j dist.x; P /jn

�p
dx;

which goes to 0 as M ! 1, uniformly in k. In particular, we choose M such thatR
RnnMP jR1s

P;hor
k .x/jpdx < "=2 for all k � 0. With Q D MP , it will suffice to show

that limk!1 kErrP
k
kLp.Q/ < "=2 for k sufficiently large, where ErrP

k
is implicitly defined

as in the statement of the lemma.
Without loss of generality, we assumeP D Œ�1;1�n. Recalling that yxD.x1; : : : ;xn�1/,

yy D .y1; : : : ; yn�1/, we write

R1s
P;hor
k

.x/ D cn

Z 1

�1

Z
Œ�1;1�n�1

.x1 � y1/s
Œ�1;1�

k
.y1/

Œ.x1 � y1/2 C jx0 � y0j2�.nC1/=2
dy1 � � � dyn�1 dyn

�

Z
Œ�1;1�n�1

‰.yx; xn; yy/s
Œ�1;1�

k
.y1/ d yy;

where, by the change of variables z D .xn � yn/=jyx � yyj, we have

‰.yx; xn; yy/ D cn

Z 1

�1

x1 � y1

Œjyx � yyj2 C jxn � ynj2�.nC1/=2
dyn

D
cn

cn�1
K
Œn�1�
1 .yx � yy/

Z .xnC1/=jyx�yyj

.xn�1/=jyx�yyj

1

.1C z2/.nC1/=2
dz;
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and whereKŒm�1 is the kernel of the first individual Riesz transformR
Œm�
1 inm dimensions.

Note that

ˆn�1.yx; xn; yy/ �

Z .xnC1/=jyx�yyj

.xn�1/=jyx�yyj

1

.1C z2/.nC1/=2
dz

is a bounded function of .yx; xn; yy/, with

kˆn�1k1 �

Z
R

1

.1C z2/.nC1/=2
dz D ƒn > 0:

With ln.x; yy/ � .xn � 1/=jyx � yyj and un.x; yy/ � .xn C 1/=jyx � yyj, we may further
decompose ˆn�1.yx; xn; yy/ as° Z 0

ln

C

Z un

0

± 1

.1C z2/.nC1/=2
dz

D

°
�sgn.xn � 1/

Z jlnj
0

C sgn.xn C 1/
Z junj
0

± 1

.1C z2/.nC1/=2
dz

D ƒn1Pn.xn/ � sgn.xn � 1/
� Z jlnj

0

1

.1C z2/.nC1/=2
dz �

ƒn

2

�
C sgn.xn C 1/

� Z junj
0

1

.1C z2/.nC1/=2
dz �

ƒn

2

�
� ƒn1Pn.xn/ � sgn.xn � 1/L1n.x; yy/C sgn.xn C 1/L2n.x; yy/:

Relating the above computations to RŒn�1�1 and RŒn�1 , we obtain

R
Œn�
1 s

P;hor
k

.x/ D
cn

cn�1
ƒnR

Œn�1�
1 .s

Œ�1;1�

k
˝ 1P2�����Pn�1/.yx/ 1Pn.xn/

�
cn

cn�1
sgn.xn � 1/

Z
Œ�1;1�n�1

x1 � y1

jyx � yyjn
L1n.x; yy/s

Œ�1;1�

k
.y1/ d yy

C
cn

cn�1
sgn.xn C 1/

Z
Œ�1;1�n�1

x1 � y1

jyx � yyjn
L2n.x; yy/s

Œ�1;1�

k
.y1/ d yy

�
cn

cn�1
ƒnR

Œn�1�
1 .s

Œ�1;1�

k
˝ 1 zP /.yx/ 1Pn.xn/C Err1k.x/C Err2k.x/:

We now apply our induction hypothesis to the term R
Œn�1�
1 .s

Œ�1;1�

k
˝ 1 zP /.yx/ to obtain

cn

cn�1
ƒnR

Œn�1�
1 .s

Œ�1;1�

k
˝ 1 zP /.yx/ 1Pn.xn/ D …nHs

P1
k
.x1/ 1 zP .x2; : : : ; xn/

C
cn

cn�1
ƒnErr yPk .yx/ 1Pn.xn/;

where Err yP
k
.yx/ 1Pn.xn/ tends to 0 strongly in Lp.Q/ by the induction hypothesis.

So it remains only to show that both Err1
k
.x/ and Err2

k
.x/ go to 0 strongly in Lp.Q/,

and by symmetry it suffices to consider just Err2
k
.x/. We have

L2n.x; yy/ D

Z junj
0

1

.1C z2/.nC1/=2
dz �

ƒn

2
D �

Z 1
junj

1

.1C z2/.nC1/=2
dz;

where we recall that junj D jxn C 1j=jyx � yyj.
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We now see that it suffices to verify (A1)–(A3) of Lemma 4.9 for the cube Q and the
function

(4.10) F.x; y1; Qy/ D
x1 � y1

jyx � Oyjn

Z 1
jxnC1j=jyx�yyj

1

.1C z2/.nC1/=2
dz:

We first turn to verifying property (A1), and since we only require upper bounds at
this point, we will not keep track of absolute constants. The case n D 2 turns out to be
rather special and easily handled so we dispose of that case first. We have when nD 2 that

F.x; y1/ D
1

x1 � y1

Z 1
ju2.x;y1/j

1

.1C z2/3=2
dz; where u2.x; y1/j D

jx2 C 1j

jx1 � y1j
�

For any fixed x, ju2.x; y1/j is monotone as a function of jx1 � y1j. We now claim that
the function F.x; y1/ is M -piecewise monotone for M D 7 as a function of y1. Since
F.x; y1/ only changes sign once, to see this it suffices to show that, with s D ju2.x; y1/j,
the function

Hˇ .s/ � s

Z 1
s

.1C t2/�ˇ dt for s 2 .�1;1/; ˇ >
1

2
,

has three changes in monotonicity on .�1;1/. We compute

H 00ˇ .s/ D 2¹.ˇ � 1/s
2
� 1º.1C s2/�ˇ�1;

which has at most 2 zeros in .�1;1/, hence H 0
ˇ
.s/ has at most 3 zeros, which proves

our claim.
Now we turn to the more complicated case n � 3. Let t D x � y. Then we may write

F.x; y1; Qy/ D
t1

.t21 C jQt j
2/n=2

Vn

�
jxn C 1j

.t21 C jQt j
2/1=2

�
;

where

Vn.w/ �

Z 1
w

1

.1C z2/.nC1/=2 dz
�

Note that the antiderivativeZ
1

.1C z2/.nC1/=2
dz D

Z
1

.1C tan2 �/.nC1/=2
d tan � D

Z
sec2 �

.sec2 �/.nC1/=2
d�

D

Z
cosn�1 � d� DCn�CRn.z;

p
1Cz2/; z D tan �;(4.11)

where Rn is a rational function of z D tan � and
p
1C z2 D sec � , and Cn D 0 when n is

even. Indeed, one can use the well-known recursionZ
cosm � d� D

1

m
cosm�1 � sin � C

m � 1

m

Z
cosm�2 � d�

D
1

m

1

secm �
tan � C

m � 1

m

Z
cosm�2 � d�:
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Then, setting

z D tan � D
jxn C 1j

.t21 C jQt j
2/1=2

, E0 �
�xn C 1
jQt j

�2
; E1 �

jQt j

jxn C 1jn
,

and using (4.11), we may write (4.10) as

F.x; y1; Qy/ D
t1

.t21 C jQt j
2/n=2

®
Rn.z;

p
1C z2/C Cn� C C

¯
D E1 tann�1 �

p
E0 � tan2 �

®
Rn.z;

p
1C z2/C Cn� C C

¯
� Dx;Qt .�/:

At this point, we employ the convention that Rn; Tn; Un are rational functions which
may change line to line, or instance to instance, but their degree will be bounded a con-
stant depending only on the dimension n, where the degree is the sum of degrees of the
numerator and denominator. Similarly, we will takeM to be an integer which may change
line to line or instance to instance, but will only depend on the dimension n. We also recall
the fact that the function Rn.z;

p
1C z2/ can equal 0 or1 at most M times: indeed, Rn

is a rational function of z and
p
1C z2, which is in turn a nontrivial rational function

of sin � and cos � , with degree depending only on n. Thus, the number of zeros or poles
it possesses is at most a constant depending only the degree, i.e., a constant which only
depends n.

Now fix x and Qy, or equivalently x and Qt , and let us only consider the case when
t1 D x1 � y1 > 0, as the case t1 < 0 will be similar. Then since t1 7! �.t1/ is a decreasing
injective map from RC! .0; �=2/, then y1 7! F.x; y1; Qy/ isM -piecewise monotone on
¹y1 2 R W y1 < x1º if � 7! Dx;Qt .�/ is M -piecewise monotone on .0; �=2/. Since t1 > 0,
then F is positive and so is Dx;Qt when � > 0, since both functions possess the same sign.
Since u 7! u2 is increasing for u > 0, thenDx;Qt .�/ isM -piecewise monotone if and only
if Dx;Qt .�/

2 is M -piecewise monotone, which we will now show below.
In the reasoning that follows, we assume all rational functions we consider below

are non-constant; in the case one of them is constant or even identically 0, the proof of
M -piecewise monotonicity is even simpler than the proof below, the details of which we
leave to the reader. We have

Dx;Qt .�/
2
D E21 ŒE0 � tan2 �� ŒRn.z;

p
1C z2/ tann�1 � C .Cn� C C/ tann�1 ��2

D Rn.z;
p
1C z2/�2 C Tn.z;

p
1C z2/� C Un.z;

p
1C z2/:

To check Dx;Qt .�/
2 is M monotone, it suffices to show Dx;Qt .�/

2 has at most M critical
points. For this we compute

d

d�
Dx;Qt .�/

2
D Rn.z;

p
1C z2/�2 C Tn.z;

p
1C z2/� C Un.z;

p
1C z2/

D Rn.z;
p
1C z2/

®
�2 C Tn.z;

p
1C z2/� C Un.z;

p
1C z2/

¯
;

which equals 0 or1 if
Rn.z;

p
1C z2/ D 0 or 1;

or
�2 C �Rn.z;

p
1C z2/C Tn.z;

p
1C z2/ D 0 or 1:
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The first equality can clearly only hold for at most M values of � . To show that the
function

�2 C �Rn.z;
p
1C z2/C Tn.z;

p
1C z2/

can equal 0 or1 at mostM times, it suffices to show that this function also has at mostM
critical points.

Its derivative is of the form

Rn.z;
p
1C z2/.� C Tn.z;

p
1C z2//;

which we claim equals 0 or 1 at most M times. Indeed, Rn equals 0 or 1 at most M
times, and the function

� C Tn.z;
p
1C z2/

equals 0 or1 at most M times because its derivative is given by

1C Tn.z;
p
1C z2/;

which in turn equals 0 or1 at most M times.
Thus, y1 7! F.x; y1; Qy/ isM -piecewise monotone for someM depending only on n,

and not on the additional parameters x and y2; : : : ; yn. This completes the verification of
property (A1) in Lemma 4.9.

We now verify property (A2). For any x 2 Q, we have from (4.10) and from junj D
j1C xnj=jyx � yyj that

jF.x; y1; Qy/j �
jx1 � y1j

jyx � yyjn

Z 1
junj

1

.1C z2/.nC1/=2
dz

D
jx1 � y1j

j1C xnjn
junj

n

Z 1
junj

1

.1C z2/.nC1/=2
dz:

We claim that

junj
n

Z 1
junj

1

.1C z2/.nC1/=2
dz � Cn:

Indeed, when junj � 1, this follows from integrability of the integrand, and when junj � 1,
this follows from a direct computation using the fact that .1C z2/.nC1/=2 � znC1. Thus,

jF.x; y1; Qy/j � Cn
jx1 � y1j

j1C xnjn
� Cn;Q;ı when y 2 P; x 2 Q nHP IQ

ı
:

Finally, we verify property (A3). To show that

1
H
P IQ
ı

.x/

Z 1

�1

Z
Œ�1;1�n�2

jF.x; y1; Qy/j d Qy dy1 ! 0 strongly in Lp.Rn/ as ı ! 0;

we split

1
H
P IQ
ı

.x/

Z 1

�1

Z
Œ�1;1�n�2

jF.x; y1; Qy/j d Qy dy1

� 1
H
P IQ
ı

.x/

Z
¹yy2Œ�1;1�n�1Wjyx�yyj>j1Cxnjº

jF.x; y1; Qy/j d yy

C 1
H
P IQ
ı

.x/

Z
¹yy2Œ�1;1�n�1Wjyx�yyj�j1Cxnjº

jF.x; y1; Qy/j d yy:



Stability of weighted norm inequalities 35

To bound the first term, we use the estimate

jF.x; y1; Qy/j �
jx1 � y1j

jyx � yyjn

Z 1
junj

1

.1C z2/.nC1/=2
dz

�
1

jyx � yyjn�1

Z 1
junj

1

.1C z2/.nC1/=2
dz � Cn

1

jyx � yyjn�1

and polar coordinates to getZ
¹yy2Œ�1;1�n�1Wjyx�yyj>j1Cxnjº

jF.x; y1; Qy/j d yy

� Cn

Z
¹yy2Œ�1;1�n�1Wjyx�yyj>j1Cxnjº

1

jyx � yyjn�1
d yy

� Cn

Z
Sn�2

Z cQ

j1Cxnj

1

r
dr d� � Cn ln

1

dist.xn; @Pn/
,

where we have used the fact that jyx � yyj � cQ. Thus,

1
H
P IQ
ı

.x/

Z
¹yy2Œ�1;1�n�1Wjyx�yyj>j1Cxnjº

jF.x; y1; Qy/j d yy ! 0

strongly in Lp.Q/ as ı ! 0.
As for the second term, for junj � 1, we estimate

jF.x; y1; Qy/j �
jx1�y1j

jyx� yyjn

Z 1
junj

1

.1Cz2/.nC1/=2
dz

�
1

jyx� yyjn�1

Z 1
junj

1

.1Cz2/.nC1/=2
dz

D
junj

n�1

j1C xnjn�1

Z 1
junj

1

.1C z2/.nC1/=2
dz �

Cn

j1C xnjn�1
,

and so Z
¹yy2Œ�1;1�n�1Wjyx�yyj�j1Cxnjº

jF.x; y1; Qy/j d yy

� Cn

Z
¹yy2Œ�1;1�n�1Wjyx�yyj�j1Cxnjº

1

j1C xnjn�1
d Oy � Cn:

Thus,

1
H
P IQ
ı

.x/

Z
¹yy2Œ�1;1�n�1Wjyx�yyj�j1Cxnjº

jF.x; y1; Qy/j d yy ! 0

strongly in Lp.Q/ as ı ! 0.

The next lemma is an extension of the one-dimensional lemma of Nazarov in [32].
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Lemma 4.12. Suppose p 2 .1;1/. Let a and b be nonnegative integers, not both zero.
Given a cube P D P1 � P2 � � � � � Pn � Rn, we have:
(1) limk!1

R
Rn.s

P;hor
k

.x//a.R1s
P;hor
k

.x//bf .x/ dx D 0 for all functions f 2Lp.Rn/
when a or b is odd.

(2) limk!1

R
Rn.s

P;hor
k

.x//a.R1s
P;hor
k

.x//bf .x/dxDCa;b
R
P
f .x/dx for all functions

f 2 Lp.Rn/, when both a and b are even, and Ca;b > 0 and C0;2 D …2
n.

(3) Rj sP;hor
k

.x/ tends to 0 strongly in Lp.Rn/ as k ! 1 for all p 2 .1;1/, for all
2 � j � n.

Remark 4.13. A careful reading of the proofs of Lemma 4.10 and part (3) above show
that for all k � 1 and M > 1, we have the pointwise inequality

jR2 s
P;hor
k

.x/j � C ln
1

dist.x2; @P2/
1¹dist.x2;@P2/<ıº.x/C Cı2

�k1¹dist.x2;@P2/�ıº.x/;

for x 2MP .

Proof. (1) and (2): By Lemma 4.11 , we may write

.s
P;hor
k

.x//a.R1s
P;hor
k

.x//bf .x/

D …b
n.s

P1
k
.x1//

a.Hs
P1
k
.x1//

bf .x/ 1P 0.x0/C ErrP;f;a;b
k

.x/;

where ErrP;f;a;b.x/
k

! 0 strongly in L1.Q/; andP 0DP2 � � � � �Pn and xD .x2; : : : ;xn/.
Thus, integrating over Rn and using Lemma 4.2 yields the conclusions sought.

(3) By permuting variables, we can assume without loss of generality that j D 2.
Let " > 0. Arguing as in the proof of Lemma 4.11, for every M > 1, we have

R2 s
P;hor
k

.x/ D R2 s
P;hor
k

.x/ 1MP .x/CR2 sP;hor
k

.x/ 1RnnMP .x/:

We note that the second term R2 s
P;hor
k

.x/ 1RnnMP .x/ goes to 0 strongly in Lp.Rn/
as M !1, sinceZ

RnnMP

jR2 s
P;hor
k

.x/jp dx � C

Z
RnnMP

� Z
P

1

jx � yjn
dy
�p
dx

� C

Z
RnnMP

�
jP j

j dist.x; P /jn

�p
dx;

which goes to 0 as M !1. So choose M such that
R

RnnMP
jR2 s

P;hor
k .x/jp dx < "=2.

Thus, with Q D MP , it remains to show that kR2 sP;hor
k kLp.Q/ < "=2 for k sufficiently

large, which we show below.
Again we may assume that P D Œ�1; 1�n. We have

R2 s
P;hor
k

.x/ D

Z 1

�1

Z 1

�1

� � �

Z 1

�1

cn
.x2 � y2/s

Œ�1;1�

k
.y1/

Œ.x1 � y1/2 C jx0 � y0j2�.nC1/=2
dy1 dy

0

�

Z 1

�1

F.x; y1/s
Œ�1;1�

k
.y1/ dy1:
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For each fixed y00 2 Œ�1; 1�n�2, define the function

Fy00.x; y1/ � �cn

Z x2�1

x2C1

t

Œ.x1 � y1/2 C t2 C jx00 � y00j2�.nC1/=2
dt(4.12)

D �cn

Z jx2�1j
jx2C1j

t

Œ.x1 � y1/2 C t2 C jx00 � y00j2�.nC1/=2
dt;

where the second line follows from oddness of the kernel, and thus using the substitution
t D x2 � y2, we have

F.x; y1/ D

Z
Œ�1;1�n�2

Fy00.x; y1/ dy
00:

Thus, to show kR2 sP;hor
k kLp.Q/! 0 as k!1, it suffices to show that Fy00.x;y1/ satisfies

conditions (A10)–(A30) of Lemma 4.10, noting that for each fixed x, this function of y1
does not change sign.

Condition (A10). Note that

Fy00.x; y1/ D �cn

Z jx2�1j
jx2C1j

t

Œ.x1 � y1/2 C t2 C jx00 � y00j2�.nC1/=2
dt;

and so differentiating in y1 yields

@

@y1
Fy00.x; y1/ D c

0
n.x1 � y1/

Z jx2�1j
jx2C1j

t

Œ.x1 � y1/2 C t2 C jx00 � y00j2�.nC1/=2C1
dt:

The integral above is of one sign, and so @
@y1
Fy00.x; y1/ only changes sign at y1 D x1.

Thus, Fy00.x; y1/ has at most 1 critical point in y1, and so is 2-monotone.
Condition (A20). By (4.12), we have

jF.x; y1/j

� cn

Z
Œ�1;1�n�2

° Z max¹jx2C1j;jx2�1jº

min¹jx2C1j;jx2�1jº

t

Œ.x1 � y1/2 C t2 C jx00 � y00j2�.nC1/=2
dt
±
dy00

� cn

Z
Œ�1;1�n�2

° Z max¹jx2C1j;jx2�1jº

min¹jx2C1j;jx2�1jº

t

ınC1
dt
±
dy00;

since if x 2 Q nHP IQ
ı

, then t > ı by separation. Thus,

j1QnHP IQ
ı

.x/F.x; y1/j � C
1

ınC1
�

Condition (A30). Let

Ax �
®
.y1; y

00/ 2 Œ�1; 1�n�1 W j.x1 � y1; x
00
� y00/j > j1 � x2j

¯
;

Bx �
®
.y1; y

00/ 2 Œ�1; 1�n�1 W j.x1 � y1; x
00
� y00/j < j1 � x2j

¯
;

and assume without loss of generality that jx2 � 1j � jx2 C 1j.
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For x 2 HP IQ
ı

, we haveZ 1

�1

jF.x; y1/j dy1

.
Z 1

�1

Z
Œ�1;1�n�2

° Z 1
min¹jx2C1j;jx2�1jº

t

Œ.x1 � y1/2 C t2 C jx00 � y00j2�.nC1/=2
dt
±
dy00dy1

D
1

n � 1

Z 1

�1

Z
Œ�1;1�n�2

1

Œ.x1 � y1/2 C .1 � x2/2 C jx00 � y00j2�.n�1/=2
dy00 dy1

�

° Z
Ax

C

Z
Bx

± 1

Œ.x1 � y1/2 C .1 � x2/2 C jx00 � y00j2�.n�1/=2
d.y1; y

00/

�

Z
Ax

1

Œ.x1 � y1/2 C jx00 � y00j2�.n�1/=2
d.y1; y

00/C

Z
Bx

1

j1 � x2jn�1
d.y1; y

00/:

By a crude estimate the second integral is bounded byZ
Bx

1

j1 � x2jn�1
d.y1; y

00/ � CnjBxj
1

j1 � x2jn�1
� Cn:

As for the first integral, integration using polar coordinates yields the upper bound

c

Z cn

j1�x2j

rn�2

rn�1
dr D c ln

cn

j1 � x2j
2 Lp.Q/:

Similar estimates hold when jx2 C 1j < jx2 � 1j and x 2HP IQ
ı . Hence, we can conclude

that 1HP IQ
ı

.x/
R 1
�1
jF.x; y1/j dy1 goes to 0 strongly in Lp.Q/ as ı ! 0.

Theorem 4.14. The conclusions of Lemma 4.3, namely, (4.5), (4.6) and (4.7), hold if one
replaces H by R1 and sI1k by sI;hor

k , and similarly for J;K.

Proof. One argues as previously in the proofs of Lemma 4.12 parts (1) and (2), in partic-
ular using Lemmas 4.11 and Lemma 4.3.

5. Boundedness properties of the Riesz transforms

We now are equipped with the convergence results we need to complete the proof of the
main theorem by following the supervisor argument of Nazarov in [32]. We begin with a
short formal argument, then we adapt Nazarov’s supervisor argument for the Hilbert trans-
form to the transplantation of Riesz transforms, and then complete the proof by extending
our weights to all of Rn and showing the Riesz transform R1 has large norm for this
weight pair, while R2 has small norm.

5.1. A brief overview of the argument

We now takeQ0� Œ0;1�n to be the unit cube in Rn, and let V andU be as in Theorem 2.4.
We apply the transplantation argument of Section 3 to V andU to obtain weights vt and ut
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for all 1 � t � m, with u � um, v � vm. We will compute the R1-testing conditions for
.v; u/ by first estimating them for the pair .vtC1 � vt ; ut /. Since both V and U have Haar
support on finitely many horizontal Haar wavelets inQ0, by the estimates of Section 4, we
obtain that in the limit only the diagonal terms in ŒR1.vtC1 � vt /�2 survive the integration
with ut . Indeed, recall that

R1.vtC1 � vt / D
X
Q2Kt

hV; hhor
�.Q/i

1p
jS.Q/j

R1s
Q;hor
ktC1

;

and the vanishing weak convergence results of Section 4 yield, for ktC1 � C.k1; : : : ; kt /
and Q;Q0 dyadic subcubes of Œ0; 1�n,Z

R1s
Q;hor
ktC1

R1s
Q0;hor
ktC1

ut !

´
0 if Q ¤ Q0

.…n/
2
R
Q
ut if Q D Q0

on Œ0; 1�n;

where…n is the constant appearing in Lemma 4.11, and so using once again the vanishing
weak convergence results of Section 4, for ktC1 � C.k1; : : : ; kt /, we getZ

ŒR1.vtC1 � vt /�
2ut D

Z h X
Q2Kt

hV; hhor
�.Q/i

1p
jS.Q/j

R1s
Q;hor
ktC1

i2
ut

D

X
Q2Kt

Z
hV; hhor

�.Q/i
2ŒR1s

Q;hor
ktC1

�2
1

j�.Q/j
ut C offdiagonal

! .…n/
2
X
Q2Kt

hV; hhor
�.Q/i

2 1

j�.Q/j

Z
Q

ut ;

and if we now sum in t , pigeonhole cubes Q based on their supervisor S , use the fact that
EQut D ESU , and finally

P
Q2Kt

�.Q/DS

jQj
jS j
D 1, we obtain

Z h
R1

m�1X
tD1

.vtC1 � vt /
i2
ut �

m�1X
tD1

Z
ŒR1.vtC1 � vt /�

2ut

� .…n/
2

m�1X
tD1

X
Q2Kt

hV; hhor
�.Q/i

2 1

j�.Q/j

Z
Q

ut

D .…n/
2

m�1X
tD1

X
S2Dt

X
Q2Kt

�.Q/DS

hV; hhor
S i

2EQut
jQj

jS j

D .…n/
2

m�1X
tD1

X
S2Dt

X
Q2Kt

�.Q/DS

hV; hhor
S i

2ESU
jQj

jS j

D .…n/
2

m�1X
tD1

X
S2Dt

hV; hhor
S i

2ESU > .…n/
2 �.EŒ0;1�nV /;
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which shows that testing for R1 blows up, and hence two-weight norm for R1 blows up
as well. On the other hand, we will see that dyadic testing for R2 is controlled by the
dyadic A2 condition, namely,

sup
Q2D.Œ0;1�n/

1

jQjv

Z
Q

jR21Qvj2uC sup
Q2D.Œ0;1�n/

1

jQju

Z
Q

jR21Quj2v . A
dyadic
2 .u; vI Œ0; 1�n/;

for k1; k2; : : : ; km all chosen large enough in an inductive fashion. To make this formal
argument precise in the next subsection, we follow the scheme in [32] for R1, while the
scheme for R2 is our own.

This gives us weights .v; u/ in the unit cube Œ0; 1�n. We then extend these weights
periodically to the plane (with an additional small decay term), so that they continue to fail
the norm inequality for R1 (since the testing condition is large), while the dyadic testing
condition for R2 holds. However, our weights will be doubling with doubling constant
close to Lebesgue measure. So we will be able to leverage the T1 theorem of [38] and
doubling to show that dyadic testing for R2 implies that the norm inequality holds for R2.
Thus, we will have constructed a weight pair for which R2 is norm bounded, but R1 is
not, i.e., this weight pair will be rotationally unstable.

5.2. The Nazarov argument for Riesz transforms

We now continue to carry out our adaptation of Nazarov’s supervisor argument to the
higher-dimensional setting of the supervisor and transplantation map. Equipped with the
supervisor and transplantation map, and the weak convergence results above, this remain-
ing argument follows the proof in [32] for R1, but we include additional details that were
omitted in [32] which will clarify the presentation here. The argument for R2 is new,
however.

Recall that ¹ktº1tD0 is a strictly increasing sequence of nonnegative integers kt 2 ZC
with k0 D 0, and whose members will be chosen sufficiently large in the arguments below.
We define

K �

1[
�

tD0

Kt where K0 D ¹Q
0
º D ¹Œ0; 1�nº

and
Kt � ¹Q 2 D.Q0/ W `.Q/ D 2�k1�k2�����kt º; t � 1:

Proposition 5.1 (Nazarov [32] in the case of the Hilbert transform). For every � > 1 and
0 < � < 1, there exist positive weights u; v on the unit cube Q0 � Œ0; 1�n satisfyingZ

Œ0;1�n
jR1v.x/j

2 u.x/ dx � �

Z
Œ0;1�n

v.x/ dx;Z
I

jR21Iv.x/j2 u.x/ dx �
Z
I

v.x/ dx for all dyadic cubes I 2 D0;Z
I

jR21Iu.x/j2v.x/ dx �
Z
I

u.x/ dx for all dyadic cubes I 2 D0;� 1
jI j

Z
I

u.x/ dx
�� 1
jI j

Z
I

v.x/ dx
�
� 1 for all dyadic cubes I 2 D0;
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and

(5.1) 1 � � <
EJu

EKu
;
EJ v

EKv
< 1C � for adjacent dyadic cubes J;K 2 D0;

where J and K in (5.1) need not be dyadic siblings, only adjacent.

Proof. Let V and U be as arising from Theorem 2.4 with 
.V; U;Q0/=.EQ0V / > � 0

sufficiently large. We apply the transplantation argument of Section 3 to V and U to
obtain nonnegative weights vt and ut with 1 � t � m, and set

u � um; v � vm;

wherem is as in Theorem 2.4. It will be convenient to denote, respectively, the differences

�tC1 � utC1 � ut ; ıtC1 � vtC1 � vt :

Note that, by (2.3) and (3.3), �t and ıt are of the formX
Q2Kt

cQ
1p
j�.Q/j

s
Q;hor
ktC1

D o
weakly
ktC1!1

.1/;

because the constants cQ depend only on the levels 1 through t of the construction and the
number of terms in the sum only depends on k1; : : : ; kt . We may then write

u � .EQ0U/ 1Q0 C
m�1X
tD0

X
Q2Kt

hU; hhor
�.Q/i

1p
j�.Q/j

s
Q;hor
ktC1

;

v � .EQ0V / 1Q0 C
m�1X
tD0

X
Q2Kt

hV; hhor
�.Q/i

1p
j�.Q/j

s
Q;hor
ktC1

:

We will now focus on the ‘testing’ constants

1

jŒ0; 1�njv

Z
Œ0;1�n
jR1v.x/j

2u.x/ dx

and
sup

Q2D.Q0/

1

jQjv

Z
Q

jR21Qvj2u; sup
Q2D.Q0/

1

jQju

Z
Q

jR21Quj2v;

and show that the first is large, and second and third are small, provided we take the
integers kt sufficiently large in an inductive fashion. To tackle the first testing constant,
define the discrepancy for R1 on Q0 D Œ0; 1�n by

Disc.t/ �
Z
Q0
.R11QvtC1.x//2utC1.x/ dx �

Z
Q0
.R11Qvt .x//2ut .x/ dx:
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We begin with the decomposition

Disc.t/ D
Z
Q0
.R11Q0ıtC1 CR11Q0vt /2utC1 �

Z
Q0
.R11Q0vt /2ut

D

Z
Q0
.R11Q0ıtC1/2utC1 C

Z
Q0
¹2.R11Q0ıtC1/.R11Q0vt /º.ut C �tC1/

C

Z
Q0
.R11Q0vt /2.utC1 � ut /

D h.R11Q0ıtC1/2; utC1iL2.Q0/ C 2h.R11Q0ıtC1/.R11Q0vt /; ut iL2.Q0/
C 2h.R11Q0ıtC1/.R11Q0vt /; �tC1iL2.Q0/ C h.R11Q0vt /2; �tC1iL2.Q0/
� AC B C C CD:

We first claim that

Disc.t/ D .…n/
2

X
I2DW `.I/D2�t

.4hor
I V /2.EIU/C

tX
rD0

okrC1!1.1/:

We will see in a moment that A is the main term. Using that vt ; ut and ıtC1; �tC1 are
supported in Œ0; 1�n,

B D 2h.R1vt /ut ; R1ıtC1iL2.Œ0;1�n/ D �2hR1Œ.R1vt /ut �; ıtC1iL2.Œ0;1�n/ D oktC1!1.1/;

since the function R1Œ.R1vt /ut � 2 Lp.Rn/ for all p 2 .1;1/, and in particular belongs
to L2.Rn/, and is independent of ktC1, and finally since ıtC1 D oweakly

ktC1!1
.1/. Similarly,

since R1vt 2 L4.R2/, we have

D D h.R1vt /
2; �tC1iL2.Œ0;1�n/ D oktC1!1.1/:

For term C , we have

C D 2h.R1ıtC1/.R1vt /; �tC1iL2.Œ0;1�n/

D 2

Z
Œ0;1�n

� X
Q2Kt

hV; hhor
�.Q/iR1

1p
j�.Q/j

s
Q;hor
ktC1

�
.R1vt /

�

� X
Q02Kt

hU; hhor
�.Q0/i

1p
j�.Q0/j

s
Q0;hor
ktC1

�
D 2

X
Q;Q02Kt

hV; hhor
�.Q/ihU; h

hor
�.Q0/i

Z
Œ0;1�n

R1
1p
j�.Q/j

s
Q;hor
ktC1

.R1vt /
1p
j�.Q0/j

s
Q0;hor
ktC1

D oktC1!1.1/;

by Theorem 4.14, since Kt and R1vt are both independent of ktC1, while

.R1s
Q;hor
ktC1

/s
Q0;hor
ktC1

! 0 weakly in L2.Rn/:
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Finally, for term A, we have

A D h.R1ıtC1/
2; utC1iL2.Œ0;1�n/

D

D� X
Q2Kt

hV; hhor
�.Q/iR1

1p
j�.Q/j

s
Q;hor
ktC1

�2
; utC1

E
L2.Œ0;1�n/

:

We first note that if the sum is taken outside the square, so that we consider only the
‘diagonal’ terms, we haveD X

Q2Kt

�
hV; hhor

�.Q/iR1
1p
j�.Q/j

s
Q;hor
ktC1

�2
; utC1

E
D

X
Q2Kt

1

j�.Q/j
hV; hhor

�.Q/i
2
°
h.R1s

Q;hor
ktC1

/2; ut i C h.R1s
Q;hor
ktC1

/2; �tC1i
±

D .…n/
2
° X
Q2Kt

hV; hhor
�.Q/i

2 jQj

j�.Q/j
E�.Q/U

±
C

° X
Q2Kt

1

j�.Q/j
hV; hhor

�.Q/i
2
h.R1s

Q;hor
ktC1

/2; �tC1i
±
C oktC1!1.1/

� F CG C oktC1!1.1/;

by Lemma 4.12 (2) for ktC1 sufficiently large, and since 1
jQj

R
Q
ut D E�.Q/U . To com-

pute F , we pigeonhole the cubes Q 2Kt according to their supervisors S D �.Q/,

F

…2
n

D

X
S2Dt

X
Q2Kt

�.Q/DS

hV; hhor
�.Q/i

2 jQj

j�.Q/j
E�.Q/U

D

X
S2Dt

hV; hhor
S i

2ESU
X
Q2Kt

�.Q/DS

jQj

j�.Q/j
D

X
S2Dt

hV; hhor
S i

2ESU:

However, to computeG, using the definition �tC1 D
P
Q2Kt

hU; hhor
�.Q/
i

1p
j�.Q/j

sQ;hor
ktC1

;we
have

G D
X

Q;Q02Kt

1

j�.Q/j
hV; hhor

�.Q/i
2
hU; hhor

�.Q0/ih.R1s
Q;hor
ktC1

/2; s
Q0;hor
ktC1

i D oktC1!1.1/;

by Theorem 4.14, and thus we conclude that the sum of the diagonal terms equals

…2
n

X
S2Dt

hV; hhor
S i

2ESU C

tX
rD0

okrC1!1.1/:

Turning now to the sum of the off diagonal terms,X
Q¤Q02Kt

1p
j�.Q/j

1p
j�.Q0/j

˝
R1ŒhV; h

hor
�.Q/is

Q;hor
ktC1

�R1ŒhV; h
hor
�.Q0/is

Q0;hor
ktC1

�; utC1
˛
;

we see that they all tend to 0 weakly as ktC1 !1 by Theorem 4.14. Indeed, we write
utC1 D ut C �tC1, and split �tC1 into a linear combination of functions sL;hor

ktC1
, noting that
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the resulting number of terms in the above display is independent of ktC1 and that each
such term tends to 0 as ktC1!1 by Theorem 4.14. Thus, we can choose the components
of the sequence ¹ktºmtD1 sufficiently large thatZ

Œ0;1�n
jR1v.x/j

2 u.x/ dx � .� 0 � CA
dyadic
2 .V; U; Œ0; 1�n//

Z
Œ0;1�n

v.x/ dx;

since we also haveZ
Œ0;1�n
jR1v0.x/j

2u0.x/ dx D

Z
Œ0;1�n
jR11Œ0;1�nEŒ0;1�nV j2 1Œ0;1�nEŒ0;1�nU dx

D .EŒ0;1�nV /
2.EŒ0;1�nU/

Z
Œ0;1�n
jR11Œ0;1�n j2 dx

D C.EŒ0;1�nV /
2.EŒ0;1�nU/ � CA

dyadic
2 .V; U I Œ0; 1�/EŒ0;1�nV:

Our next task is to show that the two testing conditions for R2 are finite. They are
symmetric, so it suffices to show the bound only for the testing condition with u outside
the operator. We will argue so using Lemma 4.12 (3) and Theorem 4.14. LetQ 2D0, and
for convenience let k0 � 0. We first consider the case that there exists t D t .Q/ such that
2�k0�k1�k2�����kt � `.Q/ < 2�k0�k1�k2�����kt�1 . We will deal later with the remaining
cubesQ for which such a t does not exist. Note that at each stage t , there are only finitely
many cubes Q 2 D0 such that `.Q/ � 2�k0�k1�k2�����kt , and hence will only have to
consider finitely many error terms which are oktC1!1.1/. Writing u D ut C

Pm
sDtC1 �s

and v D vt C
Pm
sDtC1 ıs , we then computeZ

Q

jR21Qv.x/j2 u.x/ dx

.
Z
Q

jR21Q.vt /.x/j2 u.x/ dx C
Z
Q

ˇ̌̌
R21Q

� mX
sDtC1

ıs

�
.x/
ˇ̌̌2
u.x/ dx

D

Z
Q

jR21Q.vt /.x/j2ut .x/ dx C
Z
Q

jR21Q.vt /.x/j2
� mX
sDtC1

�s.x/
�
dx

C

Z
Q

ˇ̌̌
R21Q

� mX
sDtC1

ıs

�
.x/
ˇ̌̌2
u.x/ dx

� jQjv.mainC Err1 C Err2/:

We first claim Err2 can be made arbitrarily small, so long as ktC1; ktC2; : : : ; km are all
chosen sufficiently large. Indeed, we use u.x/ � kU k1 independent of the choice of
k1; : : : ; km, which gives, using Lemma 4.12 (3),

Err2 D
1

jQjv

Z
Q

ˇ̌̌
R21Q

� mX
sDtC1

ıs

�
.x/
ˇ̌̌2
u.x/ dx

�
kU k1

jQjv

Z
Q

ˇ̌̌
R21Q

� mX
sDtC1

ıs

�
.x/
ˇ̌̌2
dx ! 0 as ktCj !1; j D 1; 2; : : : ; m� t;

where we recall that t D t .Q/.
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As for Err1, it too can be made arbitrarily small by choosing ktC1 sufficiently large,
and using the strong convergence of �tCj ! 0 inLp.Rn/ for all j � 1 by Lemma 4.12 (3),
as R21Qvt only depends on k0; k1; : : : ; kt and is hence independent of ktCj for j � 1.

So we are left with estimating the term main. Note now thatEQvt DEQvDE�.Q�/V ,
whereQ� is the unique cube in Kt containingQ. Note as well that vt is constant on each
I 2KtC1, and satisfies the pointwise estimate

1Q.x/vt .x/ � .E�.Q�/V /.1C �/;

since vt inherits dyadic � -flatness from V ; similarly for ut . Then applying the pointwise
estimate to ut , followed by the estimate kR21QvtkL2.Rn/ � k1QvtkL2.Rn/ by bounded-
ness of R2, and then the pointwise estimate applied to vt , we getZ
Q

.R21Qvt /2ut dx � .1C �/.E�.Q�/U/

Z
Q

.R21Qvt /2 dx

� .1C �/.E�.Q�/U/

Z
Q

.vt /
2 dx � .1C �/3 .E�.Q�/U/.E�.Q�/V /

2
jQj:

Since Adyadic
2 .V; U IQ0/ � 1, the above is controlled by

.1C �/3.E�.Q�/V / jQj D .1C �/
3.EQv/ jQj D .1C �/

3

Z
Q

v:

Finally, we consider cubes Q for which t .Q/ does not exist, i.e., cubes Q such
that `.Q/ < 2�k0�k1�k2�����km . Then v; u are constant on Q with EQv D E�.Q�/V and
EQu D E�.Q�/U , where Q� is the unique cube in Km which contains Q. Thus,Z

Q

.R21Qv/2u D .E�.Q�/V /
2.E�.Q�/U/

Z
Q

.R21Q/2 � .E�.Q�/V / jQj D

Z
Q

v;

where in the inequality we used .E�.Q�/V /.E�.Q�/U/ � 1 and kR2kL2.Rn/!L2.Rn/ D 1.
Since � 2 .0; 1/, we obtain that the dual testing constant for R2 on dyadic cubes is

bounded; similarly for the testing constant on dyadic cubes.
Finally, to remove the restriction that J andK must be dyadic siblings from (5.1), one

can modify the transplantation argument following [32], as described in Appendix A.4.
However, complete proofs were not provided in [32] and we invite the reader to consult
Appendix A.4 for missing details, namely, Lemma A.17; see also [30] and [19]. We also
explicitly point out that this modification of transplantation will not affect any of the limit-
ing arguments above involving taking kt sufficiently large for each t , and by Remark A.16,
the dyadic A2 condition will be unaffected.

Finally, by multiplying v; u by an appropriate (small) positive constant, we obtain the
statements in the theorem with the required constants.

Remark 5.2. The weights u.x/; v.x/ in Œ0; 1�n constructed in the proof of Proposition 5.1
depend only on the first variable x1 of x.

Remark 5.3. A careful reading of the proof shows that our weights v; u satisfy the Lp-
testing and dual Lp-testing conditions for the operator R2 when p 2 .1;1/. Thus, if
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there was a T1 theorem for Lp with doubling weights, our results regarding R2 would
extend to Lp . See [40] for a vector-valued T1 theorem, where the norm inequality holds
if vector-valued analogues of the testing and Ap conditions hold.

In order to complete the proof of Theorem 1.4, we need to extend our doubling con-
clusions to classical doubling, and remove the restriction to dyadic cubes in our testing
conditions for the weight pair .v; u/ in Proposition 5.1.

5.3. Classical doubling, A2 and dyadic testing in Rn

By Proposition 5.1, we have constructed a pair of weights .v;u/ onQ0D Œ0;1�n, which we
relabel here as .�;!/, that satisfy the flatness condition (5.1) onQ0, theAdyadic

2 .�;!IŒ0;1�n/

condition as well as the dyadic testing conditionsZ
Q0
jR1.1Q0!/j2 d� > � jQ0

j! ;

and for all Q 2 D0,Z
Q

jR2.1Q�/j2 d! � jQj� ;
Z
Q

jR2.1Q!/j2 d� � jQj! :

We extend these measures to the entire space by reflecting in each coordinate separately
to obtain an extension to Œ0; 2�n, and then by adding translates Œ0; 2�n C 2.˛1; ˛2; : : : ; ˛n/,
˛ 2 Zn, so as to be periodic of period two on the entire space Rn. After this reflection pro-
cess, note that adjacent cubes from neighboring dyadic cubes of side length 1 also satisfy
the adjacent doubling condition, and with constant 1 since they have equal measures by
the reflection extension process, and so for any adjacent dyadic cubes I1 and I2, we have
EI1�=EI2� 2 .1� �; 1C �/, and similarly for !. In particular, one can show this implies
that � and ! are both o�!0.1/ flat, and hence doubling, see Lemma 4.2 in [32]. We also
note that after this reflection process, the pair .�; !/ satisfies the dyadic A2 condition

(5.2)
� 1

jQj

Z
Q

�.x/
�� 1

jQj

Z
Q

!.x/
�
� 1 for all dyadic cubes Q 2 D :

Because � and ! are doubling, from (5.2) we obtain that A2.�; !/ . 1. By multiplying �
and ! by an appropriate constant, we may assume without loss of generality that

A2.�; !/ � 1:

Furthermore, after this reflection process, the pair .�; !/ also satisfy the dyadic testing
conditions for all D-dyadic cubes of side length at most 1. We now set

Q˛ � Œ0; 1�
n
C .˛1; ˛2; : : : ; ˛n/ for all ˛ 2 Zn:

Let � 2 .0; 1/ be as in Proposition 5.1 and multiply each of these measures by the
factor

'� .x/ �
X
˛

a˛1Q˛ .x/;
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where

a˛ �
1

jQ˛j

Z
Q˛

d�� and d�� .x/ �
dx

.1C jxj/�
;

and consider the measure pairs .�� ; !� / with �� � '� .x/d�.x/ and !� � '� .x/d!.x/.
We set A � jŒ0; 1�nj� and B D jŒ0; 1�nj! . Note that A D jQ˛j� and B D jQ˛j! for all
˛ 2 Zn, and AB � A2.�; !/ � 1.

Lemma 5.4. The measures �� ; !� are both o�!0.1/-flat, i.e., the adjacent doubling con-
stant of each measure tends to 1 as � & 0.

Proof. IfQ˛ andQ˛0 are two adjacent cubes of the formQ˛ � Œ0; 1�
nC .˛1; ˛2; : : : ; ˛n/,

then R
Q˛
��R

Q˛0
��
D

a˛
R
Q˛
�

a˛0
R
Q˛0

�
D
a˛A

a˛0A
D

R
Q˛

d��R
Q˛0

d��
,

tends to 1 as �& 0 independent of the pair .Q˛;Q˛0/, since�� is a doubling weight on Rn

with adjacent doubling constant roughly 1 C O�!0.�/. If instead we consider adjacent
cubes P and P 0 that are each a union of cubes Q˛ , thenR

P
��R

P 0
��
D

P
˛WQ˛�P

a˛jQ˛j�P
˛0WQ˛0�P

0 a˛0 jQ˛0 j�
D

P
˛WQ˛�P

R
Q˛

d��P
˛0WQ˛0�P

0

R
Q˛0

d��
D

R
P
d��R

P 0
d��

,

which again tends to 1 as � & 0 independent of the pair .P; P 0/. Therefore, for any
adjacent dyadic cubes I1 and I2, we have EI1��=.EI2�� / 2 .1 � �; 1C �/. A standard
argument shows that �� has adjacent doubling constant equal to 1C o.1/ as � & 0, and
similarly for !� .

Next we turn to the final task of establishing the testing conditions for R2 on the dou-
bling measure pair .�� ; !� / uniformly for any � 2 .0; 1/, which then leads to boundedness
of R2 via the main result of Theorem 2 in [38] for � > 0 sufficiently small, since if a pair
doubling measures with doubling constant sufficiently close to Lebesgue satisfies the A2
condition, then they will satisfy the energy condition, Section 1.7 of [38]. Of course, test-
ing fails for R1. To state this formally, we will need the definition of a weighted norm
inequality as used in [37, 38].

We follow the approach in [39], p. 314. So we suppose thatK˛ is a standard smooth ˛-
fractional Calderón–Zygmund kernel, and �; ! are locally finite positive Borel measures
on Rn, and we introduce a family ¹�˛

ı;R
º0<ı<R<1 of nonnegative functions on Œ0;1/ so

that the truncated kernelsK˛
ı;R
.x;y/D �˛

ı;R
.jx � yj/K˛.x;y/ are bounded with compact

support for fixed x or y, and uniformly satisfy the smooth Calderón–Zygmund kernel
estimates (1.5). Then the truncated operators

T ˛�;ı;Rf .x/ �

Z
Rn

K˛ı;R.x; y/f .y/ d�.y/; x 2 Rn;

are pointwise well defined when f is bounded with compact support, and we will refer to
the pair

.K˛; ¹�˛ı;Rº0<ı<R<1/
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as an ˛-fractional singular integral operator, which we typically denote by T ˛ , suppress-
ing the dependence on the truncations. In the event that ˛ D 0 and T 0 is bounded on
unweighted L2.Rn/, we say that T D T 0 is a Calderón–Zygmund operator.

Definition 5.5. An ˛-fractional singular integral operator T ˛ D .K˛; ¹�˛
ı;R
º0<ı<R<1/ is

said to satisfy the norm inequality

(5.3) kT ˛� f kL2.!/ � NT ˛ .�; !/kf kL2.�/; f 2 L2.�/;

if NT ˛ .�; !/ is the best constant N for which

kT ˛�;ı;Rf kL2.!/ � Nkf kL2.�/; f 2 L2.�/; 0 < ı < R <1:

Independence of truncations. In the presence of the classical Muckenhoupt condi-
tionA˛2 , the norm inequality (5.3) is independent of the choice of truncations used, includ-
ing nonsmooth truncations as well, see Section 2.1 of [21].

Now we introduce the testing conditions for Calderón–Zygmund operators.

Definition 5.6. For an ˛-fractional singular integral operator T ˛D.K˛;¹�˛
ı;R
º0<ı<R<1/,

define the testing constants

TT ˛ .�; !/
2
� sup
Q2Pn

1

jQj�

Z
Q

jT ˛.1Q�/j2 d!;

TT ˛;�.!; �/
2
� sup
Q2Pn

1

jQj!

Z
Q

jT ˛;�.1Q!/j2 d�:

We also define the dyadic testing constants by

T D
T ˛ .�; !/

2
� sup
Q2D0

1

jQj�

Z
Q

jT ˛.1Q�/j2 d! <1;

T D0

T ˛;�.!; �/
2
� sup
Q2D

1

jQj!

Z
Q

jT ˛;�.1Q!/j2 d� <1:

We say T ˛ satisfies the (dyadic) testing conditions if both (dyadic) testing constants for
each admissible truncation are finite, and the constants are bounded uniformly over all
admissible truncations.

The following T1 theorem, whose proof we include in Appendix A.5, is a corollary
of Theorem 2 in [38]. In particular, if � is sufficiently small, it can be applied to the
measure pair .�� ; !� /. Recall that a Calderón–Zygmund operator T ˛ is .1C ı/-smooth if
in addition to having a kernel K˛ satisfying (1.5), we also have

jrK˛.x; y/ � rK˛.x0; y/j � CCZ

�
jx � x0j

jx � yj

�ı
jx � yj˛�.nC1/

whenever
jx � x0j

jx � yj
�
1

2
�
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Theorem 5.7 (T1 theorem for flat doubling measures). Suppose � and ! are doubling
measures with doubling constant at most 2nC" for some " 2 .0; 1/, and let T be a .1C ı/-
smooth Calderón–Zygmund operator of fractional order 0. Then

NT .�; !/ .
p
A2.�; !/CTT .�; !/CTT �.!; �/:

Finally, we record an estimate from [36] that will be used in proving the next lemma.

Lemma 5.8 (Lemma 23 in [36]). If � is a doubling measure and P is a cube, then for
every ı 2 .0; 1=2/, we have

j¹x 2 P W dist.x; @P / < ı`.P /ºj� .
1

ln.1=ı/
jP j�:

Lemma 5.9. For all � > 0 sufficiently small, the second Riesz transform R2 satisfies the
norm inequality for the measure pair .�� ; !� /, i.e.,

NR2.�� ; !� / . 1:

Proof. Let � be sufficiently small so that the doubling constants for � and ! are at most
2nC1=2, and so Theorem 5.7 applies. Fix a dyadic cube Q 2 D . If Q has side length at
most 1, thenQ is contained in one of the cubesQ˛ , where we have already shown that the
testing conditions for .�; !/ hold in Proposition 5.1. In particular, we have the following
inequality that will be used repeatedly below:Z

Q˛

jR2.1Q˛�� /j
2 d!� D a

3
˛

Z
Q˛

jR2.1Q˛�/j
2 d!(5.4)

� C�a˛jQ˛j� D C� jQ˛j�� ; ˛ 2 Zn:

SupposeQ has side length 2k with k � 1 for some k 2 N. ThenQ is a finite pairwise
disjoint union of cubes Qˇ , say Q D

S
ˇ Wjˇ j�2k Qˇ , where jˇj � max¹ˇ1; ˇ2; : : : ; ˇnº.

We will suppose thatQ D Œ0; 2k �n as the general case follows the same argument. Finally,
we note that

a˛ �
1

.1C j˛j/�
:

Now we writeZ
Q

jR2.1Q�� /j2 d!� D
X

˛1;˛2;˛32Zn

0�j j̨ j�2
k

Z
Q˛1

R2.1Q˛2�� /R2.1Q˛3�� / d!�(5.5)

.
X

˛1;˛2;˛32Zn

0�j j̨ j�2
k

Z
Q˛1

jR2.1Q˛2�/j jR2.1Q˛3�/j
.1C j˛2j/� .1C j˛3j/�

d!

.1C j˛1j/�
�

We split the sum into several different configurations of .˛1; ˛2; ˛3/, which we consider
separately. In what follows, we will not specify the configurations considered explicitly
within the sum, instead we mention in words which configuration we sum over before
estimating the sum.
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First, assume that we only sum over the configuration of multi-indices .˛1; ˛2; ˛3/
satisfying j˛2 � ˛1j � 2 and j˛3 � ˛1j � 2, so that what we need to bound isX

˛1;˛2;˛32Zn

0�j j̨ j�2
k

.1C j˛2 � ˛1j/
�n.1C j˛3 � ˛1j/

�n

.1C j˛2j/� .1C j˛3j/�
jQ˛2 j� jQ˛3 j� jQ˛1 j!

.1C j˛1j/�
,

where we suppress the specified conditions j˛2 � ˛1j � 2 and j˛3 � ˛1j � 2 in the sum.
Summing first over ˛3 and using jQ˛3 j� DA, we deduce that the above term is dominated
by X
˛1;˛2;˛32Zn

0�j j̨ j�2
k

.1C j˛2 � ˛1j/
�n.1C j˛3 � ˛1j/

�n

.1C j˛2j/� .1C j˛3j/�
AjQ˛2 j� jQ˛1 j!

.1C j˛1j/�

� A
X

˛1;˛22Zn

0�j j̨ j�2
k

h X
˛32Zn

0�j˛3j�2
k

.1C j˛3 � ˛1j/
�n

.1C j˛3j/�

i .1C j˛2 � ˛1j/�n
.1C j˛2j/�

jQ˛2 j� jQ˛1 j!

.1C j˛1j/�

D A
X

˛1;˛22Zn

0�j j̨ j�2
k

h° X
˛32Zn

j˛3j<
1
2 j˛1j

C

X
˛32Zn

1
2 j˛1j�j˛3j�2j˛1j

C

X
˛32Zn

2j˛1j<j˛3j

± .1C j˛3 � ˛1j/�n
.1C j˛3j/�

i

�
.1C j˛2 � ˛1j/

�n

.1C j˛2j/�
jQ˛2 j� jQ˛1 j!

.1C j˛1j/�

. A
X

˛1;˛22Zn

0�j j̨ j�2
k

h ln.2C j˛1j/
.1C j˛1j/�

i .1C j˛2 � ˛1j/�n
.1C j˛2j/�

jQ˛2 j� jQ˛1 j!

.1C j˛1j/�
�

Now summing over ˛1, using that jQ˛1 j! D B and that AB � A2.�; !/, we obtain in a
similar way that the final line above is at most a constant times

A2.�; !/
X
˛22Zn

0�j˛2j�2
k

h ln.2Cj˛2j/
.1Cj˛2j/3�

i
jQ˛2 j� D A2.�; !/

X
˛22Zn

0�j˛2j�2
k

h ln.2Cj˛2j/
.1Cj˛2j/2�

i
jQ˛2 j��

� CA2.�; !/
X
˛22Zn

0�j˛2j�2
k

jQ˛2 j�� D CA2.�; !/jQj�� ;

where we used that AB � A2.�� ; !� /.
The relatively simple case we just proved is case (6) in the following exhaustive list

of cases, which we delineate based on the relationship of the indices ˛2 and ˛3 to the
distinguished index ˛1:

(1) ˛1 D ˛2 D ˛3,
(2) ˛1 D ˛2 and Q˛1 ;Q˛3 are separated,
(3) ˛1 D ˛3 and Q˛1 ;Q˛2 are separated,
(4) Q˛1 ;Q˛2 are adjacent and Q˛1 ;Q˛3 are separated,
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(5) Q˛1 ;Q˛3 are adjacent and Q˛1 ;Q˛2 are separated,
(6) Q˛1 ;Q˛2 are separated and Q˛1 ;Q˛3 are separated,
(7) and finally, 8̂<̂

:
˛1 D ˛2 and Q˛1 ;Q˛3 are adjacent;
˛1 D ˛3 and Q˛1 ;Q˛2 are adjacent;
Q˛1 ;Q˛2 are adjacent and Q˛1 ;Q˛3 are adjacent:

where we say thatQ˛1 andQ˛2 are separated if j˛1 � ˛2j � 2, and of courseQ˛1 andQ˛2
are adjacent if and only if j˛1 � ˛2j D 1.

In the first of these seven cases, the right-hand side of (5.5) equals

X
˛2Zn

0�j˛j�2k

Z
Q˛

jR2.1Q˛�� /j
2 d!� � C�

2kX
j˛jD1

jQ˛j�� D C�jQj�� ;

independent of � 2 .0; 1/ by (5.4).
In the second of these cases, we will use the separation betweenQ˛1 andQ˛3 , as well

as the fact thatˇ̌̌ Z
Q˛1

R2.1Q˛1�� / d!�
ˇ̌̌
�

� Z
Q˛1

jR2.1Q˛1�� /j
2 d!�

�1=2p
jQ˛1 j!�(5.6)

�
p
C�
p
jQ˛1 j��

p
jQ˛1 j!� .

p
C�

AB

.1C j˛1j/�
,

where the second inequality follows from reasoning using (5.4), similar to the previous
display. Thus, recalling that AB � A2.�; !/, we dominate the right-hand side of (5.5),
using (5.6), byX

˛1;˛32Zn

0�j j̨ j�2
k

Z
Q˛1

jR2.1Q˛1�/j.1C j˛3 � ˛1j/
�njQ˛3 j�

.1C j˛1j/� .1C j˛3j/�
d!

.1C j˛1j/�

� A2.�; !/
p
C�

X
˛32Zn

0�j˛3j�2
k

jQ˛3 j�

.1C j˛3j/�

2kX
j˛1jD0

.1C j˛3 � ˛1j/
�n

.1C j˛1j/�

� A2.�; !/
p
C�

X
˛32Zn

0�j˛3j�2
k

jQ˛3 j� ln.2C j˛3j/
.1C j˛3j/2�

� CA2
p
C�jQj�� :

To handle the cases where Q˛1 is adjacent to one of the cubes Q˛2 or Q˛3 or both,
we use Lemma 5.8, i.e., that doubling measures charge halos with reciprocal log control.
Indeed, in the fourth case above, namely, j˛1 � ˛2j D 1 and j˛1 � ˛3j � 2, we follow the
same argument just used except that in place of the testing condition in (5.6), we useZ

Q˛1

R2.1Q˛2�� / d!� D
° Z

.1�ı/Q˛1

C

Z
Q˛1n.1�ı/Q˛1

±
R2.1Q˛2�� / d!� � IC II:
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We control the first term I by ı-separation between .1 � ı/Q˛1 and Q˛2 :

jIj �
Z
.1�ı/Q˛1

C
1

ın
jQ˛2 j�� d!� � C

1

ın
jQ˛2 j�� jQ˛1 j!�

D C
1

ın
AB

.1C j˛1j/� .1C j˛2j/�
� C

1

ın
A2

.1C j˛1j/� .1C j˛2j/�
�

We control the second term II by using Lemma 5.8:

jIIj �
Z
Q˛1n.1�ı/Q˛1

jR2.1Q˛2�� /j d!�

� NR2.�� ; !� /
p
jQ˛2 j�� jQ˛1 n .1 � ı/Q˛1 j!�

�
Cp

ln.1=ı/
NR2.�� ; !� /

p
A
p
B

.1C j˛1j/�=2.1C j˛2j/�=2

�
Cp

ln.1=ı/
NR2.�� ; !� /

p
A2

.1C j˛1j/�=2.1C j˛2j/�=2
�

Altogether, our replacement for (5.6) is

(5.7)
ˇ̌̌ Z
Q˛1

R2.1Q˛2�� / d!�
ˇ̌̌
�

�
Cı
p
A2 C

Cp
ln.1=ı/

NR2.�� ; !� /
� p

A2

.1C j˛1j/�
,

since j˛1 � ˛2j D 1. Now the previous argument can continue using (5.7) in place of (5.6),
which proves the fourth case since there are just 3n � 1 points ˛2 for each fixed point ˛1.
Indeed, we haveX
˛1;˛32Zn

0�j j̨ j�2
k

Z
Q˛1

jR2.1Q˛1�/j.1C j˛3 � ˛1j/
�njQ˛3 j�

.1C j˛1j/� .1C j˛3j/�
d!

.1C j˛1j/�

�

�
Cı
p
A2 C

C

ln.1=ı/
NR2.�� ; !� /

� X
˛32Zn

0�j˛3j�2
k

jQ˛3 j�

.1C j˛3j/�

X
˛12Zn

0�j˛1j�2
k

.1C j˛3 � ˛1j/
�n

.1C j˛1j/�

�

�
Cı
p
A2 C

C

ln.1=ı/
NR2.�� ; !� /

�
jQj�� :

The third and fifth cases are symmetric to those just handled. So it remains to consider
the remaining seventh case, where one of the following three subcases holds:

˛1 D ˛2 and j˛1 � ˛3j D 1;

˛1 D ˛3 and j˛1 � ˛2j D 1;

j˛1 � ˛2j D 1 and j˛1 � ˛3j D 1:

In all three of these subcases, there is essentially only the sum over ˛1, since for each
fixed ˛1, there are at most 32n pairs .˛2; ˛3/ satisfying one of the three subcases. If
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both Q˛2 and Q˛3 are adjacent to Q˛1 , we writeZ
Q˛1

R2.1Q˛2�� /R2.1Q˛3�� / d!� D
Z
Q˛1

R2.1.1�ı/Q˛2�� /R2.1.1�ı/Q˛3�� / d!�

C

Z
Q˛1

R2.1.1�ı/Q˛2�� /R2.1Q˛3n.1�ı/Q˛3�� / d!�

C

Z
Q˛1

R2.1Q˛2n.1�ı/Q˛2�� /R2.1Q˛3�� / d!� �

The first term of the right-hand side is handled by the ı-separation between Q˛1 and
.1 � ı/Q˛2 , as well as between Q˛1 and .1 � ı/Q˛3 , together with the A2 condition
AB � 1, to obtainˇ̌̌ Z

Q˛1

R2.1.1�ı/Q˛2�� /R2.1.1�ı/Q˛3�� / d!�
ˇ̌̌
� C

1

ı2n

Z
Q˛1

jQ˛2 j�� jQ˛3 j�� d!�

and
C

1

ı2n
jQ˛3 j��AB � C

1

ı2n
jQ˛3 j�A2.�; !/;

and since for each fixed ˛3, there are at most 32n pairs .˛1; ˛2/, we can sum to obtain the
bound

C
1

ı2n
jQj�� :

To handle the terms involving a halo Q
j̨
n .1 � ı/Q

j̨
, we use Lemma 5.8 together

with the norm constant NR2 D NR2.�� ; !� /. For example,ˇ̌̌ Z
Q˛1

R2.1Q˛2n.1�ı/Q˛2�� /R2.1Q˛3�� / d!�
ˇ̌̌

�

� Z
Q˛1

jR2.1Q˛2n.1�ı/Q˛2�� /j
2 d!�

�1=2� Z
Q˛1

jR2.1Q˛3�� /j
2 d!�

�1=2
� NR2

p
jQ˛2 n .1 � ı/Q˛2 j�� NR2.jQ˛3 j�� /

1=2

D .NR2/
2 Cp

ln.1=ı/

p
jQ˛2 j�� jQ˛3 j�� ;

and again we can sum to obtain the bound

.NR2/
2 C

ln.1=ı/
jQj��

because the indices j̨ are at distance one from each other. The other terms are handled
similarly and we thus obtain in this seventh case that

2kX
j˛1j;j˛2j;j˛3jD0

ˇ̌̌ Z
Q˛1

R2.1Q˛2�� /R2.1Q˛3�� / d!�
ˇ̌̌
� C

� 1

ı2n
A2 C

.NR2/
2p

ln.1=ı/

�
jQj��
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The cases where just one of the cubes is adjacent to Q˛1 are handled similarly. Alto-
gether we now have

T D
R2
.�� ; !� /

2
� sup
Q2D

1

jQj��

Z
Q

jR2.1Q�� /j2 d!� � C� C
1

ı2n1
A2 C

.NR2/
2p

ln.1=ı1/
,

for any choice of ı1 2 .0; 1/, where the constant C� arises in (5.4).
Now we turn to the case of a general cube Q. In this case we first fix M 2 N large to

be chosen later, and write Q as a union of roughly 2Mn dyadic subcubes ¹Q˛º˛ of side
length ı2 � `.Q/=2M > 0, in such a way that the remaining portion of Q is contained
in the 5ı2-halo of Q. Then the above argument shows that the testing condition holds
except for the terms that arise from the halo. But by Lemma 5.8 these leftover terms in
.
R
Q
jR2.1Q�� /j2 d!� /1=2 are dominated by

TR2.�� ; !� /(5.8)

� Cı2T
D
R2
.�� ; !� /C C

1

4
p

ln.1=ı2/
NR2.�� ; !� /

C Cı2

�
C� C C�C� C

1

ı2n1
A2 C

.NR2/
2p

ln.1=ı1/

�1=2
C C

NR2.�� ; !� /

4
p

ln.1=ı2/

� Cı2;�
p
C� C Cı2

1

ın1

p
A2 C

� Cı2
4
p

ln.1=ı1/
C

C

4
p

ln.1=ı2/

�
NR2.�� ; !� /:

Note that the two-weight norm NR2.�� ; !� / is finite, as both weights �� ; !� are bounded
step functions, and so by the boundedness of the principal value interpretation of R2 on
Lebesgue spaces, we have

NR2.�� ; !� / � k��k1k!�k1 <1:

Thus, by boundedness of maximal truncations (see e.g., Proposition 1 on p. 31 of [41])
together with the independence of truncations mentioned above, the above arguments actu-
ally prove that (5.8) holds uniformly over all admissible truncations of R2, which is the
hypothesis used in [4, 37, 38]. Thus, noting Definition 5.5, we can apply Theorem 5.7 to
obtain

NR2.�� ; !� / � C
p
A2.�� ; !� /C CTR2.�� ; !� /C CTR2.!� ; �� /

� C
p
A2.�� ; !� /C 2

°
Cı2;�

p
C� C Cı2

1

ı21

p
A2.�� ; !� /

C

� Cı2p
ln.1=ı1/

C
Cp

ln.1=ı2/

�
NR2.�� ; !� /

±
;

for any admissible truncation of R2. Thus, with ı2 > 0 chosen sufficiently small that
C=
p

ln.1=ı2/ < 1=4, and then ı1 > 0 chosen sufficiently small that Cı2=
p

ln.1=ı1/ <
1=4, an absorption completes the proof that the norm inequality for R2 holds (recall that
truncations of R2 are a priori bounded).

We have thus proved the following special case of Theorem 1.4 for the individual
Riesz transforms R1 and R2.
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Proposition 5.10. For every � > 1 and 0 < � < 1, there is a pair of positive weights
.�; !/ in Rn satisfyingZ

Rn

jR1.1Œ0;1�n�/.x/j2.x/ d!.x/ � �
Z
Œ0;1�n

d�.x/;Z
I

jR21I�.x/j2 d!.x/ �
Z
I

d�.x/ for all cubes I 2 P n;Z
I

jR21I!.x/j2 d�.x/ �
Z
I

d!.x/ for all cubes I 2 P n;� 1
jI j

Z
I

d�
�� 1
jI j

Z
I

d!
�
� 1 for all cubes I 2 P n;

1 � � <
EJ�

EK�
;
EJ!

EK!
< 1C � for arbitrary adjacent cubes J;K 2 P n:

The argument used in proving this proposition also shows that in any two-weight T1
theorem for doubling pairs .�; !/, the testing may be carried out over only cubes in any
fixed dyadic grid D , and here is one possible formulation of this improvement.

Theorem 5.11. Suppose 0 � ˛ < n, and let T ˛ be an ˛-fractional Calderón–Zygmund
singular integral operator on Rn with a smooth ˛-fractional kernel K˛ . Assume that �
and ! are doubling measures on Rn. Finally, fix a dyadic grid D on Rn.

If the two-weight norm NT ˛ .�; !/ satisfies

NT ˛ .�; !/ � C˛;n
�p
A˛2 CTT ˛ CT.T ˛/�

�
;

where A˛2 is the classical Muckenhoupt constant and the constant C˛;n depends on the
Calderón–Zygmund kernel and the doubling constants of the measures � and !, then

NT ˛ � C
0
˛;n

�p
A˛2 CT D

T ˛ CT D
.T ˛/�

�
;

where the constant C 0˛;n also depends on the Calderón–Zygmund kernel and the doubling
constants of � and !, and T D

T ˛ ;T
D
.T ˛/�

are the D-dyadic testing constants.

In order to complete the proof of Theorem 1.4, we need to consider iterated Riesz
transforms.

6. Iterated Riesz transforms

Throughout Section 4 and 5, we considered Riesz transforms of order 1. However, our
results extend to arbitrary iterated Riesz transforms of odd order in Rn. We will extend the
results of Section 4 to their appropriate analogues to make the reasoning of Section 5 hold
for the appropriate iterated Riesz transforms, and we begin by establishing the following
theorem.

Theorem 6.1. The odd order pure iterated Riesz transforms R2mC11 are unstable on Rn

for pairs of doubling measures under 90ı rotations in any coordinate plane. In fact, there
exists a measure pair of doubling measures on which R2mC11 is unbounded, and all iter-
ated Riesz transforms of order 2mC 1 that are not a pure power of R1, are bounded.
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Proof. Recall the notation T�f D T .f �/. We begin first by considering Riesz transforms
of arbitrary order, even or odd. Using the identity

R21 C � � � CR
2
n D �I;

and for N � 2, we have for an arbitrary positive measure � that

.RN1 /� D .R
N�2
1 R21/� D �.R

N�2
1 /� �

nX
jD2

.RN�21 R2j /� :

Iteration then yields, for N � 1,

(6.1) .RN1 /� D

8̂̂̂̂
<̂
ˆ̂̂:
˙I� C

mX
kD0

h
˙

nX
jD2

.RN�2k1 R2j /�

i
if N D 2m is even,

˙.R1/� C

mX
kD0

h
˙

nX
jD2

.RN�2k1 R2j /�

i
if N D 2mC 1 is odd.

For the weight pairs .�� ; !� / constructed in Section 5, and with N D 2mC 1 odd, the
second line in (6.1) yields

k.RN1 /�� kL2.�� /!L2.!� /

� k.R1/�� kL2.�� /!L2.!� / �

mX
kD0

nX
jD2

k.RN�2k1 R2j /�� kL2.�� /!L2.!� /

� � �

mX
kD0

nX
jD2

k.RN�2k1 R2j /�� kL2.�� /!L2.!� /;

where � is the constant in the construction of the weight pair .�� ; !� /. Note that the
operator norm dominates the testing constant, which was shown to exceed � .

We now claim that the double sum of the operator norms on the right-hand side is
bounded independently of � , i.e.,

mX
kD0

nX
jD2

k.RN�2k1 R2j /�� kL2.�� /!L2.!� / D O.1/:

In fact, if j � 2 and R˛ D R˛11 R
˛2
2 � � �R

˛n
n with j̨ > 0, then, by Lemma 4.12 (3),

lim sup
k!1

Z
jRjR

˛s
P;hor
k

.x/j2 dx

D lim sup
k!1

ˇ̌̌ Z
.Rj s

P;hor
k

/.x/.RjR
2˛s

P;hor
k

/.x/ dx
ˇ̌̌

�

s
lim sup
k!1

Z
jRj s

P;hor
k

.x/j2 dx

s
lim sup
k!1

Z
jRjR

2˛s
P;hor
k

.x/j2 dx

�

s
lim sup
k!1

Z
jRj s

P;hor
k

.x/j2 dx � kRjR
2˛
kL2.Rn/!L2.Rn/

p
jP j D 0 for all N 2 N:
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Therefore, the reasoning in Proposition 5.1 and Lemma 5.9 shows that iterated Riesz
transforms of order N , which are not pure powers of R1, have dyadic testing constants
on the weight pairs .�� ; !� / that are O.1/. Then Theorem 5.11 shows that the operator
norms of such operators, including RN�2k1 R2j , are O.1/, which proves our claim, and
completes the proof of the second assertion of the theorem. The first assertion regarding
R2mC11 now follows from the fact that a rotation in the .x1; xj /-plane interchangesR2mC11

and R2mC1j .

The key to our proof of Theorem 6.1 is the construction of weight pairs .�� ; !� /
satisfying the inequality

(6.2) k.RN1 /�� kL2.�� /!L2.!� / � � for � arbitrarily large,

when N is odd. In fact, the inequality (6.2) actually fails for the weight pairs we con-
struct when N is even. Indeed, from the first line in (6.1), and the fact that the proof of
Theorem 6.1 shows that

mX
kD0

nX
jD2

k.RN�2k1 R2j /�� kL2.�� /!L2.!� / D O.1/;

we get
k.RN1 /�� kL2.�� /!L2.!� / � kI�� kL2.�� /!L2.!� / CO.1/:

The right-hand side of the above display is bounded since the operator norm of I�� is
bounded by A2.�� ; !� /. Indeed, when � and ! are weights, we have k�!k1 � A2.�; !/
by the Lebesgue differentiation theorem, and so

kI�f k
2
L2.!/

D

Z
Rn

f 2�2! � A2.�; !/

Z
Rn

f 2� D kf k2
L2.�/

:

Moreover, it is easily shown that kI�kL2.�/!L2.!/ D A2.�; !/ for arbitrary weights �
and !. Thus, RN1 must then satisfy the testing conditions for the measure pair .�; !/.

In the next subsection we show that every odd order iterated Riesz transform Rˇ D

Rˇ11 R
ˇ2
2 � � �R

ˇn
n is unstable under rotations, by showing that Rˇ11 R

ˇ2
2 � � �R

ˇn
n is some rota-

tion of R.jˇ j;0;:::;0/ whenever ˇ ¤ jˇjek for some k. When ˇ D jˇjek some k, then we
may assume without loss of generality that k D 2.

6.1. Rotations

Let ˇ be a multi-index of length jˇj D N . The symbol of the iterated Riesz transform
Rˇ D Rˇ11 R

ˇ2
2 � � �R

ˇn
n is

iN
�
ˇ1
1 �

ˇ2
2 � � � �

ˇn
n

j�jN
�

We already know that R.N;0;:::;0/ is unstable, and the following lemma will be used to
show all Rˇ are unstable.

Lemma 6.2. If P.�/ is a nontrivial homogeneous polynomial of degree N that does not
contain the monomial �N1 , then there is a set of rotations of full-measure ƒ, and for any
rotation ‚ 2 ƒ, we have � D ‚� such that P.‚�/ contains the monomial �N1 .



M. Alexis, J. L. Luna-Garcia, E. T. Sawyer and I. Uriarte-Tuero 58

Proof. In dimension n D 2, we have

P.�1; �2/ D

NX
mD1

cm �
m
1 �

N�m
2 ; where not all cm D 0;

and the restriction of this polynomial to the unit circle cannot vanish identically (other-
wise P itself would vanish identically by homogeneity, a contradiction). Thus, there is
� 2 Œ0; 2�/ such that

0 ¤ P.cos �; sin �/ D
NX
mD1

cm cosm � sinN�m �:

However, if we make the rotational change of variable, i.e.,�
�1
�2

�
D

�
cos � � sin �
sin � cos �

��
�1
�2

�
D

�
�1 cos � � �2 sin �
�1 sin � C �2 cos �

�
;

then

P.�1; �2/ D

NX
mD1

cm �
m
1 �

N�m
2 D

NX
mD1

cm.�1 cos � � �2 sin �/m.�1 sin � C �2 cos �/N�m

D �N1

NX
mD1

cm cosm � sinN�m � C
X

ˇ¤e1Wjˇ jDN

�ˇfˇ .�/

where
NX
mD1

cm cosm � sinN�m � ¤ 0:

The case n � 3 is similar.

6.2. Completion of proofs of main Theorems 1.4 and 1.5

To complete the proof of Theorem 1.4 we use the above Lemma, together with Propo-
sition 5.10, and we see that any iterated Riesz transform Rˇ of odd order N D jˇj with
ˇ¤ .N;0; : : : ; 0/, is bounded on the higher-dimensional analogue of the weight pair .�;!/
constructed in Proposition 5.10, and can be rotated into a sum S of iterated Riesz trans-
forms that includes R.N;0;:::;0/, and hence S is unbounded on the weight pair .�;!/. Since
stability under rotational change of variables is unaffected by rotation of the operator,
this completes our proof that all iterated Riesz transforms Rˇ of odd order are unstable
under rotational changes of variable, even when the measures are doubling with adjacency
constant �adj arbitrarily close to 1. This completes the proof of the main Theorem 1.4.

To prove Theorem 1.5, suppose Rˇ is an odd order iterated Riesz transform; without
loss of generality, assume that Rˇ ¤ Rjˇ j1 . Then, by Lemma 6.2, there is a set ƒ of rota-
tions of full measure such that for each ‚ 2 ƒ, ‚ rotates Rˇ to c.‚/Rjˇ j1 plus mixed
iterated Riesz transforms, where c.‚/ ¤ 0. Then our construction yields a weight pair
.�; !/ for which the norm inequality for Rˇ is bounded, but the norm inequality for the
rotated operator can be made arbitrarily large.
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A. Appendix

We begin by using the counterexamples in [22] to show that the Hilbert transform is two-
weight norm biLipschitz unstable on �lfpB. Then we demonstrate that the notion of stability
that is maximal for preserving the classical A2 condition, is that of biLipschitz stability.
Next, we show that all sparse bump functionals are biLipschitz stable on the pairs of
doubling measures. After that, we give the details for arguments surrounding classical
doubling which were omitted from [32]. And finally, we give the proof of the T1 Theo-
rem 5.7.

A.1. BiLipschitz instability of the Hilbert transform for arbitrary weight pairs

Here we show that the Hilbert transformH is two-weight norm unstable under biLipschitz
transformations. We consider the measure pairs .�; !/ and . R�; !/ constructed in [22],
where .�; !/ satisfies the two-weight norm inequality for H , while . R�; !/ does not,
although it continues to satisfy the two-tailed Muckenhoupt A2 condition. The measure !
is the standard Cantor measure on Œ0; 1� supported in the middle-third Cantor set E. The
measures � D

P
k;j s

k
j ızkj and R� D

P
k;j s

k
j ı Rzkj are sums of weighted point masses located

at positions zkj and Rzkj within the componentGkj removed at the k-th stage of the construc-
tion of E, and satisfy

(A.1) 0 < c1 <
dist.zkj ; @G

k
j /

jGkj j
;

dist. Rzkj ; @G
k
j /

jGkj j
< c2 < 1;

independent of k; j . See [22] for notation and proofs.
It remains to construct a biLipschitz map ˆWR! R such that . R�; !/ D .ˆ��;ˆ�!/.

For this, we first define biLipschitz mapsˆW xGkj ! xG
k
j so thatˆ fixes the endpoints of xGkj

and Rzkj Dˆ.z
k
j /, and note that this can be done with bounds independent of k; j by (A.1).

Now we extend the definition of ˆ to all of R by the identity map, and it is evident that ˆ
is biLipschitz and pushes .�; !/ forward to . R�; !/.

A.2. Beyond biLipschitz maps for A2 stability

Here we initiate an investigation of how general a map can be, and still preserve the two-
weight A2 condition for all pairs of measures .�; !/. We begin by defining some of the
terminology we will use in this subsection.

Definition A.1. Let � be a locally finite positive Borel measure on Rn. Let ˆWRn ! Rn

be a Borel measurable function. We define the pushforward of the measure� by the mapˆ
as the unique measure ˆ�� such thatZ

E

ˆ�� D

Z
ˆ�1.E/

� for all Borel sets E � Rn:

In the case d�.x/ D w.x/ dx is absolutely continuous, its pushforward for ˆ suffi-
ciently smooth is given by

.ˆ��/.y/ � w.ˆ.y//
ˇ̌̌
det

@ˆ

@x
.y/
ˇ̌̌
:
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Definition A.2. A map ˆWRn ! Rn is A2-stable if there exists a constant C > 0 such
that for every pair of locally finite positive Borel measures �; !, we have

A2.ˆ��;ˆ�!/ � CA2.�; !/:

Definition A.3. A map ˆWRn ! Rn (not necessarily invertible) is shape-preserving if
there exists K � 1 such that for every cube Q � Rn, we can find cubes Qsmall and Qbig
with the following properties:

Qsmall � ˆ
�1.Q/ � Qbig and

`.Qbig/

`.Qsmall/
� K:

We call such a set ˆ�1.Q/ an almost cube.

Note that homeomorphisms on the real line are automatically shape-preserving, as are
quasiconformal maps in Rn, see Lemma 3.4.5 in [5].

Theorem A.4. Let ˆWRn ! Rn be shape-preserving and Borel-measurable. Then the
following two conditions are equivalent:

(1) There exists a constant C1 > 0 such that jˆ�1.Q/j � C1jQj for every cube Q.

(2) ˆ is A2-stable.

Remark A.5. Ifˆ is sufficiently regular that the usual change of variables formula holds,
e.g., ˆ�1 is locally Lipschitz, then condition (1) becomes jdetDˆ�1j . 1.

Proof. Assume condition (1) holds, where ˆ is shape-preserving with constant K, and
let Q be an arbitrary cube in Rn. Then

A2.ˆ��;ˆ�!/ D sup
Q

�R
Q
dˆ��

jQj

��R
Q
dˆ�!

jQj

�
D sup

Q

�R
ˆ�1.Q/

d�

jQj

��R
ˆ�1.Q/

d!

jQj

�
� C 21 sup

Q

�R
ˆ�1.Q/

d�

jˆ�1Qj

��R
ˆ�1.Q/

d!

jˆ�1Qj

�
� C 21K

2n sup
Q

�R
Qbig

d�

jQbigj

��R
Qbig

d!

jQbigj

�
� C 21K

2nA2.�; !/:

Conversely, if condition (2) holds, then with both measures � and ! equal to Lebesgue
measure, and for any cube Q, we have�
jˆ�1.Q/j

jQj

�2
D

�R
ˆ�1.Q/

dx

jQj

��R
ˆ�1.Q/

dx

jQj

�
D

�R
Q
dˆ��

jQj

��R
Q
dˆ�!

jQj

�
� C:

Remark A.6. If the pair .ˆ��;ˆ�!/ is in A2 for the single choice of weights d�.x/ D
d!.x/ D dx, then the above proof shows that ˆ preserves all A2 pairs under the side
assumption of shape-preservation.

Corollary A.7. Assume ˆWRn! Rn is a shape-preserving invertible Lipschitz map with
kDˆk1 � 1. Then ˆ is A2-stable if and only if ˆ is biLipschitz.
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Proof. Using Theorem A.4 and Remark A.5, we see that ˆ is A2-stable if and only if
jdetDˆj & 1. But then 1 � C jdetDˆj � C 0jDˆjn, together with kDˆk1 � 1, shows
that ˆ is A2-stable if and only if ˆ is biLipschitz.

Corollary A.8. AssumeˆWRn!Rn is Borel-measurable and invertible, and that bothˆ
and ˆ�1 are shape-preserving. Then both ˆ and ˆ�1 are A2-stable if and only if ˆ is
biLipschitz.

Proof. If both ˆ and ˆ�1 are A2-stable, then from Theorem A.4, we obtain that

jˆ�1.Q/j � C1jQj for every cube Q;
jˆ.Q/j � C1jQj for every cube Q:

Thus, if Q is a minimal cube containing both x and y, then the almost cube ˆ�1.Q/
contains both ˆ�1.x/ and ˆ�1.y/, and so

jˆ�1.x/ �ˆ�1.y/j

jx � yj
.

diamˆ�1.Q/

diamQ
.
jˆ�1.Q/j

jQj
� C1;

and since the almost cube ˆ.Q/ contains both ˆ.x/ and ˆ.y/,

jˆ.x/ �ˆ.y/j

jx � yj
.

diamˆ.Q/

diamQ
.
jˆ.Q/j

jQj
� C1:

A.3. Stability and sparse operators

Recall that a grid of dyadic cubes � is called �-sparse, 0 < � < 1, if for everyQ 2 � , there
are subsets EQ � Q such that jEQj � �jQj and the sets ¹EQºQ2� are pairwise disjoint.
Note that such an � satisfies the following 1

�
-Carleson condition:X

Q02� WQ0�Q

jQ0j �
1

�

X
Q02� WQ0�Q

jEQ0 j �
1

�
jQj for all Q 2 � ;

X
Q02� WQ0��

jQ0j �
1

�
j�j for all open sets �:

Conversely, if � satisfies the ƒ-Carleson conditionX
Q02� WQ0�Q

jQ0j � ƒjQj for all Q 2 � ;

then � is 1
ƒ

-sparse, see e.g., [27].

Definition A.9. Given a sparse grid of cubes � , we define the associated sublinear sparse
operator S by

(A.2) Sf .x/ �
X
Q2�

� 1

jQj

Z
Q

jf j
�

1Q.x/; x 2 Rn;

and we say that S is �-sparse if � is �-sparse.
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Definition A.10. Let U be a biLipschitz invariant set of locally finite positive Borel mea-
sures on Rn. A functional B.�; !/ on pairs of measures .�; !/ is called a sparse bump
functional on U if for every � 2 .0; 1/, there exists a continuous increasing function
��W .0;1/! .0;1/ such that for all �-sparse operators S ,

NS .�; !/ � ��.B.�; !// for all.�; !/ 2 U �U:

Clearly, no biLipschitz stable (bump) condition can characterize a biLipschitz unstable
weighted norm inequality. Here we will show that no sparse bump functional can either.
Note that it is shown in [26] that all (separated) Orlicz or entropy bump conditions, that are
currently known to imply boundedness of singular integrals, are sparse bump functionals
on any such U. Here is the main result of this section.

Theorem A.11. Let Udoub be the biLipschitz invariant set of doubling measures on Rn

(called �doub in the introduction), and let B.�; !/ be a sparse bumpfunctional on Udoub.
Then for any smooth Calderón–Zygmund operator T that is biLipschitz unstable on pairs
of doubling weights, there is no continuous increasing function �W .0;1/! .0;1/, such
that

(A.3) B.�; !/ � �.NT .�; !// for all .�; !/ 2 Udoub:

In particular, by Theorem 1.4, we can take T to be an iterated Riesz transform of odd
order.

Remark A.12. This theorem, together with Theorem A.13 below, shows that no sparse
bump functional B.�; !/ can characterize the two-weight norm inequality for an iterated
Riesz transform of odd order on doubling measures.

To prove Theorem A.11, we will use a special case of the groundbreaking sparse dom-
ination principle of Lerner. Recall that a Dini-regular Calderón–Zygmund operator T with
kernel K is an operator where the kernel, rather than satisfying the size and smoothness
estimates (1.5), instead satisfies

jK.x; y/j � CCZ jx � yj
�n;

jK.x; y/ �K.x0; y/j C jK.y; x/ �K.y; x0/j � fCZ

�
jx � x0j

jx � yj

�
jx � yj�n;

where the nonnegative function fCZ satisfies the Dini conditionZ 1

0

fCZ.t/
dt

t
<1:

Theorem A.13 (Lerner [25]). Let T be a Dini-regular Calderón–Zygmund operator, and
let f 2 L1(Rn) be compactly supported. Then with �n D 1

2.5
p
n/n

there is an �n-sparse
grid � depending on f , such that

jTf .x/j � Cn;T Sf .x/ for a.e. x 2 Rn;

where Sf is as in (A.2).
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Now we can give the proof of Theorem A.11.

Proof of Theorem A.11. Suppose in order to derive a contradiction that (A.3) holds for
some sparse bump functional B.�; !/ on U in Rn. Then, for any BiLipschitz map ˆ, we
have NT .ˆ��;ˆ�!/DNˆ�T .�;!/, and so if a compactly supported function f 2 L2.�/
is chosen to be a near extremizer for the norm Nˆ�T .�; !/, we have from Lerner’s the-
orem, applied to the Dini-regular Calderón–Zygmund operator ˆ�T , that there is an
�n-sparse operator S , such that

Nˆ�T .�; !/ � 2
kˆ�T .f �/kL2.!/

kf kL2.�/
� 2Cn;T;kˆk

kS.f �/kL2.!/

kf kL2.�/

� 2Cn;T;kˆkNS .�; !/ � Cn;T;kˆk ��n.B.�; !//

� Cn;T;kˆk ��n.�.NT .�; !///;

where the first line uses Theorem A.13, the second line uses the definition of sparse bump
functional and the assumed inequality (A.3). Thus, two-weight norm inequalities for Dini-
regular operators are biLipschitz stable, as defined in Definition 1.3. But by Theorem 1.4,
the inequality for T equal an individual Riesz transform cannot be biLipschitz stable. This
contradiction proves the theorem.

A.4. Modification of transplantation to achieve classical doubling

In Section 3, we constructed functions v; u on a cube Q0 such that both v; u are dyadi-
cally � -flat onQ0. However, dyadic doubling does not imply continuous doubling onQ0.
As such, we will need to modify the transplantation argument to smooth out v; u into
weights v0; u0 which are classically doubling, as done in [32]. See also [19, 30].

We will describe how to attain u0 from u, as the process for v0 and v is identical.
Recall, in Proposition 5.1, we define u by

u D .EQ0U/ 1Q0 C
m�1X
tD0

X
Q2Kt

hU; hhor
�.Q/i

1p
j�.Q/j

s
Q;hor
ktC1

;

where sktC1 is constant on cubes in KtC1.
Define the grid yK from K inductively as follows. First set yK0 �K0. Now givenQ 2

yKt , a cubeR 2KtC1 is called a transition cube forQ ifQD �KR and .@�DR/\ @Q is
non-empty; as such, define yKtC1 to consist of the cubes P 2KtC1 such that �KP 2 yKt

and P is not a transition cube. Finally, set yK �
S
t
yKt .

One can see that yK consists of the cubes in K not contained in a transition cube. This
implies that if R is a transition cube, then �KR 2K . It also implies that no two transition
cubes have overlapping interiors. Visually, the union of the transition cubes for a cube Q
forms a “halo” for Q. Recalling that two distinct dyadic cubes in D of the same size are
adjacent if their boundaries intersect, we then note that two adjacent cubes in yK must
then have the same K-parent, and so are close to each other in the tree distance of K . The
proof of the following lemma is left to the reader, who is encouraged to draw a picture. It
helps to note that in R, if two transition intervals R1 and R2 are at levels s and sC 2, then
there must be a transition interval R at level s C 1 such that R lies between R1 and R2.
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Lemma A.14. Let R1 2Ks be a transition cube.

(1) If R2 2 Kt is a transition cube such that the interiors of R2 and R1 are disjoint,
but not their closures, then t 2 ¹s � 1; s; s C 1º.

(2) If K 2 yKt is such that the interiors of K and R1 are disjoint, but not their closures,
then t 2 ¹s � 1; sº. And if t D s, then �KK D �KR1.

With this in mind, given Q 2 yKt , define

r
Q;hor
ktC1

.x/ �

´
s
Q;hor
ktC1

.x/ if x is not contained in a transition cube for Q;

0 otherwise:

Now we may define

u0` � .EQ0U/ 1Q0 C
`�1X
tD0

X
Q2 yKt

hU; hhor
�.Q/i

1p
j�.Q/j

r
Q;hor
ktC1

; 0 � ` � m;

u0 � u0m and v0 � v0m:

Given x 2 Q0 and ` � m, if we define

t .x/ �

´
t if x is contained in a transition cube belonging toKt for some t < `;
` otherwise;

then pointwise we have

u0`.x/ D .EQ0U/ 1Q0.x/C
t.x/�1X
tD0

X
Q2 yKt

hU; hhor
�.Q/i

1p
j�.Q/j

s
Q;hor
ktC1

.x/; 0 � ` � m:

The function u0 is nearly a transplantation of U , as exhibited by the following lemma,
whose proof we leave to the reader. The reader should note that for each cube contained in
a transition cube, the value of u0

`
is equal to its average on the transition cube containing it.

Lemma A.15. Let K be as above.

(1) If P 2K is not contained in a transition cube, then EPu0` D E�.P /U .

(2) If P 2K is contained in a transition cube R, then EPu0` D E�.�KR/U .

(3) If P 2D is a cube for whichKtC1 ¨ P � Kt , whereKtC1 2KtC1 andKt 2Kt ,
then EPu0` D EKtu

0
`
.

Remark A.16. From the above lemma, it follows that

A
dyadic
2 .u0`; v

0
`/ � A

dyadic
2 .U; V / � 1:

Lemma A.17. If P1;P2 are adjacent dyadic subcubes of Q0, then
EP1u

0

EP2u
0 2 .1� �;1C �/.

Similarly, for v0.

Proof of Lemma A.17. Let P1; P2 be adjacent dyadic subcubes of Q0. By Lemma A.15
part (3), it suffices to check the case when P1; P2 2K . We consider various cases.
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Case 1. Neither P1 nor P2 is contained in a transition cube, i.e., both belong to yK . Then
P1 and P2 must have a common K- parent, meaning

�D�.P1/ D �.�KP1/ D �.�KP2/ D �D�.P2/

and so �.P1/ and �.P2/ must be equal or dyadic siblings. From the first formula of
Lemma A.15, we get EP1u

0=EP2u
0 2 .1 � �; 1C �/.

Case 2. Exactly one of the cubes, say P1, is contained in a transition cubeR1. Since P2 is
not in a transition cube, then the only way for P1; P2 to be adjacent is for both to have the
same K-parent. And since P2 is not contained in a transition cube, then R1 must in fact
equal P1, i.e., P1 is a transition cube. Indeed, if P1 were a level below R1 in the grid K ,
then the only way P2 can be adjacent to P1 is by being in a transition cube adjacent to R1
or in R1 itself, but the latter cannot happen by assumption on P2.

Altogether, the above yields that �.�KP1/ D �.�KP2/ D �D�.P2/. Thus, by Lem-
ma A.15 parts (1) and (2), dyadic � -flatness of U , and the fact that P1 is a transition cube,
we have

EP1u
0

EP2u
0
D
E�.�KP1/U

E�.P2/U
D
E�D �.P2/U

E�.P2/U
2 .1 � �; 1C �/:

Case 3. Both P1 and P2 are contained within transition cubes, say R1 and R2, respec-
tively. Using Lemma A.15, it suffices to show the ratio

EP1u
0

EP2u
0
D
E�.�KR1/U

E�.�KR2/U

lies between 1 � � and 1 C � . Note that adjacency of P1; P2 implies R1 and R2 have
disjoint interiors, but not closures, or they are equal.

Case 3 (a). R1 D R2. Then we get EP1u
0=EP2u

0 D 1.

Case 3 (b). R1 and R2 are of the same sidelength, but R1 ¤ R2. Then both R1 and R2
are adjacent, and so �.�KR1/ and �.�KR2/ must be equal or dyadic siblings. In either
case, by the formula above, EP1u

0=EP2u
0 2 .1 � �; 1C �/.

Case 3 (c). R1 and R2 are of different sidelengths, say `.R1/ > `.R2/. Since P1 and P2
are adjacent, then R1 and R2 have disjoint interiors, but not closures. It follows that
if R1 2Kt , then R2 2 KtC1, by Lemma A.14. Thus, R1 is adjacent to �KR2. In fact,
since R1 is a transition cube but �KR2 is not, then by Lemma A.14 (2), we have that
�KR1 D �

.2/
K
R2, and so

�.�KR1/ D �.�
.2/

K
R2/ D �D�.�KR2/:

Thus,
EP1u

0

EP2u
0
D
E�.�KR1/U

E�.�KR2/U
D
E�D �.�KR2/U

E�.�KR2/U
2 .1 � �; 1C �/:

This completes the proof.

Showing u0 has relative adjacency constant 1C o�!1.1/ as �! 0 onQ0 follows from
Lemma A.17 and a standard argument, and similarly for v0.
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A.5. Proof of the T1 Theorem 5.7

By Theorem 2 in [38], we have

NT .�; !/ .
p

A2.�; !/CTT .�; !/CTT �.!; �/C E.�; !/C E.!; �/;

where the two-tailed A2 condition is given by

A2.�;!/� sup
Q2P n

�Z
Rn

� `.Q/

.`.Q/C jx � cQj/2

�n
d�
��Z

Rn

� `.Q/

.`.Q/C jx � cQj/2

�n
d!
�
;

and the energy condition is defined by

E.�; !/2 � sup
ID

S
� r Jr

1

jI j�

1X
rD1

P.Jr ; �/2jJr j! E.Jr ; !/2;

where the supremum is taken over all cubes I 2P n and all disjoint decompositions of
I 2P n into disjoint cubes

S
� r Jr . Within the energy condition we also have the Poisson

average P.J; �/, which is defined by

P.J; �/ �
Z

Rn

`.J /

.`.J /C jx � cJ j/nC1
d�;

and we also define

E.Jr ; !/2 �
1

jJr j!

Z
Jr

ˇ̌̌x � A
`.Jr /

ˇ̌̌2
d!.x/ and A �

1

jJr j!

Z
Jr

z d!.z/:

Since E.Jr ; !/2 � 1, the energy condition is bounded by the pivotal condition

V.�; !/2 � sup
ID

S
� r Jr

1

jI j�

1X
rD1

P.Jr ; �/2jJr j! ;

By Theorem 4 of [12], if � and ! are doubling, then the tailed A2 condition is equiv-
alent to the classical A2 condition, i.e.,

A2.�; !/ . A2.�; !/I

see also Proposition 39 of [2] for further details.
As for the pivotal condition, a dyadic decomposition yields that the Poisson average

of � on Q is controlled by the expectation of � on Q, i.e.,

P.Q; �/ .
jQj�

jQj
C

1X
kD1

Z
2kC1Qn2kQ

`.Q/

.`.Q/C jx � cQj/nC1
d�

.
1X
kD0

j2kQj�
`.Q/

.2k`.Q//nC1
. jQj�

1X
kD0

2.nC"/k
`.Q/

.2k`.Q//nC1

D
jQj�

jQj

1X
kD0

2�.1�"/k .
jQj�

jQj
,
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where the third inequality follows by the hypothesis on the doubling constants, and the
last inequality follows because " < 1 implies the geometric series converges. Thus, we
can estimate

V.�; !/2 . sup
ID

S
� r Jr

1

jI j�

1X
rD1

P.Jr ; �/2jJr j! . sup
ID

S
� r Jr

1

jI j�

1X
rD1

jJr j
2
�

jJr j2
jJr j!

. A2.�; !/ sup
ID

S
� r Jr

1

jI j�

1X
rD1

jJr j� . A2.�; !/:

Combining all the above estimates with the corresponding dual estimates yields the theo-
rem.

Alternatively, rather than applying Theorem 2 in [38], one can apply Theorem 2.6 (1)
in [37], and then in our particular situation where both measures � and ! are doubling,
one can dispose of the weak-boundedness property using an argument similar to that of
Lemma 2.4 in [16], or to that in the proof of Lemma 14 in [2].
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