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Generic equidistribution for area-preserving
diffeomorphisms of compact surfaces with boundary

Abror Pirnapasov and Rohil Prasad

Abstract. We prove that a generic area-preserving diffeomorphism of a compact
surface with non-empty boundary has an equidistributed set of periodic orbits. This
implies that such a diffeomorphism has a dense set of periodic points, although we
also give a self-contained proof of this “generic density” theorem. One application
of our results is the extension of mean action inequalities proved by Hutchings and
Weiler for the disk and annulus to generic Hamiltonian diffeomorphisms of any com-
pact surface with boundary.

1. Introduction

1.1. Statement of main results

Fix a smooth, compact, oriented surface Z with smooth boundary @Z, and also fix a
choice of smooth area form ! on Z. Write Diff.Z; !/ for the space of diffeomorphisms
of Z which preserve the area form !. Any � 2 Diff.Z; !/ arising as the time-one flow of
a time-dependent Hamiltonian H 2C1.R =Z�Z/, such that H.t;�/ is locally constant
on @Z for each t , is called a Hamiltonian diffeomorphism, and the space of Hamiltonian
diffeomorphisms forms a subgroup Ham.Z;!/ � Diff.Z;!/. We stress that these diffeo-
morphisms are not compactly supported, as much of the literature assumes, and that it is
important for our purposes that they are not compactly supported.

In the case where Z is closed (@Z D ;), it was recently shown that a Baire-generic
element of Diff.Z; !/ has a dense set of periodic points [5, 6]. This was also quantit-
atively refined in [14]. The main goal of this paper is to prove these results in the case
where the boundary @Z is non-empty, which we will assume from now on. Beyond the
intrinsic interest of the C1-generic density/equidistribution theorem, our results have fur-
ther applications in low-dimensional conservative smooth dynamics. (See the Bourbaki
seminar [8] by Humilière for a historical account of work on the generic density theorem,
which goes back to the work of Pugh in the 60s.) We provide such an application in Sec-
tion 1.2 below. Also, since the first version of this paper appeared, our results were used by
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Enciso–Peralta-Salas [7] to obstruct the topological realization of divergence-free vector
fields on R3 as magnetohydrostatic equilibria.

1.1.1. Generic density. We begin by stating our “generic density” results. These are spe-
cial cases of the quantitative “generic equidistribution” results below, but they are simpler
to state and prove, so we include them as separate results.

Theorem 1.1. Let Z be a smooth, compact, oriented surface with smooth, non-empty
boundary @Z, and let ! be a smooth area form on Z. Then a C1-generic element of
Diff.Z; !/ has a dense set of periodic points.

Remark 1.2. Theorem 1.1 and the subsequent Theorems 1.3, 1.5, and 1.6 do not assume
that diffeomorphisms are compactly supported in the interior of Z; perturbations are
required all the way up to the boundary. The space Diffc.Z; !/ of compactly supported
area-preserving diffeomorphisms, unlike Diff.Z; !/, is not a Baire space, so the designa-
tion of “C1-generic” may be vacuous in this setting.

In the closed case (@Z D ;), it was observed that the generic density property holds
within rational Hamiltonian isotopy classes in Diff.Z; !/. “Rationality” in this setting
is a certain homological property of area-preserving maps. We define it in Section 2.2.
The rationality condition holds for a dense subset of Diff.Z;!/. Any Hamiltonian diffeo-
morphism is rational, and more generally, the property of rationality is preserved under
Hamiltonian isotopy. We define a rational Hamiltonian isotopy class to be a Hamiltonian
isotopy class in which every representative in Diff.Z; !/ is rational. The next theorem
extends the aforementioned observation to the case of surfaces with boundary.

Theorem 1.3. Let Z be a smooth, compact, oriented surface with smooth, non-empty
boundary @Z, and let ! be a smooth area form on Z. Then a C1-generic element of a
rational Hamiltonian isotopy class in Diff.Z; !/ has a dense set of periodic points.

The subgroup Ham.Z; !/ is a rational Hamiltonian isotopy class. Therefore, The-
orem 1.3 applies to Ham.Z; !/. We conclude that the generic density result proved by
Asaoka–Irie [1] for Hamiltonian diffeomorphisms of closed surfaces also holds in the
case of surfaces with boundary.

Corollary 1.4. Let Z be a smooth, compact, oriented surface with smooth, non-empty
boundary @Z, and let ! be a smooth area form on Z. Then a C1-generic Hamiltonian
diffeomorphism of .Z; !/ has a dense set of periodic points.

1.1.2. Generic equidistribution. Theorem 1.5 and 1.6 below are quantitative refine-
ments of Theorems 1.1 and 1.3. They assert that a generic area-preserving diffeomorphism
of Z (respectively, generic element of a rational Hamiltonian isotopy class) admits a set
of periodic orbits which equidistribute in some manner with respect to the area form !.
Before providing statements, we establish some definitions and notation, including a pre-
cise definition of the notion of equidistribution of periodic orbits used in this paper.

Fix any � 2 Diff.Z; !/. A finite ordered multiset S D ¹x1; : : : ; xd º of points in †
is a periodic orbit of � if �.xi / D xiC1 for i D 1; : : : ; d � 1 and �.xd / D x1. The
cardinality jS j WD d of S is called the period of S . A periodic orbit S D ¹x1; : : : ; xd º
is simple if all of the xi are pairwise distinct. Use P .�/ to denote the set of all simple
periodic orbits of �.
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An orbit set is a formal finite linear combination of elements of P .�/ (simple periodic
orbits) with positive real coefficients. We denote the collection of orbit sets by P R.�/. An
integral orbit set, the collection of which we denote by P Z.�/, is an element of P R.�/

where all the coefficients are positive integers. For any orbit set

O D

NX
kD1

ak � Sk 2 P R.�/;

define

jO j WD

NX
kD1

ak � jSkj 2 R :

Any periodic orbit S D ¹x1; : : : ; xd º defines a continuous real-valued functional on
the space C 0.Z/ of continuous functions by summing up the function on the points in S :

S.f / WD

dX
iD1

f .xi /:

Any orbit set O defines a functional on C 0.Z/ via linear extension of the above for-
mula:

O.f / WD

NX
kD1

ak � Sk.f /:

An equidistributed sequence of orbit sets is a sequence .Oi /i2N of orbit sets such that
for any f 2 C 0.Z/, the averages of f on the orbit sets Oi limit to the average of f onZ:

lim
i!1

Oi .f /

jOi j
D

� Z
Z

!
��1
�

Z
Z

f !:

The most concise formulation of this statement is that ¹Oi =jOi jºi2N , considered as a
sequence of Borel probability measures, converges weakly to !=

R
Z
!. We are now ready

to state our “generic equidistribution” theorems.

Theorem 1.5. Let Z be a smooth, compact, oriented surface with smooth, non-empty
boundary @Z, and let! be a smooth area form onZ. AC1-generic element of Diff.Z;!/
has an equidistributed sequence of orbit sets.

The next theorem is a “generic equidistribution” result for rational Hamiltonian iso-
topy classes in Diff.Z; !/, a particular case of which are the Hamiltonian diffeomorph-
isms. See the discussion below Theorem 1.1 above and Section 2.2 for more details.

Theorem 1.6. Let Z be a smooth, compact, oriented surface with smooth, non-empty
boundary @Z, and let ! be a smooth area form onZ. A C1-generic element of a rational
Hamiltonian isotopy class in Diff.Z; !/ has an equidistributed sequence of orbit sets.

Theorem 1.6 implies the following quantitative refinement of Corollary 1.4.

Corollary 1.7. Let Z be a smooth, compact, oriented surface with smooth, non-empty
boundary @Z, and let ! be a smooth area form on Z. A C1-generic Hamiltonian diffeo-
morphism of .Z; !/ has an equidistributed sequence of orbit sets.
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1.2. An application to mean action inequalities for surface maps

We use Theorem 1.6 to extend some quantitative dynamical results by Hutchings [9] for
area-preserving disk maps and Weiler [15] for area-preserving annulus maps to generic
Hamiltonian diffeomorphisms of any compact surface with non-empty boundary. Let Z
be a smooth, compact, oriented surface with smooth, non-empty boundary @Z, and let !
be a smooth area form on Z. We fix a connected component  of @Z, and a primitive ˇ
of !. Fix any � 2 Diff.Z; !/ such that the closed one-form ��ˇ � ˇ is exact. If � is
Hamiltonian, this condition holds for any primitive ˇ. Let f be any primitive of ��ˇ � ˇ.
This is well defined up to the addition of a constant function, and we normalize it as
follows. The ergodic average

f 1.x/ WD lim
n!1

1

n

n�1X
kD0

f .�k.x//

is a �-invariant measurable function which is integrable with respect to!. It is well defined
on a full-measure subset of x 2 Z containing the set of periodic points. It is also well
defined for every x 2  and is equal to a constant everywhere on  . We denote by f�;ˇ;
the unique primitive of ��ˇ � ˇ such that the ergodic average f 1

�;ˇ;
is equal to 0 on  .

The function f�;ˇ; and its ergodic average f 1
�;ˇ;

are respectively called the action and
the asymptotic mean action with respect to �, ˇ, and  . The average of the action is some
kind of invariant of �, whose significance we will describe shortly.

Definition 1.8 (Calabi invariant). Fix � 2 Diff.Z;!/, a boundary component  of Z, and
a primitive ˇ of ! such that ��ˇ � ˇ is exact. The Calabi invariant of � with respect to ˇ
and  is the average of f�;ˇ; :

Cal.�; ˇ; / WD
� Z

Z

!
��1
�

Z
Z

f�;ˇ; !:

The following lemma lists some basic properties of the asymptotic mean action.

Lemma 1.9. Fix � 2 Diff.Z; !/. Assume that � fixes a boundary component  of Z and
that there exists a primitive ˇ of ! such that ��ˇ � ˇ is exact. Then the asymptotic mean
action satisfies the following properties:

(a) Let � be any primitive of !. If the closed one-form � � ˇ is exact, then f 1
�;�;

D

f 1
�;ˇ;

almost everywhere.

(b)
R
Z
f 1
�;ˇ;

! D
R
Z
f�;ˇ; !.

(c) Fix a periodic orbit S 2P .�/ and any point x 2S . Then f 1
�;ˇ;

.x/DS.f�;ˇ; /=jS j.

Proof. Part (a) is proved by direct computation. Fix a primitive g of �. The ergodic aver-
age of the function g ı � � g is defined everywhere and identically equal to 0, so it follows
by definition that f 1

�;�;
D f 1

�;ˇ;
almost everywhere. Part (b) follows from the Birkhoff

ergodic theorem. Finally, part (c) follows from the fact that, since the asymptotic mean
action is �-invariant, f 1

�;ˇ;
.xi / D f

1
�;ˇ;

.x/ for each xi 2S .

The second property in Lemma 1.9 gives some indication of the significance of the
Calabi invariant. The asymptotic mean action f 1

�;ˇ;
at a point x 2 Z should be thought



Generic equidistribution for area-preserving diffeomorphisms 5

of as some kind of “rotation number” of � at the point x. From this viewpoint, the Calabi
invariant is the “average rotation number” of the map �. Various notions of rotation num-
bers play prominent roles in two-dimensional conservative dynamics. For example, a
classical result of Mather [11] for twist maps of the annulus with boundary rotation num-
bers r� < rC produces for any a 2 Œr�; rC� a quasiperiodic point with rotation number a,
which is a periodic point when a is rational. It is interesting and potentially fruitful to
consider whether the asymptotic mean action can be used to detect (quasi)periodic points
in a similar manner, but for area-preserving diffeomorphisms on any surface, without any
twist condition. The following question, which is already difficult due to the generality
in which it is posed, makes a first step towards this goal. It asks whether periodic points
can be found which have asymptotic mean actions above and below the Calabi invariant.
Since f 1

�;ˇ;
is �-invariant, this is equivalently formulated in terms of averages of the

asymptotic mean actions over periodic orbits.

Question 1.10. Fix � 2 Diff.Z;!/, a boundary component  ofZ, and a primitive ˇ of !
such that ��ˇ � ˇ is exact. Does the inequality

inf
S2P .�/

S.f 1
�;ˇ;

/

jS j
� Cal.�; ˇ; / � sup

S2P .�/

S.f 1
�;ˇ;

/

jS j

hold?

The first result concerning Question 1.10, proved by Hutchings [9], is the following.

Theorem 1.11 (Hutchings, [9]). Let .D; .dx ^ dy/=�/ denote the standard unit disk,
equipped with the standard area form of area 1. Fix the primitive ˇ D .2�/�1.xdy �

ydx/. Then for any � 2 Diff.D; !/ such that � is a rotation near the boundary and
Cal.�; ˇ; @D/ < 0, we have the inequality

inf
S2P .�/

S.f 1
�;ˇ;@D/

jS j
� Cal.�; ˇ; @D/:

Weiler [15] later proved a version of Theorem 1.11 with similar assumptions for area-
preserving annulus diffeomorphisms. The first author [13] showed that Theorem 1.11
holds without requiring the disk map to be a rotation near the boundary. As an applic-
ation, it was proved that if � is a pseudo-rotation then Cal.�; ˇ; @D/ D 0. An analogous
result has been shown for three-dimensional Reeb flows with two simple periodic orbits
in [4]. Le Calvez [10] recently gave an alternative proof of the identity Cal.�; ˇ; @D/ D 0
for C 1 pseudo-rotations that restrict to rigid rotations on the boundary.

Our Theorem 1.6 answers Question 1.10 in the affirmative for generic Hamiltonian
diffeomorphisms of a compact surface with any genus and number of boundary compon-
ents.

Theorem 1.12. Let Z be a compact surface with non-empty boundary and let ! be any
area form. Fix any primitive ˇ of ! and any component  of @Z. Then for a C1-generic
� 2 Ham.Z; !/, the following inequality holds:

(1.1) inf
S2P .�/

S.f 1
�;ˇ;

/

jS j
� Cal.�; ˇ; / � sup

S2P .�/

S.f 1
�;ˇ;

/

jS j
�
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Proof. By the third item in Lemma 1.9, it suffices to prove the version of (1.1) with the
measurable function f 1

�;ˇ;
replaced by the smooth function f�;ˇ; . By Theorem 1.6, a

generic � 2 Ham.Z; !/ has a sequence of orbit sets Oi such that

lim
i!1

Oi .f�;ˇ; /

jOi j
D

� Z
Z

!
��1
�

Z
Z

f�;ˇ; ! D Cal.�; ˇ; /:

For each i , choose the simple orbits SCi and S�i from Oi on which f�;ˇ; has respect-
ively the largest and smallest averages out of all orbits in Oi . The equidistribution implies

lim inf
i!1

S�i .f�;ˇ; /

jS�i j
� Cal.�; ˇ; / � lim sup

i!1

SCi .f�;ˇ; /

jSCi j
,

which implies (1.1).

We also deduce the following refinement of Theorem 1.12. It is analogous to a result of
Bechara Senior–Hryniewicz-Salomão (Theorem 1.9 in [3]) for three-dimensional contact
forms admitting equidistributed sequences of Reeb orbits. The proof is also very similar
and we omit it.

Theorem 1.13. Let Z be a compact surface with non-empty boundary and ! any area
form of area 1. Fix any primitive ˇ of ! and any component  of @Z. Then for a
C1-generic Hamiltonian diffeomorphism � and any " > 0, the following is true. Sup-
pose that Cal.�; ˇ; / � 0 (respectively, Cal.�; ˇ; / < 0/. Write PC" for the closure of
the set of periodic points x such that

f 1�;ˇ; .x/ � .1 � "/Cal.�; ˇ; /

(respectively, � .1 � "/Cal.�; ˇ; //, and P�" for the closure of the set of periodic points
such that

f 1�;ˇ; .x/ � .1C "/Cal.�; ˇ; /

(respectively, � .1C "/Cal.�; ˇ; //. Then both P�" and PC" have positive measure with
respect to the area form !.

Versions of Theorems 1.12 and 1.13 can be formulated for generic maps within any
rational Hamiltonian isotopy class and any corresponding primitive ˇ for which the Calabi
invariant can be defined.

1.3. Outline of proofs

1.3.1. Generic equidistribution theorems. There are two main ideas behind the proof
of Theorem 1.5. We give an outline of the proof and highlight these ideas where they
appear in the process. Fix a compact surface Z with non-empty boundary and an area
form !. We attach disks to the boundary components of Z and extend the area form to
produce a smooth, closed surface † with area form �; the boundary components form a
set L of disjoint embedded loops in †.

The goal is, given � 2 Diff.Z; !/, to find a C1-small perturbation �0 which has an
equidistributed sequence of orbit sets. The first main idea is that, if the capping disks have
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equal areas, then any � 2 Diff.Z; !/ can be extended to some  2 Diff.†; �/ which
preserves L. This is done in Section 4.2. This is useful because we can now work in the
setting of closed surfaces, which is more amenable to the techniques from Periodic Floer
homology featuring prominently in [14]. We then adapt the arguments of [14] to prove a
technical “near-equidistribution” result for area-preserving maps of † which preserve L.
This is done in Section 3.2; some technical transversality arguments are required in the
proof. Applying this result shows that there is some  0 2 Diff.†;�/ which is C1-close
to  and has a “nearly equidistributed” orbit set, that is an orbit set whose distribution
in the surface is almost uniform in a precise quantitative sense. The second main idea
is that, since  0 preserves L, the loops L separate the dynamics of  0 on Z from the
dynamics of  0 on† nZ. The perturbation  0 restricts to a map �0 2 Diff.Z;!/ which is
C1-close to �. Moreover, if O 2 P R. 

0/ is the previously found nearly equidistributed
orbit set, then a bit of careful analysis implies that O \Z is an orbit set of �0 which is
nearly equidistributed in Z. This is carried out in Section 4.4. A standard Baire category
argument then implies Theorem 1.5.

Theorem 1.6 is proved in the same manner as Theorem 1.5. The same argument works
because the extension construction in Section 4.2 preserves the rationality property if
the areas of † and Z are rationally dependent, which is easy to ensure, and because if
 0 2 Diff.†; �/ is a rational map which preserves L, its restriction �0 2 Diff.Z; !/ is
also rational.

1.3.2. Generic density theorems. Theorems 1.1 and 1.3 are, as mentioned before, easier
to prove than the generic equidistribution results. We outline the proof of Theorem 1.3;
the proof of Theorem 1.1 is similar.

Start with some rational �2 Diff.Z;!/ and extend it to a rational map 2 Diff.†;�/.
Given any open set U � †, the results of [5] imply that it suffices to perturb  by a small
Hamiltonian diffeomorphism, compactly supported in U , to create a periodic point in U .
Carrying this out for an open subset U � Z n @Z and restricting to Z produces a C1-
small Hamiltonian perturbation �0 of � which has a periodic point through U . Note that
the rationality property is preserved under Hamiltonian perturbation, so �0 is also rational.
This shows that a dense subset of Diff.Z; !/ has a periodic point in U , after which a
standard Baire category argument proves Theorem 1.3.

2. Preliminaries

This section introduces all of the necessary preliminaries for the arguments in this paper,
besides those stated in the introduction.

2.1. Area-preserving and Hamiltonian diffeomorphisms

Let † be any compact, oriented, smooth surface, possibly with boundary, equipped with
an area form �.

2.1.1. Hamiltonian diffeomorphisms of compact surfaces. Write C1.R =Z�†/ for
the space of smooth functions on R =Z�†. For any H 2C1.R =Z�†/ and t 2 R =Z,
we will use Ht to denote its restriction to ¹tº � †; this is a smooth function on †. If †
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has non-empty boundary, we require Ht to be locally constant on @† for every t . This
guarantees that the Hamiltonian vector field XHt is tangent to the boundary, so its flow,
denoted by ¹ tH ºt 2 R, is defined for all times.

For any � 2 Diff.†;�/ andH 2C1.R=Z�†/, we write �H 2 Diff.†;�/ to denote
the composition � ı  1H of � with the time-one map of H .

2.1.2. Maps preserving Lagrangians. A Lagrangian L is a set of pairwise disjoint,
embedded closed curves on †. A Lagrangian L D

Fn
iD1 i is inessential if there is a

set ¹DiºniD1 of pairwise disjoint embedded closed disks such that the component i is the
boundary of Di for every i D 1; : : : ; n.

Let L be any Lagrangian in † and write C1.†IL/ for the space of smooth functions
on † which are locally constant on L. We write Diff.†; �IL/ for the space of area-
preserving maps � 2 Diff.†;�/ such that �.L/D L. We write C1.R=Z�†IL/ for the
space of smooth functions H such that H.t;�/ 2 C1.†IL/ for every t 2 R =Z.

2.1.3. Families of Hamiltonians. For any N � 1, write C1.Œ0; 1�N � R =Z�†/ for
the space of smooth functions on Œ0; 1�N �R =Z�†. For any N � 1, H 2C1.Œ0; 1�N �
R =Z�†/ and � 2 Œ0; 1�N , we use H � to denote the function H.�;�/ 2 C1.R =Z�†/.
For any Lagrangian L in† andN � 1, write C1.Œ0; 1�N �R=Z�†IL/ for the space of
H in C1.Œ0; 1�N �R =Z�†/ such that H � 2C1.R =Z�†IL/ for every � 2 Œ0; 1�N .

2.1.4. Nondegeneracy. A periodic orbit S D ¹x1; : : : ; xd º is nondegenerate if the lin-
earized Poincaré return map D�d .x1/W Tx1†! Tx1† does not have 1 as an eigenvalue.
The map � is d -nondegenerate if any periodic orbit with period � d is nondegenerate,
and nondegenerate if it is d -nondegenerate for each d � 1.

2.2. The mapping torus construction

Fix any � 2 Diff.†; �/. Then the mapping torus, denoted by M� , is the quotient of
Œ0; 1�t � † by the identification .1; p/ � .0; �.p//. It carries a vector field R induced
by the vector field @t on Œ0; 1� �†. The periodic orbits of R correspond to periodic orbits
of �. The mapping torus also carries a closed two-form �� induced from � and a closed
one-form dt .

Write A WD
R
†
� for the area of †. A map � 2 Diff.†;�/ is rational if and only if

A�1 � Œ�� � 2 H
2.M� IR/ is a rational class. Given any two Hamiltonian isotopic maps �

and �0, � is rational if and only if �0 is.
This follows from direct computation which uses the following identification of their

mapping tori. Fix a Hamiltonian H such that �0 D � ı  1H . Define

MH WM� !M�0

as the map induced by the diffeomorphism

.t; x/ 7! .t; . tH /
�1.x//

on Œ0; 1� � †. Pulling back ��0 by MH , we find M �H��0 � �� D d.Hdt/, an exact
two-form. This implies ��0 is a real multiple of a rational class if and only �� is. The
maps MH will make frequent appearances below.
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Hamiltonian isotopy is an equivalence relation on Diff.†;�/, and an equivalence class
of this relation is called a Hamiltonian isotopy class. A rational Hamiltonian isotopy class
is one where every element in the class is rational. The following lemma states a necessary
and sufficient homological condition for � 2 Diff.†;�/ to be Hamiltonian.

Lemma 2.1. Suppose † has non-empty boundary. Fix a map � 2 Diff.†; �/ which is
isotopic through area-preserving diffeomorphisms to the identity. Then � is Hamiltonian
if and only if the two-form �� on the mapping torus M� is exact.

Proof. We start with the simpler direction. Suppose � is Hamiltonian and fix a Hamilto-
nianH 2C1.R=Z�†/ such that � D 1H . Then the family ¹ tH ºt 2 Œ0;1� gives an isotopy
from the identity to �. As discussed above, this defines a diffeomorphism

MH W R =Z�†!M�

pulling back�� to�C d.Hdt/. This is an exact two-form, so�� is exact. Now we prove
the other direction, which is more difficult, but similar to Banyaga’s proof that isotopies
of zero flux are Hamiltonian (Proposition II.3.1 in [2]). Suppose �� is exact. Our goal is
to show that � is Hamiltonian. We will do this in three steps.

Step 1. This step conducts some basic preparations using the assumption that �� is
exact. Let ¹�tºt 2 Œ0;1� denote any isotopy in Diff.†; �/ such that �0 D id and �1 D �,
and suppose it is constant near 0 and 1. Write

Xt WD
@

@t
�t

for the time-dependent vector field generating this isotopy, and write

�t WD �.�; Xt / for every t .

The area-preserving condition implies that each �t is a closed one-form. We define a
diffeomorphism

F W R =Z�†!M�

to be the map induced by the diffeomorphism

.t; x/ 7! .t; .�t /�1.x//

on Œ0; 1� �†. Then we compute

F ��� D �C �t ^ dt:

Since �� and � are exact, it follows that �t ^ dt is exact. Choose a primitive

� WD ft ^ dt � ˛t

where ¹ftºt 2 R =Z is a smooth loop of functions and ¹˛tºt 2 Œ0;1� is a smooth loop of closed
one-forms such that �t D d

dt
˛t C dft . By modifying � by the Hamiltonian diffeomorph-

ism  1
f

, we may assume without loss of generality that ft � 0 for each t . By replacing ˛t
with ˛t � ˛0 for each t , we may assume without loss of generality that ˛0 D ˛1 � 0.
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Since �t � 0 near t D 0 and t D 1, it follows from the latter assumption that ˛t � 0 near
t D 0 and t D 1. We also observe that since Xt is tangent to the boundary of †, the one-
forms �t vanish on the boundary of † for each t , which in turn implies that ˛t vanishes
on the boundary of † for each t .

Step 2. This step defines a new isotopy from the identity to �. For each t 2 Œ0; 1�, define
an autonomous vector field Zt by the equation �.�; Zt / D �..�t /�1/�˛t , and for each
s 2 Œ0; 1�, write �s;t for its time-s flow. Note that this flow exists for all time, since ˛t
vanishes on the boundary for each t , so Zt is always tangent to the boundary. For each
t 2 Œ0; 1�, set  t WD �1;t ı �t , and write Yt for the time-dependent vector field generating
this isotopy. Note that Zt � 0 for t near 0 and 1, so ¹ tºt 2 Œ0;1� is an area-preserving
isotopy from the identity to �, which is constant for t near 0 and 1. Use this to define a
new diffeomorphism GWR =Z�†!M� with G��� D �C Q�t ^ dt .

Step 3. This step shows that the new isotopy from the previous step is Hamiltonian.
We claim that the closed one-form Q�t is exact for every t . Observe that this is equivalent
to showing that the one-form

�t WD

Z t

0

Q�s ds

is exact for every t . In one direction, if Q�t is exact for every t , the Hodge theorem for Z
(see Section 5 in [12]) provides a smooth family of smooth functions ft such that dft D Q�t
for each t . It follows that, for each t ,

R t
0
fsds is a primitive for �t . Similarly, in the other

direction, given a smooth family of primitives ft for �t , the time derivative Pft is a primitive
for Q�t .

The one-form �t is exact if and only if it integrates to 0 on any closed smooth loop
 W Œ0; 1�! †. We computeZ



�t D

Z 1

0

Z t

0

Q�s. P.u/// dsdu D

Z 1

0

Z t

0

�. P.u/; Ys/ dsdu D

Z
 Œ0;t�./

�:

The second equality follows from the fact that Q�t D �.�; Yt / for each t . On the right-
hand side,  Œ0;t�./ denotes the cylinder swept out by  during the isotopy  from
times 0 to t . The third equality uses the fact that the isotopy preserves �. The cylin-
der  Œ0;t�./ is homotopic relative to its boundary to the concatenation of the cylin-
ders �Œ0;t�./ and �Œ0;1�;t .�t .//. We use this fact and Stokes’ theorem to simplify the
right-hand side further:Z



�t D

Z
�Œ0;t�./

�C

Z
�Œ0;1�;t .�t .//

� D

Z


� Z t

0

�s ds
�
�

Z
�t ./

.��t /�˛t

D

Z


� Z t

0

�s ds
�
� ˛t D 0:

Since the closed one-form Q�t is exact for every t and it is equal to�.�; Yt /, it follows
that the time-dependent vector field Yt is a Hamiltonian vector field for every t . Therefore,
the original map � is Hamiltonian.
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3. Area-preserving maps of closed surfaces preserving Lagrangians

Fix for the remainder of this section a closed, smooth oriented surface† with area form�

of areaB and a LagrangianL�†. The purpose of this section is to prove several technical
results moving towards generic density and equidistribution for area-preserving maps of†
preserving L. While we do not show that a generic area-preserving map preserving L has
dense/equidistributed periodic orbits, we establish technical results which get almost all
the way there.

3.1. Results towards generic density

We prove some propositions here which will be used later to prove Theorems 1.1 and 1.3.

Proposition 3.1. Fix a rational map � 2 Diff.†;�IL/. For any open set U � †, there
exists an arbitrarily C1-small HamiltonianH 2C1.R=Z�†IL/, compactly supported
in R =Z�U , such that the perturbed map �H D � ı  1H has a periodic point in U .

Proof. Choose a non-negative Hamiltonian H ¤ 0, which is compactly supported in
.0; 1/ � U � R =Z�†, and vanishes on R =Z�L. Repeating verbatim the arguments
of Section 5 in [5] implies that for some ı 2 Œ0; 1�, the perturbed map �ıH D � ı 1

ıH
has

a periodic point in U , which proves the proposition.
We sketch the main points of the argument here for the convenience of the reader1. It

uses spectral invariants from periodic Floer homology. There exists a sequence of positive
integers dm !1, depending only on the Hamiltonian isotopy class of �, and for each
ı 2 Œ0; 1� a corresponding sequences of real-valued invariants of �ıH called PFH spectral
invariants. This sequence is denoted by cdm.�

ıH /; each spectral invariant is equal to an
“action” of an orbit set of �ıH of period dm. The spectral invariants are quite sensitive to
Hamiltonian perturbations. For any HamiltonianK, the invariants for � and �K D � ı 1K
satisfy the following asymptotic relation:

(3.1) lim
m!1

cdm.�
K/ � cdm.�/

dm
D B�1

Z
M�

K dt ^�� > 0:

Suppose for the sake of contradiction that �ıH does not have a periodic point in U .
Formal properties of the PFH spectral invariants then imply that for every m, cdm.�

ıH /

does not depend on ı. The identity (3.1) implies that the spectral invariants cannot be con-
stant in ı as claimed, so we arrive at a contradiction and some �ıH must have a periodic
point in U .

Proposition 3.2. Fix a map �2 Diff.†;�IL/. Assume thatL is inessential. For any open
set U � †, there exists an arbitrarily C1-close map �0 2 Diff.†;�IL/ such that �0 has
a periodic point in U .

Proposition 3.2 is immediate from Proposition 3.1 and the following proposition,
which shows that area-preserving maps preserving L can be approximated by rational
ones, as long as L is inessential.

1For the experts: the argument given assumes for simplicity that the support of H is disjoint from the
reference cycles used to construct the PFH spectral invariants.
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Proposition 3.3. Assume that L is inessential. Then the set of rational maps preserving L
is C1-dense in Diff.†;�IL/.

Proof. The proof closely follows the argument for the full group Diff.†; �/ from [5].
For any given map � 2 Diff.†;�/, the cohomology class Œ�� � 2 H 2.M� IZ/ has pairing
with the image of the class Œ†� inH2.M� IZ/ equal to the area B of the surface. It follows
that � is rational if and only if the integral of �� on any 2-dimensional integral cycle
in M� is a rational multiple of B .

Choose a union of pairwise disjoint embedded disks D � † bounding the Lagran-
gian L. Write Z for the surface with boundary L constructed by removing the interior
of D. Fix any map � 2 Diff.†;�IL/. Define K to be the kernel of the map

�� � Id W H1.†IZ/! H1.†IZ/:

The Mayer–Vietoris sequence and the fact that L bounds a set of disjoint disks imply
that the map H1.ZIZ/! H1.†IZ/ induced by the inclusion Z ,! † is surjective. It
follows that there exists a set of oriented closed curves c1; : : : ; cm which form a basis
of K and are all contained in the interior of Z.

For each i 2¹1; : : : ;mº, there exists a smooth integral 2-chain Si in† such that @Si D
�.ci / � ci . Then for each i , we define a closed 2-chain S i in M� by summing the image
of Si in

¹0º �† �M�

with the image of Œ0; 1� � ci � Œ0; 1� �† after projection to the mapping torus. It follows
from the Mayer–Vietoris sequence thatH2.M� IZ/ is generated by Œ†� and ŒS1�; : : : ; ŒSm�.

Now fix any closed 1-form � on † which restricts to 0 along L. This defines a unique
vector field X� on † defined by the equation �.X�;�/ D �.�/. Write ¹ s

�
ºs 2 R for the

flow ofX�, which preserves� andL since � is closed and restricts to 0 alongL, and write
�0 D � ı  1

�
. The arguments of Section 5 in [5] produce a set of closed integral 2-chains

S 01; : : : ; S
0
m such that Œ†�; ŒS 01�; : : : ; ŒS

0
m� span H2.M�0 IZ/ and, moreover,Z

S 0i

��0 D

Z
Si

�� C

Z
ci

�

for every i . From what was said at the beginning of the proof, �0 is rational if and only ifZ
S 0i

��0 2 B �Q

for every i . Now the proposition follows if we show that there exist C1-small closed
1-forms � on † which both restrict to 0 along L and satisfy

(3.2)
Z
Si

�� C

Z
ci

� 2 B �Q

for every i .
To construct the 1-form �, we begin by choosing a contractible open neighborhood U

of the union D of disks bounding L which is disjoint from any of the curves ci . Then,
define a smooth cutoff function � which is equal to 1 on a compact subset E � U con-
taining D and 0 on the complement of an open neighborhood of E � U .
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The vector .
R
S1
�� ; : : : ;

R
Sm
��/ is approximated by vectors in B � Qn. Fixing an

arbitrary Riemannian metric on †, it follows from the Hodge theorem that there exists
a sequence of closed 1-forms ¹�0

k
º converging to 0 in the C1-topology such that each

member �0
k

satisfies (3.2) for every i . Since U is contractible, invoking the Poincaré
lemma produces a sequence of smooth functions ¹fkº on U , converging to 0 on com-
pact subsets, such that dfk D �k for every k. Define �k D �0k � d.�fk/ for each k. For
each k, the 1-form �k is closed, restricts to 0 along L, and has the same integrals as �0

k

on the curves ci . Moreover, since �0
k
! 0 and fk ! 0 in the C1 topology, it follows that

�k ! 0 as well. This completes the proof of the proposition.

3.2. Results towards generic equidistribution

We prove the following technical proposition, which asserts that “nearly equidistributed”
orbit sets can be created by C1-small perturbations in Diff.†;�IL/. It will be used later
to prove Theorems 1.5 and 1.6.

Proposition 3.4. Fix any rational � 2 Diff.†; �IL/. Fix any " > 0 and smooth func-
tions f1; : : : ; fN on † which are locally constant on L. Then we have, for C1-dense
H 2C1.R =Z�†IL/, that the perturbation �H has an orbit set O such that for each
i 2 ¹1; : : : ; N º, ˇ̌̌O.fi /

jO j
� B�1

Z
†

fi �
ˇ̌̌
< ":

The proof of Proposition 3.4 is identical to the proof of Proposition 4.2 in [14], repla-
cing the use of the generic nondegeneracy result (Lemma 3.2 in [14]) with Lemma 3.5
below. The proof, just like the proof of Proposition 3.1, uses PFH spectral invariants. The
rough strategy is to substitute K D H � into the asymptotic formula (3.1), where �H

�

are Hamiltonian perturbations parameterized by � 2 Œ0; 1�N , and then differentiate with
respect to � . We refer the reader to [5] or Section 2 of [14] for a more detailed discussion
of PFH spectral invariants and the Weyl law (3.1). The familyH � is constructed by taking
a C1-small perturbation of an N -parameter family

F � D

NX
iD1

�ifi

of Hamiltonians explicitly constructed from f1; : : : ; fN . It is essential that the func-
tions f1; : : : ; fN are locally constant on L so that F � is locally constant on L for every
� 2 Œ0; 1�N . We require that the perturbed maps �H

�
are nondegenerate for a full measure

set of � 2 Œ0;1�N . The existence of a suitable perturbationH �2C1.Œ0;1�N �R=Z�†IL/
requires Lemma 3.5 below.

3.2.1. Generic nondegeneracy. We establish here some transversality results which are
necessary to prove Proposition 3.4 and Theorems 1.5 and 1.6.

Lemma 3.5. Fix any N � 1 and � 2 Diff.†;�IL/. Then we have that, for C1-generic
H 2 C1.Œ0; 1�N � R = Z �†I L/, there exists a full measure set of � 2 Œ0; 1�N such
that �H

�
is nondegenerate.
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Lemma 3.6. Fix any � 2 Diff.†;�IL/ and any finite set S1; : : : ; Sk of periodic orbits
of �. Then there exist arbitrarily C1-small Hamiltonians H 2C1.R =Z�†IL/ such
that, for each i 2 ¹1; : : : ; kº, Si is a nondegenerate periodic orbit of �H .

Lemma 3.6 follows from the same constructions used to prove Lemma 3.5 and we
omit the proof. Lemma 3.5 follows from combining the following two lemmas. They
respectively address the nondegeneracy of periodic points inside L and outside L; the
perturbation schemes required in each case are slightly different.

Lemma 3.7. Fix any N � 1 and � 2 Diff.†;�IL/. Then we have that, for C1-generic
H 2C1.Œ0; 1�N � R =Z�†IL/, there exists a full measure set of � 2 Œ0; 1�N such that
any periodic orbit of �H

�
which is contained in L is nondegenerate.

Lemma 3.8. Fix any N � 1, and � 2 Diff.†;�IL/. Then we have that, for C1-generic
H 2C1.Œ0; 1�N � R =Z�†IL/, there exists a full measure set of � 2 Œ0; 1�N such that
every periodic orbit of �H

�
which is not contained in L is nondegenerate.

3.2.2. Proof of Lemma 3.7. The proof of Lemma 3.7 proceeds in 4 steps.
Step 1. For l � 3, define N l to be the space of tuples .H;�;S/whereH 2C l .Œ0;1�N �

R=Z�†IL/, � 2 Œ0; 1�N , and S is a simple periodic orbit of �� which lies inL. The space
of such simple periodic orbits is topologized as a subset of the disjoint union

F
d�1L

d of
products of L, which gives N l a natural topology. For any d � 1, we denote by N l;d the
connected component of N l consisting of tuples .H; �; S/ with jS j D d . This step proves
the following lemma using the Banach manifold implicit function theorem.

Lemma 3.9. For any l � 3 and d � 1, the space N l;d has the structure of a Banach
manifold of class C l�1 such that the projection

N l;d
! C l .Œ0; 1�N �R =Z�†IL/

is a C l�1 Fredholm map of index N .

Proof of Lemma 3.9. Let �d � Ld denote the “thick diagonal” consisting of tuples of
points .x1; : : : ; xd / 2 Ld such that xi D xj for some i ¤ j . Define a map

‰ W C l .Œ0; 1�N �R =Z�†IL/ � Œ0; 1�N � .Ld n�d /! .Ld /2

sending a tuple .H; �; S D ¹x1; : : : ; xd º) to the pair of sets

..x1; : : : ; xd /; .�
� .xd /; �

� .x1/; : : : ; �
� .xd�1///:

WriteZ � .Ld /2 for the diagonal. Then by definition, N l;d D‰�1.Z/. The lineariz-
ationD‰ sends a variation h in theH direction at a point .H;�;S D¹x1; : : : ;xd º/2N l;d

to the pair

..0; : : : ; 0/; .Vh.xd /; Vh.x1/; : : : ; Vh.xd�1/// 2
� dM
iD1

TxiL
�2
:
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Here, Vh denotes the derivative @zjzD0.� ı �1.Hz/� / for any family ¹Hzºz2.�1;1/ in

C l .Œ0; 1�N �R =Z�†IL/ such that @
@z
jzD0Hz D h. It is straightforward to choose h so

that

.Vh.xd /; Vh.x1/; : : : ; Vh.xd�1// 2

dM
iD1

TxiL

is any given tuple of tangent vectors. For a given tuple .H; �; S/, we can choose a family
¹Hzº which varies the time-one map of the HamiltonianH in the neighborhood of a point
xi 2 S by a small hyperbolic map fixing xi , and leaving L invariant. This produces h so
that Vh.xi / ¤ 0 and Vh.xj / D 0 for all j ¤ i . A similar construction is written out in
more detail in the proof of Lemma 3.10 below.

It follows that the map ‰ is transverse to the diagonal Z. The implicit function the-
orem for Banach manifolds implies that N l;d is a Banach submanifold of class C l�1 and
codimension d in C l .Œ0; 1�N �R =Z�†IL/ � Œ0; 1�N � .Ld n�d /. The projection

C l .Œ0; 1�N �R =Z�†IL/ � Œ0; 1�N � .Ld n�d /! C l .Œ0; 1�N �R =Z�†IL/

is Fredholm and C l of index N C d , from which we conclude that the projection

N l;d
! C l .Œ0; 1�N �R =Z�†IL/

is Fredholm and C l�1 of index N .

Step 2. Define N l
bad to be the set of points .H; �; S/ 2 N l for which S or one of

its iterates is not nondegenerate. We denote by N
l;d

bad the connected component of N l
bad

consisting of tuples .H; �; S/ with jS j D d . This step proves the following lemma.

Lemma 3.10. For any l � 3 and d � 1, the space N
l;d

bad is a countable union of C l�2

Banach submanifolds of N l;d of codimension at least 1.

Proof of Lemma 3.10. We define a universal fiber bundle E ! N l;d of class C l�1 by
setting its fiber at .H; �; S D ¹x1; : : : ; xd º/ to equal the group of linear automorphisms
of Tx1L, which is naturally isomorphic to the multiplicative group R� of nonzero real
numbers. There exists a natural C l�1 section ˛WN l;d ! E taking .H; �; S/ to the restric-
tion of the return map to Tx1L.

It is convenient to trivialize E . Define a C l�1-smooth map

‰ W E ! R�

sending a tuple .H; �; S D ¹x1; : : : ; xd º; �/, where � is a linear automorphism of Tx1L, to
its determinant � 2R�. For a given tuple .H;�;S/, S and all its iterates are nondegenerate
if and only if .ˆ ı ˛/.H;�;S/ 62 ¹�1;1º. This is becauseL is �H

�
-invariant, so the tangent

space Tx1L is invariant under the return map of S , which implies that an iterate of S is
degenerate if and only if the return map acts by multiplication by˙1 on Tx1L. The lemma
then follows from showing that 1 and �1 are regular values of ‰ ı ˛ and then applying
the implicit function theorem.
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The fact that 1 and �1 are regular values of‰ ı ˛ follows from the fact that the linear-
ization D.‰ ı ˛/ does not vanish at any point, which we now prove. Fix any .H; �; S D
¹x1; : : : ; xd º/ 2N l;d . Write  for the component ofL containing x1. The Weinstein tubu-
lar neighborhood theorem shows that for some small ı > 0, there is a smooth embedding

F W .R =Z/t � .�ı; ı/s ! †

satisfying the following properties:
• F.0; 0/ D x1 and the map t 7! F.t; 0/ parameterizes  .
• F is a diffeomorphism onto an open neighborhood of  which is disjoint from any

other component of L.
• F �� D ds ^ dt:

Since �� preserves L, there is some positive ı0 � ı such that the conjugated map

F �1 ı .�� /d ı F W R =Z�.�ı0; ı0/! R =Z�.�ı; ı/

is a well-defined smooth embedding preserving the area form ds ^ dt . Define an autonom-
ous Hamiltonian

G W R =Z�.�ı0; ı0/! R;

compactly supported in a small neighborhood of .0; 0/, which satisfies the formulaG.t; s/
D�st sufficiently close to .0;0/. Note that the functionG ıF �1 extends by zero to a well-
defined autonomous Hamiltonian on†which vanishes onL. For any z 2 .�1;1/, write z
for the time one map of 2zG. If the support ofG is sufficiently close to .0;0/, we conclude
that for any z 2 .�1; 1/, the Hamiltonian diffeomorphism �� ı  z has S as a simple
periodic orbit and the return map at x1 2 L has determinant � � exp.z/ on Tx1L, where
� D .‰ ı ˛/.H; �; S/. We fix a family of Hamiltonians ¹Hzºz2.�1;1/ in C l .Œ0; 1�N �
R =Z�†IL/ so that the time one map of H �

z equals �� ı  z for every z2.�1; 1/.
Then

@

@z
jzD0.‰ ı ˛/.Hz ; �; S/ D � ¤ 0;

so the linearization D.‰ ı ˛/ does not vanish at any point in the domain as desired. This
concludes the proof of the lemma.

Step 3. This step proves the following lemma.

Lemma 3.11. For any l�3, there exists a generic subset of H2C l .Œ0;1�N�R=Z�†IL/
such that

measure.¹� 2 Œ0; 1�N j any periodic orbit of �� in L is nondegenerateº/ D 1:

Proof of Lemma 3.11. Introduce the notation

… W N l;d
! C l .Œ0; 1�N �R =Z�†IL/

for the projection. Lemmas 3.9 and 3.10, along with the Sard–Smale theorem, imply that
there is a generic setEd � C l .Œ0; 1�N �R=Z�†IL/ satisfying the following properties:
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• for anyH 2Ed , the preimage…�1.H/ is a manifold of classC l�1 with dimensionN ;

• for anyH in Ed , the preimage…�1.H/\N
l;d

bad is a countable union of submanifolds
of class C l�2 of …�1.H/ with codimension at least 1.

Fix H 2Ed . Sard’s theorem implies that there is a full measure set of � 2 Œ0; 1� which
are simultaneously regular values of the projections …�1.H/! Œ0; 1�N and …�1.H/ \
N
l;d

bad ! Œ0; 1�N . For each regular value � , the preimage of � under this projection does
not intersect …�1.H/ \N

l;d
bad since it is a union of submanifolds of dimension � N � 1.

It follows by definition that, for any H 2Ed , any orbit of �� lying in L is nondegenerate
for a full measure set of � 2 Œ0; 1�N . Taking the intersection of the sets Ed across all d
yields the generic set desired by Lemma 3.11.

Step 4. This step concludes the proof by combining Lemma 3.11 with a quick formal
argument. It is identical to the argument proving Lemma 3.2 in [14] from the counterpart
of Lemma 3.11 in that work. For any integer d � 1 and ı > 0, write E.d; ı/ for the set of
Hamiltonians in C1.Œ0; 1�N �R =Z�†IL/ such that, for any H 2E.d; ı/,

(3.3) measure.¹�2 Œ0; 1�N j any orbit of �� in L of period �d is nondegenerateº/>1�ı:

We claim that E.d; ı/ is open and dense in C1.Œ0; 1�N �R =Z�†IL/. It is clearly
open. For any l � 3, the fact that C l functions may be approximated in the C l topo-
logy by smooth functions and Lemma 3.11 imply that E.d; ı/ is dense in C l .Œ0; 1�N �
R =Z�†IL/. It follows that it is dense in C1.Œ0; 1�N � R =Z�†IL/ as desired. Now
fix a sequence dN !1 and a sequence ıN ! 0. Then the set

E WD
\
N�1

E.dN ; ıN /

is the generic set desired by Lemma 3.7.

3.2.3. Proof of Lemma 3.8. Fix N � 1 and � 2 Diff.†; �IL/ as in the statement of
the lemma. For any l � 0, write C l .Œ0; 1�N � R =Z �†I L/ for the Banach space of
functions of class C l on Œ0; 1�N �R=Z�† which are locally constant on L. The proof of
Lemma 3.8 is a minor modification of the proof of Lemma 3.2 in [14]. It is a consequence
of the following three lemmas.

Lemma 3.12. For any l � 3, there is a generic set of H 2C l .Œ0; 1�N � R =Z�†IL/
such that

measure.¹� 2 Œ0; 1�N j any periodic orbit of �� in † n L are nondegenerateº/ D 1:

For any l � 3, define Ml to be the space of tuples .H; �; S/ where H 2C l .Œ0; 1�N �
R = Z �†I L/, � 2 Œ0; 1�N , and S is a simple periodic orbit of �� which does not lie
in L. The space of such simple periodic orbits is topologized as a subset of the disjoint
union

F
d�1.† n L/

d of products of † n L, which gives Ml a natural topology. For any
d � 1, we denote by Ml;d the connected component of Ml consisting of tuples .H; �; S/
with jS j D d .
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Lemma 3.13. For any l � 3 and d � 1, the space Ml;d has the structure of a Banach
manifold of class C l�1 such that the projection

Ml;d
! C l .Œ0; 1�N �R =Z�†IL/

is a C l�1 Fredholm map of index N .

Define Ml
bad to be the set of points .H; �; S/ 2Ml for which the return map of �H

�

at S has a root of unity as an eigenvalue. For any d � 1, we denote by M
l;d
bad the connected

component of Ml
bad consisting of tuples .H; �; S/ with jS j D d .

Lemma 3.14. For any l � 3 and d � 1, the space M
l;d
bad is a countable union of C l�2

Banach submanifolds of Ml;d of codimension at least 1.

Lemmas 3.12, 3.13, and 3.14 are counterparts of Lemmas 5:2, 5:3 and 5:4 in [14],
respectively, and they are proved by repeating the proofs of these lemmas. The only
new difficulty in our setting is that we can only vary the map by Hamiltonian perturb-
ations which are locally constant on L, which a priori may not be a large enough set of
perturbations to guarantee transversality. However, locally at any point which does not
intersect L, an arbitrary Hamiltonian perturbation can be replaced by a Hamiltonian per-
turbation which is locally constant onL. As a result, we find that the space of Hamiltonian
perturbations which are locally constant in L is large enough to guarantee nondegeneracy
for periodic orbits which do not lie in L. Lemma 3.8 now follows from Lemma 3.12 by
using an analogous argument to the one deducing Lemma 3.7 from Lemma 3.11.

4. Area-preserving maps of compact surfaces with boundary

Fix for the remainder of this section a compact, smooth surface Z with area form ! and
boundary L D @Z. Write A WD

R
Z
! for the area of Z.

4.1. Capping off

Fix anyB >A. By attaching disks toL, we construct a smooth surface† such thatL is an
inessential Lagrangian inside of†, and an area form� extending ! with

R
†
�DB . Write

1; : : : ; n for the connected components of L. By the Weinstein tubular neighborhood
theorem, there exist ı > 0 and for each 1 � i � n, an embedding

�i W Œ0; ı/s � .R =Z/t ,! Z;

such that �i .0;�/ parameterizes i and ��i ! D ds ^ dt . Set

r0 WD

r
B � A

n�
and r1 WD

r
B � AC nı

n�
,

so that
�r20 D

B � A

n
and �r21 D

B � A

n
C ı:
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Let A�C denote the half-closed annulus defined in polar coordinates .r;�/ by r 2 Œr0; r1/,
and let D � C denote the open disk of radius r1. The map

 W .s; t/ 7!
�q

.�r20 C s/=�; 2�t
�

is a symplectomorphism .Œ0; ı/ �R =Z; ds ^ dt/! .A; rdr ^ d�/. For each i , glue the
disk D onto Z via the embedding �i ı  �1WA ,! Z. This produces a smooth surface †,
and the area form ! extends to an area form � of area B , which is equal to rdr ^ d� on
any copy of D.

4.2. An extension result

The following proposition, once established, will allow us to use the results of Section 3
to conclude our main theorems.

Proposition 4.1. For any map �0 2 Diff.Z; !/, there exists a map � 2 Diff.†; �IL/
which restricts to �0 on Z.

The proof of Proposition 4.1 relies on a series of lemmas.

Lemma 4.2. Fix �0 2 Diff.Z; !/ and assume that each connected component of @Z
is �0-invariant. Then �0 is isotopic through area-preserving diffeomorphisms to some
 0 2 Diff.Z; !/ which coincides with the identity map near @Z.

Proof. By the Dehn–Lickorish theorem, there exists a smooth path ¹�sºs2Œ0;1� of diffeo-
morphisms such that � D �0 and  0 WD �1 is a composition of compactly supported,
area-preserving Dehn twists. For convenience, we assume this path is constant near s D 0
and s D 1. We use a Moser argument to deform the family �s into a family in Diff.Z; !/
while keeping the endpoints fixed.

For any s 2 Œ0; 1�, write !s WD ��s !. For any s 2 Œ0; 1� and t 2 Œ0; 1�, write

!s;t WD .1 � t /!s C t !:

Note that each of these are a smooth area form on Z. Because Z has non-empty bound-
ary, there exists some one-form ˇ such that ! D dˇ. Choose a one-parameter family
¹ˇsºs 2 Œ0;1� of smooth one-forms such that dˇs D !s for each s 2 Œ0; 1� and ˇs � ˇ near
s D 0 and s D 1. Write ˇs;t WD .1 � t /ˇs C tˇ for each s 2 Œ0; 1� and t 2 Œ0; 1�. We now
claim that there exists a smooth two-parameter family of diffeomorphisms ¹�s;tºs;t2Œ0;1�
such that (i) �s;t D IdZ near s D 0 and s D 1, (ii) �s;0 D IdZ for any s 2 Œ0; 1�, and

(4.1) ��s;t !s;t D ! for any s and t :

This claim, if true, implies the lemma, since the family ¹�s;1 WD �s ı �s;1ºs 2 Œ0;1� is an
isotopy in Diff.Z; !/ from �0 to  0. For each fixed s2 Œ0; 1�, let ¹Xs;tºt 2 Œ0;1� be the
time-dependent vector field generating the isotopy ¹�s;tºt 2 Œ0;1�. For any fixed s 2 Œ0; 1�,
differentiate (4.1) with respect to t to find

LXs;t!s;t C ! � !s D 0:

Expand the left-hand side using Cartan’s formula to deduce

(4.2) d.!s;t .Xs;t ;�/C ˇ � ˇs/ D 0:



A. Pirnapasov and R. Prasad 20

Since each !s;t is an area form, for any fixed s and t there exists a unique vector
field Xs;t such that !s;t .Xs;t ;�/ D ˇs � ˇ. If we choose Xs;t to solve this equation, then
the two-parameter family ¹�s;tºs;t2Œ0;1� has the following properties. Since !s;t varies
smoothly in s and t and ˇs varies smoothly in s, the vector fields ¹Xs;tº vary smoothly
in s and t , and therefore ¹�s;tºs;t 2 Œ0;1� varies smoothly in s and t . Since !s;t � ! and
ˇs � ˇ near s D 0 and s D 1, it follows that Xs;t � 0 near s D 0 and s D 1, and therefore
�s;t D IdZ near s D 0 and s D 1. It is also immediate from the definition that �s;0 D IdZ
for each s 2 Œ0; 1�. Finally, the identity (4.2) implies (4.1). This proves the lemma.

Lemma 4.3. Fix any  2 Diff.Z; !/ which is isotopic to the identity through area-
preserving diffeomorphisms. Then there exists  1 2 Diff.Z; !/, which coincides with the
identity near @Z, such that the map  1 ı  is a Hamiltonian diffeomorphism.

Proof. Fix an isotopy ¹�tºt 2 Œ0;1�, constant near t D 0 and t D 1, such that �0 D IdZ
and �1 D  . Write Xt for the time-dependent vector field generating this isotopy, and
for each t set �t WD !.�; Xt /. These are closed one-forms which restrict to 0 along the
boundary, and vanish identically if t is near 0 or 1. Fix any small neighborhood U of @Z
which retracts onto @Z. Then there exists a smooth family ¹ftºt 2 Œ0;1� of smooth functions
on U , equal to 0 on @Z and equal to 0 for t near 0 and 1, such that �t jU D dft for every t .
This family is constructed using the relative Poincaré lemma for the submanifold @Z.
This lemma gives a continuous map sending smooth one forms on U that vanish on @Z to
smooth primitives that also vanish on @Z. Choose a cutoff function �WZ ! Œ0; 1� which
is equal to 1 on a neighborhood of @Z and compactly supported in U . Define a time-
dependent Hamiltonian Ht WD �ft and let � be its time-one map. Then � agrees with  
in a smaller neighborhood of @Z. The map  1 WD � ı  �1 satisfies the conditions of the
lemma.

Lemma 4.4. Write the inessential Lagrangian L � † as a disjoint union
Sk
iD1 i of

embedded curves. Let � W ¹1; : : : ; kº ! ¹1; : : : ; kº be any bijection from the set ¹1; : : : ; kº
to itself. Then there exists g 2 Diff.†; �IL/ which permutes the components of L as
prescribed by � . That is, for any i 2 ¹1; : : : ; kº, we have g.i / D �.i/.

Proof. For each i , write Di for the embedded closed disk bounded by i . Note that, by
construction, each of theDi have the same area. It is a straightforward consequence of the
isotopy extension theorem that there exists a diffeomorphism g0W†!†whose restriction
to Di is a diffeomorphism onto D�.i/. We now use a Moser-type argument to modify g0
to an area-preserving map which satisfies the same property. Write

�0 WD g
�
0�:

The two-form���0 integrates to 0 over†, so it is exact. Choose any primitive �0. Note
also that Z

Di

�0 D

Z
D�.i/

� D

Z
Di

�

for every i , so Stokes’ theorem implies that
R
i
�0 D 0 for every i . This shows that the

restriction of �0 to each of the loops i is exact. It follows that there exists a smooth
function f , compactly supported in a neighborhood of L, such that df jL � �0jL. Write
� WD �0 � df . The one-form � is a primitive of � ��0 which restricts to 0 along L.
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The rest of the proof follows well-known arguments. For each t 2 Œ0; 1�, write

�t WD .1 � t /�0 C t �:

Now define a time-dependent vector field ¹Vtºt 2 Œ0;1� implicitly by the Moser equation
�t .Vt ;�/D�� . Then the isotopy ¹�tºt 2 Œ0;1� it generates satisfies ��t �t D�0 for every t .
Since � restricts to 0 along L, it follows that Vt is tangent to L, so the isotopy fixes each
component of L. The map g WD g0 ı .�1/�1 is the area-preserving map required by the
lemma.

Proof of Proposition 4.1. We prove the proposition in two steps.
Step 1. We construct the extension under the assumption that extensions exist for

maps which preserve each boundary component of Z. By Lemma 4.4, there exists g 2
Diff.†; �IL/ which permutes the components of L in the same way that �0 permutes
them. Write g0 for its restriction to Z. Then  0 WD �0 ı g

�1
0 2 Diff.Z; !/ leaves each

boundary component of Z invariant. Fix an extension  2 Diff.†; �IL/ of  0. Then
� WD  ı g 2 Diff.†;�IL/ extends �0.

Step 2. We construct the extension under the assumption that each boundary com-
ponent of Z is preserved by �0. By Lemma 4.2, there exists some compactly suppor-
ted  0 2Diff.Z; !Z/ isotopic to �0 through area-preserving diffeomorphisms. Applying
Lemma 4.3 to the map  �10 ı �0, which is isotopic to the identity, there is a compactly
supported map  1 2Diff.Z; !Z/ such that  1 ı  �10 ı �0 is Hamiltonian. Fix a smooth
Hamiltonian function H WR =Z�Z ! R such that the time-one map  1H of the Hamilto-
nian flow is equal to  1 ı  �10 ı �0.

Fix a smooth extension zH WR =Z�†! R of H to the closed surface †. Write �1 2
Diff.†;�/ for its time-one map. Note that since  0 and  1 are both compactly supported
in the interior ofZ, the restriction of the map �1 toZ coincides with �0 in a neighborhood
of @Z. It follows that the map � 2 Diff.†;�/ specified by

�.x/ WD

´
�0.x/ if x 2 Z;
�1.x/ if x … Z;

is well-defined and smooth. This map is the desired extension of �0.

We conclude with a final lemma determining when extensions of rational maps are
rational.

Lemma 4.5. Fix � 2 Diff.†; �IL/ and write �0 2 Diff.Z; !/ for its restriction to Z.
Let A and B denote the areas of Z and †, respectively, as introduced in Section 4.1.
Assume that B is a rational multiple of A. Then � is rational if and only if �0 is.

Proof. Fix any collection of 1-cycles c1; : : : ; ck in Z which are disjoint from L and
generate ker.�� � id/ � H1.†IZ/. Fix a collection of 1-cycles 1; : : : ; ` � L which
generate ker..�jL/� � id/ �H1.LIZ/. For each i 2¹1; : : : ; kº, define a 2-cycle Si �M�

by capping off the image of Œ0; 1� � ci � Œ0; 1� �† in M� with a 2-chain in ¹0º �† with
boundary �.ci /� ci . For each j 2 ¹1; : : : ; `º, the image of Œ0; 1� � j � Œ0; 1� �† inM�

is a 2-cycle Tj .
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The cycles Si are contained in M�0 , while the cycles Tj are contained in @M�0 . It fol-
lows from the Mayer–Vietoris sequence thatH2.M� IZ/ is generated by Œ†�;ŒS1�; : : : ;ŒSk �,
while H2.M�0 IZ/ is generated by ŒS1�; : : : ; ŒSk �; ŒT1�; : : : ; ŒT`�.

The two-form ��0 on M�0 is the restriction of �� to M�0 . Also, it restricts to 0
along @M�0 , so it integrates to 0 on each cycle Tj . It follows that the map �0 is rational if
and only if

A�1
Z
Si

�� 2Q

for all i . Since B is a rational multiple of A, this is true if and only if B�1
R
Si
�� 2Q for

all i . The integral of �� over † is equal to B , so this is true if and only if � is rational.
Following this chain of implications yields the desired outcome, that � is rational if and
only if �0 is rational.

We assume from now on that B is a rational multiple of A, so that Lemma 4.5 is
relevant.

4.3. Proof of generic density

We prove Theorems 1.1 and 1.3 here. They follow from Propositions 4.6 and 4.7 below
by standard Baire category arguments. These propositions respectively follow from Pro-
positions 3.1 and 3.2 above.

Proposition 4.6. Fix a rational map �02 Diff.Z;!/. For any open setU �Z n @Z, there
exists an arbitrarily C1-small HamiltonianH 2C1.R=Z�Z/, compactly supported in
R =Z�U , such that the perturbed map �H0 D �0 ı  

1
H has a periodic point in U .

Proof. Extend �0 to some � 2 Diff.†; �I L/ using Proposition 4.1. By Lemma 4.5,
� is rational. Proposition 3.1 shows that there is an arbitrarily C1-small Hamiltonian
H 2 C1.R =Z �Z/, compactly supported in R =Z �U , such that the perturbed map
�H D � ı  1H has a periodic point in U . The restriction �H0 D �0 ı  

1
H therefore has a

periodic point in U and the proposition follows.

Proposition 4.7. Fix a map �0 2 Diff.Z; !/. For any open set U � Z n @Z, there exists
an arbitrarily C1-close map  0 2 Diff.Z; !/ which has a periodic point in U .

Proof. We extend �0 to some � 2 Diff.†; �IL/ using Proposition 4.1. Proposition 3.2
provides a C1-close map  2 Diff.†;�IL/with a periodic point through U . The restric-
tion  0 2 Diff.Z; !/ of  to Z is the desired C1-small perturbation of �0.

4.4. Proof of generic equidistribution

We prove Theorems 1.5 and 1.6 using Proposition 3.4 from the previous section. As pre-
paration, we introduce the following notation. Fix any � 2 Diff.†;�IL/.

For every orbit set

O D

NX
kD1

ak � Sk 2 P R.�/;
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we define
OZ
WD

X
k such that Sk�Z

ak � Sk

to be the orbit set constructed from O by taking only those orbits Sk which lie in Z � †.
Writing �0 2 Diff.Z;!/ for the restriction of � to Z, we have OZ

2 P R.�0/, that is, it is
an orbit set for �0. We begin with a proof of Theorem 1.6.

Proof of Theorem 1.6. Fix a rational �0 2 Diff.Z; !/ and write Œ�0� � Diff.Z; !/ for
its Hamiltonian isotopy class. Fix any sequence of smooth functions ¹fiºi�1 which are
C 0-dense inC 0.Z/, and assume for the sake of convenience later in the proof that f1 � 1.
Fix a sequence ¹"N ºN�1 of positive real numbers, each less than 1, limiting to 0 as
N !1. For any fixed N � 1, write HN for the space of maps  0 2 Diff.Z; !/ which
are Hamiltonian isotopic to �0 ( 0 2 Œ�0�) and have a nondegenerate orbit set O such that
for each i 2 ¹1; : : : ; N º, ˇ̌̌O.fi /

jO j
� A�1

Z
Z

fi !
ˇ̌̌
< "N :

The proof will proceed in five steps. The first step shows that, for any N � 1, HN is
open in Œ�0�. The next three steps, which constitute the main new part of the proof, show
that HN is dense in Œ�0�. The last step finishes off the proof of the theorem.

Step 1. Fix any N � 1. We observe that by definition, HN is open in Œ�0� for any
N � 1. If  0 2 HN , with O a nondegenerate orbit set such thatˇ̌̌O.fi /

jO j
� A�1

Z
Z

fi !
ˇ̌̌
< "N

for every i 2 ¹1; : : : ; N º, then the following is true. Since O is nondegenerate, any suffi-
ciently close  1 2HN will have a nondegenerate orbit set O0 which is very close to O. It
follows immediately that it will satisfy the same inequality as above. This shows HN is
open.

Step 2. The next three steps show that HN is dense in Œ�0�. This step performs some
required setup. Let ¹ıj ºj�1 be a sequence of small positive constants, which we will spe-
cify later. Define two sequences ¹�j ºj�1 and ¹�j ºj�1 of cutoff functions as follows. For
each j � 1, �j and �j are smooth functions from † to Œ0; 1�. Also write

gj WD �j .1 � �j / for every j .

We assume the functions �j and �j satisfy the following properties:
• For each j � 1, �j is compactly supported in Z n L, and �j � 1 on an open neigh-

borhood of Z � †.
• As j !1, the restrictions of the functions �j to Z n L converge uniformly on com-

pact subsets of Z n L to the constant 1.
• As j !1, the restrictions of the functions �j to † nZ converge uniformly on com-

pact subsets of † nZ to the constant 0.
• The integral cj D

R
†
gj � is bounded above by ıj "j for each j .



A. Pirnapasov and R. Prasad 24

Let ¹fiºN�1 be the sequence of functions on Z fixed at the start of the proof. For
each i; j � 1 define a smooth function fi;j on † which is equal to �jfi on Z n L and 0
elsewhere. Also define gi;j to be the smooth function which is equal to gjfi on Z and 0
elsewhere. Note that for any x 2 Z and any j , fi .x/ D fi;j .x/C gi;j .x/. Note also that
the functions fi;j and the functions gj (but not necessarily the functions gi;j ) are locally
constant on L.

Step 3. Fix 0 2 Œ�0�, and use Proposition 4.1 to define an extension 2Diff.†;�IL/.
Apply Proposition 3.4 to the set of N C 1 functions

¹fi;N j i D 1; : : : ; N º [ ¹gN º

with the constant " D ıN "N . By Lemma 4.5,  is rational. This implies that there exist a
C1-small Hamiltonian H 2C1.Œ0; 1� �†IL/ and an orbit set O 2P R. 

H / such that

(4.3)
ˇ̌̌O.fi;N /
jO j

� B�1
Z
†

fi;N �
ˇ̌̌
< ıN "N

for any i 2 ¹1; : : : ; N º, and

(4.4)
ˇ̌̌O.gN /
jO j

� B�1 cN

ˇ̌̌
< ıN "N :

Note in particular that since f1 � 1,

(4.5)
ˇ̌̌O.�N /
jO j

� B�1
Z
†

�N �
ˇ̌̌
< ıN "N :

for each j 2 ¹1; : : : ; N º.
Step 4. Fix any i 2 ¹1; : : : ; N º. We now estimate the averages of the function fi

over OZ , where O is the orbit set from the previous step and OZ is the orbit set con-
structed by summing the simple orbits from O which lie in Z. We split up

OZ.fi /

jOZ
j
D

OZ.fi /

jO j
�
jO j

jOZ
j

and estimate the two terms on the right-hand side separately. To estimate the first term, we
split up fi D fi;N C gi;N and estimate the resulting terms using the inequalities from the
previous step:ˇ̌̌OZ.fi /

jO j
� B�1

Z
†

fi �
ˇ̌̌
�

ˇ̌̌O.fi;N /
jO j

� B�1
Z
†

fi �
ˇ̌̌
C

OZ.gi;N /

jO j

� B�1
Z
†

gi;N �C ıN "N C
OZ.gi;N /

jO j

� B�1
Z
†

gi;N �C ıN "N C kfikC 0.B
�1cN C ıN "N /

� 2.B�1kfikC 0 cN C ıN "N / � 2.B
�1
kfikC 0 C 1/ıN "N :(4.6)
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The first inequality is a consequence of the triangle inequality and the identity

OZ.fi / D O.fi;N /COZ.gi;N /:

The second inequality uses (4.3) to bound the difference between the average of fi;N
over O and the average of fi over †. The third inequality uses the bound OZ.gi;N / �

kfikC 0 O.gN / and (4.4).
Next, we estimate the quotient jOZ

j=jO j. This proceeds in a similar manner to (4.6),
except now we use the fact that 1 D �N C gN on Z and the inequality (4.5):

(4.7)

ˇ̌̌
jOZ

j

jO j
�
A

B

ˇ̌̌
�

ˇ̌̌O.�N /
jO j

�
A

B

ˇ̌̌
C

OZ.gN /

jO j
� B�1cN C ıN "N C

OZ.gN /

jO j

� 2.B�1cN C ıN "N / � 2.B
�1
C 1/ıN "N :

The first inequality is a consequence of the triangle inequality and the identity

jOZ
j D O.�N /COZ.gN /:

The second inequality uses (4.5) and the boundˇ̌̌
1 �

Z
†

�N �
ˇ̌̌
D

Z
Z

.1 � �N / ! � cN :

The third inequality uses (4.4) along with the fact that OZ.gN / � O.gN /. Now fix the
scaling constant ıN so that ıN "N � A

100B
. Then (4.7) implies

(4.8)
ˇ̌̌
jO j

jOZ
j
�
B

A

ˇ̌̌
D

�
jOZ

j

jO j
�
A

B

��1 ˇ̌̌ jOZ
j

jO j
�
A

B

ˇ̌̌
� C.A;B/ıN "N

for some constant C.A;B/ � 1 depending only on A and B .
Denote by E1 and E2 the terms on the left-hand sides of (4.6) and (4.8), respectively.

Combine (4.6) and (4.8) to deduce the following bound:ˇ̌̌OZ.fi /

jOZ
j
�A�1

Z
Z

fi !
ˇ̌̌
�E1 �E2CE2 �B

�1

Z
Z

fi !CE1 �BA
�1
�C.A;B; i/ıN "N :

The first inequality is a consequence of the triangle inequality. The second inequality
plugs in (4.6) and (4.8). Here C.A; B; i/ � 1 is a constant depending only on A, B , and
the C 0 norm of fi . Fix the scaling constant ıN to be smaller than C.A;B; i/�1 for every
i 2 ¹1; : : : ; N º and conclude thatˇ̌̌OZ.fi /

jOZ
j
�

Z
Z

fi !
ˇ̌̌
< "N

for all i 2 ¹1; : : : ; N º. Recall that O is an orbit set of a C1-small Hamiltonian perturba-
tion  H of the extension  of the original  0 2 Diff.Z/, and so OZ is an orbit set of its
restriction  H0 . After applying another small Hamiltonian perturbation via Lemma 3.6 to
make OZ nondegenerate, we conclude that  H0 2 HN and so HN is dense in Œ�0�.
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Step 5. Write
H good WD

\
N�1

HN

for the intersection of the sets HN . Since each set is open and dense, H good is residual
inside Œ�0�. It remains to prove that any  0 2 H good has an equidistributed sequence of
orbit sets. Fix  0 2 H good. Then by definition,  0 has a sequence of orbit sets ¹ON ºN�1

such that for each N and each i 2 ¹1; : : : ; N º,ˇ̌̌ON .fi /

jON j
�

Z
Z

fi !
ˇ̌̌
< "N :

Fix any continuous function f on Z. Write cN D supi 2¹1;:::;N º kf � fikC 0 for every
N � 1. Note that cN ! 0 asN !1 since the sequence ¹fiºi�1 is dense in C 0.Z/. Then

lim sup
N!1

ˇ̌̌ON .f /

jON j
�

Z
Z

f !
ˇ̌̌

� lim sup
N!1

sup
i 2¹1;:::;N º

�ˇ̌̌ON .fi /

jON j
�

Z
Z

fi !
ˇ̌̌
C

ˇ̌̌ON .f � fi /

jON j
�

Z
Z

.f � fi / !
ˇ̌̌�

� lim sup
N!1

"N C 2cN D 0:

This implies that the sequence ¹ON ºN�1 equidistributes, which proves the theorem.

We conclude by proving Theorem 1.5. The proof is a minor modification of the proof
of Theorem 1.6.

Proof of Theorem 1.5. Fix any sequence of smooth functions ¹fiºi�1 which are C 0-dense
in C 0.Z/with f1� 1. Fix a sequence ¹"N ºN�1 of positive real numbers, each less than 1,
limiting to 0 as N !1. For any fixed N � 1, write DN for the space of maps  0 2
Diff.Z; !/ which have a nondegenerate orbit set O such that for each i 2 ¹1; : : : ; N º,ˇ̌̌O.fi /

jO j
�

Z
Z

fi !
ˇ̌̌
< "N :

The same argument as in Step 1 of the proof of Theorem 1.6 shows that DN is open
for every N � 1. By Proposition 3.3, rational maps are dense in Diff.Z; !/. Use the
argument in Steps 2–4 of the proof of Theorem 1.6 to show that DN is dense. Then the
argument in Step 5 of the proof of Theorem 1.6, repeated verbatim, shows that any map
in the residual set

Dgood WD
\
N�1

DN � Diff.Z; !/

has an equidistributed sequence of orbit sets; this ends the proof of the theorem.
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