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The Calderón problem for a nonlocal diffusion equation
with time-dependent coefficients

Yi-Hsuan Lin, Jesse Railo and Philipp Zimmermann

Abstract. We investigate the Calderón problem for a nonlocal diffusion equation
depending on a globally unknown isotropic coefficient .x; t/. The forward problem
is posed on � � .0; T / for a domain � that is bounded in one direction. We first
show that the Dirichlet-to-Neumann map ƒ determines  in the measurement set.
By studying various properties of the related nonlocal Neumann derivatives N , we
prove that both quantities hƒf;gi and hNf;gi carry the same information as long
as f;gWRn n S�!R have disjoint supports and  is known in supp.f /[ supp.g/. We
obtain the desired global uniqueness theorem using a suitable integral identity for N
and the Runge approximation property. The results hold for any spatial dimension
n � 1. In conclusion, the main observations of this article are twofold: (1) the infor-
mation of ƒ is needed for exterior determination for  , (2) the knowledge of N
and  in the measurement set is enough to recover  in the interior.

1. Introduction

In 1980, Alberto P. Calderón published his pioneering work “On an inverse boundary
value problem” [5], which introduces a problem that later turned out to be of foundational
importance for several imaging methods and inspired many developments in the field of
inverse problems in general. He asked the question: “Can one determine the electrical con-
ductivity of a medium by only making voltage and current measurements on the surface?”
This problem is referred to as the Calderón problem in the literature. The mathematical
setup is to consider a bounded domain��Rn with sufficiently regular boundary @�, rep-
resenting a conducting medium, and a positive function .x/ > 0 in� which is its a priori
unknown conductivity. It is known that sufficiently regular conductivities are uniquely
determined by the information of current and voltage measurements on the boundary. In
other words,  can be recovered when the Cauchy data ¹uj@�; @�uj@�º is given, where u
solves the conductivity equation

(1.1) div.ru/ D 0 in �:
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The Calderón problem was first solved in [46] in space dimension n� 3, where the authors
demonstrated the fact that the conductivity can be determined uniquely by the Dirichlet-
to-Neumann map (DN map, uj@� 7!  @u

@�
) of the conductivity equation (1.1). After some

years, the same result has been showed in space dimension n D 2 in [39] and later for
conductivities which are only uniformly elliptic [2].

Recently, the studies of Calderón type inverse problems have been considered for non-
local operators as well. A prototypical example is the inverse exterior value problem for
the fractional Schrödinger operator .��/s C q.x/, which was first introduced and solved
in [24]. The main tool in solving this Calderón problem is based on a suitable unique
continuation property (UCP) and the closely related Runge approximation. By apply-
ing similar ideas, one can solve several challenging problems, some of which still stay
open in the corresponding local cases. This shows that nonlocal inverse problems take
advantage of the nonlocality of the underlying operators. For further details, we refer to
[3,7–12,14,20–23,25–27,31,34–38,40–42,44,45] and the references therein. We empha-
size that most of these works consider nonlocal inverse problems in which one wants to
recover lower-order coefficients. On the other hand, in the articles [10, 25, 37, 40–42], the
authors study nonlocal inverse problems where one is interested in determining leading
order coefficients, and hence they can be seen as full nonlocal analogies of the classical
Calderón problem.

1.1. Mathematical modeling and main results

Let � � Rn be an open set bounded in one direction for any n 2 N, and consider the
initial exterior value problem of the variable coefficient nonlocal diffusion equation

(1.2)

8̂<̂
:
@tuC divs.‚rsu/ D 0 in �T ;
u D f in .�e/T ;
u.x; 0/ D 0 in �;

where �e WD Rn n S� denotes the exterior of �, 0 < T <1 and 0 < s < min.1; n=2/.
Throughout this work, let us assume  2 L1.RnT / is a uniformly elliptic conductivity,
i.e., there exists a constant 0 > 0 such that

(1.3) 0 < 0 � .x; t/ � 
�1
0 for .x; t/ 2 RnT :

In addition, we denote the conductivity matrix by

‚ .x; y; t/ WD 
1=2.x; t/ 1=2.y; t/ 1n�n for x; y 2 Rn.

Moreover, we always use the notation

AT WD A � .0; T /

to denote the space time cylinders, where A � Rn can be any set.
In this work, we are interested in the determination of the conductivity .x; t/ in

RnT for the nonlocal diffusion equation (1.2), which extends recent global uniqueness
results for the Calderón problem of certain nonlocal elliptic equations to their parabolic
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counterpart. Assuming the well-posedness of (1.2) at the moment (the proof will be given
in Section 3), we can define the DN map via

hƒf; gi WD
Cn;s

2

Z T

0

Z
R2n

1=2.x; t/ 1=2.y; t/(1.4)

�
.uf .x; t/ � uf .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt;

for all f; g 2 C1c ..�e/T /, where

(1.5) Cn;s WD
4s�.n=2C s/

�n=2j�.�s/j

is a constant and uf is the unique solution of (1.2). More precisely, we ask the following
question:

Question 1. If we have given conductivities 1, 2 in a suitable function space such that

ƒ1f j.W2/T D ƒ2f j.W2/T for all f 2 C1c ..W1/T /;

where W1; W2 � �e are given nonempty open sets, does 1 D 2 hold in RnT ?

In the limiting case s D 1, this problem and its generalizations have been studied, for
example, in [6] or [19]. In these works, the authors determine the coefficients for heat
equations for any spatial dimension n � 2 by using the corresponding boundary measure-
ments, where they allow an additional uniformly elliptic coefficient � in front of the time
derivative. On the other hand, in the works [29, 30], the inverse problem for the diffusion
equation with fractional time derivative has been studied.

Next, let uj be the solution of

(1.6)

8̂<̂
:
@tuj C divs.‚jr

suj / D 0 in �T ;
uj D f in .�e/T ;
uj .x; 0/ D 0 in �;

and denote the exterior DN map of (1.6) by ƒj , for j D 1; 2. Our first theorem shows
that the exterior DN maps have a unique continuation property. The proof is based on a
spacetime Liouville reduction, which reduces the problem to a diffusion Schrödinger type
inverse problem. By applying the Runge approximation property for certain equations,
we can prove the uniqueness of the conductivity  . The argument, however, requires the
Alessandrini identity as well as the use of the UCP of the fractional Laplacian twice,
once in H s and once in H 2s;n=.2s/, the latter using a general UCP result in [28]. See
Theorem 5.2 for further information on why earlier approaches that work well in the
elliptic case lead to additional challenges in the studied parabolic case. In particular, the
parabolic fractional Liouville reduction introduces new zeroth and first-order coefficients
concerning the time derivative. This is a new and non-standard equation to be investigated
further in our present work, in comparison to the elliptic case which reduces to a standard
elliptic problem of the type .��/s C q.
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Theorem 1.1 (Global uniqueness). Let� � Rn be an open set bounded in one direction,
0 < T <1, 0 < s < min.1; n=2/, 0 > 0, and let W � �e be an open set. Assume that
j 2 �s;0.R

n
T / \ C

1.WT / for j D 1; 2.1 Then

(1.7) ƒ1f jWT D ƒ2f jWT for any f 2 C1c .WT /

implies that 1 D 2 in RnT .

In order to prove Theorem 1.1, we first need to establish an exterior determination
result. This extends the results in [14,42] for elliptic equations and is based on a construc-
tion of special solutions to the equation (1.2) whose energies can be concentrated near a
fixed point in the spacetime. Furthermore, to our best knowledge, Theorem 1.1 is the first
result to recover time-dependent coefficients in the nonlocal setup.

Theorem 1.2 (Exterior determination). Let�� Rn be an open set bounded in one direc-
tion, 0 < T <1, 0 < s < min.1; n=2/, 0 > 0, and let W � �e be an open set. Assume
that j 2 �s;0.R

n
T / for j D 1; 2. Then (1.7) implies that 1 D 2 a.e. in WT .

Ideas for the proof. Let us briefly summarize the ideas for the proof of Theorem 1.1. We
first prove the exterior uniqueness by using the exterior information from (1.7) such that
1 D 2 in WT . Next, by considering arbitrary nonempty disjoint open subsets W1;W2 �
W � �e , Theorem 1.2 implies that 1 D 2 in .W1 [W2/T . We next introduce the non-
local Neumann derivatives

Nj u.x; t/ D Cn;s

Z
�


1=2
j .x; t/ 

1=2
j .y; t/

u.x; t/ � u.y; t/

jx � yjnC2s
dy; .x; t/ 2 .�e/T ;

for j D 1; 2, where Cn;s is the constant given by (1.5). In particular, we can prove that

(1.8) hN1f; gi D hN2f; gi for any f 2 C1c ..W1/T / and g 2 C1c ..W2/T /;

whenever (1.7) holds (see Lemma 6.6).
Meanwhile, we introduce the spacetime Liouville reduction, which transfers the non-

local diffusion equation (1.2) into a Schrödinger type equation (see (5.3)). By utilizing the
identity (1.8) and the Liouville reduction, we can derive a suitable integral identity (see
Section 7.1). Now, applying the Runge approximation (Proposition 7.3), we can prove the
interior uniqueness 1 D 2 in�T and .��/s.1=21 � 1=22 /D 0 in�T . Finally, using the
UCP we can conclude the proof. We want to emphasize again that our theorems hold for
any spatial dimension n 2 N.

1.2. Organization of the article

We first recall preliminaries related to function spaces and nonlocal operators in Sec-
tion 2. In Section 3, we show the well-posedness of the forward problem (1.2) and define
the exterior DN maps. We prove the exterior determination by using (1.7) in Section 4. In
Section 5, we introduce the spacetime Liouville reduction, which transfers equation (1.2)

1The set �s;0 .R
n
T
/ is defined by (3.22) in Section 3.
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into a Schrödinger type diffusion equation (5.3). We also study the well-posedness of the
reduced equation. In Section 6, we introduce nonlocal Neumann derivatives for both equa-
tions (1.2) and (5.3). Finally, we prove the global uniqueness in Section 7.3 by deriving
suitable integral identities and an approximation property. In Appendix A, we discuss and
explain several connections between DN maps and nonlocal Neumann derivatives.

2. Preliminaries

Throughout this article, the space dimension n is a fixed positive integer and � � Rn is
an open set. In this section, we introduce fundamental properties of function spaces and
operators which will be used in our study.

2.1. Fractional Sobolev spaces

We denote by S.Rn/ and S0.Rn/ Schwartz functions and tempered distributions, respec-
tively. We define the Fourier transform F W S.Rn/! S.Rn/ by

F f .�/ WD

Z
Rn

f .x/e�ix�� dx;

which is occasionally also denoted by Of , where i D
p
�1. By duality, it can be extended

to the space of tempered distributions and will again be denoted by F u D Ou, where
u 2 S0.Rn/, and we denote the inverse Fourier transform by F �1. Next, recall that the
fractional Laplacian of order a � 0 can be defined by a Fourier multiplier as follows:

.��/a=2u D F �1.j�ja Ou.�// for u 2 S0.Rn/,

whenever the right-hand side is well defined. Given a�0, theL2-based fractional Sobolev
space H a.Rn/ WD W a;2.Rn/ is given by

kuk2Ha.Rn/ D kuk
2
L2.Rn/

C k.��/a=2uk2
L2.Rn/

:

In addition, the Parseval identity implies that the seminorm k.��/a=2ukL2.Rn/ can be
expressed as

k.��/a=2ukL2.Rn/ D h.��/
au; ui

1=2

L2.Rn/
:

By duality, one extends the spaces H a.Rn/ to the range a < 0. If � � Rn is an open set
and a 2 R, then the fractional Sobolev spaces are defined by

H a.�/ WD ¹uj� W u 2 H
a.Rn/º

and
zH a.�/ WD closure of C1c .�/ in H a.Rn/:

Meanwhile, H a.�/ is a Banach space with respect to the quotient norm

kukHa.�/ WD inf¹kU kHa.Rn/ W U 2 H
a.Rn/ and U j� D uº:
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2.2. Bessel potential spaces

Next, we introduce the Bessel potential spaces H s;p.Rn/ and two local variants of them,
namely, zH s;p.�/ and H s;p.�/. The Bessel potential of order s 2 R is the Fourier multi-
plier hDis W S0.Rn/! S0.Rn/ given by

hDisu WD F �1.h�is Ou/;

where h�i D
p
1C j�j2 is the Japanese bracket. Now, for any 1 � p <1 and s 2 R, the

Bessel potential spaces H s;p.Rn/ are defined by

H s;p.Rn/ WD ¹u 2 S0.Rn/ W hDisu 2 Lp.Rn/º;

equipped with the norm kukH s;p.Rn/ WD khDi
sukLp.Rn/. The local Bessel potential spaces

zH s;p.�/ are now defined as the closure of C1c .�/ in H s;p.Rn/ and endowed with the
norm inherited fromH s;p.Rn/. Moreover, we denote byH s;p.�/ the space of restrictions
from elements in H s;p.Rn/ to � and endow it with the related quotient norm

kukH s;p.�/ WD inf¹kU kH s;p.Rn/ W U 2 H
s;p.Rn/; U j� D uº:

We have . zH s;p.�//� DH�s;p
0

.�/ and zH s;p.�/D .H�s;p
0

.�//� for every 1 < p <1
and s 2 R. As usual, when p D 2, we drop the index p in the above notations and see that
they are isomorphic to the spaces introduced in Section 2.1.

2.3. Some properties of nonlocal operators

The fractional Laplacian induces a bounded linear map .��/s=2WH t;p.Rn/!H t�s;p.Rn/
for every 1 � p <1, s � 0 and t 2 R. Next, we introduce a special class of unbounded
open sets which have a fractional Poincaré inequality.

Definition 2.1. (i) We say that an open set �1 � Rn of the form �1 D Rn�k � !,
where n � k > 0 and ! � Rk is a bounded open set, is a cylindrical domain.

(ii) We say that an open set � � Rn is bounded in one direction if there exists a cylin-
drical domain �1 � Rn and a rigid Euclidean motion A.x/ D Lx C x0, where L
is a linear isometry and x0 2 Rn, such that � � A�1.

Proposition 2.2 (Poincaré inequality (cf. Theorem 2.2 in [41])). Let � � Rn be an open
set that is bounded in one direction. Suppose that 2 � p < 1 and 0 � s � t < 1, or
1 < p < 2, 1 � t <1 and 0 � s � t . Then there exists C.n; p; s; t;�/ > 0 such that

k.��/s=2ukLp.Rn/ � Ck.��/
t=2ukLp.Rn/ for all u 2 zH t;p.�/.

For the rest of this article we fix s 2 .0; 1/. The fractional gradient of order s is the
bounded linear operator rs WH s.Rn/! L2.R2nIRn/ given by (see [10, 17, 41])

r
su.x; y/ WD

r
Cn;s

2

u.x/ � u.y/

jx � yjn=2CsC1
.x � y/;

which satisfies

(2.1) kr
sukL2.R2n/ D k.��/

s=2ukL2.Rn/ � kukH s.Rn/
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for all u 2 H s.Rn/, where Cn;s is the constant given by (1.5). The adjoint of rs is called
fractional divergence of order s and denoted by divs . More concretely, the fractional diver-
gence of order s is the bounded linear operator

divs W L2.R2nIRn/! H�s.Rn/

satisfying
hdivs u; viH�s.Rn/�H s.Rn/ D hu;r

sviL2.R2n/

for all u 2 L2.R2nIRn/; v 2 H s.Rn/. One can show that (see Section 8 of [41])

kdivs.u/kH�s.Rn/ � kukL2.R2n/

for all u 2 L2.R2nIRn/, and also

.��/su D divs.rsu/

weakly for all u 2 H s.Rn/ (see Lemma 2.1 in [10]).

2.4. Bochner spaces

Next, we introduce some standard function spaces for time-dependent PDEs adapted to the
nonlocal setting considered in this article. Let X be a Banach space and .a; b/ � R. Then
we letLp.a;bIX/ (1� p <1) stand for the space of measurable functions uW .a;b/!X

such that

(2.2) kukLp.a;bIX/ WD
� Z b

a

ku.t/k
p
X dt

�1=p
<1;

and L1.a; bIX/ the space of measurable functions uW .a; b/! X such that

kukL1.a;bIX/ WD inf¹M W ku.t/kX �M a.e.º <1:

As usual, we say that u 2 Lploc.a; bIX/ if �Ku 2 Lp.a; bIX/ for any compact set K �
.a; b/, where �A denotes the characteristic function of the set A.

Moreover, if u 2 L1loc.a; bIX/ andX is a space of functions over an open set��Rn,
as Lp.�/, then u is identified with a function u.x; t/ and u.t/ denotes the function � 3
x 7! u.x; t/ for almost all t . This is justified from the fact that any u 2 Lq.a; bILp.�//
with 1 � q; p <1 can be seen as a measurable function uW� � .a; b/! R such that the
norm kukLq.a;bILp.�//, as defined in (2.2), is finite. Clearly, a similar statement holds for
the spaces Lq.a; bIH s;p.Rn// and their local versions. Furthermore, the distributional
derivative du=dt 2 D0..a; b/IX/ is identified with the derivative @tu 2 D0.� � .a; b//

as long as it is well defined. Here D0..a; b/IX/ stands for all continuous linear operators
from C1c ..a; b// to X . Given two Banach spaces X; Y such that X ,! Y , we say that
u 2 L2.a; bIX/ has a (weak) time derivative u0 WD du=dt in L2.a; bI Y / if there exists
v 2 L2.a; bIY / such that

hu0; �i WD �

Z b

a

u.t/�0.t/ dt D

Z b

a

v.t/�.t/ dt

for � 2 C1c ..a; b// (cf. [15]).
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3. The forward problem of nonlocal diffusion equation

In this section, we study the well-posedness of the initial exterior problem (1.2) with pos-
sibly nonzero initial condition u0 and the properties of the related DN maps. We start by
setting up the relevant bilinear forms and then define the notion of solutions used through-
out this article, which is in parallel to the theory developed for second-order parabolic
equations (see, e.g., [32, 33]).

Definition 3.1 (Definition of bilinear forms and conductivity matrix). Let � � Rn be an
open set, 0 < s < min.1; n=2/ and  2 L1.RnT /. Then we define the conductivity matrix
associated with  by

‚ W R
2n
� .0; T /! Rn�n; ‚ .x; y; t/ WD 

1=2.x; t/ 1=2.y; t/1n�n;

for x;y 2Rn, 0 < t < T , and the following time-dependent bilinear form for the fractional
conductivity operator:

(3.1)
B .t I � ; �/ W H

s.Rn/ �H s.Rn/! R;

B .t Iu; v/ WD

Z
R2n

‚ .t/r
su � rsv dxdy:

Moreover, if m 2 L1.0; T IH 2s;n=.2s/.Rn//, where

(3.2) m WD 
1=2
� 1 in RnT

denotes the background deviation, then we let q .t/WH s.Rn/ �H s.Rn/! R be defined
by

hq .t/u; vi WD �
D .��/sm

1=2
u; v

E
L2.Rn/

;

for u;v 2H s.Rn/. In this case, we define the time-dependent bilinear form for the related
fractional Schrödinger operator with potential q :

Bq .t I � ; �/ W H
s.Rn/ �H s.Rn/! R;

Bq .t Iu; v/ WD

Z
Rn

.��/s=2u .��/s=2v dx C

Z
Rn

q .t/uv dx

for all u; v 2 H s.Rn/.

Remark 3.2. If no confusion arises, we will drop the subscript  in the definition for the
conductivity matrix ‚ .t/. Moreover, the boundedness and coercivity of these bilinear
forms are established in Lemma 3.3.

Lemma 3.3. Let 0 < s < min.1; n=2/ and suppose that  D .x; t/ 2 L1.RnT / is uni-
formly elliptic satisfying (1.3). If for the background deviation m of  , we have m 2
L1.0; T IH 2s;n=.2s/.Rn//, then there exists C > 0 such that

(3.3) jB .t Iu; v/j � kkL1.Rn
T /
kukH s.Rn/ kvkH s.Rn/

and
jBq .t Iu; v/j � CkukH s.Rn/ kvkH s.Rn/:
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Moreover, if � � Rn is an open set that is bounded in one direction, then the bilinear
form B .t I � ; �/ is uniformly coercive over zH s.�/, that is, there exists c > 0 such that

(3.4) B .t Iu; u/ � ckuk
2
H s.Rn/

for all u 2 H s.Rn/ and a.e. 0 < t < T .

Proof. Throughout the proof we will write m and q instead of m and q . Estimate (3.3)
follows immediately from (2.1). Next note that, by Lemma 8.3 in [41], the uniform ellip-
ticity of  and the boundedness of the fractional Laplacian, we have

jBq.t Iu; v/j � C.1C kq.t/kLn=.2s/.Rn//kukH s.Rn/ kvkH s.Rn/

� C.1C km.t/kH2s; n=.2s/.Rn//kukH s.Rn/ kvkH s.Rn/

� C
1=2
0 .1C kmkL1.0;T IH2s; n=.2s/.Rn///kukH s.Rn/ kvkH s.Rn/:

The uniform coercivity estimate (3.4) of B .t I � ; �/ follows by the uniform ellipticity of  ,
(2.1) and the Poincaré inequality, cf. Proposition 2.2.

Definition 3.4 (Weak solutions). Let� � Rn be an open set, 0 < T <1, 0 < s < 1 and
assume that  2 L1.RnT / is uniformly elliptic. Let u0 2 L2.�/, f 2 L2.0; T IH s.Rn//
and F 2 L2.0; T IH�s.�//.
(i) We say that u 2 L2.0; T IH s.Rn// solves the nonlocal diffusion equation

(3.5) @tuC divs.‚rsu/ D F in �T ;

if the equation is satisfied in the sense of distributions, that is,

B .u; '/ WD �
Z
�T

u@t' dxdt C

Z T

0

B .t Iu; '/ dt D hF; 'i

for all ' 2 C1c .�T /, where h � ; � i denotes the natural duality pairing.
(ii) We say that u 2 L1.0; T IL2.�// \ L2.0; T IH s.Rn// solves

(3.6)

8̂<̂
:
@tuC divs.‚rsu/ D F in �T ;
u D f in .�e/T ;
u.0/ D u0 in �;

if the exterior value f is attained in the sense u � f 2 L2.0; T I zH s.�// and

B .u; '/ D hF; 'i C
Z
�

u0.x/'.x; 0/ dx

for all ' 2 C1c .� � Œ0; T //.

Remark 3.5. Let us briefly explain why we prescribed the initial condition in L2.�/ and
not in L2.Rn/. It is known that . zH s.�//� D H�s.�/ for any s 2 R and any open set
� � Rn. On the other hand, by density of C1c .�T / in L2.0; T I zH s.�//, it follows that
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equation (3.5) implies that @tu can be identified with an element in L2.0; T IH�s.�//.
By the trace theorem (see Theorem 1 in Section 1.2, Chapter XVIII, of [15]), this implies
u 2 C.Œ0; T �IL2.�//. Thus, u 2 L1.0; T IL2.�// \ L2.0; T IH s.Rn// is a solution to
(3.6) if and only if u 2 L2.0; T IH s.Rn// with @tu 2 L2.0; T IH�s.�// solves (3.5) in
the sense of distributions, u� f 2 L2.0; T I zH s.�// and u.0/D u0 in the sense of traces.
By approximation, one sees that u 2 L1.0; T IL2.�//\L2.0; T IH s.Rn// is a solution
of (3.5) if and only if u 2 L2.0; T IH s.Rn//, with @tu 2 L2.0; T IH�s.�//, satisfies

h@tu; 'iH�s.�/� zH s.�/ C B .t Iu; '/ D hF.t/; 'iH�s.�/� zH s.�/

for all ' 2 zH s.�/ in the sense of distributions on .0; T /, u � f 2 L2.0; T I zH s.�// and
u.0/ D u0.

Theorem 3.6 (Well-posedness of the forward problem). Let � � Rn be an open set
bounded in one direction, 0 < T <1, 0 < s <min.1;n=2/ and assume that  2L1.RnT /
is uniformly elliptic. Assume that F 2 L2.0; T IH�s.�//, f 2 L2.0; T IH s.Rn// with
@tf 2 L

2.0; T IH�s.Rn// and u0 2 L2.�/.

(i) Then there exists a unique solution u 2L1.0;T IL2.�//\L2.0;T IH s.Rn//, with
@tu 2 L

2.0; T IH�s.�//, of

(3.7)

8̂<̂
:
@tuC divs.‚rsu/ D F in �T ;
u D f in .�e/T ;
u.0/ D u0 in �;

satisfying the energy estimate

ku � f k2
L1.0;T IL2.�//

C ku � f k2
L2.0;T IH s.Rn//

(3.8)

C k@t .u � f /k
2
L2.0;T IH�s.�//

� C
�
ku0k

2
L2.�/

C kf .0/k2
L2.�/

C kF k2
L2.0;T IH�s.�//

C k@tf k
2
L2.0;T IH�s.�//

C kdivs.‚rsf /k2L2.0;T IH�s.�//
�
;

for some constant C > 0 independent of F; f and u0.

(ii) If additionally the conductivity  satisfies m 2 L1.0; T IH 4s;n=.2s/.Rn// with
@t 2 L

1.RnT /, F 2 L2.�T /, f 2 H 1.0; T IL2.Rn// \ L2.0; T IH 2s.Rn// and
u0 2 H

s.Rn/ such that u0 � f .0/ 2 zH s.�/, then the unique solution u to (3.7)
satisfies u 2 L1.0; T IH s.Rn//, @tu 2 L2.�T / and

k@t .u � f /k
2
L2.�T /

C ku � f k2L1.0;T IH s.Rn//(3.9)

� C
�
ku0k

2
H s.Rn/ C kF k

2
L2.�T /

C kf .0/k2H s.Rn/ C k@tf k
2
L2.�T /

C kf k2
L2.0;T IH2s.Rn//

�
;

for some C > 0 independent of the data F; f and u0.

Remark 3.7. If F D u0 D 0, then we denote the unique solution of (3.7) by uf for
simplicity.
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Proof of Theorem 3.6. (i) By the regularity assumptions on the exterior value f and the
trace theorem (see Theorem 2 in Section 1.2, Chapter XVIII, of [15]), we see that u 2
L1.0; T IL2.�// \ L2.0; T IH s.Rn// is a solution of (3.7) if and only if zu WD u � f 2
L1.0; T IL2.�// \ L2.0; T IH s.Rn// solves the homogeneous problem

(3.10)

8̂<̂
:
@t zuC divs.‚rszu/ D zF in �T ;
zu D 0 in .�e/T ;
zu.0/ D zu0 in �;

with zu0 WD u0 � f .0/ 2 L2.�/ and

zF WD F � @tf � divs.‚rsf / 2 L2.0; T IH�s.�//:

Note that by Remark 3.5, this means that zu 2 L1.0; T IL2.�// \ L2.0; T I zH s.�// sat-
isfies

h@t zu; 'iH�s.�/� zH s.�/ C B .t I zu; '/ D h
zF .t/; 'iH�s.�/� zH s.�/

for all ' 2 zH s.�/ in the sense of distributions on .0; T /, zu.0/ D zu0. Now one can con-
struct the solution zu by the classical Galerkin approximation. In fact, using Lemma 3.3, we
deduce, from Theorems 1 and 2 in Sections 3.1–3.2, Chapter XVIII, of [15], that this prob-
lem has a unique solution zu 2 L2.0; T I zH s.�// with @t zu 2 L2.0; T IH�s.�//. Hence,
our solution to the original problem is u D zuC f .

Next we prove that this solution is the unique solution to (3.7). Assume there are two
solutions u; v 2 L1.0; T IL2.�//\L2.0; T IH s.Rn// to (3.7). Then w WD u� v solves8̂<̂

:
@tw C divs.‚rsw/ D 0 in �T ;
w D 0 in .�e/T ;
w.0/ D 0 in �:

By approximation and integration by parts,2Z T

0

h@tw; 'i� dt C

Z T

0

B .w; '/� dt D 0

for all ' 2 zH s.�/, � 2 C1c ..0; T //, and hence

h@tw; 'i C B .w; '/ D 0

for a.e. t 2 .0; T /. Hence, replacing ' by w.t/ 2 zH s.�/ and integrating the resulting
equation over .0; T / gives

kw.T /k2
L2.�/

2
C

Z T

0

B .w;w/ dt D 0:

2Here and at some other instances, we simply write hu; vi when the pairing between the functions u and v
is clear from the context. For example, if u 2H�s.�/ and v 2 zH s.�/, then hu; vi stands for the duality pairing
hu; vi

H�s.�/� zH s.�/
.
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Here we usedw.0/D 0 in� and the integration by parts formula in Banach spaces. Using
the uniform ellipticity of  and Poincaré’s inequality it follows that w D 0 and therefore
u D v in RnT .

Next, we show the energy estimate (3.8). By equation (3.70) in [15],

k.u � f /.t/k2
L2.�/

2
C

Z t

0

Z
R2n

‚r
s.u � f /.�/ � rs.u � f /.�/ dxdyd�

D

ku0 � f .0/k
2
L2.�/

2
C

Z t

0

h zF .�/; .u � f /.�/iH�s.�/� zH s.�/ d�

for all t 2 .0; T /. The right-hand side can be estimated as

ku0�f .0/k
2
L2.�/

2
C

Z t

0

h zF .�/; .u � f /.�/iH�s.�/� zH s.�/ d�(3.11)

� C.ku0k
2
L2.�/

C kf .0/k2
L2.�/

/C k zF kL2.0;T IH�s.�//ku � f kL2.0;T I zH s.�//

� C.ku0k
2
L2.�/

Ckf .0/k2
L2.�/

/C
�
kF kL2.0;T IH�s.�// C k@tf kL2.0;T IH�s.�//

C kdivs.‚rsf /kL2.0;T IH�s.�//
�
ku � f kL2.0;T IH s.Rn//:

On the other hand, using the uniform ellipticity of  and the fractional Poincaré
inequality, the left-hand side of (3.8) can be bounded from below by

k.u � f /.t/k2
L2.�/

2
C

Z t

0

Z
R2n

‚r
s.u � f /.�/ � rs.u � f /.�/ dxdyd�(3.12)

�

k.u � f /.t/k2
L2.�/

2
C ckrs.u � f /k2

L2.0;t IL2.R2n//
;

�

k.u � f /.t/k2
L2.�/

2
C ck.��/s=2.u � f /k2

L2.0;t IL2.Rn//

� c
�
k.u � f /.t/k2

L2.�/
C ku � f k2

L2.0;t IH s.Rn//

�
:

Hence, combining (3.11) and (3.12), we deduce

ku � f k2
L1.0;T IL2.�//

C ku � f k2
L2.0;T IH s.Rn//

� C.ku0k
2
L2.�/

C kf .0/k2
L2.�/

/C C
�
kF kL2.0;T IH�s.�// C k@tf kL2.0;T IH�s.�//

C kdivs.‚rsf /kL2.0;T IH�s.�//
�
ku � f kL2.0;T IH s.Rn//:

Next, recall that for all " > 0 and a; b 2 R, we have the estimate ab � "a2CC"b2, where
C" > 0. Hence, after absorbing the term "ku � f k2

L2.0;T IH s.Rn//
on the right-hand side,

we obtain

ku � f k2
L1.0;T IL2.�//

C ku � f k2
L2.0;T IH s.Rn//

� C
�
ku0k

2
L2.�/

C kf .0/k2
L2.�/

C kF k2
L2.0;T IH�s.�//

C k@tf k
2
L2.0;T IH�s.�//

C kdivs.‚rsf /k2L2.0;T IH�s.�//
�
:
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Now, by the equation again, one knows that

h@t .u � f /; 'iH�s.�/� zH s.�/ C B .t Iu � f; '/ D h
zF ; 'iH�s.�/� zH s.�/;

for any ' 2 zH s.�/ and a.e. t 2 .0; T /. Consequently,

jh@t .u � f /; 'iH�s.�/� zH s.�/j � jB .t Iu � f; '/j C jh
zF ; 'iH�s.�/� zH s.�/j:

Integrating from 0 to T and using .L2.0; T I zH s.�///� D L2.0; T IH�s.�//, one can
conclude that @t .u� f / 2 L2.0;T IH�s.�//. Since @tf 2 L2.0;T IH�s.�//, we obtain
@tu 2 L

2.0; T IH�s.�//, as desired.
(ii) First we show that divs.‚rsf / 2 L2.�T /. More concretely, we prove thatˇ̌̌ Z T

0

hdivs.‚rsf /; 'i dt
ˇ̌̌
� Ckf kL2.0;T IH2s.Rn//k'kL2.�T /

for all ' 2 C1c .�T / and some C > 0 independent of '. This gives already the claim, as
then, by density, divs.‚rsf / can be uniquely extended to an element in L2.�T / such
that

(3.13) kdivs.‚rsf /kL2.�T / � Ckf kL2.0;T IH2s.Rn//:

Using Remark 8.8 in [41] in every time slice, we obtainˇ̌̌ Z T

0

hdivs.‚rsf /; 'i dt
ˇ̌̌

(3.14)

D

ˇ̌̌ Z T

0

h‚r
sf;rs'i dt

ˇ̌̌
D

ˇ̌̌ Z T

0

h.��/s=2.1=2f /; .��/s=2.1=2'/i C hq .
1=2f /; 1=2'i dt

ˇ̌̌
:

Now note that by Corollary A.7 in [41], we have 1=2' 2 H s.Rn/.
On the other hand, choosing p1 D n=.2s/, s1 D 4s, p2 D 2 and r2 D 2n=.n � 2s/

as in Lemma A.6 of [41], using the Sobolev embedding and the monotonicity of Bessel
potential spaces, we deduce that mf 2 H 2s.Rn/, with

kmf kH2s.Rn/ � C
�
kmkL1.Rn/kf kH2s.Rn/

C kf kL2n=.n�2s/.Rn/kmk
1=2

H4s; n=.2s/.Rn/
kmk

1=2

L1.Rn/

�
� CkmkL1.Rn/.1C kmk

1=2

H4s; n=.2s/.Rn/
/kf kH2s.Rn/:

This in turn shows 1=2f 2 H 2s.Rn/ for a.e. t 2 .0; T /, with

(3.15) k1=2f kH2s.Rn/ � .1C kmkL1.Rn//.1C kmk
1=2

H4s; n=.2s/.Rn/
/kf kH2s.Rn/:

Additionally, by the Gagliardo–Nirenberg inequality in Bessel potential spaces and the
Sobolev embedding (cf. equation (18) in [13]), we have

kmkH2s;n=s.Rn/ � Ckmk
1=2

H4s; n=.2s/.Rn/
kmk

1=2

L1.Rn/
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and therefore .��/sm 2 Ln=s.Rn/. Applying Hölder’s inequality with p1 D n=s, p2 D
2n=.n � 2s/, p3 D 2, we can estimate

kq .
1=2f /1=2'kL1.Rn/(3.16)

� kqkLn=s.Rn/k
1=2f kL2n=.n�2s/.Rn/ k

1=2'kL2.Rn/

� Ckmk
1=2

H4s; n=.2s/.Rn/
kmkL1.Rn/ k

1=2f kH s.Rn/ k'kL2.Rn/

� C.1C kmk
1=2

H4s; n=.2s/.Rn/
/kmk

2
L1.Rn/ .1C kmk

1=2

H2s;n=2s.Rn/
/

� kf kH s.Rn/ k'kL2.Rn/;

where in the third inequality we again used Corollary A.7 in [41]. Now, using 1=2f 2
H 2s.Rn/, 1=2' 2 H s.Rn/ and estimates (3.15)–(3.16), we obtain, by Hölder’s inequal-
ity and (3.14), the boundˇ̌̌ Z T

0

hdivs.‚rsf /; 'i dt
ˇ̌̌
D

ˇ̌̌ Z T

0

h.��/s.1=2f /; 1=2'i C hq .
1=2f /; 1=2'i dt

ˇ̌̌
� C.1C kkL1.Rn

T /
/.1C kmkL1.0;T IH4s; n=.2s/.Rn///

� kf kL2.0;T IH2s.Rn//k'kL2.�T /:

On the other hand, by definition, u0 � f .0/ 2 zH s.�/. Hence, if we set as above
zu D u � f , then we see that it solves (3.10) with zu0 WD u0 � f .0/ 2 zH s.�/ and

(3.17) zF WD F � @tf � divs.‚rsf / 2 L2.�T /:

Now we proceed similarly to Theorem 5 in Chapter 7 of [18]. For this purpose, let us recall
how the unique solution zu in Theorems 1 and 2 from Sections 3.1–3.2, Chapter XVIII,
of [15] is constructed. Since zH s.�/ is a separable Hilbert space, the finite-dimensional
subspaces

zH s
m WD span¹w1; : : : ; wmº

form 2N, where .wk/k2N �
zH s.�/ is an orthonormal basis of zH s.�/, form a Galerkin

approximation for zH s.�/ (see Section 2 in Chapter XVIII of [15] for the definition of
a Galerkin approximation). Let us note that in our generality we cannot take .wk/k2N

to be the eigenfunctions of the fractional Laplacian .��/s , as � is only bounded in one
direction and so zH s.�/ ,! L2.�/may fail to be compact. Observe, by density of zH s.�/

inL2.�/, the family . zH s
m/m2N is also a Galerkin approximation forL2.�/. By Lemma 1

in Section 3.1, Chapter XVIII, of [15], there are unique solutions zum 2C.Œ0;T �I zH s
m/with

@t zum 2 L
2.0; T I zH s

m/ and

(3.18) h@t zum; wj i C B .t I zum; wj / D h zF ;wj i

for all 1 � j � m and a.e. t 2 .0; T /, where zum0 2 zH
s
m are chosen in such a way that

zum0 ! zu0 in L2.�/.
In fact, the solutions zum can be written in the form

zum D

mX
jD1

cjmwj :
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Here cm D .c1m; : : : ; c
m
m/ are absolutely continuous functions that solve

Am@tcm C Bm.t/cm D zFm.t/; cm.0/ D zu
m
0 ;

where Am WD .hwi ;wj i/1�i;j�m, Bm.t/ WD .B .t Iwi ;wj //1�i;j�m and, finally, zFm.t/D
.h zF .t/; wj i/1�j�m. We have kzum0 kL2.�/ � ckzu0kL2.�/ for some constant independent
of m. Next observe that if zu0 2 zH s.�/, as in our case, then we can take

zum0 D

mX
jD1

hzu0; wj i zH s.�/wj 2
zH s
m

and see that zum0 ! zu0 in H s.Rn/ as m!1. Moreover, this convergence implies

(3.19) kzum0 kH s.Rn/ � ckzu0kH s.Rn/

for some c > 0 independent of m. Now fix m 2 N, multiply (3.18) by @t c
j
m and sum j

over ¹1; : : : ; mº to obtain

h@t zum; @t zumiL2.�/ C B .t I zum; @t zum/ D h zF ; @t zumiL2.�/;

where we used (3.17) and @t zum 2 zH s
m � L

2.�/.
Observe that

@tB .t I zum; zum/ D 2B .t I zum; @t zum/C

Z
R2n

��
@t

1=2.x; t/ 1=2.y; t/

C 1=2.x; t/@t
1=2.y; t/

�
r
s
zum � r

s
zum
�
dxdy:

Hence, using the uniform ellipticity of  , the Cauchy–Schwarz inequality and Young’s
inequality,

k@t zumk
2
L2.�/

C @tB .t I zum; zum/

� C
�
k@tkL1.Rn

T /
kk

1=2

L1.Rn
T /
kzumk

2
H s.Rn/ C "

�1
k zF k2

L2.�/

�
C "k@t zumk

2
L2.�/

for someC >0 only depending on the ellipticity constant 0 and all "> 0. Taking "D 1=2,
we can absorb the last term on the right-hand side and after integrating over .0; t/� .0;T /,
we obtain

k@t zumk
2
L2.�t /

C B .t I zum; zum/

� B .0I zu
m
0 ; zu

m
0 /C C.k@tkL1.Rn

T /
kk

1=2

L1.Rn
T /
kzumk

2
L2.0;T IH s.Rn//

C k zF k2
L2.�T /

/:

Taking the supremum over .0; T /, using the uniform ellipticity of  and (3.19), we get

k@t zumk
2
L2.�T /

C kzumk
2
L1.0;T IH s.Rn//

� C
�
kkL1.Rn

T /
kzu0k

2
H s.Rn/

C k@tkL1.Rn
T /
kk

1=2

L1.Rn
T /
kzumk

2
L2.0;T IH s.Rn//

C k zF k2
L2.�T /

�
:
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Now the term kzumkL2.0;T IH s.Rn// can be bounded from above using the energy estimate

kzumk
2
L1.0;T IL2.�//

C kzumk
2
L2.0;T IH s.Rn//

� C.kzu0k
2
L2.�/

C k zF k2
L2.�T /

/

(cf. equation (3.40) in Section 3.2, Chapter XVIII, of [15]) for someC > 0 only depending
on 0. This then gives

(3.20) k@t zumk
2
L2.�T /

C kzumk
2
L1.0;T IH s.Rn// � C.kzu0k

2
H s.Rn/ C k

zF k2
L2.�T /

/

for some C > 0 only depending on  .
By Lemma 3 in Section 3.3, Chapter XVIII, of [15], we know that, up to subsequences,

(i) zum * zu in L2.0; T IH s.Rn// and

(ii) zum
�
�* zu in L1.0; T IL2.�//

as m!1. Using (i), (ii), (3.20) and the usual compactness arguments, we deduce that
@t zu 2 L

2.�T /, zu 2 L1.0; T IH s.Rn// and that

k@t zuk
2
L2.�T /

C kzuk2L1.0;T IH s.Rn//(3.21)

� C.kzu0k
2
H s.Rn/ C k

zF k2
L2.�T /

/

� C.ku0k
2
H s.Rn/ C kf .0/k

2
H s.Rn/ C kF k

2
L2.�T /

C k@tf k
2
L2.�T /

C kf k2
L2.0;T IH2s.Rn//

/;

where C > 0 only depends on  . More concretely, we have used here that if .H ; h � ; � iH /

is a Hilbert space, .Uk/k2N � L
2.0; T IH / satisfies kUkkL1.0;T IH/ � C uniformly in

k 2 N and Uk * U in L2.0; T IH / as k !1 for some U 2 L2.0; T IH /, then one has
U 2 L1.0; T IH / with kU kL1.0;T IH/ � C . To see this, let us fix some V 2 H and note
that Lebesgue’s differentiation theorem together with our assumptions ensure the estimate

jhU.t/; V iH j D lim
h!0

ˇ̌̌ « tCh

t

hU.�/; V iH d�
ˇ̌̌

D lim
h!0

lim
k!1

ˇ̌̌ « tCh

t

hUk.�/; V iH d�
ˇ̌̌
� CkV kH

for a.e. 0 < t < T . Taking V D U.t/ 2 H , this guarantees that U 2 L1.0; T IH / with
kU kL1.0;T IH/ � C , as we wanted to see. Additionally, in the second inequality of the
estimate (3.21), we used the definition of zu0, zF and (3.13). This establishes estimate (3.9)
and we can conclude the proof.

Because of this well-posedness result, we make the following definition.

Definition 3.8. Let��Rn be an open set, 0 < T <1, 0 < s <min.1; n=2/ and 0 > 0.
Then we define the data spaces Xs.�T /, zXs.�T / and the class of admissible conductivi-
ties �s;0.R

n
T / by

Xs.�T / WD
®
.f; u0/ 2 L

2.0; T IH 2s.Rn// �H s.Rn/ W

@tf 2 L
2.0; T IL2.Rn//; u0 � f .0/ 2 zH

s.�/
¯
;

zXs.�T / WD ¹f 2 L
2.0; T IH 2s.Rn// W @tf 2 L

2.0; T IL2.Rn//; f .0/ D 0º;
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and

�s;0.R
n
T / WD

®
 2 C 1t Cx.R

n
T / W  satisfies (1.3); @t 2 L1.RnT / and(3.22)

m 2 C.Œ0; T �IH
4sC";n=.2s/.Rn// for some " > 0

¯
:

Here, the space C kt C
`
x .R

n
T /, k; ` 2 N0, consists of all functions which are k-times con-

tinuously differentiable in the time variable t and `-times in the space variable x.

With this notation at hand, the above theorem can be rewritten as follows.

Corollary 3.9. Let��Rn be an open set, 0 < T <1, 0 < s <min.1; n=2/ and 0 > 0.
Then for all .f; u0/ 2 Xs.�T / and  2 �s;0.R

n
T /, there is a unique solution uf;u0 2

L1.0; T IH s.Rn//, with @tuf;u0 2 L
2.�T / satisfying

k@t .uf;u0 � f /k
2
L2.�T /

C kuf;u0 � f k
2
L1.0;T IH s.Rn//

� C.ku0k
2
H s.Rn/ C kf .0/k

2
H s.Rn/ C k@tf k

2
L2.�T /

C kf k2
L2.0;T IH2s.Rn//

/;

for some constant C > 0 independent of f; u0 and uf;u0 .

Proof. This is an immediate consequence of Theorem 3.6 by taking F D 0.

With the well-posedness at hand, we can define the DN map (1.4), which was intro-
duced in Section 1, rigorously. Similarly, as in the nonlocal elliptic case (see [16] or
Appendix A), we have the following definition.

Definition 3.10 (The DN map). Let � � Rn be an open set bounded in one direction,
0 < T <1, 0 < s < min.1; n=2/, 0 > 0 and  2 �s;0.R

n
T /. Then we define the DN

map ƒ by

hƒf; gi WD

Z T

0

B .uf ; g/ dt(3.23)

D
Cn;s

2

Z T

0

Z
R2n

1=2.x; t/ 1=2.y; t/

�
.uf .x; t/ � uf .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt

for all f; g 2 C1c ..�e/T /, where uf is the unique solution of (1.2).

4. Exterior determination

The main goal of this section is to prove Theorem 1.2. We first establish an energy estimate
that allows us to deduce that the Dirichlet energies of suitable special solutions concentrate
in the exterior.

Lemma 4.1. Suppose that W � �e is an open nonempty set with finite measure and
dist.W; �/ > 0. Let uf be the unique solution to (3.7) with f 2 C1c .WT /, F � 0 and
u0 � 0. Then

kuf � f kL1.0;T IL2.�// C kuf � f kL2.0;T IH s.Rn// � Ckf kL2.WT /;

where the constant C > 0 does not depend on f 2 C1c .WT /.
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Proof. By applying the energy estimate (3.8) in Theorem 3.6, we obtain

kuf � f k
2
L1.0;T IL2.�//

C kuf � f k
2
L2.0;T IH s.Rn//

� C.k@tf k
2
L2.0;T IH�s.�//

C kdivs.‚rsf /k2L2.0;T IH�s.�///:

Since, f is compactly supported in WT � .�e/T , the first contribution in the above esti-
mate is zero. By the proof of Lemma 3.1 in [42],

kdivs.‚rsf /.t/kH�s.�/ � Ckf .t/kL2.W /

for a.e. t 2 .0; T / and some C > 0 only depending on n; s;W and kkL1.Rn
T /

. Hence,

kuf � f k
2
L1.0;T IL2.�//

C kuf � f k
2
L2.0;T IH s.Rn//

� Ckf k2
L2.WT /

;

and we can conclude the proof.

Proof of Theorem 1.2. First, let  denote either of the two diffusion coefficients 1 or 2.
Using the Sobolev embedding, we may assume that  2 Cb.WT /. Now, by Lemma 5.5
in [14], for any x0 2 W , there exists .�N /N2N � C

1
c .W / such that k�N kH s.Rn/ D 1,

k�N kL2.Rn/ ! 0 as N !1 and supp.�N /! ¹x0º. Moreover, Proposition 1.5 in [14]
implies that B. � ;t0/.�N ; �N /! .x0; t0/ as N !1 for any t0 2 .0; T /. Next let � 2
C1c ..0; T // and define ˆN WD ��N 2 C1c .WT /. It follows thatZ T

0

B .ˆN ; ˆN / dt D

Z T

0

�2.t/B .�N ; �N / dt:

By the dominated convergence theorem, we obtain

(4.1) lim
N!1

Z T

0

B .ˆN ; ˆN / dt D

Z T

0

�2.t/.x0; t / dt:

Let us now consider the solutions uN to the equation8̂<̂
:
@tuC divs.‚rsu/ D 0 in �T ;
u D ˆN in .�e/T ;
u.x; 0/ D 0 in �;

for N 2 N. By the definition of the DN map (3.23), we have

hƒˆN ; ˆN i D

Z T

0

B .uN ; ˆN / dt(4.2)

D

Z T

0

B .uN �ˆN ; ˆN / dt C

Z T

0

B .ˆN ; ˆN / dt:

Next, note that Lemma 4.1 impliesˇ̌̌ Z T

0

B .uN �ˆN ; ˆN / dt
ˇ̌̌
� C

Z T

0

k.uN �ˆN /. � ; t /kH s.Rn/kˆN . � ; t /kH s.Rn/ dt

� C
� Z T

0

k.uN �ˆN /. � ; t /k
2
H s.Rn/dt

�1=2
� CkˆN kL2.0;T IL2.Rn// D Ck�kL2..0;T //k�N kL2.W /;
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and hence

(4.3) lim
N!1

Z T

0

B .uN �ˆN ; ˆN / dt D 0:

We obtain from (4.1)–(4.3) that

(4.4) lim
N!1

hƒˆN ; ˆN i D

Z T

0

�2.t/.x0; t / dt:

Hence, applying the identity (4.4) to  D 1 and  D 2, and subtracting them, with (1.7)
at hand, we deduce Z T

0

.1.x0; t / � 2.x0; t //� dt D 0

for all � 2 C1c ..0; T // with � � 0. This implies 1.x0; t / � 2.x0; t / a.e. Interchanging
the role of 1 and 2, we also obtain the reversed inequality and deduce by continuity
that 1.x0; t / D 2.x0; t / for all t 2 .0; T /. Since this construction can be done for any
x0 2 W , we have 1 D 2 in WT .

Remark 4.2. Note that we also obtain a Lipschitz stability estimate for the exterior deter-
mination problem with partial data as in the elliptic case [14]. Moreover, one can easily
observe that in contrast toƒ the new DN map N , which is defined in Section 6, satisfies
hNˆN ; ˆN i ! 0 as N !1:

5. The spacetime Liouville reduction

In this section, we derive the spacetime Liouville reduction.

Lemma 5.1 (Auxiliary lemma). Let � � Rn be an open set bounded in one direction,
0 < T <1, 0 < s < min.1; n=2/, and V � �e a nonempty open set. Assume that  2
L1.RnT / with background deviationm 2L1.0;T IH 2s;n=.2s/.Rn// satisfies  � 0 > 0
for some positive constant 0. Then the following assertions hold:

(i) For any  2 L2.0; T I zH s.V //, we have 1=2 ; �1=2 2 L2.0; T I zH s.V // and

k1=2 kL2.0;T IH s.Rn// . .1C kmkL1.Rn
T /
C kmkL1.0;T IH2s; n=.2s/.Rn///

� k kL2.0;T IH s.Rn//

and

k�1=2 kL2.0;T IH s.Rn// .
�
1C kmkL1.Rn

T /
C kmkL1.0;T IH2s; n=.2s/.Rn//

C kmk
2s
L1.0;T IH2s; n=.2s/.Rn//

�
k kL2.0;T IH s.Rn//:

(ii) Let u; ' 2 L2.0; T IH s.Rn//. ThenZ t2

t1

h‚r
su;rs'iL2.R2n/ dt D

Z t2

t1

h.��/s=2.1=2u/; .��/s=2.1=2'/iL2.Rn/ dt

C

Z t2

t1

hq
1=2u; 1=2'iL2.Rn/ dt

for all 0 � t1 < t2 � T .
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Proof. (i) First we show that 1=2 2 L2.0; T I zH s.V // for any  2 L2.0; T I zH s.V //.
Decomposing 1=2 as m C  , we deduce from Corollary A.7 in [41] that

k1=2 k2
L2.0;T IH s.Rn//

(5.1)

� C.km k
2
L2.0;T IH s.Rn//

C k k2
L2.0;T IH s.Rn//

/

� C

Z T

0

.kmk
2
L1.Rn/ C kmkH2s;n=2s.Rn/kmkL1.Rn//k k

2
H s.Rn/ dt

C Ck k2
L2.0;T IH s.Rn//

� C.1C kmk
2
L1.Rn

T /
C kmkL1.0;T IH2s; n=.2s/.Rn///k k

2
L2.0;T IH s.Rn//

:

Hence, we have 1=2 2 L2.0; T IH s.Rn//.
Next recall that if T > 0 and if X is a Banach space with dense subset X0, then

C1c ..0; T //˝ X0 is dense in L2.0; T IX/. Let .�"/">0 � C1c .R
n/ be a standard mol-

lifier and choose a sequence . k/k2N � C
1
c ..0; T // ˝ C

1
c .V / such that  k !  in

L2.0; T I zH s.V //. The sequence .1=2 � �"k / k , k 2 N, belongs to L2.0; T I zH s.V //,
where "k ! 0 as k ! 1. Hence, if we can show that .1=2i � �"k / k ! 1=2i  in
L2.0; T IH s.Rn// as k ! 1, then it follows that 1=2 2 L2.0; T I zH s.V //. We can
estimate

k1=2 � .1=2 � �"k / kkL2.0;T IH s.Rn//(5.2)

� km �m
k
 kkL2.0;T IH s.Rn// C k �  kkL2.0;T IH s.Rn//

� k.m �m
k
 / kL2.0;T IH s.Rn// C km

k
 . �  k/kL2.0;T IH s.Rn//

C k �  kkL2.0;T IH s.Rn//;

where we have set mk D mi � �"k .
Now, for the second term in the right-hand side of (5.2), we can apply estimate (5.1),

but all the terms involving mk are uniformly bounded for k 2 N by using the Young’s
inequality and the fact that Bessel potentials commute with convolution. Hence, the sec-
ond and third terms go to zero as k!1. For the first term in the right-hand side of (5.2),
we observe that, by Corollary A.7 in [41], .m �mk / ! 0 in H s.Rn/ as k !1 for
a.e. t 2 .0; T / and

k.m �m
k
 / kH s.Rn/ � C.kmkL1.Rn/ C kmk

1=2

H2s; n=.2s/.Rn/kmk
1=2

L1.Rn/
/k kH s.Rn/;

for a.e. t 2 .0; T /.
With the above estimate at hand, let us use Young’s inequality again and the fact that

the Bessel potentials commute with convolution. Since m 2 L1.0; T IH 2s;n=.2s/.Rn//,
the term in brackets is uniformly bounded in t , and thus Lebesgue’s dominated conver-
gence theorem implies that .m �mk / ! 0 inL2.0;T IH s.Rn// as k!1. Therefore,
the assertion follows.

Similarly, one can prove �1=2 2 L2.0; T I zH s.V // for any  2 L2.0; T I zH s.V //.
Indeed, it essentially follows from the decomposition �1=2 D 1�m=.m C 1/ and the
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fact that the second term has the same regularity properties as m . More concretely, from
the proof of Theorem 8.6 in [41] and [1], p. 156, it follows that m

m C 1


L1.0;T IH2s; n=.2s/.Rn//

� C
�
kmkL1.0;T IH2s; n=.2s/.Rn// C kmk

2s
L1.0;T IH2s; n=.2s/.Rn//

�
;

and hence we can repeat the above argument by using the smooth approximation of the
function mk=.m

k
 C 1/ this time. Thus, we conclude that �1=2 2 L2.0; T I zH s.V // for

all  2 L2.0; T I zH s.V //.
(ii) Note that due to our regularity assumptions, we can apply Lemma 4.1 in [14] or

Remark 8.8 in [41] in every time slice to obtain

h‚r
su;rs'iL2.R2n/

D h.��/s=2.1=2u/; .��/s=2.1=2'/iL2.Rn/ � h.��/
s=2m ; .��/

s=2.1=2u'/iL2.Rn/

D h.��/s=2.1=2u/; .��/s=2.1=2'/iL2.Rn/ C hq
1=2u; 1=2'iL2.Rn/;

for a.e. t 2 .0; T / and all u; ' 2 L2.0; T IH s.Rn//, where m and q are the functions
defined by (3.2) and (5.4), respectively. Finally, note that, by the properties of the frac-
tional Laplacian, the fact that .u; v/ 7! quv is bilinear and bounded as a map from
L2.0; T IH s.Rn// �L2.0; T IH s.Rn// to L1.0; T IL1.Rn// (cf. Corollary A.11 in [41])
and the assertion (i), all terms appearing in the above identity are in L1..0; T //.

Now, we are ready to introduce the Liouville reduction.

Theorem 5.2 (Fractional spacetime Liouville reduction). Let � � Rn be an open set
bounded in one direction, 0 < T <1, 0 < s < min.1; n=2/, 0 > 0 and  2 �s;0.R

n
T /.

(i) If F 2 L2.�T /, .f; u0/ 2 Xs.�T / and u is the unique solution to (3.7), then v WD
1=2u 2 H 1.0; T IL2.�// \ L2.0; T IH s.Rn// solves

(5.3)

8̂<̂
:
@t .

�1v/C ..��/s CQ /v D G in �T ;
v D g in .�e/T ;
v.0/ D v0 in �;

with G D �1=2F 2 L2.�T /, .g; v0/ D .1=2f; 1=2u0/ 2 Xs.�T / and

(5.4) Q D q C
@t

22
, with q D �

.��/sm

1=2
�

(ii) For all G 2 L2.�T / and .g; v0/ 2 Xs.�T /, there exists a unique solution v 2
H 1.0; T IL2.�//\L2.0; T IH s.Rn// to (5.3). Moreover, it is given by v D 1=2u,
where u is the solution to

(5.5)

8̂<̂
:
@tuC divs.‚rsu/ D F in �T ;
u D f in .�e/T ;
u.0/ D u0 in �;

with F D 1=2G, f D �1=2g and u0 D �1=2v0.
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Proof. (i) Note that G 2 L2.�T / and by Lemma 5.1, we have g 2 L2.0; T IH s.Rn//,
v0 2 H

s.Rn/ and v � g 2 L2.0; T I zH s.�//. By the assumptions on f; ; u, we have
@t .

1=2f / 2 L2.RnT / and @tv 2 L2.�T /. This implies that

v0 � g.0/ D 
1=2.0/.u0 � f .0// 2 zH

s.�/:

Therefore, we have shown that .g; v0/ 2 Xs.�T /.
Arguing as above, we have that v has the same regularity properties as u. Thus, it

remains to prove that v solves (5.3). By definition, u satisfies

(5.6) �
Z
�T

u@t' dxdt C

Z T

0

B .t Iu; '/ dt D

Z
�T

F' dxdt C

Z
�

u0.x/'.x; 0/ dx

for all ' 2 C1c .� � Œ0; T //. Observe, as in the case s D 1 (cf. Lemma 4.12 in [33]), the
space C1c .� � Œ0; T // is dense in

Ws.�T / WD ¹' 2 L
2.0; T I zH s.�// W @t' 2 L

2.�T / and'.T / D 0º;

which is endowed with the natural norm

kuk2Ws.�T / WD k@tuk
2
L2.�T /

C kuk2
L2.0;T IH s.Rn//

:

This can easily be seen by using a cutoff function in time as in Exercise 8.8 of [4], and
using the density of C1c ..0; T //˝ C

1
c .�/ in L2.0; T I zH s.�//.

Now, as we proved above, the space Ws.�T / is invariant under multiplication with
either 1=2 or �1=2. Moreover, we have

u@t' D
1

1=2
.1=2u/@t

1=2'

1=2
(5.7)

D
1


.1=2u/@t .

1=2'/ �
1

22
.1=2u/.1=2'/@t;

for all ' 2Ws.�T /. Hence, using the (space) Liouville reduction (see Remark 8.8 in [41])
in every time slice for all ' 2 Ws.�T /, the identity (5.6) implies

�

Z
�T

u@t' dxdt C

Z T

0

h.��/s=2.1=2u/; .��/s=2.1=2'/i dt

C

Z
�T

q .
1=2u/.1=2'/ dxdt

D

Z
�T

F' dxdt C

Z
�

1=2.x; 0/u0.x/
1=2.x; 0/'.x; 0/

.x; 0/
dx:

Inserting (5.7) yields

�

Z
�T

.1=2u/@t .
1=2'/


dxdt C

Z T

0

h.��/s=2.1=2u/; .��/s=2.1=2'/i dt(5.8)

C

Z
�T

Q .
1=2u/.1=2'/ dxdt

D

Z
�T

.�1=2F /.1=2'/ dxdt C

Z
�

1=2.x; 0/u0.x/
1=2.x; 0/'.x; 0/

.x; 0/
dx:
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Hence, choosing ' D �1=2 with  2 Ws.�T /, we see that v satisfies

�

Z
�T

�1v@t dxdt C

Z T

0

h.��/s=2v; .��/s=2 i dt C

Z
�T

Qv dxdt(5.9)

D

Z
�T

G dxdt C

Z
�

v0.x/ .x; 0/

.x; 0/
dx;

for all  2 Ws.�T /. Therefore v is a solution of (5.3) as claimed.
(ii) Existence and uniqueness of solutions in H 1.0; T IL2.�// \ L2.0; T IH s.Rn//

easily follows from (i) by choosing the data F; f; u0 appropriately and by observing
that �1=2 has precisely the same regularity properties as 1=2. In fact, assuming that
v 2 H 1.0; T IL2.�// \ L2.0; T IH s.Rn// solves (5.3), then, as in (i), we deduce u WD
�1=2v 2 H 1.0; T IL2.�// \ L2.0; T IH s.Rn//, F WD 1=2G 2 L2.�/ and .f; u0/ WD
.1=2g; 1=2v0/ 2 Xs.�T /.

By the definition, v solves (5.9) for any  2 Ws.�T /. Replacing  by 1=2' and
inserting these definitions of F , u0 and f , we get (5.8). Plugging the identity (5.7) and
using the slicewise Liouville reduction, we see that u solves (5.5). Now, Theorem 3.6
gives the existence of such a solution u and by (i) the function v solves (5.3). On the other
hand, if v1; v2 are two solutions of (5.3), then arguing as above we see that ui WD �1=2vi
for i D 1;2 solve (5.5). Since solutions to the nonlocal diffusion equation (5.5) are unique,
we deduce that u1 D u2 and thus v1 D v2.

Next, we will prove well-posedness for the diffusion equation derived by the Liouville
reduction and its adjoint equation under the milder assumptionG2L2.0;T IH�s.�// but
g2C1c ..�e/T /. Moreover, we will see that u is the solution to (3.7) if and only if v is the
unique solution to (5.3) of the form v D �1=2u.

Definition 5.3. If u 2 L1loc.VT / for some open set V � Rn, then we set

u�.x; t/ WD u.x; T � t / for all .x; t/ 2 VT .

Proposition 5.4 (Well-posedness). Let � � Rn be an open set bounded in one direction,
0 < T <1, 0 < s < min.1; n=2/, 0 > 0 and  2 �s;0.R

n
T /. If g 2 C1c ..�e/T / and

G 2 L2.0; T IH�s.�//, then there exist unique solutions v, v� 2 L2.0; T IH s.Rn// with
@tv and @tv� 2 L2.0; T; IH�s.�// of

(5.10)

8̂<̂
:
@t .

�1v/C ..��/s CQ /v D G in �T ;
v D g in .�e/T ;
v.0/ D 0 in �;

and

(5.11)

8̂<̂
:
��1@tv

� C ..��/s CQ /v
� D G in �T ;

v� D g in .�e/T ;
v�.T / D 0 in �;

respectively. Here Q is the function (5.4) given by the Liouville reduction.



Y.-H. Lin, J. Railo and P. Zimmermann 24

Proof. Let us prove the uniqueness of solutions to (5.10). Suppose that v1; v2 are solutions
of (5.10), and consider Qv WD v1 � v2. Then Qv is the solution to

(5.12)

8̂<̂
:
@t .

�1 Qv/C ..��/s CQ / Qv D 0 in �T ;
Qv D 0 in .�e/T ;
Qv.0/ D 0 in �:

Multiplying (5.12) by Qv, it is not hard to see

(5.13)
Z
�

@t .
�1
Qv/ Qv dx C

Z
Rn

j.��/s=2 Qvj2 dx C

Z
�

Q j Qvj
2 dx D 0;

where the first integral has to be understood as the duality pairing between zH s.�/ and
H�s.�/. Meanwhile, notice that the first term of the above identity can be expressed as

(5.14)
Z
�

@t .
�1
Qv/ Qv dx D

@t

2

Z
�

�1j Qvj2 dx C

Z
�

j Qvj2�1=2 @t .
�1=2/ dx:

We next plug (5.14) into (5.13), which give rises to

@t

2

Z
�

�1j Qvj2dxC

Z
Rn

j.��/s=2 Qvj2dx D �

Z
�

Q j Qvj
2dx�

Z
�

�1=2@t .
�1=2/j Qvj2dx

� C

Z
�

�1j Qvj2dx;

for a constant C > 0 independent of Qv, where we used that  2 C 1t Cx.R
n
T / is uniformly

elliptic with @t 2 L1.RnT / and (3.16).
Thus, we obtain

@tk
�1=2
Qvk2
L2.�/

� C
�
@t

Z
�

�1j Qvj2 dx C

Z
Rn

j.��/s=2 Qvj2 dx
�
� Ck�1=2 Qvk2

L2.�/
;

and the Gronwall’s inequality implies that

k�1=2. � ; t / Qv. � ; t /k2
L2.�/

� eCtk�1=2. � ; 0/ Qv. � ; 0/k2
L2.�/

D 0 for t 2 .0; T /;

where we used the initial condition is 0. This shows Qv D 0 in �T , as desired.
When  2 C 1t Cx.R

n
T / is uniformly elliptic with @t 2 L1.RnT /, the proof of well-

posedness of either (5.10) or (5.11) are similar. More precisely, one can use the relation

@t .
�1v/ D �1@tv C @t .

�1/v

to rewrite equation (5.10) as

(5.15)

8̂<̂
:
�1@tv C ..��/

s C zQ /v D G in �T ;
v D g in .�e/T ;
v.0/ D 0 in �;

where zQ WDQ C @t .�1/ in�T . Now, it is not hard to see the well-posedness of (5.15)
and (5.11) are the same by reversing the time variable t ! T � t as in Definition 5.3.



Global uniqueness for nonlocal diffusion 25

Now, by slight modification of the proof of Theorem 5.2, one knows that v is the
unique solution to (5.10) if and only if u is the solution to (3.7) with G D �1=2F 2

L2.0; T IH�s.�// and g D 1=2f 2 L2.0; T IH s.Rn// with @tg 2 L2.RnT /. Hence,
applying Theorem 3.6 for the solution u of (3.7), one has u 2 L2.0; T IH s.Rn// with
@tu 2 L

2.0; T IH�s.�//, and the same holds true for v. This proves the assertion.

Remark 5.5. Combining similar arguments as in the proofs of Proposition 5.4 and Theo-
rem 3.6, one may derive the well-posedness of the initial-exterior value problem of8̂<̂

:
@t .

�1v/C ..��/s CQ/v D G in �T ;
v D g in .�e/T ;
v.0/ D 0 in �;

under suitable regularity assumptions of Q, g and G. Here the potential Q may not be of
the same form as the function Q given by the spacetime Liouville reduction (5.4).

6. Nonlocal Neumann derivative and new DN maps

Motivated by Lemma 3.3 in [16], for a given function u, we define the analogous nonlocal
normal derivative in the exterior domain by

Nu.x; t/ D Cn;s

Z
�

1=2.x; t/ 1=2.y; t/
u.x; t/ � u.y; t/

jx � yjnC2s
dy; .x; t/ 2 .�e/T ;

where Cn;s is the constant given by (1.5). We note that in the elliptic case similar data was
considered in [24] for the fractional Schrödinger equation. However, as in our problem
the coefficients are assumed to be unknown in the exterior, the Neumann and DN data in
fact contain different information. We now proceed with the Neumann data which contains
less information than the DN data. In particular, our results in this section are more general
than the corresponding results which would rely on the DN data. This matter is discussed
in detail in Appendix A.

6.1. Alternative definition of the DN map

Let us make a new definition of the DN map.

Definition 6.1 (New DN map for nonlocal diffusion equation). Let � � Rn be an open
set bounded in one direction, 0 < T <1, 0 < s <min.1;n=2/, 0 > 0 and  2 �s;0.R

n
T /.

Then we define the exterior DN map N by

hNf; gi D
Cn;s

2

Z T

0

Z
R2nn.�e��e/

1=2.x; t/ 1=2.y; t/

�
.uf .x; t/ � uf .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt;
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for all f; g 2 C1c ..�e/T /, where uf is the unique solution (see Corollary 3.9 for the
well-posedness) of 8̂<̂

:
@tuC divs.‚rsu/ D 0 in �T ;
u D f in .�e/T ;
u.0/ D 0 in �:

Proposition 6.2. Let � � Rn be an open set bounded in one direction, 0 < T < 1,
0 < s < min.1; n=2/, 0 > 0 and  2 �s;0.R

n
T /. Let f; g 2 C1c ..�e/T / and denote by

uf 2 L
2.0; T IH s.Rn// the unique solutions to8̂<̂

:
@tuC divs.‚rsu/ D 0 in �T ;
u D f in .�e/T ;
u.0/ D 0 in �:

Let also vg 2L2.0;T IH s.Rn// be any function satisfying @tvg 2L2.0;T IH�s.�// and
vg � g 2 L

2.0; T I zH s.�//. Then

hNf; gi D

Z
�T

@tuf vg dxdt C

Z T

0

B .uf ; vg/ dt(6.1)

�
Cn;s

2

Z T

0

Z
�e��e

1=2.x; t/ 1=2.y; t/

�
.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt:

Proof. By the definition (3.1) of the bilinear form B ,

hNu; gi D
Cn;s

2

Z T

0

Z
R2nn.�e��e/

1=2.x; t/ 1=2.y; t/

�
.uf .x; t/ � uf .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt

D

Z T

0

B .uf ; g/ dt �
Cn;s

2

Z T

0

Z
�e��e

1=2.x; t/ 1=2.y; t/

�
.uf .x; t/ � uf .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt:

First, note that by writing
uf D .uf � f /C f

and using .uf � f /. � ; t / 2 zH s.�/ for a.e. t 2 .0; T /, the last term is equal to

�
Cn;s

2

Z T

0

Z
�e��e

1=2.x; t/ 1=2.y; t/
.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt:
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On the other hand, by using cutoff functions �m in time vanishing near t D 0 and t D T
but equal to one on the support of g, one obtainsZ T

0

B .uf ; g/ dt D lim
m!1

Z T

0

B .uf ; �mg/ dt

D lim
m!1

�
�

Z T

0

B .uf ; �m.vg � g// dt C

Z T

0

B .uf ; �mvg/ dt
�

D � lim
m!1

Z
�T

uf @t .�m.vg � g// dxdt C

Z T

0

B .uf ; vg/ dt

D lim
m!1

Z
�T

@tuf �mvg dxdt C

Z T

0

B .uf ; vg/ dt

D

Z
�T

@tuf vg dxdt C

Z T

0

B .uf ; vg/ dt:

This concludes the proof.

We next define the DN map for the spacetime Liouville reduction equation by the
corresponding nonlocal Neumann derivative.

Definition 6.3. Let� � Rn be an open set bounded in one direction, and let 0 < T <1,
0 < s <min.1;n=2/, 0 > 0 and  2 �s;0.R

n
T /. Then we define the exterior DN map NQ

by

hNQf; gi(6.2)

D
Cn;s

2

Z T

0

Z
R2nn.�e��e/

.vf .x; t/ � vf .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt;

for all f; g 2 C1c ..�e/T /, where vf is the unique solution (see Theorem 5.2 and Propo-
sition 5.4) of 8̂<̂

:
@t .

�1v/C ..��/s CQ /v D 0 in �T ;
v D g in .�e/T ;
v.0/ D 0 in �;

and Cn;s is the constant given by (1.5).

To prove Theorem 1.1, let us derive a useful representation formula of (6.2).

Proposition 6.4. Let � � Rn be an open set bounded in one direction, 0 < T < 1,
0 < s < min.1; n=2/, 0 > 0 and  2 �s;0.R

n
T /. Let f; g 2 C1c ..�e/T / and denote

by uf the unique solutions to

(6.3)

8̂<̂
:
@t .

�1u/C ..��/s CQ /u D 0 in �T ;
u D f in .�e/T ;
u.0/ D 0 in �:



Y.-H. Lin, J. Railo and P. Zimmermann 28

Let also vg 2 L2.0; T IH s.Rn// be any function satisfying @tvg 2 L2.0; T;H�s.�// and
vg � g 2 L

2.0; T I zH s.�//. Then

hNQf; gi

D

Z
�T

@t .
�1uf /vg dxdt C

Z
Rn
T

.��/s=2uf .��/
s=2vg dxdt C

Z
�T

Quf vg dxdt

�
Cn;s

2

Z T

0

Z
�e��e

.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt:

Remark 6.5. Observe that the last term in (6.1) is independent of Q . Therefore, in this
case the corresponding DN map ƒQ can be defined by

hƒQf; gi D

Z
�T

@t .
�1uf /vg dxdt C

Z
Rn
T

.��/s=2uf .��/
s=2vg dxdt

C

Z
�T

Quf vg dxdt

for f; g 2 C1c ..�e/T /, and it contains the same information as NQ .

Proof of Proposition 6.4. As in the proof of Proposition 6.2, we have

hNQf; gi D

Z
Rn
T

.��/s=2uf .��/
s=2g dxdt

�
Cn;s

2

Z T

0

Z
�e��e

.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt:

Next, as in the proof of Proposition 6.2, we use a sequence of cutoff functions .�m/m2N �

C1c ..0; T // to deduce the identityZ
Rn
T

.��/s=2uf .��/
s=2g dxdt

D lim
m!1

�

Z
Rn
T

.��/s=2uf .��/
s=2.�m.vg � g// dxdt

C lim
m!1

Z
Rn
T

.��/s=2uf .��/
s=2.�mvg/ dxdt

D lim
m!1

�
�

Z
�T

�1uf @t .�m.vg � g// dxdt C

Z
�T

Quf .�m.vg � g// dxdt
�

C

Z
Rn
T

.��/s=2uf .��/
s=2vg dxdt

D

Z
�T

@t .
�1uf /vg dxdt C

Z
Rn
T

.��/s=2uf .��/
s=2vg dxdt

C

Z
�T

Quf vg dxdt:

This completes the proof.
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6.2. Relation between DN map and nonlocal Neumann derivative

Let us consider two arbitrary nonempty open subsets W1; W2 � W , with W1 \W2 D ;,
where W � �e denotes the open set in the statements of either Theorem 1.1 or Theo-
rem 1.2. Meanwhile, with the exterior determination result (Theorem 1.2) at hand, one
already knows that 1 D 2 in WT , provided that ƒ1f jWT D ƒ2f jWT for any f 2
C1c .WT /. Adopting these notations, one immediately has 1 D 2 in .W1 [W2/T . Then
we can derive the following relation.

Lemma 6.6. Let � � Rn be an open set bounded in one direction, 0 < T <1, 0 < s <
min.1; n=2/, 0 > 0 and j 2 �s;0.R

n
T / for j D 1; 2. Assume that W1;W2 � �e are two

nonempty open disjoint sets and � 2 �s;0.R
n
T / are such that 1.x; t/D 2.x; t/D �.x; t/

for all .x; t/ 2 .W1 [W2/T . Then we have

ƒ1f j.W2/T D ƒ2f j.W2/T for any f 2 C1c ..W1/T /

if and only if

hN1f; gi D hN2f; gi for any f 2 C1c ..W1/T / and g 2 C1c ..W2/T /:

Proof. We have, for any f 2 C1c ..W1/T / and g 2 C1c ..W2/T /,

hƒf; gi

D
Cn;s

2

Z T

0

Z
R2n

1=2.x; t/ 1=2.y; t/
.uf .x; t/�uf .y; t//.g.x; t/�g.y; t//

jx � yjnC2s
dxdydt;

by using Definition 3.10. Thus, combining with Definition 6.1, one has that

hƒ1f; gi D hN1f; gi C
Cn;s

2

Z T

0

Z
�e��e


1=2
1 .x; t/

1=2
1 .y; t/(6.4)

�
.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt

D hN2f; gi C
Cn;s

2

Z T

0

Z
�e��e


1=2
2 .x; t/

1=2
2 .y; t/

�
.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt D hƒ2f; gi;

where we used that uf D f in .�e/T .
On the other hand, one can see thatZ T

0

Z
�e��e


1=2
1 .x; t/

1=2
1 .y; t/

.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt(6.5)

D

Z T

0

Z
�e��e


1=2
2 .x; t/

1=2
2 .y; t/

.f .x; t/�f .y; t//.g.x; t/�g.y; t//

jx � yjnC2s
dxdydt;

where we used that f 2 C1c ..W1/T /, g 2 C
1
c ..W2/T / with 1 D 2 in .W1 [W2/T and

W1 \W2 D ;. Finally, insert (6.5) into (6.4), and we can see the assertion is true. This
completes the proof.
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Theorem 6.7 (Relation of DN maps). Let � � Rn be an open set bounded in one direc-
tion, 0 < T <1, 0 < s < min.1; n=2/, 0 > 0 and j 2 �s;0.R

n
T / for j D 1; 2. Assume

that W1; W2 � �e are two nonempty open disjoint sets and � 2 �s;0.R
n
T / are such that

1.x; t/ D 2.x; t/ D �.x; t/ for all .x; t/ 2 .W1 [W2/T and � 2 C1..W1 [W2/T /.
Then for f 2 C1c ..W1/T /; g 2 C

1
c ..W2/T /, we have

hN1f; gi D hN2f; gi

if and only if

hNQ1
.�1=2f /; .�1=2g/i D hNQ2

.�1=2f /; .�1=2g/i:

Proof. By the Liouville reduction (cf. Theorem 5.2),Z
�T

@tuf vg dxdt C

Z T

0

B .uf ; vg/ dt

D

Z
�T

@t .
�1.1=2uf //.

1=2vg/dxdt C

Z
Rn
T

.��/s=2.1=2uf /.��/
s=2.1=2vg/dxdt

C

Z
Rn
T

q .
1=2uf /.

1=2vg/ dxdt C

Z
�T

@t

22
.1=2uf /.

1=2vg/ dxdt

D

Z
�T

@t .
�1.1=2uf //.

1=2vg/dxdt C

Z
Rn
T

.��/s=2.1=2uf /.��/
s=2.1=2vg/dxdt

C

Z
�T

Q .
1=2uf /.

1=2vg/ dxdt C

Z
.�e/T

q .
1=2uf /.

1=2vg/ dxdt

D hNQ .�
1=2f /; .�1=2g/i C

Z
.�e/T

q .
1=2f /.1=2g/ dxdt

C
Cn;s

2

Z T

0

Z
�e��e

.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt;

since wf WD 1=2uf solves (6.3) with exterior condition �1=2f and v�1=2g WD 
1=2vg is

an extension of 1=2g with the same regularity properties as vg . Therefore,

hNf; gi � hNQ .�
1=2f /; .�1=2g/i

D

Z
.�e/T

q .
1=2f /.1=2g/ dxdt

�
Cn;s

2

Z T

0

Z
�e��e

.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt

C
Cn;s

2

Z T

0

Z
�e��e

1=2.x; t/ 1=2.y; t/

�
.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt:
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Since W1 \W2 D ;, it follows that

hNf; gi � hNQ .�
1=2f /; .�1=2g/i

D �
Cn;s

2

Z T

0

Z
�e��e

.1 � �1=2.x; t/ �1=2.y; t//

�
.f .x; t/g.y; t/ � f .y; t/g.x; t//

jx � yjnC2s
dxdydt:

Now this expression on the right-hand side does not depend on the conductivities and so
we see that

hN1f; gi D hN2f; gi ” hNQ1
f; gi D hNQ2

f; gi;

for any f 2 C1c ..W1/T / and g 2 C1c ..W2/T /. This proves the assertion.

6.3. Adjoint DN map

Let us introduce the adjoint DN map which then will be used to prove a suitable integral
identity.

Definition 6.8 (Adjoint DN map). Let � � Rn be an open set bounded in one direction,
0 < T <1, 0 < s < min.1; n=2/, 0 > 0 and  2 �s;0.R

n
T /. Then we define the adjoint

exterior DN map N �Q by

hN �Qf; gi D
Cn;s

2

Z T

0

Z
R2nn.�e��e/

.uf .x; t/ � uf .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt

for all f; g 2 C1c ..�e/T /, where uf is the unique solution to8̂<̂
:
��1@tv C ..��/

s CQ /v D 0 in �T ;
v D f in .�e/T ;
v.T / D 0 in �;

and Cn;s is the constant given by (1.5).

We make the following simple observations.

Lemma 6.9 (Properties of adjoint DN map). Let � � Rn be an open set bounded in
one direction, 0 < T <1, 0 < s < min.1; n=2/, 0 > 0 and  2 �s;0.R

n
T /. If f; g 2

C1c ..�e/T / and uf is the unique solution to8̂<̂
:
��1@tuC ..��/

s CQ /u D 0 in �T ;
u D f in .�e/T ;
u.T / D 0 in �;

then the following hold:
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(i) For any extension vg of g with vg 2L2.0;T IH s.Rn// and @tvg 2L2.0;T;H�s.�//,

hN �Qf; gi D �

Z
�T

�1@tuf vg dxdt C

Z
Rn
T

.��/s=2uf .��/
s=2vg dxdt

C

Z
�T

Quf vg dxdt

�
Cn;s

2

Z T

0

Z
�e��e

.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt:

(ii) We have hN �Qf; gi D hNQg; f i:

Proof. (i) This follows from a similar calculation as in Proposition 6.4.
(ii) Let ug be the solution to (6.3) as the exterior data f is replaced by g. Since

uf .T / D 0, ug.0/ D 0, we haveZ
�T

.@t .
�1ug/uf C ug

�1@tuf // dxdt D 0:

This immediately shows the claim.

7. The global uniqueness

We split this final section into several parts. We first establish the integral identity and
the Runge approximations in Sections 7.1 and 7.2, respectively. Combined with these two
statements, one can prove the interior uniqueness in Section 7.3. Finally, we show the
UCP of exterior DN maps, which together with the work of Section 4 imply the global
uniqueness result of Theorem 1.1.

7.1. Integral identity

One of the key material to prove the interior uniqueness is to derive a suitable integral
identity.

Proposition 7.1 (Integral identity). Let� � Rn be an open set bounded in one direction,
0 < T <1, 0 < s < min.1; n=2/, 0 > 0 and j 2 �s;0.R

n
T / for j D 1; 2. Assume that

W1; W2 � �e are two nonempty open sets and � 2 �s;0.R
n
T / are such that 1.x; t/ D

2.x; t/ D �.x; t/ for all .x; t/ 2 .W1 [ W2/T and � 2 C1..W1 \ W2/T /. Then for
f 2 C1c ..W1/T /; g 2 C

1
c ..W2/T /, we have

h.NQ1
�NQ2

/f; gi D

Z
�T

.�12 �
�1
1 /vf @tvg dxdt C

Z
�T

.Q1 �Q2/vgvf dxdt;

where vf is the unique solution to (6.3) with  D 1 and vg is the unique solution to the
adjoint equation 8̂<̂

:
��12 @tw C ..��/

s CQ2/w D 0 in �T ;
w D g in .�e/T ;
w.T / D 0 in �:



Global uniqueness for nonlocal diffusion 33

Proof. By Lemma 6.9 and Proposition 6.4, we have

h.NQ1
�NQ2

/f; gi D hNQ1
f; gi � hNQ2

f; gi D hNQ1
f; gi � hN �Q2

g; f i

D

Z
�T

@t .
�1
1 vf /vg dxdt C

Z
Rn
T

.��/s=2vf .��/
s=2vg dxdt C

Z
�T

Q1vf vg dxdt

�
Cn;s

2

Z T

0

Z
�e��e

.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt

C

Z
�T

�12 @tvgvf dxdt �

Z
Rn
T

.��/s=2vg.��/
s=2vf dxdt �

Z
�T

Q2vgvf dxdt

C
Cn;s

2

Z T

0

Z
�e��e

.f .x; t/ � f .y; t//.g.x; t/ � g.y; t//

jx � yjnC2s
dxdydt

D

Z
�T

@t .
�1
1 vf /vg dxdt C

Z
�T

�12 vf @tvg dxdt C

Z
�T

.Q1 �Q2/vgvf dxdt

D

Z
�T

.�12 � 
�1
1 /vf @tvg dxdt C

Z
�T

.Q1 �Q2/vgvf dxdt;

where we used for the integration by parts that vf .0/ D 0 and vg.T / D 0.

7.2. Approximation property

To prove the interior uniqueness result of  , we derive an approximation property of solu-
tions to the Schrödinger type equations. First, we introduce the source to solution map,
which is usually called Poisson operator. Assume that � � Rn is an open set bounded in
one direction, 0 < T <1, 0 < s < min.1; n=2/, 0 > 0,  2 �s;0.R

n
T / and W � �e is

a nonempty open set. With the well-posedness of (5.3), we can define the Poisson opera-
tor P as follows:

(7.1) P W C
1
c .WT /! H 1.0; T IL2.�// \ L2.0; T IH s.Rn//; f 7! vf ;

where vf 2 H 1.0; T IL2.�// \ L2.0; T IH s.Rn// is the unique solution of

(7.2)

8̂<̂
:
@t .

�1v/C ..��/s CQ /v D 0 in �T ;
v D f in .�e/T ;
v.0/ D 0 in �;

with vf � f 2 H 1.0; T IL2.�// \ L2.0; T I zH s.�//.
Next, before studying the Runge approximation for equation (7.2), let us recall the

UCP for the fractional Laplacian (see, e.g., Theorem 1.2 in [24] for functions in H r , or
Theorem 2.2 in [28] for functions in H r;p).

Proposition 7.2 (Unique continuation for the fractional Laplacian). For n 2 N and s 2
.0; 1/, let w 2 H�r .Rn/ for some r 2 R. Given a nonempty open subset W � Rn, then
w D .��/sw D 0 in W implies that w � 0 in Rn.
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Proposition 7.3 (Runge approximation). Let � � Rn be an open set bounded in one
direction, 0 < T <1, 0 < s < min.1; n=2/, 0 > 0 and  2 �s;0.R

n
T /, and letW � �e

be a nonempty open set. Let P be the Poisson operator given by (7.1), and define

R WD ¹vf � f W f 2 C
1
c .WT /º:

Then the set R is dense in L2.0; T I zH s.�//.

Proof. By using Theorem 5.2, one has R � L2.0; T I zH s.�//. In order to show the den-
sity, by the Hahn–Banach theorem, we need to show that if F 2 .L2.0; T I zH s.�///� D

L2.0; T IH�s.�// is such that3 hF; wi D 0 for any w 2 R, then F must be zero. Via
hF;wi D 0 for any w 2 R, we have

hF;Pf � f i D 0 for any f 2 C1c .WT /:

We next claim that

(7.3) hF;Pf � f i D �

Z
Rn
T

.��/s=2f .��/s=2' dxdt for any f 2 C1c .WT /;

where ' 2 L2.0; T IH s.Rn// with @t' 2 L2.0; T IH�s.�// (see Proposition 5.4) is the
unique solution of the adjoint equation8̂<̂

:
��1@t' C ..��/

s CQ /' D F in �T ;
' D 0 in .�e/T ;
'.T / D 0 in �:

In fact, by direct computations, one has that vf D Pf and

hF;Pf � f i

D

Z
�T

.��1@t' CQ /.vf � f / dxdt C

Z
Rn
T

.��/s=2'.��/s=2.vf � f / dxdt

D

Z
�T

.��1@t' CQ'/vf dxdt C

Z
Rn
T

.��/s=2'.��/s=2vf dxdt

�

Z
Rn
T

.��/s=2'.��/s=2f dxdt

D

Z
�T

.@t .
�1vf /CQvf /' dxdt C

Z
Rn
T

.��/s=2vf .��/
s=2' dxdt

“
D0, since vfDPf

�

Z
Rn
T

.��/s=2'.��/s=2f dxdt

D �

Z
Rn
T

.��/s=2'.��/s=2f dxdt;

3Note that here hF;wi D
R
�T
Fw dx dt denotes the duality pairing, for F 2 L2.0; T IH�s.�// and w 2

L2.0; T I zH s.�//.
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where we used that vf .0/ D '.T / D 0 for the integration by parts in the third equality
sign and the integral involving the time derivative has to be understood in a weak sense.
This shows identity (7.3). Finally, identity (7.3) is equivalent to

.��/s' D 0 in WT :

Thus, the function ' satisfies

' D .��/s' D 0 in WT ,

and then, by Proposition 7.2, we have

' � 0 in RnT ;

so that F � 0 in RnT . In summary, we showed that the set R is dense in L2.0; T I zH s.�//.
This proves the assertion.

Remark 7.4. (i) By Proposition 7.3, we know that given any � 2 L2.0; T I zH s.�//, there
exists a sequence of solutions ¹vfk ºk2N 2 L

2.0; T IH s.Rn// to (7.2), with f D fk , such
that

vfk � fk ! � in L2.0; T I zH s.�// as k !1:

Since vfk is a solution, by applying Proposition 5.4, we see that @tvfk 2L
2.0;T IH�s.�//.

Now assume that the time derivative of � belongs to L2.0; T IH�s.�//. Then we have

lim
k!1

Z
�T

@t .vfk �fk/' dxdt D � lim
k!1

Z
�T

.vfk �fk/@t ' dxdt

D �

Z
�T

�@t ' dxdt

for any ' 2 L2.0; T I zH s.�// with @t' 2 L2.0; T IH�s.�// and '.T / D 0. If, addition-
ally, �.0/ D 0 or '.0/ D 0, then

lim
k!1

Z
�T

@t .vfk � fk/' dxdt D

Z
�T

.@t�/' dxdt:

(ii) By using similar arguments as in the proof of Proposition 7.3, one can show that
the Runge approximation holds for the adjoint diffusion equation8̂<̂

:
��1@tv

� C ..��/s CQ /v
� D 0 in �T ;

v� D g in .�e/T ;
v�.T / D 0 in �:

In other words, given a nonempty open set W � �e , the set

R� WD ¹v�g � gIg 2 C
1
c .WT /º

is dense in L2.0; T I zH s.�//.
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7.3. Interior determination and proof of Theorem 1.1

Let us state the interior uniqueness result.

Theorem 7.5 (Interior uniqueness). Let��Rn be an open set bounded in one direction,
0 < T < 1, 0 < s < min.1; n=2/, 0 > 0 and j 2 �s;0.R

n
T / for j D 1; 2. Assume

that W1; W2 � �e are two disjoint nonempty open sets and � 2 �s;0.R
n
T / are such that

1.x; t/ D 2.x; t/ D �.x; t/ for all .x; t/ 2 .W1 [W2/T and � 2 C1..W1 [W2/T /.
Then

(7.4) hN1f; gi D hN2f; gi

if and only if
1 D 2 and Q1 D Q2 in �T :

Proof. Via Theorem 6.7, for g 2 C1c ..W2/T /, one has

hN1f; gi D hN2f; gi

if and only if

(7.5) hNQ1
.�1=2f /; .�1=2g/i D hNQ2

.�1=2f /; .�1=2g/i:

Since � is uniformly elliptic and smooth on .W1 [W2/T , condition (7.5) implies

hNQ1
f; gi D hNQ2

f; gi

for all f 2 C1c ..W1/T / and g 2 C1c ..W2/T /. Moreover, by Proposition 7.1, one has

(7.6)
Z
�T

.�12 � 
�1
1 /vf @tv

�
g dxdt C

Z
�T

.Q1 �Q2/v
�
gvf dxdt D 0;

where vf 2 H WD H 1.0; T IL2.�// \ L2.0; T IH s.Rn// and v�g 2 H are, respectively,
the solutions to

(7.7)

8̂<̂
:
@t .

�1
1 vf /C ..��/

s CQ1/vf D 0 in �T ;
vf D f in .�e/T ;
vf .0/ D 0 in �;

and

(7.8)

8̂<̂
:
��12 @tv

�
g C ..��/

s CQ2/v
�
g D 0 in �T ;

v�g D g in .�e/T ;
v�g.T / D 0 in �;

Step 1. Q1 D Q2 in �T .
Take�0b� and 2C1c .�/with jS�0 D 1. By extending for all times trivially, we

have 2H . Then take � 2C1c .�
0
T / and apply the Runge approximation (Proposition 7.3
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and Remark 7.4) to find sequences ¹f`º1`D1 � C
1
c ..W1/T / and ¹gkº1kD1 � C

1
c ..W2/T /

such that
vf` � f` ! � and v�gk � gk !  as `; k !1.

Here vf` 2 H and v�gk 2 H are the solutions to (7.7) and (7.8) with f D f` and g D gk ,
respectively. Hence,

lim
`;k!1

Z
�T

.�12 � 
�1
1 /vf`@tv

�
gk
dxdt D 0

and
lim

`;k!1

Z
�T

.Q1 �Q2/v
�
gk
vf` dxdt D

Z
�T

.Q1 �Q2/ � dxdt:

Using that � D �, we deduceZ
�T

.Q1 �Q2/� dxdt D 0;

for any possible � 2 C1c .�T /. Thus, one can conclude that Q1 D Q2 in �T .

Step 2. 1 D 2 in �T .
Plugging Q1 D Q2 in �T into (7.6), we haveZ

�T

.�12 � 
�1
1 /vf @tv

�
g dxdt D 0;

for any f 2 C1c ..W1/T / and g 2 C1c ..W2/T /. Take �0 b �, � 2 C1c .�/ with �jS�0 D 1
and set  . � ; t /D t�. By repeating the arguments in Step 1, with the Runge approximation
at hand, one can also conclude thatZ

�T

.�12 � 
�1
1 /� dxdt D 0;

for any possible � 2 C1c .�T /. This ensures 1 D 2 in �T .

Proof of Theorem 1.1. First, we apply Theorem 1.2 to deduce that 1 D 2 in WT . Then
we choose two nonempty disjoint open setsW1;W2 � W . By Lemma 6.6, condition (1.7)
implies that the identity (7.4) holds for W1; W2 as chosen initially. Now, by using Theo-
rem 7.5, we can conclude that

1 D 2 and Q1 D Q2 in �T .

This in turn implies

0 D Q1 �Q2 D .��/
s.m2 �m1/ in �;

for a.e. t 2 .0; T /. Hence, by the UCP (see Theorem 2.2 in [28]), it follows that 1 D 2
in RnT .
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A. Discussion of nonlocal normal derivatives and DN maps

In this section, we provide the motivation behind the definition of the nonlocal Neumann
derivatives N and NQ , which underly Definitions 6.1 and 6.3. We restrict here our
attention to time-independent functions for simplicity. First recall that from Lemma 3.3
in [16], one has the nonlocal integration by parts formulaZ

�e

.Nsu/v dx C

Z
�

..��/su/v dx

D
Cn;s

2

Z
R2nn.�e��e/

.u.x/ � u.y//.v.x/ � v.y//

jx � yjnC2s
dxdy

for all u; v 2 C 2.Rn/, where

(A.1) Ns u.x/ WD Cn;s

Z
�

u.x/ � u.y/

jx � yjnC2s
dy

denotes the nonlocal normal derivative for sufficiently regular functions uWRn ! R and
x 2 �e . Here Cn;s is the same constant given by (1.5).

Next, we want to show that a similar formula holds for the fractional conductivity oper-
ator studied in this work. For simplicity, assume u; � 2 C1c .R

n/ and denote the duality
pairing between H s.Rn/ and H�s.Rn/ by h � ; � i. Then we have

hdivs.‚rsu/; �i D
Cn;s

2

Z
Rn

Z
Rn

1=2.x/1=2.y/

jx � yjnC2s
.u.x/ � u.y//.�.x/ � �.y// dxdy

D
Cn;s

2

Z
Rn

� Z
Rn

1=2.y/

jx � yjnC2s
.u.x/ � u.y// dy

�
1=2.x/�.x/ dx

�
Cn;s

2

Z
Rn

� Z
Rn

1=2.x/

jx � yjnC2s
.u.x/ � u.y// dx

�
1=2.y/�.y/ dy

D Cn;s

Z
Rn

� Z
Rn

1=2.y/

jx � yjnC2s
.u.x/ � u.y// dy

�
1=2.x/�.x/ dx

D

Z
Rn

Lsu.x/�.x/ dx;

where we set

(A.2) Lsu.x/ WD Cn;s 
1=2.x/

Z
Rn

1=2.y/

jx � yjnC2s
.u.x/ � u.y// dy:

Now, let us define the (general) nonlocal Neumann derivative by

(A.3) N 
s u.x/ WD Cn;s 

1=2.x/

Z
�

1=2.y/
u.x/ � u.y/

jx � yjnC2s
dy

for x 2 �e and sufficiently regular functions uWRn ! R (in this section we write the
superscript  to distinguish it from the normal derivative in (A.1)). With this definition,
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we have

Cn;s

2

Z
R2nn.�e��e/

1=2.x/ 1=2.y/
.u.x/ � u.y//.v.x/ � v.y//

jx � yjnC2s
dxdy(A.4)

D

Z
�

Lsu.x/v.x/ dx C

Z
�e

v.x/N 
s u.x/ dx:

To see this, observe that R2n n .�e ��e/ D .� �Rn/ [ .�e ��/ and henceZ
R2nn.�e��e/

1=2.x/ 1=2.y/
.u.x/ � u.y//.v.x/ � v.y//

jx � yjnC2s
dxdy

D

Z
R2nn.�e��e/

1=2.x/ 1=2.y/
u.x/ � u.y/

jx � yjnC2s
v.x/ dxdy

�

Z
R2nn.�e��e/

1=2.x/ 1=2.y/
u.x/ � u.y/

jx � yjnC2s
v.y/ dxdy

D 2

Z
R2nn.�e��e/

1=2.x/ 1=2.y/
u.x/ � u.y/

jx � yjnC2s
v.x/ dxdy

D 2

Z
�

v.x/
� Z

Rn

1=2.x/ 1=2.y/
u.x/ � u.y/

jx � yjnC2s
dy
�
dx

C 2

Z
�e

v.x/
� Z

�

1=2.x/ 1=2.y/
u.x/ � u.y/

jx � yjnC2s
dy
�
dx:

By (A.2) and (A.3), this implies the identity (A.4). From (A.4), we make the following
observations.

(i) There holds

Cn;s

2

Z
R2nn.�e��e/

1=2.x/ 1=2.y/
.u.x/ � u.y//.v.x/ � v.y//

jx � yjnC2s
dxdy

D

Z
�e

v.x/N 
s u.x/ dx

for all v 2 C1c .�e/, and so coincides with our weak formulation.
(ii) We have

Cn;s

2

Z
R2nn.�e��e/

1=2.x/ 1=2.y/
.u.x/ � u.y//.v.x/ � v.y//

jx � yjnC2s
dxdy

D

Z
�

Lsu.x/v.x/ dx

D
Cn;s

2

Z
R2n

1=2.x/1=2.y/

jx � yjnC2s
.u.x/ � u.y//.v.x/ � v.y// dxdy

for all v 2 C1c .�/.
Note that all observations above hold for a general symmetric kernel K.x; y/. Com-

bining the assertions (i) and (ii), we see that:
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(a) The notion of solutions in the survey article for elliptic nonlocal equations in [43]
and the definitions adapted in this article are the same. The former one have the
advantage that one can study solutions to nonlocal Dirichlet problems, where the
exterior conditions f are less regular.

(b) We have
hN 

s f; gi D hN

s f; g

0
i;

whenever g; g0 2H s.Rn/ satisfy g � g0 2 zH s.�/, where N

s f is the nonlocal nor-

mal derivative of the unique solution uf to the homogeneous fractional conductivity
equation with exterior value f . Hence, it is again well defined on the trace space
X D H s.Rn/= zH s.�/.

Moreover, let us point out that in [41,42] we used the following definition of DN map:

hƒf; gi D
Cn;s

2

Z
R2n

1=2.x/ 1=2.y/
.uf .x/ � uf .y//.g.x/ � g.y//

jx � yjnC2s
dxdy

for all f; g 2 C1c .�e/. These two are related as follows:

hƒf; gi

D hN 
s f; gi C

Cn;s

2

Z
�e��e

1=2.x/ 1=2.y/
.uf .x/ � uf .y//.g.x/ � g.y//

jx � yjnC2s
dxdy

D hN 
s f; gi C

Cn;s

2

Z
�e��e

1=2.x/ 1=2.y/
.f .x/ � f .y//.g.x/ � g.y//

jx � yjnC2s
dxdy:

Remark A.1. We may now observe that the additional information on the set �e ��e
precisely allows to carry out the exterior determination. This shows that ƒ carries more
information.

As a matter of fact, the definition N

s is natural since it has a clear PDE interpretation,

although we cannot prove with it our exterior determination result.
Finally, we discuss the situation for constant coefficient operators like the fractional

Schrödinger equation

(A.5)

´
..��/s C q/u D 0 in �;
u D f in �e:

In [24], the authors defined the DN map ƒq related to this exterior value problem by

hƒqf; gi D

Z
Rn

.��/s=2uf .��/
s=2vg dx C

Z
�

quf vg dx

for all f; g 2 H s.Rn/= zH s.�/, where uf 2 H s.Rn/ is the weak solution to (A.5) and
vg 2 H

s.Rn/ an extension of g. In the special case g 2 C1c .�e/, one has

hƒqf; gi D

Z
Rn

.��/s=2uf .��/
s=2g dx;

since we are only integrating over� in the potential, and so q is only implicitly contained
in the definition ofƒq . Then they showed in Lemma 3.1 of [24] that if� b Rn is smooth



Global uniqueness for nonlocal diffusion 41

and q 2 C1c .�/, this DN map is simply the restriction .��/suf j�e (as long as the data
f; g are sufficiently regular), and in the case f 2 C1c .�e/,

ƒqf D Nsf �mf C .��/
sf j�e ;

where

m.x/ D Cn;s

Z
�

dy

jx � yjnC2s

(cf. Lemma A.2 in [24]). But this implies in this case that

ƒq1 D ƒq2 ” N 1
s D N 2

s :

If q is possibly nontrivial in the exterior, then the notion of solutions to (A.5) is not affected
if one introduces the related bilinear form by

Bq.u; v/ WD

Z
Rn

.��/s=2u .��/s=2v dx C

Z
Rn

quv dx

for u; v 2H s.Rn/. This approach was, for example, carried out in [41] and [45]. But then
the natural DN map becomes

h zƒqf; gi WD

Z
Rn

.��/s=2uf .��/
s=2vg dx C

Z
Rn

quf vg dx

for all f; g 2H s.Rn/= zH s.�/, where vg is any representative of g. These two definitions
of DN maps are related as follows:

(A.6) h zƒqf; gi D hƒqf; gi C

Z
�e

quf vg dx D hƒqf; gi C

Z
�e

qfg dx:

Hence, in general, if q is not zero in the exterior, these two definitions of DN maps are
not equivalent and the latter helps to acquire information in the exterior. Therefore, if f
and g in (A.6) have disjoint support, then they are equivalent and precisely this lack of
knowledge leads to counterexamples to uniqueness (cf. [40]).
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