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Abstract. Given a half-integral weight holomorphic Kohnen newform f on �0.4/, we prove an
asymptotic formula for large primes p with power saving error term forX�

� .modp/

jL.1=2; f; �/j2:

Our result is unconditional, it does not rely on the Ramanujan–Petersson conjecture for the form f .
This gives a very sharp Lindelöf-on-average result for Dirichlet series attached to Hecke eigenforms
without an Euler product. The Lindelöf hypothesis for such series was originally conjectured by
Hoffstein. There are two main inputs. The first is a careful spectral analysis of a highly unbalanced
shifted convolution problem involving the Fourier coefficients of half-integral weight forms. The
second input is a bound for sums of products of Salié sums in the Pólya–Vinogradov range. Half-
integrality is fully exploited to establish such an estimate. We use the closed form evaluation of the
Salié sum to relate our problem to the sequence ˛n2 .mod 1/. Our treatment of this sequence is
inspired by work of Rudnick–Sarnak and the second author on the local spacings of ˛n2 modulo 1.

Keywords: Kloosterman and Salié sums, half-integral weight automorphic forms, L-functions,
twisted second moment, shifted convolution, local spacing statistics.
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1. Introduction and statement of results

Moments of L-functions play a central role in analytic number theory. Classical examples
include the fourth moment of Riemann zetaZ T

0

j�.1=2C i t/j4 dt D TP4.logT /CO".T 2=3C"/

for a certain polynomial P4 (see [25,49,68]), and the cuspidal analogue due to Good [20]Z T

0

jL.1=2C i t; f /j2 dt D TP1.logT /CO".T 2=3C"/

for a certain polynomial P1 depending on f .
The complexity of a moment computation for a family F of L-functions is measured

by the quotient r D log C=log jF j, where C is the analytic conductor of each function
in the family. The edge of current technology where one can hope to obtain an asymp-
totic with power saving error term is r D 4. Results in the case r D 4 can be found in
a host of works, including Iwaniec–Sarnak [30], Kowalski–Michel–VanderKam [40] and
Blomer [3].

From an adelic point of view, it is natural to replace the Archimedean twist jdet jit with
a non-Archimedean twist by a Dirichlet character �. Let p > 2 be prime,  .p/ WD p � 2
denote the number of primitive characters modulo p, and

L.s; �/ WD

1X
nD1

�.n/

ns
; Re s > 1;

be the usual Dirichlet L-function. In the breakthrough 2011 paper [65] Young proved for
any " > 0 thatX�

� .modp/

jL.1=2; �/j4 D  .p/P4.logp/CO".p1�
1
80 .1�2�/C"/;

where  .p/ WD p � 2 is the number of primitive Dirichlet characters modulo p, P4 is a
degree 4 polynomial and � D 7=64 is the best known exponent toward the Ramanujan–
Petersson conjecture (due to Kim and Sarnak [32]) for Maass forms. The fourth moment
of Dirichlet L-functions (for a general modulus q 6� 2 .mod 4/) is a special case of the
more general moment X�

� .modq/

L.1=2; f ˝ �/L.1=2; g ˝ �/; (1.1)
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where f;g are two fixed integral weight Hecke eigenforms (either holomorphic, Maass or
Eisenstein) and could be either cuspidal or non-cuspidal. Here, ¹�f .n/ºn�1 denotes the
system of Hecke eigenvalues attached to f and

L.s; f ˝ �/ WD

1X
nD1

�f .n/�.n/

ns
; Re s > 1: (1.2)

Note that (1.2) has an Euler product when the weight of the form is integral. Striking
progress has been made on the moment (1.1) in a sequence of works due to Blomer–
Fouvry–Kowalski–Michel–Milićević–Sawin [5, 6, 9, 38]. An asymptotic for (1.1) (in the
case f D g) with power saving error term appears in [6, Theorem 1.17]. The same family
of twisted L-functions had also been previously studied in various contexts. One can
see Chinta [11], Duke–Friedlander–Iwaniec [15], Gao–Khan–Ricotta [19], Stefanicki [62]
and Hoffstein–Lee [46].

We would also like to highlight the recent 2022 breakthrough work of Li [45] that
proves an asymptotic for the twisted second moment over the family of primitive quadratic
Dirichlet characters (with fractional logarithmic power saving error term). This improved
a result of Soundararajan and Young [61] that was conditional on the Generalised Rie-
mann Hypothesis.

In this work we focus on the half-integral weight analogue of (1.1) when f D g. To
enable subsequent discussion and introduce our results, we require some notation. More
details are provided below in Section 4.1. For j 2 N, let k WD 1=2C 2j be an odd half-
integer. Suppose f W H ! C is holomorphic, vanishes at all three cusps of �0.4/, and
satisfies

f .�/ D �� ./.c� C d/
kf .�/ for all  2 �0.4/;

where �� is the standard theta multiplier on �0.4/. Let �k.4/ denote this space of cusp
forms.

Let the Fourier expansion of f at1 be given by

f .�/ WD

1X
nD1

b.n/e.n�/ D

1X
nD1

a.n/n
k�1
2 e.n�/: (1.3)

For a prime p > 2 and a primitive character � modulo p, define the twisted form

f�.�/ WD

1X
nD1

�.n/a.n/n
k�1
2 e.n�/;

of level 4p2. The twisted L-function is given by the Dirichlet series

L.s; f; �/ WD

1X
nD1

a.n/�.n/

ns
; Re s > 1: (1.4)

We have used a slightly different notation here to distinguish from the integral weight
case discussed previously. Taking the Mellin transform of (1.4) one obtains a completed



A. Dunn, A. Zaharescu 4

L-function of degree 2 that has both a meromorphic continuation to all of C (in fact
holomorphic, because f is cuspidal) and a functional equation, but is without an Euler
product. The coefficients a.n/ are no longer multiplicative, except at squares.

For odd primes q, the Hecke operators Tq2 defined on �k.4/ (with k D 1=2C 2j ) are
given by

Tq2f .�/ WD
X
n�1

�
b.q2n/C

�
n

q

�
qk�3=2b.n/C q2k�2b

�
n

q2

��
e.n�/:

Here we have used the convention that b.x/ D 0 unless x 2 Z. We call a half-integral
weight cusp form a Hecke cusp form if Tq2f D �.q/f for all q > 2. One of the main
tools for understanding half-integral weight forms and their coefficients is the Shimura lift
[58]. Following Kohnen–Zagier [36], we focus on Kohnen’s plus subspace. The behaviour
of these forms under the Shimura lift is well understood. The Kohnen plus space �C

k
.4/

(when k D 1=2C 2j ) is the subspace of �k.4/ consisting of forms whose Fourier coeffi-
cients satisfy

b.n/ D 0 unless n � 0; 1 .mod 4/: (1.5)

This space has a basis consisting of simultaneous eigenfunctions of the Tq2 for odd q.
As k !1, asymptotically one-third of half-integral weight cusp forms lie in Kohnen’s
plus space by dimension considerations. Given a Hecke cusp form f 2 �C

k
.4/, one can

normalise it so that its coefficients are totally real algebraic numbers [63]. Let d be a
fundamental discriminant and

 d .�/ WD

�
d

�

�
: (1.6)

There is no Euler product representation for (1.4), so one does not expect a Riemann
hypothesis to hold. There are examples of Dirichlet series without an Euler product that
fail to be subconvex at the centre point. Such an example is given in [12]. Let

D.s/ WD

1X
nD1

�.n/ cos.2�n=q/
ns

;

where �.n/ is the divisor function and q is a prime. This series has conductor q2 and
D.1=2/ gets as large as

p
q log q (convexity) as q !1 through primes. This counterex-

ample would suggest that the Euler product is crucial for subconvexity. However, in the
case of automorphic L-functions attached to forms of integral weight, the Euler product
is induced by the property that the attached form is a simultaneous eigenfunction for the
Hecke operators. Jeffrey Hoffstein informally conjectured at Oberwolfach in 2011 that
such a property was crucial in implying a Lindelöf hypothesis. Kıral [33] made the first
progress towards a possible Lindelöf hypothesis. In particular, he proved that for primitive
� modulo p we have

L.1=2; f; �/�f;" p
3=8C�=4C"; (1.7)

where � D 7=64 is the Kim–Sarnak bound. Interestingly, any subconvex exponent 3=8C
�=4 < 1 would be sufficient to obtain a power saving in our Theorem 1.1 below (cf.
Remark 5.1 and the argument above it). Kıral’s result also holds for more general mod-
uli. For reference, the conductor here is �k p2, so the exponent 3=8 suggests a bound
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of Burgess quality. In this work we compute the “barrier” moment for this class of L-
functions with power saving error term, that is, the moment that gives Lindelöf on aver-
age, but still yields the convexity bound for each individual L-value. Computing higher
moments in this family certainly warrants further investigation to such an end. A mollified
and/or amplified variant of the asymptotic second moment result in Theorem 1.1 (in addi-
tion to the first moment) would lead to a positive proportion of non-vanishing at centre
point and subconvexity results. We leave this to the interested reader. One can also see
[23] for applications of subconvex bounds in the level aspect for double Dirichlet series.
Blomer [4] proved subconvex bounds of such series in the t -aspect on the critical line.

This family ofL-functions attached to half-integral weight Kohnen newforms has also
been studied in other contexts. In 2020, Lester and Radziwiłł under the Generalised Rie-
mann Hypothesis proved that half-integral weight holomorphic Hecke forms in Kohnen’s
plus space satisfy Quantum Unique Ergodicity (QUE) [44].

We use the spectral theory of automorphic forms and a delicate analysis of the distri-
bution of ˛n2 modulo 1 to prove the following moment result.

Theorem 1.1. Let " > 0, j 2 N, and f be a holomorphic cuspidal newform of weight
k WD 1=2C 2j on �0.4/ such that

� f lies in Kohnen’s plus space,

� f is a simultaneous Hecke eigenform for all Tq2 with q > 2 prime,

� f is normalised so that its Fourier coefficients are totally real algebraic numbers.

As p !1 through primes p � 1 .mod 4/, we haveX�

� .modp/

jL.1=2; f; �/j2 D c1.f / .p/ log.p/C c2.f / .p/COf;".p1�
1
600C"/; (1.8)

where  .p/ WD p � 2 is the number of primitive Dirichlet characters modulo p, and
c1.f /; c2.f / 2 R are constants depending only on f . Furthermore, we have c1.f / > 0.

Remark 1.1. The constants c1.f / and c2.f / are given in (5.15) and (5.16) respectively.

Remark 1.2. Other cases of Theorem 1.1, i.e. when k D 3=2C 2j and/or p � 3 .mod 4/
can be established by a mild adaption of the methods in this paper. It is technically con-
venient to restrict attention to the case k D 1=2C 2j and p � 1 .mod 4/.

Remark 1.3. We emphasise that the purpose of this paper was to break the moral “con-
vexity barrier” by establishing a power saving error term in Theorem 1.1. Optimality of
the power saving is not pursued in this paper.

Remark 1.4. There are other interesting potential variants of Theorem 1.1. The meth-
ods of the paper should be easily adapted to prove a moment with summand of the form
L.1=2;f;�/L.1=2; g; �/with f;g both Kohnen newforms and orthogonal to one another.
The main term should have magnitude  .p/ (with no logp) in this case. Another variant
is a moment with summand jL.1=2; f;�/j2 where f is a non-cuspidal metaplectic Eisen-
stein series. This appears to be more involved because the Fourier coefficients of half-
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integer weight Eisenstein series are essentially quadratic DirichletL-functions. Unlike the
case of Young [65], the convolution structure of the divisor function cannot be used in this
case. Another interesting variant is a moment with summand L.1=2; f; �/L.1=2; g; �/
where f is a Kohnen newform and g is its Shimura correspondent.

Theorem 1.1 depends on the following bound for a short sum of products of Salié
sums. The result and its proof are of independent interest, because its origins are a bilinear
form in Salié sums.

Theorem 1.2. Let p be a prime with p � 1 .mod 4/. Suppose " > 0, p1=2�1=10 � N �
p1=2C1=10, 1 �M � p=2 and c 2 F�p . ThenX
N�n1;n2�2N

ˇ̌̌ X
M�m�2M

S.m; cn1; p/S.m; cn2; p/
ˇ̌̌

�" p
".MN 2p1�

1
27 CMNp

3
2�

1
27 CN 2p

3
2�

1
27 CNp2�

1
27 CN

1
2p2C

23
108 C p

5
2�

1
27 /;

(1.9)

where S.m; n; p/ denotes the usual unnormalised Salié sum .cf. (4.24)/, and the implied
constant depends only on ".

Theorem 1.2 gives a non-trivial power saving over the trivial bound in the Pólya–
Vinogradov range M;N � p1=2Co.1/ (cf. (2.3)). In a subsequent joint work, both authors
with Kerr and Shparlinski [18] improved Theorem 1.2 using an alternative argument that
exploited the geometry of numbers and additive combinatorics. One can also see [31] for
further improvements, as well as a generalisation to higher order Salié sums. An arith-
metic application of bilinear forms in Salié sums to the equidistribution modulo 1 of roots
to the quadratic congurence x2 � p .mod q/ with q a large prime and p varying over
primes p � q is also given in [18]. Average versions (over q) of these applications are
given in [60]. An average version (over the modulus q) of Theorem 1.1 with power saving
error term was proved by the second author jointly with Shkredov and Shparlinski [59].

2. High level sketch

We work with normalised forms whose Fourier coefficients are totally real algebraic num-
bers to emulate the integral weight setting as much as possible. The natural starting point
is an approximate functional equation for the product of L-functions

L.s; f; �/L.s; f; �/ D L.s; f; �/L.s; f; x�/:

After summing the approximate functional equation over all primitive � modulo p using
orthogonality and extracting the main terms, one obtains expressions roughly of the form

(A)
1

p

X
mn�p2

m¤n

a.m/

�
m

p

�
a.n/

�
n

p

�
and (B)

X
mn�p2

m�n .modp/
m¤n

a.m/a.n/; (2.1)



The twisted second moment of modular half-integral weight L-functions 7

where a.m/ denotes the Fourier coefficients of the holomorphic half-integer weight cusp
form f . The twisted terms in (A) appear because the theta multiplier causes the second
term in the approximate functional equation for L.s; f; �/L.s; f; x�/ to contain Gauss
sums attached to the character �. �

p
/.

If one knew the Ramanujan–Petersson conjecture for the Fourier coefficients a.n/ of
f (cf. (4.9)), then applying this bound pointwise to (2.1) would yield the “trivial” bound
of O.p1C"/. We will beat this bound by a power savings in p, without recourse to the
Ramanujan–Petersson conjecture. The Ramanujan–Petersson conjecture for the Fourier
coefficients of f is tantamount to the Lindelöf hypothesis for the L-function attached to
quadratic twists of the Shimura correspondent of f by the Kohnen–Zagier formula [37]
(cf. (4.7)).

We reserve the discussion here for (B). The terms in (A) can then be effectively han-
dled using results implicit in the work of Kıral [33]. There are two well known ways to
interpret this double summation. One point of view is to cast it as a shifted convolution
problem involving Fourier coefficients of the half-integral weight form. This is useful
when the sizes of the variables are not too far apart. Another option is to consider it a
sum over the Fourier coefficients of a half-integral weight cusp form in arithmetic pro-
gressions. This has utility when one variable is significantly larger than the other.

To be precise, we restrict the variables to n � N and m � M where N � M by
symmetry and NM D p2. On the one hand, we can apply Voronoi summation in the
inner sum of X

m�M

a.m/
X
n�N

n�m.modp/

a.n/;

obtaining an expression roughly of the form

N

p2

X
m�M

a.m/
X

n�p2=N

a.n/S.m; n; p/; (2.2)

where S.m; n; p/ denotes the usual unnormalised Salié sum (cf. (4.24)). Using Rankin–
Selberg bounds and the evaluation of the Salié sum, we obtain a bound of Mp1=2, which
is admissible if M � p1=2�ı (or equivalently N � p3=2Cı ) for some fixed ı > 0.

On the other hand, we can interpret the problem as an averaged shifted convolution
sum X

r�N=p

X
n�N;m�M
n�mDrp

a.m/a.n/:

We detect the equality using additive characters and apply Jutila’s circle method to set up
the problem. One of the key steps is to perform Voronoi summation in both the m and
n summations. The collision of the two theta multipliers (evaluated at opposite sign) in
this process has the net effect of twisting by the quadratic character � WD .4`1`2

�
/, and

essentially returns us to a weight zero setting. This feature can also be seen in another
way. The function V`1;`2.�/ WD f .`1�/f .`2�/y

k has nebentypus � on �0.4`1`2/. The
standard approach to the shifted convolution problem `1n � `2m D h would be to obtain
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the spectral decomposition of hV`1;`2 ;Ph.�; s/i, where Ph.�; s/ is an appropriate Poincaré
series (see [33]).

We get an expression roughly of the form

M 2.`1`2/

C 3

X
b

jbj�K

X
`1n�`2mDb

`1n�C
2N=M2

`2m�C
2=M

a.m/a.n/
X
`1`2jc

K.b; h; c; �/

c
ˆ

�
4�

p
jbjh

c

�
;

where C WD N 1000,ˆ is some smooth weight function and theK.b; h; c; �/ are the usual
weight zero Kloosterman sums twisted by a quadratic character. Note that the size of C
has no bearing on the eventual bounds that are obtained. The Kuznetsov formula can then
be applied to the summation over c to decompose it into the contributions from the holo-
morphic, Maass and Eisenstein spectrums. Here we are able to use the analysis of Blomer
and Milićević [9]. A crucial input in this analysis is a flexible version of the large sieve
for Maass forms due to Blomer and Milićević [9, Theorem 13] that allows for extra divis-
ibility conditions. This idea leads to a bound roughly of the shape of Np�1=2, rather than
one of the quality Np��1=2, where � is the best known exponent toward the Ramanujan–
Petersson conjecture for weight zero Maass forms. A precise version of this bound is
stated in Proposition 5.2. We also develop the analogous flexible large sieve bounds for
coefficients of Eisenstein series attached to even Dirichlet characters, generalising the one
for trivial nebentypus due to Blomer–Harcos–Michel in [7]. The computational technol-
ogy for Eisenstein series developed by Kıral–Young [34] and Young [66] is useful for
this.

Analogously to [9], it remains to close the small gap where M D p1=2Co.1/ and N D
p3=2Co.1/, referred to as the critical range. We define the sets

N0.f / WD ¹n 2 N W 0 � ja.n/j � 1º;

and for all r � 1,
Nr .f / WD ¹n 2 N W 2r�1 < ja.n/j � 2rº:

We break (2.2) into O.log2 p/ subsums

N

p2

X
m�M

a.m/
X

n�p2=N
n2Nr .f /

a.n/S.m; n; p/: (2.3)

Observe thatM D p1=2Co.1/ and p2=N D p1=2Co.1/, and so we are left with estimating a
bilinear form involving Salié sums in the Pólya–Vinogradov range. Power saving bounds
for bilinear forms in Kloosterman sums and generalised Kloosterman sums in the Pólya–
Vinogradov range have been stunningly proved by Kowalski–Michel–Sawin [38,39] using
deep algebro-geometric techniques. We emphasise that the techniques of [38, 39] do not
apply to the case of Salié sums (the monodromy group of the Salié sums is too small to
make the arguments work). The elementary nature of Salié sums requires a completely
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different approach of diophantine nature. Applying Cauchy–Schwarz to the m sum in
(2.3) and using Rankin–Selberg bounds we arrive at

NM 1=2

p2

� X
n1;n2�p

2=N
n1;n22Nr .f /

ja.n1/a.n2/j
ˇ̌̌ X
m�M

S.m; n1; p/S.m; n2; p/
ˇ̌̌�1=2

: (2.4)

At this stage it is tempting to invoke the Ramanujan–Petersson conjecture to handle the
Fourier coefficients using a sup norm in (2.4). Instead, we estimate (2.4) in two different
ways depending on the size of r . For r large, we estimate trivially. The main feature here
is that the Rankin–Selberg bound (4.4) implies that

jNr .f / \ Œ0; X�j �"

X1C"

22r
:

This guarantees that (2.3) is

�
Mp1=2

2r
;

which saves over the trivial bound as long as r is large enough.
For r small, we take the sup norm in (2.4), extend the summation on n by positivity,

and use the closed form evaluation of Salié sums in terms of Weyl sums to obtain

2rNM 1=2

p3=2

� X
n1;n2�p2=N

ˇ̌̌̌ X
M�m�2M

X
u;v .modp/

u2�mn1 .modp/
v2�mn2 .modp/

e

�
2.uC v/

p

�ˇ̌̌̌�1=2
: (2.5)

Recall that M D p1=2Co.1/ and p2=N D p1=2Co.1/ here. The strategy now is to obtain
cancellation in the short m summation by utilising the short average over n1 and n2. For
simplicity, we consider a restricted version of the sum in (2.5) whose variables m;n1 and
n2 satisfy �

n1

p

�
D

�
n2

p

�
D

�
m

p

�
D 1:

The other case is analogous. For ` 2 F�p , define

A` WD
X

M�m�2M

X
t2�m.modp/

e

�
2t`

p

�
;

and

S` WD ¹.u; v/ 2 .F
�
p /

2
W .u2; v2/ .mod p/ 2 Œp2=N; p2=N � � Œp2=N; p2=N �

and uC v � ` .mod p/º:

The triangle inequality asserts that the restricted version of the bracketed sum in (2.5) is

�

X
` .modp/

jA`j jS`j: (2.6)
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We focus on the non-trivial case when ` 2 F�p . The exponential sums A` are too short to
complete, so we focus on S`, whose elements still capture the averaging over n1 and n2.
Recall that .u; v/ 2 S` are solutions to the linear equation

uC v � ` .mod p/; (2.7)

whose squares lie in a short interval. Algebraically manipulating (2.7) we see that .u; v/ 2
S` must satisfy the polynomial congruence

x̀2.u2 � v2/2 C `2 � 2.u2 C v2/ .mod p/: (2.8)

We set
˛` WD x̀

2=p 2 Q=Z and ˇ` WD `
2=p 2 Q=Z:

Thus (2.8) implies
k˛`.u

2
� v2/2 C ˇ`k � 8p=N ; (2.9)

where k � k denotes the distance to the closest integer. Therefore pairs .u;v/ 2 S` produce
elements of the sequence ¹˛`n2º0�n�N modulo 1 and lie in a cluster around �ˇ`. For
given n and `, there is at most one pair .u; v/ 2 S` that corresponds to them.

The local spacing distribution of the sequence ˛n2 for ˛ irrational has been exten-
sively studied in the literature. A classical result of Rudnick and Sarnak [52] states that
for all integers d � 2 and almost all real ˛, the pair correlation of the sequence ˛nd mod 1
is Poissonian. This is in contrast with the case d D 1, where it is well known that for all
˛ and all N , the gaps between consecutive elements of ˛n mod 1, 1 � n � N , can take
at most three values.

Returning to the case d D 2, Rudnick, Sarnak, and the second author [53,67] show that
for sufficiently well approximable numbers ˛, the m-level correlations and consecutive
spacing are Poissonian along subsequences. For ˛ D

p
2, these types of conjectures are

supported numerically [10] because of their close connection to the distribution between
neighbouring levels of a generic integrable quantum system. It is also shown in [53] that
when b=p 2 Q, the sequence bn2=p also has a local Poissonian distribution when the
number of points sampled is in certain ranges (in terms of p). In shorter ranges, they are
able to show that such a phenomenon dramatically fails for some b. Moreover, some of
the clusters of these points in these sequences are so dense that they are capable of making
the 5-level (and all higher level) correlations diverge. One key aspect is that, although our
˛’s are rational, our intuition comes from the case of ˛ irrational in [53]. Thus, we will
not work with the numbers ˛` themselves to analyse the cluster of points in (2.9), but
instead consider various convergents to their respective continued fractions. We pay close
attention to the size of the denominators of these convergents.

We fix ı WD .ı2; ı3; ı4; ı5/ 2 .0; 1/4 such that ı2 < ı3 < ı4 (in reality, we will need to
have more parameters at our disposal). This vector is chosen appropriately in the course
of the proof of Theorem 1.2. To control the size of S`, it is necessary to have control
over the discrepancy of the sequence ˛`n2. The natural strategy is to use the Erdős–Turán
theorem in conjunction with Weyl’s inequality for exponential sums whose argument is
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a quadratic polynomial. For this to work, the continued fraction expansion of h˛` for all
h 2 Œ1;pı5 �must have a convergent with denominator trapped in Œpı2 ;pı3 � say. This leads
us to essentially partition the summation variable in (2.6) into three sets,

` 2 F�p WD H1 [H2 [H3;

which are described below. The subset H1 contains exactly those ` described and so the
sum over such ` in (2.6) can be handled.

The next subset of ` we consider are those such that there exists an h` 2 Œ1; pı5 � (it
may depend on `) such that h`˛` has no convergent with denominator in the larger interval
Œpı2 ; pı4 �. There is no toggle to control the size of S` here, but h`˛` has two consecutive
convergents whose denominators have a large gap. This is a somewhat rare event, and an
argument with standard inequalities from continued fractions indeed forces the size of H2

to be small.
This leaves the third and final set H3 to consider. For ` 2 H3, there exists an h` 2

Œ1; pı5 � such that h`˛` has no convergent with denominator in Œpı2 ; pı3 �, but guaranteed
to have one, say a?

`
=b?
`

, with b?
`
2 .pı3 ; pı4 �. Here we must study the sizes of H3 and S`

(which is equivalent to analysing ˛`n2) simultaneously. We make this precise now. For
each `, denote

V` WD ¹0 � n � p
2=N W k˛`n

2
C ˇ`k � 8p=N º;

and for each pı3 � U � pı4 and 0 � V � p2=N we define

E.U; V / WD ¹` 2 H3 W b
�
` 2 ŒU; 2U � and jV`j 2 ŒV; 2V �º:

Thus X
`2H3

jA`j jS`j �M log2 p max
pı3�U�pı4

max
1�V�p2=N

V � jE.U; V /j: (2.10)

We can assume V is moderately large by trivial considerations. Thus we need to bound
V � jE.U; V /j. For each ` 2 E.U; V /, we now construct an algebraic set C` � F3p with
restricted variables. Arrange the numbers n`;j 2 V` with order

0 � n`;1 < n`;2 < � � � < n`;jV`j � p
2=N: (2.11)

The average consecutive gap between these numbers is

p2

N jV`j
�

p2

NV
:

More than jV`j=2 consecutive gaps are less than or equal to 2p2=.N jV`j/. By the pigeon-
hole principle there exists an integer 1 � d` � 2p2=.N jV`j/ that is repeated as a consec-
utive gap at least jV`j2N=.4p2/ times. Thus we consider

C` WD ¹.n; A;B/ 2 Œ1; p
2=N � � Œ�8p2=N; 8p2=N �2 W x̀2n2 C `2 � A .mod p/

and x̀2.nC d`/2 C `2 � B .mod p/º; (2.12)
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and
U.U; V / WD

[
`2E.U;V /

¹`º � C` � F4p ;

and perform an overall count of points in this last set in order to obtain a contradiction,
unless the bound in the statement of Theorem 1.2 holds. On the one hand, we know that
the size of this set should be large by construction. On the other hand, the nature of the
set forces it to be thin enough. This eventually leads to the proof of Theorem 1.2.

The anatomy of the paper is as follows. Section 4 gives background material on holo-
morphic half-integer weight modular forms. Section 5 contains the main argument to
establish Theorem 1.1. The main terms are extracted using Kronecker’s first limit formula,
and auxiliary bounds for sums of Fourier coefficients that are needed are also listed there.
Propositions 5.1 and 5.2 are the main inputs used in the proof of Theorem 1.1. Proposi-
tion 5.2 uses spectral techniques. The relevant automorphic preliminaries are contained in
Section 6, and Proposition 5.2 is proved in Section 7. Proposition 5.1 contains the critical
range bounds and takes Theorem 1.2 as input. Theorem 1.2 is proved in Section 8.

3. Conventions

All implied constants in proofs are allowed to depend on " > 0 (possibly different in each
instance), f 2 �k.4/, and the fixed smooth functions introduced in various partitions of
unity. The square rootp denotes the principal branch of the square root.

4. Automorphic preliminaries I (half-integral weight)

4.1. Holomorphic cusp forms and L-functions

For � WD x C iy 2 H, define q WD e2�i� . Let

�.�/ WD

1X
nD�1

qn
2

and �.�/ WD q1=24
1Y
nD1

.1 � qn/

be the fundamental theta functions. Define the theta multiplier �� on �0.4/ by

�.�/ D �� ./
p
c� C d �.�/ for  D

�
a b

c d

�
2 �0.4/;

and the eta multiplier �� on SL2.Z/ by

�.�/ D ��./
p
c� C d �.�/ for  D

�
a b

c d

�
2 SL2.Z/:

The theta multiplier is given by the formula

�� ./ D "
�1
d

�
c

d

�
; (4.1)
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where . �
�
/ denotes the Kronecker symbol and

"d WD

´
1 if d � 1 .mod 4/;

i if d � 3 .mod 4/:
(4.2)

For j � 1 and k WD 1=2C 2j , let �k.4/ denote the space of holomorphic cusp forms of
weight k, level 4 and trivial nebentypus. If f 2 �k.4/, then f W H! C is holomorphic,
vanishes on all three cusps of �0.4/, and satisfies

f .�/ D �� ./.c� C d/
kf .�/ for all  2 �0.4/:

For f; g 2 �k.4/, define the Petersson inner product

hf; gi WD

Z
�0.4/nH

ykf .�/g.�/ d�.�/; d�.�/ WD
dx dy

y2
:

Recall that �k.4/ becomes a Hilbert space with the inner product defined above.
Let the Fourier expansion of f at1 be given by

f .�/ D

1X
nD1

b.n/e.n�/ D

1X
nD1

a.n/n
k�1
2 e.n�/: (4.3)

It follows from [17, p. 786] that for X � 1 we haveX
n�X

ja.n/j2 �f X logX: (4.4)

A Wilton-type bound also follows from [17, p. 786],X
n�X

a.n/e.n˛/�f X
1=2 log2X; (4.5)

where the implied constant is uniform with respect to ˛ 2 R.
For odd primes q, the Hecke operators Tq2 defined on �k.4/ (with k D 1=2C 2j ) are

defined by

Tq2f .�/ WD
X
n�1

�
b.q2n/C

�
n

q

�
qk�3=2b.n/C q2k�2b

�
n

q2

��
e.n�/:

Here we have used the convention that b.x/ D 0 unless x 2 Z. We call a half-integral
weight cusp form a Hecke cusp form if Tq2f D �.q/f for all q > 2. The Kohnen plus
space �C

k
.4/ denotes the subspace of �k.4/ consisting of cusp forms f whose Fourier

coefficients satisfy
b.n/ D 0 unless n � 0; 1 .mod 4/:

The plus space has a basis of simultaneous eigenfunctions of the Tq2 for q odd. For
f 2 �C

k
.4/, there exists a Hecke cusp form g 2 �2k�1.1/ (via the Shimura lift), where

�2k�1.1/ denotes the space of integer weight cusp forms of weight 2k � 1 and trivial
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nebentypus. This correspondence has the property that Hqg D �.q/g, where Hq denotes
the usual integer weight Hecke operator on �2k�1.1/. By the strong multiplicity 1 the-
orem, this determines f up to scalar multiplication. Write the Fourier expansion of g
as

g.�/ D

1X
nD1

c.n/e.n�/;

and normalise so that c.1/ D 1. We can normalise f so that its coefficients lie in the field
generated over Q by the coefficients c.n/ by [63, Proposition 2.3.1], and hence are totally
real algebraic numbers. We have the coefficient relation

b.dı2/ D b.d/
X
ejı

�.e/ek�3=2 d .e/c

�
ı

e

�
; (4.6)

where  d was defined in (1.6). Recalling that both f and g have been normalised, the
Kohnen–Zagier formula [37, Theorem 1] asserts

b.d/2

1
6
hf; f i

D
.k � 3=2/Š

�k�1=2
dk�1

L.g ˝  d ; 1=2/

hg; gi
: (4.7)

Combining (4.6) and (4.7) we see that the Lindelöf hypothesis for all quadratic twists of
the Shimura lift of f implies the Ramanujan–Petersson conjecture

b.n/�f;" n
k�1
2 C" for all n 2 N: (4.8)

Recalling the normalisation in (1.3), we obtain

a.n/�f;" n
": (4.9)

It is well known that (cf. [26, (1.1)])

a.n/�f;" n
1=4C" for all n 2 N: (4.10)

There has been considerable progress toward (4.9). Iwaniec [26] proved that

a.n/�f;" n
3=14C"; (4.11)

for all squarefree n. Conrey and Iwaniec [13] improved (4.11) to a Weyl-type subconvex
bound

a.n/�f;" n
1=6C"; (4.12)

for all squarefree n. They achieved this bound by estimating a moment involving the L-
values L.1=2; g ˝  n/3 summed over all primitive cusp forms g of level dividing n and
fixed integral weight. If f is a Hecke cusp form then (4.12) can be extended to all n 2 N
via (4.6).

Define the operator on �k.4/ by

.W4f /.�/ WD .2i�/
�kf

�
�1

4�

�
:
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Note that W4 is an involution. Since W4 commutes with each Tp2 , a Kohnen newform
is also an eigenfunction of W4 with eigenvalue ".f / D ˙1 by the strong multiplicity 1
theorem for the plus space.

Let Q 2 N and � be a Dirichlet character modulo Q of conductor Q?. Then if

f .�/ D

1X
nD1

b.n/qn 2 �k.4/;

define the �-twist by

f�.�/ WD

1X
nD1

b.n/�.n/qn 2 Sk.4Q
?2; �2/:

The L-function of the twist f� (recall the normalisation in (1.3)) is defined by

L.s; f; �/ WD

1X
nD1

a.n/�.n/

ns
; Re s > 1:

After taking the Mellin transform as in [33, p. 694], the completed L-function of f� is
given by

L�.s; f; �/ D 2�1��k=2�s.4Q2/s=2�

�
s C k�1

2

2

�
�

�
s C kC1

2

2

�
L.s; f; �/: (4.13)

We now give some details regarding the functional equation of L�.s; f; �/ in the case
.Q; 4/ D 1 following [33]. Observe that f� can be realised as an average over additive
twists

f�.�/ D
1

Gx�.1IQ/

X
u .modQ/

x�.u/f

�
� C

u

Q

�
: (4.14)

Here for c; n 2 N with Q j c, we denote the Gauss sum

G�.nI c/ WD

cX�

dD1

�.d/e

�
nd

c

�
; (4.15)

where � denotes that the summation is over all d modulo c such that .d; c/ D 1. Using
(4.14), we can rewrite (4.13) as

L�.s; f; �/ D
1

Gx�.1IQ/

X
u .modQ/

x�.u/L�
�
s; f;

u

Q

�
; (4.16)

where

L�
�
s; f;

u

Q

�
WD .4Q2/s=2

Z 1
0

f

�
iy C

u

Q

�
ysC

k�1
2
dy

y
:

Let
z Q.�/ WD

�
�

Q

�
:
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Suppose u and v are any integers satisfying 4uv � �1 .mod Q/. A computation using
the matrix identity�

1 u=Q

0 1

��
0 �1=Q

4Q 0

�
D

�
.4uv C 1/=Q u

4v Q

��
0 �1

4 0

��
1 v=Q

0 1

�
;

and the fact that
W4f D ".f /f;

gives the relation

L�
�
s; f;

u

Q

�
D ".f /"�2kQ

�
v

Q

�
L�
�
1 � s; f;

v

Q

�
: (4.17)

Observe that (4.16) and (4.17) imply the functional equation

L�.s; f; �/ D "�.f; �/L�.1 � s; f; �; � z Q/; (4.18)

where "�.f; �/ is a quantity of absolute value 1,

"�.f; �/ WD ".f /"�2kQ �.�4/;

and the L-function defined on the right of (4.18) is defined by

L�.s; f; �; � z Q/

WD .4Q2/s=2.2�/�.sC
k�1
2 /�

�
s C

k � 1

2

�
1

Gx�.1IQ/

1X
nD1

a.n/G� z Q.nIQ/

ns
: (4.19)

The Fourier coefficients in (1.3) are normalised so as to make (4.18) symmetric about
s D 1=2.

A computation following [28, Chapter 5] shows that (4.18) implies an approximate
functional equation. Let V W R>0 ! R be defined by

V.x/ D
1

2�i

Z
.3/

x�z

.2�/z
�.z C k=2/

�.k=2/

dz

z
:

We have

L.1=2; f; �/ D

1X
mD1

a.m/�.m/
p
m

V

�
m

2Q

�
C
"�.f; �/

Gx�.1IQ/

1X
mD1

a.m/G� z Q.mIQ/
p
m

V

�
m

2Q

�
: (4.20)

4.2. Voronoi summation

Let V W .0;1/ ! C be a smooth function with compact support. Define the Hankel
transform

VV .y/ WD 2�ik
Z 1
0

V.x/Jk�1.4�
p
xy/ dx;
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where J denotes the usual J -Bessel function. Note that VV depends on k but is not dis-
played in the notation. We now see that VV is a Schwartz function. By [8, Section 2.6] we
haveZ 1
0

V.x/Jk�1.4�
p
xy/ dx

D

�
�

1

2�
p
y

�j Z 1
0

@j

@xj

�
V.x/x�

k�1
2

�
x
k�1Cj
2 Jk�1Cj .4�

p
xy/ dx; (4.21)

for any j 2 N0. One can then differentiate repeatedly under the integral sign in (4.21)
using [21, (8.471.2)].

The next lemma follows from [17, p. 792].

Lemma 4.1. Let c 2 N such that 4 j c and

 D

�
a b

c d

�
2 �0.c/:

Let V W .0;1/! C be a smooth function with compact support. Suppose k D 1=2C 2j
with j 2 N and let a.n/ denote the normalised Fourier coefficients of f 2 �k.4/ as
in (1.3). Then for X > 0 we haveX

n

a.n/e

�
an

c

�
V

�
n

X

�
D
X

c
�� ./

X
n

a.n/e

�
�
dn

c

�
VV

�
n

c2=X

�
:

4.3. Half-integral weight Kloosterman sums and Salié sums

Let �; c; m; n 2 N such that � � 1 .mod 2/ and 4 j c. Then for any Dirichlet character �
modulo c define

K�;�.m; nI c/ WD
X�

d .mod c/

"��d

�
c

d

�
�.d/e

�
md C n xd

c

�
: (4.22)

When �D 1c in (4.22) we suppress the subscript. For q 2 N with q � 1 .mod 2/ and any
Dirichlet character ‰ modulo q define the twisted sums

S‰.m; nI q/ D
X�

x .modq/

�
x

q

�
‰.x/e

�
mx C nxx

q

�
: (4.23)

When‰ D 1q in (4.23), we recover the well known Salié sum, and suppress the subscript.
These sums have a closed form evaluation, unlike the Kloosterman sums attached to the
trivial multiplier. Sarnak [55, p. 90] asserts that this phenomenon is the finite analogue
of the Bessel function being an elementary function when its order is an odd half-integer.
For example,

J1=2.x/ D

r
2

�x
sin x; J�1=2.x/ D

r
2

�x
cos x:
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When q D p a prime and .mn; p/ D 1, [54] gives

S.m; nIp/ D

8̂̂<̂
:̂
�
n
p

�
"p
p
p

P
x .modp/

x2�mn.modp/

e
�
2x
p

�
if
�
mn
p

�
D 1;

0 if
�
mn
p

�
D �1;

(4.24)

where "d is given by (4.2).
We have the following useful twisted multiplicativity lemma.

Lemma 4.2. Suppose c D qr with r � 0 .mod 4/ and .q; r/D 1 any Dirichlet character
‰ is a Dirichlet character modulo c. Let ‰r and ‰q are Dirichlet characters modulo r
and q respectively such that ‰ D ‰r‰q . Then

K�;‰.m; nI c/ D K��qC1;‰r .mq; nqI r/S‰q .mr; nr I q/:

4.4. Eisenstein series and Rankin–Selberg L-functions

We give a brief background on the Eisenstein series and Rankin–Selberg L-functions
relevant to the main terms appearing Theorem 1.1 and in Section 5.1. One can consult
Section 6 below and [27, Chapter 13] for more details. Let

E1.�; s/ WD
X

2�0.4/1n�0.4/

.Im �/s; Re s > 1; (4.25)

denote the weight zero Eisenstein series of level 4 attached to the cusp1. This Eisenstein
series has a meromorphic continuation to all of C with its only pole in the region Re s �
1=2 being simple and at s D 1, with residue

RessD1E1.�; s/ D
1

Vol.�0.4/nH/
D

1

2�
: (4.26)

For f 2 �k.4/, consider the Rankin–Selberg L-function

L.s; f � xf / D

1X
nD1

ja.n/j2

ns
for Re s > 1:

The analytic continuation of L.s; f � xf / is afforded by the above Eisenstein series. In
particular, [27, Proposition 13.1] asserts (after taking into account the normalisations in
the first two displays in [27, p. 233]):

.4�/�s�.k�1/�.s C k � 1/L.s; f � xf /

D

Z
�0.4/nH

ykjf .�/j2E1.�; s/ d�.�/; Re s > 1: (4.27)

The function L.s; f � xf / also satisfies a vector functional equation (L.s; f � xf / is one
of the vector entries) with scattering matrix ˆ.s; �0/, where �0 denotes the principal
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character modulo 4 [27, Theorem 13.4]. By [27, p. 240] the relevant scattering matrix has
finite order and hence L.s; f � xf / has polynomial growth in fixed vertical strips of C by
the Phragmén–Lindelöf principle. Consulting [27, (13.34)], there is a simple pole at s D 1
with

RessD1L.s; f � xf / D
.4�/k

�.k/

1

Vol.�0.4/nH/

Z
�0.4/nH

ykjf .�/j2 d�.�/:

We will need the pole and constant term in the Laurent expansion of E1.�; s/. We
use Möbius inversion and the bijection [48, Lemma 7.1.6 (1)]

�0.4/1n�0.4/ ' ¹.c; d/ W c � 0 .mod 4/; .c; d/ D 1 and d > 0º;

in (4.25) to obtain

E1.�; s/ WD
1

2

1

4s
1

L.2s; �0/

�X0

c;d

.4y/s

jc.4�/Cd j2s
�
1

2s

X0

c;d

.2y/s

jc.2�/Cd j2s

�
; Re s > 1;

(4.28)

where �0 denotes the principal character modulo 4 and 0 denotes the exclusion of .c;d/D
.0; 0/. Both of the series on the right of (4.28) have meromorphic continuation to all of C
with only simple poles at sD 1 [43, p. 273]. A computation that uses the Taylor expansion
of 2�s at s D 1, and that applies Kronecker’s first limit formula [43, p. 273] to the right
side of (4.28) gives (for each � 2 H) the Laurent expansion

E1.�; s/ D
1

2

1

4s
1

L.2s; �0/

�
�=2

s � 1
C �

�
 �

5

2
log 2

�
C 2� log

�
y�1=4

ˇ̌̌̌
�.2�/

�.4�/2

ˇ̌̌̌�
CO� .s � 1/

�
(4.29)

for s 2 C such that js � 1j < 1.

4.5. Functional equation for the second moment

Here we takeQ D p a prime with p � 1 .mod 4/, � a primitive character modulo p such
that � ¤ z p . Thus � z p is primitive, so we may appeal to the properties of Gauss sums
attached to primitive characters. Let f 2 �C

k
.4/ be a simultaneous Hecke eigenform, so

it is automatically an eigenfunction of W4. Also suppose f is normalised so that its coef-
ficients are totally real algebraic numbers (cf. Section 4.1). Applying [1, Theorem 8.15]
we write (4.20) as

L.1=2; f; �/ D

1X
mD1

a.m/�.m/
p
m

V

�
m

2p

�
C
"�.f; �/

Gx�.1Ip/

1X
mD1

a.m/x� z p.m/G� z p .1Ip/
p
m

V

�
m

2p

�
: (4.30)

A computation with (4.30) using the fact that the Fourier coefficients are real shows that

L.1=2; f; �/ D L.1=2; f; x�/:
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Define W W R>0 ! R by

W.x/ D
1

2�i

Z
.3/

x�z

.2�/2z
�.z C k=2/2

�.k=2/2
dz

z
:

A computation following [28, Chapter 5] shows that (4.18) implies a second approximate
functional equation

L.1=2; f; �/L.1=2; f; x�/ D
X
m;n

a.m/x�.m/a.n/�.n/
p
mn

W

�
mn

4p2

�
C

X
m;n

a.m/x�.m/ z p.m/a.n/�.n/ z p.n/
p
mn

W

�
mn

4p2

�
: (4.31)

Note that we have for all A > 0 and j � 0 we have

W .j /.x/�A;j .1C x/
�A: (4.32)

5. The core argument

We have the following orthogonality lemma.

Lemma 5.1. Let p be prime and z p D . �p /. For m; n 2 N with .nm; p/ D 1, we haveX�

� .modp/
�¤z p

x�.m/�.n/ D
X
d jp

d j.m�n/

�.d/�

�
p

d

�
� z p.m/ z p.n/: (5.1)

Recalling (1.7) we have

jL.1=2; f; z p/j
2
�" p

3=4C�=2C": (5.2)

Summing (4.31) over all primitive characters �¤ z p and applying Lemma 5.1 we obtainX�

� .modp/
�¤z p

L.1=2; f; �/L.1=2; f; x�/ D D1 CD2 C E; (5.3)

where

D1 WD

X
d jp

�.d/�

�
p

d

� X
m�n .modd/
.mn;p/D1

a.m/a.n/
p
mn

W

�
mn

4p2

�
; (5.4)

D2 WD

X
d jp

�.d/�

�
p

d

� X
m�n .modd/
.mn;p/D1

a.m/ z p.m/a.n/ z p.n/
p
mn

W

�
mn

4p2

�
; (5.5)

E WD �
X
m;n

a.m/ z p.m/a.n/ z p.n/
p
mn

W

�
mn

4p2

�
�

X
m;n

.mn;p/D1

a.m/a.n/
p
mn

W

�
mn

4p2

�
:

(5.6)
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Combining (5.2)–(5.6) we obtainX�

� .modp/

L.1=2; f; �/L.1=2; f; x�/ D D1 CD2 C E CO.p3=4C�=2C"/: (5.7)

Remark 5.1. Note that any subconvex exponent 3=4C �=2 < 1 in (5.2) would be suffi-
cient.

5.1. Main terms

The main terms come from the diagonal m D n in D1 and D2. This gives

M.f; p/ WD 2 .p/
X
n

.n;p/D1

a.n/2

n
W

�
n2

4p2

�
: (5.8)

Using (4.10) and (4.32), we can write

M.f; p/ WD 2 .p/
X
n

a.n/2

n
W

�
n2

4p2

�
CO.p1=2C"/: (5.9)

Using Mellin inversion we obtain

M.f; p/ WD 2
 .p/

2�i

Z
.3/

4sL.1C 2s; f � xf /p2s bW .s/ ds CO.p1=2C"/ (5.10)

where bW .s/ D 1

.2�/2s
�.k=2C s/2

�.k=2/2
1

s
:

We shift the contour in (5.10) to Re s D �1=4C " and pick up a double pole at s D 0.
Recalling (4.27) and applying the residue theorem, we see that

M.f; p/ D 2 .p/ lim
s!0

d

ds

�Z
�0.4/nH

ykjf .�/j2h.�; s/ d�.�/

�
C O.p1=2C"/; (5.11)

where

h.�; s/ WD s2
.4�/2sCk

�.2s C k/
bW .s/4sp2sE1.�; 1C 2s/:

We interchange the derivative and the integral by [42, Lemma 1.1, p. 409] and [2, The-
orem 2, p. 130]. We then interchange the limit and integral using uniform convergence.
Thus, for each fixed � D x C iy 2 H, it suffices to compute

ykjf .�/j2 lim
s!0

d

ds
h.�; s/: (5.12)

Recalling (4.29) we have

sE1.�; 1C 2s/ D
1

2

1

41C2s
1

L.2C 4s; �0/

�
�

4
C

�
�

�
 �

5

2
log 2

�
C 2� log

�
y�1=4

ˇ̌̌̌
�.2�/

�.4�/2

ˇ̌̌̌��
s CO� .s

2/

�
: (5.13)
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Thus

h.�; s/ D
.4�/k�.s C k=2/2p2s

8�.k=2/2�.2s C k/

1

L.2C 4s; �0/

�

�
�

4
C

�
�

�
 �

5

2
log 2

�
C 2� log

�
y�1=4

ˇ̌̌̌
�.2�/

�.4�/2

ˇ̌̌̌��
s CO� .s

2/
�
: (5.14)

Performing (5.12) using (5.14) and the product rule, and substituting the result into (5.11),
we obtain the constants

c1.f / WD
.4�/k

��.k/

Z
�0.4/nH

ykjf .�/j2 d�.�/; (5.15)

c2.f / WD
.4�/kC1

�2�.k/

Z
�0.4/nH

ykjf .�/j2 log
�
y�1=4

ˇ̌̌̌
�.2�/

�.4�/2

ˇ̌̌̌�
d�.�/

C
.4�/k�1

�.k/

�
�
8 log 2
3
C
4� 0.k=2/

�.k=2/
�
4� 0.k/

�.k/
�
48�0.2/

�2
C 8

�
 �

5

2
log 2

��
�

Z
�0.4/nH

ykjf .�/j2 d�.�/; (5.16)

in Theorem 1.1.

5.2. Error terms from D1, D2 and E

Let V1;2 W .0;1/! R�0 be smooth functions compactly supported on Œ1; 2� that satisfy

V
.j /
1;2 .x/�j .log 5p/2j �j;" p

": (5.17)

In (5.4)–(5.6) we place a smooth partition of unity, perform Mellin inversion and truncate
the resulting integrals as in [9, Section 5]. We localise the variables toM � m � 2M and
N � n � 2N satisfying

N �M � 1 .by symmetry/ and 1 �MN � p2C": (5.18)

We find it is sufficient to bound O.log2 p/ sums of the shape

�N;M;p;d WD
d

.MN/1=2

X
m�n .modd/

m¤n
.mn;p/D1

a.m/a.n/V1

�
m

M

�
V2

�
n

N

�
; (5.19)

and

z�N;M;p;d WD
d

.MN/1=2

X
m�n .modd/

m¤n
.mn;p/D1

a.m/ z p.m/a.n/ z p.n/V1

�
m

M

�
V2

�
n

N

�
; (5.20)
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for each d D 1 or p. Using (4.9) we have the bound

�N;M;p;d ; z�N;M;p;d � .MN/1=2C": (5.21)

We will not make use of (5.21). We have the weaker, but unconditional version in the next
lemma.

Lemma 5.2. For all N � 20M we have

�N;M;p;d ; z�N;M;p;d �M 1=2C"N 3=4C":

Proof. We have

�N;M;p;d ; z�N;M;p;d �
d

.MN/1=2

X
M�m�2M
.m;p/D1

ja.m/j
X

n�m.modd/
N�n�2N
.n;p/D1

ja.n/j:

Observe that if d D p and N � p=2, then the congruence condition m � n .mod d/
implies thatmD n. However, this is not possible sinceM �m � 2M ,N � n � 2N , and
N � 20M . In all other cases we have #¹N � n � 2N W n � 0 .mod d/º � N=d , and so

�N;M;p;d ; z�N;M;p;d �
d

.MN/1=2
N 5=4

d

X
M�m�2M

ja.m/j;

where the last inequality follows from positivity and (4.10). The lemma now follows by
applying Cauchy–Schwarz and then (4.4).

Remark 5.2. Instead of (4.10), we could have applied the Conrey–Iwaniec bound (4.12)
in the proof of Lemma 5.2 to obtain an improved bound. Optimality is not the purpose
of this paper and we prefer to show that our method works (i.e. obtaining a power saving
error term in Theorem 1.1) with weaker inputs.

We now remove the greatest common divisor condition in (5.19). The removal of the
gcd condition in (5.20) is automatic because of the presence of the character.

Lemma 5.3. For all M;N satisfying (5.18) and d D 1 or p we have

�N;M;p;d WD
d

.MN/1=2

X
m�n .modd/

m¤n

a.m/a.n/V1

�
m

M

�
V2

�
n

N

�
C O.p1=2C"/: (5.22)

Proof. We prove (5.22) by estimating the contribution from pairs in the set

B WD ¹.m; n/ W m � 0 .mod p/ or n � 0 .mod p/ such that m ¤ nº:

If d D 1 and 1 � M � .p � 1/=2, then there are no pairs with m � 0 .mod p/. Pairs
.m; n/ with n � 0 .mod p/ contribute O.p1=2C"/ by (4.10), Cauchy–Schwarz (on the m
sum) and (4.4).
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If 1 � M � .p � 1/=2 and d D p then there are no .m; n/ such that m � n � 0

.mod p/.
Now suppose that .p � 1/=2 � M � p1C"=2 and d D 1. The contribution from all

.m; n/ with m � 0 .mod p/ and n 6� 0 .mod p/ is O.p1=2C"/ by a similar argument to
the above. The contribution from all .m; n/ with n � 0 .mod p/ and m 6� 0 .mod p/ is
at most O.p1=2C"/ by a similar argument. The contribution from .m; n/ with m � n � 0
.mod p/ is negligible by (4.10).

If .p � 1/=2 �M � p1C"=2 and d D p then the contribution from .m; n/ with m �
n � 0 .mod p/ is O.p1=2C"/ by (4.10).

Lemma 5.4. For all M;N satisfying (5.18) we have

�N;M;p;1 �" p
1=2C":

Proof. We write (5.22) as

�N;M;p;1 D
1

.MN/1=2

�X
m

a.m/V1

�
m

M

���X
n

a.n/V2

�
n

N

��
�

1

.MN/1=2

X
m

a.m/2V1

�
m

M

�
V2

�
m

N

�
CO.p1=2C"/: (5.23)

Applying partial summation, (4.4) and (4.5) guarantee that all but the last term in (5.23)
are O.p"/.

Lemma 5.5. Let f 2 �k.4/ have normalised coefficients a.n/. Let � be a primitive char-
acter modulo p and V W .0;1/ ! R�0 be a smooth function with support contained
in Œ1; 2�. Then for X � 1 we haveX

m

a.m/�.m/V

�
m

X

�
�" X

1=2p3=8C�=4C" CX3=8p1=2C";

where � represents the best progress toward the Ramanujan–Petersson conjecture for
weight zero Maass forms.

Proof. Let S;Sj for j D 1;2;3 be defined as in [33, Proposition 3]. Each Sj is an averaged
shifted convolution sum, depending on p;X; f; `1 and `2. Let L � 1 be a parameter to be
chosen later. Taking �0 to be � in [33, (11)] yields

L2

.logL/2

ˇ̌̌̌X
m

a.m/�.m/V

�
m

X

�ˇ̌̌̌2
� �.p/

X
L�`1; `2�2L

j̀ prime

�.`1/�.`2/.S1 C S2 C S3/:

(5.24)

Note the square is missing in [33, (11)]. Invoking the bounds for the Sj given in [33,
Proposition 4 and Theorem 16], the right side of (5.24) is bounded by

� p.XLCX1=2L3 CX1C"L3C"p��1=2/:
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Note that the statement of [33, Theorem 16] has a typographic error (the inequality is
missing a Q� ). However, the correct bound is stated at the end of proof (cf. [33, p. 713])
and that is the one used here. Thusˇ̌̌̌X

m

a.m/�.m/V

�
m

X

�ˇ̌̌̌
� L"

�
p1=2X1=2

L1=2
C L1=2.X1=4p1=2 CX1=2p1=4C�=2/

�
:

Choosing

L WD
p1=2X1=2

X1=4p1=2 CX1=2p1=4C�=2
� 1

yields the result.

Lemma 5.6. For M;N satisfying (5.18) we have

z�N;M;p;1 �" p
"..MN/1=4p3=8C�=4 CN 1=4M 3=16p7=16C�=8 C .MN/3=16p1=2/:

Proof. We write (5.20) as

z�N;M;p;1 D
1

.MN/1=2

�X
m

a.m/ z p.m/V1

�
m

M

���X
n

a.n/ z p.n/V2

�
n

N

��
�

1

.MN/1=2

X
m

.m;p/D1

a.m/2V1

�
m

M

�
V2

�
m

N

�
: (5.25)

Observe that (4.4) implies that

1

.MN/1=2

X
m

.m;p/D1

ja.m/j2V1

�
m

M

�
V2

�
m

N

�
� p": (5.26)

By the Cauchy–Schwarz inequality and (4.4) we haveX
y

a.y/ z p.y/V1

�
y

X

�
� X1C": (5.27)

Using Lemma 5.5, (5.27) and the fact

min.AC B;C / �
p
AC C

p
BC for A;B;C > 0;

we obtainX
y

a.y/ p.y/V2

�
y

X

�
� min.X1=2p3=8C�=4C" CX3=8p1=2C"; X1C"/

� p".X3=4p3=16C�=8 CX11=16p1=4/: (5.28)

After applying the triangle inequality in (5.25), we insert (5.26) and (5.28) into (5.25) to
obtain the result.
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We are now left to treat
z�N;M;p;p D �N;M;p;p: (5.29)

It will be convenient to consider M � N � 20M and N � 20M separately.

Lemma 5.7. For all M;N satisfying (5.18) and M � N � 20M , we have

�N;M;p;p �" p
1=2C�C": (5.30)

Proof. Lemma 5.3 and the bounds for S2 and S3 in [33, p. 713] together imply (5.30)

�N;M;p;p �" p
1=2C�C":

Now consider N � 20M . The following lemma in conjunction with parts of
Lemma 5.2 and Proposition 5.2 below will essentially serve as a weaker, but uncondi-
tional replacement for the “trivial bound” in (5.21).

Lemma 5.8. Let ı0; ı1 > 0 and suppose M;N satisfy (5.18) as well as M � p1=2�ı0

and N � p1Cı1 . Then

�N;M;p;p �";ı0;ı1 p
"
�
p3=4M 1=2

C
p3=2

N 1=2

�
:

Lemma 5.9. Let ı > 0 and suppose that M;N satisfy (5.18) as well a M=N < p�1�ı .
Then

�N;M;p;p �";ı p
"
�
p3=2

�
M

N

�1=2
C p1=2

�
:

Proposition 5.1. Let M;N be as in (5.18) and also satisfy

p3=2�
9
100 � N � p3=2C

9
100 : (5.31)

Then

�N;M;p;p �" p
"

�
M 1=2

N 1=2
p3=2�

1
108 C

M 1=2

N 1=4
p1C

25
216 C

M 1=4

N 1=2
p3=2C

25
216

C
M 1=4

N 1=4
p1C

13
54 C

M 1=4

N 1=8
p1C

23
432 CM 1=4p1�

29
216 C p1�

1
10

�
:

We defer the proof of Proposition 5.1 (assuming the truth of Theorem 1.2) to Sec-
tion 5.3. The proof of Theorem 1.2 is given in Section 8.

The last estimate we require in order to obtain bounds for (5.29) uses spectral methods.
For `1; `2; h 2 Z�1, define the shifted convolution sum

D.`1; `2; h;N;M/ WD
X

`1n�`2mDh

a.m/a.n/V1

�
`2m

M

�
V2

�
`1n

N

�
; (5.32)

and for d a positive integer,

�.`1; `2; d;N;M/ WD
X
r�1

D.`1; `2; rd;N;M/: (5.33)
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Lemma 5.3 gives (for all N � 20M ),

�N;M;p;p D
p

.MN/1=2
�.1; 1; p;N;M/CO.p1=2C"/: (5.34)

Proposition 5.2. Suppose M;N are as in (5.18) and N � 20M . Then

�.`1; `2; p;N;M/�" p
".`1`2; p/

1=2

�
N

p1=2
C
N 5=4M 1=4

p
C
N 3=4M 1=4

p1=4
C
NM 1=2

p3=4

�
:

Thus,

�N;M;p;p �" p
"

�
.Np/1=2

M 1=2
C
N 3=4

M 1=4
C
p3=4N 1=4

M 1=4
C p1=4N 1=2

�
C p1=2C": (5.35)

We defer the proof of Proposition 5.2 to Section 7.

5.3. Coefficients in residue classes

Here we prove Lemmas 5.8 and 5.9, as well as Proposition 5.1. The starting point for
these results is Voronoi summation in the long variable.

For r; v 2 N, let

cv.r/ D
vX
uD1

.u;v/D1

e

�
ru

v

�
:

denote the usual Ramanujan sum. Ramanujan sums are multiplicative in the modulus
variable,

cst .r/ D cs.r/ct .r/ for .s; t/ D 1: (5.36)

Proof of Lemma 5.9. Applying Lemma 5.3, we write the right side of (5.22) as the sum
of three subsums

�`N;M;p;pD
p

.MN/1=2

X
m�n .modp/
m�n�` .mod4/

a.m/a.n/V1

�
m

M

�
V2

�
n

N

�
; `2¹0;�1;1º; (5.37)

incurring an error of O.p1=2C"/. Kohnen’s plus space condition in (1.5) explains why we
need only consider ` 2 ¹0;�1; 1º in (5.37).

Here, the condition m ¤ n is moot. In order to apply Lemma 4.1 we will need the
moduli occurring in additive characters to be divisible by 4. Hence, we will use orthogo-
nality in the form

1

2p
c4.r/.1C cp.r// D

8̂̂<̂
:̂
0 if 2 − r
�1 if 2 j r and 4 − r
1 if r � 0 .mod 4/

�

´
0 if r 6� 0 .mod p/

1 if r � 0 .mod p/:
(5.38)
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By (5.36), the left side (5.38) is

1

2p
c4.r/C

1

2p
c4p.r/: (5.39)

Without loss of generality we now focus on the case ` D 0 in (5.37) and use (5.39) to
detect both congruence conditions in (5.37). The ` 2 ¹˙1º cases follow from similar
arguments (replace c4.r/ with 1 � c4.r/ above).

We apply (5.39) to �0N;M;p;p to remove both congruences. Thus �0N;M;p;p is the sum
of the following two expressions:

1

2.MN/1=2

X�

j .mod4p/

�X
m

a.m/e

�
jm

4p

�
V1

�
m

M

���X
n

a.n/e

�
�
jn

4p

�
V2

�
n

N

��
; (5.40)

and

1

2.MN/1=2

X�

j .mod4/

�X
m

a.m/e

�
jm

4

�
V1

�
m

M

���X
n

a.n/e

�
�
jn

4

�
V2

�
n

N

��
: (5.41)

Partial summation and (4.5) guarantees that (5.41) is negligible. Let u be any integer with
u � �j .mod 4p/. Applying Lemma 4.1 to the n summation in (5.40) we obtainX

n

a.n/e

�
�
jn

4p

�
V2

�
n

N

�
D
N

4p
�� ./

X
n

a.n/e

�
n xj

4p

�
VV2

�
nN

16p2

�
;

where

 WD

�
u �

4p �

�
2 �0.4p/:

Observe that

�� ./ D "
�1

�xj

�
4p

�xj

�
D "�1�j

�
4p

j

�
:

Thus (5.40) becomes

N 1=2

8pM 1=2

X
m

a.m/V1

�
m

M

�X
n

a.n/ VV2

�
nN

16p2

�
K1.�m;�nI 4p/: (5.42)

Given the rapid decay of the Hankel transform we can truncate the n summation 1 �
n � p2C"=N in (5.42) up to negligible error. By hypothesis we have N > Mp1Cı , and
thus any m � M and 1 � n � p2C"=N satisfies .mn; p/ D 1. Then by Lemma 4.2 and
(4.24) we have

jK1.�m;�nI 4p/j � 4p
1=2: (5.43)

Inserting (5.43) into (5.42), we see that (5.42) is

�
N 1=2

p1=2M 1=2

�X
m

ˇ̌̌̌
a.m/V1

�
m

M

�ˇ̌̌̌��X
n

ˇ̌̌̌
a.n/ VV2

�
nN

16p2

�ˇ̌̌̌�
:

Both them and n summations can be estimated trivially using Cauchy–Schwarz and (4.4).
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Proof of Lemma 5.8. Repeat the proof of Lemma 5.9 to the display (5.42). Note this
incurs an error of O.p1=2C"/. As in the last proof, we give details of the argument when
` D 0. The ` 2 ¹˙1º cases follow from similar arguments.

Interchanging the m and n summation in (5.42) gives

N 1=2

8pM 1=2

X
n

a.n/ VV2

�
nN

16p2

�X
m

a.m/V1

�
m

M

�
K1.�m;�nI 4p/: (5.44)

We apply Cauchy–Schwarz (now in the n variable) and Lemma 4.2, and we see that (5.44)
is

�
1

M 1=2
max

e;f;g .mod4/

� X
M�m1;m2�2M
m1�e .mod4/
m2�f .mod4/

ja.m1/a.m2/j

�

ˇ̌̌ X
1�n�p2C"=N
n�g .mod4/

S.m1; 16nIp/S.m2; 16nIp/
ˇ̌̌�1=2

(5.45)

Using (4.24) the summation over n becomes

p
X

1�n�p2C"=N
n�g .mod4/

X
x;y .modp/

x2�16m1n .modp/
y2�16m2n .modp/

e

�
2.x � y/

p

�
: (5.46)

When m1 D m2, we estimate (5.46) trivially by p3C"=N . Then using (4.4) yields a
contribution of p3=2C"=N 1=2 to (5.45).

Since m1; m2 � M and M � p1=2�ı0 by hypothesis, m1 ¤ m2 implies m1 6� m2
.mod p/. Thus we can write (5.46) in terms of complete sums

p

p�1X
nD0

X
x;y .modp/

x2�16m1n .modp/
y2�16m2n .modp/

e

�
2.x � y/

p

� X
1�w�p2C"=N
w�g .mod4/

1

p

p�1X
tD0

e

�
t .n � w/

p

�
:

After interchanging the t and w summation, and estimating the sum over w in the usual
way, it suffices to estimate the maximum of

p logp max
t2Z\Œ0;p�1�

ˇ̌̌̌p�1X
nD0

X
x;y .modp/

x2�16m1n .modp/
y2�16m2n .modp/

e

�
2.x � y/

p

�
e

�
tn

p

�ˇ̌̌̌
: (5.47)

The n D 0 term contributes O.p log p/. Let 2 � a � p � 2 (since m1 6� m2 .mod p//
be such that a2 � m1m2 .mod p/. We have .xy/2 � m1m2 .mod p/. This implies that
if y � v .mod p/ for some 1 � v � p � 1, then x � ˙av .mod p/ and n � 16m2v2 �
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16m1a
2v2 .mod p/. Conversely, given 1 � v � p � 1, let y � v .mod p/ and x � ˙av

.mod p/. Then .xy/2 � m1m2 .mod p/. Moreover, 16m2y2 � 16m1x2 .mod p/. Thus
(5.47) becomes (with n D 0 excluded)

p logp max
t2Z\Œ0;p�1�

ˇ̌̌ p�1X
vD1

e

�
16tm2v

2 C .˙a � 1/v

p

�ˇ̌̌
:

If t ¤ 0, then the above line is bounded above by p3=2 logp since it is a Gauss sum. If
t D 0, then it is a Ramanujan sum and is p logp since 2 � a � p � 2. Applying Cauchy–
Schwarz and (4.4) we obtain a contribution of p3=4C"M 1=2 to (5.45) from this case.

Now we prove Proposition 5.1 assuming the validity of Theorem 1.2, whose proof is
deferred to Section 8.

Proof of Proposition 5.1 .assuming Theorem 1.2/. Repeat the proof of Lemma 5.9 to the
display (5.42). Note this incurs an errorO.p1=2C"/. As in the previous two proofs, we give
details of the argument when ` D 0. The ` 2 ¹˙1º cases follow from similar arguments.

We may restrict the n summation in (5.42) to n � p2=5 using the same argument
following (5.42) with error O.p9=10C"/. Define the sets

N0.f / WD ¹n 2 N W 0 � ja.n/j � 1º;

Nr .f / WD ¹n 2 N W 2r�1 < ja.n/j � 2rº for all r � 1:

We decompose (5.42) into O.log2 p/ subsums

N 1=2

8pM 1=2

X
m

a.m/V1

�
m

M

� X
n�A

n2Nr .f /

a.n/ VV2

�
nN

16p2

�
K1.�m;�nI 4p/; (5.48)

where
p2=5 � A � p2C"=N : (5.49)

Observe that (4.4) implies that for any X � 1 we have

jNr .f / \ Œ0; X�j � X1C"=22r : (5.50)

Applying Cauchy–Schwarz to them summation in (5.48) and then using (4.4) we see that
(5.48) is

�
N 1=2

p1�"

� X
M�m�2M

ˇ̌̌̌ X
n�A

n2Nr .f /

a.n/K1.�m;�nI 4p/ VV2

�
nN

16p2

�ˇ̌̌̌2�1=2
: (5.51)

Expanding the square and interchanging the summations, the expression inside the square
root in (5.51) becomesX

n1;n2�A
n1;n22Nr .f /

a.n1/a.n2/ VV2

�
n1N

16p2

�
VV2

�
n2N

16p2

�
�

X
M�m�2M

K1.�m;�n1I 4p/K1.�m;�n2I 4p/: (5.52)



The twisted second moment of modular half-integral weight L-functions 31

We use the bound jK1.�m;�n;p/j � 4p1=2 (we have .mn;p/D 1 in the relevant ranges),
Cauchy–Schwarz, and (5.50) to estimate (5.52) by

�
p5

N 2

M

22r
;

for any A satisfying (5.49). Inserting this into (5.51), we see that (5.48) is

�
1

2r
p3=2

�
M

N

�1=2
: (5.53)

We now estimate (5.52) non-trivially to obtain another upper bound for (5.48). Apply-
ing the triangle inequality to (5.52), we see that (5.52) is

� 22r
X

n1;n2�A
n1;n22Nr .f /

ˇ̌̌ X
M�m�2M

K1.�m;�n1I 4p/K1.�m;�n2I 4p/
ˇ̌̌
: (5.54)

By positivity we can extend the summation over all n1; n2 � A in (5.54). Applying
Lemma 4.2, (4.24) and the fact that p � 1 .mod 4/ we see that the summand in the
m summation is

K1.�m;�n1I 4/K1.�m;�n2I 4/S.m; 16n1Ip/S.m; 16n2Ip/: (5.55)

Note that K1.�m;�n1I 4/K1.�m;�n2I 4/ is an absolute constant depending only on
m; n1; n2 modulo 4. Thus we rewrite (5.52) so that each summation variable runs in a
fixed congruence class modulo 4. Thus it suffices to bound

22r
X

n1;n2�A
n1�e .mod4/
n2�f .mod4/

ˇ̌̌ X
M�m�2M
m�g .mod4/

S.m; 16n1Ip/S.m; 16n2Ip/
ˇ̌̌

(5.56)

for e; f; g modulo 4. The hypothesis on N ensures that

p
41
100 � p2=N � p

59
100 :

Recall (5.49). The bound in Theorem 1.2 applied to (5.56) is increasing in A, thus by
Theorem 1.2 and Remark 8.2 we can bound (5.56) by

� 22r
�
M

N 2
p
134
27 C

M

N
p
187
54 C

p
295
54

N 2
C
p
107
27

N
C
p
347
108

N 1=2
C p

133
54

�
; (5.57)

uniformly in A satisfying (5.49). Inserting (5.57) into (5.51), we see that (5.48) is

� 2rp"
�
M 1=2

N 1=2
p
40
27 CM 1=2p

79
108 C

p
187
108

N 1=2
Cp

53
54 CN 1=4p

131
216 CN 1=2p

25
108

�
: (5.58)

Denoting the right side of (5.58) as 2rX , one can choose

2r D
p3=4.M

N
/1=4

X1=2

to balance (5.53) and (5.58). Substituting this quantity back into (5.58) and noting the
error O.p9=10C"/ inherited at the start of the argument yields Proposition 5.1.
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5.4. Proof of Theorem 1.1

Proof of Theorem 1.1 .assuming Proposition 5.2 and Theorem 1.2/. The main terms in
Theorem 1.1 were computed in Section 5.1, incurring a cost (cf. (5.7))

� p3=4C�=2C": (5.59)

Without loss of generality we have 0� � � 7=64 by Kim–Sarnak [32]. It suffices to bound
�N;M;p;d and z�N;M;p;d for d D 1 and p and all M;N satisfying (5.18).

Applying Lemma 5.4 we obtain

�N;M;p;1 � p1=2C" for all M;N satisfying (5.18): (5.60)

Applying Lemma 5.6 we have

z�N;M;p;1� p7=8C�=4C"Cp15=16C�=8C"� p15=16C�=8C" for all M;N satisfying (5.18);
(5.61)

where the last inequality follows by the above fact about � .
Recalling (5.29), it suffices to consider �N;M;p;p . Applying Lemma 5.7 we have

�N;M;p;p � p1=2C�C" for all M � N � 20M: (5.62)

We can now assume N � 20M . Let ˛ and ˇ be such that

M WD p˛; N WD pˇ such that ˛ C ˇ � 2; ˛ � 0; ˇ � 0:

Let
�0 WD

1
600
:

We will now prove that
�M;N;p;p � p1��0 : (5.63)

Lemma 5.2 guarantees that (5.63) holds when

ˇ < 4
3
�
4
3
�0 �

2
3
˛: (5.64)

Lemma 5.9 guarantees that (5.63) holds when

ˇ > 1C ˛ C 2�0: (5.65)

Proposition 5.2 guarantees that (5.63) holds when

0 � ˛ � 151
300

and ˇ < 149
150
C ˛; (5.66)

˛ > 151
300

and ˇ < 449
300
:

Lemma 5.8 guarantees that (5.63) holds when

˛ < 1=2 � 2�0 and ˇ > 1C 2�0: (5.67)
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Plotting the inequalities (5.64)–(5.67) shows that now only the solid trapezoid in the ˛ˇ-
plane with vertices�

299
600
; 901
600

�
;

�
151
300
; 449
300

�
;

�
149
300
; 149
100

�
;

�
149
300
; 3
2

�
has to be considered. Writing out the exponents of Proposition 5.1 (which was established
under the assumption of Theorem 1.2) we have

˛
2
�
ˇ
2
C

161
108
; ˛

2
�
ˇ
4
C

241
216
; ˛

4
�
ˇ
2
C

349
216
;

˛
4
�
ˇ
4
C

67
54
; ˛

4
�
ˇ
8
C

455
432
; ˛

4
C

187
216
; 9

10
:

A computation shows that each linear function evaluated at each of the four vertices is
less than 1 � �0. Thus (5.59)–(5.62) are subsumed by (5.63). The rest of the paper is
dedicated to proving Proposition 5.2 and Theorem 1.2, and that will complete the proof
of Theorem 1.1.

6. Automorphic preliminaries II (integral weight)

6.1. Maass forms

We give a brief background on Maass forms relevant to our setting. One can see [16,
Section 4], [22, Section 2] and [9, Sections 2 and 5] for supplementary material.

Throughout � D 0 or 1. For  2 SL2.R/, define the weight � slash operator for real
analytic forms by

gj� WD j.; �/
��g.�/; j.; �/ WD

c� C d

jc� C d j
D eiarg.c�Cd/;

where the argument is always chosen in .��; ��. The weight � Laplacian is defined by

�� WD y
2

�
@2

@x2
C

@2

@y2

�
� i�y

@

@x
:

A smooth function g W H! C is an eigenfunction of �� with eigenvalue � 2 C if

.�� C �/g D 0:

All eigenfunctions of �� are real analytic since it is an elliptic operator.
Let � be a character modulo D with �.�1/ D .�1/� . A function g W H! C is auto-

morphic of weight � and nebentypus � for �0.D/ if

gj� D �.d/g for all  WD
�
a b

c d

�
2 �0.D/:

Let A�.D;�/ denote the space of such functions. If g 2A�.D;�/ is a smooth eigenfunc-
tion of �� that also satisfies the growth condition

g.�/� y� C y1�� for all � WD x C iy 2 H and some � > 0;
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then it is called a Maass form. Let

L�.D; �/ WD ¹g 2 A�.D; �/ W kgk <1º;

where the norm is induced by the Petersson inner product

hg1; g2i WD

Z
�0.D/nH

g1.�/g2.�/ d�.�/; d� WD
dxdy

y2
:

Let R�.D; �/ denote the subspace of L�.D; �/ consisting of smooth functions g such
that g and ��g are bounded on H. One can show that R�.D; �/ is dense in L�.D; �/.
For all g1; g2 2 R�.D; �/ we have

h��g1; g2i D hg1; ��g2i:

Furthermore, for any g 2 R�.D; �/ we have

hg;���gi �
j�j

2

�
1 �
j�j

2

�
� 0:

Thus by a theorem of Friedrichs, the operator ��� has a unique self-adjoint extension to
L�.D;�/ (which we also denote by���). Then by a theorem of von Neumann, the space
L�.D; �/ has a complete spectral resolution with respect to ��� . There is a continuous,
discrete, and residual spectrum, worked out in detail by Maass and Selberg.

Let a be a cusp of �0.D/ and

�0.D/a WD ¹ 2 �0.D/ W a D aº;

denote its stability group. Let �a denote the unique (up to translation on the right) matrix
in SL2.R/ satisfying �a1D a and ��1a �0.D/a�aD �0.D/1. We say a is singular when

�

�
�a

�
1 1

0 1

�
��1a

�
D 1:

For each singular cusp a (and only at such cusps), the Eisenstein series is defined by

Ea.�; s; �/ D
X

2�0.D/an�0.D/

x�./j.��1a ; �/��.Im ��1a �/s; Re s > 1 and � 2 H:

One can check that each Ea is independent of the choice of the scaling matrix �a. More-
over, if b D a are �0.D/-equivalent cusps, then (cf. [66, (3.2)])

Ea.�; s; �/ D x�./Ea.�; s; �/: (6.1)

Selberg [57] proved that Ea.�; s; �/ has an analytic continuation to the whole complex
plane with only finitely many simples poles s with 1=2 < s � 1. In particular, when � is
non-principal there are no poles in the region Re s � 1=2. When � is principal, there is
only one simple pole at s D 1 in this region with constant (but automorphic) residue

RessD1Ea.�; s; �/ D
1

Vol.�0.D/nH/
:
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If s is not a pole of Ea.�; s; �/, then Ea.�; s; �/ is a Maass form with eigenvalue �.s/, but
is not in L�.D; �/. The continuous spectrum is composed of all the Eisenstein series on
the critical line s D 1=2C i t .

The remainder of the spectrum is discrete and is spanned by Maass cusp forms. It is
countable and of finite multiplicity (with1 being the only limit point). We denote it by

�1 � �2 � � � � :

To summarise, every g 2 L�.D; �/ decomposes as

g.�/ D
X
j�0

hg; uj iuj .�/

C

X
a

1

4�

Z
Re sD1=2

hg;Ea.?; 1=2C i t; �/iEa.�; 1=2C i t; �/ dt; (6.2)

where u0.�/ is the constant function of Petersson norm 1 (if � D 0), C�.D;�/D ¹uj ºj�1
denotes an orthonormal basis of Maass cusp forms, and ¹aº runs over all singular cusps
of �0.D/ relative to �. The convergence in (6.2) is with respect to the norm topology. If
g 2 R�.D; �/, then (6.2) converges pointwise absolutely and uniformly on compacta.

A Maass cusp form decays exponentially at the cusps and admits a Fourier expansion
with the zeroth Fourier coefficient vanishing. At1, such an expansion is given by

g.�/ D

1X
nD�1

�g.n/W kn
2jnj

;it .4�jnjy/e.nx/; (6.3)

where W˛;ˇ .y/ is the usual Whittaker function and �g WD 1=4C t2g is the Laplace eigen-
value of g. We call tg the spectral parameter of g. When � D 0, note that tg 2 Œ�i�; i��[
Œ0;1/, where � D 7=64 is the best currently known [32].

The Eisenstein series has the expansion

Ea.�; 1=2C i t; �/ D ıaD1y
1=2Cit

C �a.1=2C i t/y
1=2�it

C

1X
nD�1
n¤0

�a.n; t/W kn
2jnj

;it .4�jnjy/e.nx/; (6.4)

where �a.1=2C i t/ is the .a;1/ entry of the relevant scattering matrix.

6.2. Holomorphic forms

Let � be a Dirichlet character modulo D with �.�1/ D .�1/� (� D 0 or 1). For ` 2 N
with `� � .mod 2/, let �`.D;�/ denote the space of holomorphic cusp forms of levelD,
weight ` and nebentypus �. This space is equipped with the Petersson inner product

hg1; g2i D

Z
�0.D/nH

y`g1.�/g2.�/ d�.�/:
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We also have the Fourier expansion (at1)

g.�/ D
X
n�1

�g.n/.4�n/
`=2e.n�/: (6.5)

6.3. Hecke operators and newform theory

Recall that L�.D; �/ (and the subspace generated by Maass cusp forms) is acted on by
an algebra T generated by Hecke operators ¹Tnºn�1. Each operator is defined by

.Tng/.�/ D
1
p
n

X
adDn

�.a/
X

b .modd/

g

�
a� C b

d

�
:

These operators are commutative and multiplicative. They also satisfy the relation

TmTn D
X

d j.m;n/

�.d/Tmn=d2 : (6.6)

Let T.D/ denote the subalgebra generated by ¹Tnº.n;D/D1. We call a Maass cusp form
which is an eigenform for T.D/ a Hecke–Maass cusp form. The elements of T.D/ are nor-
mal with respect to the Petersson inner product, so the cuspidal subspace of L�.D; �/

admits an orthonormal basis of Hecke–Maass cusp forms. For a Hecke–Maass cusp
form g, the following relations hold:

p
n�g.˙n/ D �g.˙1/�g.n/ for .n;D/ D 1; (6.7)

where �g.n/ denotes the eigenvalue of Tn, and

p
m�g.m/�g.n/ D

X
d j.m;n/

�.d/�g

�
mn

d2

�r
mn

d2
; (6.8)

p
mn�g.mn/ D

X
d j.m;n/

�.d/�.d/�g

�
m

d

�r
m

d
�g

�
n

d

�
: (6.9)

The space of newforms is defined to be the space spanned by the Hecke–Maass cusp
forms orthogonal to the subspace spanned by the oldforms. If g is a Hecke form and in
the new subspace, then g is a Hecke eigenform of all Hecke operators by Atkin–Lehner
theory and the above relations are satisfied for all n.

For a Hecke–Maass cusp form g, we have the pointwise bound

j�g.n/j � n
�C"

and the Rankin–Selberg boundX
n�x

j�g.n/j
2
�" .D.1C jt j/x/

"x:
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If g is an L2-normalised newform of weight � 2 ¹0; 1º and levelD, then by [22, (30)]
we have

.D.1C jtg j/
��"� cosh.�tg/

D.1C jtg j/�

�1=2
�" j�g.1/j �" .D.1C jtg j//

"

�
cosh.�tg/
D.1C jtg j/�

�1=2
:

(6.10)

The upper bound (resp. lower bound) is a consequence of the seminal works of Hoffstein–
Lockhart [24] (resp. Duke–Friedlander–Iwaniec [16]).

We now give a more explicit treatment of bases and newforms due to Blomer and Mil-
ićević ([9, Section 5] and [29]). Let B�.D; t; �/ (resp. H`.D; �/) denote an L2-basis for
A�.D; t; �/ (resp. �`.D; �/). In general, both of these bases will include oldforms. We
will focus on Maass forms since the holomorphic case will be the same, only requiring
small notational changes. Suppose � has conductor D?

� and underlying primitive charac-
ter �?. For u jD, let z� modulo u be the character induced by �? and B?

� .u; D; t; z�/ �

B�.D; t; �/ denote the set of all L2.�0.D/nH/-normalised newforms of level u and
spectral parameter t . We write gjd .�/ WD g.d�/. By Atkin–Lehner theory we have

A�.D; t; �/ D?
D?� ju

ujD

?
g2B?� .u;D;t;z�/

M
d jD=u

gjd �C: (6.11)

The first two sums in (6.11) are orthogonal, but the last is not orthogonal in general.
Gram–Schmidt is required to make this sum orthogonal.

An orthogonal basis B�.D; �/ for A�.D; �/ is produced by collecting all spectral
parameters,

B�.D; �/ WD
a
t

B�.D; t; �/:

Correspondingly,
B�.u;D; z�/ WD

a
t

B?
� .u;D; t; z�/:

For a newform g 2 B�.u;D; z�/, define the arithmetic functions

rg.c/ WD
X
bjc

�.b/�g.b/
2

b

�X
d jb

�.b/

b

��2
; ˛.c/ WD

X
bjc

�.b/�.b/2

b2
;

ˇ.c/ WD
X
bjc

�2.b/�.b/

b
; L.g; s/�1 WD

X
c

�g.c/

cs
;

where

�g.p/ D ��g.p/; �g.p
2/ D �.p/; �g.p

�/ D 0 for � > 2:

For d j e, define

� 0e.d/ WD
�.e=d/�g.e=d/

rg.e/1=2.e=d/1=2ˇ.e=d/
; � 00e .d/ WD

�g.e=d/

.e=d/1=2.rg.e/˛.e//1=2
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Now write e D e1e2 uniquely with e1 squarefree, e2 squarefull and .e1; e2/D 1. Then for
d j e define

�e.d/ WD �
0
e1
..e1; d //�

00
e2
..e2; d //� e".e=d/��

1
2 :

Lemma 6.1 ([9, Lemma 9]). Let u j D and g? 2 B�.u; D; z�/ � B�.D; �/ be an
L2.�0.D/nH/-normalised newform of level u. Then the set of functions°

g.e/ WD
X
d je

�e.d/g
?
jd .�/ W e jD=u

±
is an orthonormal basis for the space

L
d jD=u g

?jd �C. If g is any member of this basis,
then its Fourier coefficients satisfy the bound

p
n�g.n/� .nD/"n� .D; n/1=2�� j�g?.1/j: (6.12)

Note that one can also see [56, Theorem 3.2] for the above lemma.

Proof of Lemma 6.1. The proof is verbatim that of [9, Lemma 9] with � replacing the
principal character modulo D with �.

Elements g 2 B�.D;�/ (or g 2H`.D;�/) have multiplicative-like properties. Given
r 2 N, if m D rm0 2 N with .m0; r/ D 1, then by [7, p. 74] we have

p
m�g.m/ D

X
d j.D;.r=.r;D//

�.d/�.d/�g?

�
r

d.r;D/

��
.r;D/m0

d

�1=2
�g

�
.r;D/m0

d

�
;

(6.13)
where g? is the underlying newform. In particular, if .r;D/ D 1 we have

p
m�g.m/ D �g?.r/

p
m0�g.m

0/ (6.14)

Moreover, if g? satisfies the Ramanujan–Petersson conjecture (i.e. an integral weight
holomorphic eigenform) and am is any finite sequence of complex numbers thenˇ̌̌X

m

am
p
m�g.m/

ˇ̌̌2
� �.r/2

X
d j.r;D/

ˇ̌̌X
m0

arm0
p
dm0�g.dm

0/
ˇ̌̌2
: (6.15)

6.4. Kuznetsov–Proskurin formula and spectral inequalities

Let � be a character modulo D with �.�1/ D 1. Let � W Œ0;1/! C have continuous
derivatives up to third order and satisfy

�.0/ D �0.0/ D 0; �j .x/� .1C x/�3 for j D 1; 2; 3:

Define the transforms

P�.`/ WD 4i`
Z 1
0

�.x/J`�1.x/
dx

x
;

z�.t/ WD 2�i

Z 1
0

�.x/
J2it .x/ � J�2it .x/

sinh.�t/
dx

x
;
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L�.t/ WD 8

Z 1
0

�.x/ cosh.�t/K2it .x/
dx

x
:

These transforms are normalised like those occurring in [9, Section 5] and [14]. For D j c
and m; n 2 Z, define the Kloosterman sum (at11) by

K.m; n; c; �/ WD
X�

d .mod c/

x�.d/e

�
md C n xd

c

�
;

where the superscript � denotes the condition .d; c/ D 1.

Lemma 6.2 ([14, Lemma 4.5] and [9, Lemma 10]). Let � be as above and � be a
character modulo D with �.�1/ D 1. For ` � 2 and ` � 0 .mod 2/, let B0.D; �/ .resp.
H`.D; �// denote the orthonormal basis of Maass cusp forms .resp. holomorphic cusp
forms/ given above. Recalling the notations (6.3)–(6.5), for m; n 2 N we haveX
Djc

1

c
K.m; n; c; �/�

�
4�
p
mn

c

�
D

X
`�2

`�0 .mod2/

X
g2H`.D;�/

�.`/ P�.`/
p
mn�g.m/�g.n/

C

X
g2B0.D;�/

z�.tg/

p
mn

cosh.�tg/
�g.m/�g.n/

C
1

4�

X
a sing.

p
mn

Z 1
�1

z�.t/

cosh.�t/
�a.m; t/�a.n; t/ dt

andX
Djc

1

c
K.m;�n; c; �/�

�
4�
p
mn

c

�
D

X
g2B0.D;�/

L�.tg/

p
mn

cosh.�tg/
�g.m/�g.�n/

C
1

4�

X
a sing.

p
mn

Z 1
�1

L�.t/

cosh.�t/
�a.m; t/�a.�n; t/ dt:

6.5. Spectral large sieve and multiplicative sequences I

In this section we record a spectral large sieve inequality for coefficients of Maass forms
supported on sequences with multiplicative structure. This approach is originally due
to Blomer and Milićević [9, Theorem 13], and is crucial to avoiding the Ramanujan–
Petersson conjecture in their treatment of shifted convolution sums. We also record some
standard spectral tools in enough generality for our purpose.

Lemma 6.3. Suppose � is a character modulo D with �.�1/ D .�1/� and conductor
D?
� WD N or 4N , where N is odd and squarefree. Suppose c 2 N with D j c. Then for

a; b 2 N we have
jK.a; b; c; �/j � 16�.c/.a; b; c/1=2c1=2: (6.16)

Proof. This bound follows from [35, Corollary 9.14, Propositions 9.4, 9.7, 9.8].
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We now present the standard spectral large sieve.

Lemma 6.4. Let � be as in Lemma 6.3 with � D 0 and ¹amº be a sequence of complex
numbers. Suppose T � 1 and M � 1=2. Then each of the three quantitiesX

�<`�T
`�� .mod2/

�.`/
X

g2H`.D;�/

ˇ̌̌ X
M<m�2M

am
p
m�g.m/

ˇ̌̌2
;

X
g2B0.D;�/
jtg j�T

1

cosh.�tg/

ˇ̌̌ X
M<m�2M

am
p
m�g.˙m/

ˇ̌̌2
;

X
a sing.

Z T

�T

1

cosh.�t/

ˇ̌̌ X
M<m�2M

am
p
m�a.˙m; t/

ˇ̌̌2
is bounded, up to a constant depending on ", by�

T 2 C
M 1C"

D

� X
M<m�2M

jamj
2:

Proof. Observe that this result has been proved in [14, Proposition 4.7], except that the
bound that appears there is�

T 2 C .D?
�/
1=2M

1C"

D

� X
M<m�2M

jamj
2:

The appearance of the conductor in [14] is due to the general estimate for Kloosterman
sums in [35, Theorem 9.2]. Since the conductor is eitherD?

� D N or 4N with N odd and
squarefree, we can apply Lemma 6.3 to remove the factor of .D?

�/
1=2 in [14, (4.20)]. The

rest of the proof is verbatim the same as that of [14, Proposition 4.7].

Lemma 6.5. Let � be as in Lemma 6.3 with � D 0 and m 2 N. ThenX
jtg j�T

g2B0.D;�/

1

cosh.�tg/
j
p
m�g.m/j

2
�"

�
T 2 C

.D;m/1=2m1=2

D

�
.Tm/":

Proof. One starts with the “pre-Kuznetsov formula” of [51, Lemma 3]. The proof is then
verbatim that of [49, Lemma 2.4], except that in [49, (2.7.3), (2.7.10)], the Kloosterman
sum is S.m;m; c; �/, and an extra divisibility condition D j c is added to the summation.
One then appeals to Lemma 6.3 and modifies the last two displays in the proof accord-
ingly.

Blomer and Milićević prove the following result for Maass forms using a fourth
moment approach. The main feature is that it allows one to avoid invoking the Ramanujan
–Petersson conjecture (see Remark 6.1 below).
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Theorem 6.1 ([9, Theorem 13]). Let � be as in Lemma 6.3 with � D 0. Let r 2 N,
M;T � 1, and let ¹˛m0ºM�m0�2M be any sequence of complex numbers with j˛m0 j � 1.
Then X

jtg j�T
g2B0.D;�/

1

cosh.�tg/

ˇ̌̌ X
M�m0�2M
.m0;rD/D1

˛m0
p
rm0�g.rm

0/
ˇ̌̌2

�" .DrMT /".r;D/

�
T C

r1=2

D1=2

��
T C

M

D1=2

�
M: (6.17)

Proof. This is verbatim the proof of [9, Theorem 13] using (6.6) (for eigenvalues), (6.7),
(6.10)–(6.14), and Lemmas 6.4 and 6.5 whenever their principal character analogues are
used in the proof.

Remark 6.1. For the sake of argument, suppose that .r;D/D 1. One could naively apply
the Hecke relation (6.14) to the left side of (6.17), then estimate

p
r�g.r/ by (6.12), and

finally apply the usual spectral large sieve in Lemma 6.4 to obtainX
jtg j�T

g2B0.D;�/

1

cosh.�tg/

ˇ̌̌ X
M�m0�2M
.m0;rD/D1

˛m0
p
rm0�g.rm

0/
ˇ̌̌2

�" .DrMT /"r2�
�
T 2 C

M

D

�
M; (6.18)

which however is insufficient for our purposes. For the analogous case when g runs over
holomorphic forms this naive approach is sufficient because Deligne’s bound for

p
r�g.r/

is available.

6.6. Spectral large sieve and multiplicative sequences II

We now prove a version of the spectral large sieve inequality for coefficients of Eisenstein
series supported on a sequences with multiplicative structure. This will be a generalisa-
tion of [9, (5.5)] for a more general nebentypus. The proof uses ideas from the explicit
computations in [22, 47] and [7, pp. 76–80]. The machinery set out for Eisenstein series
in [34, 66] will be useful throughout the proof.

We set up the notation and preliminary results required for the proof of Lemma 6.7.
Let D 2 N. A full set of inequivalent cusps of �0.D/ is given by²

a WD
1

w
D

1

uf
W f jD; u 2 Uf

³
; (6.19)

where for each f jD, Uf is a set of integers coprime to f representing each reduced
residue class modulo zf WD .f; D=f / exactly once. Moreover, one may always further
choose a representative u .mod zf / such that .u; D/ D 1 by adding a suitable multiple
of zf (cf. [34, Corollary 3.2]). Note that with these choices of representatives u we have
u
f
��

1
uf

.
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Set

D0 D
D

f
; D00 D

D0

.f;D0/
; w0 D u: (6.20)

The stabiliser group of an arbitrary cusp a D 1
w

[34, Proposition 3.3] is given by

�a D ¹˙�
t
a W t 2 Zº; where � ta D

�
1 � wD00t D00t

�w2D00t 1C wD00t

�
;

and one can take the choice of scaling matrix

�a D

 p
D00 0

w
p
D00 1=

p
D00

!
: (6.21)

Observe that [34, Lemma 3.5] (expanding around the cusp at 1=D � 1) asserts that

��1a ��1=D WD

²�
a=
p
D00 b=

p
D00

c
p
D00 d

p
D00

�
W

�
a b

c d

�
2 SL2.Z/ and c � �wa .mod D/

³
:

(6.22)
In particular, [66, (6.4), (6.5)] asserts

�1n�
�1
a � WD ıfDD�1 [

²�
� �

c
p
D00 d

p
D00

�
W

c > 0; .c; d/ D 1; c D f ; .;D0/ D 1; d � �u .mod .f;D0//
³
; (6.23)

where the union is disjoint.
We recall a useful lemma giving necessary and sufficient conditions for a cusp to be

singular.

Lemma 6.6 ([66, Lemma 5.4]). Let � be a Dirichlet character moduloD and let aD 1
uf

with u jD and .u; D/ D 1. Then a is singular relative to � if and only if � is periodic
modulo D=.f; D=f / D Œf; D=f �, equivalently, the primitive character inducing � has
modulus dividing D=.f;D=f /.

We recall a decomposition for � given in [66, p. 17]. There exist integers f0 and D00
such that

f0 jf and D00 jD
0 with Œf;D0� WD f0D

0
0 and .f0;D00/ D 1;

such that
� WD �.D

0
0
/�.f0/; (6.24)

where �.D
0
0
/ and �.f0/ are characters modulo D00 and f0 respectively. The choices for f0

andD00 may not be unique. This decomposition will be useful in the proof of Lemma 6.7,
but will not feature in the final statement.

Given a D 1=w and � 2 ��1a � (written as in (6.22)), the argument in [66, p. 19]
proves that x�.�a�/ depends only on the coset �1�. Thus x�.�a�/ depends only on the



The twisted second moment of modular half-integral weight L-functions 43

data contained in (6.23). In particular, [66, (6.6)] asserts that

x�.�a�/ D �.a/ D �
.D0
0
/.�u/�.f0/. xd/: (6.25)

We recall the definition of the Gauss sum in (4.15). Let ‰ be a Dirichlet character
modulo c and c j s. Then for n 2 N we have the Gauss sum

G‰.nI s/ WD
X�

d .mod s/

‰.d/e

�
nd

s

�
; (6.26)

where the superscript � denotes the condition .d; s/ D 1. Without loss of generality one
can replace ‰ with its underlying primitive character ‰? in (6.26).

Given a cusp a D 1
uf

, m 2 N, t 2 R, and characters ‰1 and ‰2 whose moduli divide
D=f and f respectively, consider the series

�.t; mI‰1; ‰2; f / WD
X
>0

.;D=f /D1

‰1./

1C2it
G‰2.mI f /; (6.27)

Note that (6.27) also satisfies

�.t; mI‰1; ‰2; f / D �.t; mI‰?1 ; ‰
?
2 ; f /: (6.28)

For technical convenience we restrict our attention to even characters in the next result.

Lemma 6.7. SupposeD 2 N and � is an even character moduloD such that all cusps a

of �0.D/ are singular with respect to �, and let �a.m; t/ be as in (6.4). For a given r 2N,
let ¹amº be a finite sequence of complex numbers supported only on integers m D rm0

with .r;m0/ D 1. ThenX
a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
� 16�.D/4�.r/4

X
d j.r;D/

X
a

ˇ̌̌ X
m0

.m0;r/D1

arm0
p
dm0�a.dm

0; t /
ˇ̌̌2
; (6.29)

Proof. Without loss of generality we will work with a complete set of inequivalent cusps
given in (6.19) where each .u; D/ D 1 (cf. (6.1)). Combining [51, (12)–(14)], (6.20)–
(6.27) and [50, (13.14.31)] we obtainp

jmj�a.m; t/ D
jmjit�1=2Cit

�.1=2C i t/

�
.f;D0/

Df

�1=2Cit X
>0

.;D=f /D1

�.D
0
0
/.�u/

1C2it

�

X
0�d<f
.d;f /D1

d��u .mod zf /

�.f0/.d/e

�
md

f

�
; (6.30)

where zf WD .f;D=f /. Detecting the congruence in (6.30) with multiplicative characters
we obtain
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p
jmj�a.m; t/ D

jmjit�1=2Cit

�.1=2C i t/

�
.f;D0/

Df

�1=2Cit
�

1

�. zf /

X
 .mod zf /

�.D
0
0
/ .�u/�.t; mI �.D

0
0
/;  �.f0/; f /: (6.31)

All cusps are singular by hypothesis. Summing (6.31) over all m, squaring, and then
summing over all the cusps we obtainX

a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
D

�

j�.1=2C i t/j2

X
f jD

zf

Df�. zf /2

�

X
u2Uf

j�.D
0
0
/.�u/j2

ˇ̌̌ X
 .mod zf /

 .�u/
X
m

amjmj
it�.t; mI �.D

0
0
/;  �.f0/; f /

ˇ̌̌2
;

where Uf represents a complete system of residues coprime to zf and also coprime toD.

We may remove the j�.D
0
0
/.�u/j2 factor since j�.D

0
0
/.�u/jD 1. Applying Parseval’s iden-

tity above yieldsX
a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
D

�

j�.1=2C i t/j2

X
f jD

zf

Df�. zf /

�

X
 .mod zf /

ˇ̌̌X
m

amjmj
it�.t; mI �.D

0
0
/;  �.f0/; f /

ˇ̌̌2
: (6.32)

Next we set
. �.D

0
0
//� DW �1 and . �.f0//� DW �2;

where �i is primitive of modulus qi . A necessary condition on �1 and �2 is that �1�2 � �,
where � means that both sides are induced by the same primitive character. Recalling
(6.28) and moving the sum on  to the inside of (6.32) givesX

a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
D

�

j�.1=2C i t/j2

X
f jD

zf

Df�. zf /

X
q1jD=f

X
q2jf

X0

�1 .modq1/
�2 .modq2/
�1�2��

ˇ̌̌X
m

amjmj
it�.t; mI�1; �2; f /

ˇ̌̌2

�

X
 .mod zf /

ı.�; �1; �2;  /; (6.33)

where 0 denotes summation over primitive characters only, and

ı.�; �1; �2;  / WD

´
1 if . �.D

0
0
//� D �1 and . �.f0//� D �2;

0 otherwise:

The argument in [66, pp. 21–22] proves thatX
 .mod zf /

ı.�; �1; �2;  / D 1;
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under the conditions in the second, third and fourth summations in (6.33). ThusX
a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
D

�

j�.1=2C i t/j2

�

X
f jD

Qf

Df�. Qf /

X
q1jD=f

X
q2jf

X0

�1 .modq1/
�2 .modq2/
�1�2��

ˇ̌̌X
m

amjmj
it�.t; mI�1; �2; f /

ˇ̌̌2
: (6.34)

For a given r 2 N, recall that ¹amº is supported on integers m D rm0 such that
.r; m0/ D 1. Our goal is now to write �.t; mI �1; �2I f / in terms of �.dm0I �1; �2I �/

for d j .r;D/. For a given f and  we write

f D q2f
0f 00; f 0 j q12 ; .f 00; q2/ D 1; (6.35)

and
 D  0 00;  0 j q12 ; . 00; q2/ D 1: (6.36)

The Chinese remainder theorem, orthogonality, [1, p. 165 and Theorem 8.19], and the fact
that �2 is primitive are used in the following computation:

G�2.mI f / D G�2.mI 
0 00q2f

0f 00/

D �2.
00f 00/G�2.mI q2f

0 0/r.mI  00f 00/

D ıf 0 0jmf
0 0�2.

00f 00/G�2

�
m

f 0 0
I q2

�
r.mI  00f 00/;

D ıf 0 0jmf
0 0�2.

00f 00/�2

�
m

f 0 0

�
G�2.1I q2/r.mI 

00f 00/: (6.37)

where r.mI c/ WD G1c .m; c/ (Ramanujan sum) and ıf 0 0jm D 1 is the indicator function
for f 0 0 jm. Let

r D r 0q2r
0.q2/ and m0 D m0q2m

0.q2/

be such that
r 0q2 ; m

0
q2
j q12 and .r 0.q2/m0.q2/; q2/ D 1:

In this notation we see that (6.37) is 0 unless

f 0 0 D r 0q2m
0
q2
: (6.38)

Recalling (6.27) and combining (6.35)–(6.38) we obtain (after relabelling  00 as  ),

�.t; rm0I�1; �2; f / D ıf 0jmf
0ı.r 0q2m

0
q2
=f 0;D=f /D1

�
f 0

r 0q2m
0
q2

�2it
�1

�
r 0q2m

0
q2

f 0

�
�2.f

00/

� �2.r
0.q2/m0.q2//G�2.1I q2/

X
>0

.;D=f /D1
.;q2/D1

�1�2./

1C2it
r.mI f 00/: (6.39)
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A computation using (6.39) and [1, Theorem 8.6] gives

�.t; m; �1; �2If / D
ıf 0jmf

0ı.r 0q2m
0
q2
=f 0;D=f /D1�2.f

00/�2.r
0.q2/m0.q2//G�2.1; q2/

L.D/.�1�2; 1C 2it/

�R.t; mI�1�2; f
00/��1�2.m/

�
f 0

r 0q2m
0
q2

�2it
�1

�
r 0q2m

0
q2

f 0

�
; (6.40)

where the superscript .D/ denotes that the local factors at the primes dividing D have
been removed and

R.t; mI�1�2; f
00/ WD

X
 jD1

.;D=f /D1
.;q2/D1

�1�2./

1C2it
r.mI f 00/ (6.41)

and

��1�2.m/ WD
X
ajm

.a;D/D1

�1�2.a/

a2it
:

We now consider (6.41). Since  jD1 and .; D=f / D .; q2/ D 1, we must have
 j .f 00/1. We apply [1, Theorem 8.7] and write (6.41) as

R.t; mI�1�2; f
00/ WD

Y
p˛ jjf 00

p˛ jjD

X
ˇ�0

�1�2.p
ˇ /

pˇ.1C2it/
r.pvp.m/Ip˛Cˇ /: (6.42)

We refine the factorisation in (6.35) to

f 0 D f 0r f
0.r/; f 00 D f 00r f

00.r/; where f 0r ; f
00
r j r

1; .f 0.r/f 00.r/; r/ D 1:

Since .r;m0/ D 1 and f 0 j rm0, it follows that f 0r D .f
0; r/. Recalling (6.40), we obtain

�.t; rm0; �1; �2If /

D

�
ıf 0r jrf

0
r ı.r 0q2=f

0
r ;D=f /D1

�2.r
0.q2//�2.f

00
r /R.t; r I�1�2; f

00
r /

� ��1�2.r/

�
f 0r
r 0q2

�2it
�1

�
r 0q2
f 0r

��
�

�
ıf 0.r/jm0f

0.r/ı.m0q2=f
0.r/;D=f /D1�2.m

0.q2//�2.f
00.r//R.t; m0I�1�2; f

00.r//

� ��1�2.m
0/

�
f 0.r/

m0q2

�2it
�1

�
m0q2
f 0.r/

��
G�2.1; q2/

L.D/.�1�2; 1C 2it/
: (6.43)

We now define

yr WD

�
f 00

.f 00; 2/
; r

�
and zyr WD

Y
p˛ jjf 00r

˛�vp.r/C1

p˛:
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An explicit computation using (6.42) and [1, Theorems 8.6 and 8.7] shows that
R.yr I�1�2; zyr / ¤ 0. In particular,ˇ̌̌̌

R.t; r I�1�2; f
00
r /

R.t; yr I�1�2; zyr /

ˇ̌̌̌
�

Y
pj.r;D/

.vp.r/C 1/
1C 1=p

�.p/
� 4�.D/�.r/; (6.44)

where

�.p/ WD

´
1=2 if p D 2;

1 � 2=p if p > 2:

Observe that .f 0r ; yr / D 1 and f 0r ; yr j r and f 0r ; yr jD. Thus f 0r yr j .r;D/. Furthermore,
zyr jf

00
r , .f 0r yr ; m

0/ D 1 and ��1�2.f
0
r yr / D 1. Using (6.43) and (6.42) we obtain

�.t; rm0I�1; �2; f / D ıf 0r jrı.r 0q2=f
0
r ;D=f /D1

�2

�
r 0.q2/

yr

�
�2

�
f 00r
zyr

�
R.t; r I�1�2; f

00
r /

R.t; f 0r yr I�1�2; zyr /

� ��1�2.r/

�
f 0r
r 0q2

�2it
�1

�
r 0q2
f 0r

�
�.t; f 0r yrm

0
I�1; �2; q2f

0
zyrf

00.r//: (6.45)

Combining (6.44), (6.45) and j��1�2.r/j � �.r/ we obtainˇ̌̌X
m

amjmj
it�.t; mI�1; �2; f /

ˇ̌̌2
� 16�.D/2�.r/4

X
d j.r;Q/

ˇ̌̌ X
m0

.m0;r/D1

arm0 jm
0
j
it�.t; dm0I�1; �2; q2f

0
zyrf

00.r//
ˇ̌̌2
; (6.46)

where the summation over d was introduced by positivity.
Given f and q2 (and r as above) such that q2 j f jD, the integer F .q2; f; r/ WD

q2f
0 zyrf

00.r/ satisfies
q2 jF .q2; f; r/ jf jD: (6.47)

Applying (6.46) to each summand of the right side of (6.34) yieldsX
a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
� 16�.D/2�.r/4

X
d j.r;D/

�

j�.1=2C i t/j2

�

X
f jD

X
q2jf

X
q1jD=f

zf

Df�. zf /

X0

�1 .modq1/
�2 .modq2/
�1�2��

ˇ̌̌ X
m0

.m0;r/D1

arm0 jm
0
j
it�.t; dm0I�1; �2;F .q2; f; r//

ˇ̌̌2
:

(6.48)

We now relate the right side of (6.48) to a sum over all cusps. Observe that

zf

Df�. zf /
� �.D/

DF .q2; f; r/
DF .q2; f; r/�.DF .q2; f; r//

; (6.49)
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so (6.48) becomesX
a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
� 16�.D/3�.r/4

X
d j.r;D/

�

j�.1=2C i t/j2

X
f jD

X
q2jf

X
q1jD=f

DF .q2; f; r/
DF .q2; f; r/�.DF .q2; f; r//

�

X0

�1 .modq1/
�2 .modq2/
�1�2��

ˇ̌̌ X
m0

.m0;r/D1

arm0 jm
0
j
it�.t; dm0I�1; �2;F .q2; f; r//

ˇ̌̌2
: (6.50)

Recalling (6.47), by positivity we obtainX
a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
� 16�.D/3�.r/4

X
d j.r;D/

�

j�.1=2C i t/j2

X
f jD

X
q2jf

X
F

q2jF jf

X
q1jD=f

zF

DF �. zF /

�

X0

�1 .modq1/
�2 .modq2/
�1�2��

ˇ̌̌ X
m0

.m0;r/D1

arm0 jm
0
j
it�.t; dm0I�1; �2;F /

ˇ̌̌2
; (6.51)

where zF D .F ; D=F /. By positivity we may extend the sum over q1 in (6.51) to all q1
satisfying q1 jD=F . Then interchanging the summations over f; q2 and F we obtainX

a

ˇ̌̌X
m

am
p
jmj�a.m; t/

ˇ̌̌2
� 16�.D/3�.r/4

X
d j.r;D/

�

j�.1=2C i t/j2

�

X
F jD

X
q2jF

X
F jf jD

zF

DF �. zF /

X
q1jD=F

X0

�1 .modq1/
�2 .modq2/
�1�2��

ˇ̌̌ X
m0

.m0;r/D1

arm0 jm
0
j
it�.t; dm0I�1; �2;F /

ˇ̌̌2
:

(6.52)

Now observe that all summands on the right side of (6.52) are completely independent
of f . Thus we can remove the summation on f at the cost of an extra �.D/ factor. Then
applying (6.34) to each summand of the d summation yields (6.29).

7. Spectral methods and shifted convolution sums

We choose a large parameter
C WD N 1000; (7.1)

and throughout this section make the general assumption that

h � N � 20M:
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For `1; `2; h 2 Z�1, recall the definitions (5.32) and (5.33):

D.`1; `2; h;N;M/ D
X

`1n�`2mDh

a.m/a.n/V1

�
`2m

M

�
V2

�
`1n

N

�
;

�.`1; `2; d;N;M/ D
X
r�1

D.`1; `2; rd;N;M/;

where a.n/ are the Fourier coefficients (normalised as in (1.3)) of f 2 �k.4/ and k WD
1=2C 2j , j 2 N . Without loss of generality we can assume that

1 � `1; `2 � 2N; (7.2)

otherwise D.`1; `2; h; N;M/ vanishes trivially. Slightly more generally than in Section
5.2 we assume

V1;2 are supported in Œ1; 2� and V .j /1;2 �j;" C
j":

Proof of Proposition 5.2. The argument here is similar to the proof of [9, Proposition 8].
Our exposition will be sparse, sketching only the details unique to our situation. We refer
the reader to [9, Sections 7 and 8] for more details. Let W be a smooth function with
bounded derivatives such that

W.x/ � 1 for 1 � x � 2 and supp.W / � Œ1=2; 3�:

After attaching a smooth redundant weight function W we obtain

D.`1; `2; h;N;M/ D
X
m;n

`1n�`2mDh

a.m/a.n/V1

�
`2m

M

�
V2

�
`2mC h

N

�
W

�
`1n � h

M

�

D

Z 1
�1

V
�
2 .z/e

�
zh

N

�
Dz.`1; `2; h;N;M/ dz;

where V �2 denotes the Fourier transform,

Dz.`1; `2; h;N;M/ WD
X
m;n

`1n�`2mDh

a.m/a.n/Vz

�
`2m

M

�
W

�
`1n � h

M

�
;

and
Vz.x/ WD V1.x/e.zxM=N/:

We truncate the z-integral at jzj � C " with a small error, say O.C�100/.
With the notation as in [9, Lemma 19], we make the choice of parameters

Q WD C and ı WD C�1:

Let w0 be a fixed smooth function with support in Œ1; 2� and let

w.c/ D

´
w0.c=C / if 16`1`2 j c;

0 otherwise:

We see that
ƒ� C 2.`1`2/

�1�" (7.3)
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(cf. [9, Lemma 19]). Applying Jutila’s circle method [9, Lemma 19], (4.4) and arguing as
in [9, pp. 484–485] we obtain

Dz.`1; `2; h;N;M/ D
1

2ı

Z ı

�ı

Dz;�.`1; `2; h;N;M/ d�CO.C�2=5/; (7.4)

where

Dz;�.`1; `2; h;N;M/

WD
1

ƒ

X
16`1`2jc

w0

�
c

C

� X
d .mod c/
.c;d/D1

X
m;n

a.m/a.n/e

�
d

c
.`1n � `2m � h/

�

�W�M

�
`1n � h

M

�
Vz;�M

�
`2m

M

�
; (7.5)

where

Vz;�.x/ WD Vz.x/e.��x/ D V1.x/e

�
x

�
z
M

N
� �

��
and W�.x/ WD W.x/e.�x/:

We stress that only Cauchy–Schwarz and (4.4) were used to obtain the error term ofC�2=5

in (7.4), not (4.9). Since j�j � C�1 D N�1000 (in particular �� M�1), the functions
Vz;�M and W�M are well behaved. In particular,

W
.j /
�M � 1 and V

.j /
z;�M � C j" uniformly in jzj � C j":

Observe that Vz;�M and W�M have support in Œ1; 2� and Œ1=2; 3� respectively.
Here we will see that a Voronoi summation inm;n variables of (7.5) leads to a twist by

a quadratic character depending on `1 and `2. Applying Lemma 4.1 to the m summation
in (7.5) we obtainX

m

a.m/e

�
�
dm

c=`2

�
Vz;�M

�
`2m

M

�
D
M

c

X
m

a.m/e

�
`2m xd

c

�
�� .2/ VVz;�M

�
`2mM

c2

�
; (7.6)

where d xd � 1 .mod c/, zd is any integer such that zd � d .mod c/ and

2 D

 
�zd b2
c=`2 X2

!
2 �0.c=`2/: (7.7)

Applying Lemma 4.1 to the n summation in (7.5) we obtainX
n

a.n/e

�
dn

c=`1

�
W�M

�
`1n � h

M

�
D
M

c

X
n

a.n/�� .1/e

�
�
`1n xd

c

�
W ��M

�
h`1n

c2
;
M`1n

c2

�
; (7.8)
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where

1 D

�
zd b1

c=`1 X1

�
2 �0.c=`1/; (7.9)

and

W ��M .z; w/ WD 2�i
k

Z 1
0

W�M .y/Jk�1.4�
p
yw C z/ dy:

It follows from (4.1), (4.2), (7.7), and (7.9) that

�� .1/�� .2/ D

�
c=`1

X1

�
"X1

�
c=`2

X2

�
"X2 D �i

�
4`1`2

d

�
(7.10)

for d such that .d; c/ D 1. Note that in (7.10) we have used the feature that the Xi are
defined via the determinants of the i for i D 1; 2. Let

� WD �`1`2 D

�
4`1`2

�

�
:

Observe that � is an even character modulo 4`1`2 (in particular modulo 16`1`2). Com-
bining (7.5)–(7.10) and [9, Lemma 17] we obtain

Dz;�.`1; `2; h;N;M/ WD �
M 2i

ƒC

X
16`1`2jc

w1

�
c

C

�
1

c

X
m;n

a.m/a.n/K.`1n� `2m;h; c; �/

�

X
˙

W˙

�
h`1n

c2
;
M`1n

c2

�
e
�
˙ 2

p
h`1n

c

�
VVz;�M

�
`2m

c2=M

�
CO.C�A/; (7.11)

where
w1.x/ D w0.x/=x;

and W˙ are as in [9, Lemma 17]. By [9, (6.15)] and the fact that VVz;�M is a Schwartz
class function (cf. (4.21)) we can restrict to

`1n � N0 WD C
2C"N=M 2 and `2m �M0 WD C

2C"=M; (7.12)

with negligible error. For N � N0, M �M0 and K > 0, we will restrict the right side of
(7.11) to subsums

n � N ; m �M; j`1n � `2mj �K:

Here x � X denotes X � x � 2X . The arising subsums are then split into three sums
†C; †0 and †� according to

†C W `1n > `2m; †0 W `1n D `2m; †� W `1n < `2m:

7.1. Treatment of †0

Let �? be the primitive character of conductor C ?� j 4`1`2 inducing �1c modulo c. Then
by [48, Lemma 3.1.3] we have

S.0; h; c; �/ D G�?.1IC
?
� /

X
d>0

d j.h;c=C?� /

d�

�
c

dC ?�

�
�?
�

c

dC ?�

�
�?
�
h

d

�
:
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Thus
jS.0; h; c; �/j � jC ?� j

1=2�.h/.h; c/� .`1`2/
1=2�.h/.h; c/: (7.13)

A trivial estimate using (7.13), Cauchy–Schwarz, (4.4), (7.3), and (7.12) yields

†0 �
M 2�.h/.`1`2/

1=2

ƒC 1�"

X
C�c�2C

.h; c/

c

X
`1n�N ; `2m�M

`1nD`2m

ja.m/a.n/j

�
M 2�.h/2.`1`2/

1=2

ƒC 1�"

� X
m�M

ja.m/j2
�1=2� X

n�N

ja.n/j2
�1=2

�
M 2�.h/2.`1`2/

1=2.N0M0/
1=2

ƒC 1�"
�

.`1`2/
3=2C".NM/1=2

C 1�"
� C�1=2;

where the last equality follows from (7.1) and (7.2).

7.2. Spectral treatment of †C

Now we consider

†C D �
iM 2

ƒC

X
b>0
jbj�K

X
`1n�`2mDb

`1n�N ; `2m�M

a.m/a.n/
X

16`1`2jc

K.b; h; c; �/

c
ˆ

�
4�

p
jbjh

c

�
;

(7.14)

where ˆ is defined in [9, p. 487] (with a
P
˙ inserted into their definition). In view of the

transforms occurring in the Kuznetsov formula, define

JC2it .x/ WD �i
J2it .x/ � J�2it .x/

sinh.�t/
and J�2it .x/ WD 4 cosh.�t/K2it .x/:

Let ẑ , P̂ , � be defined as in [9, p. 487]. Also define

TC WD C
"

�
1C

�
KN

C 2

�1=4
C

�
MN

C 2

�1=2�
and Th WD C

"

�
1C

�
KN

C 2

�1=4�
:

By the argument in [9, p. 487], the transforms ẑ .t/ and P̂ .`/ are negligible (cf. [9,
Lemma 16]) unless

jt j � TC and `� Th

respectively. Applying Lemma 6.2 (recalling that � is an even Dirichlet character) to the
summation over c in (7.14) and then truncating the appropriate summations and integra-
tions using the above remarks we obtain

†C D HC.h/CMC.h/C EC.h/CO.C
�A/;

where the terms on the right side correspond to the holomorphic, Maass and Eisenstein
components of the spectrum. They are
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HC.h/ WD �
iM 2

ƒC

Z 1
0

X
2�`�Th
`�0 .mod2/

X
g2H`.16`1`2;�/

4i`�.`/J`�1.x/
p
h�g.h/

�

X
b>0
jbj�K

w1

�
4�
p
jbjh

Cx

�p
jbj�g.b/C.b; h; x/

dx

x
; (7.15)

MC.h/ WD �
2iM 2

ƒC

Z 1
0

X
g2B0.16`1`2;�/
jtg j�TC

JC2itg .x/

cosh.�tg/

p
h�g.h/

�

X
b>0
jbj�K

w1

�
4�
p
jbjh

Cx

�p
jbj�g.b/C.b; h; x/

dx

x
; (7.16)

EC.h/ WD �
2iM 2

ƒC

Z 1
0

1

4�

X
a

Z TC

�TC

JC2it .x/

cosh.�t/

p
h�a.h; t/

�

X
b>0
jbj�K

w1

�
4�
p
jbjh

Cx

�p
jbj�a.b; t/dtC.b; h; x/

dx

x
; (7.17)

where

C.b; h; x/ WD
X

`1n�`2mDb
`1n�N ; `2m�M

a.m/a.n/ VVz;�M

�
x2`2mM

.4�/2jbjh

�
�

X
˙

W˙

�
x2`1n

.4�/2jbj
;
x2`1nM

.4�/2jbjh

�
�˙x

�
`2m

jbj

�
;

and

�˙x .y/ WD exp
�
˙ix

p
1C y

�
v

�
y

M=K

�
;

and v a redundant smooth weight function of compact support on Œ1=4; 3� that is con-
stantly 1 on Œ1=2; 2�.

7.3. Spectral treatment of †�

Now consider

†� D �
iM 2

ƒC

X
b<0
jbj�K

X
`1n�`2mDb

`1n�N ; `2m�M

a.m/a.n/
X

16`1`2jc

K.b; h; c; �/

c
ˆ

�
4�

p
jbjh

c

�
:

Define

T� WD C
"

�
1C

�
MN

C 2

�1=2�
:
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Applying an argument similar to [9, pp. 488–489] using Lemma 6.2 we obtain

†� DM�.h/C E�.h/CO.C
�A/;

where

M�.h/ D �
2iM 2

ƒC

Z 1
0

Z �CiC "T�

��iC "T�

X
g2B0.16`1`2;�/
jtg j�T�

bJ�2itg .s/ ph�g.h/cosh.�tg/
w1

�p
h

Cx

�

�

X
b<0
jbj�K

.4�
p
jbjx/�s

p
jbj�g.b/�.b; h; x/

ds

2�i

dx

x
;

�.b; h; x/ D
X

`1n�`2mDb
`1n�N ;`2m�M

a.m/a.n/ VVz;�M

�
x2`2mM

h

�
�

X
˙

W˙

�
x2`1n;

x2`1nM

h

�
e
�
˙2x

p
`1n

�
;

and � D 7=32C ". An analogous formula holds for the Eisenstein contribution E�.h/.

7.4. Summary of setup

By the above discussion it suffices to estimate the right side of

D.`1; `2; h;N;M/

D
1

2ı

Z ı

�ı

Z C "

�C "
V
�
2 .z/e

�
zh

N

� X
N�N0

X
M�M0
M�N

X
K�N0
K�N

.HC.h/CMC.h/CEC.h// dz d�

C
1

2ı

Z ı

�ı

Z C "

�C "
V
�
2 .z/e

�
zh

N

� X
N�M0

X
M�M0

X
K�M0

.M�.h/CE�.h// dz d�CO.C
�1=3/;

(7.18)

where N , M and K run over numbers � 1 of the form N02
�� or M02

�� , � 2 N.

7.5. Shifted convolution sums on average

We now turn our attention to the averaged convolution sum

�.`1; `2; d;N;M/ D
X
r

D.`1; `2; rd;N;M/:

Let

ˇ WD lcm.16; `1; `2; d / and B WD ¹n 2 N W p jn) p jˇ for all primes pº:
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Observe that D.`1; `2; rd; N; M/ vanishes unless r � N=d . Recall (7.18). To begin,
consider the decompositionX

r�N=d

e

�
zrd

N

�
HC.rd/ D

X
r2�N=d
r22B

X
r1�N=.dr2/
.r1;ˇ/D1

e

�
zr1r2d

N

�
HC.r1r2d/;

where HC was defined in (7.15). Observe that the range of integration for x in (7.15) is

x � XC WD
p

KN=C :

We follow verbatim the Mellin inversion argument of [9, pp. 490–491] that separates the
variables scattered throughout the various weight functions. In that argument,

S WD C "
�
1C

XCM
p

KN

�
:

This yieldsX
r1�N=.dr2/

e

�
zr1r2d

N

�
HC.r1r2d/�

C "M 2

ƒC

K1=4

X
1=2
C N 1=4

S.„H
1;C„

H
2;C/

1=2; (7.19)

where

„H
1;C WD max

ju4j�C "

X
0<`�Th
`�0 .mod2/

�.`/

�

X
g2H`.16`1`2;�/

ˇ̌̌̌ X
r1�N=.dr2/
.r1;ˇ/D1

e

�
zr1r2d

N

�
r
2"Ciu4
1

p
r1r2d�g.r1r2d/

ˇ̌̌̌2
;

and

„H
2;C D max

ju2j�C
"

ju1j;ju3j�S
x�XC

X
0<`�Th
`�0 .mod2/

jJ`�1.x/j
2�.`/

X
g2H`.4`1`2;�/

ˇ̌̌ X
jbj�K

p
jbj�g.b/

�.b/
ˇ̌̌2
;

with

�.b/ D

�
jbj

K

�1=4C"Ciu3 X
`1n�`2mDb

`1n�N ; `2m�M

�
`1n

N

��1=4Ciu2�`2m
M

��"Ciu1
a.m/a.n/:

The same analysis works mutatis mutandis for the Eisenstein and Maass spectrum, giving
analogous expressions for „E

i;C and „M
i;C for i D 1; 2. Note that the breakdown of the

Archimedean weight functions in the Cauchy–Schwarz inequality in x and g is analogous:
„M
1;C has a factor of 1=cosh.�tg/ and „M

2;C has a factor jJC2itg .x/j
2=cosh.�tg/.
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We now bound the various „?i;C for i D 1; 2. Applying the argument at the beginning
of [9, p. 492] using (4.4) and (4.5) we obtainX

b

j�.b/j2 � C "
N M

`1`2
; (7.20)

uniformly in u1; u2 and u3. Also by [9, p. 492] we have

J`�1.x/� C "x�1=2; (7.21)

uniformly for all x > 0 and 1 � ` � Th. Thus by Lemma 6.4, (7.20) and (7.21) we have

„H
2;C �

C "

XC

�
T 2
h C

K

`1`2

�
N M

`1`2
: (7.22)

Similarly,

j„E
2;Cj C j„

M
2;Cj �

C "

XC

�
T 2
C C

K

`1`2

�
N M

`1`2
: (7.23)

By (6.15) and the fact that integral weight Hecke cusp forms satisfy Deligne’s bound (see
also Remark 6.1) we have

„H
1;C � max

ju4j�C "
C "

X
ıj16`1`2

X
2�`�Th
`�0 .mod2/

�.`/

�

X
g2H`.16`1`2;�/

ˇ̌̌ X
r1�N=.dr2/
.r1;ˇ/D1

˛.r1/
p
r1ı�g.r1ı/

ˇ̌̌2
; (7.24)

where

˛.r1/ D ˛r2d;u4.r1/ D e

�
zr1r2d

N

�
r
2"Ciu4
1 :

Applying Lemma 6.4 to the right side of (7.24) yields

„H
1;C � C "

X
ıj16`1`2

�
T 2
h C

Nı

dr2`1`2

�
N

dr2
� C "

�
T 2
h C

N

dr2

�
N

dr2
: (7.25)

Observe that all cusps of �0.16`1`2/ are singular relative to � by Lemma 6.6 (i.e. the
conductor of � is of the formZ or 4Z whereZ is odd and squarefree since it is a quadratic
character). Thus we can apply Lemmas 6.7 and 6.4 to similarly obtain

„E
1;C � C "

�
T 2
C C

N

dr2

�
N

dr2
: (7.26)

Applying Theorem 6.1 we obtain

„M
1;C D max

ju4j�C "

X
jtg j�TC

g2B0.16`1`2;�/

1

cosh.�tg/

ˇ̌̌ X
r1�N=.dr2/
.r1;ˇ/D1

˛.r1/
p
r1r2d�g.r1r2d/

ˇ̌̌2

� C ".`1`2; r2d/

�
TC C

.r2d/
1=2

.`1`2/1=2

��
TC C

N

dr2.`1`2/1=2

�
N

dr2
: (7.27)
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Combining (7.22), (7.23), (7.25), (7.26), (7.27), we obtain

.j„H
1;Cj C j„

M
1;Cj C j„

E
1;Cj/.j„

H
2;Cj C j„

M
2;Cj C j„

E
2;Cj/�

N

dr2

.`1`2; r2d/N M

`1`2

C "

XC

�

��
TC C

.r2d/
1=2

.`1`2/1=2

��
TC C

N

dr2.`1`2/1=2

�
C

N

dr2

��
T 2
C C

K

`1`2

�
: (7.28)

Inserting (7.28) into (7.19) (recalling that (7.19) has both M and E analogues), the brute
force computation in [9, pp. 493–494] guarantees thatX
r1�N=.dr2/
.r1;ˇ/D1

e

�
zr1r2d

N

��
HC.r1r2d/CMC.r1r2d/C EC.r1r2d/

�

� C ".`1`2; d /
1=2

�
N

d1=2
C
N 5=4M 1=4

d.`1`2/1=4
C
N 3=4M 1=4

d1=4
C

NM 1=2

d3=4.`1`2/1=2
C
NM 1=2

d

�
:

(7.29)

One can follow the argument of [9, pp. 494–495] appealing to Lemmas 6.4 and 6.7,
as well as (6.18), whenever their principal character analogues are used, to conclude thatX

r1�N=.dr2/
.r1;ˇ/D1

e

�
zr1r2d

N

�
.M�.r1r2d/C E�.r1r2d//

� C "d � .`1`2; d /
1=2

�
M 1=4N 3=4

d1=2
C
M 3=4N 3=4

d

�
: (7.30)

Summing (7.29) and (7.30) over r2 2 B using Rankin’s trick, and using � � 1=4, we
obtain Proposition 5.2.

8. Critical range and ˛n2 modulo 1

Proof of Theorem 1.2. Recall that

1 �M � p=2; p1=2�1=10 � N � p1=2C1=10; (8.1)

and consider X
N�n1;n2�2N

ˇ̌̌ X
M�m�2M

S.m; cn1; p/S.m; cn2; p/
ˇ̌̌

for c 2 F�p . The estimates we obtain will not depend on c. Substituting (4.24) we obtain

p
X

N�n1;n2�2N

ˇ̌̌̌ X
M�m�2M

X
u;v .modp/

u2�cmn1 .modp/
v2�cmn2 .modp/

e

�
2.uC v/

p

�ˇ̌̌̌
: (8.2)



A. Dunn, A. Zaharescu 58

Let R WD R.M;N; p/ denote the multiple summation in (8.2), excluding the factor of p.
We write

R WD R1 CR�1

where Ri restricts the summation variables in the definition of R to�
n1

p

�
D

�
n2

p

�
D

�
cm

p

�
D i: (8.3)

We first consider R1. For ` 2 Fp , define

A`;c WD
X

M�m�2M

X
t2�cm.modp/

e

�
2t`

p

�
;

and

S` WD ¹.u; v/ 2 .F
�
p /

2
W .u2; v2/ .mod p/ 2 ŒN; 2N �� ŒN; 2N � and uC v � ` .mod p/º:

(8.4)
Applying the triangle inequality we obtain

R1 D
1

2

X
N�n1;n2�2N

ˇ̌̌̌ X
M�m�2M

X
t .modp/
t2�cm

X
u;v .modp/

u2�n1 .modp/
v2�n2 .modp/

e

�
2t.uC v/

p

�ˇ̌̌̌

�
1

2

X
` .modp/

jA`;c j jS`j: (8.5)

Observe that the contribution from ` � 0 .mod p/ to the right hand side of (8.5) is

jA0;c j jS0j �MN: (8.6)

Thus it suffices to consider the right side of (8.5) for ` 6� 0 .mod p/. For each ` 6� 0

.mod p/, we argue that the elements in S` satisfy a strong diophantine property. Recall
that .u; v/ 2 S` means that

uC v � ` .mod p/;

and u2; v2 .mod p/ lie in the interval ŒN; 2N �. After an algebraic manipulation we see
that .u; v/ 2 S` must satisfy

x̀2.u2 � v2/2 C `2 � 2.u2 C v2/ .mod p/: (8.7)

We set
˛` WD x̀

2=p 2 Q=Z and ˇ` WD `
2=p 2 Q=Z:

Thus (8.7) implies
k˛`.u

2
� v2/2 C ˇ`k � 8N=p; (8.8)

where k � k denotes the distance to the closest integer. Therefore the pairs .u; v/ 2 S`
produce elements of the sequence ¹˛`n2º0�n�N modulo 1 and lie in a cluster around�ˇ`.
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It is now sufficient to bound the right side of (8.5). We fix a tuple

ı WD .ıj / 2 .0; 1/
6

to be chosen later. Let

L.c; ı/ WD ¹` 2 F�p W jA`;c j �Mp
�ı1º: (8.9)

Thus (8.6) and (8.9) imply

R1 �MN CMN 2p�ı1 C
X

`2L.c;ı/

jA`;c j jS`j: (8.10)

As explained in Section 2, the distribution of the ˛`n2 (which governs the size of S`)
is sensitive to the convergents of the continued fraction expansion of ˛`. Thus we will
consider a partition of L.c; ı/,

L.c; ı/ D H1.c; ı/ [H2.c; ı/ [H3.c; ı/; (8.11)

defined below. By convention, all convergents in the following definitions and arguments
are denoted by irreducible fractions. The sets in (8.11) are given by

H1.c; ı/ WD ¹` 2 L.c; ı/ W for all 1 � h � pı5 ;

h˛` has a convergent a`;h=b`;h such that b`;h 2 Œpı2 ; pı3 �º; (8.12)

H2.c; ı/ WD ¹` 2 L.c; ı/ W there exists 1 � h` � pı5

for which h`˛` has no convergent a=b with b 2 Œpı2 ; pı4 �º; (8.13)

H3.c; ı/ WD L.c; ı/ n .H1.c; ı/ [H2.c; ı//: (8.14)

Our argument will require ı 2 .0; 1/6 to satisfy some constraints. We record them here
for convenience:

ı2 < ı3 < ı4; (8.15)

ı6 < 1=5; (8.16)

16Npı2Cı5 < p=2: (8.17)

Remark 8.1. The constraint (8.15) implies that the sets (8.12) and (8.13) are well-
defined. The constraints (8.15)–(8.17) will be used in the treatment of H3.c; ı/ in
Section 8.3.

Also note that the elements in L.c; ı/ depend on c by definition. However, the crite-
rion for an element ` 2 L.c; ı/ to belong to Hj .c; ı/ is independent of c.

First we bound jL.c;ı/j via a second moment estimate of theA`;c . This will be useful
in some of the following arguments. We haveX

` .modp/

jA`;c j
2
D

X
M�m;m0�2M

X
t2�cm.modp/
t 0
2
�cm0 .modp/

X
` .modp/

e

�
2`.t � t 0/

p

�
� pM: (8.18)
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Using (8.18) we obtain

jL.c; ı/j �
X

` .modp/

�
jA`;c jp

ı1

M

�2
�

p1C2ı1

M
; (8.19)

uniformly in c.

8.1. Treatment of H1.c; ı/

We remark that for ` 2 H1.c; ı/, the sequence

N` WD ¹˛`n
2
º1�n�N (8.20)

has small discrepancy. Thus to bound its contribution to (8.10), we obtain an upper bound
for jS`j. Let D.N`/ denote the discrepancy of N`. The number of n 2 Œ1; N � such that

k˛`n
2
C ˇ`k � 8N=p (8.21)

is
� N 2=p CND.N`/: (8.22)

In order to bound D.N`/ we consider, for each 1 � h � pı5 ,

E`;h WD
X

1�n�N

e.h˛`n
2/:

By definition, the continued fraction expansion of h˛` has a convergent

a`;h=b`;h with b`;h 2 Œp
ı2 ; pı3 �:

Moreover, ˇ̌̌̌
h˛` �

a`;h

b`;h

ˇ̌̌̌
�

1

b2
`;h

:

Applying Weyl’s inequality [64, Lemma 2.4] we obtain

E`;h � N 1C"

�
p�ı2 CN�1 C

pı3

N 2

�1=2
� N ".Np�ı2=2 CN 1=2

C pı3=2/; (8.23)

which is uniform in h; ` and c. Next, applying the Erdős–Turán inequality [41, (2.42),
p. 114] and (8.23) we obtain, uniformly in ` and c,

ND.N`/� Np�ı5 C
X

1�h�pı5

jE`;hj=h

� .Np/".Np�ı5 CNp�ı2=2 CN 1=2
C pı3=2/: (8.24)

Thus the right side (8.22) is

� .Np/".N 2=p CNp�ı5 CNp�ı2=2 CN 1=2
C pı3=2/; (8.25)
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uniformly in ` and c. Observe that for each ` 2 L.c; ı/ (and in particular ` 2 H1.c; ı/)
and n 2 Œ1; N � satisfying (8.21), there is at most one element .u; v/ 2 S` such that (cf.
(8.8))

u2 � v2 � ˙n .mod p/:

The same statement holds when n D 0. Observing that jA`;c j �M and using (8.19) and
(8.25) we obtainX
`2H1.c;ı/

jA`;c j jS`j

� .Np/".p2ı1N 2
CNp1C2ı1�ı5 CNp1C2ı1�ı2=2CN 1=2p1C2ı1 C p1C2ı1Cı3=2/:

(8.26)

8.2. Treatment of H2.c; ı/

We draw on the intuition that membership of H2.c; ı/ is a rare event. Thus we give an
upper bound for jH2.c; ı/j that is stronger than that implied by (8.19).

For each ` 2 H2.c; ı/, fix 1 � h` � pı5 such that h`˛` has no convergent

a=b with b 2 Œpı2 ; pı4 �:

Let a`=b` be the convergent to h`˛` with b` 2 Œ1; pı2/ maximal and let a�
`
=b�
`

denote the
next convergent. Both such convergents exist. Then we must have b�

`
> pı4 and we know

that ˇ̌̌̌
h`˛` �

a`

b`

ˇ̌̌̌
�

1

b`b
�
`

<
1

b`pı4
:

Therefore
jb`h` x̀

2
� pa`j < p

1�ı4 : (8.27)

Let �` 2 Z \ .�p=2; p=2� be such that

�` � b`h` x̀
2 .mod p/: (8.28)

Thus (8.27) guarantees
j�`j < p

1�ı4 :

Conversely, consider the congruence

� � bhx̀2 .mod p/: (8.29)

Any given
� 2 .�p1�ı4 ; p1�ı4/; b 2 Œ1; pı2/; h 2 Œ1; pı5/

determine ` in (8.29) up to sign. Thus

jH2.c; ı/j � p1�ı4Cı2Cı5 ;

uniformly in c. Since jA`;c j �M and jS`j � N we obtainX
`2H2.c;ı/

jA`;c j jS`j �MNp1�ı4Cı2Cı5 : (8.30)
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8.3. Treatment of H3.c; ı/

Recall (8.15). We unpack the definition of H3.c;ı/. Let ` 2H3.c;ı/. Since ` 62H1.c;ı/,
there exists 1 � h` � pı5 such that h`˛` does not have a convergent

a=b with b 2 Œpı2 ; pı3 �:

For each `, fix such a choice h`. Furthermore, since ` 62 H2.c; ı/, h`˛` is guaranteed to
have a convergent

a�` =b
�
` such that b�` 2 .p

ı3 ; pı4 �:

Take such a convergent with b�
`

minimal.
For each `, denote

V` WD ¹0 � n � N W k˛`n
2
C ˇ`k � 8N=pº:

For each pı3 � U � pı4 and 0 � V � N we define

Ec.U; V; ı/ WD ¹` 2 H3.c; ı/ W b
�
` 2 ŒU; 2U � and jV`j 2 ŒV; 2V �º:

Uniformly in U , V , c and ı (satisfying (8.15)–(8.17)) we have, by (8.19),

jEc.U; V; ı/j � p1C2ı1=M: (8.31)

We prove that the contribution to (8.10) from all

` 2
[

0�V�Np�ı6

Ec.U; V; ı/ DW Bı6 (8.32)

is small. Applying (8.31), jA`;c j � M and the remark following (8.25) we see that the
contribution to (8.10) from ` 2 Bı6 is

� Np1C2ı1�ı6 : (8.33)

We now consider the case when V is large. Observe that H3.c; ı/ nBı6 can be cov-
ered by O.log2 p/ sets E.U; V; ı/ with

pı3 �U � pı4 ; Np�ı6 � V � N: (8.34)

From (8.33) and the remark following (8.25) we obtainX
`2H3.c;ı/

jA`;c j jS`j � p1C2ı1�ı6N CM log2p max
pı3�U�pı4

max
Np�ı6�V�N

V � jEc.U;V;ı/j:

(8.35)

Thus we need to bound V � jEc.U; V; ı/j. For each ` 2 Ec.U; V; ı/, we now construct an
algebraic set C` � F3p with restricted variables. Arrange the numbers n`;j 2 V` as

0 � n`;1 < n`;2 < � � � < n`;jV`j � N: (8.36)
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The average consecutive gap between these numbers is

N

jV`j
�
N

V
� pı6 :

More than jV`j=2 consecutive gaps are less than or equal to 2N=jV`j. By the pigeon-
hole principle there exists an integer 1 � d` � 2N=jV`j that is repeated as a consecutive
gap at least jV`j2=.4N / � 1 times (note that (8.1), (8.16), and (8.34) guarantee that
jV`j

2=.4N /� 1). Thus we define

C` WD ¹.n; A;B/ 2 Œ1; N � � Œ�8N; 8N �
2
W x̀
2n2 C `2 � A .mod p/

and x̀2.nC d`/2 C `2 � B .mod p/º: (8.37)

We form
Uc.U; V; ı/ WD

[
`2Ec.U;V;ı/

¹`º � C` � F4p ;

and study this object now.
The above discussion implies the pointwise bound jC`j � V 2=N , so

jUc.U; V; ı/j � V 2jEc.U; V; ı/j=N : (8.38)

Thus it suffices to establish an upper bound for jUc.U; V; ı/j. We count the number of
Q WD .`In;A;B/ 2 Uc.U; V; ı/ with A � B .mod p/ and A 6� B .mod p/ separately.

Given ` 2 Ec.U; V; ı/ and A � B .mod p/, an algebraic manipulation determines at
most one possible Q. Thus (8.31) implies that there are

� p1C2ı1=M (8.39)

such Q.
The rest of the argument treats the case A 6� B .mod p/. Recall the constraint (8.17).

Let

Tc.U; V; ı/ WD

²
g C pr 2 Z W jr j �

36N 2

UV
C 1; jgj � 16pı2Cı5N and g ¤ 0

³
be a set containing a union of short arithmetic progressions. We will construct a map

t� W Q 2 Uc.U; V; ı/ .A 6� B .mod p// 7! tQ 2 Tc.U; V; ı/;

whose fibers have size O.p"/ for any fixed " > 0. These facts will imply

jUc.U; V; ı/j � p"jTc.U; V; ı/j C p
1C2ı1=M: (8.40)

Starting with Q 2 Uc.U; V; ı/, subtracting the congruences in (8.37) yields

x̀2.2nd` C d
2
` / � B � A 6� 0 .mod p/: (8.41)
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Recall that for each ` 2H3.c;ı/, we fixed a choice h` 2 Œ1;pı5 � such that h`˛` D h` x̀2=p
has no convergent

a=b with b 2 Œpı2 ; pı3 �;

and has a convergent
a�` =b

�
` such that b�` 2 .p

ı3 ; pı4 �;

with b�
`

minimal. Moreover, ` 2 Ec.U; V; ı/ restricts b�
`
2 ŒU; 2U �. Let a`=b` denote the

convergent to h`˛` with b` 2 Œ1; pı2/ maximal. Thus a`=b` and a�
`
=b�
`

are consecutive
convergents. Let �` 2 Z \ .�p=2; p=2� be such that

�` � b`h` x̀
2 .mod p/:

Note that �` 6� 0 .mod p/. By a similar argument to the one in Section 8.2 we have

j�`j � p=U :

Multiplying (8.41) by b`h` we obtain

�`.2nd` C d
2
` / � b`h`.B � A/ .mod p/: (8.42)

Writing (8.42) as an equation of integers we have

�`.2nd` C d
2
` / D pr C b`h`.B � A/ for some r 2 Z:

Observe that

0 < jb`h`.B � A/j � 16p
ı2Cı5N and j�`.2nd` C d

2
` /j �

36N 2p

UV
C 1:

Thus
tQ WD �`.2nd` C d

2
` / 2 Tc.U; V; ı/:

Suppose we are given t D pr C g 2 Tc.U; V; ı/. Since t ¤ 0 (by (8.17)), g ¤ 0 and
A 6� B .mod p/, the number of tuples

.�; n; d; b; h; B � A/ 2 Z � Œ0; N � � Œ1; 2N=V � � Œ1; pı2 � � Œ1; pı5 � � Œ�16N; 16N �
(8.43)

satisfying
t D �d.2nC d/ and g D bh.B � A/

is at most O.p"/ by divisor considerations. A tuple in (8.43) then determines two values
of ` mod p using

� � bhx̀2 .mod p/:

Thus there are at most O.p"/ valid .n; d; `/ for a given t . Each 3-tuple together with the
equations defining C` in (8.37) determines at most one pair .A; B/ 2 Œ�8N; 8N �2. Thus
there are at mostO.p"/ quadruples .`In;A;B/ 2 Uc.U;V;ı/ such that tQ D t and (8.40)
holds.
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Combining (8.38) and (8.40) gives

max
pı3�U�pı4

max
Np�ı6�V�N

V � jEc.U; V; ı/j

� .Np/".p1C2ı1Cı6=M CN 2pı2Cı5C2ı6�ı3 CNpı2Cı5Cı6/:

Inserting this into (8.35) we obtainX
`2H3.c;ı/

jA`;c j jS`j

� .Np/".p1C2ı1�ı6NCp1C2ı1Cı6CN 2Mpı2Cı5C2ı6�ı3CMNpı2Cı5Cı6/: (8.44)

Inserting (8.26), (8.30) and (8.44) into (8.10) we obtain

R1 � .Np/"
�
MN CMN 2p�ı1 C p2ı1N 2

CNp1C2ı1�ı5 CNp1C2ı1�ı2=2

CN 1=2p1C2ı1 C p1C2ı1Cı3=2 CMNp1�ı4Cı2Cı5 CNp1C2ı1�ı6

C p1C2ı1Cı6 CMN 2pı2Cı5C2ı6�ı3 CMNpı2Cı5Cı6
�
: (8.45)

The same argument can be applied to boundR�1 by the right hand side of (8.45). One
fixes a non-zero non-quadratic residue j modulo p and sees that (8.3) is equivalent to�

xjn1

p

�
D

�
xjn2

p

�
D

�
jcm

p

�
D 1:

Thus the analogue of (8.5) is

R�1 D
1

2

X
N�n1;n2�2N

ˇ̌̌̌ X
M�m�2M

X
t .modp/
t2�cjm

X
u;v .modp/

u2�xjn1 .modp/
v2�xjn2 .modp/

e

�
2t.uC v/

p

�ˇ̌̌̌

�
1

2

X
` .modp/

jA`;cj j jS`;j j;

where

S`;j WD¹.u; v/2.F
�
p /

2
W.ju2; jv2/ .mod p/2ŒN; 2N ��ŒN; 2N � and uCv�` .mod p/º:

Repeating the algebraic manipulation with the linear congruence in the definition of S`;j
we obtain

k j̨;`.u
2
� v2/2 C ǰ;`k � 8N=p;

where

˛`;j WD j x̀
2=p 2 Q=Z and ˇ`;j WD

j`2

p
2 Q=Z:

Then (8.10) becomes

R�1 �MN CMN 2p�ı1 C
X

`2L.cj;ı/

jA`;cj j jS`;j j (8.46)
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and we consider the partition

L.cj; ı/ D H1.cj; ı/ [H2.cj; ı/ [H3.cj; ı/;

where one replaces ˛` (resp. ˇ`) by ˛`;j (resp. ˇ`;j ) in the definitions of the Hi .c; ı/

occurring in (8.12)–(8.14). One can then repeat the arguments in Sections 8.1–8.3 making
the necessary modifications.

For p1=2�1=10 � N � p1=2C1=10, we see that

ı WD
�
11
288
; 11
48
; 25
36
; 407
432
; 11
96
; 11
96

�
satisfies (8.15)–(8.17), and is sufficient to obtain Theorem 1.2 (after multiplication by p,
cf. (8.2)). For aesthetic reasons we take a larger estimate (i.e. all denominators multiples
of 27).

Remark 8.2. Observe that the above argument can be modified so that the estimate in
Theorem 1.2 holds when n1; n2 and m are each restricted to fixed congruence classes
modulo 4.

This completes the proof of Theorem 1.2.
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theory of families of L-functions—the case of twisted Hecke L-functions. Mem. Amer. Math.
Soc. 282, no. 1394, v+148 pp. (2023) Zbl 1519.11001 MR 4539366

[7] Blomer, V., Harcos, G., Michel, P.: A Burgess-like subconvex bound for twisted L-functions.
Forum Math. 19, 61–105 (2007) Zbl 1168.11014 MR 2296066
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