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Abstract. Given a graphG, the independence complex I.G/ is the simplicial complex whose faces
are the independent sets of V.G/. Let Qbi denote the i -th reduced Betti number of I.G/, and let b.G/
denote the sum of the Qbi .G/’s. A graph is ternary if it does not contain induced cycles with length
divisible by 3. Kalai and Meshulam conjectured that b.G/ � 1 whenever G is ternary. We prove
this conjecture. This extends a recent result proved by Chudnovsky, Scott, Seymour and Spirkl that
for any ternary graph G, the number of independent sets with even cardinality and the number of
independent sets with odd cardinality differ by at most 1.
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1. Introduction

A graph is ternary if it has no induced cycle of length divisible by 3. Ternary graphs are
also called trinity graphs [2, 11]. Given a graph G, let fG be the sum of .�1/jAj over
all independent sets A of vertices. Recently, Chudnovsky, Scott, Seymour and Spirkl [5]
proved an intriguing conjecture on the independent sets (or stable sets) of ternary graphs
proposed by Kalai and Meshulam (see [11]) in the late 1990s.

Theorem 1.1. IfG is a graph with no induced cycle of length divisible by 3, then jfG j � 1.

A stronger version of the conjecture of Kalai and Meshulam concerns the total Betti
number of the independence complex of a ternary graph, which builds a connection
between algebraic topology and graph theory.

The independence complex I.G/ of a graph G is the simplicial complex whose faces
are the independent sets of V.G/. QHi .I.G// is the i -th reduced homology group of I.G/,
and Qbi .I.G// D dim QHi .I.G// is the i -th reduced Betti number of I.G/. Note that the
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Betti number bi of a simplicial complex equals the reduced Betti number, except for the
0-th Betti number, which is one more than Qb0. By convention, when G is a null graph
(with no vertex), we let b0.I.G// D 0 and Qb0.I.G// D �1.

Let b.G/ denote the sum of the Qbi .I.G//’s, called the total Betti number of I.G/.
For a simplicial complex, the Euler characteristic can be defined as

P
i .�1/

ibi , which is
1C

P
i .�1/

i Qbi . From a basic theorem in homology theory, we know that the Euler char-
acteristic of I.G/ also equals

P
.�1/jAj�1, the sum being over all the non-empty inde-

pendent sets A in G (see [10]). It immediately follows that fG D
P1
iD0.�1/

iC1 Qbi .G/,
and so jfG j � b.G/.

Note that b.G/ � jfG j D 2 when G is a cycle of length divisible by 3. A question
was asked by Kalai and Meshulam on the total Betti number of graphs without induced
cycle of length divisible by 3. The purpose of the paper is to prove the conjecture of
Kalai–Meshulam (see [11]), which is a stronger version of Theorem 1.1.

Theorem 1.2. If G is a graph with no induced cycle of length divisible by 3, then
b.G/ � 1.

Analogously, a clique complex of a graphG is the simplicial complex whose faces are
the cliques of G. In an abstract simplicial complex, a set S of vertices that is not itself a
face of the complex, but such that each pair of vertices in S belongs to some face in the
complex, is called an empty simplex. A flag complex is an abstract simplicial complex that
has no empty simplex. As any flag complex is the clique complex of its 1-skeleton, and
the clique complex of a graph G is the independence complex of the complement of G,
the above theorem gives a full characterization of minimal flag complexes with total Betti
number 2.

If we further forbid any C3k as a subgraph instead of an induced subgraph, the fol-
lowing result was proved by Engström [7], which extends a result of Gauthier [9] on fG
of such graphs:

Theorem 1.3. If G is a graph without cycles of length divisible by 3, then I.G/ is con-
tractible or homotopy equivalent to a sphere.

In the same paper, Engström also asked whether for any ternary graph, I.G/ is con-
tractible or homotopy equivalent to a sphere. Very recently, based on our proof, Kim [12]
confirmed that this is indeed the case.

There are some other conjectures asked simultaneously by Kalai and Meshulam
(see [11]), relating chromatic numbers, the Euler characteristc or the total Betti num-
ber of the independence complex, and ternary graphs. Some of them have been answered
recently. See the papers of Bonamy, Charbit and Thomassé [2], of Scott and Seymour [14],
and some others [4, 8].

Our proof is inspired by the proof of Theorem 1.1 by Chudnovsky, Scott, Seymour
and Spirkl [5]. The proof could be shorter if we used their results directly. But we prefer
to give a full and independent proof, as the total Betti number gives us more details on the
induction process than the Euler characteristic, and the proofs are smoother and shorter
than in the original paper after the system is set up.
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Given a graph G and vertex sets X; Y let fG.X; Y / be the sum of .�1/jAj where A
runs over all independent sets that include X and are disjoint from Y . The proof in [5]
is based on the recursive formula fG.X; Y / D fG.X [ ¹vº; Y / C fG.X; Y [ ¹vº/ for
every v 2 V.G/. To recursively calculate Qbi .I.G//, we will instead use a formula coming
from the Mayer–Vietoris sequence, which is a powerful tool in calculation of homology
groups.

2. Mayer–Vietoris sequence

As some graph theorists may not be very familiar with homology theory, we first introduce
some prerequisites from homology theory. In this part we follow a paper of Delfinado and
Edelsbrunner [6].

An abstract simplicial complex K is a family of sets that is closed under taking sub-
sets. Each element in such a set is called a vertex and each finite set in K is called a face.
An n-face is a face of size nC 1. Each n-face can be oriented with a linear order of its
vertices, denoted by Œv0; : : : ; vn�. The chain group Cn.K/ is the free abelian group gen-
erated by the oriented n-faces of K, and the boundary map @n W Cn.K/! Cn�1.K/ is
defined by

@nŒv0; : : : ; vn� D

nX
jD0

.�1/j Œv0; : : : ; Ovj ; : : : ; vn�

where Ovj means vj is omitted.
The reduced homology groups QHi .K/ are the homology groups of the augmented

chain complex

� � � ! C2.K/
@2
! C1.K/

@1
! C0.K/

"
! Z! 0;

where " W C0.K/! Z is the augmentation map defined by ".v/ D 1 for each vertex v
of K. We have @i ı @iC1 D 0 and " ı @1 D 0. The i -th reduced homology group QHi .K/
of K is the quotient group ker @i=im @iC1 for positive i , and QH0.K/ D ker "=im @1. The
i -th reduced Betti number Q̌i .K/ of K is the rank of QHi .K/.

Let K 0 and K 00 be subcomplexes such that K D K 0 [ K 00 and let L D K 0 \ K 00.
A chain complex is exact if im @iC1 D ker @i for all i . There is an exact sequence of
reduced homology groups called the Mayer–Vietoris sequence [13]:

� � � ! QHi .L/
�i
�! QHi .K

0/˚ QHi .K
00/! QHi .K/

! QHi�1.L/
�i�1
���! QHi�1.K

0/˚ QHi�1.K
00/! � � � ! QH0.K/! 0:

It follows that
0! cok�i ! QHi .K/! ker�i�1 ! 0

is a short exact sequence of abelian groups. Let Ni D ker�i and let ˇ.Ni / be its dimen-
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sion. We have (see [1])

ˇi .K/ D ˇ.cok�i /C ˇ.ker�i�1/

D ˇ. QHi .K
0/˚ QHi .K

00/=im�i /C ˇ.Ni�1/

D ˇi .K
0/C ˇi .K

00/ � ˇi .L/C ˇ.Ni /C ˇ.Ni�1/ (2.1)

Note that ˇ.Ni / � ˇi .L/ as Ni � QHi .L/ for each i .
Given a graph G, let N.v/ denote the set of neighbors of a vertex v in G, let N.X/ DS

v2X N.v/ denote the open neighborhood of a vertex set X , and let NŒX� D N.X/[X
denote the closed neighborhood of X . Suppose X is an independent set of G and Y
is a vertex set disjoint from X , and let G.X j Y / be the subgraph induced by V.G/ �
NŒX� � Y . If the elements of X or Y are listed we omit the braces for simplicity. Also
for simplicity, when G.X j Y / is not a null graph, we write I.X j Y / and b.X j Y / for
I.G.X j Y // and b.G.X j Y // when G is known. Similarly, we define Qbi .X; Y /. For
the intuition of the construction, note that faces of I.X j Y / are order isomorphic with
independent sets of V.G/ containing X and disjoint from Y .

If v is a vertex ofG, takeK D I.G/,K 0 D I.G � v/ andK 00 D I.G �N.v// in (2.1).
Then K D K 0 [K 00 and L D I.v j ;/, so we have

Qbi .G/ D Qbi .G.; j v//C Qbi .G �N.v// � Qbi .G.v j ;//C ˇ.Ni /C ˇ.Ni�1/:

Note that I.G � N.v// is the collection of all simplices of the form va0 � � � ap where
a0 � � � ap is a simplex of I.v j ;/, along with all faces of such simplices. That is,
I.G � N.v// is the cone on I.v j ;/ with vertex v, denoted by v � I.v j ;/. It is an ele-
mentary fact in topology that a cone has zero reduced homology groups [13]:

QHi .v � I.v j ;// D 0 for all i:

That is, we have the following proposition:

Proposition 2.1. If H has an isolated vertex, then b.H/ D 0.

So the above equation is reduced to

Qbi .G/ D Qbi .; j v/ � Qbi .v j ;/C ˇ.Ni /C ˇ.Ni�1/; 8i: (2.2)

Similarly, if we replace G by G �NŒX� � Y for any vertex sets X and Y , we have

Qbi .X; Y / D Qbi .X jY [ ¹vº/ � Qbi .X [ ¹vº jY /C ˇ.N
0
i /C ˇ.N

0
i�1/; 8i: (2.3)

Here N 0i is a subgroup of QHi .IG.X [ ¹vº jY //. We have

ˇ.Ni / � Qbi .v j ;/ and ˇ.N 0i / �
Qbi .X [ ¹vº jY /: (2.4)

Our proof of the main result is based on the above recursion formulas.

3. Proof of Main Theorem

We are going to prove Theorem 1.2: If b.G/� 2 and b.H/� 1 for every induced subgraph
H of G, then G D C3k for some integer k.
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In the remaining part of the paper, we fix G to be the one in the main result, unless it
is specified otherwise.

Suppose G.X j Y / is well defined and not a null graph. By assumption, b.X j Y / is
0 or 1 if X [ Y 6D ;. If b.H/ D 1 for some graph H , we denote by d.H/ the dimen-
sion where the reduced Betti number takes value 1. That is, d.G/ D i if Qbi .G/ D 1 and
Qbj .G/ D 0 for j ¤ i . If b.G/ D 0 then we define d.G/ to be ‘�’. Note that for bG � 2,
d.G/ is not defined. For simplicity, we write d.X j Y / for d.G.X j Y //. Additionally,
when X is not independent, we let d.X j Y / D �, and if G.X jY / is a null graph, then
d.X jY / D �1. That is, we consider the empty simplex as the .�1/-dimensional sphere.

Lemma 3.1. For any disjoint vertex sets X and Y in G with X [ Y 6D ; and a vertex v
not in X or Y , the triple .d.X j Y /; d.X [ ¹vº j Y /; d.X j Y [ ¹vº// fits into one of the
following four patterns: .k;�; k/, .�;�;�/, .�; k; k/ and .k C 1; k;�/ for some integer k.

This is illlustrated in the triangle diagram below:

.X; Y / k � � k C 1

.X [ ¹vº jY / .X jY [ ¹vº/ � k � � k k k �

We say such triples (triangles) are legal and others are illegal. Note that if we know
two corners of a legal triangle then we can determine the third.

Proof of Lemma 3.1. If X [ ¹vº is not independent, then d.X [ ¹vº j Y / D �, and G �
NŒX�� ¹vº � Y DG �NŒX�� Y , hence d.X jY [ ¹vº/D d.X jY /. The triple must be
.k;�; k/ or .�;�;�/. So we may assume X [ ¹vº is an independent set, and v is a vertex
in G.X jY /.

If V.G.X j Y // D ¹vº, then the triple is .�; �1; �1/. If V.G.X j Y // 6D ¹vº, and
G.X [ ¹vº j Y / is null, then v adjacent to all vertices in G.X j Y /. By the minimality
of G, we may assume G does not contain triangles, hence G.X j Y / is a star centered
at v. As b0.X jY / is the number of components of I.X jY / and v is isolated in I.X jY /,
we have b.X j Y / D 0. Furthermore, G.X j Y [ ¹vº/ is a graph with no edge, and so
b.X jY [ ¹vº/D � by Proposition 2.1. Therefore the triple will be .0;�1;�/. So we may
assume G.X [ ¹vº jY / and G.X jY [ ¹vº/ are not null.

By (2.4), if d.X [ ¹vº jY / D �, then ˇ.N 0i / D 0 for all i , and by (2.3), Qbi .X jY / D
Qbi .G.X j Y [ ¹vº//. Thus .d.X j Y /; d.X [ ¹vº j Y /; d.X j Y [ ¹vº// is .k; k; �/ for
some k, or .�;�;�/.

If d.X [ ¹vº j Y / D k then ˇ.N 0
k
/ D 0 or 1 and ˇ.N 0i / D 0 for i ¤ k. In the case

ˇ.N 0
k
/ D 0, by (2.3), Qbk.X j Y / D Qbk.X j Y [ ¹vº// � 1, which should be non-negative.

So Qbk.G.X jY [ ¹vº//D 1 and Qbk.X jY /D 0, and also Qbi .X jY /D Qbi .X jY [ ¹vº//�
Qbi .X [ ¹vº j Y / D 0 for i ¤ k, hence .d.X; Y /; d.X [ ¹vº j Y /; d.X j Y [ ¹vº// D
.�; k; k/.

If ˇ.N 0
k
/ D 1, by (2.3) we have

QbkC1.X jY / D QbkC1.X jY [ ¹vº/ � QbkC1.G.X [ ¹vº jY //C ˇ.N
0
kC1/C ˇ.N

0
k/

D QbkC1.X jY [ ¹vº/C 1:
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So QbkC1.X j Y / D 1, and Qbi .X j Y / D 0 for i ¤ k C 1. Now that we know d.X; Y /,
d.X [ ¹vº jY / and all ˇ.N 0i /’s, from (2.3) we have Qbi .G.X jY [ ¹vº// D 0 for all i . So
.d.X jY /; d.X [ ¹vº jY /; d.X jY [ ¹vº// D .k C 1; k;�/.

Lemma 3.2. Suppose X;Y are vertex sets of G with d.X jY / D k for some integer k. If
v1; v2 are two vertices not inX [ Y with d.X [ ¹v1º jY º D k � 1 and d.X [ ¹v2º jY /D
�, then d.X [ ¹v1; v2º jY / D �.

Proof. By Lemma 3.1, we should have�
d.X jY /; d.X [ ¹v1º jY /; d.X jY [ ¹v1º/

�
D .k; k � 1;�/;�

d.X jY /; d.X [ ¹v2º jY /; d.X jY [ ¹v2º/
�
D .k;�; k/:

Suppose d.X [ ¹v1; v2º jY / 6D �. Then�
d.X [ ¹v1º jY /; d.X [ ¹v1; v2º jY /; d.X [ ¹v1º jY [ ¹v2º/

�
D .k � 1; k � 2;�/;�

d.X [ ¹v2º jY /; d.X [ ¹v1; v2º jY /; d.X [ ¹v2º jY [ ¹v1º/
�
D .�; k � 2; k � 2/:

Now to calculate d.X jY [ ¹v1; v2º/, we should have�
d.X jY [ ¹v1º/; d.X [ ¹v2º jY [ ¹v1º; d.X jY [ ¹v1; v2º/

�
D .�; k � 2; k � 2/;�

d.X jY [ ¹v2º/; d.X [ ¹v1º jY [ ¹v2º/; d.X jY [ ¹v1; v2º/
�
D .k;�; k/;

which conflict at the value of d.X jY [ ¹v1; v2º/.

Claim 3.3. There is some k � 0 such that Qbk.G/ D 2 and Qbi .G/ D 0 for all i ¤ k.
Furthermore, for every vertex v, d.v j ;/ D k � 1 and d.; j v/ D k.

Proof. Note that N�1 D 0 in (2.2), so for any vertex v,

b.G/ D b.; j v/ � b.v j ;/C 2
X
i�0

ˇ.Ni /

� b.; j v/ � b.v j ;/C 2b.v j ;/

D b.; j v/C b.v j ;/:

By the assumption on G, we have b.; j v/ D b.v j ;/ D 1 and b.G/ D 2. Also, we must
have ˇ.Ni / D Qbi .G.v j ;// for all i and (2.2) is reduced to

Qbi .G/ D Qbi .G.; j v// � Qbi .G.v j ;//C ˇ.Ni /C ˇ.Ni�1/

D Qbi .G.; j v//C Qbi�1.G.v j ;//: (3.1)

Suppose Qbk.G/ D Qbl .G/ D 1 for some integers k; l with k < l . By (3.1), for each
vertex v, either

v 2 V1 D ¹u W d.u j ;/ D k � 1; d.; ju/ D lº;

or
v 2 V2 D ¹u W d.u j ;/ D l � 1; d.; ju/ D kº:
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We claim that for disjoint subsets X , Y of V1 such that X [ Y ¤ ;, we have

d.X jY / D

8̂̂<̂
:̂
k � jX j; Y D ;;

�; X; Y ¤ ;;

l; Y D ;;

We illustrate this in the triangle diagram below:

.jX j; jY j/:

.1; 0/ .0; 1/

.2; 0/ .1; 1/ .0; 2/

.3; 0/ .2; 1/ .1; 2/ .0; 3/

:::

.t; 0/ .t�1; 1/ � � � � � � .1; t�1/ .0; t/

d.X jY /:

k�1 l

k�2 l

k�3 l

�

� �

:::

k� t � � � � � � � � l

We argue by induction on t D jX [ Y j. The case t D 1 holds by definition of V1.
Suppose we have proved this for jX [ Y j � t � 1 for t � 2. Note that for the first

t � 1 rows, d.X j Y / is determined by .jX j; jY j/, so we may use d.jX j; jY j/ to denote
d.X j Y /. For W D X [ Y given, by repeatedly using Lemma 3.1, the t -th row is deter-
mined by d.W j ;/, and d.X j Y / is also determined by .jX j; jY j/. Furthermore, the
triple .d.X j Y /; d.X [ ¹vº j Y /; d.X j Y [ ¹vº// in Lemma 3.1 can also be replaced
by .d.jX j; jY j/; d.jX j C 1; jY j/; d.jX j; jY j C 1//, which forms a small triangle in the
triangle diagram above.

By Lemma 3.1, there are at most two possible lists of values on the t -th row, depending
on d.t; 0/:

.k � t;�; : : : ;�; l/ or .�; k � t C 1; k � t C 1; : : : ; k � t C 1;�/:

The latter is legal only when k D l C t � 2, which conflicts with the assumption that
k < l . Therefore the t -th row must be .k � t;�; � � � ;�; l/ for anyW D X [ Y with size t .
By induction, the claim is true for all rows.

Moreover, we have d.; j V1/ D l . Using the same argument as above with t D 2,
as l ¤ k C t � 2 D k, we can find that for all u; v 2 V2 we have d.u; v j ;/ D l � 2,
which implies that no two vertices u; v in V2 are adjacent, hence V2 is an independent
set. However, as G.; j V1/ D GŒV2�, by Proposition 2.1, b.; j V1/ D 0, contradicting
d.; jV1/ D l .

So we have Qbk.G/D 2 for some k. By (3.1), we have d.v j;/D k � 1 and d.;jv/D k
for every vertex v.

Throughout the rest of this article, we use k to denote the integer we obtained in the
above theorem.
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Let u, v be two vertices of G. Since d.u j ;/ D k � 1, by Lemma 3.1 the triple
.d.u j ;/; d.u; v j ;/; d.u jv// is either .k � 1; k � 2;�/ or .k � 1;�; k � 1/. We construct
a new graphH on V.G/ such that u, v are adjacent if and only if d.u; v j ;/D k � 2. The
following propositions on H immediately follow:

Proposition 3.4. In H , any two vertices u; v satisfy:

(1) If u � v in H , then u œ v in G. That is, E.G/ \E.H/ D ;.

(2) If u � v inH , then d.u; v j ;/D k � 2, d.u jv/D d.v ju/D �, and d.; ju; v/D k,

(3) If u œ v in H , then d.u; v j ;/ D d.; ju; v/ D � and d.u j v/ D d.v ju/ D k � 1.

The following proposition is a key feature of H .

Lemma 3.5. Every componentC ofH is a complete graph. Furthermore, for any disjoint
subsets X and Y of V.C / with X [ Y ¤ ;, we have

d.X jY / D

8̂̂<̂
:̂
k � jX j; Y D ;;

�; X; Y ¤ ;;

k; X D ;:

We can illustrate this in the triangle diagram below:

.jX j; jY j/:

.1; 0/ .0; 1/

.2; 0/ .1; 1/ .0; 2/

.3; 0/ .2; 1/ .1; 2/ .0; 3/

:::

.t; 0/ .t�1; 1/ � � � � � � .1; t�1/ .0; t/

d.X; Y /:

k�1 k

k�2 k

k�3 k

�

� �

:::

k� t � � � � � � � � k

Proof. SupposeC is not complete. Then there must exist three distinct vertices u, v andw
in C such that u � v, v � w but u œ w in H . Since d.u j ;/ D k � 1; d.u; v j ;/ D

k � 2; d.u;w j ;/ D �, by Lemma 3.2 we have d.u; v; w j ;/ D �. So

.d.u; v j ;/; d.u; v; w j ;/; d.u; v jw// D .k � 2;�; k � 2/:

But as d.; jw/ D k; d.u jw/ D k � 1; d.v jw/ D �, by Lemma 3.2 we should have
d.u; v jw/ D �, a contradiction.

So C must be complete, which implies the first two rows of the triangle diagram.
The remaining level can be proved inductively just as in Theorem 3.3, with k D l and
k ¤ l C t � 2 when t � 3.

The following result follows immediately.

Claim 3.6. There does not exist a vertex v with all neighbors in G located in one compo-
nent of H .
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Proof. Suppose there is a component C of H such that NG.v/ � C . By Lemma 3.5,
d.;jC/D d.G �C/D k; but v is an isolated vertex inG �C , so we have b.G �C/D 0
by Proposition 2.1, a contradiction.

Lemma 3.7. There do not exist two edges v1v2; v3v4 in G with v1; v2; v3; v4 located in
four distinct components of H .

Proof. Suppose the vertices are located in distinct components of H . We consider
d.X jY / for disjoint subsets X; Y in ¹v1; v2; v3; v4º with X [ Y 6D ;. We claim to have
the following triangle diagram:

.jX j; jY j/:
.1; 0/ .0; 1/

.2; 0/ .1; 1/ .0; 2/

.3; 0/ .2; 1/ .1; 2/ .0; 3/

.4; 0/ .3; 1/ .2; 2/ .1; 3/ .0; 4/

d.X jY /:

k�1 k

� k�1 �

� � k�1 k�1

� � � ‹

The first row is implied by Claim 3.3. The second row follows from the assumption that
each pair of the vi ’s belongs to a different component of H . Note that when jX j � 3,
X is not an independent set, hence d.X j Y / D �. Therefore the first terms of the third
row and the fourth row are �. And we can get the rest of the third row using Theorem 3.1.
Similarly the first three terms of the fourth row are ‘�’. But there is no value for d.X jY /
with .jX j; jY j/ D .1; 3/ that fits Lemma 3.1.

Now we are ready to complete the proof of the main theorem.

Proof of Theorem 1.2. As b.C3k/ � jfC3k
j D 2 for any k, we just need to show that G

contains an induced C3k for some k.
First each component of H is an independent set in G. By Lemma 3.6, the neighbors

of any vertex inG are located in at least two components ofH ; and by Lemma 3.7 no two
edges have all ends in four distinct components. Altogether it is easy to deduce that H
has exactly three components C0, C1, C2, and every vertex in Ci has neighbours in Ci�1
and CiC1 for each i (indices modulo 3). We orient all the edges of G from Ci to CiC1
for i D 0; 1; 2. Then every vertex has positive out-degree, so there is an induced directed
cycle Œv1; : : : ; vr �, which must have length divisible by 3.
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