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Abstract. We investigate representations of Coxeter groups into GL.n;R/ as geometric reflection
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Keywords: Coxeter groups, reflection groups, discrete subgroups of Lie groups, convex cocompact
subgroups, Anosov representations.

Jeffrey Danciger: Department of Mathematics, The University of Texas at Austin, 1 University
Station C1200, Austin, TX 78712, USA; jdanciger@math.utexas.edu

François Guéritaud: CNRS and IRMA, Université de Strasbourg, 7 rue René Descartes,
67084 Strasbourg Cedex, France; francois.gueritaud@unistra.fr

Fanny Kassel: CNRS and Laboratoire Alexander Grothendieck, Institut des Hautes Études
Scientifiques, Université Paris-Saclay, 35 route de Chartres, 91440 Bures-sur-Yvette, France;
kassel@ihes.fr

Gye-Seon Lee: Department of Mathematical Sciences and Research Institute of Mathematics,
Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826 Seoul, South Korea;
gyeseonlee@snu.ac.kr

Ludovic Marquis: CNRS, IRMAR - UMR 6625, Université de Rennes, Campus de Beaulieu,
35000 Rennes, France; ludovic.marquis@univ-rennes.fr

Mathematics Subject Classification 2020: 22E40 (primary); 20F55, 57M50, 57S30 (secondary).

https://creativecommons.org/licenses/by/4.0/
mailto:jdanciger@math.utexas.edu
mailto:francois.gueritaud@unistra.fr
mailto:kassel@ihes.fr
mailto:gyeseonlee@snu.ac.kr
mailto:ludovic.marquis@univ-rennes.fr


J. Danciger, F. Guéritaud, F. Kassel, G.-S. Lee, L. Marquis 120

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2. Reminders: Actions on properly convex subsets of projective space . . . . . . . . . . . . . . . 128
3. Reminders: Vinberg’s theory for Coxeter groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4. Maximality of the Tits–Vinberg domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5. The minimal invariant convex subset of the Tits–Vinberg domain . . . . . . . . . . . . . . . . 156
6. Proof of Theorem 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7. Proof of Theorem 1.3 and consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8. The deformation space of convex cocompact representations . . . . . . . . . . . . . . . . . . . 172
A. The spherical and affine Coxeter diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

1. Introduction

In the setting of semisimple Lie groups of real rank one, convex cocompact subgroups are
a well-studied middle ground between the very special class of cocompact lattices and the
general class of all finitely generated discrete subgroups. The actions of such groups on
the associated Riemannian symmetric space and its visual boundary at infinity are known
to exhibit many desirable geometric and dynamical properties.

In the setting of higher-rank semisimple Lie groups, however, it is not obvious how to
generalize the notion of convex cocompact subgroup in a way that guarantees similar
desirable properties while at the same time being flexible enough to admit large interesting
classes of examples. In particular, the most natural generalization of convex cocom-
pactness, in higher-rank Riemannian symmetric spaces, turns out to be quite restrictive,
see [34, 44].

In [23], the first three authors investigated several notions of convex cocompactness
for discrete subgroups of the higher-rank semisimple Lie group PGL.V / acting on the
projective space P .V /, where V is a finite-dimensional real vector space. This generalized
both the classical theory of convex cocompactness in real hyperbolic geometry and the
theory of divisible convex sets, as developed in particular by Benoist (see [8]). These
notions of convex cocompactness in P .V / come with a rich world of examples: see, e.g.,
[1–3,6,16–18,20–23,37,39–41,52]. The goal of the present paper is to study these notions
in the context of Vinberg’s theory of discrete reflection groups.

Reflection groups are a major source of interesting examples in the study of Kleinian
groups and hyperbolic geometry. While cocompact reflection groups in the real hyperbolic
space Hm may exist only for dimensions m 6 29 (see [50]), there are rich families of
convex cocompact reflection groups in Hm for any dimension m > 2 (see, e.g., [25, §4]).

In [49], Vinberg studied a more general notion of reflection group in the setting of
general linear groups GL.V /, giving a necessary and sufficient condition for the linear
reflections in the hyperplanes bounding a convex polyhedral cone z� in V to generate a dis-
crete subgroup � of GL.V / such that the �-translates of Int.z�/ are mutually disjoint. We
will call these discrete groups reflection groups.1 When infinite, they naturally identify

1Vinberg referred to these groups as discrete linear groups generated by reflections, or simply
linear Coxeter groups [49, Definition 2].
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with discrete subgroups of PGL.V / via the projection GL.V / ! PGL.V /. Vinberg’s
construction includes the reflection groups in Hm as a special case for which the reflec-
tions preserve a nondegenerate quadratic form of signature .m; 1/ on V . However, the
construction also gives large families of interesting discrete subgroups of GL.V / which
are not contained in O.m;1/, including some that preserve nondegenerate quadratic forms
of signature other than .m; 1/ and many others that do not preserve any nonzero quadratic
form at all. This is a rich source of examples of discrete subgroups of infinite covolume
in higher-rank semisimple Lie groups (see, e.g., [6, 7, 17, 37, 51]).

The goal of the paper is to give an explicit characterization of the notions of convex
cocompactness from [23] in the setting of Vinberg’s reflection groups, with an application
to the study of Anosov representations of word hyperbolic Coxeter groups.

1.1. Convex cocompactness in projective space

Let V be a real vector space of dimension n > 2. We say that an open subset � of the
projective space P .V / is convex if it is contained and convex in some affine chart, and
properly convex if it is convex and bounded in some affine chart. Here are the three notions
of projective convex cocompactness from [23] which we consider.

Definition 1.1. An infinite discrete subgroup � of GL.V / is

(i) naively convex cocompact in P .V / if it acts properly discontinuously on some
properly convex open subset � of P .V /, and cocompactly on some nonempty �-
invariant closed convex subset C of �;

(ii) convex cocompact in P .V / if (i) holds and C � � can be taken “large enough”,
in the sense that the closure of C in P .V / contains all accumulation points of all
possible �-orbits � � y with y 2 �;

(iii) strongly convex cocompact in P .V / if (i) holds and� can be taken so that its bound-
ary @� is strictly convex (i.e., does not contain any nontrivial projective segment)
and C 1 (i.e., every point has a unique supporting hyperplane).

We note that (iii) implies (ii), as all �-orbits of � have the same accumulation points
when � is strictly convex (Remark 2.1).

The three notions of convex cocompactness in Definition 1.1 may seem quite simi-
lar at first glance, and they are indeed equivalent for discrete subgroups of Isom.Hm/ �

O.m; 1/. However, the three notions admit a number of subtle differences in general.
In particular, naive convex cocompactness is not always stable under small deformations
(see [23, Remark 4.5 (b)] and [22]), whereas convex cocompactness and strong convex
cocompactness are [23, Theorem 1.16]. By [23, Theorem 1.15], an infinite discrete sub-
group of GL.V / is strongly convex cocompact in P .V / if and only if it is word hyperbolic
and convex cocompact in P .V /.

In the case that C D � in Definition 1.1, we say that � divides � and that � is di-
visible. Divisible convex sets have been much studied since the 1960s. Examples with �
nonhyperbolic (or equivalently @� not strictly convex — hence (ii) is satisfied but not (iii))
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include the case that � is the projective model of the Riemannian symmetric space of
SL.k;R/ with k > 3, and � is a uniform lattice (see, e.g., [8, §2.4]). The first irreducible
and nonsymmetric examples with � nonhyperbolic were constructed by Benoist [6] for
4 6 dimV 6 7, taking � to be a reflection group. Later, further examples were found in
[1, 17, 18, 39].

In the current paper, we give a necessary and sufficient condition (Theorem 1.8)
for a reflection group to be convex cocompact in P .V / in the sense of Definition 1.1.
As a consequence, in the setting of right-angled reflection groups, the three notions of
convex cocompactness in Definition 1.1 are equivalent, and right-angled convex cocom-
pact reflection groups are always word hyperbolic (Corollary 1.13). For general reflection
groups, we prove (Theorems 1.3 and 1.8) that naive convex cocompactness is always
equivalent to convex cocompactness, but that there also exist many non-right-angled
reflection groups which are convex cocompact without being strongly convex cocom-
pact in P .V / (beyond the examples of [1, 6, 17, 18, 39]); these groups are not hyperbolic
anymore, but relatively hyperbolic (Corollary 1.7).

1.2. Vinberg’s theory of reflection groups

Let
WS D hs1; : : : ; sN j .sisj /

mi;j D 181 6 i; j 6 N i

be a Coxeter group with generating set S D ¹s1; : : : ; sN º, where mi;i D 1 and mi;j D
mj;i 2 ¹2; 3; : : : ;1º for i ¤ j . (By convention, .sisj /1 D 1 means that sisj has infinite
order in the group WS .) Each generator si has order two. For any subset S 0 of S , we
denote by WS 0 the subgroup of WS generated by S 0, which we call a standard subgroup
of WS . Recall that WS is said to be right-angled if mi;j 2 ¹2;1º for all i ¤ j , and irre-
ducible if it cannot be written as the direct product of two nontrivial standard subgroups.
An irreducible Coxeter group is said to be spherical if it is finite, and affine if it is infinite
and virtually abelian. We refer to Appendix A for the list of all spherical and all affine
irreducible Coxeter groups.

In the whole paper, V will denote a finite-dimensional real vector space, and we shall
use the following terminology and notation.

Definition 1.2. A representation �WWS!GL.V / is a representation ofWS as a reflection
group in V if

� each element �.si / is a hyperplane reflection, of the form .x 7! x � ˛i .x/vi / for some
linear form ˛i 2 V

� and some vector vi 2 V with ˛i .vi / D 2;
� the convex polyhedral cone z� WD ¹v 2 V j ˛i .v/ 6 0 8iº has nonempty interior;
� �.
/ � Int.z�/ \ Int.z�/ D ¿ for all 
 2 WS X ¹eº.

In this case, the matrix A D .˛i .vj //16i;j6N is called a Cartan matrix for �.

We denote by Homref.WS ;GL.V // the set of all representations of WS as a reflec-
tion group in V . Note that any � 2 Homref.WS ;GL.V // is faithful and discrete. Vinberg
[49, Theorem 2] showed that the group �.WS / preserves an open convex cone of V ,
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namely the interior z�TV of the union of all �.WS /-translates of the fundamental polyhe-
dral cone z�. This cone also appears in the work of Tits [47]; we call it the Tits–Vinberg
cone. The group �.WS / acts properly discontinuously on z�TV. The action of �.WS / is
still properly discontinuous on the image �TV � P .V / of z�TV, which, for WS infinite
and irreducible, is a nonempty convex open subset of the projective space P .V / (the Tits–
Vinberg domain). The composition of � with the projection GL.V /! PGL.V / is then
still faithful and discrete.

The pair .˛; v/ 2 V � � V defining a reflection is unique up to the action of R�

given by t � .˛; v/ D .t˛; t�1v/. The reflections �.s1/; : : : ; �.sN / therefore determine
the matrix .˛i .vj //16i;j6N up to conjugation by a diagonal matrix. In particular, they
determine the real numbers ˛i .vj / j̨ .vi /. Vinberg [49, Theorem 1 and Propositions 6,
13, 17] gave the following characterization: a representation �WWS ! GL.V / belongs
to Homref.WS ;GL.V // if and only if the ˛i and vj can be chosen so that the matrix
A D .Ai;j /16i;j6N D .˛i .vj //16i;j6N satisfies the following five conditions:

(i) Ai;j D 0 for all i ¤ j with mi;j D 2;

(ii) Ai;j < 0 for all i ¤ j with mi;j ¤ 2;

(iii) Ai;jAj;i D 4 cos2.�=mi;j / for all i ¤ j with 2 < mi;j <1;

(iv) Ai;jAj;i > 4 for all i ¤ j with mi;j D1; and

(v) z� WD ¹v 2 V j ˛i .v/ 6 08iº has nonempty interior.

In that case, A is a Cartan matrix for � and is unique up to conjugation by positive diag-
onal matrices. Conditions (i)–(iv) are semialgebraic, and so is (v) by quantifier elimina-
tion (see [11, Proposition 2.2.4]). Thus Homref.WS ;GL.V // is a semialgebraic subset of
Hom.WS ;GL.V //. Note that ifWS is infinite, irreducible and not affine, then (v) is always
satisfied (see Sections 3.4 and 3.5); this implies in particular that Homref.WS ;GL.V // is
open and closed in the space Homfd.WS ;GL.V // of all faithful and discrete representa-
tions of WS into GL.V / (Remark 3.19 (2)). We shall prove (Proposition 4.1) that in this
case the Tits–Vinberg domain �TV is maximal in the sense that it contains every �.WS /-
invariant properly convex open subset of P .V /. We shall also describe (Theorem 5.2) the
minimal nonempty �.WS /-invariant properly convex open subset of P .V /. On the other
hand, if WS is irreducible and affine, then Homref.WS ;GL.V // is not always closed in
Homfd.WS ;GL.V //, see Remark 3.27.

1.3. Coxeter groups admitting convex cocompact realizations

Our first main result is a characterization of those Coxeter groups admitting representa-
tions as reflection groups in V which are convex cocompact in P .V /. For this, we consider
the following two conditions on WS :

:(IC) there do not exist disjoint subsets S 0, S 00 of S such that WS 0 and WS 00 are both
infinite and commute;

(zA) for any subset S 0 of S with #S 0 > 3, if WS 0 is irreducible and affine, then it is of
type zAk , where k D #S 0 � 1 (see Table 2 in Appendix A).
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Theorem 1.3. For an infinite Coxeter group WS , the following are equivalent:

(1) there exist a finite-dimensional real vector space V and a representation � in the
space Homref.WS ;GL.V // such that �.WS / is naively convex cocompact in P .V /;

(2) WS satisfies conditions :(IC) and (zA).

In this case, �.WS / is actually convex cocompact in P .V / (not only naively convex cocom-
pact), and we can take V to be any vector space of dimension > #S .

Remark 1.4. Conditions:(IC) and (zA) are readily checked on the diagram ofWS using
the classification of spherical and affine Coxeter groups (see Appendix A). IfWS satisfies
:(IC) and (zA), then any standard subgroup WS 0 of WS still satisfies :(IC) and (zA).

Remark 1.5. By a result of Krammer [35, Theorem 6.8.3], conditions :(IC) and (zA)
together are equivalent to the fact that any subgroup of WS isomorphic to Z2 is virtually
contained in a conjugate of a standard subgroup WS 0 of type zAk for some k > 2.

Remark 1.6. Conditions :(IC) and (zA) are always satisfied if WS is word hyperbolic.
In fact, Moussong [42] proved that word hyperbolicity of WS is equivalent to condi-
tion :(IC) together with the following condition (which in particular implies (zA)):

:(Af) there does not exist a subset S 0 of S with #S 0 > 3 such thatWS 0 is irreducible and
affine.

We recently used convex cocompact reflection groups in O.p; q/ to give a new proof of
this hyperbolicity criterion: see [21, Corollary 8.5] in the right-angled case and [37, §7]
in the general case.

Theorem 1.3, together with a result of Caprace [14, 15], implies the following.

Corollary 1.7. For an infinite Coxeter group WS , the following are equivalent:

(1) there exist V and � 2 Homref.WS ;GL.V // such that �.WS / is (naively) convex co-
compact in P .V /;

(2) WS is relatively hyperbolic with respect to a collection of virtually abelian sub-
groups of rank > 2, which are the standard subgroups ofWS of the formWU �WU? ,
whereWU is of type zAk for some k > 2 andWU? is the (finite) standard subgroup of
WS generated by U? WD ¹s 2 S X U j mu;s D 28u 2 U º.

1.4. A characterization of convex cocompactness

Our second main result is, for a Coxeter groupWS as in Theorem 1.3, a simple character-
ization of convex cocompactness for representations � 2 Homref.WS ;GL.V //.

Theorem 1.8. LetWS be an infinite Coxeter group satisfying conditions :(IC) and (zA)
of Section 1.3. For any V and any � 2 Homref.WS ;GL.V // with Cartan matrix A D

.Ai;j /16i;j6N , the following are equivalent:

(NCC) �.WS / is naively convex cocompact in P .V /;
(CC) �.WS / is convex cocompact in P .V /;
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:(ZT) for any irreducible standard subgroup WS 0 of WS with ¿ ¤ S 0 � S , the Cartan
submatrix AS 0 WD .Ai;j /si ;sj2S 0 is not of zero type;

:(ZD) for any S 0 � S such thatWS 0 is of type zAk for some k > 1, we have det.AS 0/¤ 0.

(The k D 1 case of :(ZD) just means that Ai;jAj;i > 4 for all i ¤ j with mi;j D1.)

We refer to Definition 3.12 for the notion of zero type. In Theorem 1.8, the implication
(CC)) (NCC) holds by definition; the equivalence :(ZT),:(ZD) follows from clas-
sical results of Vinberg, see Fact 3.17 below. We prove the other implications in Section 6.

Remark 1.9. In [40], the last author studied groups generated by reflections in the codi-
mension-1 faces of a polytope � � P .V / which is 2-perfect (i.e., � \ @�TV is a subset
of the vertices of �). In the case that the group acts strongly irreducibly on V , he gave
a criterion [40, Theorem A] for naive convex cocompactness (Definition 1.1 (i)), as well
as for a notion of geometric finiteness, in terms of links of the vertices of the polytope.

Here is an easy consequence of Theorem 1.8.

Corollary 1.10. Let WS be an infinite Coxeter group. For any V and any representation
� 2 Homref.WS ;GL.V //, if �.WS / is convex cocompact in P .V /, then so is �.WS 0/ for
any infinite standard subgroup WS 0 of WS .

Theorem 1.8 yields the following simple characterization of strong convex cocom-
pactness for Coxeter groups.

Corollary 1.11. Let WS be an infinite Coxeter group. For any V and any representation
� 2Homref.WS ;GL.V // with Cartan matrix AD .Ai;j /16i;j6N , the following are equiv-
alent:

(SCC) �.WS / is strongly convex cocompact in P .V /;
(WH+) WS is word hyperbolic and Ai;jAj;i > 4 for all i ¤ j with mi;j D1.

Remark 1.12. Corollary 1.11 generalizes a classical result stating that for � with values
in O.m; 1/, the reflection group �.WS / is convex cocompact if and only if WS is word
hyperbolic and Ai;jAj;i > 4 for all i ¤ j withmi;j D1 (see, e.g., [25, Theorem 4.12]).

It easily follows from Theorems 1.3 and 1.8 and Corollary 1.11 that in the setting of
right-angled Coxeter groups, the three notions of convex cocompactness in Definition 1.1
are equivalent.

Corollary 1.13. Let WS be an infinite Coxeter group with no standard subgroup of
type zAk for k > 2, for instance an infinite right-angled Coxeter group. For any V and
any � 2 Homref.WS ;GL.V // with Cartan matrix A D .Ai;j /16i;j6N , the following are
equivalent:

(NCC) �.WS / is naively convex cocompact in P .V /;
(CC) �.WS / is convex cocompact in P .V /;
(SCC) �.WS / is strongly convex cocompact in P .V /;
(WH+) WS is word hyperbolic and Ai;jAj;i > 4 for all i ¤ j with mi;j D1.
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Remark 1.14. Corollary 1.13 was previously proved in the case that � preserves a non-
degenerate quadratic form on V , by the first three authors when WS is right-angled [21,
Theorem 8.2] and by the last two authors [37, Theorem 4.6] in general.

1.5. The subspace of convex cocompact representations

According to [23, Theorem 1.16], the set of convex cocompact representations is open in
Hom.WS ;GL.V //, but can we characterize it more precisely?

Suppose WS is irreducible and word hyperbolic, and let � 2 Homref.WS ; GL.V //
have Cartan matrix AD .Ai;j /16i;j6N . As we recalled in Section 1.2, the weak inequal-
ity Ai;jAj;i > 4 holds whenever mi;j D 1. By Corollary 1.13, the group �.WS / is
convex cocompact in P .V / if and only if these inequalities are all strict. It is then nat-
ural to ask if the open subset of convex cocompact representations is the full interior of
Homref.WS ;GL.V // in Hom.WS ;GL.V //. We show that the answer is “yes” in large
enough dimension (Corollary 1.16) but not in general (Example 8.5).

Recall that a representation � of a discrete group � into GL.V / is said to be semisim-
ple if it is a direct sum of irreducible representations; equivalently, the orbit of � under
the action of GL.V / by conjugation is closed. The quotient of the space of semisimple
representations by GL.V / is called the space of characters of � in GL.V /; we denote it
by �.�;GL.V //. IfWS is a Coxeter group, then a character coming from a representation
of WS as a reflection group in V is called a reflection character, and we shall denote the
space of such characters by �ref.WS ;GL.V //.

As a consequence of Corollary 1.13, we prove the following.

Corollary 1.15. Let WS be an infinite word hyperbolic irreducible Coxeter group. For
any V with n WD dim V > N WD #S , the set of characters Œ�� 2 �ref.WS ;GL.V // for
which �.WS / is convex cocompact in P .V / is precisely the interior of �ref.WS ;GL.V // in
�.WS ;GL.V //.

The main content of Corollary 1.15 is the case nDN . Indeed, a semisimple represen-
tation � 2 Homref.WS ;GL.V // with Cartan matrix A splits as a direct sum of a represen-
tation �0 of dimension rank.A/ plus a trivial representation of complementary dimension.
When n>N , the space �ref.WS ;GL.V // is homeomorphically parametrized by the space
of equivalence classes of N �N Cartan matrices that are compatible with WS (see Defi-
nition 3.7). Hence the structure of �ref.WS ;GL.V // is the same for all n D dim.V / > N .
Note that the bound n > N in Corollary 1.15 cannot be improved in general, since when
n < N , the condition that rank.A/ 6 n imposes a nontrivial constraint so that the entries
of the Cartan matrix may not be deformed freely. It can happen that 4 is an isolated local
minimum value of the function Ai;jAj;i for some pair of generators with mi;j D1 (see
Example 8.5). Note also that Corollary 1.15 does not extend to nonhyperbolic groups (see
Example 8.6).

The structure of the space Homref.WS ; GL.V // is more complicated than that of
�ref.WS ;GL.V //. While a Cartan matrix A determines at most one conjugacy class of
semisimple representations in Homref.WS ;GL.V //, there may be many conjugacy classes
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of nonsemisimple representations in Homref.WS ;GL.V // with Cartan matrix A. Further,
even in cases when n > N , it is difficult to determine if the map sending a representa-
tion � generated by reflections to the (equivalence class of a) Cartan matrix for � is open.
We prove the following.

Corollary 1.16. Let WS be an infinite word hyperbolic irreducible Coxeter group in
N D #S generators, and let V be a real vector space of dimension n. If

(1) n > 2N � 2, or

(2) WS is right-angled and n > N ,

then the set of representations � 2Homref.WS ;GL.V // for which �.WS / is convex cocom-
pact in P .V / is precisely the interior of Homref.WS ;GL.V // in Hom.WS ;GL.V //.

Corollary 1.16 is a consequence of the equivalence (CC), (WH+) of Corollary 1.13
together with some analysis of how the entries of the Cartan matrix deform under the
dimension restriction (see Section 8.2).

1.6. Anosov representations for Coxeter groups

We give an application of Corollary 1.11 to the topic of Anosov representations of word
hyperbolic groups into GL.V /. These are representations with strong dynamical prop-
erties which generalize convex cocompact representations into rank-one semisimple Lie
groups (see in particular [10, 27, 28, 31, 32, 36]). They have been much studied recently,
especially in the setting of higher Teichmüller theory.

We shall not recall the definition of Anosov representations in this paper, nor assume
any technical knowledge of them. We shall just use the following relation with convex
cocompactness in P .V /, proven in [21, 23] and also, in a slightly different form, in [52].

Fact 1.17 ([23, Theorem 1.4]). Let � be an infinite discrete subgroup of GL.V / pre-
serving some nonempty properly convex open subset � of P .V /. Then � is strongly
convex cocompact in P .V / (Definition 1.1 (iii)) if and only if � is word hyperbolic and the
natural inclusion � ,! GL.V / is P1-Anosov (i.e., Anosov with respect to the stabilizer
of a line in V ).

This relation allows for the construction of new examples of discrete subgroups of
GL.V / which are strongly convex cocompact in P .V /, by using classical examples of
Anosov representations: see, e.g., [23, Proposition 1.7] or [52, Corollary 1.33]. Con-
versely, Fact 1.17 gives a way to obtain new examples of Anosov representations by
constructing strongly convex cocompact groups: this is the point of view adopted in [21,
§8] and in the present paper.

More precisely, in [21, §8] and [37, §7] we constructed, for any infinite word hyper-
bolic irreducible Coxeter groupWS , examples of representations �2Homref.WS ;GL.V //
which are convex cocompact in P .V / for some V ; by Fact 1.17, this yielded examples
of P1-Anosov representations of WS (or any quasi-isometrically embedded subgroup)
into GL.V /. These representations took values in the orthogonal group of a nondegener-



J. Danciger, F. Guéritaud, F. Kassel, G.-S. Lee, L. Marquis 128

ate quadratic form. Obtaining such representations is interesting because, while Anosov
representations of free groups and surface groups are abundant in the literature, examples
of Anosov representations of more complicated hyperbolic groups have been much less
commonly known outside the realm of Kleinian groups.

Consider the set of P1-Anosov representations of a word hyperbolic (not necessarily
right-angled) Coxeter group into GL.V / for an arbitrary V . Corollaries 1.11 and 1.16,
together with Fact 1.17, yield the following description of those Anosov representations
that realize the group as a reflection group in V (see Section 8.3).

Corollary 1.18. Let WS be an infinite word hyperbolic Coxeter group in N D #S gener-
ators, and let V be a real vector space of dimension n. For any � 2 Homref.WS ;GL.V //
with Cartan matrix A D .Ai;j /16i;j6N , the following are equivalent:

� � is P1-Anosov;

� Ai;jAj;i > 4 for all i ¤ j with mi;j D1.

Assume moreover that WS is irreducible. If either n > 2N � 2 or n > N and WS is
right-angled, then the space of P1-Anosov representations of WS as a reflection group is
precisely the interior of Homref.WS ;GL.V // in Hom.WS ;GL.V //.

Remark 1.19. If n < N , then the space of P1-Anosov representations of WS as a reflec-
tion group may be smaller than the interior of Homref.WS ;GL.V //. This is the case in
Example 8.5 below, whereWS is word hyperbolic and the interior of Homref.WS ;GL.V //
contains a unique representation which is faithful and discrete but not Anosov. The exis-
tence of such a non-Anosov representation of a word hyperbolic group � admitting
a neighborhood in Hom.�;GL.V // consisting entirely of faithful and discrete represen-
tations provides a negative answer to a question asked in [33, §8] and [43, §4.3].

1.7. Organization of the paper

In Section 2, we recall some well-known facts in convex projective geometry, as well
as some results from [21, 23]. In Section 3, we recall Vinberg’s theory of linear reflection
groups and provide proofs of some basic results. In Section 4, we establish the maximality
of the Tits–Vinberg domain (Proposition 4.1), and in Section 5, we describe the minimal
invariant convex domain of a reflection group. In Section 6, we prove Theorem 1.8, and
in Section 7, we establish Theorem 1.3 and Corollaries 1.7, 1.10, 1.11, and 1.13. In Sec-
tion 8, we conclude with the proofs of Corollaries 1.15, 1.16, and 1.18, and give examples
showing that the dimension condition in Corollary 1.15 is optimal.

2. Reminders: Actions on properly convex subsets of projective space

In the whole paper, we fix a real vector space V of dimension n > 2. We first recall some
well-known facts in convex projective geometry, as well as some results from [21, 23].
Here we work with the projective general linear group PGL.V /, which naturally acts
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on the projective space P .V /; in the rest of the paper, we shall work with subgroups
of GL.V /, which also act on P .V / via the projection GL.V / ! PGL.V /. All of the
infinite discrete subgroups of GL.V / that we consider project injectively to discrete sub-
groups of PGL.V /.

2.1. Properly convex domains in projective space

Recall that an open domain � in the projective space P .V / is said to be convex if it is
contained and convex in some affine chart, properly convex if it is convex and bounded
in some affine chart, and strictly convex if in addition its boundary does not contain any
nontrivial projective line segment. It is said to have C 1 boundary if every point of the
boundary of � has a unique supporting hyperplane.

Let � be a properly convex open subset of P .V /, with boundary @�. Recall the
Hilbert metric d� on �:

d�.y; z/ WD
1

2
logŒa; y; z; b�

for all distinct y; z 2 �, where Œ�; �; �; �� is the cross-ratio on P1.R/, normalized so that
Œ0; 1; z;1� D z, and where a, b are the intersection points of @� with the projective line
through y and z, with a, y, z, b in this order (see Figure 1). The metric space .�; d�/
is complete (i.e., Cauchy sequences converge) and proper (i.e., closed balls are compact),
and the group Aut.�/ WD ¹g 2 PGL.V / j g �� D �º acts on� by isometries for d�. As
a consequence, any discrete subgroup of Aut.�/ acts properly discontinuously on �.

y

z

a

b

�

Fig. 1. Hilbert distance.

Let V � be the dual vector space of V . By definition, the dual convex set of � is

�� WD P .¹' 2 V � j '.x/ < 08x 2 xz�º/;

where xz� is the closure in V X ¹0º of an open convex cone of V lifting �. The set �� is
a properly convex open subset of P .V �/ which is preserved by the dual action of Aut.�/
on P .V �/.

Projective line segments in� are always geodesics for the Hilbert metric d�. When�
is not strictly convex, there may be other geodesics as well. However, a biinfinite geodesic
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of .�;d�/ always has well-defined distinct endpoints in @�, by [26, Theorem 3] (see also
[21, Lemma 2.6]).

Remark 2.1. If � is strictly convex, then all �-orbits of � have the same accumulation
points in @�. Indeed, let y 2 � and .
n/ 2 �N be such that .
n � y/ converges to some
y1 2 @�. Let z be another point of �. After possibly passing to a subsequence, .
n � z/
converges to some z1 2 @�. By properness of the action of � on �, the limit Œy1; z1�
of the sequence of compact intervals .
n � Œy; z�/ is contained in @�. Strict convexity
then implies that y1 D z1. This shows that any accumulation point of � � y is also an
accumulation point of � � z.

2.2. The proximal limit set and the full orbital limit set

Recall that an element of PGL.V / is called proximal in P .V / if it has a unique eigenvalue
of largest modulus and if this eigenvalue (which is then necessarily real) has multiplicity 1.
We shall use the following terminology as in [21, 23].

Definition 2.2. Let � be a discrete subgroup of PGL.V /. The proximal limit set of �
in P .V / is the closure ƒ� of the set of attracting fixed points of elements of � which are
proximal in P .V /.

When � acts irreducibly on P .V /, the proximal limit set ƒ� was studied in [4,5,29].
In that setting, the action of � on ƒ� is minimal (i.e., any orbit is dense) and ƒ� is
contained in any nonempty closed �-invariant subset of P .V / (see [4, Lemma 3.6] and
[5, Lemma 2.5 and Proposition 3.1]).

We shall use the following terminology from [23].

Definition 2.3. Let � be an infinite discrete subgroup of PGL.V / preserving a nonempty
properly convex open subset � of P .V /.

� The full orbital limit set of � in � is the set ƒorb
� .�/ �

x� of all accumulation points
of all �-orbits of �; it is �-invariant and contained in @�.

� The convex core of � in � is the convex hull C cor
� .�/ of ƒorb

� .�/ in �.

� The action of � on � is convex cocompact if � acts cocompactly on C cor
� .�/.

Thus an infinite discrete subgroup � of PGL.V / is convex cocompact in P .V / (Def-
inition 1.1 (ii)) if and only if it acts convex cocompactly (Definition 2.3) on some prop-
erly convex open subset � � P .V /. In this case, the proximal limit set ƒ� is always
nonempty: see [9, Proposition 2.3.15].

In the proof of Theorem 1.8 (more specifically, Proposition 6.5), we shall use the
following classical fact.

Fact 2.4 ([48, Proposition 3]). Let � be a discrete subgroup of PGL.V / dividing (i.e., act-
ing properly discontinuously and cocompactly on) some properly convex open subset �
of P .V /. Then the convex hull of ƒ� in � is equal to �.
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2.3. Maximal and minimal domains

We shall use the following properties, which are due to Benoist [5] in the irreducible case.
We denote by xZ the closure of a set Z in P .V / or P .V �/.

Proposition 2.5 (see [5, Proposition 3.1] and [23, Proposition 3.10 and Lemma 3.13]).
Let � be a discrete subgroup of PGL.V / preserving a nonempty properly convex open
subset � of P .V / and containing an element which is proximal in P .V /. Let ƒ�
(resp. ƒ�� ) be the proximal limit set of � in P .V / (resp. P .V �/). Then

(1) ƒ� � @� \ � � y for all y 2 �, and ƒ�� � @�
� \ � � Œ'� for all Œ'� 2 ��;

(2) more specifically, � and ƒ� lift to cones z� and zƒ� of V X ¹0º with z� properly
convex containing zƒ� in its boundary, and �� and ƒ�� lift to cones z�� and zƒ�� of
V � X ¹0º with z�� properly convex containing zƒ�� in its boundary, such that '.x/> 0

for all x 2 zƒ� and ' 2 zƒ�� ;
(3) for zƒ�� as in (2), the set

�max WD P
�®
x 2 V j '.x/ > 0 8' 2 zƒ��

¯�
is the connected component of P .V /X

S
Œ'�2ƒ�

�
PKer.'/ containing�; it is �-inva-

riant, convex, and open in P .V /; any �-invariant properly convex open subset �0

of P .V / containing � is contained in �max.

In (3), the convex set�max is not always properly convex. However, in the irreducible
case it is. Indeed, the following holds.

Proposition 2.6 ([5, Proposition 3.1]). Let � be a discrete subgroup of PGL.V / preserv-
ing a nonempty properly convex open subset � of P .V /. If � acts irreducibly on P .V /,
then � always contains a proximal element and the set �max of Proposition 2.5 (3) is
always properly convex. Moreover, there is a smallest nonempty �-invariant convex open
subset �min of �max, namely the interior of the convex hull of ƒ� in �max.

If moreover � acts strongly irreducibly on P .V / (i.e., all finite-index subgroups of �
act irreducibly), then �max is the unique maximal �-invariant properly convex open set
in P .V /; it contains all other �-invariant properly convex open subsets.

2.4. Convex cocompactness in projective space

Recall the notions of naive convex cocompactness, convex cocompactness, and strong
convex cocompactness from Definition 1.1, as well as the notion of convex cocompact
action from Definition 2.3. We will use the next characterizations and properties from [23].

Proposition 2.7 ([23, Theorem 1.15]). Let � be an infinite discrete subgroup of PGL.V /.
Then � is strongly convex cocompact in P .V / if and only if it is convex cocompact
in P .V / and word hyperbolic.

Proposition 2.8 ([23, Proposition 10.3]). Let � be an infinite discrete subgroup of
PGL.V /. If � is naively convex cocompact in P .V /, then it does not contain any unipotent
element.
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Proposition 2.9 ([23, Lemma 4.7]). Let � be a discrete subgroup of PGL.V / preserving
a properly convex open subset � of P .V /, and let � 0 be a finite-index subgroup of � .
Then � 0 is convex cocompact (resp. naively convex cocompact) in P .V / if and only if � is.

Proposition 2.10 ([23, Theorem 1.16 (A)]). Let � be an infinite discrete subgroup of
PGL.V /. The group � is convex cocompact in P .V / if and only if it is convex cocompact
in P .V �/ (for the dual action).

Proposition 2.11 ([23, Proposition 10.11]). Let � be an infinite discrete subgroup of
SL˙.V / acting trivially on some linear subspace V0 of V . The group � is convex cocom-
pact in P .V / if and only if the induced representation � ! SL˙.V=V0/ is injective and
its image is convex cocompact in P .V=V0/.

The last two statements imply the following.

Corollary 2.12. Let � be an infinite discrete subgroup of SL˙.V / preserving a linear
subspace V1 of V , such that the induced action on V=V1 is trivial. The group � is convex
cocompact in P .V / if and only if the induced representation � ! SL˙.V1/ is injective
and its image is convex cocompact in P .V1/.

Proof. For any subspace V 0 of V , we denote by Ann.V 0/ � V � the annihilator of V 0,
i.e., the subspace of linear forms ' 2 V � that vanish on V 0. The dual V 0� identifies with
V �=Ann.V 0/.

Let V2 be a complementary subspace of V1 in V . In a basis adapted to the decom-
position V D V1 ˚ V2, the group � is expressed as a group of matrices of the form�
i.
/ �
0 Id

�
, where i W� ! SL˙.V1/ is the restricted representation. In the dual basis, which

is adapted to the decomposition V � D Ann.V2/˚Ann.V1/, the dual action of � on V � is
given by

�
>i.
/�1 0
� Id

�
. In other words, � acts trivially on the subspace Ann.V1/ of V �.

By Proposition 2.11, the group � is convex cocompact in P .V �/ if and only if the
induced representation 
 7! >i.
/�1 of � is injective and its image is convex cocom-
pact in P .V �=Ann.V1// ' P .V �1 /. Dualizing again, by Proposition 2.10, the group � is
convex cocompact in P .V / if and only if the restricted representation i is injective and its
image is convex cocompact in P .V1/.

3. Reminders: Vinberg’s theory for Coxeter groups

In this section, we set up some notation and recall the basics of Vinberg’s theory [49] of
linear reflection groups.

3.1. Coxeter groups

LetWS be a Coxeter group generated by a finite set of involutions S D ¹s1; : : : ; sN º, with
presentation

WS D hs1; : : : ; sN j .sisj /
mi;j D 181 6 i; j 6 N i; (3.1)
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wheremi;i D 1 andmi;j D mj;i 2 ¹2; 3; : : : ;1º for i ¤ j . The Coxeter diagram forWS
is a labeled graph GWS such that

(i) the set of nodes (i.e., vertices) of GWS is the set S ;
(ii) two nodes si ; sj 2 S are connected by an edge sisj of GWS if and only if mi;j 2

¹3; 4; : : : ;1º;
(iii) the label of the edge sisj is mi;j .

It is customary to omit the label of the edge sisj if mi;j D 3.
For any subset S 0 of S , the subgroupWS 0 ofWS generated by S 0 is the Coxeter group

with generating set S 0 and exponents m0i;j D mi;j for si ; sj 2 S 0, see [12, Chapter IV,
Theorem 2]. Such a subgroup WS 0 is called a standard subgroup of WS .

The connected components of the graph GWS are graphs of the form GWS` , ` 2 L,
where the S` form a partition of S . The subsets S` are called the irreducible compo-
nents of S . The group WS is the direct product of the standard subgroups WS` for ` 2 L;
these subgroups are called the irreducible factors of WS . The Coxeter group WS is called
irreducible if it has only one irreducible factor, i.e., GWS is connected.

3.2. Representing the generators of WS by reflections in hyperplanes

We shall use the following terminology.

Definition 3.1. AnN �N real matrix AD .Ai;j /16i;j6N is weakly compatible with the
Coxeter group WS if8̂̂̂̂

<̂̂
ˆ̂̂̂:

Ai;i D 2 for all i;

Ai;j D 0 for all i ¤ j with mi;j D 2;

Ai;j < 0 for all i ¤ j with mi;j ¤ 2;

Ai;jAj;i D 4 cos2
� �

mi;j

�
for all i ¤ j with 2 < mi;j <1:

(3.2)

Consider N -tuples ˛ D .˛1; : : : ; ˛N / 2 V �N of linear forms and v D .v1; : : : ; vN / 2
V N of vectors. If the matrix A D .˛i .vj //16i;j6N is weakly compatible, then for any i ,

�.si / WD .x 7! x � ˛i .x/vi / (3.3)

is a linear reflection of V in the hyperplane Ker.˛i /, and (3.3) defines a group homomor-
phism �WWS !GL.V /, i.e., �.sisj /mi;j D Id for all 16 i; j 6N (see [49, Propositions 6
and 7]).

Definition 3.2. A representation �WWS ! GL.V / is generated by weakly compatible re-
flections if it is defined by (3.3) for some ˛D .˛1; : : : ;˛N /2 V �N and vD .v1; : : : ; vN /2
V N such that A D .˛i .vj //16i;j6N is weakly compatible with WS . In this case, we say
that A is the Cartan matrix of .˛; v/ and a Cartan matrix for �.

We note that for any i , the pair .˛i ; vi / 2 V � � V defining the reflection �.si / in (3.3)
is not uniquely determined by �.si /. Indeed, for any �i ¤ 0 the pair .�i˛i ; ��1i vi / yields
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the same reflection. Changing .˛i ; vi / into .�i˛i ; ��1i vi / changes the Cartan matrix A

into its conjugate DAD�1, where D D Diag.�1; : : : ; �N / is diagonal. Assuming that A

is weakly compatible withWS , we note thatDAD�1 is also weakly compatible withWS
if and only if the diagonal entries of D associated to any irreducible factor of WS have
constant sign. In that case,DAD�1 D jDjAjDj�1, where jDj denotes the positive diag-
onal matrix whose entries are the absolute values of those of D.

Definition 3.3. Two N �N matrices which are weakly compatible with WS are consid-
ered equivalent if they differ by conjugation by a positive diagonal matrix.

While the Cartan matrix A is not uniquely determined by the representation �, its
equivalence class is. In particular, for any 1 6 i; j 6 N , the product Ai;jAj;i is uniquely
determined by �. The quantity Ai;jAj;i varies as an algebraic function, invariant under
conjugation, as � ranges over the semialgebraic set of representations of WS to GL.V /
generated by weakly compatible reflections.

Remark 3.4. There exist representations of WS taking the generators to reflections as
in (3.3) for which the matrix A D .˛i .vj //16i;j6N is not weakly compatible with WS :
for instance, when A satisfies (3.2) with � replaced by 2� . The representations generated
by weakly compatible reflections form an open and closed subset of Hom.WS ;GL.V //,
containing the set Homref.WS ;GL.V // of Sections 1.2 and 3.3 below.

The following notation and terminology will be used throughout the rest of the paper.

Definition 3.5. Let �WWS ! GL.V / be a representation generated by weakly compatible
reflections, associated to some ˛ D .˛1; : : : ; ˛N / 2 V �N and v D .v1; : : : ; vN / 2 V N .
Let Vv be the span of v1; : : : ; vN and V˛ the intersection of the kernels of ˛1; : : : ; ˛N .
We say that the representation � (or its image �.WS /) is reduced if V˛ D ¹0º, and dual-
reduced if Vv D V .

Note that V˛ is the subspace of V of �.WS /-fixed vectors, and Vv is another �.WS /-
invariant subspace of V .

Remark 3.6. In general, a representation �WWS ! GL.V / generated by weakly compat-
ible reflections induces three representations:

� �v on Vv which is a dual-reduced representation,

� �˛ on V ˛ WD V=V˛ which is a reduced representation,

� �˛v on V ˛v WD Vv=.Vv \ V˛/ which is a reduced and dual-reduced representation.

These three representations are still generated by weakly compatible reflections with the
same Cartan matrix A D .˛i .vj //16i;j6N .

3.3. Representations of WS as a reflection group

Let �WWS ! GL.V / be a representation of WS generated by weakly compatible reflec-
tions (Definition 3.2), associated to ˛D .˛1; : : : ;˛N /2V �N and v D .v1; : : : ; vN /2V N ;
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by definition, the Cartan matrix A D .˛i .vj //16i;j6N satisfies conditions (3.2). The
cone

z� WD ¹x 2 V j ˛i .x/ 6 081 6 i 6 N º (3.4)

is called the closed fundamental polyhedral cone in V associated to .˛; v/. As mentioned
in Section 1.2, assuming that

the convex polyhedral cone z� has nonempty interior; (3.5)

Vinberg [49] proved that this cone has N sides, and that �.
/ � Int.z�/ \ Int.z�/ D ¿ for
all 
 2 WS X ¹eº if and only if the Cartan matrix A further satisfies

Ai;jAj;i > 4 for all i ¤ j with mi;j D1: (3.6)

In that case, � is injective, and the stabilizer of any face of z� coincides with the stan-
dard subgroup generated by the reflections in the hyperplanes Ker.˛i / containing that
face.

Definition 3.7. AnN �N real matrix AD .Ai;j /16i;j6N is compatible with the Coxeter
group WS if A is weakly compatible with WS (Definition 3.1) and satisfies (3.6).

A representation �WWS ! GL.V / generated by reflections in hyperplanes such that
the Cartan matrix A D .˛i .vj //16i;j6N is compatible and such that (3.5) holds is a rep-
resentation ofWS as a reflection group in V as in Definition 1.2. We emphasize that (3.5)
always holds if WS is irreducible and nonaffine (see Remark 3.14). As in Section 1.2, we
denote by Homref.WS ;GL.V // the set of representations ofWS as a reflection group in V .

Consider � 2 Homref.WS ;GL.V //. By [49, Theorem 2], the group �.WS / acts prop-
erly discontinuously on a nonempty convex open cone z�TV of V , namely the interior of
the union of all �.WS /-translates of the fundamental polyhedral cone z�. We shall call this
convex cone the Tits–Vinberg cone; it is sometimes called simply the Tits cone. It is equal
to V if WS is finite, and does not contain 0 if WS is infinite and irreducible.

Fact 3.8 ([49, Theorem 2]). The set z�[ WD z� \ z�TV is equal to z� minus its faces of
infinite stabilizer; it is a fundamental domain for the action of �.WS / on z�TV. The quo-
tient Q WD �.WS /n z�TV is an orbifold homeomorphic to z�[ with mirrors on the reflection
walls. (In particular, any subset Q0�Q is homeomorphic to its preimage in z�[, which can
therefore be seen as a fundamental domain for the action of �.WS / on the full preimage
of Q0 in z�TV.)

The cone z�TV X ¹0º projects to a nonempty �.WS /-invariant open subset �TV of
P .V /, which is convex whenever WS is infinite and irreducible; we shall call it the Tits–
Vinberg domain. The action ofWS on�TV is still properly discontinuous. A fundamental
domain �[ for the action on �TV is obtained from the projection � of z� to P .V /, as
before, by removing the faces of infinite stabilizer.

Remark 3.9. In fact, [49, Theorem 2] shows that the union of all �.WS /-translates of z�
(not only of z�[) is also convex.
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Fig. 2. Infinite Coxeter groups on two generators as in Example 3.10, cases (i)–(iii). The groups are
shown acting on R2, R2 and P .R3/, respectively. In the third panel, the points Œv1�, Œv2� and Œu�
are at infinity, and �TV is the full affine chart.

Example 3.10 (see [49, §2] and Figure 2). Suppose N D 2 and m1;2 D 1. Then WS '
.Z=2Z/ � .Z=2Z/ is of type zA1 (see Appendix A). The infinite cyclic subgroup generated
by s1s2 has index two inWS . Consider � 2 Homref.WS ;GL.V // with Cartan matrix AD

.Ai;j /16i;j62.
(i) Suppose that t WD A1;2A2;1 > 4. Then v1, v2 are linearly independent and V D

Vv ˚ V˛ . The polyhedral cone z� is the set°
�1v1 C �2v2

ˇ̌̌
�1; �2 > 0 and

2

jA2;1j
6
�1

�2
6
jA1;2j

2

±
C V˛: (3.7)

The element �.s1s2/ acts on V˛ trivially and acts on Vv as the matrix
��1CA1;2A2;1 A1;2

�A2;1 �1

�
(in the basis .v1; v2/). In particular, �.s1s2/ and �.s1s2/�1 are proximal in P .V /, with
attracting fixed points ŒxC�; Œx�� 2 P .V /, where x˙ D .t ˙

p
t .t � 4//v1 � 2A2;1v2, and

z�TV D R>0 xC CR>0 x� C V˛:

Since the induced action of �.WS / on the image of z�TV in P .V=V˛/ is cocompact and
the induced representation � ! SL˙.V=V˛/ is injective, Proposition 2.11 implies that
�.WS / acts convex cocompactly on some properly convex open subset � of P .V / (Defi-
nition 2.3), with ƒorb

� .�.WS // D ¹ŒxC�; Œx��º.
Suppose now that t WDA1;2A2;1D 4. By considering the Cartan matrix

� 2 A1;2
4=A1;2 2

�
,

we see that u WD A1;2v1 � 2v2 2 Vv \ V˛ . We have assumed that (3.5) holds, hence ˛1
and ˛2 are linearly independent. Choose w 2 Ker.˛2/ such that ˛1.w/ D 1.
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(ii) On the one hand, if u D 0, then V D span.v1; w/ ˚ V˛; the elements �.s1/
and �.s2/ act on V˛ trivially and act on span.v1; w/ as the matrices . �1 �10 1 / and . �1 00 1 /,
respectively.

(iii) On the other hand, if u ¤ 0, then V D span.u; v1; w/ ˚ V 0˛ , where V 0˛ is any
complement of Ru in V˛; the elements �.s1/ and �.s2/ act on V 0˛ trivially and act on
span.u; v1; w/ as the matrices0@1 0 0

0 �1 �1

0 0 1

1A and

0@1 2=A1;2 0

0 �1 0

0 0 1

1A ;
respectively.

In both cases (ii) and (iii), the element �.s1s2/ 2 GL.V / is unipotent (with a unique
nontrivial Jordan block, of size 2 and 3, respectively) and the Tits–Vinberg domain�TV is
an affine chart of P .V /, namely the complement of the projective hyperplane P .VvCV˛/.
The Tits–Vinberg cone z�TV is the connected component of V X .Vv C V˛/ (an open
halfspace of V ) that contains �w.

In all three cases, any �.WS /-invariant properly convex open cone of V is contained in
either z�TV or �z�TV. Indeed, in case (i) the orbit of any point of R<0x� CR>0xC C V˛
escapes in the directions of both xC and �xC (along two branches of hyperbola), causing
the closure of its convex hull to contain a full line. In case (ii), there is no �.WS /-invariant
properly convex open cone in V at all: any orbit in V X .Rv1 C V˛/ escapes in the direc-
tions of both v1 and �v1. In case (iii), any orbit in .Vv C V˛/ X .RuC V˛/ escapes in
the directions of both u and �u, hence every �.WS /-invariant properly convex open cone
must stay disjoint from Vv C V˛ D @ z�TV.

Remark 3.11. We shall say that �WWS !GL.V / is symmetrizable if the Cartan matrix A

is equivalent (Definition 3.3) to a symmetric matrix; in this case, � preserves a (pos-
sibly degenerate) symmetric bilinear form on V . When n WD dim V D N WD #S , one
may obtain a symmetrizable representation �WWS ! GL.V / of WS as a reflection group
(which is reduced in the sense of Definition 3.5) by choosing any nonnegative numbers
.�i;j /16i;j6N , setting Ai;j D Aj;i to be �2 � �i;j if mi;j D 1 and �2 cos.�=mi;j /
otherwise, taking for ˛i the i -th element of the dual canonical basis of V , and taking
for vi the i -th column of A. When all the �i;j vanish, A is the matrix Cos.WS / WD
.�2 cos.�=mi;j //16i;j6N (with the convention �=1 D 0) and � is the so-called Tits
geometric representation [47].

3.4. Types of Coxeter groups

By [38], every irreducible Coxeter group WS is either

� spherical (i.e., finite),

� affine (i.e., infinite and virtually abelian), or

� large (i.e., there exists a surjective homomorphism of a finite-index subgroup of WS
onto a nonabelian free group).
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Any spherical (resp. affine) irreducible Coxeter group WS in N D #S generators acts
irreducibly on the sphere of dimensionN � 1 (resp. properly discontinuously and cocom-
pactly on Euclidean space of dimension N � 1) with a simplex as a fundamental domain
(see [19] and the next Section 3.5).

3.5. Types of compatible matrices

We now assume that the Coxeter group WS is irreducible. Let A 2MN .R/ be a matrix
compatible withWS (Definition 3.7). By construction, the matrix A0 WD 2 Id�A2MN .R/
has nonnegative entries. By the Perron–Frobenius theorem, A0 admits an eigenvector with
positive entries corresponding to the highest eigenvalue of A0; sinceWS is irreducible, this
vector is unique up to scale (see, e.g., [46, Theorem 1.5]). It is also an eigenvector for the
lowest eigenvalue of A.

Definition 3.12. The compatible matrix A is of negative (resp. zero, resp. positive) type
if the lowest eigenvalue of A is negative (resp. zero, resp. positive).

The type of A only depends on its equivalence class (Definition 3.3).

Remark 3.13. Vinberg [49] uses the following additional terminology: for an irreducible
Coxeter group and a representation �WWS ! GL.V / of WS as a reflection group, �.WS /
is elliptic (resp. parabolic) if � is reduced and A is of positive type (resp. zero type);
�.WS / is hyperbolic if � is reduced, dual-reduced, and preserves a Lorentzian quadratic
form on V . We shall not need this terminology in the current paper.

Remark 3.14. Suppose A D .˛i .vj //16i;j6N for some ˛ D .˛1; : : : ; ˛N / 2 V �N and
v D .v1; : : : ; vN / 2 V

N . Let t D .t1; : : : ; tN / 2 .R>0/N be the Perron–Frobenius eigen-
vector of A0 D 2 Id�A. Let x D

PN
jD1 tj vj 2 Vv . The i -th entry of At is ˛i .x/.

(1) If A is of negative (resp. positive) type, then x (resp. �x) belongs to the interior
Int.z�/ of the fundamental polyhedral cone z� of (3.4). In particular, Int.z�/ is non-
empty, i.e., (3.5) holds.

(2) If A is of zero type, then x belongs to Vv \ V˛ . Determining whether (3.5) holds is
more subtle: see [49, Proposition 13] (and also Remarks 3.16 and 3.27 below).

Fact 3.15 ([49, Theorem 3]). Let A2MN .R/ be a matrix compatible with the irreducible
Coxeter group WS , and let � D .�1; : : : ; �N / 2 RN .

(1) If A is of negative type and both � and A� have all their entries > 0, then � D 0.

(2) If A is of zero type and A� has all its entries > 0, then A� D 0.

(3) If � and �A� have all their entries > 0, then A is of negative type.

(4) If � has all its entries > 0 and A� D 0, then A is of zero type.

Remark 3.16. Let �WWS ! GL.V / be a representation of WS as a reflection group with
Cartan matrix A, and let �v , �˛ , and �˛v be the induced representations of Remark 3.6. If A

is of negative or positive type, then �v , �˛ , and �˛v are representations ofWS as a reflection
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group, by Remark 3.14 (1); in particular, these representations are injective. If A is of zero
type, then �˛ is a representation of WS as a reflection group (see Fact 3.17 (2a)), but �v
and �˛v are never representations ofWS as a reflection group, as (3.5) fails by Fact 3.15 (2).

As in Section 1.5, recall that a representation of a group into GL.V / is semisimple
if it is a direct sum of irreducible representations. The following important fact will be
used several times throughout the paper; we explain how it follows from Vinberg’s work
in Section 3.11 below.

Fact 3.17 ([49, Lemma 13 and Propositions 16, 21–23]). Let WS be an irreducible Cox-
eter group and A 2MN .R/ a compatible Cartan matrix for WS (Definition 3.7).

(1) The group WS is spherical if and only if A is of positive type; in this case, A is
symmetrizable.

(2) Suppose WS is affine.

(a) If A is of zero type, then A is symmetrizable and any representation �WWS !
GL.V / of WS as a reflection group (Definition 1.2) with Cartan matrix A is
nonsemisimple; the induced representation �˛WWS ! GL.V ˛/ of Remark 3.6
is a representation of WS as a reflection group whose image acts properly dis-
continuously and cocompactly on the affine chart P .V ˛/ X P .V ˛v / of P .V ˛/,
preserving some Euclidean metric; P .V ˛/ X P .V ˛v / is the Tits–Vinberg domain
for �˛.WS /.

(b) If A is of negative type, then det A¤ 0 andWS is of type zAN�1 withN > 2 (see
Appendix A); if furthermore N > 3, then A is not symmetrizable.

(3) If WS is large, then A is of negative type.

Example 3.18. Suppose N D 2 and WS is infinite. Then m1;2 D 1 and WS is affine
of type zA1 as in Example 3.10. Let A D .Ai;j /16i;j62 be a compatible Cartan matrix
for WS , and let t WD A1;2A2;1. If t > 4 (case (i) of Example 3.10), then A is of negative
type and det A D 4 � t ¤ 0. If t D 4 (cases (ii) and (iii) of Example 3.10), then A is of
zero type; the group �˛.WS / acts properly discontinuously and cocompactly on the affine
chart of P .V ˛/ D P .V=V˛/ ' P .R2/ which is the complement of P ..Vv C V˛/=V˛/;
this affine chart is the image of the Tits–Vinberg domain �TV D P .V / X P .Vv C V˛/ by
the natural projection P .V / X P .V˛/! P .V ˛/.

Remark 3.19. Let Homfd.WS ;GL.V // be the space of faithful and discrete represen-
tations of WS into GL.V /, and let Homwc.WS ;GL.V // (resp. Homc.WS ;GL.V //) be
the space of representations generated by reflections for which the corresponding Cartan
matrix AD .˛i .vj //16i;j6N is weakly compatible (resp. compatible) as in Definitions 3.1
and 3.2 (resp. Definition 3.7).

(1) For any irreducible Coxeter group WS , we have

Homref.WS ;GL.V // � Homfd.WS ;GL.V // \ Homwc.WS ;GL.V //

� Homc.WS ;GL.V //:
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Indeed, the first inclusion holds by [49] as explained in Section 3.3. For the sec-
ond inclusion, note that if � 2 Homfd.WS ;GL.V // \ Homwc.WS ;GL.V //, then for
any 1 6 i; j 6 N with mi;j D 1 we must have Ai;jAj;i > 4: indeed, otherwise
�.sisj / would be conjugate to a rotation of finite order (contradicting faithfulness) or
to a rotation of infinite order (contradicting discreteness).

(2) If the irreducible Coxeter group WS is not affine, then Homref.WS ;GL.V // is open
and closed in Homfd.WS ; GL.V //. Indeed, Remark 3.14 (1) and Fact 3.17 (1)–(3)
imply that in this case Homref.WS ;GL.V // is equal to Homc.WS ;GL.V //, hence to
Homfd.WS ;GL.V // \ Homwc.WS ;GL.V // by (1) above; on the other hand, in gen-
eral Homwc.WS ;GL.V // is open and closed in Hom.WS ;GL.V // as observed in Re-
mark 3.4.

By contrast with Remark 3.19 (2), if WS is affine, then Homref.WS ;GL.V // is open
but not always closed in Homfd.WS ;GL.V //: see Remark 3.27.

3.6. Remarks for nonirreducible Coxeter groups

Here are partial generalizations of Remarks 3.14 (1) and 3.16.

Remark 3.20. Let WS D WS1 � � � � � WSr be an infinite Coxeter group which is the
product of r > 1 irreducible factors. Let �WWS ! GL.V / be a representation gener-
ated by weakly compatible reflections, defined by ˛ D .˛1; : : : ; ˛N / 2 V

�N and v D
.v1; : : : ; vN / 2 V

N . Suppose that for each irreducible factor WS` of WS , the Cartan sub-
matrix AS` D .˛i .vj //si ;sj2S` is of negative type, and consider as in Remark 3.14 (1) the
vector x` D

P
sj2S`

tj vj , where .tj /sj2S` 2 .R>0/
S` is the Perron–Frobenius vector of

2 Id�AS` . Then x D x1 C � � � C xr 2 Int.z�/, and so � is a representation as a reflection
group.

Remark 3.21. Let �WWS ! GL.V / be a representation of the (possibly nonirreducible)
Coxeter groupWS as a reflection group, and let �v , �˛ , and �˛v be the induced representa-
tions of Remark 3.6. If the Cartan submatrix AS` is of negative type for each irreducible
factorWS` ofWS , then �v , �˛ , and �˛v are representations ofWS as a reflection group, by
Remark 3.20; in particular, these representations are injective.

3.7. Affine groups with Cartan matrices of negative type

Let WS be an irreducible Coxeter group of type zAN�1 with N > 2 (see Appendix A).
We now give more details about representations ofWS as a reflection group with a Cartan
matrix of negative type as in Fact 3.17 (2b). The caseN D 2 is described in Example 3.10,
so we assume N > 3. The following is stated in [38, Lemma 8] or [40, Theorem 2.18];
we give a short proof for the reader’s convenience.

Lemma 3.22. LetWS be a Coxeter group of type zAN�1 withN > 3 and �WWS !GL.V /
a representation ofWS as a reflection group in V , associated to some ˛ D .˛1; : : : ; ˛N / 2
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V �N and v D .v1; : : : ; vN / 2 V N . Suppose the Cartan matrix A D .˛i .vj //16i;j6N is
of negative type and �.WS / is reduced and dual-reduced (Definition 3.5). Then

(1) dim.V / D N ;

(2) �.WS / divides (i.e., acts properly discontinuously and cocompactly on) an open sim-
plex of P .V /, namely �TV;

(3) �TV is the unique nonempty �.WS /-invariant convex open subset of P .V /.

Proof. (1) By Fact 3.17, we have detA¤ 0, hence the vectors v1; : : : ; vN 2 V are linearly
independent. Since �.WS / is dual-reduced, these vectors span V , hence dimV D N .

(2) Without loss of generality, we may assume that A D A0 as in (3.11) and, since
det A ¤ 0, that in some appropriate basis of V ' RN we have

0B@ ˛1
:::

˛N

1CA D
0BBBB@

1 �1

: : :
: : :

: : : �1

�a�1 1

1CCCCA and .v1 � � � vN/ D

0BBBB@
1 �a

�1
: : :

: : :
: : :

�1 1

1CCCCA :
The formula �.si / D .x 7! x � ˛i .x/vi / yields

¹�.si /º16i6N D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
0 1

1 0 0

1

0
: : :

1

1CCCCCA ; : : : ;
0BBBBB@
1

: : : 0

1

0 0 1

1 0

1CCCCCA ;
0BBBBB@
0 a

1 0

: : :

0 1

a�1 0

1CCCCCA
9>>>>>=>>>>>;
:

The first N � 1 of these elements generate a copy of the symmetric group SN . We have

�..s1s2 � � � sN�1/.sN�2 � � � s2s1/sN / D Diag.a�1; 1; : : : ; 1; a/I (3.8)

from this it is easy to see that �.WS / ' zAN�1 is isomorphic to SN Ë ZN�1. Indeed,
the normal subgroup ZN�1 consists of all matrices of the form Diag.a�1 ; : : : ; a�N / with
�i 2 Z and �1 C � � � C �N D 0; we get a system of generators for this ZN�1 by conjugat-
ing (3.8) under h�.s1/; : : : ; �.sN�1/i ' SN .

If a < 1 (resp. a > 1), then the convex cone z� D
TN
iD1¹˛i 6 0º is the R>0-span

(resp. R60-span) of the column vectors .a; : : : ; a; 1; : : : ; 1/. In either case, � is a closed
(compact) projective simplex contained in the projectivized positive orthant P .RN>0/. The
Tits–Vinberg domain �TV, which is by definition (Section 3.3) the interior of the union
of the �.WS /-translates of �, is equal to P .RN>0/. Thus �.WS / divides �TV.

(3) The properly convex open cones of RN preserved by the ZN�1 factor of �.WS /'
SN Ë ZN�1 (acting as diagonal matrices) are precisely the orthants. The convex (not
necessarily properly convex) cones preserved by ZN�1 are the Cartesian products of N
factors each equal to R>0, R<0, or R. The only nontrivial such product which is SN -
invariant after projectivization is P .RN>0/.
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3.8. Strong irreducibility

The following proposition will be used several times below. For reflection groups (Defi-
nition 1.2), the first two items were proved in [49, Proposition 19] and [49, Corollary to
Proposition 19], and the third one in [40, Theorem 2.18].

Proposition 3.23. Let WS be a Coxeter group in N generators as in (3.1), and assume
that it is irreducible. Let �WWS ! GL.V / be a representation ofWS generated by weakly
compatible reflections (Definition 3.2), associated to some ˛ D .˛1; : : : ; ˛N / 2 V �

N and
v D .v1; : : : ; vN / 2 V

N . Let Vv and V˛ be as in Definition 3.5. Then

(1) a linear subspace V 0 of V is �.WS /-invariant if and only if Vv � V 0 or V 0 � V˛;
(2) the representation � is irreducible if and only if Vv D V and V˛ D ¹0º, i.e., if and

only if �.WS / is reduced and dual-reduced (Definition 3.5);
(3) if � is irreducible and WS is large, then � is actually strongly irreducible.

By strongly irreducible we mean that the restriction of � to any finite-index subgroup
of WS is irreducible; equivalently, the group �.WS / does not preserve a finite union of
nontrivial subspaces of V .

Proof. (1) If Vv � V 0, then V 0 is invariant under each �.si /D .x 7! x � ˛i .x/vi /, hence
under �.WS /; if V 0 � V˛ , then V 0 is pointwise fixed by each �.si /, hence by �.WS /.
Conversely, suppose V 0 is �.WS /-invariant. Let S 0 be the set of generators sj of WS such
that vj 2 V 0, and let S 00 be its complement in S . For any si 2 S 00 and v0 2 V 0, we have
�.si /.v

0/D v0 � ˛i .v
0/vi 2 V

0, hence ˛i .v0/D 0. In particular, for any si 2 S 00 and sj 2 S 0

we have ˛i .vj /D 0, hencemi;j D 2 by weak compatibility of A. SinceWS is irreducible,
we have S 0 D S , in which case V 0 � Vv , or S 00 D S , in which case V 0 � V˛ .

(2) Note that Vv and V˛ are invariant subspaces of V with Vv ¤ ¹0º and V˛ ¤ V .
Therefore, if � is irreducible, then Vv D V and V˛ D ¹0º. Conversely, if Vv D V and
V˛ D ¹0º, then (1) implies that any invariant subspace is trivial, hence � is irreducible.

(3) Suppose by contradiction that WS is large and � is irreducible but not strongly
irreducible: this means that there is a finite collection F of nontrivial subspaces of V
which is preserved by the action of �. We may assume that F is closed under intersection
(excluding the trivial subspace).

We first claim that F does not contain any one-dimensional subspace U . Indeed,
if U 2 F is one-dimensional, then for any nonzero u 2 U , the set �.WS / � u must span V
since � is irreducible, hence this set contains a basis B of V . Consider the set of elements
of �.WS / whose action preserves each individual subspace of F ; it is a finite-index sub-
group H of �.WS /. The basis B is a simultaneous eigenbasis for all elements of H ,
hence H is abelian, and so WS is virtually abelian. This contradicts the assumption
that WS is a large irreducible Coxeter group.

Next, let U be a subspace in F of minimal dimension. We have dimU > 2 by the
previous claim. For each i , the subspace �.si / � U also belongs to F . Since �.si / is
a reflection, if we had �.si / � U ¤ U , then �.si / � U \ U would be a subspace in F
of dimension dimU � 1, nontrivial since dimU > 2, contradicting the minimality of U .
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Thus �.si / � U D U for all i , and so �.WS / � U D U , contradicting the irreducibility
of �.

Here is an analog of Proposition 3.23 (1) for Coxeter groups that are not necessarily
irreducible.

Proposition 3.24. LetWS be a (not necessarily irreducible) Coxeter group in N genera-
tors as in (3.1), and let �WWS ! GL.V / be a representation of WS generated by weakly
compatible reflections (Definition 3.2), associated to some ˛ D .˛1; : : : ; ˛N / 2 V �

N and
vD .v1; : : : ; vN /2 V

N . For any �.WS /-invariant subspace V 0 of V , there exists a decom-
position S D T t U such that WS D WT �WU and

span¹vi j si 2 T º DW .Vv/T � V 0 � .V˛/U WD
\
sj2U

Ker. j̨ /:

Proof. WriteWS as a product of irreducible factors:WS D WS1 � � � � �WSr , where S D
S1 t � � � t Sr . By Proposition 3.23 (1), for each 1 6 ` 6 r , either V 0 � .Vv/S` or V 0 �
.V˛/S` , and both cannot happen at once since vi 2 .Vv/S` X .V˛/S` for all si 2 S`. We can
take for T the union of those S` such that V 0 � .Vv/S` and for U the union of those S`
such that V 0 � .V˛/S` .

The following consequence of Proposition 3.24 will be used in Sections 4.2, 6.2, 6.4,
and 7.1.

Corollary 3.25. Let WS be a (not necessarily irreducible) Coxeter group in N gener-
ators, and let �WWS ! GL.V / be a representation of WS as a reflection group in V ,
associated to some ˛ D .˛1; : : : ; ˛N / 2 V

�N and v D .v1; : : : ; vN / 2 V
N . Suppose

that for each irreducible component S` of S , the corresponding Cartan submatrix AS` D

.˛i .vj //si ;sj2S` is of negative type. Then

(1) the proximal limit set ƒ�.WS / of �.WS / is nonempty and contained in P .Vv/;

(2) for any nonempty �.WS /-invariant closed properly convex subset C of �TV, the set
C \ P .Vv/ has nonempty interior in P .Vv/.

Proof. We first assume that WS is irreducible.
(1) Since the group �.WS / is generated by hyperplane reflections whose .�1/-eigen-

spaces lie in Vv , we have �.
/ � x � x 2 Vv for all x 2 V and 
 2WS , and so the proximal
limit set ƒ�.WS / of �.WS / is contained in P .Vv/ � P .V /. Let �˛v WWS ! GL.V ˛v / be the
representation induced by �, as in Remark 3.6. It is easy to check that for any 
 2WS , the
element �.
/ 2 GL.V / is proximal in P .V / if and only if the element �˛v .
/ 2 GL.V ˛v /
is proximal in P .V ˛v / (see, e.g., (3.10) below). Thus we only need to check that �˛v .WS /
contains a proximal element in P .V ˛v /. This is the case by Proposition 2.6, given that
�˛v .WS / acts irreducibly on P .V ˛v / by Proposition 3.23 (2).

(2) Let C be a nonempty �.WS /-invariant closed properly convex subset of �TV, and
let xC be its closure in P .V /. We claim that

ƒ�.WS / �
xC \ P .Vv/: (3.9)
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Indeed, if �TV � P .V / is properly convex, then (3.9) follows from Proposition 2.5 (1)
and (1) above. In general,�TV might not be properly convex, but we note that the relative
interior of C is a properly convex open subset of P .VC /, where VC is the span of C in V .
Since C � �TV and �TV \ P .V˛/ D ¿, the �.WS /-invariant subspace VC is not con-
tained in V˛ , hence it contains Vv by Proposition 3.23 (1). By (1) above, �.WS / contains
elements that are proximal in P .VC /, and ƒ�.WS / � P .Vv/; applying Proposition 2.5 (1)
to the relative interior of C , we obtain (3.9). The inclusion (3.9) implies that the convex
hull ofƒ�.WS / in�TV is contained in C \ P .Vv/. This convex hull has nonempty interior
in P .Vv/ because�TV \P .Vv/¤¿ (Remark 3.14 (1)) and the projective span ofƒ�.WS /
is the whole of P .Vv/, by Proposition 3.23 (1).

We now assume that WS D WS1 � � � � �WSr is a product of r irreducible factors.
(1) The proximal limit set ƒ�.WS / of �.WS / is contained in P .Vv/ � P .V / by the

same argument as in the irreducible case. It is nonempty because it contains the proxi-
mal limit set ƒ�.WS` / of �.WS`/ for each 1 6 ` 6 r , and the latter is nonempty by the
irreducible case treated above.

(2) For any 1 6 ` 6 r , the restriction of � to WS` is a representation of WS` as
a reflection group. Let �TV;` � P .V / be the corresponding Tits–Vinberg domain and
�[
`
� �TV;` the corresponding fundamental polytope as in Section 3.3. Let C be a non-

empty �.WS /-invariant closed properly convex subset of �TV and xC its closure in P .V /.
The irreducible case proved above implies that xC \ P ..Vv/S`/ has nonempty interior
in P ..Vv/S`/ for all 1 6 ` 6 r . In particular, the interior U` of xC \ P ..Vv/S`/\�

[
`

in
P ..Vv/S`/ is nonempty. Lift U1; : : : ; Ur to convex cones zU1; : : : ; zUr of V contained
in z�TV. The sum zU1C � � � C zUr is open in Vv . It projects down to a convex open subset of
P .Vv/ which is contained in�[ \ xC , and in fact contained in C as C is closed in�TV.

3.9. Block triangular decomposition

We now assume that the Coxeter groupWS is irreducible. Let �WWS !GL.V / be a repre-
sentation ofWS generated by weakly compatible reflections (Definition 3.2), associated to
some ˛ 2 V �N and v 2 V N , with Cartan matrix A. Choose a complementary subspace U
of V˛ \ Vv in V˛ , a complementary subspace U 0 of V˛ \ Vv in Vv , and a complementary
subspace U 00 of V˛ C Vv in V :

V D „ ƒ‚ …
V˛

U ˚

Vv‚ …„ ƒ
.V˛ \ Vv/˚ U

0
˚U 00:

By definition (3.3) of the �.si /, in a basis adapted to this decomposition of V , the elements
of �.WS / are matrices of the form

�.
/ D

Id 0 0 0

0 Id � �

0 0 �˛v .
/ �

0 0 0 Id

0BBBB@
1CCCCA

�v.
/ (dual-reduced)

�˛.
/ (reduced) (3.10)
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where �v , �˛ , �˛v are the induced representations from Remark 3.6, and we implicitly
identify V ˛ D V=V˛ withU 0˚U 00 and V ˛v D Vv=.V˛ \ Vv/withU 0. (The zeros in (3.10)
come from the definition of V˛ in columns 1 and 2, and of Vv in rows 1 and 4.) Further,
dim.U 0/D rank.A/ by [49, Proposition 15] and �˛v is irreducible by Proposition 3.23 (2).

Lemma 3.26. The representation � is semisimple if and only if V D V˛ ˚ Vv , i.e.,
.U; V˛ \ Vv; U

0; U 00/ D .V˛; ¹0º; Vv; ¹0º/, in which case � has the form
� Id 0
0 �˛v

�
.

Proof. If � is semisimple, then V˛ (resp. Vv) admits a �.WS /-invariant complementary
subspace in V , which must contain Vv (resp. be contained in V˛) by Proposition 3.23 (1);
we deduce V D V˛ ˚ Vv . Conversely, if V D V˛ ˚ Vv , then � has the given matrix form,
hence � is semisimple since �˛v is irreducible.

Remark 3.27. If WS is an affine irreducible Coxeter group in N > 2 generators as
in (3.1), then the analog of Remark 3.19 (2) fails: the set Homref.WS ; GL.V // is not
closed in Homfd.WS ;GL.V // when dim.V / > N . Indeed, consider the Tits geometric
representation �WWS ! GL.RN / of Remark 3.11, with Cartan matrix A D Cos.WS / D
.�2 cos.�=mi;j //16i;j6N (with the convention �=1 D 0), and associated .˛1; : : : ; ˛N /
(which is the canonical basis of .RN /�) and .v1; : : : ; vN / (such that vi 2 RN is the
i -th column of A in the canonical basis of RN ). By construction, � is reduced (Def-
inition 3.5) and symmetrizable, and if N D 2 then one readily sees that A is of zero
type. By Fact 3.17 (2), the �.WS /-invariant subspace V 0 WD span.v1; : : : ; vN / of RN is
a hyperplane, and �.WS / acts properly discontinuously and cocompactly on the affine
chart P .RN / X P .V 0/, preserving some Euclidean metric (hence �.WS / is a crystallo-
graphic group). Note that the restriction �0 of � to V 0 is not injective. In fact, it has finite
image since �0 is the linear part of the action of �.WS / on the affine chart P .RN /XP .V 0/.
For 1 6 i 6 N , let ˛0i 2 V

0� be the restriction of ˛i to V 0. For any c; d 2 R, we define
a representation �c;d WWS ! GL .R˚ V 0 ˚R/„ ƒ‚ …

DWV

by the data:

˛
c;d
i WD .0; ˛0i ;�d/ and v

c;d
i WD

0@�cvi
0

1A ; so that �c;d .si / D

1 c˛0i �cd

0 Id � vi˛0i dvi

0 0 1

0BBB@
1CCCA

for all 1 6 i 6 N . For d ¤ 0, the representation in the bottom (red) box identifies with
.�c;d /˛ and is conjugate to �. For c ¤ 0, the representation in the upper (blue) box
identifies with .�c;d /v and is conjugate to the dual representation ��. Define V c;d˛ WDT
16i6N Ker.˛c;di / and V c;dv WD span16i6N .v

c;d
i /. Then by Fact 3.17 (2a),

�c;d 2 Homref.WS ;GL.V // , V c;d˛ C V c;dv ¤ V , d ¤ 0:

Applying Fact 3.17 (2a) to the dual representation .�c;d /�, we have that

.�c;d /� 2 Homref.WS ;GL.V // , V c;d˛ \ V c;dv ¤ ¹0º , c ¤ 0:
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Observing that �0;0 is not injective, we have that

�c;d 2 Homfd.WS ;GL.V // , .c; d/ ¤ .0; 0/:

Thus, for d ¤ 0 we have �1;d 2 Homref.WS ;GL.V //, and as d ! 0 the limit lies in
Homfd.WS ;GL.V // X Homref.WS ;GL.V //, which proves the result.

When WS is of type zA1, the representation �1;1 corresponds to Example 3.10 (iii);
in the affine chart of Figure 2 (iii), the affine action of �1;d .WS / is a scaling, by a factor d ,
of the affine action of �1;1.WS /.

In general, �1;1.WS / can also be realized by letting WS act properly discontinuously
and cocompactly by reflections on a horosphere of the hyperbolic space HN , and lifting
to reflections of the Minkowski space RN;1.

3.10. Parametrizing characters by equivalence classes of Cartan matrices

Suppose our Coxeter group WS in N generators is infinite and irreducible. Let A be an
N �N real matrix which is weakly compatible with WS (Definition 3.1).

If rank.A/ D dim.V /, then we may directly construct ˛ D .˛1; : : : ; ˛N / 2 V �N and
v D .v1; : : : ; vN / 2 V

N with .˛i .vj //Ni;jD1 D A as follows. Choose rank.A/ linearly
independent rows of A giving a basis of the row space of A; the subset of ˛ correspond-
ing to those rows must form a basis B� of V �. Each remaining row is a linear combination
of the chosen row basis; the corresponding element of ˛ must be the corresponding lin-
ear combination of B�. This uniquely determines ˛, up to the choice of the basis B�.
The vectors of v are then determined by their coordinates with respect to B� which are
the entries of A. Hence, up to the action of GL.V /, the Cartan matrix A uniquely deter-
mines ˛ and v. The corresponding representation �WWS ! GL.V / generated by weakly
compatible reflections is uniquely determined, up to conjugacy, by the equivalence class
of A; it is irreducible by Proposition 3.23 (2).

If rank.A/ < dim.V /, then splitting V into a trivial summand plus a subspace of
dimension rank.A/ and applying the same process yields a unique conjugacy class of
semisimple representations. Hence we get the following fact.

Fact 3.28. For any N �N real matrix A of rank 6 dim.V / which is weakly compatible
with WS (Definition 3.1), there is a unique conjugacy class of semisimple representations
�WWS ! GL.V / with Cartan matrix A.

Further, the constructive correspondence described above implies the following para-
metrization statement, which will be used in Section 8.

Fact 3.29. The map assigning to a conjugacy class of semisimple representations the
equivalence class of its Cartan matrices is a homeomorphism from the open and closed
subset of �.WS ;GL.V // consisting of representations generated by weakly compatible
reflections to the space of equivalence classes of N �N matrices of rank 6 dim.V / that
are weakly compatible with WS .
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Note that if rank.A/ < dim.V /, then there are also nonsemisimple conjugacy classes
associated to A. Invariants for these are more subtle to describe, see [49, Proposition 15].

3.11. Proof of Fact 3.17

We first recall a useful fact.

Fact 3.30 ([49, Propositions 21–23]). Let WS be an irreducible Coxeter group with pre-
sentation (3.1). Then theN �N real matrix Cos.WS / WD .�2cos.�=mi;j //16i;j6N (with
the convention �=1D 0) is a Cartan matrix compatible withWS (Definition 3.7), andWS
is spherical (resp. affine, resp. large) if and only if Cos.WS / is of positive (resp. zero, resp.
negative) type.

Recall the Tits geometric representation of Remark 3.11 has Cartan matrix Cos.WS /.

Proof of Fact 3.17. (1) By [49, Proposition 22], the group WS is spherical if and only
if A is of positive type; in this case A is symmetrizable by [49, Lemma 13].

(2a) Suppose WS is affine and A is of zero type. Then A is symmetrizable by [49,
Lemma 13]. Since condition (3.5) holds for z� in V , it also holds for its image in V ˛ D
V=V˛ , and so �˛ is still a representation ofWS as a reflection group with Cartan matrix A,
by Remark 3.6. The representation �˛ is now reduced. By [49, Proposition 23], there is
a hyperplane V 0 of V ˛ such that the group �˛.WS / acts properly discontinuously and
cocompactly on the affine chart P .V ˛/ X P .V 0/ of P .V ˛/, preserving some Euclidean
metric. In particular, �˛ is nonsemisimple. This implies that � is nonsemisimple (see
(3.10) and Lemma 3.26). Note that the hyperplane V 0 of V ˛ must be �˛.WS /-invariant;
therefore it contains V ˛v by Proposition 3.23 (1). We must in fact have V 0 D V ˛v because
the dimension of V ˛v is at least the rank of the matrix A, which is .dim V ˛/ � 1 by
[49, Proposition 23].

(2b) Suppose WS is affine and A is of negative type. The case N D 2 is treated
in Example 3.18. We now assume N > 3. If WS were not of type zAN�1, then by [49,
Proposition 21 (2)] the Cartan matrix A would be equivalent to Cos.WS /, hence would
be of zero type by Fact 3.30, which is not the case. Therefore, WS is of type zAN�1, i.e.,
mi;iC1 D 3 for all 1 6 i 6 N � 1 and m1;N D 3 and mi;j D 0 for all other pairs .i; j /
with i ¤ j . Conjugating by appropriate positive diagonal matrices, we see that there
exists a > 0 such that the compatible matrix A belongs to the same equivalence class
(Definition 3.3) as the matrices

A0 D

0BBBBBBB@

2 �1 �a

�1 2
: : : 0

: : :
: : :

: : :

0
: : :

: : : �1

�a�1 �1 2

1CCCCCCCA ; A00 D

0BBBBBBB@

2 �b�1 �b

�b 2
: : : 0

: : :
: : :

: : :

0
: : :

: : : �b�1

�b�1 �b 2

1CCCCCCCA ; (3.11)
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where b WD N
p
a (see also [49, Proposition 16]). We have det A D det A0 D det A00 D

2� a � a�1. Note that if � 2 RN has all its entries equal to 1, then A00� has all its entries
equal to 2 � b � b�1. Since A00 is of negative type, we must have 2 � b � b�1 ¤ 0 by
Fact 3.15 (4), hence b ¤ 1, hence det A ¤ 0.

(3) We argue by contraposition. Suppose that A is not of negative type. By [49, Propo-
sition 21 (1)], the Cartan matrix A is equivalent to Cos.WS /. Fact 3.30 then implies
that WS is spherical or affine, i.e., not large.

4. Maximality of the Tits–Vinberg domain

Recall the notions of reduced and dual-reduced representations from Definition 3.5. The
goal of this section is to establish the following maximality properties of the Tits–Vinberg
domain for irreducible Coxeter groups, as well as some analogs for nonirreducible Cox-
eter groups (Propositions 4.6 and 4.8).

Proposition 4.1. Let WS be an irreducible Coxeter group in N > 2 generators, and let
�WWS ! GL.V / be a representation of WS as a reflection group in V (Definition 1.2)
with a Cartan matrix A D .˛i .vj //16i;j6N of negative type (Definition 3.12). Then

(1) if �.WS / is reduced, then �TV is properly convex and it is maximal with respect to
inclusion among all �.WS /-invariant convex open subsets of P .V /;

(2) if �.WS / is reduced and dual-reduced and N > 3, then �TV is the unique maximal
nonempty �.WS /-invariant convex open subset of P .V /;

(3) in general, if N > 3, then any �.WS /-invariant properly convex open subset of P .V /
is contained in the Tits–Vinberg domain �TV.

Remark 4.2. In the setting of Proposition 4.1, if N D 2 and WS is infinite (i.e., WS
is of type zA1 as in Example 3.10 (i)), and if �.WS / is reduced and dual-reduced, then
there are exactly two nonempty �.WS /-invariant properly convex open subsets of P .V /,
namely�TV (which contains P .Ker.˛1// and P .Ker.˛2//) and P .V /X�TV (which con-
tains Œv1� and Œv2�).

4.1. The reduced case

We first prove Proposition 4.1 (1)–(2). If � is defined by ˛ D .˛1; : : : ; ˛N / 2 V �N and
vD .v1; : : : ;vN /2V

N , we denote by Vv the span of v1; : : : ;vN and by V˛ the intersection
of the kernels of ˛1; : : : ; ˛N , as in Definition 3.5.

Proof of Proposition 4.1 (1). Let � be a �.WS /-invariant convex open subset of P .V /
containing �TV.

We first show that if �.WS / is reduced (i.e., V˛ D ¹0º), then � is properly con-
vex. We will actually prove the contrapositive. Assume � is not properly convex. The
largest linear subspace V 0 of V contained in the closure of a convex lift of � to V
defines a nontrivial invariant projective subspace P .V 0/ which is disjoint from � (and
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�

�TV

�[

z y00

y0

y

Fig. 3. Illustration for the proof of Proposition 4.1 (1).

from any affine chart containing �). Proposition 3.23 (1) implies that either V˛ � V 0 or
Vv � V

0. If Vv � V 0, then P .Vv/ � P .V / X � � P .V / X �TV, which contradicts the
fact P .Vv/\�TV ¤ ¿ (Remark 3.14 (1)). So V˛ � V 0 ¤ ¹0º, showing that �.WS / is not
reduced.

Assume then that �.WS / is reduced, so that � is properly convex. We now check that
�D�TV. Suppose by contradiction that there is a point y 2�X�TV; Figure 3 illustrates
the proof. Let z lie in the interior of the fundamental domain�[ D�\�TV for the action
of �.WS / on�TV. Recall (Fact 3.8) that�[ is equal to�minus the union of all faces with
infinite stabilizer and the quotient �.WS /n�TV is an orbifold homeomorphic to �[, with
mirrors on the reflection walls. The intersection of the segment Œz; y� with �TV is a half-
open segment Œz; y0/ where y0 2 @�TV \�. It has finite length in the Hilbert metric d�
(see Section 2.1). The image of Œz; y0/ in the quotient may be viewed as a billiard path
qW Œz; y0/! �[ (where the reflection associated to a mirror wall is used to determine how
the trajectory reflects off that wall). Any point of �[ is the center of a d�-ball contained
in�TV, hence disjoint from �.WS / � y

0; it follows that q.t/ can only accumulate on points
of�X�[ as t ! y0. Any such accumulation point y00 belongs to a face of� with infinite
stabilizer, hence y00 2 @� since �.WS / acts properly discontinuously on�. It follows that
d�.z; q.t// goes to infinity as t ! y0. By the triangle inequality, we have d�.z; y0/ >
d�.z; q.t//, contradicting the fact that d�.z; y0/ is finite.

Proof of Proposition 4.1 (2). Suppose �.WS / is reduced and dual-reduced and N > 3.
By Proposition 3.23 (2), the representation � is irreducible, hence any �.WS /-invariant
convex open subset � of P .V / has to be properly convex. Indeed, the largest linear sub-
space of V contained in the closure of a convex lift of � to V is �.WS /-invariant.

Suppose WS is affine. Since � is irreducible (hence semisimple), Fact 3.17 implies
that WS is of type zAN�1 with N D dim.V /. Since N > 3, Lemma 3.22 applies: the
set �TV is the unique �.WS /-invariant convex open subset of P .V /.



J. Danciger, F. Guéritaud, F. Kassel, G.-S. Lee, L. Marquis 150

Suppose WS is large. By Proposition 3.23 (3), the representation � is strongly irre-
ducible. By Proposition 2.6, there is a unique maximal �.WS /-invariant properly convex
open set �max containing all other invariant properly convex open sets; this must be the
Tits–Vinberg domain �max D �TV by Proposition 4.1 (1).

Remark 4.3. Suppose we are in the setting of Proposition 4.1, namely WS is irreducible
and the Cartan matrix A is of negative type.

(1) If �.WS / is reduced, then�TV is properly convex by Proposition 4.1 (1). On the other
hand, if �.WS / is not reduced, then �TV is not properly convex, for it contains the
projective subspace P .V˛/ in its boundary.

(2) If �.WS / is not dual-reduced, then there is a �.WS /-invariant convex open subset of
P .V / which is not contained in �TV, namely the complement U in P .V / of any
projective hyperplane containing P .Vv/. Indeed, U is �.WS /-invariant by Propo-
sition 3.23 (1), and U 6� �TV because U is an affine chart, �TV is convex, and
�TV \ P .Vv/ ¤ ¿ by Remark 3.14. See Figure 4.

�

�

P .Vv/� \ P .Vv/

Fig. 4. Illustration of Remark 4.3 (2) for N D 4, where Vv is a hyperplane in V D R4 and the
affine reflections preserving the chart P .V / X P .Vv/ ' R3 are chosen with linear parts in O.2; 1/.
As above, � is the fundamental polytope for �, and �TV is the interior of

S

2WS

�.
/ � �.
Here �TV intersects the chart in two connected components, each of which is a domain of depen-
dence as in [41] (see also [23, Example 11.13]).

4.2. The general case in Proposition 4.1

For any representation �0WWS ! GL.V 0/ of our Coxeter group WS , we write ƒ�0 for the
proximal limit setƒ�0.WS / of �0.WS / in P .V 0/, as in Definition 2.2, andƒ��0 WDƒ�0�.WS /
for the proximal limit set of �0�.WS / in P .V 0�/, where �0�WWS ! GL.V 0�/ is the dual
representation.

Proof of Proposition 4.1 (3). By Corollary 3.25 (1), there exists 
 2 WS such that �.
/
is proximal in P .V /; then ��.
�1/ is proximal in P .V �/, and so ƒ�� ¤ ¿. By Proposi-
tion 2.5 (3), it is sufficient to prove the following two claims:
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(i) the Tits–Vinberg domain �TV is a full connected component of

U WD P .V / X
[

Œ'�2ƒ��

P .Ker.'//I

(ii) the set U admits only one �.WS /-invariant connected component.

We first prove (i). Consider V ˛ D V=V˛ and the representation �˛WWS ! GL.V ˛/
induced by �, as in Remark 3.6: since A is assumed of negative type, �˛ is a representa-
tion of WS as a reflection group (Remark 3.16). By Propositions 2.5 (3) and 4.1 (1), the
corresponding Tits–Vinberg domain �˛TV � P .V ˛/ is a full connected component of

U˛
WD P .V ˛/ X

[
Œ'�2ƒ�

�˛

P .Ker.'//: (4.1)

Let � WP .V / X P .V˛/! P .V ˛/ be the natural projection. On the one hand, the funda-
mental reflection polytope �˛ � P .V ˛/ for �˛.WS / satisfies ��1.�˛/ D � X P .V˛/,
hence �TV D �

�1.�˛TV/. On the other hand, the connected components of U are exactly
the preimages under � of the connected components of U˛ . Indeed, the dual .V ˛/� of V ˛

identifies with the annihilator .V �/˛ � V � of V˛ , i.e., the set of linear forms ' 2 V � that
vanish on V˛ , which is also the span of the ˛i in V �. The dual action of �.WS / on V �

exchanges the roles of the vi and the ˛i : namely, �.si / acts on V � as a reflection in the
hyperplane defined by vi , with .�1/-eigenvector ˛i . Therefore, the proximal limit set ƒ��
of ��.WS / in P .V �/ is contained in the subspace P ..V �/˛/ D P ..V ˛/�/, and equal to
the proximal limit setƒ��˛ of .�˛/�.WS / in that subspace. This implies that the connected
components of U are exactly the preimages under � of the connected components of U˛ ,
and completes the proof of (i).

We now prove (ii), assuming N > 3. By the proof of (i), it is sufficient to check
that the set U˛ of (4.1) has a unique �.WS /-invariant connected component, for the
projection � W P .V / X P .V˛/! P .V ˛/ is �.WS /-equivariant. Assume by contradiction
that there exists a �.WS /-invariant connected component �0 of U˛ different from the
Tits–Vinberg domain�˛TV. Intersecting�˛TV with P .V ˛v / yields the Tits–Vinberg domain
for �˛v .WS / in P .V ˛v /. Since �˛v .WS / is both reduced and dual reduced, �˛TV \ P .V ˛v / is
the unique maximal nonempty �˛v .WS /-invariant convex open subset of P .V ˛v / by Propo-
sition 4.1 (2). Now, it may be that �0 does not intersect P .V ˛v /. However, �0 contains
the proximal limit set ƒ�˛ , hence �0 \ P .V ˛v / is a closed �˛v .WS /-invariant convex sub-
set of P .V ˛v / whose interior, necessarily nonempty by Corollary 3.25 (2), is contained in
�˛TV \ P .V ˛v /. Since �˛TV is open, we find that �˛TV and �0 must overlap, hence they are
equal.

4.3. Invariant cones for irreducible WS

Whereas Proposition 4.1 assumed a Cartan matrix of negative type and concerned invari-
ant properly convex sets in the projective space P .V /, the following does not make any
assumptions about the Cartan matrix, and concerns invariant properly convex cones in the
vector space V .
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Lemma 4.4. Let WS be an irreducible Coxeter group and �WWS ! GL.V / a repre-
sentation of WS as a reflection group in V (Definition 1.2), associated to some ˛ D
.˛1; : : : ; ˛N / 2 V

�N and v D .v1; : : : ; vN / 2 V N . Then any �.WS /-invariant properly
convex open cone z� of V is contained in the Tits–Vinberg cone z�TV or its opposite�z�TV.

(Recall from Section 3.3 that z�TV and �z�TV are both �.WS /-invariant convex open
cones of V , on which �.WS / acts properly discontinuously.)

Note that when N D 2 and WS is infinite, there may exist a �.WS /-invariant properly
convex open subset of P .V / which is not contained in �TV (see Remark 4.2); however,
its preimage in V is the union of two properly convex cones of V which are not �.WS /-
invariant (the two cones are switched by �.WS /).

Proof. If WS is finite, then z�TV D V by [49, Lemma 10], and so the lemma is obviously
true. We now assume thatWS is infinite. Then the Cartan matrix A D .˛i .vj //16i;j6N is
of negative or zero type (Fact 3.17).

If N D 2, then we are in the setting of Example 3.10 and z� is contained in z�TV or its
opposite �z�TV. So we now assume N > 3.

Suppose A is of negative type. The projection � � P .V / of z� � V is a �.WS /-
invariant properly convex open subset of P .V /. By Proposition 4.1 (3), we have���TV,
and so z� is contained in one of the two �.WS /-invariant cones z�TV or �z�TV.

Suppose A is of zero type. First, observe that z�\ V˛ D ¿, since the action of �.WS /
on z� is properly discontinuous and the action on V˛ is trivial. Hence z� projects to
a (not necessarily properly) convex open cone z�˛ in V ˛ D V=V˛ , which does not con-
tain 0. The induced representation �˛WWS ! V ˛ is still a representation as a reflec-
tion group (Fact 3.17 (2a)), with a corresponding Tits–Vinberg cone z�˛TV � V

˛ . Note
that �C V˛ D �; therefore, z�TV is the full preimage of z�˛TV under the natural projec-
tion V ! V ˛ . Therefore, it is sufficient to check that z�˛ is equal to z�˛TV or �z�˛TV.
By Fact 3.17 (2a), the set V ˛v is a �˛.WS /-invariant hyperplane in V ˛ and z�˛TV is a con-
nected component of V ˛ X V ˛v . Any affine translate wC V ˛v , for w 2 V ˛ X V ˛v , is invari-
ant under �˛.WS /, with a compact fundamental domain. Since z�˛ is open, it contains
some w 2 V ˛ X V ˛v . Since the action on w C V ˛v is cocompact, the �˛.WS /-invariant
convex cone z�˛ contains all of w C V ˛v , hence it contains the entire halfspace on the w
side of V ˛v , which is z�˛TV or �z�˛TV. In fact, z�˛ is equal to this halfspace, for if it con-
tained a point w 2 V ˛ X V ˛v in the other halfspace, the same argument would show that
it contains this full other halfspace, hence the whole of V ˛ by convexity: contradiction.
Thus z�˛ is equal to z�˛TV or �z�˛TV, and so z� is contained in z�TV or �z�TV.

4.4. Tits–Vinberg domains for nonirreducible Coxeter groups

Let WS D WS1 � � � � � WSr be a Coxeter group which is the product of r > 1 irre-
ducible factors. Let ˛ D .˛1; : : : ; ˛N / 2 V

�N and v D .v1; : : : ; vN / 2 V
N . Then the

matrix A D .˛i .vj //16i;j6N is compatible with WS if and only if the Cartan subma-
trix AS` WD .˛i .vj //si ;sj2S` is compatible with WS` for all 1 6 ` 6 r . The fundamental
polyhedral cone z� for WS , defined as the intersection of the nonpositive halfspaces for
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˛1; : : : ; ˛N , is equal to the intersection z� D
Tr
`D1
z�`, where for each 1 6 ` 6 r , the

set z�` is the fundamental polyhedral cone for the factor WS` , defined as the intersection
of the nonpositive halfspaces for ¹˛i j si 2 S`º. Note that for each ` ¤ `0, the cone z�` is
preserved by �.WS`0 /. This implies the following.

Fact 4.5. Let WS D WS1 � � � � � WSr be a Coxeter group in N generators which is
the product of r > 1 irreducible factors, and let �WWS!GL.V / be a representation ofWS
as a reflection group, associated to ˛D .˛1; : : : ; ˛N /2V �

N and v D .v1; : : : ; vN /2V N .
Then for each irreducible factor WS` , the restriction �jWS` WWS` ! GL.V / is a rep-
resentation of WS` as a reflection group, associated to .˛i /si2S` and .vi /si2S` . The
Tits–Vinberg cone z�TV D Int.

S

2WS

�.
/ � z�/ for �.WS / is the intersection of the Tits–
Vinberg cones z�TV;` D Int.

S

2WS`

�.
/ � z�`/ for the �.WS`/:

z�TV D

r\
`D1

z�TV;`:

Here is an analog of Proposition 4.1 (1) when WS is not necessarily irreducible.

Proposition 4.6. LetWS DWS1 � � � � �WSr be an infinite Coxeter group inN generators
which is the product of r > 1 irreducible factors, and let �WWS ! GL.V / be a represen-
tation of WS as a reflection group, associated to some ˛ D .˛1; : : : ; ˛N / 2 V

�N and
v D .v1; : : : ; vN / 2 V

N . Suppose that the Cartan submatrix AS` D .˛i .vj //si ;sj2S` is
of negative type for each irreducible factor WS` . If � is reduced, then the Tits–Vinberg
cone z�TV, and hence the Tits–Vinberg domain �TV D P . z�TV/, is properly convex.

Proof. By contraposition, suppose that z�TV is not properly convex. By Fact 4.5, it is con-
tained in the Tits–Vinberg cone z�TV;` for �.WS`/ for all `. Therefore, the maximal linear
subspace V 0 of V included in the closure of z�TV is contained in the maximal linear sub-
space V 0

`
of V included in the closure of z�TV;` for all `. The proof of Proposition 4.1 (1)

implies that V 0
`
� .V˛/S` WD

T
sj2S`

Ker. j̨ / for all `. So ¹0º ¤ V 0 �
Tr
`D1.V˛/S` D V˛ ,

and hence � is not reduced.

As discussed in Section 3.2, for any 1 6 i 6 N , the pair .˛i ; vi / 2 V � � V defining
the reflection �.si / in (3.3) is not uniquely determined by �.si /. Indeed, for any �i ¤ 0
the pair .�i˛i ; ��1i vi / yields the same reflection. Changing .˛i ; vi / into .�i˛i ; ��1i vi /
changes the Cartan matrix A into its conjugate DAD�1, where D D Diag.�1; : : : ; �N /
is a diagonal matrix with nonzero entries.

If WS is irreducible, then it is easy to see that DAD�1 is still a compatible matrix if
and only if �1; : : : ; �N all have the same sign. Assume that (3.5) holds, i.e., the funda-
mental polyhedral cone z� has nonempty interior. Then choosing �1; : : : ; �N all positive
does not change the definition of z�, and the Tits–Vinberg cone z�TV remains unchanged.
If �1; : : : ; �N are all negative, then z� becomes �z�, and the Tits–Vinberg cone z�TV

becomes �z�TV. In either case, the projections� and�TV to P .V / are unchanged. Hence
it makes sense to refer to the Tits–Vinberg domain �TV of �.WS / in P .V /.
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Assume now that WS D WS1 � � � � �WSr is the product of r > 2 irreducible factors.
In order to preserve compatibility of the Cartan matrix, we must choose the signs of the �i
corresponding to any one of the factors WS` to be consistent, but the choice of sign may
be different for different factors. A nontrivial such blockwise sign change will not change
the representation �, but will nontrivially change the definition of z�; we note that z�
could actually become empty for some sign choices (see Remark 3.20 for a case where
all 2r sign choices work). The result is up to 2r different fundamental polyhedral cones z�,
hence up to 2r different Tits–Vinberg cones z�TV. Projecting to P .V /, this gives up to 2r�1

different fundamental polyhedra � and up to 2r�1 different Tits–Vinberg domains �TV

for the representation � of WS as a reflection group, depending on the choice of ˛ D
.˛1; : : : ; ˛N / 2 V

�N and v D .v1; : : : ; vN / 2 V N defining �.
The following is an immediate consequence of Lemma 4.4 and Fact 4.5.

Proposition 4.7. Let WS D WS1 � � � � �WSr be a Coxeter group which is the product of
r > 1 irreducible factors and let �WWS!GL.V / be a representation ofWS as a reflection
group. Then any �.WS /-invariant properly convex open cone z� of V is contained in one
of the (at most) 2r Tits–Vinberg cones corresponding to the (at most) 2r possible choices
of ˛ D .˛1; : : : ; ˛N / 2 V �

N and v D .v1; : : : ; vN / 2 V N defining �.

On the other hand, there can exist an invariant properly convex open subset of P .V /
that lifts to a convex cone of V which is not invariant, but the following proposition
(analogous to Proposition 4.1 (3)) shows that this only happens in a degenerate situation.

Proposition 4.8. Let WS D WS1 � � � � � WSr be a Coxeter group which is the prod-
uct of r > 1 irreducible factors and let �WWS ! GL.V / be a representation of WS as
a reflection group. Suppose there exists a �.WS /-invariant properly convex open sub-
set � of P .V / which is not contained in one of the (at most) 2r�1 Tits–Vinberg domains
corresponding to the (at most) 2r�1 possible choices of ˛ D .˛1; : : : ; ˛N / 2 V

�N and
v D .v1; : : : ; vN / 2 V

N defining �. Then, up to renumbering,WS1 is of type zA1, the Car-
tan submatrix AS1 D .˛i .vj //si ;sj2S1 is of negative type, and WS` is spherical for all
` > 2.

4.5. Proof of Proposition 4.8

We first establish the following.

Lemma 4.9. Let WS be a Coxeter group and �WWS ! GL.V / a representation of WS
as a reflection group. Let� be a nonempty �.WS /-invariant convex open subset of P .V /.
Then

(1) for every si 2 S , either Ker.˛i /\�¤¿ or Œvi � 2�, and both cannot simultaneously
happen;

(2) if � is properly convex, then, setting S 0 WD ¹si 2 S j Œvi � 2 �º, we have

(a) mi;j D1 and Ai;jAj;i > 4 for all si ¤ sj in S 0,

(b) mi;j D 2 for all si 2 S 0 and sj 2 S X S 0.
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Proof. (1) Fix i 2 ¹1; : : : ; N º. Consider any point x 2 � with x ¤ Œvi �. The projective
line ` through x and Œvi � is �.si /-invariant and �\ ` is a �.si /-invariant properly convex
subset of `. The action of �.si / fixes the points Ker.˛i / \ ` and Œvi � and switches the
two intervals in between them. It follows that � \ ` contains exactly one of Ker.˛i / \ `
and Œvi �.

(2) Suppose � is properly convex. If N D 1 (i.e., #WS D 2), then there is nothing to
prove. So we assume N > 2. Consider si 2 S 0 and some other sj 2 S . Let Wi;j be the
subgroup of WS generated by si and sj , and let Vi;j be the linear subspace of V spanned
by vi and vj .

We first observe that dimVi;j D 2. Indeed, suppose by contradiction that Œvi � D Œvj �.
Any projective line ` of P .V / passing through Œvi �D Œvj � is globally preserved by �.Wi;j /.
The intersection `\� of such a line with� is a properly convex subset of `, i.e., an inter-
val, which is invariant under �.Wi;j /. The element �.sisj / fixes each endpoint of this
interval, and it also fixes Œvi � (which is not an endpoint since it belongs to � by assump-
tion); therefore �.sisj / fixes pointwise the whole line `. This holds for any projective
line ` containing Œvi �, hence �.sisj / acts trivially on P .V /. But � is faithful and the
subgroup generated by sisj has index two in Wi;j , hence Wi;j has order at most two:
contradiction. Thus Œvi � ¤ Œvj � and dimVi;j D 2.

Consider the action of �.Wi;j / on the projective line P .Vi;j /. Again, the intersection
� \ P .Vi;j / is a nontrivial open interval and both generators �.si / and �.sj / act nontriv-
ially on this interval, switching its endpoints. These two endpoints are fixed by �.sisj /,
hence correspond to two eigenlines of �.sisj /, associated to eigenvalues � and ��1 for
some � ¤ 0. If �2 D 1, then �..sisj /2/ acts trivially on Vi;j , hence j̨ .vi / D ˛i .vj / D 0

andmi;j D 2; in this case, Ker. j̨ /\�¤¿, and so Œvj � …� by (1), which means sj … S 0.
If �2 ¤ 1, then mi;j D1; in this case Ai;j D ˛i .vj / j̨ .vi / > 4 and Œvj � 2 �\ P .Vi;j /
by Remark 4.2, hence sj 2 S 0.

Proof of Proposition 4.8. Let � be a �.WS /-invariant properly convex open subset
of P .V /. Let S 0 WD ¹si 2 S j Œvi � 2 �º. We will use the following simple observation:
let z� be a convex cone of V lifting �. Then any element of �.WS / either preserves z�,
or switches z� and �z�. More precisely, for a generator si 2 S , the cone z� is preserved
by �.si / if and only if si … S 0. If S 0 D ¿, then z� is �.WS /-invariant, and so by Propo-
sition 4.7, the set � is contained in one of the (at most) 2r�1 Tits–Vinberg domains
corresponding to the (at most) 2r�1 possible choices of ˛ D .˛1; : : : ; ˛N / 2 V

�N and
v D .v1; : : : ; vN / 2 V

N defining �.
Assume then that � is not contained in any of these (at most) 2r�1 Tits–Vinberg

domains for �.WS /, and hence that S 0 ¤ ¿.
By Lemma 4.9 (2a), the Coxeter group WS 0 is irreducible. In particular, the Tits–

Vinberg domain �TV;S 0 for �.WS 0/ is uniquely defined, independently of the choice of
˛ D .˛1; : : : ; ˛N / 2 V

�N and v D .v1; : : : ; vN / 2 V N . Suppose by contradiction that
#S 0 > 3. Then the fact thatmi;j D1 for all si ¤ sj in S 0 implies thatWS 0 is large, hence
the Cartan matrix A D .˛i .vj //16i;j6N is of negative type by Fact 3.17 and �TV;S 0 is
convex. By Proposition 4.1 (3), the �.WS 0/-invariant properly convex open set � is con-
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tained in�TV;S 0 , hence Œvi � 2�TV;S 0 for all si 2 S 0 by definition of S 0. On the other hand,
we have Ker.˛i /\�TV;S 0 ¤¿ for all si 2S 0 by definition of�TV;S 0 D Int.�.WS 0/ ��S 0/:
contradiction with Lemma 4.9 (1). Thus #S 0 6 2.

By Lemma 4.9 (2b), we have WS D WS 0 �WS 00 , where S 00 WD S X S 0, and for every
si 2 S

0, the point Œvi � 2 � is fixed by �.WS 00/. Since � is properly convex, the action
of �.WS 00/ on � is properly discontinuous (see Section 2.1), the group WS 00 is finite
(possibly trivial). If #S 0 D 1, then WS D WS 0 �WS 00 is finite, hence by [49, Lemma 10]
there is only one possible Tits–Vinberg domain for �.WS /, namely �TV D P .V /: this is
not possible since we have assumed that � is not contained in �TV. Therefore, #S 0 D 2.
By Lemma 4.9 (2a), the Coxeter group WS 0 is of type zA1 and the Cartan submatrix AS 0

is of negative type.

5. The minimal invariant convex subset of the Tits–Vinberg domain

In this section, we consider an irreducible Coxeter group WS and a representation �W
WS ! GL.V / ofWS as a reflection group, associated to some ˛ D .˛1; : : : ; ˛N / 2 V �N

and v D .v1; : : : ; vN / 2 V N , such that the Cartan matrix A D .˛i .vj //16i;j6N is of
negative type (Definition 3.12) and �.WS / is reduced and dual-reduced (Definition 3.5).
By Proposition 3.23, such a representation � is irreducible. By Proposition 4.1, the Tits–
Vinberg domain �TV is properly convex and contains all other �.WS /-invariant con-
vex open subsets of P .V /. By Proposition 2.6, there is a unique smallest nonempty
�-invariant convex open subset�min of�TV. The goal of this section is to describe a fun-
damental domain for the action of �.WS / on �min, in terms of .˛; v/ (Lemma 5.1 and
Theorem 5.2).

5.1. Reflections in the dual projective space

Recall that the dual action �� of WS on V � exchanges the roles of the vi and the ˛i :
namely, ��.si / is a reflection in the hyperplane defined by vi , with .�1/-eigenvector ˛i .
The Cartan matrix for ��.WS / is the transpose of the Cartan matrix AD .˛i .vj //16i;j6N

for �.WS /. Similarly to Section 3.3, we define a closed fundamental polyhedral cone
zD � V � for ��.WS /, cut out by the kernels of v1; : : : ; vN seen as linear forms on V �.

The group ��.WS / acts properly discontinuously on a nonempty convex open cone zOTV

of V �, namely the interior of the union of all ��.WS /-translates of zD . The image OTV �

P .V �/ of zOTV is the Tits–Vinberg domain of ��; by Proposition 4.1, it is again properly
convex and contains all other ��.WS /-invariant convex subsets of P .V �/. Since duality
between properly convex sets reverses inclusion, the minimal �.WS /-invariant properly
convex subset�min of P .V / is the dual of the maximal ��.WS /-invariant properly convex
subset OTV of P .V �/, i.e., �min D O�TV.

We define a dualization operation x� for closed sets: if F is a closed convex cone in V ,
then F x� is the closed convex cone in V � defined by

F x� WD ¹' 2 V � j '.x/ 6 08x 2 F º:
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Note that F x� x� D F . For zD ; zOTV � V
� as above, we have

zDx� D

NX
jD1

R>0 vj � V (5.1)

and zOTV

x�

� V is a lift z�min of �min.

Lemma 5.1. If WS is an irreducible Coxeter group and �WWS ! GL.V / is a represen-
tation ofWS as a reflection group with a Cartan matrix of negative type, such that �.WS /
is reduced and dual-reduced, then

�min D
\

2WS

�.
/ �Dx�;

where Dx� � P .V / is the image of zDx�.

Proof. It is a well-known fact (see, e.g., [45, Theorem 2]) that if ¹ zCiºi2I is a family of
closed convex cones of V , then .

T
i2I
zCi /
x� is the closed convex hull Conv .

S
i2I
zC x�i / of

the union of their duals. This implies

z�min

x�

D zOTV D Conv
� [

2WS

�.
/ � zD
�
D

� \

2WS

�.
/ � zDx�
�x�
;

where for the second equality we use the fact that zOTV D
S

2WS

�.
/ � zD is convex.
We then apply the identity

F x� x� D F

to the closed convex cones F D z�min and F D
T

2WS

�.
/ � zDx�.

5.2. Pruning the fundamental polytope

Consider the following subsets of the fundamental polyhedral cone z�:

z† WD z� \ zDx� D

´
x D

NX
jD1

tj vj 2 V
ˇ̌̌
˛i .x/ 6 0 and tj > 081 6 i; j 6 N

µ
� z�TV (5.2)

and

z†[ WD z� \ Int. zDx�/ D

´
x D

NX
jD1

tj vj 2 V
ˇ̌̌
˛i .x/ 6 0 and tj > 081 6 i; j 6 N

µ
� z†: (5.3)

Note that z†[ (hence z†) has nonempty interior by Remark 3.14. Let † and †[ be the
respective images of z† and z†[ in P .V /. See Figures 5 and 6 for an illustration in some
particular cases. Here is the main result of this section.



J. Danciger, F. Guéritaud, F. Kassel, G.-S. Lee, L. Marquis 158

t1D0

t 3
D
0

†

�TV

�

Ker.˛1/

K
er.˛

3
/

Ker.
˛ 2
/

Fig. 5. The sets �, †, and �TV for WS WD hs1; s2; s3 j s2i D 1 D .s1s3/
2i acting on V D R3 as

a reflection group, preserving a copy of H2 in P .V /. Here .t1; t2; t3/ 7! t1v1 C t2v2 C t3v3 gives
coordinates on V . The set � (light gray) is a triangle bounded by the hyperplanes Ker.˛i /, and †
(dark gray) is the truncation of� by the hyperplanes ¹ti D 0º (note that ¹t2 D 0º is at infinity). The
set �TV is the interior of the WS -orbit of � (here approximated by 8 iterates) and contains †.

1

2

3

4

5

Fig. 6. We consider a right-angled hexagon group WS and a representation �WWS ! GL.4;R/
of WS as a reflection group. Panels 1 and 2 show the sets � and † in an affine chart of P .R4/.
Panels 3 and 4 show the orbits

S

2WS

�.
/ �� and
S

2WS

�.
/ �†, whose respective interiors
are �TV and �min. Panel 5 shows their superposition.

Theorem 5.2. IfWS is an irreducible Coxeter group and �WWS ! GL.V / is a represen-
tation of WS as a reflection group with a Cartan matrix A D .Ai;j /16i;j6N of negative
type, such that �.WS / is reduced and dual-reduced, then�minD

S

2WS

�.
/ �†[ and†[

is a fundamental domain for the action of �.WS / on�min; it is homeomorphic to the quo-
tient �.WS /n�min.
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Theorem 5.2 is a consequence of Lemma 5.1 and of the following two lemmas.

Lemma 5.3. In the setting of Theorem 5.2, the set†[ is contained in the set�[ of Fact 3.8
and

S

2WS

�.
/ �†[ is the interior of
S

2WS

�.
/ �†.

Lemma 5.4. In the setting of Theorem 5.2, we have
S

2WS

�.
/ �†�
T

2WS

�.
/ �Dx�.

Proof of Theorem 5.2 assuming Lemmas 5.3 and 5.4. It follows from Lemma 5.1 that
�min \ � � Dx� \ � D †, hence �min \

S

2WS

�.
/ � � �
S

2WS

�.
/ � †, and so
�min \�TV �

S

2WS

�.
/ �†. Taking interiors and applying Lemma 5.3, we find
�min �

S

2WS

�.
/ �†[.
By Lemmas 5.1 and 5.4, we have

S

2WS

�.
/ � † � �min. By taking interiors and
applying Lemma 5.3, we obtain

S

2WS

�.
/ �†[ � �min.

5.3. Proof of Lemma 5.3

By Fact 3.8, the set z�[ is equal to z�minus its faces of infinite stabilizer. Let us check that
any point of †[ D � \ Int.Dx�/ has finite stabilizer in WS ; equivalently, we can work in
the vector space V and check that any point of z†[ has finite stabilizer in WS . Recall that
the stabilizer of any point x 2 � is the standard subgroup WSx , where Sx D ¹si 2 S j
˛i .x/ D 0º [49, Theorem 2 (5)].

Suppose by contradiction that x 2 z†[ has an infinite stabilizer. Let WT be an irre-
ducible standard subgroup of WSx which is still infinite. By Fact 3.17, the Cartan subma-
trix AT WD .Ai;j /si ;sj2T is of negative or zero type. As x 2 z†[ D z� \ Int. zDx�/, we can
write x D

PN
jD1 tj vj , where ˛i .x/ 6 0 and tj > 0 for all 1 6 i; j 6 N . For any si 2 T ,

we have

0 D ˛i .x/ D
X
sj2T

Ai;j tj C
X

sj2SXT

Ai;j tj : (5.4)

The terms of the second sum are all nonpositive, hence the first sum is nonnegative.
By Fact 3.15 (1), the Cartan submatrix AT cannot be of negative type, hence it is of
zero type. By Fact 3.15 (2), the first sum of (5.4) must then be zero. This implies that the
second sum is zero, and so every term of the second sum is zero. However, since WS is
irreducible, there exist si 2 T and sj 2 S X T such that Ai;j < 0. Then Ai;j tj D 0 implies
tj D 0, contradicting the fact that tj > 0. This completes the proof that †[ � �[.

Let us now check that
S

2WS

�.
/ � †[ is the interior of
S

2WS

�.
/ � †. Observe
that for any x 2 �[, an open neighborhood of x in �TV is given by

S

2WSx

�.
/ � U ,
where U is a relatively open neighborhood of x in �[ which touches only the reflec-
tion walls containing x, and �.WSx / is the (finite) subgroup of �.WS / generated by the
reflections along walls containing x. It follows that for any subset R of�[, the interior ofS

2WS

�.
/ � R is
S

2WS

�.
/ � R0, where R0 is the relative interior of R in �[. Since
†[ is the relative interior of†\�[ in�[, we obtain that

S

2WS

�.
/ �†[ is the interior
of .

S

2WS

�.
/ �†/ \�TV, hence of
S

2WS

�.
/ �†.
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5.4. Proof of Lemma 5.4

It is enough to establish that

z� D ¹x 2 V j �.
/x � x 2 zDx� 8
 2 WSº: (5.5)

Indeed, for any x 2 z†D z�\ zDx� and any 
 2WS we then have �.
/x 2 zDx�C x � zDx�,
hence

S

2WS

�.
/ �† � Dx�, and so[

2WS

�.
/ �† �
\

2WS

�.
/ �Dx�:

We now establish (5.5), following [30, Proposition 3.12].
We say that 
 D si1 � � � sim is a reduced expression for 
 2WS ifm is minimal among

all possible expressions of 
 as a product of the si . The integer m is called the length
of 
 and is denoted by `.
/. Since all the relations of WS have even length, we have
j`.
si / � `.
/j D 1 for all 
 2 WS and si 2 S .

Lemma 5.5 (see [30, Lemma 3.11]). Let WS be a Coxeter group and �WWS ! GL.V /
a representation ofWS as a reflection group in V , associated to some ˛ D .˛1; : : : ; ˛N / 2
V �N and v D .v1; : : : ; vN / 2 V N . For any 
 2 WS and si 2 S , the following are equiv-
alent:

(1) `.
si / > `.
/;

(2) ��.
/˛i belongs to the nonnegative span z�x� of ˛1; : : : ; ˛N in V �;

(3) �.
/vi belongs to the nonnegative span zDx� of v1; : : : ; vN in V .

In particular, if 
 D si1 � � � sim is a reduced expression for 
 2 WS , then

�.si1 � � � sim�1/.vim/ 2
zDx�:

Proof of Lemma 5.5. We give a proof of (1), (2); the proof of (1), (3) is similar using
dual objects. Recall that

z� D ¹x 2 V j ˛i .x/ 6 081 6 i 6 N º:

The linear form ˛ 2 V � lies in z�x� if and only if ˛.z�/ 6 0. Hence ��.
/˛i 2 z�x� if and
only if ˛i .�.
�1/z�/ 6 0. Moreover (see [24, Lemma D.2.2]), given si 2 S and 
 2 WS ,
the cones Int.z�/ and �.
/ Int.z�/ lie on opposite sides of the hyperplane Ker.˛i / \ z�TV

of z�TV fixed by �.si / if and only if `.
/ > `.si
/. Hence ˛i .�.
�1/z�/ 6 0 if and only
if `.si
�1/ > `.
�1/, completing the proof.

Proof of (5.5). The inclusion � is obvious by (5.1) and the definitions (3.3) of �.si /
and (3.4) of z�. We prove the reverse inclusion by induction on m D `.
/. For m D 1,
it is the definition of z�. If m > 1, let 
 D si1 � � � sim . We have

�.
/x � x D .�.si1 � � � sim�1/x � x/C �.si1 � � � sim�1/.�.sim/x � x/;

and we apply the inductive assumption to the first summand and Lemma 5.5 to the second
summand, using the equality �.sim/x � x D �˛im.x/vim from (3.3).
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5.5. The fundamental domain † \�[ of the closed convex core

As in Section 5.3, the stabilizer of x in WS is the standard subgroup WSx where

Sx WD ¹si 2 S j ˛i .x/ D 0º:

Given a decomposition x D
PN
jD1 tj vj 2 V such that t WD .tj /NjD1 2 RN

>0, we introduce

SC;t WD ¹sj 2 S j tj > 0º; S0;tx WD ¹sj 2 Sx j tj D 0º; and SC;tx WD ¹sj 2 Sx j tj > 0º:

Recall (Fact 3.8) that a point x 2 � belongs to @�TV if and only if WSx is infinite.
Consider the following two conditions (negating conditions :(IC) of Section 1.3

and :(ZT) of Theorem 1.8):

(IC) there exist disjoint subsets S 0, S 00 of S such that WS 0 and WS 00 are both infinite
and commute;

(ZT) there exists an irreducible standard subgroup WS 0 of WS with ¿ ¤ S 0 � S such
that the Cartan submatrix AS 0 is of zero type.

The goal of this section is to establish the following. We refer to Section 3.1 for the notion
of irreducible components of a Coxeter group.

Proposition 5.6. In the setting of Theorem 5.2, we have † \ @�TV ¤ ¿ if and only if
(IC) or (ZT) holds. More precisely,

(1) suppose that there exists Œx�2†\ @�TV and write xD
PN
jD1 tj vj with t 2RN

>0; then
either WSC;t and W

S
0;t
x

are both infinite and commute (hence (IC) holds), or SC;tx

has an irreducible component S 0 such that the Cartan submatrix AS 0 is of zero type
(hence (ZT) holds);

(2) conversely, suppose that (IC) or (ZT) holds with WS 0 irreducible, and let t 0 D
.tj /sj2S 0 be a Perron–Frobenius eigenvector of 2Id � AS 0 as in Section 3.5; then
x0 WD

P
sj2S

0 tj vj 2 V satisfies Œx0� 2 † \ @�TV.

We note that if (IC) or (ZT) holds, then up to replacing S 0 by a smaller subset we
may always assume that WS 0 is irreducible as in (2).

As in Section 1.3, for any T � S we set T ? WD ¹si 2 S X T j mi;j D 28sj 2 T º.
For two subsets T1;T2 � S , we write T1 ? T2 when T1 � T ?2 (i.e.,mi;j D 2 for all si 2 T1
and sj 2 T2). Our proof of Proposition 5.6 relies on the following lemma.

Lemma 5.7. In the setting of Theorem 5.2, if x D
PN
jD1 tj vj satisfies t 2 RN

>0 and
Œx� 2 †, then

(1) SC;t ? S0;tx ;

(2) SC;t has no irreducible component S 0 such that the Cartan submatrix AS 0 is of pos-
itive type;

(3) SC;tx has no irreducible component S 0 such that the Cartan submatrix AS 0 is of neg-
ative type.

In particular, WSC;t is infinite and WSx D WS0;tx �WSC;tx
.
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Proof of Lemma 5.7. By definition, tj > 0 and ˛i .x/ 6 0 for all 1 6 i; j 6 N .
(1) Let us check that any element of S0;tx commutes with any element of SC;t . For any

si 2 Sx , we have by definition

0 D ˛i .x/ D

NX
jD1

tj˛i .vj / D
X

sj2S
C;t

tjAi;j : (5.6)

If si 2 S
0;t
x , then si … SC;t , hence Ai;j 6 0 for all sj 2 SC;t ; thus each term of the right-

hand sum in (5.6) is nonpositive, hence must be zero. Thus for any si 2 S
0;t
x and sj 2 SC;t

we have Ai;j D 0, which means that si and sj commute.
(2) Suppose by contradiction that SC;t has an irreducible component S 0 such that

the Cartan submatrix AS 0 is of positive type. By Fact 3.17, we may assume that AS 0 is
symmetric and positive definite. Then

0 >
X
si2S

0

ti˛i .x/ since ti > 0 and ˛i .x/ 6 0 for all si 2 S

D

X
si2S

0

ti
X
sj2S

tj˛i .vj /

D

X
si2S

0

ti
X

sj2S
C;t

tj˛i .vj / since tj D 0 whenever sj 2 S X SC;t

D

X
si2S

0

X
sj2S

0

ti tj˛i .vj / since S 0 is an irreducible component of SC;t

D
>t 0AS 0 t

0; where t 0 WD .ti /si2S 0 :

This contradicts the fact that the symmetric matrix AS 0 is positive definite.
(3) Let S 0 be an irreducible component of SC;tx . For any si 2 S 0,

0 D ˛i .x/ D
X
sj2S

0

tjAi;j C

X
sj2SXS

0

tjAi;j I

since tjAi;j 6 0 for all sj 2 S X S 0, we have
P
sj2S

0 tjAi;j > 0. Thus the vector t 0 D
.tj /sj2S 0 has only positive entries and AS 0 t

0D .
P
sj2S

0 tjAi;j /si2S 0 has only nonnegative
entries. By Fact 3.15 (1), the Cartan submatrix AS 0 is not of negative type.

Proof of Proposition 5.6. (1) Since Œx� 2 @�TV, the group WSx is infinite by Fact 3.8,
hence W

S
0;t
x

is infinite or W
S
C;t
x

is infinite by Lemma 5.7. If W
S
0;t
x

is infinite, then WSC;t
andW

S
0;t
x

are both infinite and commute by Lemma 5.7 (1)–(2). Otherwise,W
S
C;t
x

is infi-
nite, and then SC;tx has an irreducible component S 0 such that the Cartan submatrix AS 0

is of zero type, since negative type is excluded by Lemma 5.7 (3).
(2) Suppose (IC) holds, i.e., there exist disjoint subsets S 0; S 00 � S such that WS 0

and WS 00 are both infinite and commute, and suppose WS 0 is irreducible. Since WS 0 is
infinite, the Cartan submatrix AS 0 is not of positive type. By definition (see Section 3.5),
the Perron–Frobenius eigenvector t 0 D .tj /sj2S 0 is a positive vector and AS 0 t

0 is a zero or



Convex cocompactness for Coxeter groups 163

negative vector. For si 2 S 00, we have ˛i .x0/ D 0; for si 62 S 0 [ S 00, we have ˛i .x0/ 6 0;
and for si 2 S 0, we have

˛i .x
0/ D

X
sj2S

0

tj˛i .vj / D .the i -th entry of AS 0 t
0/ 6 0:

Therefore, S 00 � Sx0 and Œx0� 2 †. Since WS 00 is infinite, Fact 3.8 implies Œx0� 2 @�TV.
Suppose (ZT) holds, i.e., there exists an irreducible standard subgroup WS 0 with

S 0 � S such that AS 0 is of zero type. As above, t 0 D .tj /sj2S 0 is a positive vector and
AS 0 t

0 D 0. For si 62 S 0, we have ˛i .x0/ 6 0, and for si 2 S 0, we have

˛i .x
0/ D

X
sj2S

0

tj˛i .vj / D .the i -th entry of AS 0 t
0/ D 0:

Therefore, S 0 � Sx0 and Œx0� 2 †. SinceWS 0 is infinite, Fact 3.8 implies Œx0� 2 @�TV.

6. Proof of Theorem 1.8

The implication (CC)) (NCC) of Theorem 1.8 is immediate from the definitions. The
equivalence:(ZT),:(ZD) is contained in Fact 3.17. We now establish the other impli-
cations of Theorem 1.8.

6.1. The affine case

When WS is irreducible and affine, Theorem 1.8 is contained in the following.

Proposition 6.1. Let WS be an affine irreducible Coxeter group and �WWS ! GL.V /
a representation of WS as a reflection group with Cartan matrix A. Then the following
are equivalent:

(1) �.WS / is convex cocompact in P .V /;

(2) �.WS / is naively convex cocompact in P .V /;

(3) �.WS / does not contain any unipotent element;

(4) the Cartan matrix A is not of zero type;

(5) det A ¤ 0;

(6) WS is of type zAN�1, where N > 2 (see Table 2), and the Cartan matrix A is of
negative type.

In this case, if �.WS / is reduced and dual-reduced, then N D dim.V / and �TV is
a simplex in P .V /, divided by �.WS /: see Example 3.10 if N D 2 and Lemma 3.22
if N > 3.

Proof. The implication (1)) (2) is immediate from the definitions. For (2)) (3), see
Proposition 2.8. For (4)) (5)) (6), see Fact 3.17.
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For (3)) (4), note that �˛.WS / � GL.V ˛/ is reduced, where �˛WWS ! GL.V ˛/
is the representation of WS as a reflection group in V ˛ induced by � (see Remarks 3.6
and 3.16). If A is of zero type, then by Fact 3.17, the group �˛.WS / acts properly discon-
tinuously and cocompactly on some affine chart of P .V ˛/, preserving some Euclidean
metric; in particular, �˛.WS / contains a translation of this affine chart, i.e., a unipotent
element of GL.V ˛/. Since the action of �.WS / on V˛ is trivial, �.WS / contains a unipo-
tent element of GL.V /.

Let us check (6) ) (1). Suppose WS is of type zAN�1 and A is of negative type.
By Fact 3.17, we have detA¤ 0, hence Vv \ V˛ D ¹0º. Let �vWWS!GL.Vv/DGL.V ˛v /
be the representation ofWS as a reflection group induced by �, as in Remarks 3.6 and 3.16;
it is reduced and dual-reduced. Let �vTV � P .Vv/ be the corresponding Tits–Vinberg
domain. By Lemma 3.22, the group �v.WS / divides �vTV, hence it is convex cocompact
in P .Vv/. Therefore, �.WS / is convex cocompact in P .V / by Corollary 2.12.

6.2. Preliminary reductions

We now consider an infinite Coxeter group WS which is not necessarily irreducible. For
any representation �WWS ! GL.V / of WS as a reflection group, associated to some
˛ 2 V �N and v 2 V N , we denote by �˛WWS ! GL.V ˛/ and �˛v WWS ! GL.V ˛v / the
induced representations ofWS as in Remark 3.6; they have the same Cartan matrix A as �.
If the Cartan matrix associated to each irreducible factor ofWS is of negative type, then �˛

and �˛v are still representations ofWS as a reflection group (Remark 3.21), hence injective.

Lemma 6.2. Let WS be an infinite (not necessarily irreducible) Coxeter group in N
generators, and let �WWS ! GL.V / be a representation of WS as a reflection group,
associated to some ˛ 2 V �N and v 2 V N . Suppose that for each irreducible factor WS` ,
the Cartan submatrix AS` D .˛i .vj //si ;sj2S` is of negative type. Then

(1) �.WS / is convex cocompact (resp. strongly convex cocompact) in P .V / if and only
if �˛v .WS / is convex cocompact (resp. strongly convex cocompact) in P .V ˛v /;

(2) if �.WS / is naively convex cocompact in P .V /, then �v.WS /, �˛.WS /, and �˛v .WS /
are naively convex cocompact in P .Vv/, P .V ˛/, and P .V ˛v /, respectively.

Proof. (1) We refer to the matrices (3.10): by Proposition 2.11, the group �.WS / is con-
vex cocompact in P .V / if and only if �˛.WS / is convex cocompact in P .V ˛/ which,
by Corollary 2.12, happens if and only if �˛v .WS / is convex cocompact in P .V ˛v /. The
similar statement on strong convex cocompactness follows by Proposition 2.7.

(2) Let � be a �.WS /-invariant properly convex open subset of P .V / and C � �

a nonempty �.WS /-invariant closed convex subset which has compact quotient by �.WS /.
Then, by Proposition 4.8,� is contained in one of the finitely many Tits–Vinberg domains
for � unless WS is affine of type zA1, in which case we conclude using Proposition 6.1.
So we may assume� is contained in one of the finitely many Tits–Vinberg domains�TV.

We first note that �v.WS / is naively convex cocompact in P .Vv/. Indeed, the set
C \ P .Vv/ is nonempty by Corollary 3.25 (2). It is a �v.WS /-invariant closed subset of
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the �v.WS /-invariant properly convex open subset � \ P .Vv/ of P .Vv/, and the action
of �v.WS / on it is cocompact since it is a closed subset of C and the action of �.WS /
on C is cocompact.

We next check that �˛.WS / is naively convex cocompact in P .V ˛/. Every point
of P .V˛/ has infinite stabilizer (all of WS ), hence P .V˛/ \ �TV D ¿ by Fact 3.8. Let
� WP .V /X P .V˛/! P .V ˛/ be the natural projection. The projection �.C/ is a �˛.WS /-
invariant closed convex subset of the �˛.WS /-invariant convex open subset �.�/ of
P .V ˛/. Since each irreducible block of the Cartan matrix is of negative type, �˛TV D

�.�TV/ is properly convex by Proposition 4.6. From���TV, we get that �.�/ is prop-
erly convex. The image�˛ � P .V ˛/ of the fundamental polyhedral cone z�˛ for �˛.WS /
satisfies ��1.�˛/D�XP .V˛/. In particular, �.C/\�˛ D �.C \�/ is a compact fun-
damental domain for the action of �˛.WS / on �.C/.

Since �v.WS / is naively convex cocompact in P .Vv/ and since .Vv/˛ D Vv \ V˛
implies .Vv/˛ DV ˛v , we get that the group �˛v .WS / is naively convex cocompact in P .V ˛v /
by applying the previous reasoning to �v.WS /.

6.3. A convex subset C of �TV with compact quotient by �.WS /, for large WS

We now establish the equivalence (NCC), :(ZT) of Theorem 1.8 in the case that the
Coxeter group WS is irreducible and large and that V˛ D ¹0º and Vv D V , i.e., �.WS / is
reduced and dual-reduced.

In this case, by Proposition 4.1, the Tits–Vinberg domain �TV is properly convex and
contains all other �.WS /-invariant open convex subsets of P .V /. Let �min be the small-
est nonempty �.WS /-invariant convex open subset of �TV, as given by Proposition 2.6.
By Theorem 5.2 and Lemma 5.3, the set �min D �.WS / �†

[ is the interior of �.WS / �†,
where†[ �†� P .V / are the projections of the sets z†[ � z†� V of (5.2)–(5.3), obtained
by pruning z�. Consider the following nonempty �.WS /-invariant closed convex subset
of �TV:

C WD �min \�TV: (6.1)

Proposition 6.3. Let WS be a large irreducible Coxeter group and �WWS ! GL.V /
a representation of WS as a reflection group such that �.WS / is reduced and dual-
reduced. Then the following are equivalent:

(1) † � �TV;

(2) the set C of (6.1) has compact quotient by �.WS /;

(3) �.WS / is naively convex compact in P .V /;

(4) the following conditions both hold:

:(IC) there do not exist disjoint subsets S 0, S 00 of S such that WS 0 and WS 00 are
both infinite and commute;

:(ZT) for any irreducible standard subgroup WS 0 of WS with ¿ ¤ S 0 � S , the
Cartan submatrix AS 0 WD .Ai;j /si ;sj2S 0 is not of zero type.
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The implication (4))(1) of Proposition 6.3 was established by the first three authors
[21, Lemma 8.9] whenWS is right-angled and � preserves a symmetric bilinear form, and
by the last two authors [37, Lemma 4.8] in general.

Proof of Proposition 6.3. We first check the implication (1)) (2). Using the notation of
Section 5.1, we have�min �Dx� by Lemma 5.1, hence C \��Dx� \�D†. Therefore,
taking �.WS /-orbits, the set C is contained in C† WD

S

2WS

�.
/ � †. The set † is
compact. If † � �TV, then the action of �.WS / on C† � �TV is properly discontinuous
and cocompact, and the same holds for C since C is a closed subset of C†.

We now check (2)) (1). By Fact 3.8, the convex set �[ \ C is homeomorphic to
the quotient �.WS /nC . Therefore, assuming (2), it is a compact subset of P .V /. Since
†[ � �[ \ �min D �[ \ C , the closure †[ of †[ in P .V / is included in �[ \ �min,
hence also in �TV. But † D †[, hence † � �TV.

The implication (2)) (3) holds by Definition 1.1 of naive convex cocompactness.
The implication (3)) (2) holds because any nonempty �.WS /-invariant closed convex
subset C 0 has to contain �min, hence C by Proposition 2.6. The equivalence (1), (4) is
contained in Proposition 5.6.

6.4. Cocompact convex sets are large enough

We now establish the implication (NCC)) (CC) of Theorem 1.8 in the case that the
Coxeter groupWS is irreducible and large and �.WS / is reduced and dual-reduced. We use
the following terminology.

Definition 6.4 ([23, Definition 1.19]). Let C be a properly convex subset of P .V / with
nonempty interior. The ideal boundary of C is @iC WD xC X C . The nonideal boundary
of C is @nC WD C X Int.C/.

The implication (NCC)) (CC) is contained in the following.

Proposition 6.5. Let WS be a large irreducible Coxeter group and �WWS ! GL.V /
a representation of WS as a reflection group such that �.WS / is reduced and dual-
reduced. Suppose there are a �.WS /-invariant properly convex open subset � of P .V /
and a nonempty �.WS /-invariant closed convex subset C of � which has compact quo-
tient by �.WS /. Then ƒorb

� .�.WS // � @iC , hence �.WS / is convex cocompact in P .V /.

Proof. By Proposition 4.1 (3), the set� is contained in the Tits–Vinberg domain�TV, and
so we may assume�D�TV. Suppose by contradiction thatƒorb

�TV
.�.WS // 6� @iC . Let C0

be the convex hull of @iC in C and, for t > 0, let Ct be the closed uniform t -neighborhood
of C0 in �TV with respect to the Hilbert metric d�TV . The set Ct is properly convex
[13, (18.9)]; it is �.WS /-invariant and has compact quotient by �.WS /, for the set Ct is
the union of the �.WS /-translates of the closed uniform t -neighborhood of a compact
fundamental domain of C0.

Sinceƒorb
�TV

.�.WS // 6� @iC , there exists y0 2�TV whose �.WS /-orbit admits an accu-
mulation point � 2 @�TV X @iC ; necessarily y0 … C . Let s D d�TV.y0;C0/ > 0. Let Es
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be the convex hull of @iCs in �TV; it is a closed �.WS /-invariant subset of Cs , hence it
has compact quotient by �.WS /. The set @iEs D @iCs contains �, hence it is strictly larger
than @iC . Therefore, Es is strictly larger than C0 and @nEs contains a point not in C0.
Since Es has compact quotient by �.WS /, there is a point y 2 @nEs achieving maximum
distance 0 < t 6 s to C0. By maximality of t , we have Es � Ct . Let Hy be a hyperplane
supporting Ct (and therefore also Es) at y. The intersection C 0 WDHy \ Es is a nonempty
convex set which is the convex hull of some subset of @iEs . Observe that C 0 is contained
in @nCt and is therefore disjoint from C0.

We claim that any hyperplaneH supporting Ct along C 0 is invariant under the group � 0

generated by all the reflections �.r/, r 2 WS , whose fixed hyperplane H .r/ separates C 0

into two connected components. Indeed, consider such a reflection r . First, we note that
H \H .r/ D .�.r/ �H/ \H .r/. Second, we show that �.r/ �H also contains C 0. Con-
sider any point x 2 C 0 XH .r/ and choose a second point x0 2 C 0 XH .r/ on the opposite
side of H .r/ (see Figure 7). The segment Œx; x0� crosses H .r/ at some point z 2 .x; x0/.
Since �.r/ fixes z, and H is a supporting hyperplane to Ct � �.r/ � Œx; x

0� at z, it follows
that �.r/ � Œx; x0��H , in particular �.r/ � x 2H , hence x 2 �.r/ �H . SinceH is spanned
by H \H .r/ and C 0, we deduce that �.r/ �H D H . Therefore, H is invariant under the
group � 0 generated by the set of such reflections, as claimed.

H .r/

H
z

x0
x

C 0

�TV

Es

Fig. 7. Illustration for the proof of Proposition 6.5.

In particular, the convex sets C 0 DHy \ Es and�0 WDHy \�TV ofHy are invariant
under � 0. Moreover, since the action of �.WS / on Es is cocompact, the intersection of C 0

with the tiling of �TV decomposes C 0 into compact polytopes, hence the action of � 0

on C 0 is also cocompact. In particular, since C 0 is noncompact, � 0 must be infinite.
The above construction finds a proper subspace P .V 0/ WD P .span.C 0//, an infinite

subgroup � 0 of �.WS / generated by reflections and preserving P .V 0/, and a nonempty
closed convex subset C 0 � �0 WD P .V 0/ \�TV such that

� C 0 is the convex hull of a closed � 0-invariant subset of @�0, and
� the action of � 0 on C 0 is properly discontinuous and cocompact, but
� C 0 is disjoint from C0.
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To find a contradiction, consider P .V 0/, � 0 < �.WS /, and C 0 � �0 D P .V 0/ \�TV

satisfying the above and such that the dimension of P .V 0/ is minimal. There are two cases
to consider: (i) C 0D�0 and (ii) C 0¤�0. Note that dim.V 0/> 2 (by proper discontinuity),
and that dim.V 0/ D 2 implies (i).

In case (i), the group � 0 acts on �0 cocompactly. If ƒ�0 denotes the proximal limit
set of � 0 in P .V 0/, then the convex hull Conv.ƒ�0/ of ƒ�0 in �0 is equal to �0 D C 0

by Fact 2.4. Therefore, C 0 D Conv.ƒ�0/ � Conv.ƒ�.WS // � C0, where Conv.ƒ�.WS //
is the convex hull of ƒ�.WS / in �TV, contradicting the fact that C 0 is disjoint from C0.

In case (ii), there exist a point x 2 @nC 0 � �0 and a supporting hyperplane Hx of C 0

at x (in P .V 0/). Then P .V 00/ WD P .V 0/ \ Hx , C 00 WD Hx \ C 0, and �00 WD Hx \ �
0

are invariant under the group � 00 generated by all the reflections �.r/ whose fixed hyper-
plane H .r/ separates C 00 into two connected components and the � 00-action on C 00 is
cocompact. However, P .V 00/ D P .V 0/ \Hx has dimension one less than that of P .V 0/,
contradicting minimality.

6.5. Proof of Theorem 1.8

SinceWS is infinite and satisfies:(IC), we can writeWS DWS 0 �WS 00 for S D S 0 tS 00,
where WS 0 is infinite and irreducible and WS 00 is finite (possibly trivial). By Proposi-
tion 2.9 and Fact 3.17 (1), it is sufficient to check Theorem 1.8 for WS 0 . So we now
assume that S D S 0, i.e., the infinite Coxeter group WS is irreducible.

When WS is affine, Theorem 1.8 is contained in Proposition 6.1. We now assume
thatWS is large, satisfying :(IC) and (zA). Let �˛v WWS ! GL.V ˛v / be the representation
ofWS as a reflection group induced by � as in Remarks 3.6 and 3.16; the group �˛v .WS / is
reduced and dual-reduced. The equivalences (NCC), (CC), :(ZT), :(ZD) then
follow from Lemma 6.2, Propositions 6.3 and 6.5, and Fact 3.17, as in the following
diagram:

�.WS /(NCC)in P .V / �˛v .WS /(NCC)in P .V ˛v / :(ZT)

�.WS /(CC)in P .V / �˛v .WS /(CC)in P .V ˛v / :(ZD):

by definition

Lemma 6.2 (2)

Proposition 6.5

Proposition 6.3

Fact 3.17

Lemma 6.2 (1)

7. Proof of Theorem 1.3 and consequences

We now prove Theorem 1.3 and its consequences Corollaries 1.7, 1.10, 1.11, and 1.13.

7.1. Naive convex cocompactness implies only one infinite irreducible factor

We first make the following observation.

Proposition 7.1. Let WS be an infinite Coxeter group and �WWS ! GL.V / a represen-
tation of WS as a reflection group. If �.WS / is naively convex cocompact in P .V /, then
the Coxeter group WS has only one infinite irreducible factor.
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Proof. Suppose that �.WS / is naively convex cocompact in P .V /: there exist a �.WS /-
invariant properly convex open subset� of P .V / and a nonempty �.WS /-invariant closed
convex subset C of � such that �.WS /nC is compact.

For each infinite irreducible factor WS` of WS , the corresponding Cartan submatrix
is of negative type, otherwise �.WS`/ would contain a unipotent element by Fact 3.17 (3)
and Proposition 6.1, contradicting Proposition 2.8. By Lemma 6.2 (2), up to replacing �
by �˛ , we may assume V˛ WD

T
s2S Ker.˛s/ D ¹0º.

Suppose by contradiction that WS has more than one infinite irreducible factors: we
can write WS D WS 0 � WS 00 for S D S 0 t S 00, where WS 0 and WS 00 are both infinite
and WS 0 is irreducible. Note that

span¹vi j si 2 S 0º \
\
si2S

0

Ker.˛i / D ¹0º:

Indeed, span¹vi j si 2 S 0º �
T
sj2S

00 Ker. j̨ / and V˛ D ¹0º by assumption. Thus .�jWS0 /v
is reduced and dual-reduced. It is still a representation as a reflection group by Re-
mark 3.16.

Since WS 0 and WS 00 are infinite, Proposition 4.8 shows that � is included in one
of the finitely many Tits–Vinberg domains �TV. Note that �TV � �TV;S 0 by Fact 4.5.
According to Corollary 3.25 (2), the set C \ P .span¹vi j si 2 S 0º/ has nonempty interior
in P .span¹vi j si 2 S 0º/. By Theorem 5.2, the closure xC of C in P .V / contains

†S 0 WD P
�°
x D

X
si2S

0

tivi 2 V
ˇ̌̌
˛i .x/ 6 0 and ti > 0 8si 2 S

0
±�
:

Let t 0 D .ti /si2S 0 be a Perron–Frobenius eigenvector of 2 Id�AS 0 and x0 WD
P
si2S

0 tivi ,
so that Œx0� 2 †S 0 . Then, arguing as in the proof of Proposition 5.6 (2), we have that
Œx0� 2 †S 0 \ @�TV. Hence

Œx0� 2 @iC \†S 0 � @iC \�;

which shows that C \� is noncompact. Since C \� is homeomorphic to the quotient
�.WS /nC (Fact 3.8), we obtain a contradiction.

7.2. Proof of Theorem 1.3.

Suppose there exist a finite-dimensional real vector space V and a representation � 2
Homref.WS ;GL.V // such that �.WS / is naively convex cocompact in P .V /. By Propo-
sition 7.1, we can write WS D WS 0 �WS 00 for S D S 0 t S 00, where WS 0 is infinite and
irreducible and WS 00 is finite (possibly trivial). It is sufficient to check conditions :(IC)
and (zA) for WS 0 , so we now assume S D S 0, i.e., WS is irreducible. By Lemma 6.2 (2),
we may assume that �.WS / is reduced and dual-reduced. By Propositions 6.1 and 6.3,
condition :(IC) holds. Moreover, condition (zA) also holds because for any affine irre-
ducible Coxeter group which is not of type zAk , the corresponding Cartan matrix is of zero
type by Fact 3.17.
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Conversely, suppose WS is any Coxeter group which satisfies the conditions :(IC)
and (zA). LetN D #S be the number of generators ofWS . Consider the matrix Cos.WS /D
.�2 cos.�=mi;j //16i;j6N , and modify it into a matrix A 2MN .R/ in the following way:

� for each pair .i; j / with mi;j D1, replace the entry �2 cos.�=mi;j / D �2 by some
negative number < �2;

� let P be the set of pairs .i; j / with i < j and mi;j D 3. For each .i; j / 2 P , choose
a number ti;j > 1, in such a way that for any disjoint subsets P 0 and P 00 of P , we haveY

.i;j /2P 0

ti;j �
Y

.i;j /2P 00

t�1i;j ¤ 1:

Then, for any pair .i; j / 2 P , multiply the .i; j /-entry �2 cos.�=mi;j / D �1 by ti;j
and the .j; i/-entry �2 cos.�=mj;i / D �1 by t�1i;j to obtain the matrix A.

By construction of A, all Cartan submatrices of A corresponding to subgroups WS 0 of
type zAk are nonsymmetrizable, hence A does not have any Cartan submatrix of zero
type. By [49, Corollary 1], there exists a representation � 2 Homref.WS ;GL.RN // with
Cartan matrix A. By Theorem 1.8, the group �.WS / is convex cocompact in P .RN /. This
completes the proof of Theorem 1.3.

7.3. Consequences of Theorems 1.3 and 1.8

We now prove Corollaries 1.7, 1.10, 1.11, and 1.13.

Proof of Corollary 1.7. We first check the implication (1)) (2). Suppose that there exist
V and � 2 Homref.WS ;GL.V // such that �.WS / is naively convex cocompact in P .V /.
By Theorem 1.3, the Coxeter group WS satisfies conditions :(IC) and (zA).

The relative hyperbolicity ofWS follows from a theorem of Caprace [14, Corollary D]:
the Coxeter group WS is relatively hyperbolic with respect to a collection P of virtually
abelian subgroups of rank at least 2 if and only if for any disjoint subsets S 0, S 00 of S
withWS 0 andWS 00 both infinite and commuting, the subgroupWS 0[S 00 is virtually abelian.
Here this criterion is vacuously satisfied due to :(IC).

By [14, Theorem B] and [15], every P 2 P may be chosen to be one of finitely many
standard subgroups WTi , 1 6 i 6 `. It only remains to explain why the WTi are of the
claimed form.

Fix 1 6 i 6 `. The Coxeter group WTi is a product of irreducible standard Coxeter
groups. Since WTi is virtually abelian, each irreducible factor is either affine (hence infi-
nite) or spherical (hence finite), see Section 3.4. Condition :(IC) implies that WTi has
exactly one affine irreducible factor WU , which must be of type zAk for some k > 2 by
condition (zA). We have WTi D WU �WU? where WU? is the standard subgroup of WS
generated by U? WD ¹s 2 S j mu;s D 28u 2 U º, and as seen above WU? is a product of
spherical irreducible Coxeter subgroups.

We now check the converse implication (2) ) (1). For this we use the following
result of Caprace, [14, Theorem A] and [15]: if WS is relatively hyperbolic with respect
to a collection P of standard subgroupsWT , and if we set T WD ¹T � S jWT 2 P º, then
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� for any disjoint subsets S 0, S 00 of S such that W 0S and WS 00 are both infinite and
commute, there exists T 2 T such that S 0 [ S 00 � T ;

� for any subset S 0 of S with #S 0 > 3 such thatWS 0 is irreducible and affine, there exists
T 2 T such that S 0 � T .

This result implies that ifWS is relatively hyperbolic with respect to a collection of virtu-
ally abelian subgroups which are the standard subgroups of WS of the form WU �WU?

with WU of type zAk for some k > 2 and WU? finite, then conditions :(IC) and (zA) are
satisfied. Theorem 1.3 then implies that there exist V and � 2 Homref.WS ;GL.V // such
that �.WS / is convex cocompact in P .V /.

Proof of Corollary 1.10. Suppose �.WS / is convex cocompact in P .V / and let WS 0 be
an infinite standard subgroup of WS . By Theorem 1.8, for any ¿ ¤ S 00 � S , the Cartan
submatrix AS 00 WD .Ai;j /si ;sj2S 00 is not of zero type. In particular, this holds for any
¿¤ S 00 � S 0. Therefore, ifWS 0 is an irreducible Coxeter group, then Theorem 1.8 yields
that �.WS 0/ is convex cocompact in P .V /.

In general, WS 0 may not be irreducible, but since WS satisfies condition :(IC) of
Theorem 1.3, we know that WS 0 has a finite-index subgroup WS 00 which is standard and
irreducible. Then �.WS 00/ is convex cocompact in P .V /, and so �.WS 0/ is convex cocom-
pact in P .V / (see Proposition 2.9).

Proof of Corollary 1.11. If �.WS / is strongly convex cocompact in P .V /, then WS is
word hyperbolic by Theorem 2.7, and Ai;jAj;i > 4 for all i ¤ j with mi;j D 1 by
Theorem 1.8.

Conversely, suppose WS is word hyperbolic and Ai;jAj;i > 4 for all i ¤ j with
mi;j D 1. Since WS is word hyperbolic, it does not contain any subgroup isomorphic
to Z2, and so conditions :(IC) and (zA) of Theorem 1.3 both hold (the latter vacuously).
Condition :(ZD) of Theorem 1.8 is also satisfied because for any i ¤ j with mi;j D1,
the Cartan submatrix

� 2 Ai;j
Aj;i 2

�
is not of zero type if and only if Ai;jAj;i > 4. Thus

�.WS / is convex cocompact in P .V / by Theorem 1.8, and strongly convex cocompact
in P .V / by Theorem 2.7.

Proof of Corollary 1.13. Corollary 1.11 gives the equivalence (WH+), (SCC), and by
definition we have (SCC)) (CC)) (NCC). We now check the implication (NCC))
(SCC). By Theorem 1.3, if � satisfies (NCC), thenWS must satisfy:(IC) and (zA). In this
case, � actually satisfies (CC) by Theorem 1.8. By Theorem 2.7, in order to get (SCC), it
is sufficient to check that WS is word hyperbolic. By Moussong’s criterion [42], recalled
in Remark 1.6, we only need to check thatWS satisfies:(IC) (already done) and:(Af).
But :(Af) is the conjunction of (zA) and of our assumption thatWS contains no standard
subgroup of type zAk for k > 2.

Remark 7.2. In [21, §8], the first three authors proved Corollary 1.13 in the special case
that nD N and that the Cartan matrix AD .Ai;j /16i;j6N for � is symmetric and defines
a nondegenerate quadratic form on V as in Remark 3.11. This approach was used by the
last two authors [37] to construct the first examples of discrete subgroups of O.p;2/which
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are strongly convex cocompact in P .RpC2/ and whose (proximal) limit set is homeomor-
phic to the .p � 1/-dimensional sphere, but which are not quasi-isometric to lattices of
O.p; 1/ as abstract groups.

8. The deformation space of convex cocompact representations

We now prove Corollaries 1.15, 1.16, and 1.18.

8.1. Convex cocompactness and the interior of �ref.WS ;GL.V //

Proof of Corollary 1.15. By Remark 3.4, the space of characters of WS defined by data
.˛; v/ satisfying (3.2) is an open subset of �.WS ;GL.V // containing �ref.WS ;GL.V //.
By Fact 3.29, the map assigning the conjugacy class of Cartan matrix to a conjugacy
class of semisimple representations is a homeomorphism from the space consisting of
representations defined by data .˛; v/ satisfying (3.2) to the space of N �N matrices of
rank at most dim.V / that are weakly compatible with WS (Definition 3.1), considered up
to conjugation by positive diagonal matrices.

The reflection characters �ref.WS ;GL.V // correspond to the subset defined by (3.6),
namely that Ai;jAi;j > 4 whenever mi;j D 1, and (3.5), namely that the cone z� D
¹x 2 V j ˛i .x/ 6 0 81 6 i 6 N º has nonempty interior. Note that the validity of (3.5) is
almost automatic since WS is word hyperbolic. Indeed, if N > 3 then WS is large, hence
the Cartan matrix A is of negative type by Fact 3.17, and so (3.5) holds as explained in
Remark 3.14 (1). If N D 2, then (3.5) may fail only when A is of zero type, which is
equivalent to A1;2A2;1 D 4.

In any case, the reflection characters which are convex cocompact in P .V / are an
open subset of �.WS ;GL.V // which, by Corollary 1.11 and Proposition 2.7, corresponds
to the subset of Cartan matrices compatible with WS defined by the strict inequalities
Ai;jAj;i > 4 whenever mi;j D 1. Let us now check that they are precisely the interior
of �ref.WS ;GL.V // if dim.V / > N .

Consider a semisimple representation �WWS ! GL.V / of WS as a reflection group
which is not convex cocompact in P .V /. Then the associated Cartan matrix A satisfies
Ai;jAj;i D 4 for some i , j with mi;j D 1. Deforming the entry Ai;j to become less
negative gives a matrix A remaining within the space of weakly compatible matrices, for
which Ai;jAj;i becomes smaller than 4. However, under the assumption dim.V / > N ,
such a small deformation of the Cartan matrix corresponds to a small deformation in
�.WS ;GL.V // which is outside of �ref.WS ;GL.V //. This shows that the character of �
is not in the interior of �ref.WS ;GL.V //.

8.2. Convex cocompactness and the interior of Homref.WS ;GL.V //

As discussed in the introduction, it is a much more subtle problem to determine the interior
of the space Homref.WS ;GL.V // which includes many nonsemisimple representations.
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Proof of Corollary 1.16. Since convex cocompactness in P .V / is an open condition [23,
Theorem 1.16.(D)], the set of representations � 2Homref.WS ;GL.V // for which �.WS / is
convex cocompact in P .V / is included in the interior of Homref.WS ; GL.V // in
Hom.WS ;GL.V //. Let us prove the reverse inclusion.

Suppose � 2 Homref.WS ;GL.V // has Cartan matrix A satisfying Ai;jAj;i D 4 for
some pair .i; j / such thatmi;j D1, and let us find conditions for the existence of a small
deformation of � outside Homref.WS ;GL.V //. The pair .i; j / being fixed, define

Vi WD span
mi;k<1

.vk/ � V; W ?
i WD Ann.Vi / D

\
mi;k<1

Ann.vk/ � V �;

V ?j WD span
mk;j<1

.˛k/ � V
�; Wj WD Ann.V ?j / D

\
mk;j<1

Ker.˛k/ � V:
(8.1)

If there exists .ˇ; w/ 2 W ?
i �Wj such that ˇ.w/ D 1, then for any t 2 R the elements

˛ti WD ˛i C tˇ and vtj WD vj C tw satisfy ˛ti .vk/ D ˛i .vk/ for all k with mi;k ¤1, and
˛k.v

t
j / D ˛k.vj / for all k with mk;j ¤ 1; but ˛ti .v

t
j / D ˛i .vj /C t .�C t /, where � D

˛i .w/C ˇ.vj /. For sufficiently small t ¤ 0 such that �t > 0, we have ˛ti .v
t
j / > ˛i .vj /.

Replacing .˛i ; vj / by .˛ti ; v
t
j / thus yields a representation �t whose Cartan matrix At

satisfies At
i;j D ˛

t
i .v

t
j / > Ai;j and At

j;i D Aj;i , hence At
i;jAt

j;i < Ai;jAj;i D 4. Thus
�t … Homref.WS ;GL.V // for such t , but �t !

t!0
�.

Assuming that n > 2N � 2, or that WS is right-angled and n > N , we will show that
there must exist a pair .ˇ;w/ 2 W ?

i �Wj such that ˇ.w/ D 1. Indeed, suppose not. This
means that

W ?
i � Ann.Wj / D V ?j : (8.2)

Firstly, we assume that n > 2N � 2. We have

dim.V ?j / 6 N � 1 and dim.W ?
i / > n � .N � 1/ > N � 1:

Note also that j̨ 2 V
?
j and j̨ …W

?
i because Aj;i ¤ 0. Therefore,W ?

i is a strict subspace
of V ?j , which implies dimW ?

i 6 N � 2: contradiction.
Secondly, we assume thatW is right-angled and n > N . LetR` D ¹k jm`;k D 2º and

Ri;j D Ri \Rj . Let r` D #R` and ri;j D #Ri;j . Then´
dimV ?j 6 1C rj ;

dimW ?
i > n � 1 � ri (since dimVi 6 1C ri ).

(8.3)

By the pigeonhole principle, since the setsRi andRj are disjoint from ¹i;j º in ¹1; : : : ;N º,
we have

ri;j > ri C rj � .N � 2/: (8.4)

Since W is word hyperbolic, for any k; ` 2 Ri;j the generators sk , s` must commute
(otherwise sks` and sisj generate a copy of Z2). Hence the pairing V ?j � Vi ! R has
rank > ri;j , because its restriction to indices .Ri;j t ¹j º/ � .Ri;j t ¹iº/ has matrix
Diag.2; : : : ; 2;Aj;i /. But the pairingW ?

i � Vi !R is zero by (8.1), and so inclusion (8.2)
forces dimV ?j � dimW ?

i >ri;j . Using (8.3) and (8.4), we obtain n<N : contradiction.
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Remark 8.1. Consider the map AWV N � .V �/N !MN .R/ sending ..vk/NkD1; .˛k/
N
kD1

/

to the matrix .˛i .vj //Ni;jD1. In the case that v1; : : : ;vN are linearly independent in V (resp.
˛1; : : : ;˛N are linearly independent in V �), the entries of the matrix A..vk/

N
kD1

; .˛k/
N
kD1

/

may each be perturbed independently by perturbing the linear forms .˛k/NkD1 (resp. by
perturbing the vectors .vk/NkD1); thus A is an open map near ..vk/NkD1; .˛k/

N
kD1

/ and the
conclusion of Corollary 1.16 is immediate. However, A fails to be an open map near some
inputs ..vk/NkD1; .˛k/

N
kD1

/ for which both .vk/NkD1 and .˛k/NkD1 are linearly dependent.
In some degenerate cases outside of the context of reflection groups, this may happen
even for dimV as large as 2N � 2. This explains why the proof above of Corollary 1.16
is needed.

Remark 8.2. In the case that n WD dim V < N , it is a priori possible that the conclu-
sion of Corollary 1.16 could fail. Specifically, we cannot rule out that some product
Ai;jAj;i is constant equal to 4 on an irreducible component of Homref.WS ;GL.V // with
nonempty interior in Hom.WS ;GL.V // nor that Ai;jAj;i achieves the value 4 as a local
minimum in the interior of Homref.WS ;GL.V //. We are not aware of an example demon-
strating such behavior where WS is word hyperbolic and right-angled, but there exist
examples where WS is right-angled (see Example 8.4) or word hyperbolic (see Exam-
ple 8.5).

8.3. The Anosov condition and the interior of Homref.WS ;GL.V //

Here is a consequence of Fact 1.17.

Lemma 8.3. Let WS be an infinite, word hyperbolic, irreducible Coxeter group, and let
�WWS ! GL.V / be a representation of WS as a reflection group. Then � is P1-Anosov if
and only if �.WS / is strongly convex cocompact in P .V /.

Corollary 1.18 follows directly from Corollaries 1.11 and 1.16, and Lemma 8.3.

Proof of Lemma 8.3. If �.WS / is strongly convex cocompact in P .V /, then � is P1-
Anosov by Fact 1.17. Conversely, suppose � is P1-Anosov. We cannot immediately apply
Fact 1.17 because �.WS / might not preserve a properly convex open subset of P .V /.
However, consider the induced representation

�˛v W WS �! GL.V ˛v /

as in Remarks 3.6 and 3.16, with the same Cartan matrix A as �. It is easy to check
(see [28, Proposition 4.1] and (3.10)) that �˛v WWS ! GL.V ˛v / is still P1-Anosov. The
representation �˛v is reduced (Definition 3.5), hence preserves a properly convex open
subset of P .V ˛v /, namely the Tits–Vinberg domain for �˛v .WS / (Proposition 4.1 (1)). By
Fact 1.17, the group �˛v .WS / is convex cocompact in P .V ˛v /. Note that the Cartan matrix
A is of negative type: this follows from Proposition 6.1 ifN D 2, and from the fact that the
infinite, word hyperbolic, irreducible Coxeter groupWS is large ifN D 3 (use Fact 3.17).
Therefore, �.WS / is convex cocompact in P .V / by Lemma 6.2 (1).
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8.4. Three examples

First, we give an example of a right-angled but not word hyperbolic Coxeter group in 5
generators such that the cyclic products A1;2A2;1 and A4;5A5;4 take only the value 4 on
all of Homref.WS ;GL.R4//.

Example 8.4. Let WS be the right-angled Coxeter group in N D 5 generators for which
the Coxeter diagram is given by

s1 s2 s3 s4 s5
1 1 1 1

Since there exist disjoint subsets S 0 D ¹s1; s2º and S 00 D ¹s4; s5º of S such that WS 0
and WS 00 are both infinite and commute, the group WS contains a subgroup isomorphic
to Z2, hence is not word hyperbolic. Any compatible Cartan matrix for WS must be
conjugate, by diagonal matrices, to

A D

0BBBBB@
2 �2x 0 0 0

�2 2 �2y 0 0

0 �2 2 �2z 0

0 0 �2 2 �2u

0 0 0 �2 2

1CCCCCA
for some x; y; z; u > 1. The .2; 4/-minor of A is 16, hence A always has rank > 4.
Rank equal to 4 is achieved, for example, by the Cartan matrix for the Tits geometric
representation, i.e.,

x D y D z D u D 1:

Since the rank is 4, this Cartan matrix is also realized as the Cartan matrix for a reflection
group in V for dimV D 4: for example, let V be the span of the columns of A inside R5.
A further linear algebra calculation shows that if rank A D 4, then x D u D 1. Indeed, it
is an exercise to show that

det.A/ D 32.xuC xz C yu � x � y � z � uC 1/ D 0

if and only if x D u D 1, using the inequalities x; y; z; u > 1. Hence if dimV D 4, then
all products A1;2A2;1 and A4;5A5;4 take only the value 4 on all of Homref.WS ;GL.V //,
which, up to conjugation, is two-dimensional.

Second, we give an example of a word hyperbolic but not right-angled Coxeter group
in 6 generators such that the set of characters

Œ�� 2 �ref.WS ;GL.R5//

for which �.WS / is convex cocompact in P .R5/ is not the interior of �ref.WS ;GL.R5//
in �.WS ;GL.R5//. In particular, the set of representations � 2 Homref.WS ;GL.R5// for
which �.WS / is convex cocompact in P .R5/ is not the interior of Homref.WS ;GL.R5//
in Hom.WS ;GL.R5//.
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Example 8.5. Let WS be the Coxeter group in N D 6 generators for which the Coxeter
diagram is given by

s1

s2

s3

s4 s5 s6

6

6 6

6
1 6

We can easily check by Moussong’s hyperbolicity criterion (see Remark 1.6) that the
Coxeter group WS is word hyperbolic, and see that any compatible Cartan matrix for WS
must be conjugate, by diagonal matrices, to

A D

0BBBBBBBBB@

2 �
p
3 0 �

p
3x 0 0

�
p
3 2 �

p
3 0 0 0

0 �
p
3 2 �

p
3 0 0

�
p
3x�1 0 �

p
3 2 �2y 0

0 0 0 �2y 2 �
p
3

0 0 0 0 �
p
3 2

1CCCCCCCCCA
for some x > 0 and y > 1. The .1; 1/-minor of A is �4.2y2 C 1/ ¤ 0, hence A always
has rank > 5. In particular, all representations of WS as a reflection group in R5 must be
irreducible, hence discussing character or equality up to conjugation is equivalent. Rank
equal to 5 is achieved by the Cartan matrix A with

det.A/ D 32y2 � 9.x C x�1/ � 14 D 0:

Hence if dimV D 5, then the space Homref.WS ;GL.V // is, modulo conjugation, homeo-
morphic to the line R. Moreover, the intersection of Homref.WS ;GL.V // in those coordi-
nates with the line ¹y D 1º is reduced to the point .x;y/D .1; 1/. Hence, by Theorem 1.8,
the line Homref.WS ;GL.V // except one point corresponds to convex cocompact repre-
sentations (see Figure 8).

Lastly, we give an example of a not word hyperbolic and not right-angled Coxeter
group in 4 generators such that the set of characters Œ�� 2 �ref.WS ;GL.R4// for which
�.WS / is convex cocompact in P .R4/ is not the interior of �ref.WS ;GL.R4// in �.WS ;
GL.R4//.

Example 8.6. Let WS be the Coxeter group in N D 4 generators for which the Coxeter
diagram is given by

s1

s2

s3

s4

4
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x

y

.1; 1/

0:8

1:0

1:2

1:4

1:6

1:8

2:0

0:0 0:5 1:0 1:5 2:0

Fig. 8. The curve det.A/D 0 in terms of x > 0 and y > 1 in Example 8.5. Every point of the curve
except the black dot corresponds to a convex cocompact reflection group (up to conjugation).

Since there is a subset S 0 D ¹s1; s2; s3º of S with WS 0 of type zA2, the group WS contains
a subgroup isomorphic to Z2, hence is not word hyperbolic. We can easily see that any
compatible Cartan matrix for WS must be conjugate, by diagonal matrices, to

A D

0BBB@
2 �1 �1 �

p
2

�1 2 �x 0

�1 �x�1 2 �y

�
p
2 0 �y�1 2

1CCCA
for some x; y > 0. A simple calculation shows that

det.A/ D �.2.x C x�1/C 2
p
2.y C y�1/C

p
2.xy C .xy/�1/C 5/ < 0:

In particular, all representations of WS as a reflection group in R4 must be irreducible,
hence discussing character or equality up to conjugation is equivalent. If dim V D 4,
then the space Homref.WS ;GL.V // is, modulo conjugation, homeomorphic to R2>0; by
Theorem 1.8, convex cocompact representations correspond exactly to the complement
of the line ¹x D 1º in R2>0.

Appendix A. The spherical and affine Coxeter diagrams

Here are all spherical and all affine irreducible diagrams, reproduced from [19].
For spherical Coxeter groups (Table 1), the index — in particular the n for types An,

Bn, Dn — is the number of nodes of the diagram, and the standard representation acts
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Group Diagram Group Diagram

An (n > 1) H4
5

Bn (n > 2) 4
F4

4

Dn (n > 4) E6

I2.p/ (p > 5)
p

E7

H3
5

E8

Tab. 1. The diagrams of the spherical irreducible Coxeter groups.

Group Diagram Group Diagram

zAn (n > 2) zG2
6

zBn (n >)
4

zF4
4

zCn (n > 3) 4 4 zE6

zDn (n > 4) zE7

zA1
1 zE8

zB2 D zC2
4 4

Tab. 2. The diagrams of the affine irreducible Coxeter groups.

irreducibly on the .n � 1/-dimensional sphere with a spherical simplex as a fundamental
domain.

For affine Coxeter groups (Table 2), the index — in particular the n for types zAn, zBn,
zCn, zDn — is one less than the number of nodes; the group acts cocompactly on Euclidean
n-space with a Euclidean simplex as a fundamental domain.
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