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Abstract. Motivated by the search for methods to establish strong minimality of certain low order
algebraic differential equations, a measure of how far a finite rank stationary type is from being
minimal is introduced and studied: The degree of nonminimality is the minimum number of real-
isations of the type required to witness a nonalgebraic forking extension. Conditional on the truth
of a conjecture of Borovik and Cherlin on the generic multiple-transitivity of homogeneous spaces
definable in the stable theory being considered, it is shown that the nonminimality degree is bounded
by the U -rank plus 2. The Borovik—Cherlin conjecture itself is verified for algebraic and meromor-
phic group actions, and a bound of U -rank plus 1 is then deduced unconditionally for differentially
closed fields and compact complex manifolds. An application is given regarding transcendence of
solutions to algebraic differential equations.
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1. Introduction

Strongly minimal sets play a central role in model theory and its applications. Often sig-
nificant effort is put into proving that certain specific definable sets of interest are strongly
minimal. This is especially true in the model theory of differentially closed fields of char-
acteristic zero (DCFy), where showing strong minimality of certain algebraic differential
equations has solved several long-standing transcendence problems. Recent examples
include:
o The generic Painlevé equations. As pointed out by Nagloo and Pillay [30], strong min-
imality comes out of the work of the Japanese school (Okamoto, Nishioka, Noumi,
Umemura, Watanabe) in the 1980s and 1990s.

o Generic order 2 equations over the constants. Strong minimality has recently been
established by Jaoui [16].
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o The Schwarzian equation of the j-function. The first author, first with Scanlon in [12],
used Pila’s Ax—Lindemann—Weierstrass theorem to prove strong minimality, and then
with Casale and Nagloo in [7], gave a new proof that generalises to the uniformisers of
certain Fuchsian groups.

The proofs of strong minimality in the above cases vary significantly and are quite spe-
cific, not just to the theory of differentially closed fields, but to the particular equation
being studied. They are also difficult.

This paper is motivated by the search for general techniques that might aid in estab-
lishing strong minimality. While we remain primarily interested in algebraic differential
equations, our basic approach is abstract and stability-theoretic. Recall that a complete
type is minimal if it has no nonalgebraic forking extensions. It is well known that, in a
stable theory, if p is not minimal then a nonalgebraic forking extension can be found over
a finite set of realisations of p itself. We thus propose the following naive measure of
nonminimality:

Definition (Degree of nonminimality). Suppose p € S(A) is a nonalgebraic and non-
minimal stationary type. By the degree of nonminimality of p, denoted by nmdeg(p), we
mean the least k such that p has a nonalgebraic forking extension over A U {ay,...,ax},
for some ay, . .., aj realising p.

We wish to bound the degree of nonminimality in terms of U-rank. If the bound is
good, and the U-rank is small,' then this can significantly limit the parameter spaces one
needs to consider when proving minimality.

In some cases we succeed unconditionally:

Theorem A. In DCFy, and in the theory CCM of compact complex manifolds, every
complete stationary type of finite rank satisfies nmdeg(p) < U(p) + 1.”

This appears in Theorems 7.2 and 8.1 below.

Here is an application of Theorem A to questions of transcendence for solutions to
algebraic differential equations. Given an algebraic differential equation of order n over a
differential field K, consider the following condition:

(Cyn) For any m distinct solutions a1, . .., dn, ¢ K*2 the sequence
(8(i)aj i=0,....n—1,j=1,...,m)

is algebraically independent over K.

IFor example, the order of an algebraic differential equation bounds its U-rank in DCFg, and
the examples given at the beginning of the Introduction were all of order 2 or 3.

2Note added in proof. This result has since been dramatically improved by the authors, along
with Rémi Jaoui, in [11], to give an absolute bound of nmdeg(p) < 2, which is sharp. In fact, when
p is over constant parameters, nmdeg(p) < 1; for DCFj this is also shown in [11], while for CCM
it appears in [17, Corollary 7.2(a)]. These later improvements build on the approach and techniques
developed here.
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Note that (C,,) increases in strength as m increases. This condition has been studied for
many particular classes of equations. For example, a consequence of the work in [30]
mentioned above is that the generic Painlevé equations satisfy (Cy,) for all m. It is shown
in [16] that for generic order 2 equations over constant parameters, (C2) = (Cy,) for all m.
The same holds for the (order 3) Schwarzian equations corresponding to the Fuchsian
groups studied in [7], and in that case it is understood when (C5) holds — for example, it
follows from [12] that (C>) fails for the equation satisfied by the j-function.
Our Theorem A implies:

Corollary. Suppose K is a differential field, n > 1, and
P(x,6x,...,8"x) =0 (1)

is an order n algebraic differential equation where P € K[Xy, ..., X,] is irreducible.
Then (Cp+2) = (Cp) for all m.*

Proof. We work in DCF,, denote by V' the Kolchin closed set defined by (1), and assume
that (C,+2) holds for V. We argue that V' is a trivial strongly minimal set. This will
suffice, because trivial strongly minimal sets, more or less by definition, satisfy (C3) =
(Cyyy) for all m.

In particular, (C;) holds of V. This already implies that V' has no infinite Kolchin
closed subsets over K of order less than n. Together with irreducibility of P, this implies
that V' is Kolchin irreducible* and that all the nonalgebraic points realise the Kolchin
generic type p € S(K).

We claim that p is minimal. Indeed, if not, then let d := nmdeg(p). There are reali-
sations a1, ...,ay | p and a nonalgebraic forking extension g € S(Kay,...,ag) of p.
Letting agz4; be a realisation of g, we see that (ay, ..., ag41) witnesses the failure of
(Cg+1)- By Theorem A, d < U(p) + 1 <n + 1. But this contradicts the assumption that
(Cp+2) holds.

As every nonalgebraic point in V' realises the minimal type p, we conclude that V/
itself is a strongly minimal set. It now follows from well known facts, together with (Cy),
that the geometry of V is trivial. First of all, since n > 1, V' must be (locally) modular.
If it is nontrivial then by work of Hrushovski and Sokolovic, it is nonorthogonal to a
modular group G defined over K ag (see, for example, [22, Fact 4.1] and the discussion
following). In fact, there is a generically finite-to-finite correspondence between V' and G
over acl(Kay), where a; € V (we are using here the fact that nonorthogonal modular
minimal sets are not weakly orthogonal; see [31, Corollary 2.5.5]). The group structure

3Note added in proof. This result has since been dramatically improved by the authors, along
with Rémi Jaoui, in [10], so that (C3) = (C,) for all m. In fact, if § is trivial on K then, for
all n > 1, already (C2) = (Cp,) for all m. These later improvements build on the approach and
techniques developed here.

*Irreducibility follows, for example, from the structure of prime differential ideals in one vari-
able explained in [25, pp. 39—41].
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on G gives distinct a, as,aq € V such that ay € acl(K, ay, as, as). So (a1, az,as, as)
witnesses that (Cy) fails. This is a contradiction because 7 + 2 > 4 and we are assuming
that (Cy,+2) holds. [

Remark. The assumption that the order be greater than 1 is necessary. For example,
it is shown in [29, Proposition 2.2], and also discussed in Section 4.3 below, that the
Riccati equation §x = ax? + bx + ¢ over (C(t), %), if it has no solutions in C (¢)¢,
satisfies (C3). But it can be shown that (C4) does not hold. On the other hand, even for
order 1 equations, we do have (C4) = (Cp,) for all m. Indeed, the proof of the Corollary
implies that it suffices to rule out the case of a strongly minimal set that is nonmodular, and
hence nonorthogonal to the constants. This would give rise to a definable group action on
a strongly minimal set, and it is not hard to show, using the classification of such actions,
that then (Cj,) fails.

Our main motivation for Theorem A, however, is to aid in showing that particular low
order equations are strongly minimal. Let us be a bit more explicit. Suppose one is trying
to show that a given order 3 algebraic differential equation over a differential field K is
strongly minimal. Essentially, what is required is to show that there are no Kolchin closed
subsets of order 1 or 2. Given the original equation, one would expect to rule out such
subvarieties by algebraic and/or computational means. The difficulty is that the potential
lower order Kolchin closed subsets may not necessarily be defined over K, but rather over
some differential field F © K. What Theorem A does, effectively, is allow one to restrict
attention to F = K{ay,a»,as,as), where the a; are independent solutions to the original
equation. With F now fixed, the complexity of the problem is reduced, and it may in
certain cases become vulnerable to algebraic and computational approaches.

Matthew Devilbiss and the first author [9] have recently used our bounds on degree
of nonminimality to extend the results of Jaoui [16] mentioned earlier; they prove strong
minimality of generic algebraic differential equations of order > 1 and sufficiently high
degree, over possibly nonconstant parameters.

Our proof of Theorem A goes via a conjecture of Borovik and Cherlin [3]. This con-
jecture is discussed in Section 5, but, briefly put, it asserts that if (G, S) is a definable
faithful and transitive group action (i.e., a definable homogeneous space) of finite Morley
rank such that G has a generic orbit in S”*2, where n = RM(S), then (G, S) isomor-
phic to the action of PGL, 4 (F) on P”(F) for some algebraically closed field F. In the
general setting we obtain the following conditional result:

Theorem B. Suppose T is a totally transcendental theory in which every nonmodular
minimal type is nonorthogonal to a minimal type-definable set over the empty set that
eliminates imaginaries. If the Borovik—Cherlin conjecture holds in T then every complete
stationary type of finite rank satisfies nmdeg(p) < U(p) + 2.

This is part of Theorem 5.7 below. In fact, there is a coarser form of the Borovik—
Cherlin conjecture (stated as Conjecture 5.4 below) which we show is enough to give the
slightly weaker bound of nmdeg(p) < U(p) + 3.
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As the Borovik—Cherlin conjecture is known in Morley rank 2 by [1], we are able
to conclude, unconditionally, that for totally transcendental theories in which every non-
modular minimal type is nonorthogonal to a minimal type-definable set over the empty set
admitting elimination of imaginaries, every U -rank 2 type has degree of nonminimality
at most 4.

The connection between the degree of nonminimality and the conjecture of Borovik
and Cherlin arises as follows: First, as is pointed out in Section 3 below, we can reduce
to types that admit no fibrations in the sense of [28]. By observations in that paper, this
leads to a further reduction to types that are internal to a nonmodular minimal type. It
is to the binding group action corresponding to this internality that the Borovik—Cherlin
conjecture is applied.

The route from Theorem B to Theorem A is as follows. Since the proof of Theorem B
only involves binding group actions of types that are internal to a nonmodular minimal
type, and since all such binding group actions in DCF, (and CCM) are definably iso-
morphic to group actions definable in algebraically closed fields of characteristic zero
(ACFy), to derive the bound of U-rank plus 2 in DCFy and CCM one only requires the
Borovik—Cherlin conjecture to hold in ACF,. That is, one requires the Borovik—Cherlin
conjecture to hold for algebraic homogeneous spaces in characteristic zero. A strategy for
proving this using the work of Popov [33] was proposed in [3]. We implement it here, and
in fact obtain at once the same result for meromorphic group actions as well. Namely:

Theorem C. The Borovik—Cherlin conjecture holds for homogeneous spaces definable in
ACF, and in CCM.

This appears in Theorems 6.3 and 8.2.

So, combining Theorems B and C, we deduce Theorem A but with the weaker bound
of U(p) + 2. Additional arguments are then required to bring that down to U(p) + 1. As
the reader may have guessed from the above outline, the only thing special about DCF,
and CCM is that they satisfy the Zilber trichotomy: every nonmodular minimal type is
nonorthogonal to a stably embedded pure algebraically closed field of characteristic zero.
So Theorem A will hold for any such theory. In particular, it holds in the partial differential
case of DCF ,, where there are m commuting derivations.

Concerning lower bounds on the degree of nonminimality, the situation is highly
unsatisfactory. Examples of degree > 1 seem very difficult to produce. In fact, we have
been unable to construct any of degree strictly greater than 2.

We now describe the organisation of the paper. In Section 3 we give some first prop-
erties of our degree of nonminimality, and in particular relate it to the notion of admitting
no fibrations. Then, in Section 4, we explore some examples of nonminimality degree in
DCFy, giving an example where that degree is 2. We also take the opportunity in Sec-
tion 4.3 to give, as a brief aside but using similar methods, a new proof of the above
mentioned fact that the Riccati equation satisfies (C3). In Section 5 we explain how the
conjectures of Borovik and Cherlin lead to bounds on the degree of nonminimality. In
Sections 6 we prove the Borovik—Cherlin conjecture in ACFy. In Section 7 we deduce
the desired bound on nonminimality degree in DCF,. We conclude, in the final section,
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by considering CCM and showing that both the desired bounds and the Borovik—Cherlin
conjecture hold there.

2. Some preliminaries on binding groups

Largely to fix notation and terminology, we recall various facts about internality. Let T’
be a complete stable theory eliminating imaginaries, and work in a sufficiently saturated
UET.

Given a complete stationary type p € S(A) and a partial type r over A, recall that p is
said to be r-internal if there is some parameter set B 2 A such that p(U) C dcl(B, r(U)).
If we replace dcl with acl then we get the notion of almost r-internal. When p is
r-internal, it is natural to consider the group, denoted by Aut4(p/r), of permutations
of p(U) which extend to elements of Auty(U) that fix the realisations of r pointwise. An
important theorem in geometric stability theory is that Autg(p/r), along with its action
on p(U), is type-definable. Or, to be more precise, there is a type-definable group G
over A acting relatively A-definably on S := p(U), and an (abstract) isomorphism of
groups, Auty(p/r) — G, that preserves the action of both on S. We often just iden-
tify (Autq(p/r), S) with its type-definable manifestation (G, S), and refer to it as the
binding group action of p over r. Of course, when T is totally transcendental (which is
the situation we are mainly interested in), the group G is outright definable and not just
type-definable.

Recall that p is said to be weakly orthogonal to r(U) if whenever a = p and b is
a tuple of realisations of r then a | 4 b. We will use the fact that if p is not weakly
orthogonal to r (U) then it admits a nonalgebraic function to r(U). That is,

Lemma 2.1. Suppose r is a partial type over A and the induced structure on r (U) admits
elimination of imaginaries. If p = tp(a/A) is not weakly orthogonal to r(U) then there
is b € dcl(Aa) \ acl(A) such that b = r.

Proof. Ttis a well known consequence of stable embeddability that
tp(a/dcl(Aa) N del(Ar(U))

isolates tp(a/Ar(U)). See, for example, [8, Lemma 1 of the Appendix]. That p is not
weakly orthogonal to r(U) therefore implies the existence of b € dcl(Ar(U)) such that
b € dcl(Aa) \ acl(A). That r admits elimination of imaginaries tells us that b is interde-
finable over A with a tuple of realisations of r. At least one of the co-ordinates of that
tuple will be outside acl(A), and setting b to be such a co-ordinate works. |

It is also well known, and easy to check using stationarity, that if p is r-internal but
weakly r(U)-orthogonal, then the binding group action is transitive. If in addition T is
totally transcendental, then it follows that S is also definable, and so p is isolated. A useful
consequence is that the connected component acts transitively:
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Lemma 2.2. Suppose T is totally transcendental, r is a partial type over A, and p € S(A)
is stationary, r-internal, and weakly r (U)-orthogonal. Then the connected component of
Auty(p/r) also acts transitively on p(U).

Proof. Let G := Autg(p/r) and S := p(U). As G° is of finite index in G, and G acts
transitively on S = p(U), it follows that S is a finite union of G°-orbits. By stationarity,
S is of Morley degree 1, and so exactly one of these orbits, say (9, is of Morley rank
RM(S). But then O is A-invariant, and hence A-definable. Since p is isolated, this forces
O=S. |

Another bit of notation that will be useful is p®). This is the type of the Morley
sequence in p of length k, that is, the type of an independent sequence of k realisations.
Note that via the diagonal action, Autg(p/r) = Auty(p® /r).

3. Degree of nonminimality and fibrations

Work in a sufficiently saturated model U of a complete stable theory 7 admitting elimi-
nation of imaginaries.

Recall from the introduction that we defined the degree of nonminimality of a sta-
tionary type p € S(A) of U-rank greater than 1, denoted by nmdeg(p), to be the least k
such that p has a nonalgebraic forking extension over Aay,...,ax for some ay, ..., ax
realising p. If U(p) < 1 then we set nmdeg(p) = 0.

Lemma 3.1. (a) The nonminimality degree exists.
(b) Any witness to nmdeg(p) is a Morley sequence in p.

(¢c) Degree of nonminimality is preserved under interalgebraicity.

Proof. (a) Note that U(p) > 1 ensures that a (stationary) nonalgebraic forking exten-
sion exists, say ¢ € S(B). Let e = Cb(g). Then e is in the definable closure of a finite
Morley sequence in ¢, say (ap, ..., ax). Choose b |= g with b J/B ai,...,ag. Then
b J/Ae Bay,...,ay. Since g|4. is a nonalgebraic forking extension of p, we see that so
istp(b/Aay, ..., ax).

(b) Suppose ay, . . .,ax witnesses that nmdeg(p) = k. If a; LA(al, ...,aj—1) then the
forking extension tp(a;/Aay, ...,a;—1) is either algebraic, in which case we could drop
a; from (aq,...,ax) and contradict minimality of k, or (a1, . ..,a;—1) would witness that
the degree of nonminimality is < k, which is also impossible.

(c) Suppose p’ € S(A) is interalgebraic with p over A. Suppose ay, ..., ay,b are
realisations of p such that tp(b/Aay, ..., ay) is a nonalgebraic forking extension of p.
Then there are ay, ..., a;, b’ realising p" such that acl(4b) = acl(4b’) and acl(Aa;) =
acl(Aa;) foralli = 1,...,k. Hence tp(b'/Aay, ..., a}) is a nonalgebraic forking exten-
sion of p’. [

Note that, as a consequence of part (b) for example, one does not expect the degree
of nonminimality to be preserved under taking nonforking extensions. Indeed, if p is
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nonminimal with nmdeg(p) = k witnessed by a Morley sequence ay, ..., ai, then we
have nmdeg(ay/Aay ---ax—1) = 1.
As the following lemma illustrates, the degree of nonminimality is frequently 1.

Lemma 3.2. Suppose p = tp(a/A) and there exists b € acl(Aa) \ acl(A) such that a ¢
acl(Ab). Then nmdeg(p) = 1.

Proof. Note that a J y b. Let a’ realise the nonforking extension of tp(a/Ab) to Aba.
Then a’ j/A b also, and so a’ J//A a.If a’ € acl(Aa) then, as a’ J/Ab a, we would have
a’ € acl(Ab), which would imply that a € acl(Ab), which is not the case. So tp(a’/Aa)
is a nonalgebraic forking extension of p. |

In [28] the notion of a proper fibration of a type p(x) = tp(a/A) was introduced: it
is a nonalgebraic type tp(b/A) where b € dcl(Aa) and a ¢ acl(Ab). Lemma 3.2 says that
if p admits a finite cover which admits a proper fibration then nmdeg(p) = 1. One con-
sequence of this is that if nmdeg(p) > 1 then p is algebraic over a 1-type, thus reducing
the search for types of high nonminimality degree to 1-types. In particular, in a strongly
minimal theory all types are either algebraic, minimal, or have degree of nonminimality 1.

Another consequence of nmdeg > 1, following from some observations in [28], is
internality to a nonmodular minimal type:

Proposition 3.3. Suppose p € S(A) is of finite U-rank. If nmdeg(p) > 1 then there is a
non-locally-modular minimal type r such that p is almost r-internal.

Proof. By Lemma 3.2, p does not admit any proper fibration. Proposition 2.3 of [28] tells
us that any finite U-rank type that admits no fibrations is semiminimal. In fact, it says
more, that either p is interalgebraic with ¢®) for some modular minimal type g € S(A),
or p is almost r-internal for some non-locally-modular minimal type r over possibly
additional parameters. In the former case, k > 1 since U(p) > 1, and by Lemma 3.1 (c)
we have nmdeg(p) = nmdeg(q®). But as ¢® clearly admits a proper fibration — namely
q itself via any co-ordinate projection — and hence has degree of nonminimality 1, this is
impossible. Hence, p is almost r-internal for some r as above. [

4. Some examples

In this section we work in U |= DCFy, a sufficiently saturated differentially closed field
of characteristic zero, with field of constants €.

4.1. Degree of nonminimality 1 but without proper fibrations

The converse of Lemma 3.2 is not true: there are types of nmdeg 1 that do not admit proper
fibrations, nor do any of their finite covers.

Consider the type p of [28, Example 5.4]. Namely, let A be a simple abelian variety
of dimension d > 1 over a subfield K C €. Letf: A — ToA = Gf be the logarithmic
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derivative and set G to be the subgroup of A defined by
G:={geA:lg) = (c0,...,0) for some ¢ € €}.

Then G is an extension of G,(€) by A(€). For a € G Kolchin generic over K, the type
p = tp(a/K{(a)) is stationary, €-internal, and of dimension d. Moreover, it is shown
in [28, Example 5.4] that p(U) = a + A(€). Hence, nmdeg(p) = 1. Indeed, if X € A(€)
is any proper irreducible subvariety over K of positive dimension, and x € X is generic
over Ka, then g := tp(a + x/Ka) is the Kolchin generic type of a + X over Ka, and
hence a nonalgebraic type in a + A(€) of dimension < d. So ¢ is a nonalgebraic forking
extension of p.

It is also shown in [28] that p admits no proper fibrations, and the proof given their
extends to show that p admits no finite covers that have proper fibrations. We give some
details. Let b € acl(Ka). We wish to show that either a € acl(K{(a)b) or b € acl(K{(a)).
Set g := tp(a/K{€(a)b). The binding group of p is A(€) acting by translation. By com-
mutativity, the binding group H of ¢ is a definable subgroup of the simple abelian vari-
ety A(€). So H is either finite or all of A(€). If H is finite then a € acl(K{(a)b¥). But
as the binding group of p acts transitively on p(U), we musthavea | Ki() € and hence
a J-’KZ(a)b € as b € acl(Ka). It would therefore follow in this case that a € acl(K{(a)b).
On the other hand, if H = A(€) then the transitivity of the action of the binding group of
p implies that p |- ¢, and so ¢ is a nonforking extension, which forces b € acl(K{(a)). =

4.2. Degree of nonminimality 2

It seems difficult to find types of nmdeg > 1. Any two realisations of such a type must
be either interalgebraic or independent. Moreover, as we have seen, such a type must be
internal to a nonmodular minimal type, and by arguments similar to those in Example 4.1
above, one can deduce various restrictions on the binding group action.

Nevertheless, there are some natural examples. For instance, a nonminimal internal
type with a binding group action that is 2-transitive would necessarily have nmdeg > 1.
Indeed, every pair of distinct realisations is an independent pair, so that over any one
realisation there are no nonalgebraic forking extensions.

This happens in DCFy. For each n > 2, we will exhibit a €-internal type p whose
binding group action is isomorphic to the natural action of PGL, on P"~!. When n > 3
this action is 2-transitive. To construct p we will follow [18, Example 4.2] which dealt
with the case of n = 2.

Fix n > 2. Let B € M,(U) be an n x n matrix whose entries form an independent
set of differential transcendentals, and consider the system of order 1 linear differential
equations given by

38X = BX, 2)

where X is an column n-vector of variables. Let V' be the set of solutions to (2), viewed
as a €-vector subspace of U". Note that the natural action of GL,(U) on U” induces an
action of GL, (€) on V. From the existence of a fundamental system of solutions to (2),
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namely n vectors that form both a €-basis for V' and a U-basis for U”, it is not hard to see
that this action of GL, (€) is that of GL(}'), the group of €-linear isomorphisms of V.

Let F = Q(B) be the differential field generated by the entries of B, and ¢ the Kolchin
generic type of V' over F. So g is €-internal. Our first goal is to show that the binding
group action of ¢ is the action of GL(V) on V' \ {0}.

Note that by genericity of ¢, any realisation is an algebraically independent n-tuple
over F. So if we fix independent realisations vy,. . ., v, of g, and form the n x n matrix M
whose columns are the v;, then the n? entries of M form an algebraically independent set
over F. In particular, M is invertible. It follows that we have a map p : Autp(q/€) —
GL,(€) given by p(c) = M? M. This is because M = BM and M’ = BM°.

Claim 4.1. ¢™ is weakly orthogonal to €.

Proof. Since M = ¢, we need to show that F (M) N'€ C F. In fact, we will show that
F(M)N¢€ =Q.But

FIM)N€ =Q(B)Y(M)NE€ =Q(M)NE since B =M 16M.

So it will suffice to show that the entries of M form an independent set of differential
transcendentals over Q. This is indeed the case: on the one hand, the differential tran-
scendental degree of Q (M) is at most n? because that is the number of given generators,
while on the other hand it is at least n? because Q(B) € Q(M) as we have already
observed. ]

Claim 4.2. ¢(U) = V \ {0}

Proof. Claim 4.1 implies, in particular, that ¢ itself is weakly orthogonal to €. Hence, the
action of GL,(€) on V restricts to an action on g(U). Indeed, given C € GL,(€) and
v = ¢, we find that v and C are independent over F', and so C v is again a realisation of g.
Recalling that GL, (€) acts as GL(V') on V, it follows that g(U) = V \ {0}. |

Claim 4.3. p : Autp(q/€) — GL,(€) is an isomorphism that preserves the natural
action of both groups on q(U).

Proof. Itis easily checked that p is a homomorphism. For injectivity note that if p(o) = 1
then M % = M and hence o fixes vy, ..., v,. But from Claim 4.1 it follows that vq, ..., v,
is a €-basis for V, so that we must have o = id. Surjectivity now also follows from
Claim 4.1 as it implies that the dimension of Autg(q/€) (as an algebraic group) must
be dim(¢™) = n? = dim GL,(€). Finally, fixing 0 € Autr(g/€), note that, for each
i=1,...,n,0(v;) is the ith column of M° = p(o)M, and hence o(v;) = p(0o)v;.
Again using the fact that vy, . .., v, is a €-basis for V', we conclude that o and p(o’) agree
on all of ¢g(U). |

We have shown that the binding group action of ¢ is that of GL(V) on V \ {0}.
Our next step is to projectivise. That is, consider 7 : U™ \ {u, = 0} — U"~! given by
AU, Up) = Uy Up, .o Up—1/Up).
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Claim 4.4. The restriction of w to V \ {0} is the natural projectivisation map V \ {0}
— P(V).

Proof. First, note that 7 is defined on V' \ {0} because the latter is ¢(U) and realisa-
tions of ¢ are algebraically independent tuples over F. It is clear that if ¢ € €* and
v € V is nonzero then w(v) = 7 (cv). Conversely, suppose 7 (v) = 7 (v’) for some pair
of nonzero v, v’ € V. Then v’ = av for some a € U*. On the one hand, we have §(av) =
(6a)v + aBv. On the other hand, §(av) = B(av) = aBuv. It follows that §a = 0, and
a € €* as desired. L]

Let p := n(q) € Sy—1(F). This is a U-rank n — 1 type that is €-internal. By
Claim 4.4, p(U) = P (V). Moreover, we have an induced surjective homomorphism
7 Autg(q/€) — Autp(p/€) that is compatible with the actions of these groups
on ¢(U) and p(U) respectively; see for example [18, Lemma 3.1]. Under the identi-
fication of Autg(g/€) with GL(V), we see by Claim 4.4 that the kernel of 7 is €*.
Indeed, the elements of ker(7) are precisely those elements of GL(V) that preserve
every 1-dimensional subspace of V, and that is clearly €*. Hence Autg(p/€) acts on
p(U) =P(V)as GL(V)/€* = PGL(V) does. Since V is an n-dimensional vector space
(over €), this is what we were looking for: a binding group action that is isomorphic to
the action of PGL,, on P"~1.

In particular, if n > 3 then p is nonminimal, €-internal and with Autr (p/€) acting
2-transitively on p(U). Hence nmdeg(p) > 2. In fact,

Claim 4.5. Ifn > 3 then nmdeg(p) = 2.

Proof. We have already seen that nmdeg(p) > 2. To show that nmdeg < 2 we fix a pair
of independent realisations wy, w,, of p, and show that p admits a nonalgebraic forking
extension to K := F(wj, wy). This should be the generic type of the line in P(V') con-
necting w; and w,. That is, let W C V be the K-definable 2-dimensional €-subspace
that contains 7! (w1) and 7! (w-,). Since n > 3, W is a proper subspace of V. Let w
be Kolchin generic in W over K. We claim that p’ = tp(sr(w)/K) is a nonalgebraic fork-
ing extension of p. Note that w is Kolchin generic in 7~ (7 (w)) over K{m(w)). So, if
p’ were a nonforking extension of p then w would be Kolchin generic in V over K,
contradicting the fact that w is contained in the proper subspace W. Similarly, if p’
were an algebraic extension of p then U(w/K) would be 1, contradicting the fact that
dime W = 2. [

4.3. An aside on the order 1 Riccati equation

In the Introduction we mentioned that if an order 1 Riccati equation §y = ay? + by + ¢
over (C(1), %) has no algebraic solutions then it satisfies (C3); namely, any three distinct
solutions are algebraically independent over C(¢). This is a theorem of Nagloo used in
the study of certain Painlevé equations; see [29, Proposition 2.2]. But it can also be seen
using the approach of the previous section, as we now explain.
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First, by a standard change of variables as in [29, Fact 2.2], it suffices to consider
§y = —y* +ec. (3)

Let U denote the set of solutions. As we are assuming no algebraic solutions, (3) isolates
a complete type p € S(F) where F := C(¢). This type is €-internal, and our approach is
to show that the associated binding group action is that of PGL, on IP!. This will suffice:
that action is 3-transitive and hence any three distinct realisations will be independent.
Following [29], we consider the associated second order linear homogeneous differ-
ential equation §2x = cx. The connection to (3) is that if §2x = cx and y := ‘s_x—x then

8y = —y? + c. Putting §2x = cx in 2 x 2 matrix form, we get
5X = (0 l)x. )
c 0

Let V' be the space of solutions to (4). It is explained in [29] how the results of [21]
and the assumption that (3) has no algebraic solutions imply that the differential Galois
group of (4) is SL,(€). One of the consequences of this is that, as SL, acts transitively
on A2\ {0}, the set V \ {0} is a complete type ¢ over F. In this situation (i.e., a linear
homogeneous differential equation whose nonzero solutions isolate a type), the differen-
tial Galois group can be identified with the binding group Autg (¢/€). The upshot is that
the embedding p : Autg(q/€) — GL,(€) from Section 4.2 now identifies Autg (q/€)
with SL,(€). Proceeding as in Section 4.2, we observe that (17, uz) > up/u restricts
to the projectivisation 7 : V \ {0} — P(V) = U. Indeed, this is essentially what [29,
Proposition 2.1] says. We get an induced surjective homomorphism 7 : Autg(¢/€) —
Autg (p/€) of group actions, whose kernel is SL,(€) N €* = {1, —1}, and we conclude
that the action of Autz(p/€) on U is that of SL, /{1, —1} = PGL, on P(V) = P!, as
desired.

5. Toward an upper bound: generic transitivity

Our goal is to find upper bounds on the degree of nonminimality in terms of natural invari-
ants. This has the potential to be useful as it opens up an approach to proving minimality
in certain cases; such a bound would limit the parameter spaces one needs to consider
when ruling out the existence of nonalgebraic forking extensions.

In searching for an upper bound we may as well assume that the degree of nonmini-
mality is greater than 1. Hence, by Proposition 3.3, we can restrict our attention to types
that are internal to a (nonmodular) minimal type. The following proposition bounds the
degree of nonminimality in terms of the length of a “fundamental system of solutions”
witnessing the internality.

We return to the general setting of a fixed sufficiently saturated model U of a complete
stable theory admitting elimination of imaginaries.
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Proposition 5.1. Suppose p € S(A) is a stationary type of finite U-rank, r is a partial
type over A such that p is r-internal, and U(p) > U(r). Assume, moreover, that the
induced structure on r(U) admits elimination of imaginaries. Then

nmdeg(p) < min {k : p(k) is not weakly orthogonal to r(U)}.

Proof. Since p is nonalgebraic and r-internal there is a k > 0 such that p® is not weakly
orthogonal to r(U). Let k be minimal such, and fix (a1, ..., ax) = p®. We will show
that p has a nonalgebraic forking extension over Aay, ..., ak.

By non-weak-orthogonality and elimination of imaginaries (see Lemma 2.1), there
is b E r with b € dcl(Aay, ..., ax) \ acl(4). We claim that tp(b/Aa;, ..., ax—1) is a

proper fibration of tp(ay /Aay, ..., ar—1). We already know it is a fibration, so it remains
to verify that neither tp(b/Aay, . ..,ax—1) nor tp(ax/Aay, . ..,ar_1b) are algebraic. The
former is by minimality of k as b € acl(Aay, ..., ax—;) would imply that p*&~1 is not

weakly orthogonal to r(U). On the other hand, as U(r) < U(p),

Ulay.....ax—1.b/A) < (k — )U(p) + U(r) < kU(p) = U(ay.....ax/A).

and so ay ¢ acl(Aay,...,ax—1b), as desired.

Hence nmdeg(ayr/Aai, ...,ax—1) = 1 by Lemma 3.2. That is, there exists a’ |=
tp(ar/Aai,...,ax—1) such that a’ ‘X/Aal ,,,,, ary U and a’ ¢ acl(Aay,...,ay). But then
a’ [/A ai,...,ay also, and hence tp(a’/Aay, ... ,ax) is a nonalgebraic forking extension
of p. So nmdeg(p) < k. |

Now, internality together with weak orthogonality yields a transitive action of the
binding group on the realisations of the type. In the totally transcendental case this is
a definable homogeneous space, and understanding it should (and will) be useful. One
obstacle, however, is that the minimal type r produced in Proposition 3.3 need not be over
the same parameters as p, whereas that is necessary to apply Proposition 5.1. In certain
theories of interest, however, such as differentially closed fields and compact complex
manifolds, every nonmodular minimal type r over whatever parameters is nonorthogonal
to one over the empty set. We therefore impose the following additional assumptions on
our theory:

Assumption 5.2. Suppose T is totally transcendental and every nonmodular minimal
type is nonorthogonal to a minimal type-definable set over the empty set that eliminates
imaginaries.

Suppose that 7 is a totally transcendental theory satisfying a strong form of the Zilber
trichotomy in the sense that there is a definable pure algebraically closed field F such that
every nonmodular minimal type is nonorthogonal to F'. Then we can name the parameters
of F to the language and Assumption 5.2 is now satisfied. In particular, this assumption
holds in DCFy ,;, and CCM.

Under this assumption, Propositions 3.3 and 5.1, together, suggest that we focus on the
following context: a finite rank type p € S(A) of nonminimality degree greater than 1 and
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a minimal nonmodular partial type r over the empty set such that Autq(p/r) acts transi-
tively on p®*~1 for some k > nmdeg(p). That is, the action of Auty(p/r) is “generically
(k — 1)-transitive” on p(U). Generic transitivity is a generalisation of a notion introduced
for algebraic groups by Popov [33] and later developed in the context of groups of finite
Morley rank by Borovik and Cherlin [3] as follows:

Definition 5.3 (Generic transitivity [3]). A definable action of a group G of finite Morley
rank on a definable set S of finite Morley rank is generically k-transitive if the diagonal
action of G on S* admits an orbit @ such that RM(S* \ ©) < RM(S¥).

This weakens the classical notion of k-transitivity: an action of G on S is k-transitive
if for any two k-tuples (xy,...,xz) and (y1, ..., yx) with x; # x;,y; # yj fori # j,
there is some g € G such that (gx1,...,2xx) = (V1,-- ., Vk)- A high degree of transitivity
is known to impose strong structural conditions on the group. For instance, Jordan [19]
shows that if a finite group G acts 4-transitively on a set .S with the pointwise stabilizer
of any four distinct elements being trivial (that is, G acts sharply 4-transitively) then G
must be one of S4, S5, Ag or the Mathieu group M. Later, Tits [36] generalised Jordan’s
theorem to infinite groups, and Hall [14] loosened the sharpness requirement. These theo-
rems imply, for instance, that there are no infinite groups which act sharply n-transitively
for n > 4. Dropping the sharpness requirement, but using the classification of finite simple
groups, one can show that the only finite groups with a 4-transitive action are symmet-
ric, alternating, and Mathieu groups [6, p. 110]. In the case of infinite groups, there are
few known restrictions on multiply transitive groups in general, but higher transitivity is
very restricted in various definable contexts. For instance, there are no infinite 4-transitive
group actions definable in algebraically closed fields [20] or in o-minimal structures [35].

In the definable category, even the weaker notion of generic transitivity imposes strong
structural consequences. The prototypical examples of high generic transitivity are, in a
(pure) algebraically closed field F', the following:

e The natural action of GL,, (F) on F" is generically n-transitive, where the generic orbit
consists of the set of bases for the vector space.

e The induced action of PGL, 41 (F) on P"(F') is generically (n + 2)-transitive with the
generic orbit being the set of projective bases. (Recall that a projective basis of P" is a
set of n + 2 points with no n + 1 of them lying on the same hyperplane.)

Conjecturally, one cannot get any higher generic transitivity than the latter action:

Conjecture 5.4 (Borovik—Cherlin [3]). If G is a finite Morley rank group acting definably
and generically k-transitively on an infinite set S, then k < RM(S) + 2.

In fact, Borovik and Cherlin make the following more precise conjecture:

Conjecture 5.5 (Borovik—Cherlin [3]). Let (G, S) be a connected homogeneous space
of finite Morley rank with n := RM(S) > 0. If G acts generically (n + 2)-transitively
then (G, S) is isomorphic to the natural action of PGL, 11 (F) on P"(F) for some alge-
braically closed field F.
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Let us spell out how Conjecture 5.4 follows from Conjecture 5.5. First of all, as is
pointed out in the proof of [3, Lemma 1.9], as long as k > 1 (which we may assume),
the action of the connected component G° on S is also generically k-transitive. So we
may assume that G is connected. We can also assume that G acts faithfully (by replac-
ing G with an appropriate quotient) and transitively (by replacing S with a generic orbit).
That is, we may assume (G, S) is a connected homogeneous space that is generically k-
transitive. Now, suppose that k > n 4 2. The (G, S) is also generically (n + 2)-transitive,
and hence, by Conjecture 5.5, we may assume that (G, S) = (PGL,+1(F), P"(F)). But,
it is a fact that the action of PGL,41 on P” is not generically k-transitive for k > n + 2;
indeed, it is sharply generically (n + 2)-transitive. So k < n + 2, as desired.

Here is how generic transitivity arises in considering degree of nonminimality:

Proposition 5.6. We work under Assumption 5.2. Suppose p € S(A) is a stationary finite
rank type with d := nmdeg(p) > 1. Then there exists a stationary type q € S(A) inter-
algebraic with p, and a nonmodular minimal partial type r over the empty set, such that
q is r-internal. Furthermore, if we let G := Autq(q/r)° be the connected component of
the binding group and S := q(U) then (G, S) is a definable homogeneous space that is
generically (d — 1)-transitive.

Proof. By Proposition 3.3, p is almost internal to some nonmodular minimal type. By
Assumption 5.2, that type is nonorthogonal to a (nonmodular) minimal partial type r over
the empty set, such that the induced structure on r(U) eliminates imaginaries. So p is
almost r-internal. From almost r-internality we obtain ¢ € S(A) that is interalgebraic with
p and outright r-internal (see, for example, [ 18, Lemma 3.6]). Note that by Lemma 3.1 (¢),
nmdeg(g) = d as well.

Now, the binding group Aut4(¢/r) and its action on S := ¢(U) is definable as T
is totally transcendental. Let k be least such that ¢ is not weakly orthogonal to r(U).
By Proposition 5.1, k > d. In particular, ¢ is weakly orthogonal to »(U). It follows that
Auty(g/r) acts transitively on S, and that S is isolated. In fact, by Lemma 2.2, the con-
nected component G also acts transitively on S.

By minimality of k we see that ¢~ and hence ¢(@~1, is weakly r(U)-orthogonal.
Since Auty(q/r) = Auty(¢@~V/r), it follows that G also acts transitively on O :=
g@=D(U) € S9!, As S is internal to a minimal type, U -rank and Morley rank agree on
the induced structure on S, and so

RM(S9~1\ ©) < RM(S971).
That is, G acts generically (d — 1)-transitively on S. |

We obtain the following conditional bound on the degree of nonminimality:

Theorem 5.7. Suppose T satisfies Assumption 5.2 and let p € S(A) be a stationary type
of finite rank.

(a) If Conjecture 5.4 holds for finite rank group actions definable in T then nmdeg(p) <
U(p) + 3.
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(b) If Conjecture 5.5 holds for finite rank homogeneous spaces definable in T then
nmdeg(p) < U(p) + 2.

Proof. We may assume that n := U(p) > 1 and d := nmdeg(p) > 1. By Proposition 5.6
there is a stationary type g € S(A) that is interalgebraic with p, and a (nonmodular)
minimal partial type r over the empty set such that g is r-internal and such that the con-
nected component of the binding group G := Aut4(g/r)° acts definably and generically
(d — 1)-transitively on S := ¢(U). Since RM(S) = U(p) by internality to a minimal set,
Conjecture 5.4 implies that d — 1 < n 4+ 2. This proves part (a).

For (b), we need only rule out the extreme case when d = n + 3. But in that case
(G, S) is a generically (n + 2)-transitive definable homogeneous space. So, Conjec-
ture 5.5 applies and (G, §) is (abstractly) isomorphic to (PGL,,+1(F), P"(F)) for some
algebraically closed field F. Fix distinct elements b, c € S, let H := Stab(b,c) < G, and
consider the action of H on S. Then, besides {b} and {c}, H has exactly two orbits in S,
both infinite. Indeed, this is the case for (PGL,, 1 (F), P"(F)) where one of the orbits is
the line on which b and ¢ lie and the other is the complement of that line. As S is of Mor-
ley rank n and Morley degree 1, one of these infinite orbits, say (9, must be of rank < n.
Write @ as Hd for some d € S, and let § be the generic type of @ over Abcd. Then §
is a nonalgebraic forking extension of g. It follows, by definition, that nmdeg(g) < 3. But
this contradicts nmdeg(q) =d =n + 3 > 4. Hence,d # n + 3 and we have d <n + 2,
as desired. ]

Corollary 5.8. Under Assumption 5.2, if p is stationary and of U -rank 2 then nmdeg(p)
<4.

Proof. In proving Theorem 5.7 (b) we only applied Conjecture 5.5 to a group action
(G, S) where RM(S) = U(p). But when RM(S) = 2, Conjecture 5.5 is a theorem of
Altinel and Wiscons [1]. [

Actually, we get more from the proof of Theorem 5.7. We only applied the Borovik—
Cherlin conjectures to group actions arising from internality to a nonmodular minimal
type-definable set. So one would expect that in cases where one understands well the
nonmodular minimal types one could prove the conjectures outright for the relevant group
actions and thus deduce the bound on degree of nonminimality. And indeed, this is what
we do in the next sections; we prove that Conjecture 5.5 holds for algebraic groups in
characteristic zero and use that to deduce the bound nmdeg(p) < U(p) + 2 in differen-
tially closed fields and compact complex manifolds. With a bit more work, we will get
that down to U(p) + 1 in these theories.

Remark 5.9. It is worth pointing out that the existence, unconditionally and in general,
of some bound on nmdeg in terms of U-rank can be deduced from the above methods.
Indeed, it is shown in [3, Corollary 2.1 and Lemma 1.20] that there is a function 7 : @ —
such that whenever (G, S) is a transitive finite rank group action that is generically k-
transitive then £k < T(RM(S)). (Conjecture 5.4 is that t(n) = n + 2 works.) It follows,
under Assumption 5.2 and using the above methods, that nmdeg(p) < t(U(p)) + 1.
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6. The Borovik—Cherlin conjecture in ACFy

As has been suggested in various places [1, 3, 4], one should be able to prove the conjec-
tures of Borovik and Cherlin for algebraic groups in characteristic zero by using the work
of Popov [33] to deal with simple linear algebraic groups and then using the O’Nan—Scott
Theorem of Macpherson and Pillay [24] to reduce to the simple case. As we have not seen
this carried out, we will do so here in some detail.

Throughout this section we work in a sufficiently saturated U |= ACF.

First, we verify that the finite Morley rank notion of generic transitivity given in Def-
inition 5.3 agrees with that introduced by Popov [33] for algebraic groups.

Lemma 6.1. Suppose G is an algebraic group and o : G X S — S is an algebraic action
of G on an irreducible variety S. Then, for all n > 1, the action o is generically n-
transitive in the sense of Definition 5.3 if and only if the induced action of G on S™ has a
Zariski open orbit.

Proof. Since Morley rank agrees with dimension in ACFy, and a proper subvariety of an
irreducible variety is of strictly smaller dimension, the existence of a Zariski open orbit
for the action of G on S” does imply generic n-transitivity of (G, S). For the converse,
assume @ C §” is an orbit of (G, S”) whose complement is of strictly smaller dimension.
In particular, @ is Zariski dense in S”. We show that (@ is Zariski open. Being a definable
Zariski dense set, it does contain a nonempty Zariski open subset, U. Fix u € U. For
any a € O there is g € G such that «(g, u) = a. Now, f = a(g,—) : S" —> S" is
an algebraic automorphism that preserves (9, and hence f(U) is Zariski open, contains
a, and is contained in . We have shown that every element of @ has a Zariski open
neighbourhood contained in @. This implies that @ is Zariski open, as desired. ]

6.1. The case of simple linear algebraic groups

We explain how Conjecture 5.5 for simple linear algebraic groups in characteristic zero
can be deduced from the statements and arguments appearing in Popov [33].

Theorem 6.2. Suppose o : G x S — S is an algebraic action of a simple linear algebraic
group on a positive-dimensional irreducible variety in characteristic zero. If « is transitive

and generically (n + 2)-transitive then « is isomorphic to the natural action of PGL; 41
on P".

Proof. Asin [33], by the generic transitivity degree of a, denoted by gtd(«) or gtd(G, S),
we mean the supremum of all d > 0 such that « is generically d -transitive. We are assum-
ing that gtd(o) > n + 2.

We proceed by induction on n. For the n = 1 case we use the fact that the faithful
linear algebraic group actions on curves are completely classified as the natural action of
the additive or multiplicative group on the affine line, the semidirect product of the two
acting by affine transformations, or PGL, acting on P’ by projective transformations. Of
these, only the last is generically 3-transitive. So we may assume thatn > 1.
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Let K be an algebraically closed subfield over which « is defined. Fix xo € S(K) and
let H := Stab(x). This is a proper closed subgroup of G over K. As « is transitive, we
have a G-equivariant isomorphism between G/H and S given by gH — «(g, x¢). So we
may as well assume that S = G/H and « is the natural action of G on G/H.

Theorem 1 of [33] gives upper bounds on the generic transitive degree of the possible
actions of a linear algebraic group depending on its classification type. In particular, there
are only two types of simple linear algebraic groups that admit actions of generic transitive
degree greater than 3. As gtd(«) > n + 2 > 3, this applies to «, and the two possibilities
are:

(i) G isof type E¢, and gtd(«) = 4, or

(i1) G is of type Ay and gtd(ar) < £ + 2.

We first rule out case (i). Indeed, if G is of type E¢ then it is of dimension 78 and one
has an explicit list of the classification types (and hence dimensions) of the maximal
proper closed subgroups of G — see, for example, [23, Table 1]. In particular, one sees that
dim(H) < 22, and hence n = dim(G/H ) > 3. But then gtd(«) = 4 contradicts gtd(«) >
n+2.

Therefore G is of type Ay, and so, being simple, it equals PGL, ;. Our strategy now is
to show that H must be a maximal standard parabolic® subgroup P < PGL,, in which
case the action of PGLy4; on the cosets of P agrees with its action on a grassmannian,
and one can deduce that the only way that action can be of generic transitivity degree
>n+2isifn =€ and PGL,4+; /P = P".

Let H’ be a maximal proper closed subgroup of G containing H. The projection
G/H — G/H’is G-equivariant, and hence, by [33, Lemma 2 (i)],

otd(G, G/H') > ¢td(G, G/H) > n + 2.

If dim(G/H’) = d < n then we get gtd(G, G/H') > d + 2, which contradicts the induc-
tive hypothesis that (G, G/H') is isomorphic to (PGLg41,P¢). So d = n and H is of
finite index in H'. It follows that G/H — G/H’ is a finite étale cover. Hence, if we prove
that G/H' = P" then it would follow that H = H'. So it suffices to prove the result for
(G,G/H’). That is, we may assume H = H’ is a maximal proper closed subgroup of G.

It is a fact that for maximal proper closed subgroups, either the connected component
is reductive or the subgroup is parabolic — see [15, Section 30.4]. Let H ° be the connected
component of H. By [33, Lemma 2 (ii)], we have gtd(G : G/H) = gtd(G : G/H®). Now,
if H° were reductive, then by [33, Lemma 6] we would have gtd(G : G/H°) = 1, contra-
dicting that it is > n + 2. Hence H ° is not reductive and H is parabolic. (Note that this
implies H = H?°; see [15, Section 23.1, Corollary B].)

Every parabolic subgroup is conjugate to a standard one [15, Section 29.3]. As con-
jugation induces a G-equivariant algebraic isomorphism, we may assume that H = P

3 A closed subgroup is parabolic if the quotient is projective, and is standard if it contains the
subgroup of upper triangular matrices in G.
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is a standard parabolic subgroup. Now, it is well known that a standard parabolic sub-
group P < PGLy is the stabiliser of a (partial) flag in A“*! under the natural action of
GL/41, and so the homogeneous space PGLy4; /P is a flag variety. When P is maximal
(as H is), the flag is of length 1; it is just a dimension m > 0 proper subspace of A+,
Hence, in that case, PGL;4; /P is the grassmannian GR(m, £ 4+ 1). So (G, G/H) =
(PGL¢41,GR(m, £ + 1)). In particular, n = dim GR(m, £ + 1) = m(£ + 1 — m). The
generic transitivity degree of (PGL;41, GR(m, £ 4 1)) is computed in [33, Theorem 3]
to be the greatest integer bounded above by _(+n? As gtd(G,G/H) > n + 2, we see

m{+1-—m) "
that Lm((fi—ll)_zm)J > m(f + 1 —m) + 2. It is easily checked that this forces m = 1. So
n = £ and the action of G on G/H is that of PGL, +; on GR(1,n + 1) = P”". |

6.2. The general case
We now establish Conjecture 5.5 for ACFy.

Theorem 6.3. Suppose, in ACF,, we have a definable connected homogeneous space
(G, S) with S of dimension n > 0. If G acts generically (n + 2)-transitively on S then
(G, S) is definably isomorphic to (PGLy 41, P").

Proof. First of all, as a consequence of the Weil group-chunk (or rather homogeneous-
space-chunk) theorem [37], we know that (G, S) is definably isomorphic to an algebraic
group action. That is, we may assume o : G x § — § is an algebraic action of an algebraic
group on an irreducible variety — which is faithful, transitive, and generically (n + 2)-
transitive — and we aim to prove that « is isomorphic (as an algebraic group action) to the
natural action of PGL,, 4+, on P”.

Again we proceed by induction on n. When n = 1 we only have, besides the linear
algebraic group actions on curves (of which, as mentioned in the previous section, only
the action of PGL, on PP is generically 3-transitive), the action of an elliptic curve on itself
(which, being regular, has generic transitive degree 1). So we may assume thatn > 1.

Next, we reduce to the definably primitive case, meaning that there is no nontrivial
definable equivalence relation E on S that is G-equivariant in the sense that E(x, y) <
E(gx, gy) for all g € G. This reduction is actually effected in general for finite Morley
rank groups by Borovik and Cherlin [3, bottom of p. 35], but the situation is much simpler
in the case of algebraic groups. Indeed, exactly as in the proof of Theorem 6.2, transitiv-
ity along with the induction hypothesis and the simple-connectedness of P” allows us
to reduce to the case of (G, S) = (G, G/H) where H is a maximal proper closed sub-
group of G. As all definable subgroups of G are closed, H is a maximal proper definable
subgroup. But this is equivalent to (G, G/H ) being definably primitive.

So we may assume that (G, S) is definably primitive. This puts us into the context of
the O’Nan—Scott theorem of Macpherson and Pillay, [24, Theorem 1.1], which we now
use to reduce to G being a simple linear algebraic group.

Let B be the definable socle of G, that is, the subgroup generated by the minimal
normal definable subgroups of G. Then, by standard finite Morley rank techniques, B is
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itself definable. The O’Nan-Scott theorem gives a list of possibilities, labelled as 1, 2,
3, 4a(i), 4a(ii), 4b in [24, Theorem 1.1], for the structure of B and how close G is to B.
Before dealing with the various cases individually (and even stating what they are) let us
point out that, as explained right after the statement of [24, Theorem 1.1], the fact that G
is connected already rules out cases 4a(i) and 4b, and so we will not discuss these.

In case 1 of [24, Theorem 1.1], B is either torsion-free divisible or an elementary
abelian p-group. The known structure of commutative algebraic groups in characteristic
zero rules out the latter (see for example [5, Theorem 5.3.1]). In the torsion-free divisi-
ble case [3, Lemma 3.2] tells us that RM(G) < n? + n. But generic (n + 2)-transitivity
implies that RM(G) > (n + 2)n. This contradiction rules out case 1.

We are left with three cases, namely 2, 3, and 4a(ii) of [24, Theorem 1.1], which we
now finally state:

2. B is noncommutative simple, acts regularly on S, and G is an extension of B by
a subgroup H < Aut B such that H N B = (e), or

3. B is noncommutative simple and B < G < Aut B, or

4a(ii). B = Ty x T, where Ty, T, are (definably isomorphic) infinite simple noncommu-
tative definable normal subgroups of G both acting regularly on S, and B < G
< W where W is an extension of B by ((Aut77)/T1) x Sym,.

Here, for a simple group 7" we view T < Aut T with elements acting by conjugation. Of
course, the actual Theorem 1.1 in [24] gives more information in each of these cases; we
have only recorded what we require.

We first argue that, in all three cases, G = B. This is because for a simple linear alge-
braic group T, the outer automorphism group (Aut7")/ T is finite (see [15, Section 27.4]).
Note that B in cases 2 and 3, and T7, 75 in case 4a(ii), are simple linear algebraic groups
as they are simple noncommutative definable subgroups of the algebraic group G. So,
inspecting the three cases, we see that in each of them G is a finite extension of B. But
then connectedness forces G = B.

Case 2 is therefore impossible as G acting regularly on S is incompatible with it acting
generically (n + 2)-transitively. Case 4a(ii) is also impossible for similar reasons: as T}
and 75 actregularly on S, G = T x T, would imply that dim G = 2n, again contradicting
generic (n + 2)-transitivity (which implies dim G > (n + 2)n).

So we are in case 3 and G = B is itself a simple linear algebraic group. Theorem 6.2
applies, and (G, S) = (PGL,,+1, P"), as desired. |

7. Differentially closed fields

Equipped with the truth of Conjecture 5.5 in ACFy, we can now establish the desired
upper bound on degree of minimality in theories where ACF is the site of all nonmodular
minimal types. For concreteness we here only consider DCFy, the theory of differentially
closed fields of characteristic zero.

We work in a saturated model U |= DCFy with field of constants €.
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We begin by improving Proposition 5.1 to a strict inequality:

Proposition 7.1. Suppose p € S(A) is stationary nonalgebraic type of finite rank that is
C-internal and weakly €-orthogonal. Then

nmdeg(p) < min{k : p(k) is not weakly €-orthogonaly}.

Proof. Since p is weakly €-orthogonal and €-internal, it is isolated. So S := p(U) is
an A-definable set. Since p is nonalgebraic and €-internal, there is k > 0 such that p®
is not weakly €-orthogonal. Let k be minimal such, fix (ai,...,ax) = p®, and let
B := Aay,...,ar—1. We have seen, in the proof of Proposition 5.1, that tp(ag / B) admits
a proper fibration tp(h/B) where b € €. Write b = f(ay) where f : X — Y isa B-
definable surjective function withay € X € Sandb e Y C €.

Since ay ¢ acl(Bb), the fibre f~1(b) is not finite. By elimimination of the infinity
quantifier, we may, by shrinking Y if necessary, assume that none of the fibres of f are
finite. On the other hand, since by stationarity at most one of the fibres can have Morley
rank equal to that of S, and f has infinitely many fibres as b ¢ acl(B), we may shrink Y
further if necessary so that all the fibres are of Morley rank strictly less than RM(S). It
follows that for every ¢ € Y there is @ € f~!(c) such that tp(a/Bc) is a nonalgebraic
forking extension of tp(a/A) = p.

Now, by stable embeddability, ¥ is (B N €)-definable in the pure field (€, +, x),
and hence must have an acl(B N €)-point, say c. Leta € f~!(c) be such that tp(a/Bc)

is a nonalgebraic forking extension of p. Since ¢ € acl(Aay, ..., ax—1), we conclude
that tp(a/Aa, ..., ax—1) is a nonalgebraic forking extension of p. That is, nmdeg(p) <
k—1. (]

Theorem 7.2. For every stationary finite rank type p € S(A) in DCF,,

nmdeg(p) < U(p) + 1.

Proof. The general strategy is that of Theorem 5.7 (b) but using the fact that the Borovik—
Cherlin Conjecture holds for homogeneous spaces defined in the constants (by Theo-
rem 6.3). We get a bound that is 1 less than that of Theorem 5.7 (b) because we use the
strict inequality of Proposition 7.1 in place of the nonstrict one of Proposition 5.1. But
here are some details.

Let d := nmdeg(p). We may as well assume that d > 1. It follows by Proposition 3.3
that p is almost internal to some nonmodular minimal type, and hence by the Zilber tri-
chotomy in DCFy, p is almost €-internal. By Lemma 3.1 (c), interalgebraicity does not
change the degree of nonminimality, so we may assume that p is €-internal. On the other
hand, by Proposition 5.1 and the fact that d > 1, we see that p is weakly €-orthogonal. So
Proposition 7.1 applies. Following the proof of Proposition 5.6, but using Proposition 7.1
instead of Proposition 5.1, we see that if we let G = Aut4(p/€)° be the connected com-
ponent of the binding group, and S := p(U), then (G, S) is a definable homogeneous
space that is generically d-transitive. The improvement here over Proposition 5.6 is that
we have obtained 1 higher level of generic transitivity.
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Now, (G, S) is definably isomorphic (over possibly additional parameters) to some
(@, §) definable in (€, +, x). This is because (€, +, x) is purely stably embedded. So
(@, S ) is a connected homogeneous space definable in ACF( with dim S=uU (p)=:n>0
that is generically d -transitive.

Suppose toward a contradiction that d > n + 2. So, by Theorem 6.3, (é S ), and
hence (G, §), is definably isomorphic to (PGL,+1(€), P"(€)). But, as in the proof of
Theorem 5.7 (b), this implies that d < 3, which would force n < 1 and hence d = 0 by
convention. This contradiction proves that d < n + 1, as desired. [

Note that while we obtain the desired bounds on degree of nonminimality in DCF,
we do not resolve the Borovik—Cherlin conjectures in this theory.

8. Compact complex manifolds

The arguments we gave to prove the bound on nonminimality in DCFy work in any the-
ory where the Zilber trichotomy holds; namely, where there is a stably embedded pure
algebraically closed field of characteristic zero to which every nonmodular minimal type
is nonorthogonal. So we obtain the analogue of Theorem 7.2 for the theory of compact
complex manifolds:

Theorem 8.1. For every stationary finite rank type p € S(A) in CCM,
nmdeg(p) < U(p) + 1.

We leave it to the reader to check the details. But it turns out that, unlike in DCF,, we
can prove the Borovik—Cherlin conjecture itself in CCM. Indeed, the proof for ACF, that
we gave in Section 6 works more generally for groups definable in CCM. We give a few
brief explanations here.

First of all, CCM is the theory of the multi-sorted structure + where there is a sort for
each compact complex analytic space and where the language consists of a predicate for
each closed analytic subset of a finite cartesian product of sorts. The theory has many nice
properties: it admits the elimination of quantifiers and imaginaries, each sort is of finite
Morley rank, and a Zilber trichotomy holds of the strongly minimal sets. It is an expansion
of ACFy in the sense that the complex field (C, +, x) is purely stably embedded in the
sort of the projective line. The standard model is not saturated, and some complications
arise from the fact that one has to work in a sufficiently saturated elementary extension
A’ = 4 whose sorts are not complex analytic spaces. Each sort is, however, endowed with
a noetherian Zariski topology whose closed sets come from definable families of closed
anlaytic sets in the standard model. See [27] for a detailed survey of the subject.

The groups definable in CCM are well understood — they are precisely the meromor-
phic groups studied in [2,13,32,34]. In the standard model they are a natural generalisation
of algebraic groups to the meromorphic category: complex Lie groups with a finite cover-
ing by Zariski open subsets of irreducible compact complex spaces such that the transition
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maps and the group operation extend to meromorphic maps. This notion was extended to
the saturated universe +A’ in [2, Definition 4.3], which we leave the reader to consult for
a precise definition. In any case, every group definable in A’ admits the structure of a
meromorphic group. Coming out of [2, 13,32,34] is a Chevalley-type structure theorem
for meromorphic groups that allows the arguments of the previous section to extend from
ACF, to CCM.

Theorem 8.2. Conjecture 5.5 holds for homogeneous spaces definable in CCM.

Proof. Inspecting the proof of Theorem 6.3 we see that all we require is the following
three facts about meromorphic groups:

(1) all meromorphic homogeneous spaces (G, S) with dim S = 1 are algebraic,
(2) no infinite meromorphic group is an elementary abelian p-group,
(3) every simple noncommutative meromorphic group is a simple linear algebraic group.

Indeed, given these, the reduction in Section 6.2 to simple linear algebraic groups goes
through verbatim.

So it remains to verify the above properties of meromorphic groups.

In A’ every 1-dimensional set is algebraic; this is the nonstandard Riemann existence
theorem of [26]. It is also shown there that C (+4") is the only infinite field definable in A’
Property (1) follows from these facts together with the classification of strongly minimal
homogeneous spaces (see [31, 1.6.25]).

In A’ every meromorphic group arises as a nonstandard fibre of a definable family of
meromorphic groups in the standard model. So if there did exist an infinite meromorphic
group that is an elementary abelian p-group, then there would exist a standard one. By
the Chevalley-type structure theorem of [32], every standard commutative meromorphic
group is an extension of a complex torus by a commutative complex linear algebraic
group, and hence is not an elementary abelian p-group. This verifies (2).

Finally, for (3), we apply the nonstandard Chevalley-type structure theorem for mero-
morphic groups in 4’ established in [2, 34]. This says that every meromorphic group
is the extension of a (commutative) definably compact® meromorphic group by a linear
algebraic group. In particular, if G is a simple meromorphic group then it is either linear
algebraic or commutative. ]
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