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Abstract. Let � be a Hecke–Maass cusp form for SL.3;Z/ and f be a holomorphic cusp form
for SL.2;Z/ of weight k or a Hecke–Maass cusp form corresponding to the Laplacian eigenvalue
1=4C k2, k � 1, for SL.2;Z/. In this paper, we prove the following subconvexity bound:

L.1=2; � � f /��;" k
3=2�1=51C":
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1. Introduction

A degree d automorphic L-function L.s; F / associated to an automorphic form F is
a Dirichlet series with an Euler product of degree d and satisfying some ‘nice’ ana-
lytic properties. In fact, it has a meromorphic continuation to the whole complex
plane C and its completed L-function satisfies a functional equation relating its value
at s to the value of the corresponding dual L-function at 1 � s. One may apply the
Phragmén–Lindelöf principle together with the functional equation to get an upper bound
L.1=2 C i t; F / �d;" .C.F; t//

1=4C", for any " > 0, on the critical line <.s/ D 1=2.
Here C.F; t/ is a quantity, called the analytic conductor, which measures the complexity
of the L-function and encapsulates the main parameters (level, spectral parameters, etc.)
attached to the form F . The resulting bound is usually referred to as the convexity bound
(or the trivial bound). The famous generalised Lindelöf Hypothesis (GLH) predicts that
the exponent 1=4 should be 0. While the GLH seems very far from reach with the current
methods and technology, breaking the convexity bound, i.e, reducing the exponent 1=4
by any small quantity, known as the subconvexity problem (ScP), is still a challenging
problem. One is often interested in resolving the ScP with respect to a single ‘family’
associated to the form F . For instance, if the GL.1/ family j � jit (or �, a Dirichlet char-
acter) associated to the form F vary, we call it the t (or twist) aspect ScP, or if spectral
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parameters (or level) of F vary, we call it the spectral (or level) aspect ScP. We refer to
[24] for a vast introduction to the subconvexity problem.

For degree one L-functions (�.s/ and L.s; �/), such estimates are due to Weyl ([35])
and Hardy–Littlewood in the t -aspect and due to Burgess [4] in the level aspect. For
degree two L-functions, the first subconvexity bound was achieved by Good [10] in the t -
aspect, by Duke–Friedlander–Iwaniec [6–8] in the level aspect and by Iwaniec [14] in the
spectral aspect. For degree three L-functions attached to self-dual forms, such estimates
were first obtained by Li [21] in the t -aspect in a groundbreaking work. Li’s work was
generalised to all GL.3/ forms by Munshi [27], by introducing a novel delta method which
he also applied in resolving the subconvexity problem for GL.3/ L-functions in the twist
aspect [28]. In GL.3/ spectral aspect, when spectral parameters of a GL.3/ form, � , say,
are in ‘generic’ position, subconvexity estimates forL.1=2;�/were obtained by Blomer–
Buttcane [2].

For higher degree L-functions, the subconvexity problem becomes more challenging,
and hence it is mostly open except for a few particular cases of Rankin–Selberg convolu-
tion L-functions. For the Rankin–Selberg L-functions on GL.2/ � GL.2/, subconvexity
bounds are due to Michel–Venkatesh [25] in the t -aspect, Sarnak [32], and Lau–Liu–
Ye [19] in the spectral aspect, and Kowalski–Michel–Vanderkam [16], Michel [23] and
Harcos–Michel [11] in the level aspect. Some impressive subconvexity estimates were
obtained by Bernstein–Reznikov [1] and Venkatesh [34] for the Rankin–Selberg triple
L-functions on GL.2/. In a recent breakthrough, Nelson [30] resolved the spectral aspect
ScP (away from conductor dropping scenario) for the L-function on U.nC 1/ � U.n/,
for any n, where U.n/ is the unitary group.

We will now discuss a few known results for degree six Rankin–Selberg L-functions
on GL.3/ � GL.2/. To start with, let � be a normalized Hecke–Maass cusp form of type
.�1; �2/ for SL.3;Z/. Let f be a holomorphic cusp form of weight k or a Hecke–Maass
cusp form corresponding to the Laplace eigenvalue 1=4C k2 for SL.2;Z/. The associated
Rankin–Selberg L-series is given by

L.s; � � f / D
XX
n;r�1

��.n; r/�f .n/

.nr2/s
; <.s/ > 1: (1.1)

In a pioneering work, Li [21] studied the above series and obtained subconvexity for
L.1=2; � � f / in the GL.2/ spectral aspect as well as subconvexity for L.1=2C i t; �/
for a self-dual form � in the t -aspect (also mentioned above). Her main theorem was the
following:

Theorem (X. Li). Let � be a fixed self-dual Hecke–Maass cusp form for SL.3;Z/ and
uj be an orthonormal basis of even Hecke–Maass cusp form for SL.3;Z/ corresponding
to the Laplacian eigenvalue 1=4C t2j with tj � 0. Then for " > 0, T large and T 3=8C" �
M � T 1=2, we haveX0

j

e
�
.tj�T/

2

M2 L.1=2; � � uj /C
1

4�

Z 1
�1

e
�
.tj�T/

2

M2 jL.1=2 � i t; �/j2 dt �";� T
1C"M;
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where the prime means summing over the orthonormal basis of even Hecke–Maass cusp
forms.

As a corollary, she obtained

L.1=2; � � uj /�";� .1C jtj j/
3=2�1=8C": (1.2)

She adapted Conrey–Iwaniec’s moment method approach (see [5]) to prove the above
theorem. The fact L.1=2; � � uj / � 0 plays a crucial role in her approach, that is why
she could deal with self-dual forms only. Recently, Munshi [29], using the delta method,
obtained subconvexity for L.s; � � f / in the t -aspect proving the following result:

L.1=2C i t; � � f /�";f;� .1C jt j/
3=2�1=51C":

His method is insensitive to the self-duality of GL.3/ forms. Thus he obtained the above
result for any GL.3/ form. Using a similar approach, Sharma [33] and the author along
with Mallesham and Singh [17] proved subconvexity in the twist and the GL.3/ spectral
aspect (in some non-generic cases) respectively.

In this article, we vary the GL.2/ family and establish subconvexity forL.1=2;��f /
in the GL.2/ spectral aspect. Our main theorem is the following:

Theorem 1. Let � be a fixed Hecke–Maass cusp form for SL.3;Z/ and f be a holomor-
phic cusp form of weight k or a Hecke–Maass cusp form corresponding to the Laplacian
eigenvalue 1=4C k2, k � 1, for SL.2;Z/. Then for any " > 0, we have

L.1=2; � � f /��;" k
3=2�1=51C":

Remark 1. We generalise the bound (1.2) of Li [21] to any GL.3/ form. Although our
bound is weaker than hers, it yields subconvexity.

The arguments in the proof work for both Maass and holomorphic forms. For the
exposition of the method, we will give details for holomorphic forms only. Our method
also works for any fixed central value 1=2 C i t . In this case, the implied constant will
depend polynomially on t . For simplicity, we take t D 0 in the proof. If we take � to
be the minimal Eisenstein series with Langlands parameters (˛1, ˛2, ˛3) for SL.3;Z/ in
(1.1), we observe that (see [9, p. 314])

L.s; �/ D
Y
p

3Y
iD1

.1 � p˛i�s/�1 D �.s � ˛1/�.s � ˛2/�.s � ˛3/:

It is also well-known that

L.s; f / D

1X
nD1

�f .n/

ns
D

Y
p

2Y
jD1

.1 � p̌;jp
�s/�1;

where p̌;1 p̌;2 D 1, p̌;1 C p̌;2 D �f .p/, and �f .n/ denote the normalised Fourier
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coefficients of f . Using Rankin–Selberg theory (see [9, p. 379]), we get

L.s; � � f / D
Y
p

3Y
iD1

.1 � p̌;1p
˛i�s/�1.1 � p̌;2p

˛i�s/�1

D L.s � ˛1; f /L.s � ˛2; f /L.s � ˛3; f /:

Our method also applies to the above L-function. Hence we also obtain the following
result:

Theorem 2. Let f be a holomorphic cusp form of weight k or a Hecke–Maass cusp form
corresponding to the Laplacian eigenvalue 1=4C k2, k � 1, for SL.2;Z/. Then for " > 0,
we have

L.1=2; f /�" k
1=2�1=153C":

Discussion of the method

We follow Munshi’s delta symbol approach (see [29]) to prove our theorem. So far this
approach has been successful to resolve the subconvexity problems where either a GL.1/
form varies or the higher degree automorphic form admits a varying GL.1/ factor (see
[27–29]). In this article we take a step further by implementing the delta method to tackle
subconvexity when the higher degree form (GL.2/ form in our case) is allowed to vary.

After an application of the approximate functional equation, our problem boils down
to getting non-trivial cancellations in the smooth sumX

n�k3

��.n; 1/�f .n/;

where �f .n/’s are oscillatory. Munshi’s separation of oscillation method (along with the
‘conductor lowering trick’) works here mainly due to the GL.3/ � GL.2/ structure. As
such, any GL.1/ analytic twist of �f .n/ by nit with jt j < k1�" does not alter the ‘con-
ductor’ of the associated L-function. We benefit from this fact while applying the GL.2/
Voronoi formula. A crucial observation, which was also present in [17, 29, 33], that the
GL.2/ and GL.3/ Voronoi formulae together transform the Ramanujan sumX?

amodq

e

�
.n �m/a

q

�
;

arising from the DFI delta method, intoX?

amodq

S.a; nI q/e

�
am

q

�
;

which boils down to an additive character qe.mn=q/ with respect to n, also plays a vital
role in proving our main theorem.

One of the main hurdles in spectral aspect subconvexity problems (in comparison with
the t -aspect) is the analysis of complicated integral transforms involving various Bessel
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functions in the ‘transition’ range. With no surprise, we also encounter such transforms,
which we analyse (see Section 6) by applying stationary phase analysis.

Remark 2 (Notation). Throughout the paper e.x/ means e2�ix . By negligibly small we
mean O.k�A/ for any large positive constant A > 0. In particular, we take A D 2020.
The letter " denotes an arbitrarily small constant, not necessarily the same at different
occurrences. The notation ˛� A will mean that for any " > 0, there is a constant c such
that j˛j � cAk". We also ignore the dependence of the constant on � and ", whenever it
occurs. By ˛ � A we mean that k�"A � ˛ � k"A; also ˛ � A means A � ˛ < 2A.

2. Preliminaries

In this section we recall some well-known results which we need in the proof.

2.1. Holomorphic cusp forms on GL.2/

Let f be a holomorphic Hecke eigenform of weight k for the full modular group SL.2;Z/.
The Fourier expansion of f at the cusp1 is given by

f .z/ D

1X
nD1

�f .n/n
.k�1/=2e.nz/; z 2 H:

We assume that f is normalised so that �f .1/ D 1. We have the well-known Deligne
bound j�f .n/j � d.n/, n � 1; where d.n/ is the divisor function. However, in our proof,
we only need the Ramanujan bound on average:X

n�X

j�f .n/j
2
�" X

1C"; (2.1)

for any " > 0. We now recall the Voronoi summation formula for the form f , which will
be crucially used in our proof.

Lemma 1 (see [16, Theorem A.4]). Let �f .n/ be as above and g be a smooth, compactly
supported function on .0;1/. Let a, q 2 Z with .a; q/ D 1. Then

1X
nD1

�f .n/e

�
an

q

�
g.n/ D

1

q

1X
nD1

�f .n/e

�
�
dn

q

�
h

�
n

q2

�
;

where ad � 1 mod q and

h.y/ D 2�ik
Z 1
0

g.x/Jk�1.4�
p
xy/ dx;

where Jk�1 is the usual J -Bessel function of order k � 1.
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2.2. Maass cusp forms for GL.2/

Let f be a Hecke–Maass eigenform for SL.2;Z/ with Laplace eigenvalue 1=4 C �2,
� > 0. The Fourier series expansion of f at the cusp1 is given by

f .z/ D
p
y
X
n¤0

�f .n/Ki�.2�jnjy/e.nx/;

where Ki�.y/ is the Bessel function of the third kind and f is normalised so that �f .1/
D 1. The Ramanujan–Petersson conjecture, which asserts that j�f .n/j � d.n/, has not
been confirmed yet. However, we do not need such an individual bound for our proof.
Rather, the following Ramanujan bound on average (see [14, Lemma 1])X

1�n�X

j�f .n/j
2
�" �

"X1C"; (2.2)

for any " > 0, is sufficient for our purpose. We also have the following Voronoi summation
formula for the Maass cusp forms, which is similar to the case of holomorphic cusp forms.

Lemma 2 (see [16, Theorem A.4]). Let �f .n/ be as above and g be a smooth, compactly
supported function on .0;1/. Let a, q 2 Z with .a; q/ D 1. Then

1X
nD1

�f .n/e

�
an

q

�
g.n/ D

1

q

X
˙

1X
nD1

�f .n/e

�
�
dn

q

�
H˙

�
n

q2

�
;

where ad � 1 mod q and

H�.y/ D
��

sin.�i�/

Z 1
0

g.x/¹J2i� � J�2i�º.4�
p
xy/ dx;

HC.y/ D 4"f cosh.��/
Z 1
0

g.x/K2i�.4�
p
xy/ dx:

Here "f is the eigenvalue of f under the reflection operator.

2.3. Automorphic forms on GL.3/

This section, except for the notations, is taken from [21]. Let � be a Hecke–Maass cusp
form of type .�1; �2/ for SL.3;Z/. Let ��.n; r/ denote the normalised Fourier coefficients
of � . Let

˛1 D ��1 � 2�2 C 1; ˛2 D ��1 C �2 and ˛3 D 2�1 C �2 � 1

be the spectral parameters for � (see [9]). Let g be a compactly supported smooth function
on .0;1/ and

Qg.s/ D

Z 1
0

g.x/xs�1 dx

be its Mellin transform. For ` D 0; 1, we define

`.s/ WD
��3s�3=2

2

3Y
iD1

�
�
1CsC˛iC`

2

�
�
�
�s�˛iC`

2

� : (2.3)
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Set ˙.s/ D 0.s/� 1.s/ and let

G˙.y/ D
1

2�i

Z
.�/

y�s˙.s/ Qg.�s/ ds; (2.4)

where � > �1Cmax ¹�<.˛1/;�<.˛2/;�<.˛3/º.

Lemma 3 (see [26]). Let g.x/ and ��.n; r/ be as above. Let a; q 2 Z with q � 1; .a; q/
D 1, and a Na � 1 mod q. Then

1X
nD1

��.n; r/e

�
an

q

�
g.n/D q

X
˙

X
n1jqr

1X
n2D1

��.n1; n2/

n1n2
S.r Na;˙n2Iqr=n1/G˙

�
n21n2

q3r

�
;

where S.a; bI q/ is the Kloosterman sum which is defined as follows:

S.a; bI q/ D
X?

xmodq

e

�
ax C b Nx

q

�
:

The following lemma extracts the oscillations of G˙.

Lemma 4 (see [20, Lemma 6.1]). LetG˙.x/ be as above, and g.x/ 2 C1c .X; 2X/. Then
for any fixed integer K � 1 and xX � 1, we have

G˙.x/ D x

Z 1
0

g.y/

KX
jD1

cj .˙/e.3.xy/
1=3/C dj .˙/e.�3.xy/

1=3/

.xy/j=3
dy

CO..xX/.�KC5/=3/;

where cj .˙/ and dj .˙/ are some absolute constants depending on ˛i , i D 1; 2; 3.

The following lemma is the well-known Ramanujan bound on average.

Lemma 5. We have XX
n2
1
n2�x

j��.n1; n2/j
2
�� x; (2.5)

where the implied constant depends on the form � .

Proof. For the proof, we refer to Goldfeld’s book [9].

2.4. The delta method

Let ı W Z! ¹0; 1º be defined by

ı.n/ D

´
1 if n D 0;

0 otherwise:

The above function can be used to separate the oscillations involved in a sumX
n�X

a.n/b.n/;
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say, where ¹a.n/º and ¹b.n/º are two sequences of arithmetic interest. Furthermore, we
seek a ‘nice’ Fourier expansion of ı.n/. We mention here an expansion due to Duke,
Friedlander and Iwaniec (see [15, Chapter 20]). Let L � 1 be a large real number. For
n 2 Œ�2L; 2L�, we have

ı.n/ D
1

Q

X
1�q�Q

1

q

X?

amodq

e

�
na

q

�Z
R
g.q; x/e

�
nx

qQ

�
dx; (2.6)

where Q D 2L1=2. The ? on the sum indicates that the sum over a is restricted by the
condition .a; q/ D 1. The function g is the only part in the above formula which is not
explicitly given. Nevertheless, we only need the following properties of g in our analysis.
For any B > 1, we have (see [29, pp. 5–6])

.1/ g.q; x/ D 1C h.q; x/ with h.q; x/ D O

�
Q

q

�
q

Q
C jxj

�B�
;

.2/ xj
@j

@xj
g.q; x/� logQmin

²
Q

q
;
1

jxj

³
; j � 1;

.3/ g.q; x/� jxj�B ;

.4/

Z
R
.jg.q; x/j C jg.q; x/j2/ dx � Q":

(2.7)

Using the third property we observe that the effective range of the x-integral in (2.6) is
Œ�Q"; Q"�. We record the above observations in the following lemma.

Lemma 6 (see [15, Chapter 20] and [12, Lemma 15]). Let ı be as above. Let L � 1 be a
large parameter. Then, for n 2 Œ�2L; 2L�, we have

ı.n/ D
1

Q

X
1�q�Q

1

q

X?

amodq

e

�
na

q

�Z
R
W.x=Q"/g.q; x/e

�
nx

qQ

�
dx CO.L�2020/;

where Q D 2L1=2, g is a function satisfying (2.7) and W.x/ is a non-negative smooth
bump function supported in Œ�2; 2�, with W.x/ D 1 for x 2 Œ�1; 1� and W .j /.x/�j 1

for j � 0.

2.5. Bessel functions

In this subsection, we will recall some well-known expansions of Bessel functions of first
kind. For k � 2 an integer, let Jk�1.x/ be the Bessel function of the first kind and of order
k � 1, which is defined as

Jk�1.x/ D
1

2�

Z �

��

e

�
.k � 1/� � x sin �

2�

�
d� (2.8)

for any x 2 R. In the analysis of integral transforms, we require a uniform asymptotic
expansion of Jk�1.x/ for large values of k and x. The following lemma provides one
such asymptotic expansion.
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Lemma 7. Let x � .k � 1/1C"=2 be a positive real number. Then, as k !1, we have

Jk�1.x/ D g.k;w/

�
cos
�
.k � 1/.w � tan�1w/ �

�

4

� 1X
jD0

Pj
�

1
w�tan�1w

�
.k � 1/j

�
C g.k;w/

�
sin
�
.k � 1/.w � tan�1w/ �

�

4

� 1X
jD1

Pj
�

1
w�tan�1w

�
.k � 1/j

�
; (2.9)

where

g.k;w/ D

�
2

�.k � 1/w

�1=2
; w D

�
x2

.k � 1/2
� 1

�1=2
;

and Pj is a polynomial of degree j with coefficients which are bounded functions of k � 1
and log.x=.k � 1// with P0 � 1.

Proof. Let x D .k � 1/ sec ˇ with 0 < ˇ < �=2. Thus, as x � .k � 1/1C"=2, we have
secˇ � .k � 1/"=2 and

� WD .k � 1/.tanˇ � ˇ/ � .k � 1/.
p
.k � 1/" � 1 � �=2/:

Thus, on using formula (63) of [18, p. 58], we get

Jk�1..k � 1/ secˇ/ D
�

2

�.k � 1/ tanˇ

�1=2�
cosf1.ˇ/

1X
jD0

Pj
�

1
tanˇ�ˇ

�
.k � 1/j

�
C

�
2

�.k � 1/ tanˇ

�1=2�
sinf1.ˇ/

1X
jD1

Pj
�

1
tanˇ�ˇ

�
.k � 1/j

�
;

where f1.ˇ/ D .k � 1/.tan ˇ � ˇ/ � �=4, and Pj represents a polynomial of degree j
with coefficients which are bounded functions of k � 1 and log secˇ with P0 � 1. Now
substituting .k � 1/ secˇ D x and tanˇ D w, we get the lemma.

The expansion (2.9) can be truncated at any stage to get

Corollary 1. Under the assumptions of Lemma 7, we have

Jk�1.x/ D
X
˙

2019X
jD0

e
�
˙
.k�1/.w�tan�1w/

2�

�
Pj
�

1
w�tan�1w

�
p
� w1=2.k � 1/jC1=2

CO

�
1

k2020

�
:

Proof. The statement follows directly from Lemma 7.

For 0 < x � .k � 1/1�"=2, we have the following lemma.

Lemma 8. Let x D .k � 1/z with 0 < z � .k � 1/�"=2. Then, as k !1, we have

Jk�1.x/� exp¹�.k � 1/=6º:
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Proof. By [31, Lemma 4.2], we have

jJk�1..k � 1/z/j � A1.k � 1/
�1=2.1 � z2/�1=4 exp

®
�
1
3
.k � 1/.1 � z2/3=2

¯
for 0 < z �

p
1 � .k � 1/�2=3, k � 16 and some absolute constant A1. Note that, by

assumption, z � .k � 1/�". Thus, 1 � z2 � 1=22=3 as k !1, and we get

jJk�1..k � 1/z/j � A12
1=6 exp

®
�
1
6
.k � 1/

¯
:

Hence the lemma follows.

2.6. Stationary phase analysis

In this subsection we will recall some facts about the exponential integrals of the form

I D

Z b

a

g.x/e.f .x// dx;

where f and g are smooth real valued functions on Œa; b�.

Lemma 9 (see [27, Section 2.2] and [13, Lemma 5.1.4]). Let I , f and g be as above.
Let V.g/ denote the total variation of g.x/ on Œa; b� plus the maximum modulus of g.x/
on Œa; b�. Then, if f 0 is monotone and jf 0.x/j � �1 > 0 for x 2 Œa; b�, we have I �
V.g/=�1: For r > 1, let jf .r/.x/j � �r > 0. Then we have I �r V.g/=�

1=r
r . More-

over, let f 0.x/ � B and f .j /.x/� B1C" for j � 2 together with supp.g/ � .a; b/ and
g.j /.x/�a;b;j 1. Then

I �a;b;j;" B
�jC":

We apply the above lemma for r D 1 whenever the phase function f does not have
any stationary point. We will also apply it for r D 2; 3. In case there is a unique stationary
point, we use the following stationary phase expansion.

Lemma 10 (see [3, Lemma 8.1]). Let I , f and g be as above. Let 0 < ı < 1=10,
X; Y;U;Q > 0, Z WD QCX C Y C b � aC 1, and assume that

Y � Z3ı ; b � a � U �
QZı=2
p
Y

:

Further, assume that g satisfies

g.j /.x/�j X=U
j for j D 0; 1; : : : :

Suppose that there exists a unique x0 2 Œa; b� such that f 0.x0/ D 0, and the function f
satisfies

f 00.x/�
Y

Q2
; f .j /.x/�j

Y

Qj
for j D 1; 2; : : : :
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Then

I D
e.f .x0//p
f 00.x0/

3ı�1AX
nD0

pn.x0/COA;ı.Z
�A/;

pn.x0/ D
e�i=4

nŠ

�
i

2f 00.x0/

�n
G.2n/.x0/;

where A > 0 is arbitrary, and

G.x/ D g.x/e.F.x//; F.x/ D f .x/ � f .x0/ �
1
2
f 00.x0/.x � x0/

2:

Furthermore, each pn is a rational function in f 0; f 00; : : : ; satisfying

d j

dx
j
0

pn.x0/�j;n X

�
1

U j
C

1

Qj

���
U 2Y

Q2

��n
C Y �n=3

�
:

3. The set-up and outline of proof

Let � and f be defined as in Theorem 1. Let ��.n; r/ denote the normalised Fourier coef-
ficients of the form � (see [9, Chapter 6]) and let �f .n/ denote the normalised Fourier
coefficients of the form f (see [15, Chapter 14]). We are interested in analysing the
Rankin–Selberg L-series L.s;� � f / (defined in (1.1)) attached to � and f at the central
point 1=2. To study L.1=2; � � f /, we first express it as a weighted Dirichlet series.

Lemma 11. Let 0 < � < 3=2. Then, as k !1,

L.1=2; � � f /� k" sup
r�k�

sup
k3��=r2�N�k3C"=r2

jSr .N /j

N 1=2
C k.3��/=2C"; (3.1)

where

Sr .N / WD

1X
nD1

��.n; r/�f .n/V

�
n

N

�
(3.2)

for some smooth function V supported in Œ1; 2�, satisfying V .j /.x/�j 1 for j � 0 and
normalised so that

R
V.y/ dy D 1.

Proof. Use the template of [15, Theorem 5.3]; see also [29, pp. 1546–1547].

Remark 3. Upon estimating Sr .N / using Cauchy’s inequality and the Ramanujan bound
on average (see (2.1), (2.2), (2.5)), we see that L.1=2; � � f / ��;" k

3=2C". Hence,
to establish subconvexity, we need to get some cancellations in the sum Sr .N / for N ,
roughly, of size k3. To this end we will analyse Sr .N / in the rest of the paper.
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3.1. An application of the delta method

As a first step, following Munshi [29], we separate the oscillatory terms ��.n; r/ and
�f .n/ involved in the sum Sr .N /. We use the delta method of Duke, Friedlander and
Iwaniec as a device to separate these terms. We also apply the conductor lowering trick
introduced by Munshi [27]. For this purpose we introduce an extra t -integral. In fact, we
express Sr .N / as

1

T

Z
R
V

�
t

T

� 1XX
n;mD1
nDm

��.n; r/�f .m/

�
n

m

�it
V

�
n

N

�
U

�
m

N

�
dt

D
1

T

Z
R
V

�
t

T

� 1XX
n;mD1

ı.n �m/��.n; r/�f .m/

�
n

m

�it
V

�
n

N

�
U

�
m

N

�
dt; (3.3)

where k" < T < k1�" is a parameter of the form k1�� , for � > 0, which will be chosen
later optimally, and U is a smooth function supported in Œ1=2; 5=2� with U.x/ D 1 for
x 2 Œ1; 2�, and U .j /.x/�j 1 for any integer j � 0. Consider the t -integralZ

R
V

�
t

T

��
m

n

�it
dt:

On applying integration by parts repeatedly, we observe that the above integral is negligi-
bly small unless jn �mj � k"N=T . Thus the t -integral reduces the size of the equation
n D m. Thus, on applying Lemma 6 to (3.3) with L D k"N=T; and Q D k"

p
N=T , we

see that Sr .N / is transformed into

Sr .N / D
1

QT

Z
R
W.x=Q"/

Z
R
V

�
t

T

�
�

X
1�q�Q

g.q; x/

q

X?

amodq

1X
nD1

��.n; r/e

�
an

q

�
e

�
nx

qQ

�
nitV

�
n

N

�
�

1X
mD1

�f .m/m
�ite

�
�am

q

�
e

�
�mx

qQ

�
U

�
m

N

�
dt dx CO.k�2020/: (3.4)

3.2. Sketch of proof

In this subsection, we will discuss rough ideas to get non-trivial cancellations in Sr .N /
given in (3.4). For simplicity, we consider the generic case, i.e., N D k3, r D 1 and
q � Q D

p
N=T D k3=2=T 1=2. Thus Sr .N / is roughly given by

1

QT

Z 2T

T

X
q�Q

1

q

X?

amodq

X
n�N

��.n; 1/n
ite

�
an

q

� X
m�N

�f .m/m
�ite

�
�am

q

�
dt:

Note that we have ignored the x-integral, as it does not contribute in the generic case,
and we have also suppressed all the weight functions. On estimating the above sum using
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Cauchy’s inequality and the Rankin–Selberg bound, we get Sr .N /� N 2C". Our goal
is to save N plus a little more, say, kı . In other words, we need to show Sr .N / �

N 2=.Nkı/ for some ı > 0.
In the next step we dualize the sum over n and m (see Section 4 for full details).

Consider the sum over n

S3 D
X
n�N

��.n; 1/n
ite

�
an

q

�
:

On applying the GL.3/ Voronoi summation formula to the above sum we arrive at (see
Lemma 12)

S3 �
N 2=3

q

X
n2�Q3T 3=N

��.1; n2/

n
1=3
2

S. Na;˙n2I q/ I3.: : : /;

where I3.: : : / is an integral transform in which we need to get square root cancellations,
i.e., we need to show I3.: : : /� 1=

p
T . Next we apply the GL.2/ Voronoi formula to the

sum over m and we get (see Lemma 13 for details)X
m�N

�f .m/m
�ite

�
�am

q

�
�
N

q

X
m�Q2k2=N

�f .m/e

�
Nam

q

�
I2.: : : /;

where I2.: : : / is an integral transform in which we need to get full cancellations, i.e., we
need to show I2.: : : /� 1=k. Next we analyse the sum over a which is given by

C D
X�

amodq

S. Na; n2I q/e

�
Nam

q

�
� qe

�
�
Nmn2

q

�
:

We observe that the above sum becomes an additive character with respect to n2 (which
saves us extra q when we apply the Poisson summation formula after Cauchy’s inequal-
ity). Thus we arrive at the following expression:

1

QT

N

Q2T

N

Q

X
q�Q

X
n2�T 3=2N1=2

��.1; n2/
X

m�k2=T

�f .m/e

�
�
Nmn2

q

�
J ;

where J is an integral transform involving the t -integral, I2.: : : / and I3.: : : /. We analyse
it in Section 6. We observe that

J � T
1
p
T

1
p
T

1

k
:

Note that a saving of
p
T comes from the t -integral, another saving of

p
T comes from the

GL.3/-integral and the saving of k comes from the GL.2/-integral. The factor T reflects
the length of the t -integral. On plugging it in place of J we see that

Sr .N /�
X
q�Q

X
n2�T 3=2N1=2

j��.1; n2/j

ˇ̌̌̌ X
m�k2=T

�f .m/e

�
�
Nmn2

q

�
J

ˇ̌̌̌
� QT 3=2N 1=2 k

2

T

1

k
� Nk:
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Thus we now need to save k1Cı . We apply Cauchy’s inequality to the sum over n2 to get
rid of the GL.3/ coefficients. Thus we arrive at (see Section 5.1)

.T 3=2N 1=2/1=2
� X
n2�T 3=2N1=2

ˇ̌̌̌X
q�Q

X
m�k2=T

�f .m/e

�
�
Nmn

q

�
I

ˇ̌̌̌2�1=2
:

The end game strategy is to apply the Poisson formula to the sum over n2 (see Section
5.2). Opening the absolute value square followed by the Poisson formula, we observe that
we save the whole length, i.e., k2Q=T in the zero frequency (n2 D 0 case) which suffices
if k2Q=T > k2 which implies that T < k. On the other hand, in the non-zero frequencies
(n2 ¤ 0), we save

T 3=2N 1=2

.Q2T /1=2
:

Here the factor Q2T in the denominator reflects the size of the conductor, which is given
by

arithmetic conductor � analytic conductor:

Note that the arithmetic conductor is of size Q2 and the analytic conductor is of size T
(because J oscillates like niT2 with respect to n2). We also save Q due to the presence of
the additive character e.� Nmn=q/. Thus the total saving in the non-zero frequencies turns
out to be

T 3=2N 1=2

.Q2T /1=2
�Q D TN 1=2;

which suffices if TN 1=2 > k2 which boils down to T > k1=2. Hence we get the restriction
k1=2 < T < k. In fact, the optimal choice for T turns out to be k41=51, and Theorem 1
follows.

4. Applications of Voronoi formulae

In this section we will analyse the sum over n and m in (3.4) using Voronoi summation
formulae.

4.1. GL.3/ Voronoi

Let us consider the sum over n

S3 WD

1X
nD1

��.n; r/e

�
an

q

�
e

�
nx

qQ

�
nitV

�
n

N

�
: (4.1)

Recall that N D 2˛ , ˛ 2 Œ�1;1/ \ Z, is such that N � k3C"=r2. We analyse S3 using
the GL.3/ Voronoi summation formula (see Lemma 3). In the present set-up, we have
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g.n/ D e.nx=.qQ//nitV.n=N/ and X D N . Thus, on applying Lemma 3 to the above
sum, we get

S3 D q
X
˙

X
n1jqr

1X
n2D1

��.n1; n2/

n1n2
S.r Na;˙n2I qr=n1/G˙.n

?
2/; (4.2)

where n?2 WD n
2
1n2=.q

3r/ and G˙.n?2/ is the integral transform defined in (2.4). Next we
extract the oscillations of the integral transform G˙.n

?
2/ using Lemma 4, which gives us

the following expression for G˙.n?2/ in the range n?2N � k":

G˙.n
?
2/D n

?
2

Z 1
0

g.z/

K0X
jD1

cj .˙/e.3.n
?
2z/

1=3/Cdj .˙/e.�3.n
?
2z/

1=3/

.n?2z/
j=3

dzCO.k�2020/;

where K0 D Œ6060" C 5�C 1 with Œ�� denoting the greatest integer function. From now on,
we will continue our analysis with the terms corresponding to j D 1, as the other terms
can be treated in a similar way and in fact, give us better estimates. Thus, on plugging the
contribution corresponding to j D 1 into (4.2), we arrive at

N 2=3Cit

qr2=3

X
˙

X
n1jqr

n
1=3
1

1X
n2D1

��.n1; n2/

n
1=3
2

S.r Na;˙n2I qr=n1/ I3.n
2
1n2; q; x/;

where

I3.n
2
1n2; q; x/ WD

Z 1
0

V.z/zite

�
Nxz

qQ
˙
3.Nn21n2z/

1=3

qr1=3

�
dz: (4.3)

On applying the change of variable z 7! z3 followed by integration by parts (differentiat-
ing 3z2V.z3/zi3te.Nxz3=.qQ// and integrating e.˙3.Nn21n2/

1=3z=.qr1=3//) j -times
to the above integral, we observe that

jI3.n
2
1n2; q; x/j �j

�
1C T C

N jxj

qQ

�j�
qr1=3

.Nn21n2/
1=3

�j
for any integer j � 0, and it is negligibly small if

n21n2 � k" max ¹q3T 3r=N ; T 3=2N 1=2rº DW N0: (4.4)

Now it remains to analyse G˙.n?2/ for n?2N � k", which is given as

G˙.n
?
2/ D

1

2�i

Z
.�/

.n?2/
�s˙.s/ Qg.�s/ ds

D
1

2�

Z 1
�1

.n?2/
���i�˙.� C i�/ Qg.�� � i�/ d�: (4.5)

We will analyse this case in Section 8.3. We conclude this subsection by summarising the
above discussion in the following lemma.
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Lemma 12. Let S3 be as in (4.1). Then, for n?2N D n
2
1n2N=.q

3r/� k", we have

S3 D
N 2=3Cit

qr2=3

X
˙

X
n1jqr

n
1=3
1

X
n2�N0=n

2
1

��.n1; n2/

n
1=3
2

S.r Na;˙n2I qr=n1/ I3.n
2
1n2; q; x/

C other lower order termsCO.k�2020/; (4.6)

where I3.n
2
1n2; q;x/ is the integral transform defined in (4.3) andN0 is as defined in (4.4).

For the non-generic case n?2N � k", we have

S3 D q
X
˙

X
n1jqr

1X
n2D1

��.n1; n2/

n1n2
S.r Na;˙n2I qr=n1/G˙.n

?
2/; (4.7)

where G˙.n?2/ is as defined in (4.5).

From now on we will proceed with the main term of (4.6).

4.2. GL.2/ Voronoi

We now consider the sum over m in (3.4), which is given as

S2 WD

1X
mD1

�f .m/m
�ite

�
�am

q

�
e

�
�mx

qQ

�
U

�
m

N

�
: (4.8)

On applying the GL.2/Voronoi summation formula (see Lemma 1) to the above sum with
g.m/ D m�ite.�mx=.qQ//U.m=N/, we get

S2 D
2�ikN 1�it

q

1X
mD1

�f .m/e

�
Nam

q

�
I2.m; q; x/;

where

I2.m; q; x/ WD

Z 1
0

U.y/y�ite

�
�Nxy

qQ

�
Jk�1

�
4�
p
mNy

q

�
dy: (4.9)

We now analyse the above integral to determine the range ofm. We claim that I2.m; q; x/

is negligibly small unless

M WD
q2.k � 1/2k�"

N
� m � k" max

²
.k � 1/2q2

N
; T

³
DWM0: (4.10)

In fact, in the range m < M , we have

4�
p
mNy=q < 4�

p
5=2 .k � 1/1�"=2 � .k � 1/1�"=2:

Thus, by Lemma 8, I2.m; q; x/ is negligibly small.
Next we consider the range m > M0 and we claim that I2.m; q; x/ is also negligibly

small. We note that 4�
p
mNy=q > .k � 1/1C"=2. Thus we apply Langer’s expansion
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(see Lemma 7) for Jk�1. On applying Corollary 1 with x D 4�
p
mNy=q, we see that

I2.m; q; x/, up to a negligible error term, is given by

2019X
jD0

1

.k � 1/jC1=2

Z 1
0

Uj .y/y
�ite

�
�Nxy

qQ

�
e

�
˙
.k � 1/.w � tan�1w/

2�

�
dy;

where Uj .y/ D U.y/Pj ..w � tan�1w/�1/w�1=2 with

w D

�
x2

.k � 1/2
� 1

�1=2
D

�
16�2mNy

q2.k � 1/2
� 1

�1=2
;

and Pj is a polynomial of degree j with coefficients which are bounded functions of k.
Note that w > ..k � 1/" � 1/1=2. Thus

w � tan�1w D w �
�

2
C tan�1

1

w
� w;

and U .i/j .y/�i k
"i for any integer i � 0. Next we apply integration by parts i -times to

the y-integral and we get

jI2.m; q; x/j �i

�
k" C T C

N jxj

qQ

�i�
1

.k � 1/
p
mN=.q.k � 1//

�i
�

�
Tq
p
M0N

C
N

Q
p
M0N

�i
�

�
k"T

k
C

1

k"

�i
�

1

k"i
:

Upon taking i sufficiently large, we get the claim. We end this subsection by summarizing
the above arguments in the following lemma.

Lemma 13. Let S2 be the sum over m as given in (4.8). Then

S2 D
2�ikN 1�it

q

X
M�m�M0

�f .m/e

�
Nam

q

�
I2.m; q; x/CO.k

�2020/; (4.11)

where

I2.m; q; x/ D

Z 1
0

U.y/y�ite

�
�Nxy

qQ

�
Jk�1

�
4�
p
mNy

q

�
dy;

and M and M0 are the ranges of m defined in (4.10).

5. Cauchy and Poisson

After the applications of the Voronoi formulae and applying Lemmas 12 and 13 to (3.4),
we find that the expression in (3.4), up to an error term to be treated in Section 8.3, has
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been essentially reduced to

N 5=3

QT r2=3

X
1�q�Q

1

q3

X?

amodq

X
˙

X
n1jqr

n
1=3
1

X
n2�N0=n

2
1

��.n1; n2/

n
1=3
2

S.r Na;˙n2I qr=n1/

�

X
M�m�M0

�f .m/e

�
Nam

q

�
J˙.m; n21n2; q/; (5.1)

where

J˙.m;n21n2;q/D
Z

R

Z
R
W.x=Q"/g.q;x/ I2.m;q;x/ I3.n

2
1n2;q;x/V

�
t

T

�
dt dx: (5.2)

In this section we will analyse (5.1) using Cauchy’s inequality and the Poisson summation
formula.

5.1. Cauchy’s inequality

Splitting the sum over q into dyadic blocks q � C , i.e., C � q < 2C , C �Q and writing
q D q1q2 with q1 j .n1r/1, .n1r; q2/D 1, we see that the expression in (5.1) is dominated
by

sup
C�Q

N 5=3 logQ
QT r2=3C 3

X
˙

X
n1

.n1;r/
�C

n
1=3
1

X
n1

.n1;r/
jq1j.n1r/1

X
n2�N0=n

2
1

j��.n1; n2/j

n
1=3
2

�

ˇ̌̌ X
q2�C=q1

X
M�m�M0

�f .m/C˙.q; n2; m/ J˙.m; n21n2; q/
ˇ̌̌
; (5.3)

where the character sum C˙.q; n2; m/ D C˙.: : : / is defined as

C˙.: : : / WD
X?

amodq

S.r Na;˙n2I qr=n1/e

�
Nam

q

�
D

X
d jq

d�

�
q

d

� X?

˛modqr=n1
n1˛��mmodd

e

�
˙
N̨n2

qr=n1

�
:

Next we analyse the expression inside j j. We first split the sum overm into dyadic blocks
m�M1,M �M1�M0 and then apply Cauchy’s inequality to the sum over n2 in (5.3)
to arrive at

Sr .N /� sup
M�M1�M0

C�Q

N 5=3.QM0/
"

QT r2=3C 3

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

p
�˙;

(5.4)
where

‚ D
X

n2�N0=n
2
1

j��.n1; n2/j
2

n
2=3
2

; (5.5)

�˙ D
X

n2�N0=n
2
1

ˇ̌̌ X
q2�C=q1

X
m�M1

�f .m/C˙.q; n2; m/ J˙.m; n21n2; q/
ˇ̌̌2
; (5.6)
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with

.k � 1/2C 2

N
k�" DM �M1 �M0 D k

" max
²
.k � 1/2C 2

N
; T

³
;

N0 D k
" max

²
.CT /3r

N
; T 3=2N 1=2r

³
: (5.7)

5.2. Poisson summation

Next we apply the Poisson summation formula to the sum over n2 with the modulus
q WD q1q2q

0
2r=n1 in (5.6). To this end we first split the sum over n2 into dyadic blocks

n2 � QN=n
2
1, QN � N0. Then opening the absolute value square in (5.6), we arrive at

�˙ D
XX

q2;q
0
2
�C=q1

XX
m;m0�M1

�f .m/ �f .m0/�˙;

where

�˙ D
X
QN

X
n22Z

�

�
n21n2
QN

�
C˙.q; n2; m/C˙.q0; n2; m0/ J˙.m; n21n2; q/ J˙.m0; n21n2; q0/;

q0 D q1q
0
2 and �.w/ is a non-negative smooth function supported on Œ2=3; 3� with

�.w/ D 1 for w 2 Œ1; 2� and �.j /.w/�j 1. Now applying the change of variable

n2 ! n2qC ˇ; 0 � ˇ < q;

we get the following expression for �˙:

�˙ D
X
QN

X
ˇ mod q

C˙.q; ˇ;m/C˙.q0; ˇ;m0/

�

X
n22Z

�

�
n2qC ˇ

QN=n21

�
J˙.m; n21.n2qC ˇ/; q/ J˙.m0; n21.n2qC ˇ/; q0/:

On applying the Poisson summation formula to the sum over n2, we see that

�˙ D
X
QN

QN

n21

XX
q2;q
0
2
�C=q1

XX
m;m0�M1

�f .m/ �f .m0/
X
n22Z

C˙J˙; (5.8)

where

C˙ D
1

q

X
ˇ mod q

C˙.q; ˇ;m/C˙.q0; ˇ;m0/ e

�
n2ˇ

q

�
D

XX
d jq
d 0jq0

dd 0�

�
q

d

�
�

�
q0

d 0

� X?

˛modqr=n1
n1˛��mmodd

X?

˛0 modq0r=n1
n1˛
0��m0 modd 0

˙ N̨q0
2
� N̨ 0q2��n2 mod q

1 (5.9)



S. Kumar 562

and

J˙ D

Z
R
�.w/ J˙.m; QNw; q/ J˙.m0; QNw; q0/ e

�
�

n2 QNw

q1q2q
0
2rn1

�
dw: (5.10)

On estimating the sum over QN , we get

�˙ � k" sup
QN�N0

QN

n21

XX
q2;q
0
2
�C=q1

XX
m;m0�M1

j�f .m/j j�f .m
0/j
X
n22Z

jC˙j jJ˙j: (5.11)

6. Estimates for the integral transform

In this section we will analyse the integral transform

J˙ D

Z
R
�.w/ J˙.m; QNw; q/ J˙.m0; QNw; q0/ e

�
�

n2 QNw

q1q2q
0
2rn1

�
dw; (6.1)

where (see (5.2))

J˙.m; QNw; q/ D
Z

R

Z
R
W.x=Q"/g.q; x/ I2.m; q; x/ I3. QNw; q; x/ V

�
t

T

�
dt dx

D

Z
R
W.x=Q"/g.q; x/

Z
R
V

�
t

T

�Z 1
0

U.y/y�it
Z 1
0

V.z/zit

� e

�
Nx.z � y/

qQ
˙
3.N QNwz/1=3

qr1=3

�
Jk�1

�
4�
p
mNy

q

�
dz dy dt dx:

(6.2)

and J˙.m0; QNw; q0/ is similarly defined. We first analyse J˙.m; QNw; q/.

Lemma 14. Let J˙.m; QNw; q/ be as above. Then

J˙.m; QNw; q/ D
Z

R
V

�
t

T

�Z
u� k"C

QT

Iu I˙.m; QNw; q/ du dt CO.k�2020/; (6.3)

where Iu and I˙.m; QNw; q/ are the integrals defined in (6.6) and (6.7) respectively, with
the weight function Uu;t satisfying U .j /u;t .y/�j k

"j for j � 0.

Proof. We consider two cases.

Case 1: q � C � Q1�". Consider the integral over x in (6.2) which is given by

Iz�y WD
Z

R
W.x=Q"/g.q; x/e

�
Nx.z � y/

qQ

�
dx

D Q"

Z
R
W.x/g.q; xQ"/e

�
NxQ".z � y/

qQ

�
dx:
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We split the above integral as follows:Z
R
: : : dx D

Z Q�2"

�Q�2"
: : : dx C

Z
D

: : : dx;

where D D Œ�2; 2� n Œ�Q�2";Q�2"�. Note that, for x 2 Œ�Q�2";Q�2"�, we have

g.q; xQ"/ D 1C h.q; xQ"/ D 1CO

�
Q

q

�
q

Q
C jxjQ"

�B�
D 1CO.Q�2020/:

Thus, in this range, we can replace g.q; xQ"/ by 1 at the cost of a negligible error term.
Then by repeated integration by parts we see that the integral is negligibly small unless

jz � yj � k"C=.QT /: (6.4)

Now we consider the complementary range, i.e., x 2D. Note that, using the second prop-
erty (see (2.7)) of g.q; x/, we have

xj
@j

@xj
g.q; x/� logQmin

²
Q

q
;
1

jxj

³
� Q2":

Thus, on using integration by parts repeatedly, we see that the integral is negligibly small
unless (6.4) holds true.

Case 2: q � C � Q1�". In this case we consider the t -integral in (6.2), which is given
by Z

R
V

�
t

T

��
z

y

�it
dt:

On applying the change of variable t ! tT followed by integration by parts repeatedly,
we conclude that the t -integral is negligibly small unless

jz � yj � k"=T � k"C=.QT /:

Next writing z � y D u with u� k"C=.QT / in (6.2), we see that

J˙.m; QNw; q/ D
Z

R
V

�
t

T

�Z
u� k"C

QT

Iu I˙.m; QNw; q/ du dt CO.k�2020/; (6.5)

where

Iu D
Z

R
W.x=Q"/g.q; x/e

�
Nxu

qQ

�
dx; (6.6)

and

I˙.m; QNw;q/D
Z 1
0

Uu;t .y/e

�
˙
3.N QNw.y C u//1=3

qr1=3

�
Jk�1

�
4�
p
mNy

q

�
dy

(6.7)
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with Uu;t .y/ D U.y/V .y C u/.1C u=y/it . Note that

@j

@yj

�
1C

u

y

�it
D

@j

@yj
exp

�
i t log

�
1C

u

y

��
�j k

"j ; j � 0:

Thus U .j /u;t .y/�j k
"j for j � 0. Hence the lemma follows.

The analysis for J˙.m0; QNw;q0/ is exactly the same. Thus on plugging the expression
of J˙.m; QNw;q/ from (6.3) and a corresponding expression of J˙.m0; QNw;q0/ into (6.1),
we see that

J˙ D

Z
R

Z
R
V

�
t

T

�
V

�
t 0

T

�Z
u� k"C

QT

Z
u0� k"C

QT

Iu Iu0 J˙ du0 du dt 0 dt CO.k�2020/;

(6.8)
where

J˙ WD

Z
R
�.w/ I˙.m; QNw; q/ I˙.m0; QNw; q0/ e

�
�

n2 QNw

q2q
0
2q1rn1

�
dw; (6.9)

which we will analyse now. We have the following proposition.

Proposition 1. Let J˙ be as above. Then J˙ is negligibly small unless

n2 � k"
CN 1=3r2=3n1

q1 QN 2=3
DW N2; (6.10)

in which case

J˙ �
k"C 2

M1N
: (6.11)

Furthermore, if q � C � k1C" and n2 ¤ 0, then

J˙ �
Cr1=3k2=3

k2.N QN/1=3
: (6.12)

Before proving the proposition, we will analyse I˙.m; QNw; q/ and I˙.m0; QNw; q0/.
We have the following lemma.

Lemma 15. Let I˙.m; QNw; q/ be as in (6.7). Let b D 4�
p
mN=q and a D a.q; r/ WD

3.N QN/1=3=.qr1=3/� k". Then I˙.m; QNw;q/ is negligibly small unless a � k"b . In the
case when a � k�"b, we have

I˙.m; QNw; q/� k"=b:

Furthermore, if q � C � k1C", then b � k and

I˙.m; QNw; q/ D
e.f .�0//p
f 00.�0/

c3a
9=2w3=2

b5�50

q
1 � �20

Uu;t

��
4�aw1=3

3b�0

�6�
C lower order termsCO.k�2020/; (6.13)
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where �0 is the stationary point of the phase function

f .�/ D
.k � 1/ sin�1 �

2�
C
16�2a3w

27b2�2
;

which is given by (6.24) and c3D c2e.1=8/D 3
p
2.4�=3/5e.1=4/. In the remaining case,

i.e., k�"b � a � k"b, I˙.m; QNw; q/ essentially looks like

c2a
9=2w3=2

b5

Z 1

b1=2

1

�5
p
1 � �2

Uu;t

��
4�aw1=3

3b�

�6�
e.f .�// d�;

where b1 WD 4�.2=3/1=3a=.3.2:5/1=6b/.

Proof. Recall from (6.7) that

I˙.m; QNw; q/ D
Z 5=2

1=2

Uu;t .y/ e.˙aw1=3.y C u/1=3/Jk�1.b
p
y/ dy: (6.14)

Consider the term e.˙aw1=3.y C u/1=3/. It can be written as

e.˙aw1=3.y C u/1=3/ D e.˙aw1=3y1=3/e
�
˙aw1=3y1=3..1C u=y/1=3 � 1/

�
:

Note that
@j

@yj
e
�
˙aw1=3y1=3..1C u=y/1=3 � 1/

�
�j k

"j ; j � 0:

This is obvious for j D 0. We will verify it for j D 1 (for other j , a similar calculation
will follow). Let h.y;w/ WD ˙aw1=3y1=3..1C u=y/1=3 � 1/. Thus for j D 1 we have

@

@y
e.h.y;w// D e.h.y;w//.˙a/w1=3

�
.1C u=y/1=3 � 1

3y2=3
�

u

3y5=3.1C u=y/2=3

�
:

Thus, using y;w � 1 and .1C u=y/1=3 � 1� juj, we see that

@

@y
e.h.y;w//� ajuj �

.N QN/1=3

Cr1=3
Ck"

QT
�

.NN0/
1=3

Qr1=3
Qk"

QT
� k";

where we have used (5.7) to estimate N0. Hence we can insert e.h.y;w// into the weight
function Uu;t .y/. Thus we arrive at the following expression:

I˙ WD I˙.m; QNw; q/ D
Z 5=2

1=2

Uu;t .y/ e.˙aw1=3y1=3/Jk�1.b
p
y/ dy: (6.15)

Notice the slight abuse of notation: the weight function Uu;t in the above expression is
different from the one in (6.14). To analyse (6.15) further, we use an integral representa-
tion of the Bessel function Jk�1. On applying (2.8) to the Bessel function Jk�1 we see
that

I˙ D
1

2�

Z �

��

ei.k�1/�
Z 5=2

1=2

Uu;t .y/e
�
˙aw1=3y1=3 � b

p
y.sin �/=.2�/

�
dy d�:
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We now split the � -integral as follows:Z �

��

: : : d� D
Z �=2

0

: : : d� C
Z �

�=2

: : : d� C
Z 0

��=2

: : : d� C
Z ��=2
��

: : : d�:

Let I.i/
˙

denote the i -th integral on the right hand side of the above expression for i D 1;2;3
and 4. Let us first consider I.1/

˙
which is defined as follows:

I.1/
˙
D

1

2�

Z �=2

0

ei.k�1/�
Z 5=2

1=2

Uu;t .y/e
�
˙aw1=3y1=3 � b

p
y.sin �/=.2�/

�
dy d�:

(6.16)

Next we apply stationary phase analysis to the y-integral. By the change of variable
y ! y3, we arrive at the following expression of the y-integral:Z 3

p
5=2

3
p
1=2

3y2Uu;t .y
3/e
�
˙aw1=3y � by3=2.sin �/=.2�/

�
dy:

Note that if we have a with the minus sign, then the above integral is negligibly small by
Lemma 9. Thus we proceed with the y-integral of I.1/C , which is given byZ 3

p
5=2

3
p
1=2

3y2Uu;t .y
3/e.aw1=3y � by3=2.sin �/=.2�// dy:

Here the phase function is given by f1.y/D aw1=3y � by3=2.sin �/=.2�/. On computing
the first order derivative, we see that the stationary point occurs at y0 D

�
4�aw1=3

3b sin �

�2. Note
that

3
p
1=2 � y0 �

3
p
5=2; i.e.,

4�

3

aw1=3

b.2:5/1=6
� sin � �

4�

3

aw1=3

b.0:5/1=6
:

Let b1 WD 4�
3

a.2=3/1=3

b.2:5/1=6
and b2 WD 4�

3
31=3a

b.0:5/1=6
. We consider three cases.

Case 1: a � k"b. In this case b1 � 2. Thus there is no stationary point in the range
Œ.1=2/1=3; .5=2/1=3�. Moreover,

f 01.y/ D aw1=3 � 3b
p
y.sin �/=.4�/� b; f

.j /
1 .y/� b; j � 2:

Hence, by Lemma 9, the integral is negligibly small. This proves the first part of the
lemma.

Case 2: a � k�"b: In this case 0 < b1=2 < 2b2 � k�" < 1: We now split the � -integral
in (6.16) as follows:Z �=2

0

: : : d� D
Z sin�1.b1=2/

0

: : : d� C
Z sin�1.2b2/

sin�1.b1=2/
: : : d� C

Z �=2

sin�1.2b2/
: : : d�:
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Note that the first and the third integrals of the right side of the above expression are
negligibly small due to absence of the stationary point. Hence it boils down to analyse the
second integral which is given byZ sin�1 2b2

sin�1.b1=2/
ei.k�1/�

Z 3
p
5=2

3
p
1=2

3y2Uu;t .y
3/e
�
aw1=3y � by3=2.sin �/=.2�/

�
dy d�: (6.17)

On applying the stationary phase analysis (see Lemma 10) to the y-integral, we see that
it is given by

c1y
2
0Uu;t .y

3
0/e.f1.y0//p

jf 001 .y0/j
C lower order termsCO.k�2020/;

where c1 D 3e.1=8/, y0 D .4�aw1=3

3b sin � /
2 and f1.y/ D aw1=3y � by3=2.sin �/=.2�/. We

will proceed with the main term, as the other terms can be analysed similarly, and in
fact give better bounds. Hence, on plugging in the values of y0, f1.y0/ and f 001 .y0/, we
essentially get the following expression for the y-integral:

c2a
9=2w3=2

b5 sin5 �
Uu;t

��
4�aw1=3

3b sin �

�6�
e

�
16�2a3w

27b2 sin2 �

�
; (6.18)

where c2 D c1
p
2 .4�=3/5. On plugging the above expression in place of the y-integral

into (6.17), we arrive at

c2a
9=2w3=2

b5

Z sin�1 2b2

sin�1.b1=2/

1

sin5 �
Uu;t

��
4�aw1=3

3b sin �

�6�
e

�
.k � 1/�

2�
C

16�2a3w

27b2 sin2 �

�
d�:

On applying the change of variable sin � ! � , we arrive at

c2a
9=2w3=2

b5

Z 2b2

b1=2

1

�5
p
1��2

Uu;t

��
4�aw1=3

3b�

�6�
e

�
.k�1/ sin�1 �

2�
C
16�2a3w

27b2�2

�
d�:

(6.19)

Next we apply the second derivative bound to the above integral. Here the phase function
is given by

f .�/ D
.k � 1/ sin�1 �

2�
C
16�2a3w

27b2�2
:

Computing the first and the second order derivatives, we see that

f 0.�/ D
k � 1

2�
p
1 � �2

�
32�2a3w

27b2�3
;

f 00.�/ D
.k � 1/�

2�.1 � �2/3=2
C
32�2a3w

9b2�4
�

a3

b2�4
�

b2

a
: (6.20)

Thus on applying Lemma 9 to (6.19), we see that it is bounded above by

Varg Cmax jgj

min
p
f 00.�/

�
k"a9=2

b5.a=b/5
p

b2=a
D
k"

b
;
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where Varg denotes the total variation of the weight function

g.�/ D
c2a

9=2w3=2Uu;t
�
.4�aw1=3=.3b�//6

�
b5�5
p
1 � �2

:

Hence, I.1/
˙
� k"=b: Analysing other I.i/

˙
’s in a similar fashion, we get

I˙ D I˙.m;N0w; q/� k"=b:

Now we proceed to prove (6.13). We will give the details for I.1/
˙

only, as the analysis
for other I.i/

˙
is similar. Let q � C � k1C". Note that this condition ensures that b � k,

because, by (5.7), we have

k�".k � 1/2C 2=N �M1� k"max ¹.k � 1/2C 2=N;T º� k".k � 1/2C 2=N; (6.21)

and hence

a D
3.N QN/1=3

qr1=3
�

.NN0/
1=3

qr1=3
� .kT /1=2 D k1��=2 < k � b; (6.22)

since T D k1�� < k:We now apply the stationary phase analysis to (6.19). The stationary
point of the phase function f .�/ occurs at �0 where �0 satisfies

k � 1

2�

q
1 � �20

D
32�2a3w

27b2�30
; i.e.,

�30q
1 � �20

D

�
4�

3

�3 a3w

b2.k � 1/
:

Simplifying it further, we see that �0 satisfies

�6 � c2.1 � �2/ D 0;

where c D c.w/ WD .4�
3
/3 a3w

b2.k�1/
: Upon letting �2 D �1, the above equation reduces to

the cubic polynomial equation �31 � c2.1� �1/D 0; which can be solved using Cardano’s
method. In fact, as the discriminant of the cubic is negative, it has only one real root which
can be found as follows: Let �1 C �2 be the real root. Upon substituting it into the cubic,
we get

�31 C �
3
2 C .3�1�2 C c2/.�1 C �2/ � c2 D 0;

which leads to the following system of equations:

3�1�2 C c2 D 0; �31 C �
3
2 � c2 D 0:

Now using the formula

.�31 � �
3
2 /
2
D .�31 C �

3
2 /
2
� 4�31 �

3
2 ;

we see that the real root �1 C �2 is given by

3

s
c2

2
C

r
c4

4
C

c6

27
C

3

s
c2

2
�

r
c4

4
C

c6

27
:
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Hence we get

�0 D �0.w/ D

�
3

s
c2

2
C

r
c4

4
C

c6

27
C

3

s
c2

2
�

r
c4

4
C

c6

27

�1=2
D

6

s
c2

2
C

r
c4

4
C

c6

27

�
1 �

3

c2

�r
c4

4
C

c6

27
�

c2

2

�2=3�1=2
: (6.23)

Now expanding the above expression using the binomial theorem, we see that

�0 D �0.w/ D c1h.w/C c3.h.w//
3
C c3.h.w//

5
C � � � C c2n�1.h.w//

2n�1
C � � � ;

(6.24)
where ci ’s, i D 1; 3; 5; : : : ; are some non-zero explicit absolute constants and

h.w/ D
aw1=3

b2=3.k � 1/1=3
:

Note that the series in (6.24) is convergent and each binomial expansion in (6.23) is jus-
tified as c� a3=.b2.k � 1//� k�3�=2. Next we analyse the higher order derivatives of
the phase function f .�/. Using (6.20) and computing other higher order derivatives of
f .�/, we get

f 00.�/ � b2=a D a.a=b/�2; f 0.�/� a.a=b/�1;

f .j /.�/ D
k � 1

2�

dj�2

d�j�2
�

.1 � �2/3=2
C
32�2a3w

9b2
dj�2.��4/

d�j�2

� a.a=b/�j ; j D 3; 4; : : : ;

where we have used the fact that a� b � k and

dj�2

d�j�2
�

.1 � �2/3=2
�j 1:

On computing derivatives of the weight function

g.�/ D
c2a

9=2w3=2Uu;t
�
.4�aw1=3=.3b�//6

�
b5�5
p
1 � �2

;

since � � a=b, we see that

g.i/.�/� a�1=2.a=b/�i ; i D 0; 1; 2; : : : :

Thus, on applying Lemma 10 withX D a�1=2,QDU D a=b and Y D a to the � -integral
in (6.19), we get (6.13).

Case 3: k�"b � a � k"b. In this case we can assume that b1=2 < 1; otherwise, we get
back to the starting point of the discussion in Case 1. Consider

I.1/
˙
D

1

2�

Z �=2

0

ei.k�1/�
Z 5=2

1=2

Uu;t .y/e
�
˙aw1=3y1=3 � b

p
y.sin �/=.2�/

�
dy d�:

(6.25)
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We split the � -integral as follows:Z �=2

0

: : : d� D
Z sin�1.b1=2/

0

: : : d� C
Z �=2

sin�1.b1=2/
: : : d�:

The first integral on the right side is negligibly small due to absence of the stationary
point. Consider the second integral, which is given byZ �=2

sin�1.b1=2/
ei.k�1/�

Z 3
p
5=2

3
p
1=2

3y2Uu;t .y
3/e
�
aw1=3y�by3=2.sin �/=.2�/

�
dy d�: (6.26)

On analysing the y-integral as in Case 2, we get the lemma.

Proof of Proposition 1. Recall from (6.15) that

I˙.m; QNw; q/ D
Z 5=2

1=2

Uu;t .y/ e.˙aw1=3y1=3/Jk�1.b
p
y/ dy:

Note that
@j

@wj
I˙.m; QNw; q/� aj ; j � 0:

Similarly it follows that

@j

@wj
I˙.m0; QNw; q0/� a0j ; j � 0:

Hence, on applying integration by parts j -times to the w-integral in (6.9), we see that

J˙ � .k" C aC a0/j
�
q2q
0
2q1rn1

n2 QN

�j
�

�
.N QN/1=3

Cr1=3

�j�
C 2rn1

q1n2 QN

�j
D

�
N 1=3Cr2=3n1

q1n2 QN 2=3

�j
:

Thus J˙ is negligibly small if

N 1=3Cr2=3n1

q1n2 QN 2=3
�

1

k"
; i.e., n2 � k"

CN 1=3r2=3n1

q1 QN 2=3
:

Next we prove
J˙ � k"C 2=.M1N/:

Case 1: a 6� b, i.e., a0 � a� k�"b � k�"b0 or a0 � a� k"b � k"b0. When a� k"b,
on applying Lemma 15 to I˙.m; QNw; q/, we see that J˙ is negligibly small. In the other
case, i.e., a0 � a� k�"b � k�"b0, on applying Lemma 15 to (6.9), we get

J˙ �

Z
R
�.w/jI˙.m; QNw; q/j jI˙.m0; QNw; q0/j dw �

k"

bb0
�

k"C 2

M1N
: (6.27)
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Case 2: a� b, i.e., k�"b � a � k"b. On applying the last part of Lemma 15 to (6.9), we
see that

J˙ �
.aa0/9=2

.bb0/5

Z 1

b1=2

Z 1

b0
1
=2

1

�5
p
1 � �2

1

� 05
p
1 � � 02

�

ˇ̌̌̌Z 3

2=3

g3.�; �
0; w/e.wf3.�; �

0// dw
ˇ̌̌̌
d� d� 0;

where

f3.�; �
0/ D

16�2a3

27b2�2
�
16�2a03

27b02� 02
�

n2 QN

q2q
0
2q1rn1

;

g3.�; �
0; w/ D �.w/w3Uu;t

��
4�aw1=3

3b�

�6�
xUu0;t 0

��
4�a0w1=3

3b0� 0

�6�
:

On applying the change of variable � ! 1=
p
� , � 0 ! 1=

p
� 0, we arrive at

J˙ �
.aa0/9=2

.bb0/5

Z 4=b2
1

1

Z 4=b02
1

1

�3=2

2
p
� � 1

� 03=2

2
p
� 0 � 1

�

ˇ̌̌̌Z 3

2=3

g3.1=
p
�; 1=
p
� 0; w/e

�
16�2a3w

27b2
f4.�; �

0/

�
dw
ˇ̌̌̌
d� d� 0; (6.28)

where

f4.�; �
0/ D � �

a03b2

a3b02
� 0 �

27n2 QNb2

16�2q2q
0
2q1rn1a

3
:

Now using the change of variable

a03b2

a3b02
� 0 C

27n2 QNb2

16�2q2q
0
2q1rn1a

3
! � 0;

we arrive at the w-integralZ 3

2=3

g3.: : : ; w/e

�
w
16�2a3

27b2
.� � � 0/

�
dw;

where g3.: : : ; w/ is given by

�.w/w3Uu;t

�
.4�a/6�3w2

.3b/6

�
xUu0;t 0

�
.4�a0/6w2

.3b0/6

�
a3b02

a03b2
� 0 �

27n2 QNb02

16�2q2q
0
2q1rn1a

03

�3�
:

Note that
@j

@wj
g3.: : : ; w/�j k

"j ; j � 0; (6.29)

as a � b and

a3b02

a03b2
� 0 �

27n2 QNb02

16�2q2q
0
2q1rn1a

03
� k" C

.aC a0/b02

a03
� k";
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where, in the first inequality, we have used n2 QN

q2q
0
2
q1rn1

� aC a0, which follows by applying

integration by parts to the w-integral in (6.9). On applying integration by parts repeatedly,
we see that the above integral is negligibly small unless

j� � � 0j � k"b2=a3:

Now writing � � � 0 D �2 with �2 � k"b2=a3, and estimating all the integrals in (6.28)
trivially, we get

J˙ �
.aa0/9=2

.bb0/5
k"b2

a3
�

1

.bb0/1=2
k"

b
�

k"C 2

M1N
;

where we have used the fact a0 � a � b � b0. Hence we get (6.11).
Now we proceed to prove the last part. Let q � C � k1C". We also have q0 �

C � k1C". Note that in this situation we have a� k�"b, a0 � k�"b0 and b � b0 � k

(see (6.21) and (6.22)). On substituting the main term of I˙.m; QNw; q/ from (6.13) and a
similar expression for I˙.m0; QNw; q0/ into (6.9), we arrive at the following expression:

c23.aa0/9=2

.bb0/5

Z
R
�1.w/e.f5.w// dw; (6.30)

where

�1.w/ D
1p

f 00.�0/

1

�50

q
1 � �20

1p
f 002 .�

0
0/

1

� 050

q
1 � � 020

� Uu;t

��
4�aw1=3

3b�0

�6�
xUu0;t 0

��
4�a0w1=3

3b0� 00

�6�
(6.31)

and

f5.w/ D
.k � 1/.sin�1 �0 � sin�1 � 00/

2�
C
16�2

27

�
a3w

b2�20
�

a03w

b02� 020

�
�

QNn2w

q2q
0
2q1rn1

;

to which we apply the third derivative bound. Recall from (6.24) that

�0 D �0.w/ D c1h.w/C c3.h.w//
3
C c3.h.w//

5
C � � � C c2n�1.h.w//

2n�1
C � � � ;

(6.32)
with

h.w/ D
aw1=3

b2=3.k � 1/1=3
; b D

4�
p
mN

q
; a D

3.N QN/1=3

qr1=3
;

and � 00 is similarly defined. On applying the change of variable w! w3 in (6.30), we see
that the phase function is given by

.k�1/.sin�1 �0.w3/�sin�1 � 00.w
3//

2�
C
16�2

27

�
a3w3

b2�20 .w
3/
�

a03w3

b02� 020 .w
3/

�
�
QNn2w

3

q2q
0
2q1rn1

:
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On applying the Taylor series expansion of sin�1 �0.w3/, we see that

sin�1 �0.w3/ D �0.w3/C .�0.w3//3=6C � � �

D d1h.w
3/C d3.h.w

3//3 C � � �

D d1
aw

b2=3.k � 1/1=3
C d3

a3w3

b2.k � 1/
C � � � ;

where d1; d3; : : : are some absolute constants. Thus

@3

@w3
sin�1 �0.w3/�

a3

b2.k � 1/
:

Similarly
@3

@w3
sin�1 � 00.w

3/�
a03

b02.k � 1/
:

Next we consider a3w3=.b2�20 .w
3//. On applying the Taylor series expansion, we get

a3w3

b2�20 .w
3/
D
.k � 1/.h.w3//3

�20 .w
3/

D
.k � 1/h.w3/

c21

�
1C

c3.h.w
3//3

c1h.w3/
C � � �

��2
D
.k � 1/h.w3/

c21

�
1 �

2c3.h.w
3//3

c1h.w3/
� � � �

�
D
k � 1

c21

�
h.w3/ �

2c3.h.w
3//3

c1
� � � �

�
:

Thus
@3

@w3
a3w3

b2�20 .w
3/
�

a3

b2
:

A similar analysis also gives us

@3

@w3
a03w3

b02� 020 .w
3/
�

a03

b02
: (6.33)

Hence, upon combining the above estimates, we conclude that

@3f5.w
3/

@w3
D O

�
a3

b2
C

a03

b02

�
�

6 QNn2

q2q
0
2q1rn1

:

Since n2 ¤ 0, we note that

a3

b2
C

a03

b02
�

N QN

C 3rk2
�
.k3=r2/ QN

C 2rk3C"
�

QN

k"C 2r.n1; r/
�

QN

k".C 2=q1/rn1
�
k�"6 QN jn2j

q2q
0
2q1rn1

:

In the first inequality, we have used the fact that a � a0, b � b0 � k. For the second
inequality, we have usedNr2� k3C" andC � k1C", while for the second last inequality,
.n1; r/ � n1=q1 has been used. Hence we see thatˇ̌̌̌

@3f5.w
3/

@w3

ˇ̌̌̌
D

ˇ̌̌̌
O

�
a3

b2
C

a03

b02

�
�

6 QNn2

q2q
0
2q1rn1

ˇ̌̌̌
�

a3

b2
C

a03

b02
�

N QN

C 3rk2
:
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On computing the variation of �1.w/ (see (6.31)), we note that

Var�1 �
1p

b2=a

1

.a=k/5
1p

b02=a0

1

.a0=k/5
�

1

b2=a

1

.a=k/10
; (6.34)

where we have used f 00.�0/ � b2=a, f 002 .�
0
0/ � b02=a0, �0 � a=.b2=3.k � 1/1=3/ � a=k

and � 00 � a0=k. Hence, on applying the third derivative bound (see Lemma 9) to (6.30),
we see that (6.30) is bounded by

c23.aa0/9=2

.bb0/5
Var�1 Cmax j�1j
min jf5.w3/j1=3

�
a9

b10
1

b2=a

1

.a=k/10
.C 3rk2/1=3

.N QN/1=3
�

Cr1=3k2=3

k2.N QN/1=3
:

Hence we get Proposition 1.

We conclude this section by giving the final estimation of the main integral J˙ defined
in (6.1) in the following corollary:

Corollary 2. Let J˙ be the integral transform as defined in (6.1). Then

J˙ �
k"C 4

Q2M1N
: (6.35)

Furthermore, if C � k1C" and n2 ¤ 0,

J˙ �
k"C 2

Q2

Cr1=3k2=3

k2.N QN/1=3
: (6.36)

Proof. Recall from (6.8) that

J˙ D

Z
R

Z
R
V

�
t

T

�
V

�
t 0

T

�Z
u� k"C

QT

Z
u0� k"C

QT

Iu Iu0 J˙ du0 du dt 0 dt CO.k�2020/;

where

Iu D
Z

R
W.x=Q"/g.q; x/e

�
Nxu

qQ

�
dx;

and Iu0 is similarly defined. On applying the bound J˙ � k"C 2=.M1N/ from Proposi-
tion 1, we see that

jJ˙j �
k"C 2

M1N

Z
R

Z
R
V

�
t

T

�
V

�
t 0

T

�Z
u� k"C

QT

Z
u0� k"C

QT

j Iuj jIu0 j du0 dudt 0 dt: (6.37)

Note thatZ
u� k"C

QT

jIuj du�
Z
u� k"C

QT

Z
R
W.x=Q"/jg.q; x/j dx du�

k"C

QT
Q";

where we have used the property (2.7)(4) of g.q; x/. The same bound holds for the u0-
integral as well. Thus, on plugging these bounds into (6.37) and estimating the t - and
t 0-integral trivially, we get (6.35). On analysing the u-, u0-, t - and t 0-integrals as above and
applying the bound (6.12) from Proposition 1, we get the second part of the corollary.
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7. Analysis of the zero frequency: n2 D 0

With all ingredients in hand we now give final estimates for Sr .N /, given in (5.4), in the
present and coming sections. The zero frequency case, i.e., n2 D 0, has to be analysed
differently. Let �0

˙
denote the contribution of the zero frequency to �˙, given in (5.8),

and let S0r .N / denote the contribution of �0
˙

to Sr .N /. We have the following lemma:

Lemma 16. Let �0
˙

and S0r .N / be defined as above. Then

�0˙ �
k"N0C

6r

q1n
2
1Q

2N
.C CM1/;

S0r .N /� k"r1=2N 1=2k3=2��=2:

Recall that T D k1�� .

Proof. Recall from (5.11) that

�0˙ � k" sup
QN�N0

QN

n21

XX
q2;q
0
2
�C=q1

XX
m;m0�M1

j�f .m/j j�f .m
0/j jC˙j jJ˙j: (7.1)

Consider the congruence condition

˙ N̨q02 � N̨
0q2 � n2 mod q1q2q02r=n1

appearing in the expression (5.9) of C˙. For n2 D 0, it follows that q2 D q02 and ˛ D ˛0.
Hence

C˙ D
XX
d;d 0jq

dd 0�

�
q

d

�
�

�
q

d 0

� X?

˛modqr=n1
n1˛��mmodd
n1˛��m

0 modd 0

1

�

XX
d;d 0jq

.d;d 0/j.m�m0/

dd 0
qr

n1Œd=.n1; d /; d 0=.n1; d 0/�

�

XX
d;d 0jq

.d;d 0/j.m�m0/

dd 0
qr

Œd; d 0�
:

On plugging the above expression and the bound J˙ � k"C 4=.Q2M1N/ from Corol-
lary 2 into (7.1), we get

�0˙ �
k"C 4

Q2M1N
sup
QN�N0

QN

n21

X
q2�C=q1

qr
XX
d;d 0jq

.d; d 0/
XX
m;m0�M1

.d;d 0/j.m�m0/

j�f .m/j j�f .m
0/j:

We use the inequality

j�f .m/j j�f .m
0/j � 1

2
.j�f .m/j

2
C j�f .m

0/j2/ (7.2)
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to count the number of m and m0 as follows:XX
m;m0�M1

.d;d 0/j.m�m0/

j�f .m/�f .m
0/j

�

X
m�M1

j�f .m/j
2
C

XX
m;m0�M1

.d;d 0/j.m�m0/;m¤m0

.j�f .m/j
2
C j�f .m

0/j2/

� k"M1 C

X
m�M1

j�f .m/j
2

X
m0�M1

.d;d 0/j.m�m0/;m0¤m

1

� k"M1.1CM1=.d; d
0//;

where we have used the Ramanujan bound on average (see (2.1) and (2.2)). Thus

�0˙ �
k"N0C

4

n21Q
2M1N

X
q2�C=q1

qr
XX
d;d 0jq

.M1.d; d
0/CM 2

1 /

�
k"N0C

4

n21Q
2M1N

X
q2�C=q1

qr.M1q CM
2
1 /�

k"N0C
6r

q1n
2
1Q

2N
.C CM1/:

Hence we have the first part of the lemma. On substituting the above bound in place of�˙
in (5.4), we get

S0r .N /� sup
M1�M0
C�Q

N 5=3C"

QT r2=3C 3

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

�

X
n1

.n1;r/
jq1j.n1r/1

C 3.N0r/
1=2

n1q
1=2
1 Q

p
N

�p
M1 C

p
C
�
:

Estimating the q1-sum trivially and replacing the range for n1 by the longer range
n1 � Cr , we get

S0r .N /� k" sup
M1�M0
C�Q

N 2=3.N0r/
1=2

r2=3
p
N

X
n1�Cr

.n1; r/
1=2

n
7=6
1

‚1=2
�p
M1 C

p
C
�
:

Next we evaluate the n1-sum, using Cauchy’s inequality and the Ramanujan bound on
average (see Lemma 5), as follows:X

n1�Cr

.n1; r/
1=2

n
7=6
1

‚1=2 �

� X
n1�Cr

.n1; r/

n1

�1=2�XX
n2
1
n2�N0

j��.n1; n2/j
2

.n21n2/
2=3

�1=2
��;" N

1=6C"
0 : (7.3)



Subconvexity bounds: GL(2) spectral aspect 577

Thus we arrive at

S0r .N /� k"
N 2=3N

2=3
0

r1=6
p
N

�p
M0 C

p
Q
�
: (7.4)

Note that

Q D k"
p
N=T � k3=2C"=

p
T � k2C"=T � k2C"Q2=N:

We also have M0 D k
" max ¹.k � 1/2C 2=N; T º � k2C"Q2=N and

N0 D k
" max ¹.CT /3r=N; T 3=2N 1=2rº � k".QT /3r=N � k"T 3=2

p
N r:

Finally, upon using the above bounds in (7.4), we get

S0r .N /�
k"r2=3TN

r1=6
p
N

kQ
p
N
� k"r1=2N 1=2k3=2��=2:

Hence the lemma follows.

8. Analysis of the non-zero frequencies: n2 ¤ 0

It now remains to estimate Sr .N / corresponding to the non-zero frequencies, i.e., n2 ¤ 0.
We will consider two cases, small q and large q. To begin, we analyse the character sum
C˙ given in (5.9). We have the following lemma which is taken from [29].

Lemma 17. Let C˙ be as in (5.9). Then, for n2 ¤ 0, we have

C˙ �
q21 r.m; n1/

n1

XX
d2j.q2;n1q

0
2
�mn2/

d 0
2
j.q0
2
;n1q2˙m

0n2/

d2d
0
2:

Proof. Recall from (5.9) that

C˙ D
XX
d jq
d 0jq0

dd 0�

�
q

d

�
�

�
q0

d 0

� X?

˛modqr=n1
n1˛��mmodd

X?

˛0 mod q0r=n1
n1˛
0��m0 modd 0

˙ N̨q0
2
� N̨ 0q2��n2 modq1q2q02r=n1

1:

Using the Chinese remainder theorem, we observe that C˙ can be dominated by a product
of two sums, C˙ � C

.1/
˙

C
.2/
˙

, where

C
.1/
˙
D

XX
d1;d

0
1
jq1

d1d
0
1

X?

ˇ modq1r=n1
n1ˇ � �mmodd1

X?

ˇ 0 modq1r=n1
n1ˇ
0 � �m0 modd 0

1

˙ˇq0
2
�ˇ 0q2Cn2 � 0 mod q1r=n1

1
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and
C
.2/
˙
D

XX
d2jq2
d 0
2
jq0
2

d2d
0
2

X?

ˇ modq2
n1ˇ��mmodd2

X?

ˇ 0 modq0
2

n1ˇ
0��m0 modd 0

2

˙ˇq0
2
�ˇ 0q2Cn2 � 0 modq2q02

1:

Analysing the second sum C
.2/
˙

, we get ˇ � �mxn1 mod d2 and ˇ0 � �m0xn1 mod d 02, as
.n1; q2q

0
2/ D 1. Then using the congruence modulo q2q02, we conclude that

C
.2/
˙
�

XX
d2j.q2;n1q

0
2
�mn2/

d 0
2
j.q0
2
;n1q2˙m

0n2/

d2d
0
2:

In the first sum C
.1/
˙

, the congruence condition determines ˇ uniquely in terms of ˇ0, and
hence

C
.1/
˙
�

XX
d1;d

0
1
jq1

d1d
0
1

X?

ˇ modq1r=n1
n1ˇ � �mmodd1

1�
r q21 .m; n1/

n1
:

Hence we have the lemma.

8.1. Sr .N / for small q

In this subsection we will estimate Sr .N / for small values of q. Let �¤0
˙

denote the part
of �˙ (defined in (5.8)) which is complementary to �0

˙
(contribution of n2 ¤ 0) and let

S
¤0
r .N / denote the part of Sr .N / corresponding to �¤0

˙
. We have the following lemma.

Lemma 18. Let �¤0
˙

and S¤0r .N / be as above. Then, for C � k1C", we have

�
¤0
˙
�

k"r2C 7.TN /1=2

n21q1Q
2M1N

�
CM1n1

q1
CM 2

1

�
: (8.1)

Furthermore, let S¤0r;small.N / denote the contribution of C � k1C" to S¤0r .N /. Then

S
¤0
r;small.N /� r1=2k3��=2: (8.2)

Recall that T D k1�� .

Proof. On applying (7.2) to (5.11), we see that �¤0
˙

is dominated by

k" sup
QN�N0

QN

n21

XX
q2;q
0
2
�C=q1

XX
m;m0�M1

.j�f .m/j
2
C j�f .m

0/j2/
X

n22Z�¹0º

jC˙j jJ˙j:

We analyse the expression corresponding to j�f .m0/j2 only, since the calculation for the
other expression is very much similar. Thus, on applying Lemma 17 and Corollary 2, we
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arrive at

k"q21rC
4

n31Q
2M1N

sup
QN�N0

QN
XX
q2;q
0
2
� Cq1

XX
d2jq2
d 0
2
jq0
2

d2d
0
2

XX
m;m0�M1

X
n22Z�¹0º

n1q
0
2
�mn2�0modd2

n1q2˙m
0n2�0modd 0

2

j�f .m
0/j2.m; n1/:

Writing q2d2 and q02d
0
2 in place of q02 and q02 respectively, we arrive at

k"q21rC
4

n31Q
2M1N

sup
QN�N0

QN
XX

d2;d
0
2
�C=q1

d2d
0
2

XX
q2�

C
d2q1

q0
2
� C

d 0
2
q1

XX
m;m0�M1

X
1�jn2j�N2

n1q
0
2
d 0
2
�mn2�0modd2

n1q2d2˙m
0n2�0modd 0

2

j�f .m
0/j2.m; n1/:

(8.3)
Fixing the parameters .n2; q2; q02; d2; d

0
2; m

0/, we count the number of m’s as follows:X
m�M1

n1q
0
2
d 0
2
�mn2�0modd2

.m; n1/ D
X
`jn1

`
X

m�M1=`

n1q
0
2
d 0
2
`�mn2�0modd2

1

D

X
`jn1

`

�
.d2; q

0
2d
0
2; n2/C

M1

`d2=.d2; d
0
2q
0
2; n2/

�
� .d2; d

0
2q
0
2 ; n2/

�
n1 C

M1

d2

�
; (8.4)

where Ǹ is the inverse of ` modulo d2, which follows from the fact .d2; n1/ D 1. On
applying (8.4) with the bound .d2; n2/.n1 CM1=d2/ and then executing the sum over q02
in (8.3), we arrive at

k"q21rC
4

n31Q
2M1N

sup
QN�N0

QN
XX

d2;d
0
2
�C=q1

Cd2

q1

X
q2�

C
d2q1

�

X X
1�jn2j�N2 m0�M1

n1q2d2˙m
0n2�0modd 0

2

j�f .m
0/j2.d2; n2/

�
n1 C

M1

d2

�
: (8.5)

We now count the number of .d2; d 02; m
0/ following the arguments in [22, Section 6.1].

Case 1: n1q2d2 ˙ m0n2 � 0 mod d 02 but n1q2d2 ˙ m0n2 ¤ 0. On switching the
order of summations over d 02 and m0, we see that the d 02-sum is bounded above by
d.jn1q2d2 ˙m

0n2j/� k", with d.n/ being the divisor function. Thus (8.5) is bounded
above by

k"q21rC
4

n31Q
2M1N

sup
QN�N0

QN
X

d2�C=q1

Cd2

q1

X
q2�

C
d2q1

�

X
1�jn2j�N2

X
m0�M1

j�f .m
0/j2.d2; n2/.n1 CM1=d2/:
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On applying the Ramanujan bound on average to the m0-sum (see (2.1), (2.2)) and exe-
cuting the n2-sum, we arrive at

k"q21rC
4

n31Q
2M1N

sup
QN�N0

QNN2M1

X
d2�C=q1

Cd2

q1

X
q2�

C
d2q1

�
n1 C

M1

d2

�
:

Now executing the remaining sums, we get the expression

k"rC 6

n31Q
2M1N

sup
QN�N0

QNN2

�
Cn1M1

q1
CM 2

1

�
: (8.6)

On applying the bounds N2 D k"CN 1=3r2=3n1=.q1 QN
2=3/ (see (6.10)) and N0 �

k"T 3=2
p
N r (see (5.7)), we note that

sup
QN�N0

QNN2 � k"
Cr2=3n1

q1
.N QN/1=3 � k"

Cr2=3n1

q1
.NN0/

1=3
�

k"rn1

q1
.TN /1=2C:

(8.7)
Thus, in Case 1, we get the following bound for �¤0

˙
:

k"r2C 7.TN /1=2

n21q1Q
2M1N

�
Cn1M1

q1
CM 2

1

�
: (8.8)

Case 2: n1q2d2˙m0n2D 0. On applying (8.4) and switching some summations in (8.3),
we arrive at

k"q21rC
4

n31Q
2M1N

sup
QN�N0

QN
XX

d2;d
0
2
�C=q1

d2d
0
2

XX
q0
2
� C

d 0
2
q1

X
m0�M1

j�f .m
0/j2

�

X X
1�jn2j�N2 q2�

C
d2q1

n1q2d2˙m
0n2D0

.d 02q
0
2; n2/

�
n1 C

M1

d2

�
: (8.9)

Fixing the tuple .m0; n2; d2/, the number of q2’s turns out to beO.k"/ (as q2 jm0n2). Thus
we arrive at

k"q21rC
4

n31Q
2M1N

sup
QN�N0

QN
X

d 0
2
�C=q1

d 02

X
q0
2
� C

d 0
2
q1

X
m0�M1

j�f .m
0/j2

�

X
1�jn2j�N2

.d 02q
0
2; n2/

X
d2�C=q1
d2jm

0n2

.n1d2 CM1/:

Now executing the sum over d2, followed by the sum over n2, m0, q02 and d 02, we see that
the above expression is bounded above by

k"rC 6

n31Q
2M1N

sup
QN�N0

QNN2

�
Cn1M1

q1
CM 2

1

�
:

Now estimating QNN2 as in Case 1, we get the first part of the lemma.
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We will now prove (8.2). Consider the second term of the right hand side in (8.1). On
substituting it in place of �˙ in Sr .N / in (5.4), we arrive at

sup
M�M1�M0
C�k1C"

N 5=3C"

QT r2=3C 3

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

�
r2C 7.TN /1=2M1

n21q1Q
2N

�1=2

� sup
M�M1�M0
C�k1C"

N 5=3C"

QT r2=3C 3
r.TN /1=4C 7=2M

1=2
1

Q
p
N

X
n1�Cr

n
�2=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

1

q
1=2
1

� sup
M�M1�M0
C�k1C"

N 5=3C"

QT r2=3
r.TN /1=4C 1=2M

1=2
1

Q
p
N

X
n1�Cr

p
.n1; r/

n
7=6
1

‚1=2

� k"r1=2k3��=2;

where in the second last inequality we have usedX
n1�Cr

p
.n1; r/

n
7=6
1

‚1=2 ��;" N
1=6C"
0

from (7.3), C � k1C", N0 � k"r
p
N T 3=2 and M0 � k4C"=N as C � k1C".

Now consider the first term on the right hand side of (8.1). We see that its contribution
to Sr .N / in (5.4) is given by

sup
M�M1�M0
C�k1C"

N 5=3C"

QT r2=3C 3

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

�
r2C 7.TN /1=2C

n1q
2
1Q

2N

�1=2

� sup
M�M1�M0
C�k1C"

N 5=3C"

QT r2=3C 3
r.TN /1=4C 7=2C 1=2

Q
p
N

X
n1�Cr

n
�1=6
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

1

q1

� sup
M�M1�M0
C�k1C"

N 5=3C"

QT r2=3
r.TN /1=4C

Q
p
N

X
n1�Cr

.n1; r/

n
7=6
1

‚1=2

� k3��=2:

In the second last inequality, we have used the boundX
n1�Cr

.n1; r/

n
7=6
1

‚1=2 �

� X
n1�Cr

.n1; r/
2

n1

�1=2�XX
n2
1
n2�N0

j��.n1; n2/j
2

.n21n2/
2=3

�1=2
��;" r

1=2N
1=6C"
0 :

Thus we have the lemma.
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8.2. Estimates for generic q

Now we tackle the case when C � k1C" and n2 ¤ 0. Let S¤0r;generic.N / denote the part of

S
¤0
r .N / which is complementary to S¤0r;small.N / (i.e., the contribution of C � k1C") and
n2 ¤ 0 to Sr .N /. We have the following lemma.

Lemma 19. Let S¤0r;generic.N / be as above. Then

S
¤0
r;generic.N /� N 1=2k3=2�1=6C3�=4: (8.10)

Proof. Recall from the analysis of �¤0
˙

in the proof of Lemma 18 (see (8.6)) that

�
¤0
˙
�

k"rC 6

n31Q
2M1N

sup
QN�N0

QNN2

�
Cn1M1

q1
CM 2

1

�
: (8.11)

To get this, we have used the bound J˙ � k"C 4=.Q2M1N/. For C � k1C", we have a
better bound for J˙ (see Corollary 2). In fact,

J˙ �
k"C 2

Q2

Cr1=3k2=3

k2.N QN/1=3
�

k"C 4

Q2M1N

Cr1=3k2=3

.N QN/1=3
; (8.12)

where we have used
p
M1N=C � k for C � k1C". Thus, on applying the above bound,

we see that

�
¤0
˙
�

k"rC 6

n31Q
2M1N

� Cr1=3k2=3 � sup
QN�N0

QNN2

.N QN/1=3

�
Cn1M1

q1
CM 2

1

�
: (8.13)

Recall from (8.7) that

sup
QN�N0

QNN2

.N QN/1=3
� k"

Cr2=3n1

q1
; (8.14)

and

sup
QN�N0

QNN2

.N QN/1=3
D

N0N2

.NN0/1=3
:

Thus we see that

�
¤0
˙
�

k"rC 6

n31Q
2M1N

� Cr1=3k2=3 �
N0N2

.NN0/1=3

�
Cn1M1

q1
CM 2

1

�
: (8.15)

Comparing it with (8.8), we observe that we have an extra factor

Cr1=3k2=3

r1=3.NT /1=2
�

Qk2=3

.NT /1=2
D k"C��1=3

in this case. Hence, taking it into account, we get

�
¤0
˙
�

k"r2C 7.TN /1=2

n21q1Q
2M1N

� k��1=3
�
Cn1M1

q1
CM 2

1

�
: (8.16)
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Note that

Cn1

q1
CM1 �

Qn1

q1
CM0 �

n1k
"

q1

r
N

T
C
Q2k2C"

N
� .n1; r/k

"

r
N

T
C
k2C"

T

�
k2C"

T
;

where we have used M0 � Q2k2C"=N , Nr2 � k3C", Q D k"
p
N=T , T � k and

n1=q1 � .n1; r/. Thus, on plugging the above bound into (8.16), we get

�
¤0
˙
�

k"r2C 7.TN /1=2

n21q1Q
2N

� k��1=3 �
k2C"

T
:

On substituting the above bound in place of �˙ in (5.4), we see that S¤0r;generic.N / is
dominated by

sup
C�Q

N 5=3C"

QT r2=3C 3

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

�
r2C 7.TN /1=2

n21q1Q
2N

�1=2
�
k5=6C�=2
p
T

� sup
C�Q

N 5=3C"

QT r2=3C 3
r.TN /1=4C 7=2

Q
p
N

X
n1�Cr

n
�2=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

1

q
1=2
1

�
k5=6C�=2
p
T

� sup
C�Q

N 5=3C"

QT r2=3
r.TN /1=4C 1=2

Q
p
N

X
n1�Cr

p
.n1; r/

n
7=6
1

‚1=2�
k5=6C�=2
p
T

� N 1=2k3=2�1=6C3�=4:

Hence the lemma follows.

8.3. Estimates for the error term

In this subsection we give estimates for Sr .N / corresponding to the non-generic case
n?2N � k" (see Lemma 12). Recall from (4.7) that if n?2N D n

2
1n2N=.q

3r/� k", then
we have

S3 D q
X
˙

X
n1jqr

1X
n2D1

��.n1; n2/

n1n2
S.r Na;˙n2I qr=n1/G˙.n

?
2/; (8.17)

where G˙.n?2/ is as defined in (4.5). On plugging (8.17) and (4.11) in place of S3 and S2

respectively into (3.4) we arrive at

2�ikN 1�it

QT

X
1�q�Q

1

q

X
˙

X
n1jqr

X
n2�

q3rk"

n2
1
N

��.n1; n2/

n1n2

�

X
M�m�M0

�f .m/C˙.: : : / I4.q;m; n21n2/CO.k
�2020/; (8.18)
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where

C˙.: : : / WD
X?

amodq

S.r Na;˙n2I qr=n1/e

�
Nam

q

�
D

X
d jq

d�

�
q

d

� X?

˛modqr=n1
n1˛��mmodd

e

�
˙
N̨n2

qr=n1

�

� .n1; m; q/

�
q C

qr

n1

�
�
p
.n1; m/

p
.n1; q/

�
q C

qr

n1

�
; (8.19)

and

I4.q;m; n21n2/ D
Z

R
W.x=Q"/

Z
R
V

�
t

T

�
g.q; x/ I2.m; q; x/G˙.n

?
2/ dt dx;

with

I2.m; q; x/ D

Z 1
0

U.y/y�ite

�
�Nxy

qQ

�
Jk�1

�
4�
p
mNy

q

�
dy;

and

G˙.n
?
2/ D

1

2�i

Z
.�/

.n?2/
�s˙.s/ Qg.�s/ ds

D
N it

2�

Z 1
�1

˙.� C i�/

.n?2N/
�Ci�

Z 1
0

e

�
z1Nx

qQ

�
V.z1/z

���i�Cit
1

dz1
z1

d�; (8.20)

where � > �1C max ¹�<.˛1/;�<.˛2/;�<.˛3/º. On analysing the x-integral and the
t -integral following Lemma 14, we get the restriction

jz1 � yj � k"q=.QT /:

Thus, on replacing z1 by y C u with u� k"q=.QT /, we essentially arrive at

I4.q;m;n21n2/D
1

2�

Z 1
�1

˙.� C i�/

.n?2N/
�Ci�

Z
R
V

�
t

T

�
N it

Z
u� k"q

QT

Iu I5.m; q; u; �/dudt d�;

where

Iu D
Z

R
W.x=Q"/g.q; x/e

�
Nxu

qQ

�
dx;

I5.m; q; u; �/ D

Z 1
0

Ut;u;� .y/y
�i�Jk�1

�
4�
p
mNy

q

�
dy;

withUt;u;� .y/DU.y/y�� .1Cu=y/���i�Cit :Analysing I5.m;q;u; �/ like I˙.m; QNw;q/
(see Lemma 15), we get

I5.m; q; u; �/�
k"q1=2

.mN/1=4
:

We now move the contour � in (8.20) to the left to � D �5=2 passing through the poles
given by

1C � C<.˛i /C `

2
D 0; i.e., � D �1 �<.˛i / � `:
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Thus, on treating the u- and t -integral trivially, we get

I4.q;m; n21n2/� .n?2N/
5=2 k"q3=2

Q.mN/1=4

Z 1
�1

j˙.�5=2C i�/j d�

C
k"q3=2

Q.mN/1=4
C

X
`D0;1

3X
iD1

.n?2N/
1C`C<.˛i /:

Now using the Stirling bound

j˙.�5=2C i�/j � .1C j� j/3.�5=2C1=2/ D .1C j� j/�6;

we arrive at

I4.q;m; n21n2/�
k"q3=2

Q.mN/1=4

�
.n?2N/

5=2
C

X
`D0;1

3X
iD1

.n?2N/
1C`C<.˛i /

�
:

Note that .n?2N/
5=2 D .n?2N/

1=4C9=4 � k".n?2N/
1=4, and

3X
iD1

.n?2N/
1C`C<.˛i / D

3X
iD1

.n?2N/
1=2Cˇi � k".n?2N/

1=2
� k".n?2N/

1=4

as 1C `C<.˛i / D 1=2C ˇi for some ˇi > 0. Thus we get

I4.q;m; n21n2/�
k"q3=2

Q.mN/1=4
.n?2N/

1=4
D
k"q3=4.n21n2/

1=4

Qm1=4r1=4
: (8.21)

Thus, on plugging the above bound and the bound (8.19) for C˙.: : : / into (8.18) and then
estimating the sum over m using the Ramanujan bound on average, we see that (8.18) is
dominated byX

1�q�Q

NM
3=4
0

Q2T r1=4

X
n1jqr

X
n2�

q3rk"

n2
1
N

j��.n1; n2/j

n1n2
.n21n2/

1=4
p
.n1; q/

�
1C

r

n1

�
: (8.22)

We estimate the sum over n1 and n2 as follows:X
n1jqr

X
n2�

q3rk"

n2
1
N

j��.n1; n2/j

n1n2
.n21n2/

1=4
p
.n1; q/

�
1C

r

n1

�

�

X
n1jqr

X
n2�

q3rk"

n2
1
N

j��.n1; n2/j
r
p
n2

�

� XX
n2
1
n2�k"q3r=N

j��.n1; n2/j
2
�1=2�X

n1jqr

1X
n2D1

r2

n2

�1=2
�

q3=2r3=2
p
N

:
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Hence the contribution of the terms n21n2N=.q
3r/� k" to Sr .N / is dominated by

k"
X

1�q�Q

NM
3=4
0

Q2T r1=4
q3=2r3=2
p
N

�
p
N k1C2�C3�=8C"; (8.23)

where we have used M0 � k2C"=T and Nr2 � k3C".

9. Conclusion: Proof of Theorem 1

We now put together the bounds from Lemmas 16, 18, 19 and (8.23) to get

Sr .N /

N 1=2k3=2C"
� k�1=2C2�C3�=8 C r1=2k��=2 C r1=2

k3=2��=2

N 1=2
C k�1=6C3�=4:

Using k3�� � Nr2 � k3C" and r � k� , we further get

Sr .N /

N 1=2k3=2C"
� k�1=2C2�C3�=8 C k�=2��=2 C k2���=2 C k�1=6C3�=4:

Hence to get subconvexity, we need all of the above exponents to be negative. So the first
and the third term give 4=19 > � > 4� , and consequently the third and the fourth terms
dominate the rest. Thus the above bound reduces to

Sr .N /

N 1=2k3=2C"
� k2���=2 C k�1=6C3�=4:

The optimal choice for � is � D 8�=5C 2=15. On plugging this in Lemma 11, we get

L.1=2; � � f /� k3=2C6�=5�1=15C" C k3=2��=2C";

and with the optimal choice � D 2=51, we obtain the bound given in Theorem 1.
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