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Abstract. In this paper we consider nonlinearly elastic, frame-indifferent, and singularly perturbed
two-well models for materials undergoing solid-solid phase transitions in any space dimensions,
and we perform a simultaneous passage to sharp-interface and small-strain limits. Sequences of
deformations with equibounded energies are decomposed via suitable Caccioppoli partitions into
the sum of piecewise constant rigid movements and suitably rescaled displacements. These converge
to limiting partitions, deformations, and displacements, respectively. Whereas limiting deformations
are simple laminates whose gradients only attain two values, the limiting displacements belong to
the class of special functions with bounded variation (SBV). The latter feature elastic contributions
measuring the distance to simple laminates, as well as jumps associated to two consecutive phase
transitions having vanishing distance, and thus undetected by the limiting deformations. By �-
convergence we identify an effective limiting model given by the sum of a quadratic linearized
elastic energy in terms of displacements along with two surface terms. The first one is proportional
to the total length of interfaces created by jumps in the gradient of the limiting deformation. The
second one is proportional to twice the total length of interfaces created by jumps in the limiting
displacement, as well as by the boundaries of limiting partitions. A main tool of our analysis is a
novel two-well rigidity estimate which has been derived in [Calc. Var. Partial Differential Equations
59, art. 44 (2020)] for a model with anisotropic second-order perturbation.
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1. Introduction

Solid-solid phase changes are the physical phenomena for which, by strong temperature
or pressure variations, a solid can modify its crystalline structure without undergoing any
intermediate liquid phase. Well-known examples are temperature-induced phase transi-
tions between martensite and austenite in shape-memory alloys (see, e.g., [14, 20]), the
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nucleation of different ice forms at elevated pressure, or the mechanisms behind the evo-
lution of graphite into diamond in carbon composites.

In this paper we focus on materials exhibiting exactly two different phases by consid-
ering nonlinearly elastic, frame-indifferent, and singularly perturbed two-well models in
any space dimensions. Our goal is to perform a simultaneous passage from nonlinear to
linearized elastic energies and from diffuse to sharp interface descriptions of solid-solid
phase transitions. We start by introducing the modeling assumptions and discussing the
background. Afterwards, we describe our main results.

In the setting of nonlinear elasticity, the coexistence of two phases can be mathemati-
cally described by variational two-well problems, based on the study of energy functionals
of the form

H 1.�IRd / 3 y 7!

ˆ
�

W.ry/ dx: (1.1)

In the expression above, � � Rd , d 2 N, is a bounded Lipschitz domain, representing
the reference configuration of a material undergoing a solid-solid phase transition between
phases A;B 2Md�d . (Here, Md�d is the set of real d � d matrices.) The stored energy
densityW WMd�d ! Œ0;1/ in (1.1) is a nonlinear, frame-indifferent function whose zero
set has the two-well structure

¹F 2Md�d
W W.F / D 0º D SO.d/A [ SO.d/B;

with SO.d/ denoting the set of proper rotations in Md�d . The model in (1.1) is dis-
advantaged by a quite unphysical drawback. In fact, whenever A and B are rank-one
connected, low energy sequences for generic boundary value problems are known to
possibly exhibit highly oscillatory behaviors. In order to prevent this effect, ‘phenomeno-
logical’ higher order regularizations are often incorporated in the energy functional. These
may be interpreted as surface energies penalizing the transition between different energy
wells. A concrete example is provided by the following diffuse-interface model, where
transitions between the two wells SO.d/A and SO.d/B are controlled by augmenting
(1.1) via a second-order singular perturbation:

H 2.�IRd / 3 y 7! I".y/ WD
1

"2

ˆ
�

W.ry/ dx C "2
ˆ
�

jr
2yj2 dx: (1.2)

The competition between the two energy contributions in (1.2) is tailored by the smallness
parameter " > 0, which introduces a length scale into the problem. (We adopt it with
exponent 2 since this will have notational advantages in the following.) As " tends to zero,
the higher-order perturbation becomes more singular, and I" behaves more similarly to a
sharp-interface model. Roughly speaking, in fact, low-energy sequences for I" exhibit
transition layers between different phases of width "2 (see, e.g., [11, 13, 18, 51, 58]).

Energy functionals as (1.2) are naturally linked to the study of classical Cahn–
Hilliard–Modica–Mortola energies [46,56,57], which in turn are strongly connected to the
theory of minimal surfaces and to the modeling of liquid-liquid phase transitions. As the
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width " of transition layers tends to zero, the behavior of Modica–Mortola energies has
been shown to approach, in the sense of �-convergence (see [16, 29] for an overview),
that of a surface energy being proportional to the length of the interfaces between the
different phases. Amidst the extensive literature, we single out the seminal contributions
[12, 15, 36, 61, 64, 65] for a characterization of both scalar and vectorial Modica–Mortola
energies, the results [53] for an analysis of local minimizers, [5, 10] for extensions to the
multiwell scenario, and the recent contribution [28] for the case of spatially dependent
wells. We finally mention [66] for related models for lithium-ion batteries.

The study of analogous sharp-interface limits in the solid-solid setting has been initi-
ated by S. Conti, I. Fonseca, and G. Leoni [24], neglecting the effects of frame indiffer-
ence. In dimension 2, the frame-indifferent purview has been characterized by S. Conti
and B. Schweizer for two rank-one connected wells A and B , first in a linearized setting
in [27], and then in the fully nonlinear framework of (1.2) in [25, 26]. We also mention
the contributions [49,50] for related microscopic models for two-dimensional martensitic
transformations.

The first analysis of sharp-interface limits for singularly perturbed frame-indifferent
energies in higher dimensions d > 2 has been obtained in our previous work [32],
for a slightly modified version of the model (1.2) where the energy contains a further
anisotropic perturbation. More specifically, when the two wells have exactly one rank-
one connection, after rotation, we can assume without loss of generality that B � A D
�ed ˝ ed for � > 0. Then our model reads as follows:

H 2.�IRd / 3 y 7! E";�.y/ WD I".y/C �
2

ˆ
�

.jr2yj2 � j@2ddyj
2/ dx (1.3)

for � > 0. Owing to the additional anisotropic perturbation, our analysis is restricted to the
case of exactly one rank-one connection. We stress that this additional energy term does
not affect frame indifference, and penalizes only transitions in the direction orthogonal to
the rank-one connection ed ˝ ed , while still allowing for phase transitions between the
two different energy wells. We refer to [44,45,52,67] for studies of related models involv-
ing anisotropic perturbations. We point out that our analysis is performed for �!1 as
"! 0. The anisotropic penalization has thus a strong simplifying effect on the model, for
it prevents phase transitions in directions that are different from the one identified by the
rank-one connection.

In [32] we have shown that, for a suitable choice of � (depending on "), the functionals
in (1.3) �-converge as "! 0 (in the L1-topology) to the sharp-interface limit

E0.y/ WD

´
KHd�1.Jry/ if ry 2 BV.�IR¹A;Bº/ for some R 2 SO.d/;

1 otherwise in L1.�IRd /;
(1.4)

where K corresponds to the energy of optimal transitions between the two phases (see
(3.5) for the exact expression). Roughly speaking, limiting deformations are necessarily
piecewise affine with Jry consisting of hyperplanes orthogonal to ed intersected with �
(see [34] and Figure 1). We point out that, up to a possibly different constantK, the model
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in (1.4) is the same as the one identified in [26]. An essential ingredient in [32] is a novel
two-well rigidity estimate (see Theorem 3.2 below). It provides stronger estimates with
respect to previous results in the literature (see e.g. [21,26,47,54]) by introducing a phase
indicator, which allows one to identify the predominant phase at each point of �.

In this paper we further build upon this new rigidity estimate to combine the per-
spective of deriving sharp-interface limits for phase transitions with the passage from
nonlinear to linearized elastic energies. In fact, triggered by the availability of rigidity
estimates (mainly [42]), the derivation of effective linearized models has attained a great
deal of attention over the last years. Their interest originates from the observation that they
generally provide good approximations of the behavior of nonlinear models for deforma-
tions that are ‘close’ to rigid movements in a suitable sense. In fact, under the assumption
that A is the identity matrix Id, a formal asymptotic expansion shows that, by considering
deformations y of the form y D idC "u for a smooth displacement u, we have

ˆ
�

W.ry/ dx D
ˆ
�

W.IdC "ru/ dx �
"2

2

ˆ
�

D2W.Id/ru W ru dx C o."2/;

where D2W denotes the second-order differential of W and o."2/="2 ! 0 as " tends to
zero. In other words, the leading order behavior of the energy W is completely encoded
by the quadratic form of linearized elasticity 1

2

´
�
D2W.Id/ru W ru dx. While "2 is

related to the width of transition layers, as explained above, the parameter " represents the
typical order of elastic strains. This heuristic argument has been made rigorous by G. Dal
Maso, M. Negri, and D. Percivale in the seminal paper [31] for single-well energies under
standard growth conditions. An extension to the case of weaker growth conditions has
been the subject of [2]. We further refer to related studies on atomistic systems [17, 63],
homogenization [43, 59], viscoelasticity [39], plasticity [55], or fracture [37, 38, 60].

Some of the aforementioned linearization results have been generalized to the mul-
tiwell setting for wells approaching the identity as "! 0; see e.g. [1, 48, 62]. For fixed
wells (independent of "), results are limited to [3] (see [4] for an atomistic counterpart).
There, the authors consider a stronger higher-order perturbation compared to the ones in
(1.2) and (1.3). In particular, they characterize, under appropriate boundary conditions,
linearization around one of the two wells, i.e., a crucial feature is that only one phase
(say, the identity) is present in the limiting model. This is an effect of the stronger higher-
order perturbation that, roughly speaking, prevents the occurrence of macroscopic phase
transitions in the effective functional. In mathematical terms, their penalization is cho-
sen in a specific way to ensure compactness and convergence of rescaled displacements
u D .y � id/=" in suitable Sobolev norms.

The main novelty of this work consists in providing a new perspective on solid-solid
phase transitions, allowing simultaneously to have phase changes present in the limit, as
well as to perform a ‘pointwise dependent’ linearization that keeps track of the different
‘predominant phases’ in each region of the body. We consider here sequences of energies
of the form (1.3) for suitable "-dependent � (see Remark 3.1 below for details), denoted
by E" in the following. We point out that � is chosen to be ‘large enough’ to guarantee
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that our quantitative rigidity estimate in Theorem 3.2 provides enough compactness prop-
erties, but also ‘small enough’ so that the limiting behavior of the energies is not affected
by the anisotropic perturbation and no second-order derivatives of the deformations are
involved in the limiting description. We refer to [32, Remark 4.5 and paragraph before
Theorem 1.1] for a discussion of this point.

Our first result consists in showing that to every sequence of deformations ¹y"º" �
H 2.�IRd / with equibounded E"-energies we can associate a limiting deformation y 2
H 1.�IRd /, with ry 2 BV.�IR¹A;Bº/ for some R 2 SO.d/, a limiting displacement
u 2 SBV2loc.�IR

d / (see Appendix A), and a limiting Caccioppoli partition P D ¹Pj ºj .
The jump set of u is the (at most) countable union of hyperplanes orthogonal to ed and
intersected with �, and the components of P are given by the intersection of � with
d -dimensional stripes having sides orthogonal to ed .

The full statement of our result is quite technical: for this reason we present here a
simplified version and refer to Theorem 3.3 for the precise formulation.

Theorem 1.1 (Simplified compactness result). Let � be a bounded Lipschitz domain
in Rd , d � 2, such that all its slices orthogonal to the ed -direction are connected .see H8/.
LetW satisfy H1–H4. Let ¹y"º" �H 2.�IRd / be such that sup">0 E".y

"/ <1. Then to
every deformation y" we can associate a rotation R" 2 SO.d/, a Caccioppoli partition
P "D¹P "j ºj , phase indicators M"D¹M "

j ºj �¹A;Bº, and translations T "D¹t"j ºj �Rd ,
as well as a limiting triple .y; u;P / with ry 2 BV.�IR¹A;Bº/ such that

R" ! R;

P "j ! Pj in measure for all j ;

y" �
1

Ld .�/

ˆ
�

y".x/ dx ! y strongly in H 1.�IRd /;

u" ! u in measure in �; and

ru" * ru weakly in L2loc.�IM
d�d /;

where u" denote rescaled displacement fields associated to P ";M", T ", and R", defined
by

u" WD
y" �

P
j .R

"M "
j x C t

"
j /�P "j

"
: (1.5)

The assumptions on W are classical regularity and coercivity conditions for two-
well nonlinear elastic energies; cf. Section 2.1. In particular, the statement shows that
sequences of deformations with equibounded energies can be decomposed into the sum of
piecewise constant rigid movements

P
j .R

"M "
j x C t

"
j /�P "j

and scaled displacements u".
The limiting quantities .y; u;P / play different roles in the description of the effective
model: roughly speaking, the limiting deformation y encodes the two different phases,
which are in general still present in the limit, and correspondingly indicates the surfaces
where phase transitions occur. The limiting displacement u and the partition P , instead,
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keep track of the situation in which in the limiting model two neighboring areas are in
the same phase but at level " they were separated by small intermediate regions in the
opposite phase having asymptotically vanishing width as "! 0; see Figure 3 below for
an illustration. More specifically, intermediate layers of width comparable to " (i.e., the
order of elastic strains) are encoded by the jump set of u, and widths asymptotically larger
than " are associated to the boundary of the partition @Pj \�, Pj 2P . Finally, u features
also elastic displacements.

In particular, Theorem 1.1 motivates the notion of admissible triples as the collection
of triples .y; u;P / that are attained in the sense of the convergences in Theorem 1.1,
starting from a sequence of deformations ¹y"º". In what follows, we will refer to the
convergence properties in Theorem 1.1 as tripling of the variables. See also [37] for a
related notion of convergence.

The second step of our analysis consists in providing a characterization of admissible
limiting triples .y; u;P /. For ease of presentation, we collect our findings in a simplified
statement and refer to Section 3.3 for the precise formulation of the results.

Theorem 1.2 (Simplified characterization of limiting triples). Let .y; u;P / be an admis-
sible triple for the sequence ¹y"º". Then

� y and P are uniquely defined;

� u is uniquely defined up to piecewise translations of the form
P
j tj�Pj , ¹tj ºj � Rd ,

and global .infinitesimal/ rotations;

� Jry �
S1
jD1 @Pj \�;

� the jump of u is constant on every connected component of its jump set.

The nonuniqueness of the displacement field is simply a consequence of the possible
nonuniqueness in the definition of u" (see (1.5)). The last point of the statement represents
a ‘laminate structure’ of limiting displacement fields. This regularity of u is achieved
thanks to the anisotropic penalization in (1.3) and neglects branching phenomena; see
also Remark 3.10 for more details.

Denoting by A the class of all admissible limiting triples .y; u;P /, our main contri-
bution consists in showing that the asymptotic behavior of the energies E" is described by
the functional

EA
0 .y; u;P / WD

1

2

ˆ
�

D2W.ry.x//ru.x/ W ru.x/ dx CKHd�1.Jry/

C 2KHd�1
��
Ju [

�[
j

@Pj \�
��
n Jry

�
(1.6)

for every .y; u;P / 2 A. We point out that the constant K in (1.6) is the same as in (1.4).
We observe that EA

0 reduces to (1.4) for u D 0 and P coinciding with the collection of
connected components of the two sets ¹x 2 �W ry.x/ 2 SO.d/Aº and ¹x 2 �W ry.x/ 2
SO.d/Bº. Analogously, EA

0 coincides with the quadratic form of linearized elasticity,
and hence with the limiting model in [3] for u 2 H 1.�IRd /, for the trivial partition
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P consisting only of �, and for a deformation y with ry D Id in �. In this sense,
our limiting description combines both the effects of the sharp-interface characterizations
[26,32] and those of the multiwell linearization [3]. In contrast to these results, it features
an additional surface term: as described above, the jump of u and the boundary of the
partition encode small intermediate layers in the opposite phase at level "with width larger
than or comparable to " which induce two ‘consecutive phase transitions’; see Figure 3.
Our �-convergence result is proven under the compatibility condition that this additional
term enters the energy with double cost with respect to single phase transitions, i.e., we
suppose that

KAdp D K
B
dp D 2K; (1.7)

where KAdp and KBdp represent, roughly speaking, the energy necessary for performing
these double-phase transitions at level ". (The subscript ‘dp’ stands for ‘double profile’.
We refer to (3.27) for their precise expression.) Our main result reads as follows:

Theorem 1.3. Let � be a bounded strictly star-shaped domain .see (2.7)/ satisfying
the further connectedness assumption in H8. Let W satisfy H1–H7 and assume that the
compatibility condition in (1.7) holds true. Then E" �-converges to EA

0 in the topology
provided by the tripling of the variables in Theorem 1.1.

We refer to Sections 2.1 and 3.1 for the formulation of H1–H7. The difference between
our result and the �-convergence analyses in [26, 32] and [3] is mostly in the adopted
topology. In [26, 32] an effective energy is identified in the strong L1-topology for defor-
mations y. The result in [3], instead, is derived in the weak H 1-topology for rescaled
displacements .y � id/=". Our model combines this ‘global’ point of view with a ‘local’
one: the limiting Caccioppoli partition plays the role of identifying subdomains where the
small-strains approximation of linearized elasticity, encoded by the limiting displacement
u, is well posed. Finally, the surface-energy term associated to the jump set of u and to P

keeps track of the multiple phase changes that the material had to undergo at level " on
regions with vanishing widths.

We stress here that the focus of our study is not on minimization problems and their
convergence but rather on the identification of the limiting energy functional. For com-
pleteness, we also mention that the case of incompatible wells, i.e., the setting where A
and B have no rank-one connections, is not included in our analysis but would be much
simpler to handle. Indeed, the limiting model would linearize around just one of the two
phases, leading to a limiting description analogous to [3].

We point out that the lower bound in Theorem 1.3 holds under no further assumptions
on the two profile energies, i.e., the compatibility condition (1.7) is only needed for the
construction of recovery sequences. In Section 6.5 we present a self-contained discussion
showing that, under an additional assumption on the energy density (see (3.28) below)
optimal profiles are one-dimensional and the compatibility condition in (1.7) is indeed
satisfied. This assumption is fulfilled, e.g., when the energy only depends on the distance
of the deformation gradient from the two wells; see (3.29).
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We close the introduction with some comments on the proof structure. The proof of
Theorem 1.1 relies on a series of intermediate results: All statements involving limit-
ing rotations, partitions, and deformations are essentially proven in Proposition 4.2. The
sequence of translations and the limiting displacements are first exhibited on subsets of�
and eventually on � itself in Propositions 4.5 and 4.6, respectively. Finally, a further
delicate construction is needed to ensure uniqueness of the limiting Caccioppoli parti-
tion. This is based on a certain selection principle; see (3.18). Indeed, without such a
requirement, there might be different possible choices for the limiting partition; see the
discussion in Example 3.4 for an in-depth analysis of this point. Key ingredients for the
compactness analysis are the two-well rigidity estimate recalled in Theorem 3.2 and a
characterization of the two phase regions established in [32, Proposition 3.7]; see also
Proposition 4.1.

The statements collected in Theorem 1.2 are the subject of three different proposi-
tions. In particular, the uniqueness properties of limiting deformation, displacement, and
partition are proven in Proposition 3.6. This latter one is shown to be a consequence of
the selection principle described above. The characterization of the jump set of ry is
contained in Proposition 3.7, whereas that of the jump set of u is the subject of Proposi-
tion 3.8.

As is customary in �-convergence analysis, the proof of Theorem 1.3 consists in first
showing that EA

0 provides a lower bound for the limiting behavior of the energies E"
(see Theorem 3.14), and then in showing that this lower bound is indeed optimal (see
Theorem 3.15). The proof of the liminf inequality essentially relies on providing a char-
acterization of the double-profile energies KMdp , M 2 ¹A; Bº. An important point is to
show that optimal double phase transitions are, a priori, energetically more expensive
than gluing together two optimal profiles performing each a single phase transition in
an energetically optimal way (in other words, KMdp � 2K); see Proposition 6.2. The
key ingredients for proving the upper bound are explicit constructions of local recov-
ery sequences performing energetically optimal single and double phase transitions; see
Propositions 6.4 and 6.5. Both sequences are constructed starting from a delicate slicing
argument introduced in [32] and recalled in Proposition 6.13 below. In addition, they are
chosen so that they coincide with isometries far from the interfaces, and they can then be
‘glued together’ in the proof of Theorem 3.15.

The paper is organized as follows: In Section 2 we review the state-of-the-art and
perform an overview of the main mathematical difficulties. In Section 3 we describe our
model and state the main results. Sections 4 and 5 are devoted to the proofs of the com-
pactness theorem and to the characterization of limiting triples, respectively. The proof of
Theorem 1.3 is the subject of Section 6.

1.1. Notation

In what follows, we fix d 2 N, d � 2, and we consider a bounded Lipschitz domain
� � Rd . We will denote points x 2 Rd as x D .x0; xd /, with x0 2 Rd�1 and xd 2 R. In
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the whole paper we use standard notations for Sobolev spaces, as well as for BV.�/ and
SBV.�/. We refer the reader to [8] for the definitions and main results. Some basic prop-
erties of special functions of bounded variation and Caccioppoli partitions are recalled in
Appendix A. We recall that, whenever we say that a sequence ¹u"º" converges weakly�

in BV.�/ to a map u, this means that u"!u strongly inL1.�/ andDu"*�Duweakly�

in the sense of bounded Radon measures. We refer the reader to [8, Section 3.1] for an
interpretation of this convergence in the weak� topology associated to a suitable dual
of BV.�/.

We say that a sequence ¹f"º" of measurable functions converges in measure to f on
� if for every ı > 0, lim"!0 Ld .¹x 2 �W jf".x/ � f .x/j > ıº/ D 0.

We will omit the target space of our functions whenever this is clear from the context.
The identity map on Rd will be denoted by id or, with a slight abuse of notation, simply
by x. For m 2 N, the m-dimensional Lebesgue and Hausdorff measures of a set will be
indicated by Lm and Hm, respectively. We denote by

ffl
�

the average integral 1

Ld .�/

´
�

.

We denote by e1; : : : ; ed and eij , i; j D 1; : : : ; d , the standard bases in Rd and Md�d ,
respectively. We will use the notation Id for the identity matrix in Md�d and denote by
SO.d/ �Md�d the set of proper rotations. The sets of symmetric and skew-symmetric
matrices are indicated by Md�d

sym and Md�d
skew , respectively. In what follows, we will use

the Frobenius scalar product between matrices, F W G WD Tr.F TG/ for F; G 2Md�d ,
and we will write j � j for the associated Frobenius norm. For every set S � Rd , we
indicate by �S its characteristic function, defined as �S .x/ D 1 if x 2 S and �S .x/ D 0
otherwise. Given two sets S1; S2 � Rd , we denote by S14S2 their symmetric difference.
Inclusions of sets S1 � S2 are always understood to be up to sets of negligible measure,
i.e., Ld .S1 n S2/ D 0. We denote by B�.x/ the d -dimensional ball of radius � > 0 and
center x 2 Rd . We say that a sequence ¹P"º" of sets converges in measure to a set P as
"! 0 if �P " ! �P in L1.

2. State-of-the-art, heuristics, and challenges

In this section we recall the state-of-the-art for sharp-interface limits in the theory of solid-
solid phase transitions, and for derivations of linearized models from nonlinear elastic
energies. We additionally highlight the main open questions and difficulties.

2.1. Models in nonlinear elasticity for two-well energies

To every deformation y 2 H 1.�IRd / we associate the elastic energyˆ
�

W.ry/ dx;

whereW WMd�d ! Œ0;1/ is a map representing the stored-energy density, and satisfying
the following properties:
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H1 (Regularity) W is continuous.

H2 (Frame indifference) W.RF / D W.F / for every R 2 SO.d/ and F 2Md�d .

H3 (Two-well structure) W.A/DW.B/D0, whereAD Id andBDdiag.1; : : : ; 1;1C�/
for � > 0.

H4 (Coercivity) There exists a constant c1 > 0 such that

W.F / � c1 dist2.F; SO.d/¹A;Bº/ for every F 2Md�d ;

H5 (Quadratic behavior around the two wells) There exists ıW > 0 such that W is of
class C 2 in

¹F 2Md�d
W dist.F; SO.d/¹A;Bº/ < ıW º:

H6 (Growth condition from above) There exists a constant c2 > 0 such that

W.F / � c2 dist2.F; SO.d/¹A;Bº/ for every F 2Md�d .

Assumptions H1–H5 are standard requirements on stored-energy densities in nonlin-
ear elasticity. We note that after an affine change of variables one can always assume that
the two wells have the form given in H3; see [34, Discussion before Proposition 5.1 and
Proposition 5.2]. Specifically, the choice � > 0 amounts to the case of exactly one rank-
one connection between A and B , namely to the setting in which the only solution of
B �RA D a˝ � with R 2 SO.d/, a; � 2 Rd , and j�j D 1 is given by R D Id, � D ed ,
and a D �ed .

We point out that assumption H6 is not compatible with the impenetrability condition

W.F /!1 as detF !C0; (2.1)

which is usually enforced to model a blow-up of the elastic energy under strong com-
pressions. In the derivation of sharp-interface limits for solid-solid phase transitions [26,
27, 32], however, condition H6 is instrumental in the construction of recovery sequences.
(Note that, in dimension 2, by means of a more elaborate construction performed in [25],
assumption H6 may be dropped.)

In order to model solid-solid phase transitions, we analyze a nonlinear energy given
by the sum of a suitable rescaling of the elastic energy and a singular perturbation. For
every " > 0, we consider the functional EP" WH

2.�IRd /! Œ0;1/ defined by

EP" .y/ WD
1

"2

ˆ
�

W.ry/ dx C
ˆ
�

P".r
2y/ dx; (2.2)

whereP" WRd�d�d ! Œ0;1/ is a function which depends on the small parameter ". In the
following subsections, we will specify the choice of P" according to different modeling
assumptions.

The parameter " in the definition above represents the typical order of the strain,
whereas "2 is related to the size of transition layers [11, 13, 18, 51, 58]. The first term
in the right-hand side of (2.2) favors deformations y whose gradient is close to the two
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wells of W , whereas the second term penalizes transitions between two different values
of the gradient.

In the following, we will call A and B the phases. Regions of the domain where ry
is in a neighborhood of SO.d/A will be called A-phase regions of y and accordingly we
will speak of B-phase regions.

2.2. Review of existing results

We now continue by recalling some results about sharp-interface limits and derivation of
linearized models. The exact setting of the paper and our main results can be found in
Section 3. There, we will also recall a more recent result on sharp-interface limits which
we proved in [32], and which represents the departure point of our analysis.

A sharp-interface limit for a model of solid-solid phase transitions. Classical singu-
larly perturbed two-well problems are described by energies of the form

I".y/ WD
1

"2

ˆ
�

W.ry/ dx C "2
ˆ
�

jr
2yj2 dx (2.3)

for every y 2 H 2.�IRd /, corresponding to the choice P".G/ D "2jGj2, G 2 Rd�d�d ,
in (2.2). This subsection is devoted to a presentation of the analysis performed by S. Conti
and B. Schweizer [26] which addresses the sharp-interface limit of this model in dimen-
sion 2 as " tends to zero. Although in [26] also the case of two rank-one connections is
considered, we focus here on compatible wells having exactly one rank-one connection
(see assumption H3).

Denote by Y .�/ the class of admissible limiting deformations, defined as

Y .�/ WD
[

R2SO.d/

YR.�/; where

YR.�/ WD ¹y 2 H
1
# .�IR

d /W ry 2 BV.�IR¹A;Bº/º for R 2 SO.d/;

(2.4)

where H 1
# .�IR

d / WD ¹y 2 H 1.�IRd /W
ffl
�
y dx D 0º. For every open subset �0 � �,

we will adopt the notation Y .�0/ to indicate the corresponding admissible deformations.
In [26, Proposition 3.2] the authors established the following compactness result.

Lemma 2.1 (Compactness). Let d 2 N, d � 2, and let � � Rd be a bounded Lipschitz
domain. Let W satisfy assumptions H1–H4. Then, for all sequences ¹y"º" � H 2.�IRd /
for which

sup
">0

I".y
"/ <1;

there exists a map y 2 Y .�/ such that, up to extracting a subsequence .not relabeled/,

y" �

 
�

y".x/ dx ! y strongly in H 1.�IRd /:
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The limiting deformations y have the structure of a simple laminate. Indeed, G. Dolz-
mann and S. Müller [34] have shown that for y 2 YR.�/ the essential boundary of the set
T WD ¹x 2 �W ry.x/ 2 RAº consists of subsets of hyperplanes that intersect @� and are
orthogonal to ed , and that y is affine on balls whose intersection with @T has zero Hd�1-
measure; cf. Figure 1 (see also Appendix A for the definition of essential boundary for a
set of finite perimeter).

B

A

A

B

Fig. 1. The gradient of a limiting deformation y 2 YId.�/ in the case in which B �AD �ed ˝ ed .

We now introduce the limiting sharp-interface energy. Denoting by Q WD .�1
2
; 1
2
/d

the d -dimensional unit cube centered in the origin and with sides parallel to the coordinate
axes, we consider the optimal-profile energy

K0 WD inf
°

lim inf
"!0

I".y
";Q/W lim

"!0
ky" � yC0 kL1.Q/ D 0

±
; (2.5)

where yC0 2H
1
loc.R

d IRd / is the continuous function withryC0 DA�¹xd>0ºCB�¹xd<0º
and yC0 .0/D 0. (Here, �¹xd>0º and �¹xd<0º denote the characteristic functions of the two
halfplanes ¹xd > 0º and ¹xd < 0º, respectively.) Note that K0 corresponds to the energy
of an optimal phase transition fromA toB , and that it is invariant under changing the roles
of the two phases, i.e., invariant under replacing yC0 with the function y�0 2H

1
loc.R

d IRd /
satisfying y�0 .0/ D 0 and ry�0 D B�¹xd>0º C A�¹xd<0º.

The sharp-interface limiting functional I0WL1.�IRd /! Œ0;1� is defined as

I0.y/ WD

´
K0H

d�1.Jry/ if y 2 Y .�/;

1 otherwise:
(2.6)

In [26, Theorem 3.1] it was proved that, in the two-dimensional setting, I0 is the vari-
ational limit of the sequence ¹I"º" in the sense of �-convergence. (For an exhaustive
treatment of �-convergence we refer the reader to [16, 29].)
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Theorem 2.2 (�-convergence in dimension d D 2). Let d D 2, let��R2 be a bounded,
strictly star-shaped Lipschitz domain, and let W satisfy H1–H4 and H6. Then

�- lim
"!0

I" D I0

with respect to the strong L1-topology.

We recall that an open set � is strictly star-shaped if there exists a point x0 2 � such
that

¹tx C .1 � t /x0W t 2 .0; 1/º � � for every x 2 @�: (2.7)

Here and in the sequel, we follow the usual convention that convergence of the continuous
parameter "! 0 means convergence of arbitrary sequences ¹"iºi with "i ! 0 as i !1
[16, Definition 1.45]. In [25], the same �-convergence result as in Theorem 2.2 has been
obtained by dropping H6 via a more elaborate construction allowing one to incorporate
an impenetrability condition of the form (2.1).

The result in Theorem 2.2 is limited to the two-dimensional setting due to the lim-
sup inequality: the definition of sequences with optimal energy approximating a limit that
has multiple flat interfaces relies on a deep technical construction. This so-called H 1=2-
rigidity on lines (see [26, Section 3.3]) is only available in dimension d D 2. We also refer
to a recent related study for microscopic models of two-dimensional martensitic transfor-
mations [50]. The issue of dimensionality has been overcome in [32] by considering a
slightly modified model; see Section 3.1 for details.

Linearization around the identity for multiwell energies. In the context of multiwell
linearization, R. Alicandro, G. Dal Maso, G. Lazzaroni, and M. Palombaro [3] investi-
gated a multiwell energy F"WH 2.�IRd /! Œ0;1/ of the form

F".y/ WD
1

"2

ˆ
�

W.ry/ dx C "2�
d .r/
ˆ
�

jr
2yj2 dx (2.8)

for r 2 Œ1;2� and a suitable function 
d W Œ1;2�! .0;1/, where for d D 2 one has 
2.r/D r
[3, (1.9)]. Here, the singular higher-order term penalizes transitions between different
wells in a stronger way with respect to (2.3). This corresponds to the choice P".G/ D
"2�
d .r/jGj2, G 2 Rd�d�d , in (2.2). In [3], the problem is studied in arbitrary dimension
for a finite number of different wells and under very general growth conditions for the
elastic energy and the second-order penalization. There, also the influence of external
forces, under different scalings of the singular perturbation, is thoroughly discussed. For
a simple exposition, however, we present only the basic case here and we specify the
result to our two phases A and B .

First, [3, Theorem 2.3] along with the well-known rigidity estimate in [42] yields the
following compactness result.

Lemma 2.3 (Compactness). Let d 2N, d � 2, and r 2 .1; 2�. Let�� Rd be a bounded
Lipschitz domain. Let W satisfy assumptions H1–H4. Then, for all sequences ¹y"º" �
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H 2.�IRd / satisfying sup">0 F".y
"/ < 1 we find rotations R" 2 SO.d/, translations

t" 2 Rd , and phases M " 2 ¹A;Bº such that

sup
">0





y" � .R"M "x C t"/

"






W 1;r .�/

<1:

Additionally imposing Dirichlet boundary conditions of the form y" D idC "g on a
part of the boundary with g 2 W 1;1.�IRd / \ H 2.�IRd /, one can choose R" D Id,
t" D 0, and M " D A D Id in the above result; see [3, Theorem 1.8]. Additionally, one
can show that the volume of the set in which ry" is close to B has small L2-measure.
This implies the uniform bound sup">0 ku

"kW 1;r .�/ <1 for the rescaled displacement
fields

u" WD
y" � id
"

: (2.9)

In other words, for sequences with bounded F"-energy, Lemma 2.3 together with pre-
scribed boundary conditions ensures compactness in W 1;r for rescaled displacement
fields. We write the nonlinear energy in terms of the displacement fields by setting
OF".u/ D F".idC "u/ for u 2 H 2.�IRd /.

Formally, the effective linearized energy F0WW 1;r .�IRd /! Œ0;1� can be calculated
by a Taylor expansion, and has the structure

F0.u/ WD

´ ´
�

Qlin.Id; e.u// dx if u 2 H 1.�IRd /;

1 otherwise;
(2.10)

where QlinW SO.d/¹A;Bº �Md�d 2 Œ0;1/ is the quadratic form

Qlin.RM;F / WD
1
2
D2W.RM/F W F (2.11)

for everyR 2 SO.d/,M 2 ¹A;Bº, and F 2Md�d . Note that frame indifference (see H2)
implies that the energy only depends on the symmetric part e.u/ WD 1

2
..ru/T C ru/ of

the strain; see (2.10). More generally, in view of H4, one can check that (cf. (5.3) below)

Qlin.RM;SRM/ D 0 if and only if R 2 SO.d/, M 2 ¹A;Bº, and S 2Md�d
skew :

(2.12)

The relation of OF" and F0 has been made rigorous by �-convergence (see [3, Theo-
rem 1.9]).

Theorem 2.4 (Passage from nonlinear to linearized energies by �-convergence). Let
d 2 N, d � 2, and r 2 .1; 2�. Let � � Rd be a bounded Lipschitz domain. Let W satisfy
assumptions H1–H5. Then

�- lim
"!0

OF" D F0

with respect to the weak W 1;r -topology.
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2.3. Phase transitions and linearization: Heuristics and challenges

Our goal is to combine the above two approaches and to identify a model which allows
both for phase transitions and for the passage to linearized energies in terms of rescaled
displacement fields. As a first observation, we note that the setting in (2.8) is more spe-
cific than the one considered in (2.3) in the sense that deformations with finite energy are
essentially in one phase, A or B; see Lemma 2.3. Imposing certain boundary conditions,
one can always infer that the same phase, e.g. A D Id, is predominant. Then it is indeed
meaningful to perform a linearization around the identity. This differs significantly from
the laminate structure of the limiting configurations obtained in Lemma 2.1, where differ-
ent phases may be active and phase transitions between the different phase regions occur
(see Figure 1). In (2.8), the second-order penalization is so strong that basically phase
transitions in the limit "! 0 are forbidden. In the following, we discuss some of the chal-
lenges in more detail (we concentrate on the planar case d D 2 for simplicity), and then
describe the approach adopted in this work.

(a) Volume of the minority phase. In the model (2.8), the B-phase region, i.e., the set
where the deformation gradient ry" takes values in a neighborhood of SO.d/B , denoted
by T "B in the following, has small L2-measure. Heuristically, this property can be seen
as follows. From the boundedness of the energy and H4 one can deduce, for a suitable
definition of T "B , that

H1.@T "B \�/ � Ckdist.ry"; SO.2//kL2.�/kr
2y"kL2.�/ � C""


2.r/=2�1 D "r=2;

(2.13)

where in the last step we have used 
2.r/ D r (see below (2.8)). (We refer to [32, proof
of Proposition 3.7, Step 1] for the details on the first inequality.) By the (relative) isoperi-
metric inequality we obtain

min ¹L2.T "B/;L
2.� n T "B/º � C"

r :

Assuming that T "B is the minority phase, i.e., the minimum is attained for T "B , we get

L2.T "B/ � C"
r : (2.14)

This scaling of the area of the minority phase excludes phase transitions of the form given
in Figure 2 (a) where both L2.T "B/ and L2.� n T "B/ are bounded uniformly from below.
It is worth mentioning that the calculation (2.13) for the model (2.3) (corresponding to
r D 0) would give H1.@T "B/ � C . This reflects the fact that phase transitions in the limit
"! 0 are possible in that framework; see Lemma 2.1, Figure 1, and Figure 2 (a).

(b) Criticality of the scaling. For compactness of rescaled displacement fields u" D
.y" � id/=" (see (2.9)), we necessarily need L2.T "B/! 0 as otherwise jru"j ! 1 on
a set of positive measure. More precisely, since jru"j � 1=" on T "B , it turns out that the
bound in (2.14) is sharp for the uniform estimate kru"kLr .�/ � C (see Lemma 2.3 with
R" D Id and M " D Id).
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A

B

B

"r=2

"r=2

(a)

B
�

uC

u�

w" B

A

A

(b)

Fig. 2. (a) Illustration of the A- and B-phase regions of a deformation y" with finite energy (2.3)
in dimension d D 2. The shadowed regions, where a transition of the gradient between SO.2/A
and SO.2/B occurs, are horizontal reflecting the laminate structure of configurations with bounded
energy. For the energy (2.8), the phase transition at the lower boundary is possible, whereas the
transition in the upper part would lead to unbounded energies as "! 0; cf. (2.13). (b) In the upper
part of the figure, we depict a minority island centered around a segment � , which may have length
� 1 in the e1-direction, but width at most � "; cf. (2.15). Such a set necessarily has curved bound-
aries and is also penalized by the elastic energy in a neighborhood of the island. In the lower part,
the phenomenon described in (2.16) is illustrated.

Recall that (2.14) was derived from (2.13) via the isoperimetric inequality. One may
ask if this estimate is sharp, i.e., if the scaling "2�
2.r/ D "2�r of the penalization in (2.8)
is really necessary to obtain (2.14). For a small region near the boundary of � whose
boundary in � is a short straight line of length � "r=2 (see Figure 2 (a)) the scaling is
indeed critical. (We also refer to [3, Example 3.2].) As the interface between the two
phases is horizontal, such a transition is only realizable close to the boundary. For small
inclusions of the B-phase in the interior, so-called minority islands, this is impossible; see
Figure 2 (b).

(c) Minority islands. The situation for such minority islands is indeed quite different. In
dimension 2 and without a strong second-order penalization, merely under the assumption
that in a neighborhood N of the island the quantity

´
N
jr2y"j dx is smaller than a uni-

versal constant independent of ", S. Conti and B. Schweizer [26, Proposition 2.1] derived
the remarkable bound

L2.T "B/ � C

ˆ
�

dist.ry"; SO.2/¹A;Bº/ dx � C"; (2.15)

where the last step follows from the boundedness of the elastic energy. Roughly speak-
ing, they showed that minority islands, although possibly being long in the e1-direction
(the direction orthogonal to the rank-one connection), have width at most � " in the
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e2-direction; cf. Figure 2 (b). Their result is indeed sharp in the sense that they provide
a configuration with a minority island of length � 1 and width � " such that the energy
(2.3) is bounded uniformly in "; see [27, Remark 6.1]. A d -dimensional analogue has
been provided in [32, Remark 3.9].

(d) Internal jumps. This phenomenon excludes compactness in W 1;r for every r > 1,
even if for a sequence ¹y"º" there is only a single minority island of width " in the e2-
direction around a 1-dimensional horizontal set � . Indeed, in that scenario the strain jru"j
of the rescaled displacement fields u" (see (2.9)) would scale like 1=" on a set of L2-
measure � ", and one could expect no Sobolev compactness. On the contrary, it would
be natural for u" to converge to an SBV function which jumps on � . In the following, we
will refer to the setting described above as that of internal jumps. We again recall that this
issue is excluded in the model (2.8) by the bound (2.14).

(e) Double phase transitions. A similar phenomenon may occur in the presence of a
B-phase layer with widthw"� " as indicated in the lower part of Figure 2 (b) which corre-
sponds to two ‘consecutive phase transitions’. Heuristically, denoting by y"C.x

0/; y"�.x
0/,

u"C.x
0/, and u"�.x

0/ the traces of y" and u" on the upper and lower boundary (with respect
to the e2-direction) of such a layer, one expects that y"C.x

0/� y"�.x
0/Cw"Be2, and thus

lim
"!0

.u"C.x
0/ � u"�.x

0// D lim
"!0

y"C.x
0/ � y"�.x

0/ � w"e2

"
D lim
"!0

w".B � A/e2

"

D � lim
"!0

w"

"
e2; (2.16)

where we recall (2.9) and the fact that .B � A/e2 D �e2 (see H3). Consequently, the
limiting function would jump with constant jump height � lim"!0

w"
"
e2. Interestingly, the

jump height is essentially determined byw", i.e., by the width of theB-phase layer. Let us
also mention an additional problem occurring ifw"� ": in this latter setting the sequence
of rescaled displacement fields would not even converge to an SBV function (cf. (2.16)).

The perspective of the present work. The goal of the present contribution is to over-
come the above mentioned issues. In particular, building upon a novel two-well rigidity
estimate proved in [32] for a model augmented by a suitable anisotropic second-order
penalization (see Section 3.1), we will introduce a generalized definition of the rescaled
displacement fields which takes into account the presence of the two phases A and B in
different parts of the domain. Roughly speaking, these displacement fields will measure
the distance of the deformations y" from suitable rigid movements which may be different
on the components of a partition of � induced by the A- and B-phase regions. This more
flexible definition will allow us to carry out the following tasks in any dimension d � 2:

� derive a linearization result for configurations where both phases are present, in partic-
ular where phase transitions occur;

� obtain compactness results in a piecewise Sobolev setting for generalized rescaled dis-
placements, despite the presence of minority islands with macroscopic length;
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� identify an effective limiting model comprising linearized elastic energies and contri-
butions for single and double phase transitions.

In our investigation, however, we do not take the presence of internal jumps into account
for this would lead to a considerably more involved limiting energy; see Remark 3.10 for
a discussion in that direction. From a modeling point of view, this amounts to excluding
the presence of minority islands of width � " (see Figure 2 (b)), whereas minority islands
of width� " are allowed. In our model, this will be achieved by considering a suitable
anisotropic second-order penalization.

3. The model and main results

In this section we introduce our model with a refined singular perturbation, state the rigid-
ity estimate proved in [32], and present our main results.

3.1. A model with a refined singular perturbation and its sharp-interface limit

In this subsection we present the exact mathematical setting of this paper and recall our
previous work [32]. We analyze a nonlinear energy given by the sum of the nonconvex
elastic energy, a singular perturbation, and a higher-order penalization in the direction
orthogonal to the rank-one connection. To be more precise, for all "; � > 0, we consider
the functional

E";�.y/ WD
1

"2

ˆ
�

W.ry/ dx C "2
ˆ
�

jr
2yj2 dx C �2

ˆ
�

.jr2yj2 � j@2ddyj
2/ dx

(3.1)

for every y 2 H 2.�IRd /. This corresponds to the choice

P".G/ D "
2
jGj2 C �2

dX
iD1

X
.j;k/2¹1;:::;dº2;
.j;k/¤.d;d/

jGijkj
2; G 2 Rd�d�d ;

in (2.2). Note that (3.1) coincides with the energy functional in (2.3) when �D 0. In what
follows, we will study the asymptotic behavior of the energies

E" WD E"; N�";d ; (3.2)

where ¹ N�";d º" is defined by

N�";d WD "
�1C˛.d/ with ˛.d/ WD 1=.2d/: (3.3)

We refer to Remark 3.1 below for details on the choice of the parameter. We denote
the restriction of E" to a subset �0 � � by E".y; �

0/. In [32, Proposition 4.3, Theo-
rem 4.4, and Remark 4.5] we have shown that the asymptotic behavior of the energies E"
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is described (via �-convergence in the strong L1-topology) by the sharp-interface model
E0WL

1.�IRd /! Œ0;1� given by

E0.y/ WD

´
KHd�1.Jry/ if y 2 Y .�/;

1 otherwise;
(3.4)

where the optimal-profile energy is defined by

K WD inf
°

lim inf
"!0

E".y
";Q/W lim

"!0
ky" � yC0 kL1.Q/ D 0

±
: (3.5)

Here, Q D .�1=2; 1=2/d again denotes the d -dimensional unit cube centered at the
origin, yC0 was defined below (2.5), and for the definition of Y .�/ we refer to (2.4).
Note that (3.5) is the counterpart to (2.5) for the model in (3.1). From the definition
of the optimal-profile energy and the fact that the penalization in (3.1) (with � D N�";d )
is stronger than the one in (2.3), we deduce the inequality K � K0. As pointed out in
[32, Remark 4.5], the additional penalization term in (3.1) with respect to (2.3) does not
affect the qualitative behavior of the sharp-interface limit, only the constant in (3.5) may
change. Moreover, the fact that N�";d � "�1 guarantees that, asymptotically when passing
to a linearized strain regime, the resulting model does not feature second-order deriva-
tives; see [32, Introduction] and Remark 3.12 below.

We mention that anisotropic singular perturbations have already been used in related
problems; see e.g. [52, 67]. In the present context, the role of the perturbation is twofold:
(1) It allows us to use the two-well rigidity estimate proved in [32]; see Theorem 3.2
below. (2) As discussed at the end of Section 2.3, the penalization simplifies the analysis
by excluding the formation of internal jumps for limiting displacement fields; see Remark
3.10 below for more details. We remark that this anisotropy is the reason why we study
the case of exactly one rank-one connection.

Remark 3.1 (Choice of the penalization constant). We briefly mention that the result
in [32] is slightly more general in the sense that it also holds for penalization constants
¹�";d º" with �";d � N�";d (see [32, (4.5)]), i.e., our choice of the penalization constant here
is ‘less sharp’. For the sake of simplicity rather than generality, we prefer to work with
(3.3) since it simplifies many estimates in the following. (In particular, the statement of
the rigidity estimate in Theorem 3.2 below becomes simpler.)

Let us now recall the two-well rigidity result which is the fundamental ingredient for
the proof of the aforementioned �-convergence result and, at the same time, is instru-
mental in our work. More precisely, in the present paper, besides yielding properties on
optimal sequences in (3.5) necessary for deriving the sharp-interface limit, this estimate
plays additionally a pivotal role for showing compactness of sequences with equibounded
energies and for providing an optimal lower bound for the asymptotic behavior of the
sequence ¹E"º". We present here a slightly simplified version of [32, Theorem 3.1] with
p D 2 and N�";d in place of �.
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Theorem 3.2 (Two-well rigidity estimate). Let � be a bounded Lipschitz domain in Rd

with d � 2, and let ¹ N�";d º" be as in (3.3). Suppose that W satisfies H1–H4. Let E > 0.
Then for each �0 �� � there exists a constant C D C.�;�0; �; c1; E/ > 0 such that
for every y 2 H 2.�IRd / with E".y/ � E there exist a rotation R 2 SO.d/ and a phase
indicator ˆ 2 BV.�I ¹A;Bº/ satisfying

kry �RˆkL2.�0/ � C" and jDˆj.�/ � C: (3.6)

Additionally, the choice of the rotation R and the phase indicator ˆ is independent of the
set�0 ���. If � is a paraxial cuboid, (3.6) holds on the entire domain� for a constant
C D C.�; �; c1; E/ > 0.

We point out that the result in [32, Theorem 3.1] is more general. Indeed, it is stated
for any � � " and for a range of integrability exponents. The present version for the
choice � D N�";d is the counterpart of the simplified version [32, Theorem 1.1] on general
bounded Lipschitz domains, and for a nonsharp choice of ˛.d/. We refer to [32, Sec-
tion 3] for additional motivation for this estimate, in particular for a comparison with
other quantitative rigidity estimates for multiwell energies. We also stress that the phase
indicatorˆ is actually in SBV.�I ¹A;Bº/, for it is piecewise constant on the various parts
of the domain.

The focus of this contribution is on a �-convergence analysis of the energies E" in a
topology different from the one specified above. It will lead to a limiting model simultane-
ously keeping track both of sharp interfaces between the two phases and of linearization
effects. The precise topology for our �-convergence result is detailed in Section 3.2 below,
and the �-limit is presented in Section 3.4. Due to the necessity of linearizing nonlinear
elastic energies, we additionally need a local Lipschitz condition for the construction of
recovery sequences: besides assumptions H1–H6 stated in Section 2.1, we also require

H7 (Local Lipschitz condition) There exists a constant c3 > 0 such that

jW.F1/ �W.F2/j � c3.1C jF1j C jF2j/jF1 � F2j for all F1; F2 2Md�d :

Moreover, for simplicity we will assume that

H8 (Geometric condition) For all t 2 R the set � \ ¹xd D tº is connected (whenever
nonempty).

The latter condition is only needed for the compactness result in Theorem 3.3 and could
be dropped at the expense of more elaborate arguments; see Remark 4.3 for details.

3.2. Compactness

This subsection is devoted to our main compactness result. Our approach consists in
decomposing sequences ¹y"º" of deformations with equibounded E"-energies into the
sum of two parts:
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(a) Piecewise rigid movements, where ‘piecewise’ refers to associated Caccioppoli par-
titions induced by the A- and B-phase regions. These converge to the limit y of the
deformations ¹y"º".

(b) Displacements, rescaled by ", whose strain is equibounded in L2. These converge to
a limiting displacement field, which is piecewise Sobolev, with possible jumps with
normal in the ed -direction.

In order to formulate the main result of this subsection, we need to introduce some nota-
tion. Denote by P.�/ the following collection of Caccioppoli partitions of �:

P.�/ WD
°
P D ¹Pj ºj partition of �W[

j

@Pj \� �
[
i2N

.Rd�1 � ¹siº/ \� for ¹siºi � R
±
: (3.7)

We point out that the partitions can be finite or may consist of countably many sets. (For
simplicity, we do not specify the index set corresponding to the indices j .) The definition
above implies that

S
j @Pj \� consists of subsets of hyperplanes orthogonal to ed , which

extend up to the boundary of �. Note that every Caccioppoli partition on the bounded
domain � induces an ordered one just by a permutation of the indices. For this reason,
throughout the paper we always tacitly assume that partitions are ordered. We will say that
P "! P in measure as "! 0 if �P " ! �P in L1. Let U .�/ be the set of displacements
whose jump sets are the union of countably many subsets of hyperplanes orthogonal to ed ,
i.e.,

U .�/ WD
°
u 2 SBV2loc.�IR

d /W Ju �
[
i2N

.Rd�1 � ¹siº/ \� for ¹siºi � R
±
: (3.8)

For basic properties of Caccioppoli partitions and SBV functions we refer to Appendix A.
In particular, the essential boundary of a set is indicated by @�. For sets �0 � � and
S � �, we denote by �d .S/ the orthogonal projection of S onto the ed -axis, and define
the layer set

L�0.S/ D �
0
\ .Rd�1 � �d .S//: (3.9)

We now state our main compactness result. Recall the definition of YR.�/ in (2.4).

Theorem 3.3 (Compactness). Let��Rd be a bounded Lipschitz domain satisfying H8.
Assume that W satisfies assumptions H1–H4, and let ¹y"º" � H 2.�IRd / be a sequence
of deformations satisfying the uniform energy estimate

sup
">0

E".y
"/ � C0 <1: (3.10)

Then, up to extracting a subsequence .not relabeled/, the following holds:
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(a) (Piecewise rigidity) There exist Caccioppoli partitions P " WD ¹P "j ºj of � such that

Hd�1
�[
j

@�P "j

�
� C; (3.11)X

j

min ¹Ld .�0 \ P "j /;L
d .L�0.P

"
j / n P

"
j /º � C�0 "

p for every �0 �� �;
(3.12)

for some pDp.d/2 .1;2/, whereC depends only onC0 and�, andC�0 additionally
on �0. There exist associated rotations R" 2 SO.d/, as well as collections M" WD

¹M "
j ºj of phase indicators, with M "

j 2 ¹A;Bº for all j and ", such that

sup
">0




ry" �X
j

R"M "
j �P "j





L2.�0/

� C�0 " for every �0 �� �: (3.13)

(b) (Limiting deformation and partition) There exist a limiting rotation R 2 SO.d/, a
limiting deformation y 2 YR.�/, and a limiting partition P D ¹Pj ºj 2P.�/ such
that

R" ! R; (3.14)

P "j ! Pj in measure for all j , (3.15)

y" �

 
�

y".x/ dx ! y strongly in H 1.�IRd /; (3.16)X
j

R"M "
j �P "j

*� ry weakly� in BV.�IMd�d /: (3.17)

(c) (Displacements) There exist collections T " WD ¹t"j ºj � Rd of constants, associated
to P ", such that

jt"i � t
"
j j

"
!1 for all i ¤ j with Ld .Pi /;L

d .Pj / > 0, and lim
"!0

M "
i D lim

"!0
M "
j ,

(3.18)

and defining the rescaled displacement fields associated to P ";M", T ", and R" by

u" WD
y" �

P
j .R

"M "
j x C t

"
j /�P "j

"
; (3.19)

there exists u 2 U .�/ such that

u" ! u in measure in �; (3.20)

ru" * ru weakly in L2loc.�IM
d�d /: (3.21)

In view of our compactness result, sequences of deformations having equibounded
energies decompose into the sum of piecewise rigid movements with gradientsP
j R

"M "
j �P "j

, reflecting also the different phases A and B , and scaled SBV-

displacements u" whose gradients are uniformly bounded in L2loc.�IM
d�d /. Let us

comment on the compactness result and on some of the proof ideas.
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The definition of the piecewise rigid movements, as well as (3.11)–(3.13), follow from
the geometric two-well rigidity result recalled in Theorem 3.2. In particular, (3.12) shows
that each component has either small volume or coincides (up to a small set) with a ‘layer’
of �0. (We also refer to Figure 4 below for a 2d illustration.) At this point, the passage
to subdomains is necessary and in (3.13) we control the quantities only in L2loc (cf. (3.6)).
If � is a paraxial cuboid, this passage can be avoided; see Remark 4.3 for details in
that direction. Let us also emphasize that the rotation R" is defined globally, i.e., it is
independent of the components of the partition P ".

Standard compactness results (see Theorem A.1) imply (3.14)–(3.15), whereas (3.16)
follows from Lemma 2.1, and for (3.17) we also take (3.13) into account. The global
point of view for phase transitions given in Lemma 2.1 is combined with a local one in
(3.18)–(3.21): the Caccioppoli partitions play the role of identifying subdomains where
the small-strain displacement fields defined in (3.19) satisfy good compactness properties
(3.20)–(3.21).

In this context, condition (3.18) represents a selection principle for the Caccioppoli
partitions. (Note that lim"!0 M

"
k

for k D i; j is well defined by (3.14), (3.15), and
(3.17).) Loosely speaking, it implies that two regions of the domain in the same phase, say
phase A, are represented in the limit by two different sets Pi and Pj if and only if along
the sequence ¹P "º" there is a layer contained in the B-phase region lying between P "i
and P "j whose width is asymptotically (as "! 0) much larger than " (cf. the discussion
below (2.16)). We emphasize that, without the selection principle (3.18), there might be
different possible choices for the limiting partition, as the following example shows.

Example 3.4 (Nonuniqueness of limiting partition). The choice of different partitions at
level " has an effect on the limiting description identified by the tripling of the variables.
In particular, different "-decompositions determine different limiting displacements and
Caccioppoli partitions, which may contain a different ‘amount of information’. To clarify
this, consider the following two-dimensional example. (For related examples, we refer to
[38, Example 2.5] or [37, Example 2.4]). Let

� D .0; 1/ � .0; 2/; �1 D .0; 1/ � .0; 1/; �2 D .0; 1/ � .1; 2/

and for " > 0 and l 2 ¹1=2; 1; 2º consider the sets

�
";l
3 D .0; 1/ � .1 � "

l ; 1C "l /; �
";l
1 D �1 n�

";l
3 ; �

";l
2 D �2 n�

";l
3 :

We define three different example sequences according to the value of l : first, define
Qy";l 2 H 1.�IR2/ by

Qy";l .x/ WD

8̂̂<̂
:̂
x; x 2 �

";l
1 ;

Bx � �.1 � "l /e2; x 2 �
";l
3 ;

x C 2�"le2; x 2 �
";l
2 ;

for every x 2 �, where � is given in H3, and then

y";l WD Qy";l �
1

"4
'.�="2/;



E. Davoli, M. Friedrich 638

where 'WR2 ! R2 is a standard mollifier with supp.'/ � B1.0/. One can check that
sup">0 E".y

";l / <1. There are two natural alternative decompositions of the maps y";l ,
namely

(1) y";l D .R";lM ";l
1 xC t

";l
1 /�

P
";l
1

C "u";l ,

(2) y";l D
3X

jD1

. OR";l OM
";l
j xC Ot

";l
j /� OP ";l

j

C " Ou";l ,

where R";l D OR";l D Id and the Caccioppoli partitions, phases, and constant translations
are defined as

(1) P ";l1 D �; M
";l
1 D A; t

";l
1 D 0,

(2) OP ";lj D �
";l
j , OM

";l
1 D

OM
";l
2 D A, OM

";l
3 D B ,

Ot
";l
1 D 0, Ot";l2 D 2�"

le2 � b", Ot
";l
3 D ��.1 � "

l /e2,

respectively, where b 2R2 is some arbitrary translation. This leads to the different limiting
displacement fields and Caccioppoli partitions

.1/ ul D 0 � ��1 C s
le2��2 ; P l1 D �;

.2/ Oul D 0 � ��1 C b��2 ;
OP l1 D �1;

OP l2 D �2;
OP l3 D ;;

where sl WD 2� lim"!0 "
l�1 for l 2 ¹1=2; 1; 2º.

In case (2), where the sets �1 and �2 are split in the limiting partition, the limiting
displacement does not provide any information on the behavior of the deformations at the
"-level. Note that the translation b 2 R2 just expresses the nonuniqueness of the limiting
configuration and does not have any physically reasonable interpretation; see Proposi-
tion 3.6 below. On the contrary, in case (1) the jump height of the limiting displacement
on @�1 \ @�2 provides information on the width of the intermediate layer�";l3 where the
deformation is in phase B: The jump heights s2 D 0 and s1 D 2� express that the width
is of order� " and� ", respectively. As s1=2 D1, we observe that u1=2 …U .�/. Thus,
alternative (1) is not allowed in the case l D 1=2 and the sets �1 and �2 have to be split
in the limiting partition. The observation that coarser partitions provide more information
suggests defining the partition ‘as coarse as possible’. This intuition is exactly reflected in
the selection principle (3.18): for l D 1; 2 we apply case (1) and only for l D 1=2 do we
apply case (2).

As a consequence of Theorem 3.3, we introduce the following notion of convergence.

Definition 3.5. (i) We say that a sequence ¹y"º" of deformations is asymptotically rep-
resented by a limiting triple .y; u;P / 2 Y .�/ �U .�/ �P.�/, and write

y" ! .y; u;P /;

if there are sequences ¹R"º", ¹P "º", ¹M"º", and ¹T "º" such that (3.11)–(3.21) hold.
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(ii) We call a sequence ¹.R"; P ";M"; T "/º" of quadruples admissible for ¹y"º" if
(3.11)–(3.21) are satisfied.

(iii) We call a triple .y; u;P / 2 Y .�/ �U .�/ �P.�/ admissible for ¹y"º" if ¹y"º"
is asymptotically represented by .y; u;P /.

Although we use the notation ! and call .y; u;P / a limiting triple, it is clear that
Definition 3.5 cannot be understood as convergence in the usual sense. In particular, a
specific feature of our limiting model is that in the limit "! 0 a tripling of the variables
occurs. Another crucial aspect is that along the sequence a characterization in terms of
quadruples is needed. Let us highlight the relation between the quadruples and the limiting
triples: the deformation y 2 Y .�/ is determined by the rotation R", the partitions P ",
and the phases M" (see (3.17)). For the displacement field u we additionally need the
translations T " (see (3.19)–(3.20)). Finally, the limiting partition P is directly related
to P " by (3.15).

We will now proceed with a more specific characterization of the admissible limiting
triples for a sequence ¹y"º".

3.3. Characterization of admissible limiting triples

In this subsection, our aim is to give a complete characterization of all limiting triples
.y; u;P / which are admissible for a sequence ¹y"º" considered in Theorem 3.3. This, in
turn, specifies the domain of our effective energy discussed in the next subsection. Below
we will see that the choice of the deformation y and the partition P is unique. On the
other hand, however, we see that u is not determined uniquely:

Consider admissible quadruples ¹.R";P ";M"; T "/º" for a sequence ¹y"º" which is
asymptotically represented by a triple .y;u;P /, where T " D ¹t"j ºj . Then, we find another

sequence ¹. OR"; OP "; OM"; OT "/º" of admissible quadruples by setting OR"D exp.�"S/R" for
S 2Md�d

skew , OP " D P ", OM" DM", and OT " D ¹Ot"j ºj with Ot"j D t
"
j � "tj for some tj 2 Rd

for all j . (Here, exp denotes the matrix exponential.) In view of (3.17) and (3.19)–(3.20),
a short computation shows that this sequence of quadruples will give the limiting triple
.y; Ou;P / with

Ou.x/ D u.x/C
X
j

tj�Pj .x/C Sry.x/x for all x 2 �. (3.22)

To take this ambiguity of the limiting description into account, for a given deformation
y 2 Y .�/ and a given Caccioppoli partition P D ¹Pj ºj 2P.�/, we introduce the set

T .y;P / D
°
T W�! Rd W T .x/ D

X
j

tj�Pj .x/C Sry.x/x; tj 2 Rd ; S 2Md�d
skew

±
(3.23)

of corresponding piecewise translations combined with global infinitesimal rotations. We
obtain the following characterization.
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Proposition 3.6 (Characterization of admissible limiting triples). Let ¹y"º" be a sequence
as in Theorem 3.3. Let .y1; u1;P 1/ and .y2; u2;P 2/ be two admissible triples. Then the
following assertions hold:

(i) y1 D y2 and P 1 D P 2 .up to possible reorderings of the sets/.

(ii) There exists T 2 T .y1;P 1/ D T .y2;P 2/ such that u1 � u2 D T .

(iii) For each QT 2 T .y1;P 1/, the triple .y1; u1 C QT ;P 1/ is admissible.

Property (i) states that the limiting deformation is uniquely determined. This fol-
lows from (3.16). The corresponding property for the partition is a consequence of the
selection principle in (3.18). Without such a condition other choices are possible; see
Example 3.4 for more details. Property (ii) states that the admissible displacement fields
for a sequence ¹y"º" are determined uniquely up to piecewise translations and a global
(infinitesimal) rotation. This nonuniqueness has been illustrated in (3.22).

The next result characterizes the jump sets involved in admissible limiting triples.

Proposition 3.7 (Admissible limiting triples; jump set and partition). Let ¹y"º" be a
sequence as in Theorem 3.3. Then for each admissible triple .y; u;P / in the sense of
Definition 3.5, we have

Jry �
[
j

@Pj \�:

There are examples of sequences ¹y"º" such that the inclusion is strict.

The fact that the inclusion may be strict can be seen in case (2) of Example 3.4
(corresponding to l D 1=2). We also note by Proposition 3.6 (iii) that there is always
an admissible displacement field u with

S
j @Pj \�� Ju. This inclusion might be strict;

see case (1) in Example 3.4 with l D 1. We proceed with a result which specifies the jump
heights of admissible limiting displacement fields. For u 2 U .�/, the normal on Ju is
given by �u D ed . We denote by uC and u� the corresponding one-sided limits of u and
we let Œu� WD uC � u�.

Proposition 3.8 (Admissible limiting displacement fields; jump heights). Let .y; u;P /
be an admissible triple in the sense of Definition 3.5 and let R 2 SO.d/ be such that
y 2 YR.�/. Then

(i) Œu�.x/ is constant for Hd�1-a.e. x 2 .Rd�1 � ¹tº/ \ � for all t 2 R with Ju \
.Rd�1 � ¹tº/ ¤ ;,

(ii) Œu�.x/ 2 Œ0;1/Red for Hd�1-a.e. x 2 .Ju n
S
j @Pj / \ ¹ry D RAº,

(iii) �Œu�.x/ 2 Œ0;1/Red for Hd�1-a.e. x 2 .Ju n
S
j @Pj / \ ¹ry D RBº.

Roughly speaking, property (i) is a consequence of the geometry of the A- and B-
phase regions induced by the rigidity estimate. We refer to (3.12) and to Figure 4 for an
illustration. We also refer to the discussion on the jump height in (2.16). In particular,
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(i) implies that the jump set consists of subsets of hyperplanes orthogonal to ed , which
extend up to the boundary of �. Some intuition for point (ii) has been provided in (2.16);
see also case (1) in Example 3.4 with l D 1. Point (iii) is similar by changing the roles of
the phases A and B . Note that (ii) and (iii) are well defined by Proposition 3.7.

We also stress that Proposition 3.8 (ii, iii) describes the structure of the jump sets of
limiting displacements outside the boundary of the limiting Caccioppoli partitions. The
fact that in case (2) of Example 3.4, instead, a jump term occurs along a general direction
b 2 R2 is not in contradiction with the result above, for the jump described in case (2) of
Example 3.4 happens on the boundary of one of the sets forming the limiting Caccioppoli
partition and, as such, can be characterized as an element of the set T .y;P / in (3.23).

Definition 3.9. In view of Theorem 3.3, Proposition 3.7, and Proposition 3.8, we intro-
duce the set of admissible limiting triples

A WD
°
.y; u;P / 2 Y .�/ �U .�/ �P.�/W Jry �

1[
jD1

@Pj \�;

u satisfies (i)–(iii) in Proposition 3.8
±
:

Remark 3.10 (Internal jumps). As discussed already heuristically in Section 2.3, the
choice of the penalization factor (3.3) simplifies the analysis by excluding the forma-
tion of internal jumps for limiting displacement fields; see Proposition 3.8 (i) and the
upper part of Figure 2 (b). This allows us to formulate our limiting model for displace-
ments in a piecewise Sobolev setting. Let us mention that without such a requirement
the domain of the limiting model is expected to be the space of generalized functions of
bounded variation, GSBD2.�/, introduced in [30], with an additional constraint on the
jump sets of admissible functions. Note that this phenomenon is not just a technical math-
ematical issue, but is related to branching, i.e., to the presence of microstructures near
interfaces; see e.g. [19, 23, 33, 52, 67]. Particularly, see [23] for a simplified scalar model
in SBV addressing the low volume-fraction of one phase, and dealing with the problem
of internal jumps. (We also refer to [33] for some extensions to a vectorial model in the
geometrically linear setting, and to [22] for a corresponding scaling law in the case of a
martensitic nucleus embedded in an austenitic matrix.)

3.4. The effective limiting model and �-convergence

This subsection is devoted to the identification of the effective limiting model. We start
by introducing the limiting energy functional. We preliminarily recall that, in view
of assumption H5, the stored energy density W is C 2 in a neighborhood of the set
SO.d/¹A; Bº. We also recall the quadratic form Qlin defined in (2.11), Definition 3.9,
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and the asymptotic optimal-profile energy in (3.5). We define the functional

EA
0 .y; u;P / WD

ˆ
�

Qlin.ry;ru/ dx CKHd�1.Jry/

C 2KHd�1
��
Ju [

�[
j

@Pj \�
��
n Jry

�
(3.24)

for every .y;u;P /2A. Note that the elastic term is well defined asry.x/2 SO.d/¹A;Bº
for a.e. x 2 �.

We briefly compare this energy to the limiting models in Section 2.2 and explain the
relation to E" introduced in (3.2). First, the elastic energy is more general than the one in
(2.10) as it accounts for the two different phases indicated by ry. Moreover, in contrast
to (2.6), the functional contains two surface terms: the jumps of ry represent the energy
associated to single phase transitions between A- and B-phases, already appearing in
(2.6). The second surface term corresponds to two ‘consecutive phase transitions’, i.e.,
two transitions with a small intermediate layer whose width vanishes as "! 0, which
remain undetected by y. More generally speaking, by relaxation in the limit "! 0, the
first term (single transition) and the second term (double transition) effectively correspond
to an odd and an even number of consecutive phase transitions, respectively; cf. Figure 3.
Note that the second surface term enters the energy with double cost with respect to single
phase transitions. This term itself has two contributions: recalling the selection principle
for the partition in (3.18), small intermediate layers of width � " are associated to Ju in
the limit " ! 0, and layers with asymptotically much larger width are encoded by the
partition P . Layers of width� " do not affect the limiting energy. This is illustrated in
Example 3.4.

Remark 3.11 (Comparison with (3.4)). We point out that the topology in which the
convergence of the energies occurs is the key difference between the limiting energies
identified in [26, 32] and in (3.24). In fact, when considering a sequence of deformations
admitting a given asymptotic representation in the sense of the tripling of the variables,
we are imposing stricter conditions on the sequence than just its L1-convergence, for we
also prescribe the behavior of rescaled displacements. For this reason, the value of (3.24)
is, in general, greater than that of (3.4).

The difference in the limiting structure of the energy is essentially due to the refined
rescaling of the displacements considered in this article. Indeed, in contrast to [26,32], by
considering suitably rescaled displacements and keeping track of the associated Cacciop-
poli partitions, we are able to perform a finer analysis and to encode more features in our
limiting model. A special feature of the tripling of the variables convergence considered
here is that it allows one to simultaneously keep track of limiting behaviors arising on
different scales: both from a global point of view, encoded by the surface term associ-
ated to the jump set of the gradient of limiting deformations, and from a local point of
view associated to the limiting displacements and partitions, and described instead by the
linearized elastic energy and by the additional surface term.
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Fig. 3. Illustration of situations corresponding to even and odd numbers of consecutive phase tran-
sitions. We assume that wi" ! 0 as " ! 0 and that lim inf"!0 wi"=" > 0 for i D 1; : : : ; 8. The
shaded regions describe the areas in which the phase transitions occur. (a) We depict here the case
of two phase transitions: the intermediate phase has infinitesimal width w1" and thus disappears in
the limit. Its presence at level ", though, still affects EA

0 . Indeed, in the second surface term, the
length of the interface between the two limiting A-regions will enter the energy with density 2K.
(b) The case of three intermediate phases is depicted. Although being different from (a) on level ",
this situation leads to the same effective energy. In this sense, two intermediate phases ‘compensate
each other’ in the limit. Note that the jump height of the limiting function is determined by w2"
and w4" only. (c) We illustrate here the situation of five phase transitions: the energy contribution is
accounted for in EA

0 by the first surface term, i.e., the length of the interface between the limiting
A- and B-regions, reflected by Jry , will enter the energy only with density K.

Remark 3.12 (Second-gradient terms). The effective model described in (3.24) does not
contain second-gradient terms, neither in y nor in u. Indeed, the choice N�";d � "�1 guar-
antees that the effects of higher-order contributions, in particular of their anisotropic part,
enter the limiting energy only in terms of the value of the constant K, but no dependence
on second-order derivatives persists in the model after the limiting passage.

The main contribution of this paper consists in showing that the sequence ¹E"º" is
asymptotically described by EA

0 , in the sense of �-convergence in the topology intro-
duced in Definition 3.5. As a preliminary observation, we note that the limiting energy is
invariant under changes of the asymptotic representative.
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Remark 3.13 (Energy invariance for different asymptotic representatives). Suppose that
a sequence ¹y"º" is asymptotically represented by two triples .y1; u1;P 1/; .y2; u2;P 2/

in A. Then EA
0 .y

1; u1;P 1/ D EA
0 .y

2; u2;P 2/. This follows from (2.12), (3.23), Propo-
sition 3.6, and (3.24).

Our first result shows that EA
0 provides a lower bound for the asymptotic behavior of

the energy functionals ¹E"º".

Theorem 3.14 (�-liminf inequality). Let��Rd be a bounded Lipschitz domain satisfy-
ing H8. LetW satisfy assumptions H1–H5, let .y;u;P / 2A, and let ¹y"º" �H 2.�IRd /
be such that y" ! .y; u;P /. Then

lim inf
"!0

E".y
"/ � EA

0 .y; u;P /:

Our second result is the proof that the lower bound identified in Theorem 3.14 is opti-
mal. For the construction of recovery sequences we need slightly stronger assumptions:
we require that the set is strictly star-shaped (see (2.7)), we assume H6 and H7, and we
need a specific condition for the asymptotic optimal-profile energy. In order to state our
result, we need some additional notation. Define the set of sequences

Wd WD

°
¹w"º"W w" 2 .0;1/; w" ! 0; lim inf

"!0
w"=" > 0

±
; (3.25)

and define the functions

yAdp WD ed�¹xd>0º; yBdp WD �ed�¹xd>0º: (3.26)

For M 2 ¹A;Bº, we introduce the double-profile energy

KMdp WD sup
h>0

sup
¹w"º"2Wd

inf
²

lim sup
"!0

E".y
";Q0 � .�h; h//W

y" �Mx

w"
! yMdp in measure in Q0 � .�h; h/

³
; (3.27)

where (here and in the following)Q0 WD .�1=2; 1=2/d�1 � Rd�1. We defer a discussion
of the definition of KMdp , and proceed with the �-limsup inequality.

Theorem 3.15 (�-limsup inequality). Let � � Rd be a bounded, strictly star-shaped,
Lipschitz domain in Rd satisfying H8. Let W satisfy assumptions H1–H7, and suppose
that KAdp D K

B
dp D 2K. Let .y; u;P / 2 A. Then there exists ¹y"º" � H 2.�IRd / such

that y" ! .y; u;P / in A, and

lim sup
"!0

E".y
"/ � EA

0 .y; u;P /:

The notion of strictly star-shaped sets will allow us to reduce the constructions to
the case of finitely many phase transitions, similarly to [26]. The additional assumptions
H6 and H7 are instrumental in controlling the nonlinear elastic energies of the recovery
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sequence, whenever the gradient is away from the two wells. We now address definition
(3.27) and explain the condition KAdp D K

B
dp D 2K.

First, in order to understand the role of the sequences Wd defined in (3.25), recall the
setting in Figure 3 (a). The case in which, locally at level ", two portions of the domain in
the same phase are separated by an intermediate region in the opposite phase, is reflected
by an energy contribution in the limiting functional EA

0 whenever the width of the ‘inter-
mediate layer’ behaves asymptotically as one of the sequences in Wd . We recall that, if
lim inf"!0 w"=" 2 .0;1/, this is encompassed by the jump set of the limiting displace-
ment u, whereas the opposite scenario is captured by the limiting partition P .

Intuitively, the value KAdp in (3.27) provides an upper bound for the energy of an opti-
mal profile which contains two phase transitions, first from A to B and then from B to A,
with an intermediate layer in the B-phase of width ¹w"º" (see Figure 3 (a)). The interpre-
tation of KBdp is the same after interchanging the roles of the phases. The compatibility
condition KAdp D K

B
dp D 2K is needed in the construction of recovery sequences. On the

one hand, it seems a natural condition as K and KAdp; K
B
dp correspond to the case of one

and two phase transitions, respectively. On the other hand, for general densitiesW we are
able to prove only one inequality, and the other inequality only under extra assumptions
on W . More precisely, we have the following.

Proposition 3.16 (Relation ofK,KAdp, andKBdp: inequality). The valuesK,KAdp, andKBdp

introduced in (3.5) and (3.27) satisfy min ¹KAdp; K
B
dpº � 2K.

We now discuss an additional assumption on W which implies equality. Assume that
the energy density additionally satisfies

W.F / � W.IdC .jFed j � 1/edd / for all F 2Md�d : (3.28)

As we will show in Lemma 6.16, this condition ensures that optimal profiles are one-
dimensional. It can be understood as a generalization of condition (H3) in [24] where
one-dimensionality of profiles has been discussed for a two-well problem without frame
indifference. Note that this condition is compatible with frame indifference. A model
case is a situation where the energy only depends on the distance of the two wells, i.e.,

W.F / D �
�
dist.F; SO.d/A/; dist.F; SO.d/B/

�
for all F 2Md�d ; (3.29)

where �W Œ0;1/2 ! Œ0;1/ is a smooth function with c1.min ¹t1; t2º/2 � �.t1; t2/ �
c2.min ¹t1; t2º/2 for all t1; t2 2 Œ0;1/ which is increasing in both entries. We refer to
(6.107) below for details.

Given condition (3.28), we are able to show the following.

Proposition 3.17 (Relation ofK,KAdp, andKBdp: equality). Suppose that (3.28) holds. The
values K, KAdp, and KBdp introduced in (3.5) and (3.27) satisfy KAdp D K

B
dp D 2K.

We do not have an explicit example, but we conjecture that for certain energy densities
one might indeed have min ¹KAdp;K

B
dpº > 2K. Moreover, in contrast to (2.6) and (3.5), we
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cannot apply a symmetry argument to show that KBdp equals KAdp. In general, KAdp and KBdp
might be different.

Intuitively, min ¹KAdp; K
B
dpº > 2K means that two optimal profiles in (3.5) cannot be

combined to give a competitor in (3.27) without essentially increasing the energy. In any
case, if e.g.KAdp > 2K, the energy would probably depend on the width of the intermediate
B-layer and the limiting energy (3.24) would necessarily also depend on the jump height
of u. We do not pursue this more complicated case here, but only provide a result under the
aforementioned compatibility condition. In this case, the cost of a double phase transition
always equals 2K, independently of the width of the intermediate layer.

This concludes the presentation of our results. The remainder of the paper is devoted
to the proofs. The proof of Theorem 3.3 is the subject of Section 4. In particular, the
limiting deformations, rotations, and partitions are identified in Proposition 4.2, whereas
the limiting displacement fields are exhibited in Propositions 4.5 and 4.6. The remaining
part of the proof of Theorem 3.3 consists in showing that partitions and translations at the
"-level can be chosen so that the selection principle in (3.18) holds true. The characteri-
zation of limiting triples described in Section 3.3 is provided in Section 5. Theorems 3.14
and 3.15 are proven in Sections 6.1 and 6.2.

The main step of the proof of the lower bound in Theorem 3.14 consists in show-
ing that in the ‘bulk part’ of the domain and around the different limiting interfaces the
asymptotic behavior of the energies can be bounded from below by the elastic energy and
by the two surface terms, respectively. Key ingredients are the notions of optimal-profile
and double-profile energy functions (see (6.3) and (6.5)), as well as Propositions 6.1–6.2,
providing a characterization of the local behavior of the energy around the different lim-
iting interfaces. The former was proven in [32, Proposition 4.6]. The proof of the latter is
carried out in Section 6.3.

The proof of Theorem 3.15 relies on two main intermediate results, which are proven
in Section 6.4: (1) in Proposition 6.4 we generalize [32, Proposition 4.7] to construct local
recovery sequences around single phase transitions; (2) in Proposition 6.5 we prove the
corresponding result for double phase transitions. Eventually, in Section 6.5 we show that
under (3.28) optimal profiles for single phase transitions are one-dimensional (see Lemma
6.16), and that KAdp D K

B
dp D 2K (see Proposition 3.17).

4. Compactness analysis

This section is devoted to the proof of our compactness result in Theorem 3.3. We proceed
in several steps: We first identify sequences of rotations, phase indicators, and partitions,
as well as a limiting deformation and partition such that (3.11)–(3.17) hold; see Proposi-
tion 4.2. Then, Propositions 4.5 and 4.6 are devoted to the construction of (sequences of)
translations and the definition of displacement fields (see (3.19)–(3.21)), first on subsets
of � and eventually on � itself. Finally, a further delicate construction is needed to show
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that by a suitable choice of the partitions and the translations also the selection principle
(3.18) can be guaranteed.

In what follows, we will use the notion of sets of finite perimeter and Caccioppoli
partitions. We refer to Appendix A for basic properties. Before we start, we recall the two-
well rigidity estimate in Theorem 3.2 and point out that the result hinges on the following
characterization of the two phase regions (see [32, Proposition 3.7 and Remark 3.8]). We
refer to Figure 4 for a two-dimensional visualization.

A

B

B

A

A

"7=4

Fig. 4. A visualization of phase regions in dimension d D 2. The (anisotropic) second-order penal-
ization guarantees that phase transitions occur inside cylindrical layers of height "7=4. (Note that
˛.d/D 1=4 for d D 2.) Additionally, "7=4 is an upper bound on the height of minority islands in the
e2-direction. In other words, connected components of the phase regions have either small volume
or coincide (up to a small set) with a layer of �. In higher dimensions, a similar interpretation is
possible, up to higher-order terms.

Proposition 4.1 (Decomposition into phases). Let ˆ be the phase indicator identified in
Theorem 3.2, and define T WD ¹ˆ D Aº. Then

.i/ Hd�1.@�T \�/ � cE".y/;

.ii/
ˆ
@�T\�

jh�T ; ei ij dHd�1
� c"2�˛.d/E".y/ for i D 1; : : : ; d � 1;

.iii/
ˆ 1
�1

Hd�2..Rd�1 � ¹tº/ \ @�T \�/ dt � c"2�˛.d/ E".y/;

(4.1)

where �T denotes the outer normal to T , @�T its essential boundary, ˛.d/ is the quantity
introduced in (3.3), and E" is the energy functional defined in (3.1)–(3.2).

We point out that the statement in [32, Proposition 3.7] is more general but reduces to
the proposition above for the choice � D N�";d (see (3.3)).

In the proof of the compactness result, the set T will be the starting point for con-
structing the partitions. Properties (4.1) (i, ii) are crucial to showing (3.11) and passing
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to a limiting partition in P.�/ by compactness. Item (4.1) (iii) is instrumental in prov-
ing (3.12).

We now start by identifying the limiting deformation and limiting partition. Recall the
definition of YR.�/ and P.�/ in (2.4) and (3.7), respectively.

Proposition 4.2 (Deformations and partitions). Let � be a bounded Lipschitz domain
satisfying H8. Suppose that W fulfills H1–H4. Let ¹y"º" � H 2.�IRd / be a sequence of
deformations satisfying (3.10). Then there is a sequence of triples .R";P ";M"/, a lim-
iting rotation R 2 SO.d/, a limiting deformation y 2 YR.�/, and a limiting partition
P D ¹Pj ºj 2 P.�/ such that (3.11)–(3.17) hold after extracting a subsequence. The
components of P are connected.

We point out that in Theorem 3.3 the components are not connected in general. At
this intermediate stage, however, constructing the partition with this additional property
is instrumental in defining displacement fields in Propositions 4.5 and 4.6 below as it
allows us to apply Poincaré inequalities on each component.

Proof of Proposition 4.2. Let ¹y"º" � H 2.�IRd / be a sequence of deformations satis-
fying (3.10). We let .a; b/ denote the interval that is the orthogonal projection of � onto
the ed -axis.

Step 1: Preliminary estimates. First, we apply Theorem 3.2 to obtain sequences ¹R"º" �
SO.d/ of rotations and ¹ˆ"º" � BV.�I ¹A; Bº/ of phase indicators such that for all
�0 �� �,

kry" �R"ˆ"kL2.�0/ D kry
"
� .R"A�T " CR

"B��nT "/kL2.�0/ � C�0";

jDˆ"j.�/ � C;
(4.2)

where T " D ¹ˆ" D A º denotes the A-phase regions (see Proposition 4.1), C�0 depends
on �0, and C is related to C0 in (3.10).

In the following, we will need to apply the relative isoperimetric inequality on sections
of the form � \ ¹xd D tº, t 2 .a; b/. In general, the constant involved may depend on t .
As a remedy, we pass to suitable subsets of� with properties independent of t : for " > 0,
we can choose �" �� � with Lipschitz boundary, satisfying H8, and

sup
">0

Hd�1.@�"/ <1; lim
"!0

dH .�;�
"/ D 0 (4.3)

(dH denotes the Hausdorff distance) such that for each t 2 .a; b/ and each set E � �" \
¹xd D tº of finite perimeter,

min ¹Hd�1.E/;Hd�1..�" \ ¹xd D tº/ nE/º

� "�˛.d/.Hd�2.@�E \�"//
d�1
d�2 ; (4.4)

where ˛.d/ is defined in (3.3). (For d D 2, the left hand side has to be interpreted as zero
if H0.@�E \�"/ D 0.) Indeed, these sets can be constructed as follows.
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For fixed � > 0, let �� �� � be a Lipschitz domain satisfying H8 which is a finite
union of cylindrical sets of the form ! � .h�; hC/ for ! � Rd�1 Lipschitz, i.e., there
are only a finite number of different shapes for �� \ ¹xd D tº, denoted by !i � ¹tº for
Lipschitz domains !i , i D 1; : : : ;N �. (We do not include � in the notation for simplicity.)
Given t 2 .a; b/, choose !i such that !i � ¹tº D �� \ ¹xd D tº and consider E � �� \
¹xd D tº. Then we can apply the relative isoperimetric inequality on !i to obtain (4.4)
for a constant C �i depending on !i in place of "�˛.d/ and �� in place of �". (See [35,
Theorem 2, Section 5.6.2]; note that the theorem in this reference is stated and proved
in a ball, but the argument only relies on Poincaré inequalities, and thus easily extends
to bounded Lipschitz domains.) Choose an infinitesimal sequence ¹�kºk � .0;1/ and
a corresponding strictly decreasing infinitesimal sequence ¹"kºk � .0;1/ such that the
sequence ¹��k ºk satisfies (4.3) (with ��k in place of �") and

max
iD1;:::;N�k

C
�k
i � "

�˛.d/

k
:

To conclude, we apply the following diagonalization argument: for " 2 Œ"k ; "k�1� we set
�" WD �k�1. The claim follows by considering the sets �" WD ��

"
.

Step 2: Construction of auxiliary partitions. We start the actual proof by constructing a
finite partition of T " \�" as follows: We define f "W .a; b/! .0;1/ by

f ".t/ D Hd�1.¹xd D tº \ T
"
\�"/ for t 2 .a; b/: (4.5)

We observe that f " 2 BV..a; b//, and that its total variation can be estimated by

jDf "j.a; b/ � Hd�1.@�T " [ @�"/: (4.6)

In fact, for any  2 C1c .�/ with  D 1 on �", by Fubini’s theorem we get

jDf "j.a; b/

D sup
'2C1c .a;b/; k'kL1.a;b/�1

ˆ
.a;b/

f "'0 dt

D sup
'2C1c .a;b/; k'kL1.a;b/�1

ˆ
�

�T "\�".x
0; xd / '

0.xd / d.x0; xd /;

D sup
'2C1c .a;b/; k'kL1.a;b/�1

ˆ
�

�T "\�".x
0; xd / div. .x/'.xd /ed / d.x0; xd /;

where we write x D .x0; xd / with x0 2 Rd�1 and xd 2 R. Therefore,

jDf "j.a; b/ � sup
'2C1c .�IRd /; k'kL1.�/�1

ˆ
�

�T "\�" div.'/ dx D jD�T "\�" j.�/:

Then (4.6) follows from [8, (3.29), (3.62)].
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We set p WD 1C 3
2d.2d�3/

2 .1; 2/. (The choice becomes clear later.) Choose �" 2
."p=2; "p/ such that

H0
�
@�¹f " � �"º \ .a; b/

�
� 2"�p

ˆ "p

"p=2

H0.@�¹f " � sº \ .a; b// ds

� 2"�pjDf "j.a; b/; (4.7)

where the last step follows from the coarea formula for BV functions [8, Theorem 3.40].
We choose a < d1 < � � � < dm�1 < b such that @�¹f " � �"º \ .a; b/ D ¹dj ºm�1jD1 , where
m � 1 � 2"�pjDf "j.a; b/ by (4.7). We define a finite partition of T " \�" consisting of
the sets

QP "j D T
"
\�" \ ¹dj�1 < xd < dj º; j D 1; : : : ; m; (4.8)

where we let d0 D a and dm D b. In view of the definition in (4.5), we can estimate
the ‘upper’ and ‘lower’ boundary of QP "j by Hd�1..@� QP "j \�

"/ n @�T "/ � 2�" � 2"
p .

Therefore, since m � 1 � 2"�pjDf "j.a; b/ by (4.7), (4.6) yields

mX
jD1

Hd�1.@� QP "j / � 2m"
p
CHd�1.@�T " [ @�"/

� 5Hd�1.@�T " [ @�"/C 2"p: (4.9)

We repeat the above procedure for �" n T " in place of T " and obtain a finite par-
tition of �" n T " which we denote by ¹ QP "j º

n
jDmC1. Arguing as in (4.9) we obtainPn

jDmC1 Hd�1.@� QP "j / � 5H
d�1.@�T " [ @�"/C 2"p . We set QP "nC1 D .� n�

"/ \ T "

and QP "nC2 D � n .�" [ T "/. Since Hd�1.@�/ < 1, by (4.3), (3.10), and Proposi-
tion 4.1 (i) we conclude

nC2X
jD1

Hd�1.@� QP "j / � 10H
d�1.@�T " [ @�"/C 4"p CHd�1.@.� n�"//

C 2Hd�1.@�T " \ .� n�"// � C (4.10)

for a constant C > 0 independent of ". For later purposes, we note that each set QP "j is
contained either in T " or in � n T ".

Step 3: Limiting rotation, deformation, and partition. Extracting a subsequence (not rela-
beled), we may assume that

R" ! R 2 SO.d/;

i.e., we directly have (3.14). Applying Lemma 2.1, up to passing to a further subsequence,
we find y 2 Y .�/ (see (2.4)) such that (3.16) holds. By (4.2) we see that there exists
ˆ 2 BV.�I ¹A;Bº/ such that

ˆ" *� ˆ weakly� in BV.�I ¹A;Bº/

and hence almost everywhere in �. By (4.2), (3.14), and (3.16) we then get y 2 YR.�/.
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By (4.10) and the compactness theorem for Caccioppoli partitions (Theorem A.1) we
obtain a limiting partition QP WD ¹ QPj ºj such that QP "j ! QPj in measure for all indices j
(up to a subsequence). Note that the components ¹ QPj ºj are possibly not indecomposable.
Therefore, we let P D ¹Pj ºj be the partition consisting of the connected components
of ¹ QPj ºj . (This partition exists due to [7, Theorem 1]; see also Appendix A.) By the lower
semicontinuity of the Hausdorff measure and (4.10) we also deduceX

j

Hd�1.@�Pj / D
X
j

Hd�1.@� QPj / � C: (4.11)

We close this step of the proof by showing that P 2 P.�/. Clearly, by the definition
of P , it suffices to prove QP 2P.�/. To this end, it suffices to show that

� QPj
.x/ D ˙ed for Hd�1-a.e. x 2 @� QPj \�; (4.12)

where � QPj denotes the outer unit normal to QPj . Let �0 �� �. Fix i 2 ¹1; : : : ; d � 1º.
Since the function '.�/ D jh�; ei ij is BV-elliptic (see [8, Theorem 5.20, Example 5.23]),
lower semicontinuity results for sets of finite perimeter [6, Theorem 2.1] imply

ˆ
@� QPj\�

0

jh� QPj
; ei ij dHd�1

� lim inf
"!0

ˆ
@� QP "

j
\�0
jh� QP "

j
; ei ij dHd�1: (4.13)

For " sufficiently small we have�0 ��" (see (4.3)). Then the definition of QP "j (see (4.8))
implies

lim inf
"!0

ˆ
@� QP "

j
\�0
jh� QP "

j
; ei ij dHd�1

� lim inf
"!0

ˆ
@�T "\�

jh�T " ; ei ij dHd�1 (4.14)

since � QP "
j
.x/ D ˙ed for Hd�1-a.e. x 2 @� QP "j n @

�T ". In view of Proposition 4.1 (ii) and
(3.10), recalling the definition of ˛.d/ D 1=.2d/ in (3.3), we obtain by (4.13)–(4.14)

ˆ
@� QPj\�

0

jh� QPj
; ei ij dHd�1

D 0 for every i D 1; : : : ; d � 1:

Thus, (4.12) holds since �0 �� � was arbitrary. Therefore, QP 2 P.�/ and then also
P 2P.�/.

Step 4: Definition of the sequence of partitions and phase indicators. We now define the
partitions P " and the phase indicators M", and show (3.11), (3.13), (3.15), and (3.17). The
proof of (3.12) is deferred to Step 5 below. Let P " D ¹P "j ºj be the partition consisting of
the nonempty components of

¹ QP "k \ Pj W j; k 2 Nº: (4.15)

Since QP "
k
! QPk for all indices k and Pj � QPk for some k, we clearly see that (3.15) holds.

Additionally, property (3.11) follows from (4.10)–(4.11).
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Recall that each component of P " is contained in T " or � n T " (see the sentence
below (4.10)). We define the sequence M" D ¹M "

j ºj;" by M "
j D A for all j such that

P "j � T
", andM "

j D B otherwise. Then (3.13) follows from (4.2). This along with (3.16)
also implies X

j

R"M "
j �P "j

! ry strongly in L2loc.�IM
d�d /: (4.16)

Due to (3.11), we have
P
j Hd�1.@�P "j / � C; which yieldsˇ̌̌

D
�X
j

R"M "
j �P "j

�ˇ̌̌
.�/ � C:

This along with (4.16) and a BV compactness argument yields (3.17).

Step 5: Proof of (3.12). It remains to prove (3.12). Choose �0 �� � and let " be suf-
ficiently small such that �0 � �" (see (4.3)). We show (3.12) only for the components
of P " which are contained in T " \ �" since for components contained in �" n T " the
argument is the same. Denote by �d .P "j / the orthogonal projection of P "j onto the ed -
axis. In view of (4.7)–(4.8), (4.15), and the fact that P 2P.�/, we can decompose the
collection of components into the two sets

J"1 D
®
P "j � T

"
\�"W Hd�1.P "j \ ¹xd D tº/ � �" for a.e. t 2 �d .P "j /

¯
;

J"2 D
®
P "j � T

"
\�"W Hd�1.P "j \ ¹xd D tº/ > �" for a.e. t 2 �d .P "j /

¯
:

(4.17)

First, since �" � "p , get by Fubini’s theorem we clearlyX
P "
j
2J"
1

Ld .�" \ P "j / � .b � a/�" � C"
p; (4.18)

where C only depends on �. We now consider the components in J"2. We let

I "j D
®
t � �d .P

"
j /W H

d�1..�" n P "j / \ ¹xd D tº/ > �"
¯

for every j 2 J"2: (4.19)

Since �" � "p , we getX
P "
j
2J"
2

ˆ
�d .P

"
j
/nI"
j

Hd�1..�" n P "j / \ ¹xd D tº/ dt � .b � a/�" � C"p: (4.20)

On the other hand, for a.e. t 2 I "j we get by (4.4), applied for E D P "j \ ¹xd D tº, and
by (4.17), (4.19) that

�" � min
®
Hd�1.P "j \ ¹xd D tº/;H

d�1..�" n P "j / \ ¹xd D tº/
¯

� "�˛.d/
�
Hd�2.@�.P "j \ ¹xd D tº/ \�

"/
�d�1
d�2 :
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As �" � "p=2, we find 1=2 � .1=2/.d�2/=.d�1/ � "�.˛.d/Cp/.d�2/=.d�1/Hd�2.@�P "j \

¹xd D tº \�
"/. Integrating over I "j and summing over the components J"2, we get

X
P "
j
2J"
2

L1.I "j / � C"
�.˛.d/Cp/.d�2/

d�1

X
j

ˆ b

a

Hd�2.@�P "j \ ¹xd D tº \�
"/ dt:

We recall (4.15) and the fact that P 2P.�/. Moreover,
S
j @
� QP "j \�

" \ ¹xd D tº �

@�T " \ � \ ¹xd D tº for a.e. t 2 .a; b/, where Hd�1-a.e. x 2 @�T " is contained in
the boundary of at most two different components (see (4.8)). Then (3.10) and Proposi-
tion 4.1 (iii) yieldX

P "
j
2J"
2

L1.I "j / � C"
�.˛.d/Cp/.d�2/

d�1

ˆ 1
�1

Hd�2.@�T " \ ¹xd D tº \�/ dt

� C"�.˛.d/Cp/.d�2/=.d�1/"2�˛.d/;

where C > 0 depends on C0. Recalling pD 1C 3
2d.2d�3/

and ˛.d/D 1=.2d/, this yieldsP
P "
j
2J"
2

L1.I "j / � C"
p by an elementary computation. This along with (4.20) and the

fact that Hd�1.�" \ ¹xd D tº/ � .diam.�//d�1 for all t 2 .a; b/ yieldsX
P "
j
2J"
2

Ld .L�".P
"
j / n P

"
j / � .diam.�//d�1

X
P "
j
2J"
2

L1.I "j /

C

X
P "
j
2J"
2

ˆ
�d .P

"
j
/nI"
j

Hd�1..�" n P "j / \ ¹xd D tº/ dt � C"p; (4.21)

where the constant C depends only on � and C0, and L�".P "j / is defined in (3.9). By
combining (4.18) and (4.21) we get (3.12) since �" � �0 (for " small enough). This
concludes the proof.

Remark 4.3 (Geometry of �). (i) Condition H8 could be dropped at the expense of
more elaborate estimates. First, in (3.12), L�0.Pj / would have to be replaced by the
connected components of L�0.Pj / which intersect Pj . Accordingly, the isoperimetric
inequality (4.4), applied in Step 5 of the proof, would need to be applied separately in
each of the components of �" \ ¹xd D tº to get an estimate along the lines of (4.21).

(ii) The passage to a subdomain in (3.12)–(3.13) is not needed if � is a paraxial
cuboid: in this case, Theorem 3.2 can be replaced by an equivalent statement directly
on � [32, Theorem 3.1 and Remark 3.2]. Moreover, the isoperimetric inequality (4.4) in
Step 5 can be applied on the (identical) cuboids � \ ¹xd D tº of dimension d � 1.

Recall the definition of U .�/ in (3.8). The next step will be to identify limiting dis-
placement fields for subsets�0 �� �. Before that, we state an elementary local property
of partitions that we will use several times.
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Lemma 4.4 (Local property of partitions). LetK �� �. Then, for each P 2P.�/, the
set K only intersects a finite number of sets contained in P .

Proof. The result is a direct consequence of the compactness of K, and of the definition
of P.�/.

Proposition 4.5 (Rescaled displacement fields on subdomains). Consider the setting of
Proposition 4.2. Let �0 �� �, and denote by ¹Pj ºNjD1 the components of P which inter-
sect �0 .see Lemma 4.4/. Then there exist u 2 U .�0/ with Ju �

S
j @Pj and collections

¹t"j º
N
jD1 of constants for " > 0 such that the rescaled displacements u"W�0! Rd defined

by

u".x/ WD "�1
NX
jD1

.y".x/ � .R"M "
j x C t

"
j //�P "j

.x/

C "�1
X
j>N

.y".x/ �R"M "
j x/�P "j

.x/ (4.22)

for x 2 �0 satisfy . for a subsequence, not relabeled/

u" ! u in measure in �0; ru" * ru weakly in L2.�0IMd�d /: (4.23)

We note that the second summand in (4.22) is intended to be zero if ¹P "j ºj consists
only of N components.

Proof of Proposition 4.5. First, we recall that the components ¹Pj ºNjD1 are connected by
definition, that Hd�1.@Pj n @

�Pj /D 0, and that �Pj D˙ed for Hd�1-a.e. x 2 @Pj \�,
where the latter two properties follow from the fact that P 2P.�/. Possibly choosing
another set �0 �� �00 �� � we can assume that the sets Pj \�00, j D 1; : : : ; N , are
connected and have Lipschitz boundary. Clearly, it suffices to show the statement for �00

in place of �0. For simplicity, we still denote this set by �0.

Let .R";P ";M"/ be the triples identified in Proposition 4.2. By (3.13) we get


X
j

.ry" �R"M "
j /�P "j





L2.�0/

� C" (4.24)

for a constant C > 0 depending on �0.

Step 1: Poincaré estimate on each component. Since Pj \ �0 is connected with Lip-
schitz boundary, we can choose an increasing sequence of smooth connected setsKn ��
Pj \�

0 such that Ld ..Pj \�
0/ nKn/! 0 as n!1. The sets can be chosen such that

the functions

f
n;"
j .x/ WD "�1.y".x/ �R"M "

j x � t
n;"
j / for every x 2 Kn; (4.25)

for suitable tn;"j 2 Rd , satisfy a Poincaré estimate

kf
n;"
j kLp.Kn/ � Ckrf

n;"
j kLp.Kn/; (4.26)
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where the constant C depends on Pj , but is independent of " and n. By (3.15) and (3.12)
we get P "j \�

0! Pj \�
0 and L�0.P "j /! Pj \�

0 in measure as "! 0. The latter and
the fact that Kn �� �0 \ Pj show that Kn � L�0.P "j / for " small enough (depending
on n). Thus, by using again (3.12) and Ld ..P "j \�

0/4.Pj \�
0//! 0, we get

Ld .Kn n P
"
j / � Ld .Kn n L�0.P

"
j //CLd .L�0.P

"
j / n P

"
j /

D Ld .L�0.P
"
j / n P

"
j / � C"

p (4.27)

for " small enough depending on n, where p D p.d/ 2 .1; 2/ is fixed. Let L be a suffi-
ciently large constant (independent of "; n) such that

dist.F; SO.d/¹A;Bº/ � jF �R"M "
j j=2 for all F 2Md�d with jF �R"M "

j j � L:

Then krf n;"j kLp.Kn/ can be controlled by

krf
n;"
j kLp.P

"
j
\Kn/ C krf

n;"
j kLp..KnnP

"
j
/\¹jry"�R"M"

j
j�Lº/

C krf
n;"
j kLp..KnnP

"
j
/\¹jry"�R"M"

j
j>Lº/

�
1

"
kry" �R"M "

j kLp.P "j \�
0/ C

L

"
.Ld .Kn n P

"
j //

1=p

C
2

"
kdist.ry"; SO.d/¹A;Bº/kLp.¹jry"�R"M"

j
j>Lº/:

Using Hölder’s inequality for p < 2, (4.24), (4.27), as well as (3.1), (3.10) together with
H4 we obtain the uniform estimate krf n;"j kLp.Kn/ � C for C > 0 independent of n
and ". Then (4.26) yields

kf
n;"
j kW 1;p.Kn/

� C: (4.28)

We now show that the translations ¹tn;"j º" and thus the functions ¹f n;"j º" can actually be
chosen independently of n. Recall that Kn � K1 for all n 2 N. In view of (4.25) and
(4.28), we have

"�1jt
n;"
j � t

m;"
j jLd .K1/ � kf

";n
j kL1.Kn/ C kf

";m
j kL1.Km/ � C (4.29)

for all m; n 2 N, where the constant C is independent of n, m, and ". Thus, for every
" > 0 we find that ¹tn;"j ºn is a bounded sequence, and up to a subsequence (not relabeled)
there exists t"j such that

t
n;"
j ! t"j as n!1: (4.30)

The constants t"j are the ones from the statement of the proposition. By (4.29) we get
"�1jt

n;"
j � t"j j � C for a constant C > 0 independent of n and ". This along with (4.28)

implies that the functions

f "j .x/ WD "
�1.y".x/ �R"M "

j x � t
"
j / for x 2 P "j (4.31)
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satisfy, for all n 2 N and all " small enough (depending on n),

kf "j kW 1;p.Kn/
� C;

where the constant C > 0 is independent of " and n. Thus, by a compactness and a
diagonal argument there exists a function fj 2 W 1;p.Pj \ �

0IRd / such that (up to a
subsequence)

f "j * fj weakly in W 1;p.Pj \�
0
IRd /: (4.32)

Step 2: Definition of the limiting displacement field. Recall the functions fj identified in
(4.32) and the constants t"j from (4.30). We set

u WD

NX
jD1

fj�Pj

on �0 and define u" as in (4.22). Below we will show that indeed u 2 U .�0/ (see (3.8)),
but now we first confirm (4.23). In view of (4.31), we get u" D f "j on P "j \�

0. We claim
that, up to a further subsequence,

.i/ u" ! fj D u in measure on Pj \�0 for all j D 1; : : : ; N;

.ii/ ru" * ru weakly in L2.�0IMd�d /:
(4.33)

In fact, (4.32) along with (3.15) and u" D f "j on P "j \�
0 implies measure convergence

on Pj \�0. This yields (i). To see (ii), we use (4.22) and (4.24) to get

ru" D "�1
X
j

.ry" �R"M "
j /�P "j

* g

weakly in L2.�0IMd�d / for a suitable function g. Again by (4.32) we get g D rfj
on each Pj \ �0, and therefore g D ru a.e. on �0. This yields (ii). Clearly, (4.33)
implies (4.23).

It remains to check that u 2 U .�0/. Recall that only the components Pj , j D
1; : : : ; N , intersect �0. Since fj 2 W 1;p.Pj \ �

0IRd / for all j D 1; : : : ; N , we get
Ju �

SN
jD1 @Pj . Thus, we find Hd�1.Ju/ < 1 since P is a Caccioppoli partition.

More precisely, as P 2 P.�/, the jump set of u is contained in .d � 1/-dimensional
hyperplanes orthogonal to ed . It thus remains to show that u 2 SBV2.�0IRd /. First,
ru 2 L2.�0IMd�d / by (4.33) (ii). Since each Pj \�0 has Lipschitz boundary, we get
ujPj\�0 2 H

1.Pj \ �
0IRd /, and the trace of u on @Pj \ �0 exists. As the number

of sets Pj intersecting �0 is finite, we obtain u 2 SBV2.�0IRd / by applying [8, The-
orem 3.84].

We next show that the translations can be defined so that there exists a limiting
rescaled displacement field on the whole domain �.

Proposition 4.6 (Rescaled displacement fields). Consider the setting of Proposition 4.2.
Then there exist collections T " D ¹t"j ºj of constants for " > 0 and u 2 U .�/ with Ju �S
j @Pj such that the rescaled displacements u" defined in (3.19) satisfy (3.20)–(3.21).
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Proof. Consider a sequence ¹�nºn of open sets, compactly contained in �, satisfying
�n � �nC1 for every n 2 N, and such that Ld .� n�n/! 0 as n!1. We denote by
¹P "º" and P the partitions identified in Proposition 4.2. In view of Lemma 4.4, we can
reorder the partition P D ¹Pj ºj in a specific way and can choose integersN1 � N2 � � � �
such that ¹Pj º

Nn
jD1 are the components of P which intersect �n. For each n 2 N, the

translations given by Proposition 4.5 (with �n in place of �0) are denoted by ¹t";nj º
Nn
jD1.

The displacement fields on �n defined in (4.22) are denoted by u";n. We denote their
limits by un 2 U .�n/ and recall that Jun �

S
j @Pj . By a diagonal argument, we may

suppose that there exists a subsequence of " (not relabeled) such that (4.23) holds for all
n 2 N, i.e.,

u";n ! un in measure in �n; ru";n * run weakly in L2.�nIMd�d /: (4.34)

Now it is elementary to check that for each n 2 N

lim
"!0

"�1.t
";n
j � t

";nC1
j / exists and is finite for all 1 � j � Nn. (4.35)

Indeed, this follows from Ld .Pj \�n/ > 0 for all 1 � j � Nn, and the fact that

"�1.tnj � t
nC1
j /�P "

j
\�n D .u

";nC1
� u";n/�P "

j
\�n ! .unC1 � un/�Pj\�n

in measure (see (3.15) and (4.22)–(4.23), as well as (4.34)).

We define the collection T " D ¹t"j ºj of translations as follows: For each j , choose
n 2 N such that Nn�1 < j � Nn, and set t"j D t

";n
j , where we define N0 D 0 for conve-

nience. We define u"W�! Rd as in (3.19). By recalling the definition of u";n in (4.22),
we find that the restriction of u" on �n, for n 2 N, satisfies

u" D u";n C

NnX
jD1

"�1.t
";n
j � t"j /�P "j \�n

�

X
j>Nn

"�1t"j �P "j \�n
on �n:

We introduce the function vn 2 U .�n/ by

vn D un C

NnX
jD1

�
lim
"!0

"�1.t
";n
j � t"j /

�
�Pj\�n ; (4.36)

which is well defined by (4.35) and the fact that t"j D t
";m
j for the index 1 � m � n such

that Nm�1 < j � Nm. In view of (3.15), (4.34), and the fact that Pj \ �n D ; for all
j > Nn, we then get

u" ! vn in measure on �n; ru" * rvn weakly in L2.�nIMd�d /: (4.37)

This also shows that vn D vm on �n for all n � m. This observation allows us to define
the function uW�! Rd by u D vn on �n for all n 2 N. The fact that Jun �

S
j @Pj

along with (4.36) also yields Ju �
S
j @Pj . Clearly, we get u 2U .�/ since vn 2U .�n/

for all n 2N. Finally, by (4.37) and the fact that uD vn on�n we deduce that u" satisfies
(3.20)–(3.21). This concludes the proof.
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We conclude this section with the proof of Theorem 3.3. Given the above construc-
tions, it remains to show that the partitions and translations can be chosen in a specific
way such that also the selection principle (3.18) is satisfied. Although the realization of
this is very technical, the main idea is quite simple: whenever two components violate
(3.18), they are combined, and they are replaced by a single component in the partition.

Proof of Theorem 3.3. Let ¹y"º" �H 2.�IR2/ be a sequence of deformations satisfying
(3.10). Consider a sequence ¹�nºn of open sets compactly contained in �, satisfying
�n � �nC1 for every n 2 N, and such that Ld .� n�n/! 0. We will prove that, after
extracting a subsequence in " (not relabeled), for each n 2 N there exists a sequence of
quadruples .R";P ";n;M";n;T ";n/with P ";nD ¹P

";n
j ºj , M";nD ¹M

";n
j ºj , T ";nD ¹t

";n
j ºj

and limiting triples .y; un;P n/ 2 Y .�/ � U .�/ �P.�/ such that (3.11)–(3.17) and
(3.19)–(3.21) hold, and additionally we have

jt
";n
i � t

";n
j j

"
!1 for all i ¤ j with

´
P ni \�n ¤ ;, P

n
j \�n ¤ ;,

lim"!0M
";n
i D lim"!0M

";n
j ;

(4.38)

where ¹P nj ºj denote the components of the limiting partition P n. Note that the deforma-
tion y and the rotations R" can be chosen independently of n 2 N. Moreover, we will see
that the objects can be constructed such that for each n � m and each " > 0 we have

.i/ for all j there exists lj such that P ";mj � P
";n
lj
;

.ii/ for all j we have M ";n
lj
DM

";m
j with lj given in (i);

.iii/ if Ld .P
";m
j \�m/ > 0; then t";n

lj
D t

";m
j with lj given in (i);

.iv/ u";n D u";m on �m and ru";n D ru";m on �;

(4.39)

where u";n denote the rescaled displacement fields given in (3.19) for the quadruples
.R";P ";n;M";n;T ";n/. We defer the proof to Step 2 below and first show that this implies
Theorem 3.3 for a suitable diagonal sequence (Step 1).

Step 1: Extracting a diagonal sequence. First, we find by (3.20) on �n and �m, and by
(4.39) (iv), that for all n � m we have un D um on �m and run D rum on �. This
observation allows us to define the function uW�! Rd by u D un on �n for all n 2 N.
Clearly, u 2 U .�/ since un 2 U .�/ for all n 2 N. In particular, for all n 2 N,

u D un on �n; ru D run on �: (4.40)

As P ";n is a coarsening of P ";m for all n �m by (4.39) (i), we deduce that P n is a coars-
ening of Pm for all n�m by (3.15). This gives

P
j Hd�1.@P nj /�

P
j Hd�1.@P 1j / <1

for all n 2 N. By Theorem A.1 there exists a partition P D ¹Pj ºj such that P nj ! Pj
in measure for all j 2 N. Note that this convergence also implies P 2P.�/. This and
(3.15) for each m 2 N yield

lim
n!1

X
j

Ld .P nj 4Pj / D 0; lim
"!0

X
j

Ld .P
";m
j 4Pmj / D 0 for all m 2 N; (4.41)
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where 4 denotes symmetric difference; see Theorem A.1 below. Thus, by Attouch’s
diagonalization lemma [9, Lemma 1.15 and Corollary 1.16], we can choose a diagonal
sequence ¹n."/º" such that

P
";n."/
j ! Pj in measure as "! 0 for all indices j . (4.42)

We now define the triples P " DP ";n."/, M" DM";n."/, and T " D T ";n."/, and check that
(3.11)–(3.21) hold for the limiting triple .y; u;P /.

First, (3.11)–(3.12) follow directly from the corresponding properties of the parti-
tions P ";n. We observe that (4.39) (i, ii) yieldX

j

R"M
";n."/
j �

P
";n."/

j

D

X
j

R"M
";1
j �

P
";1
j

:

This implies (3.13), (3.14), (3.16), and (3.17) by using the corresponding properties for
the triple .R";P ";1;M";1/. Property (3.15) follows from (4.42).

Consider the rescaled displacement fields u";n."/ defined in (3.19). For each m 2 N
we have u";n."/ ! um D u in measure on �m by (4.39) (iv), (4.40), and (3.20) for m.
As m was arbitrary, we get (3.20). In a similar fashion, (3.21) follows also by taking into
account (4.39) (iv), (4.40), and (3.21) for each m.

It remains to check (3.18). To this end, we fix i ¤ j such that Ld .Pi /;L
d .Pj / > 0,

and lim"!0M
";n."/
i D lim"!0M

";n."/
j . In view of (4.41)–(4.42), we can fixm 2N (inde-

pendently of ") and "0 D "0.m/ > 0 such that for all 0 < " � "0 we have, for k D i; j ,

.i/ Ld .Pmk \�m/ > 0; Ld .P
";m
k
\�m/ > 0;

.ii/ Ld .P
";n."/

k
4P

";m
k
/ � 1

2
Ld .P

";m
k
/:

(4.43)

(To see (ii), we use

Ld .P
";n."/

k
4P

";m
k
/ � Ld .P

";n."/

k
4Pk/CLd .Pk4P

m
k /CLd .Pmk 4P

";m
k
/! 0

and Ld .P
";m
k
/ ! Ld .Pm

k
/ as " ! 0.) Possibly by passing to a smaller "0, we can

also suppose that n."/ � m for all " � "0. By (4.39) (i) for n D n."/ we find a com-
ponent P ";n."/

lk
which contains P ";m

k
up to an Ld -negligible set for k D i; j . By (4.43) (ii)

we necessarily have Ld .P
";n."/

k
\ P

";m
k
/ > 0. Thus, k D lk . This along with (4.43) (i)

and (4.39) (ii, iii) shows M ";n."/

k
D M

";m
k

and t
";n."/

k
D t

";m
k

for k D i; j . Then also
lim"!0M

";m
i D lim"!0M

";m
j and therefore, taking also (4.38), (4.43) (i) into account,

we finally get

lim
"!0

jt
";n."/
i � t

";n."/
j j

"
D lim
"!0

jt
";m
i � t

";m
j j

"
D1:

Step 2: Coarsening scheme. We inductively construct sequences of quadruples
.R";P ";n;M";n;T ";n/ and limiting triples .y; un;P n/ for n 2N such that (3.11)–(3.17),
(3.19)–(3.21), and (4.38)–(4.39) hold.
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We start with n D 1. We apply Proposition 4.6 to obtain rotations R" and triples
. OP "; OM"; OT "/, as well as a limiting triple .y; Ou; OP / such that (3.11)–(3.17) and (3.19)–
(3.21) hold. We write OP " D ¹ OP "j ºj , OM" D ¹ OM "

j ºj , and OT " D ¹Ot"j ºj . We modify the triples
to get sequences which also satisfy (4.38).

Coarsening scheme for nD 1. We construct P ";1, T ";1, and M";1, as well as the limiting
partition P 1 and the limiting displacement u1 by the following iterative scheme: Suppose
that two components OPi and OPj of OP with i ¤ j violate (4.38) on �1, i.e.,

lim inf
"!0

"�1jOt"i � Ot
"
j j <1; lim

"!0

OM "
i D lim

"!0

OM "
j ;

OPi \�1 ¤ ;; OPj \�1 ¤ ;:
(4.44)

First, by passing to a subsequence in " (not relabeled), we get OM "
i D

OM "
j for all ". Now,

we replace OPi and OPj in OP by P 1� WD OPi [ OPj . In a similar fashion, we replace OP "i and
OP "j in OP " by P ";1� WD OP "i [ OP

"
j for each " > 0. Accordingly, on the set P ";1� we introduce

the translation t";1� D Ot"i and the phase M ";1
� WD

OM "
i D

OM "
j for each " > 0. In view of

Lemma 4.4, only finitely many components of OP intersect �1. Thus, we can repeat this
construction at most a finite number of times until, for the resulting partition P 1 and
the triples .P ";1;M";1; T ";1/, each pair of components P 1i and P 1j satisfies (4.38). This
concludes the construction in the case nD 1. (The definition of the resulting displacement
field u1 will be indicated below.)

We check that (3.11)–(3.17), (3.19)–(3.21), and (4.38) are satisfied. First, (4.38)
clearly holds true by construction. To confirm the other properties, we assume for sim-
plicity that the above coarsening scheme was applied only once for two sets OPi and OPj
intersecting�1 since the general case follows by induction. First, (3.14) and (3.16) are not
affected by the modification, and therefore still hold. Since the function

P
j R

" OM "
j � OP "

j

remains unchanged by construction, also (3.13) and (3.17) are still satisfied. To see (3.11)
and (3.15), it suffices to recall that P ";1� D OP "i [ OP

"
j , which implies that P ";1� ! P 1� D

OPi [ OPj in measure. We now show (3.12) for�0���. As Ld . OPk \�1/ > 0 for kD i;j ,
for " small enough, (3.12) and (3.15) (for OP ") imply Ld .�0 \ OP "

k
/�Ld .L�0. OP

"
k
/ n OP "

k
/

for kD i; j . This also yields Ld .�0 \P
";1
� /�Ld .L�0.P

";1
� / nP

";1
� / for " small enough.

Therefore, since Ld .L�0.P
";1
� / n P

";1
� / �

P
kDi;j Ld .L�0. OP

"
k
/ n OP "

k
/, (3.12) holds as

well. We now finally introduce the limiting displacement field and check (3.20)–(3.21).
We observe

u";1 � Ou" D "�1.Ot"j � Ot
"
i /� OP "

j

;

where u";1 and Ou" are the corresponding displacement fields defined in (3.19) with respect
to the quadruples .R";P ";1;M";1; T ";1/ and .R"; OP "; OM"; OT "/, respectively. By (4.44)
we obtain "�1.Ot"j � Ot

"
i / ! t0 2 Rd , possibly passing to a subsequence (not relabeled).

This implies that u";1 converges in measure to

u1 WD OuC t0� OPj
2 U .�/ (4.45)

and gives (3.20). Finally, (3.21) follows from ru";1 D r Ou" and ru1 D r Ou.
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Now suppose that the quadruples .R";P ";n�1;M";n�1;T ";n�1/ and the limiting triple
.y; un�1;P n�1/ in step n � 1 have been constructed such that (3.11)–(3.17), (3.19)–
(3.21), and (4.38) hold, and (4.39) is satisfied up to step n� 1. We define the objects in step
n as follows: If (4.38) holds with respect to the set�n, we simply set .P ";n;M";n;T ";n/D

.P ";n�1;M";n�1; T ";n�1/, and observe that all properties are automatically satisfied.

If (4.38) is violated, the strategy is to apply the coarsening scheme described above to
modify the partitions and translations such that all properties, in particular (4.38)–(4.39),
are fulfilled.

Coarsening scheme for general n. If two components P n�1i and P n�1j violate (4.38)
(with respect to the set �n), we combine them into one component P n� WD P

n�1
i [ P n�1j

and similarly we define P ";n� WD P
";n�1
i [ P

";n�1
j for all " > 0. Moreover, we define the

phaseM ";n
� DM

";n�1
i DM

";n�1
j for all "> 0. Concerning the translation t";n� , we proceed

as follows: We observe that at most one of the two sets P n�1i and P n�1j intersects �n�1.
Indeed, it is not possible that both sets intersect �n�1 as (4.38) holds by construction
in step n � 1, and we have assumed that P n�1i and P n�1j violate (4.38) with respect to
�n � �n�1. Suppose that (at most) P n�1i intersects �n�1. We define t";n� WD t

";n�1
i . We

repeat this procedure (at most a finite number of times, cf. Lemma 4.4) until all pairs of
components satisfy (4.38).

Then, for the resulting quadruple, (4.38) is satisfied by construction. Exactly as before
in step n D 1, we can check that (3.11)–(3.17) and (3.19)–(3.21) hold. Finally, let us
confirm (4.39): (i) follows from the fact that in the procedure we have iteratively combined
two components. Similarly, (ii) is a consequence of the fact that only sets with the same
phase are combined. Finally, (iii) and (iv) follow from the definition of the translations in
the coarsening scheme and the fact that if two components are combined, at least one did
not intersect �n�1.

We perform this coarsening scheme for each n 2 N. Note that in each step we pass to
a further subsequence in " (not relabeled). Then (4.38)–(4.39) follow for each n 2 N for
a suitable diagonal sequence.

Remark 4.7 (Local properties of jump sets). For later purposes, we remark that each
K ��� intersects only a finite number of .d � 1/-dimensional hyperplanes orthogonal to
ed which intersect Ju. This can be seen as follows: The construction of the displacement
fields in the previous proof shows that Jun �

S
j
OPj for all n 2 N. This follows from

(4.45) and the fact that J Ou �
S
j
OPj ; see Proposition 4.6 for Ou and OPj in place of u

and Pj , respectively. Therefore, also Ju �
S
j
OPj by (4.40). The desired property now

follows from Lemma 4.4.

We close this section by mentioning that the definition and construction of the partition
in the previous proof is inspired by [37, Section 5] where in a different context partitions
with a property of type (3.18) are called coarsest partitions.
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5. Analysis of admissible limiting configurations

This section is devoted to the proofs of Propositions 3.6–3.8. We first show that limiting
deformations and partitions are uniquely identified, whereas limiting displacements may
differ by global infinitesimal rotations and piecewise translations.

Proof of Proposition 3.6. Let ¹y"º" be a sequence as in Theorem 3.3 and let .y1; u1;P 1/,
.y2; u2;P 2/ be two admissible triples. We start with the proof of (i). First, y1 D y2

follows directly from (3.16). In what follows, we thus simply denote the deformation
by y. Suppose for contradiction that the two partitions P 1 D ¹P 1j ºj and P 2 D ¹P 2j ºj
are different. Up to reordering we may assume that P 11 \ P

2
1 and P 12 \ P

2
1 have positive

Ld -measure.

Let .R";1;P ";1;M";1; T ";1/ and .R";2;P ";2;M";2; T ";2/ be sequences of quadruples
converging to the limiting triples .y; u1;P 1/ and .y; u2;P 2/, respectively, in the sense
of (3.11)–(3.21). By (3.14) we have lim"!0R

";1 D lim"!0R
";2 D R 2 SO.d/, where R

is such that y 2 YR.�/. By (3.15), (3.17), and the fact that P 11 \ P
2
1 and P 12 \ P

2
1 have

positive Ld -measure, we then obtain, for all " small enough,

M
";1
1 DM

";1
2 DM

";2
1 : (5.1)

Since the rescaled displacement fields u";1 and u";2, defined in (3.19) with respect to the
two different quadruples, converge in measure in � by (3.20), we observe that also

1

"

�X
j

.R";1M
";1
j x C t

";1
j /�

P
";1
j

�

X
j

.R";2M
";2
j x C t

";2
j /�

P
";2
j

�
converges in measure in �. In view of (3.15), (5.1), and the fact that P 11 \ P

2
1 and

P 12 \ P
2
1 have positive Ld -measure, we obtain

jR";1 �R";2j C jt
";1
1 � t

";2
1 j C jt

";1
2 � t

";2
1 j � C" (5.2)

uniformly in " for some C > 0. This is an elementary property for affine mappings. (See,
e.g., [41, Lemma 3.4]; the function  therein can be chosen as in [40, Remark 2.2].) By
the triangle inequality this in particular yields jt";11 � t

";1
2 j � C". This, however, contra-

dicts (3.18) in view of (5.1). This concludes the proof of (i).

In the following, we denote the unique partition by P D ¹Pj ºj to simplify notation.
We now show (ii). To this end, fix Pj with positive measure. In view of (3.15) and (3.17),
we find M ";1

j D M
";2
j for " small enough. As u";1 � u";2 converges in measure in � by

(3.20), we thus obtain jR";1 � R";2j � C" and jt";1j � t
";2
j j � Cj " for a constant C > 0

depending only on �, and some Cj > 0 depending on j but not on "; see (5.2) for a
similar argument. Using the formula (see [42, (3.20)])ˇ̌̌̌
.FRT /T C FRT

2
� Id

ˇ̌̌̌
D dist.F; SO.d//C O.jF �Rj2/ for F 2Md�d , R 2 SO.d/, (5.3)
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we obtain S" 2Md�d
skew with jS"j � C such that

R";2 �R";1 D .R";2.R";1/T � Id/R";1 D ."S" C O."2//R";1:

Thus, possibly passing to a subsequence (not relabeled), we find S 2 Md�d
skew and for

each j 2 N with Ld .Pj / > 0 a constant tj 2 Rd such that "�1.t";2j � t
";1
j / ! tj and

"�1.R";2 � R";1/! SR, where R 2 SO.d/ is such that y 2 YR.�/. In particular, note
that S is independent of the component Pj . By (3.17), (3.19)–(3.20), and the fact that
M
";1
j DM

";2
j for " small enough we get, for almost every x 2 Pj ,

u1.x/ � u2.x/ D lim
"!0

.u";1.x/ � u";2.x// D lim
"!0

1

"
..R";2 �R";1/M

";1
j x C t

";2
j � t

";1
j /

D Sry.x/ x C tj :

Recalling the definition in (3.23) we obtain (ii).

We finally show (iii). To this end, fix QT 2 T .y;P /, say QT .x/ D
P
j
Qtj�Pj .x/ C

QSry.x/x for x 2 �. We have to show that .y; u1 C QT ;P / is an admissible triple. Recall
that the quadruples .R";1;P ";1;M";1;T ";1/ converge to .y;u1;P / in the sense of (3.11)–
(3.21).

Let NP " D P ";1, NM" D M";1 and define NT " D ¹Nt"j ºj by Nt"j D t
";1
j � "Qtj for all j .

Moreover, let NR" 2 SO.d/ be such that

j NR" � .Id � " QS/R";1j D dist..Id � " QS/R";1; SO.d//;

which by (5.3) (for F D .Id � " QS/R";1 and R D R";1) implies

NR" D .Id � " QS/R";1 C O."2/: (5.4)

We now see that . NR"; NP "; NM"; NT "/ converges to .y; u1 C QT ;P / in the sense of (3.11)–
(3.21). Indeed, as j NR" � R";1j � C", the properties (3.11)–(3.17) are satisfied. Property
(3.18) follows from the corresponding property for T ";1 and the definition of NT ". Define
Nu" as in (3.19). To confirm (3.20), we calculate for almost every x 2 Pj , using (3.17) and
(5.4),

lim
"!0

. Nu".x/ � u";1.x// D lim
"!0

1

"
..R";1 � NR"/M

";1
j x C t

";1
j �

Nt"j /

D lim
"!0

1

"
.R";1 � NR"/M

";1
j x C Qtj D QSry.x/x C Qtj :

Using (3.20) for u1, we find Nu" ! u1 C QT in measure on the bounded set �. This yields
(3.20). Finally, (3.21) follows from a similar computation.

We proceed by characterizing the jump set of the gradients of limiting deformations.

Proof of Proposition 3.7. As y 2 YR.�/, we recall that @¹x 2 �W ry.x/ 2 RAº consists
of subsets of hyperplanes orthogonal to ed (see below Lemma 2.1). Now, assume for
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contradiction that Jry 6�
S
j @Pj \ �. Then, by P 2 P.�/ and Lemma 4.4, we find

a stripe D WD ¹t0 � � < xd < t0 C �º \ �
0, with �0 �� �, t0 2 R, and � > 0 small,

such that D � Pj for some j 2 N and (up to reflection) D \ ¹xd > t0º � ¹ry D RAº
and D \ ¹xd < t0º � ¹ry D RBº. In view of (3.14)–(3.15), however, this contradicts
(3.17). To see that the inclusion might be strict, we refer to case (2) in Example 3.4 with
l D 1=2.

We conclude this section with a characterization of the jump heights of limiting dis-
placements.

Proof of Proposition 3.8. We first observe that it suffices to show that, if �0 �� �, then
the result holds for every x 2�0. Consider a (subset of a) hyperplane S WD ¹xd D t0º \�0

with Hd�1.S \ Ju/ > 0. We distinguish two situations:

(a) Hd�1
�
S \

[
j

@Pj

�
D 0 and (b) Hd�1

�
S \

[
j

@Pj

�
> 0:

To simplify notation, we set without restriction t0 D 0. We start with case (a). Choose
another set �00 with �0 �� �00 �� �. As P 2P.�/, by Lemma 4.4 and Remark 4.7
we find � > 0 small enough such that the cylindrical set D WD ! � .��; �/, for some
! � Rd�1, satisfies D \ ¹xd D 0º D S , is contained in a single component Pj , is con-
tained in �00, and satisfies

Ju \D � S D ¹xd D 0º \�
0: (5.5)

By Proposition 3.7, it is not restrictive to concentrate on the case ry D RA on D � Pj ,
which corresponds to proving properties (i) and (ii) of the statement. Analogously, prop-
erty (iii) may be derived after some modifications in the notation.

Step 1: case (a), property (ii). Let .R";P ";M"; T "/ be sequences of quadruples con-
verging to .y; u;P / in the sense of (3.11)–(3.21), and define u" as in (3.19). Assume also
that J" is the (at most countable) set of indices for the partition P ". We denote by J"1 the
indices with Ld .�00 \ P "j / � Ld .L�00.P

"
j / n P

"
j /, and we let J"2 D J" n J"1. By (3.12),

(3.15), (3.20), (3.21), Fubini’s theorem, and Fatou’s lemma we find that for Hd�1-a.e.
x0 2 ! there exists a sequence ¹"kºk � .0;1/ with "k ! 0 such that for a.e. 0 < �0 < �
we have

.i/ .x0;��0/; .x0; �0/ 2 P "kj for all k large enough;

u"k .x0;˙�0/! u.x0;˙�0/ as k !1;

.ii/
X
j2J"

1

L1.P
"k
j \ .¹x

0
º � .��0; �0///

C

X
j2J"

2

L1
�
.L�00.P

"k
j / n P

"k
j / \ .¹x0º � .��0; �0//

�
� NC.x0/"

p

k
;

.iii/
ˆ �0

��0
jru"k .x0; t /j2 dt � NC.x0/;

(5.6)
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where NC.x0/ > 0 depends on�00 and x0, but is independent of �0 and ¹"kºk . We point out
that in general the sequence ¹"kºk depends on x0. For later purposes, however, we note
that, for a.e. pair of points x01; x

0
2 2 !, we can choose a single sequence ¹"kºk such that

(5.6) holds.

Fix x0 2 ! and 0 < �0 < � such that (5.6) is satisfied. For notational simplicity, we
drop the subscript k of the corresponding sequence ¹"kºk and we omit the dependence
on x0. Define

B".x0I �0/ WD
°
t 2 .��0; �0/W

X
j

M "
j �P "j

.x0; t / D B
±
: (5.7)

By the fundamental theorem of calculus, in view of the definition of u" in (3.19), we get

y".x0; �0/ � y".x0;��0/ D

ˆ �0

��0
@dy

".x0; t / dt

D "

ˆ �0

��0
@du

".x0; t / dt CL1.B".x0I �0//R"Bed C
�
2�0 �L1.B".x0I �0//

�
R"Aed :

Thus, by (5.6) (iii) and Hölder’s inequality we find

"�1jy".x0; �0/ � y".x0;��0/ � 2�0R"Aed �L1.B".x0I �0//R".B � A/ed j

� .2 NC.x0/�0/1=2: (5.8)

Since ry D RA on D � Pj , we get M "
j D A for " sufficiently small by (3.17). Thus, by

(3.19) and (5.6) (i), we also have

"�1.y".x0; �0/ � y".x0;��0/ � 2�0R"Aed / D u
".x0; �0/ � u".x0;��0/

for every " sufficiently small. Recall the definition of � in H3. By (3.14), (5.6) (i), and
(5.8), up to passing to a further subsequence (depending on �0), we find that `.x0I �0/ WD
lim"!0 "

�1L1.B".x0I �0// � 0 exists, is finite, and satisfies

ju.x0; �0/ � u.x0;��0/ � �`.x0I �0/Red j � .2 NC.x
0/�0/1=2: (5.9)

Here, we have used the fact that NC.x0/ is independent of ". On the other hand, the funda-
mental theorem of calculus for the limiting displacement together with (5.5) yields

ju.x0; �0/ � u.x0;��0/ � Œu�.x0; 0/j �

ˆ �0

��0
j@du.x

0; t /j dt � .2 NC.x0/�0/1=2; (5.10)

where the last inequality follows by (5.6) (iii), Hölder’s inequality, and a lower semicon-
tinuity argument. By combining (5.9) and (5.10) we deduce

jŒu�.x0; 0/ � � `.x0I �0/Red j � 2.2 NC.x
0/�0/1=2: (5.11)

Property (ii) in case (a) now follows by recalling that `.x0I �0/ � 0, by the fact that NC.x0/
may depend on x0 but is independent of �0, and by considering a sequence �0 ! 0 such
that (5.6) holds. (We briefly note that property (iii) corresponds to ry D RB onD � Pj .
This case can be treated along similar lines, by interchanging the roles of A and B .)
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Step 2: case (a), property (i). We now prove property (i) by contradiction, where without
restriction we treat the casery DRA onD �Pj . If the statement were wrong, we would
find x01; x

0
2 2 ! and 0 < �0 < � such that for each x0i , i D 1; 2, (5.6) holds (with x0i in place

of x0, for a single sequence ¹"kºk) and such that

jŒu�.x01; 0/ � Œu�.x
0
2; 0/j � 5.2

NC�0/1=2; (5.12)

where we set NC D maxiD1;2 NC.x0i /. We again drop the index k of the sequence ¹"kºk .
Define B".x0i I �

0/ as in (5.7) for i D 1; 2. Repeating the reasoning in Step 1 (see in par-
ticular (5.11)), we find jŒu�.x0i ; 0/� � `.x

0
i I�
0/Red j � 2.2 NC�

0/1=2 for i D 1; 2, where the
limits `.x0i I�

0/ WD lim"!0 "
�1L1.B".x0i I�

0// can again be assumed to exist after passage
to a subsequence. By the triangle inequality and (5.12), we find �j`.x01I�

0/� `.x02I�
0/j �

.2 NC�0/1=2. This implies

inf
">0

"�1jL1.B".x01I �
0// �L1.B".x02I �

0//j > 0:

In view of the definition (5.7), this contradicts (5.6) (ii) since p > 1. This concludes the
proof of (i) and of case (a).

Step 3: case (b), property (i). To complete the proof of the proposition, it remains to
show assertion (i) in case (b). (Note that assertions (ii) and (iii) are trivial in this case.)
In this situation, possibly passing to a smaller �, by Lemma 4.4 we find that the set D D
! � .��; �/ considered in case (a) (see before (5.5)) only intersects two components Pj1
andPj2 , withD \Pj1 DD \ ¹xd <0º andD \Pj2 DD \ ¹xd >0º. In a similar fashion
to (5.6), in view of (3.12), (3.15), (3.20), and (3.21), Fatou’s lemma implies that for Hd�1-
a.e. x0 2 ! there exists an infinitesimal sequence ¹"kºk such that for a.e. 0 < �0 < �,

.x0;��0/ 2 P
"k
j1
; .x0; �0/ 2 P

"k
j2

for all k large enough;

u"k .x0;˙�0/! u.x0;˙�0/ as k !1;
(5.13)

and properties (ii) and (iii) of (5.6) are satisfied. Given x0 2 ! and 0 < �0 < �, arguing
exactly as in the proof of (5.8) in case (a), we find (we again drop the index k and the
dependence on x0 in the sequel)

"�1jy".x0; �0/ � y".x0;��0/ � 2�0R"Aed �L1.B".x0I �0//R".B � A/ed j

� .2 NC.x0/�0/1=2;

where B".x0I �0/ is defined in (5.7). By (3.17), for " sufficiently small, we may assume
that M "

j DMj for j D j1; j2. Thus, in view of (3.19) and (5.13), we get

"�1
�
y".x0; �0/ � y".x0;��0/ � �0R".Mj1 CMj2/ed

�
� "�1.t"j2 � t

"
j1
/

D u".x0; �0/ � u".x0;��0/:

This along with the previous estimate entails

ju".x0; �0/ � u".x0;��0/ � v".x
0
I �0/j � .2 NC.x0/�0/1=2; (5.14)
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where for brevity we have set

v".x
0
I �0/ WD "�1L1.B".x0I �0//R".B � A/ed

C "�1�0R".2A � .Mj1 CMj2//ed � "
�1.t"j2 � t

"
j1
/: (5.15)

Then (5.13) and (5.14) show that there exists a constant vector v.x0I �0/ 2 Rd depending
on �0 and x0 such that, up to a subsequence, v".x0I �0/! v.x0I �0/. By using (5.5) and
(5.6) (iii), we find that (5.10) also holds in the present situation. Then, similar to the proof
of (5.11) in case (a), we obtain, by (5.13) and (5.14) ,

jŒu�.x0; 0/ � v.x0I �0/j � 2.2 NC.x0/�0/1=2: (5.16)

The proof of property (i) is now obtained by contradiction by following the lines of the
proof in case (a): Suppose that there were x01; x

0
2 2 ! and 0 < �0 < � such that for each x0i ,

i D 1; 2, (5.13) and (5.6) (ii, iii) hold (with x0i in place of x0/, and the two points are
such that jŒu�.x01; 0/ � Œu�.x

0
2; 0/j � 5.2

NC�0/1=2, where as before NC WD maxiD1;2 NC.x0i /.
By (5.16) this yields jv.x01I �

0/ � v.x02I �
0/j � .2 NC�0/1=2. In view of (5.15), this however

contradicts (5.6) (ii), concluding the proof.

6. Derivation of the effective linearized energy

This section is devoted to the proof of our �-convergence result for the sequence of ener-
gies E" D E"; N�";d introduced in (3.1) (with N�";d from (3.3)) and the limiting energy EA

0

defined in (3.24). In Sections 6.1 and 6.2 we prove Theorems 3.14 and 3.15, respec-
tively. A key ingredient for the liminf inequality is a characterization of the double-profile
energy KMdp (see (3.27)), in particular its connection to the optimal-profile counterpart K
(see (3.5)). This result is the subject of Proposition 6.2 and is proven in Section 6.3. The
proof of the limsup inequality is performed under the additional assumption that

KMdp D 2K for M 2 ¹A;Bº; (6.1)

and essentially relies on Propositions 6.4 and 6.5. The latter provide constructions of local
recovery sequences around interfaces performing a single and a double phase transition,
respectively, and coinciding with isometries far from the interfaces. Their proofs are con-
tained in Section 6.4. Finally, in Section 6.5 we show that, under the additional assumption
in (3.28), condition (6.1) can be verified. This hinges on the property that in this case opti-
mal profiles for single phase transitions are one-dimensional; see Lemma 6.16.

6.1. The liminf inequality

In this subsection we show that the functional EA
0 is a lower bound for the asymp-

totic behavior of the energy functionals E". As a preparation, we introduce the notion
of optimal-profile and double-profile energy functions, and we state their main properties.
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Let ! � Rd�1 be open and bounded, and let h > 0. For brevity, we use the following
notation for cylindrical sets:

D!;h WD ! � .�h; h/: (6.2)
We define the optimal-profile energy function

F .!I h/ D inf
°

lim inf
"!0

E".y
";D!;h/W lim

"!0
ky" � yC0 kL1.D!;h/ D 0

±
(6.3)

for every ! � Rd�1 and h > 0, where yC0 was defined below (2.5). As mentioned there,
due to the invariance of the energy functionals E" under the operation Ty.x/ D �y.�x/,
the optimal-profile energy is independent of the direction in which the transition between
the two phases A and B occurs, i.e., in (6.3) we can replace yC0 by the continuous func-
tion y�0 2H

1
loc.R

d IRd / with y�0 .0/D 0 and ry�0 D B�¹xd>0º CA�¹xd<0º. We refer to
[27, Lemma 3.2] for details. We start with the property that the optimal-profile energy is
independent of h and depends on ! only in terms of Hd�1.!/. The following character-
ization has been proved in [32, Proposition 4.6].

Proposition 6.1 (Optimal-profile energy function). For all h > 0 and all open, bounded
sets ! � Rd�1 with Hd�1.@!/ D 0 we have F .!I h/ D KHd�1.!/, where K is the
constant from (3.5).

In a similar fashion, we investigate properties of the double-profile energy given
in (3.27). Recall Wd in (3.25). We define the set of functions jumping on the interface
by

Udp.D!;h/ WD ¹u 2 SBV2loc.D!;hIR
d /W Hd�1.Ju/ > 0; Ju � ! � ¹0ºº: (6.4)

Then, for M 2 ¹A;Bº, we define the double-profile energy function

F M
dp .!I h/ D inf

u2Udp.D!;h/
inf

¹w"º"2Wd

inf
²

lim inf
"!0

E".y
";D!;h/W

y" �Mx

w"
! u in measure in D!;h as "! 0

³
(6.5)

for every ! �Rd�1 and h > 0. The double-profile energy can be characterized as follows.

Proposition 6.2 (Double-profile energy function). For all h > 0, all open, bounded sets
! � Rd�1 with Hd�1.@!/ D 0, and for M 2 ¹A;Bº,

KMdp Hd�1.!/ � F M
dp .!; h/ � 2KHd�1.!/; (6.6)

where K and KMdp are defined in (3.5) and (3.27), respectively.

Note that the result in particular implies Proposition 3.16. Moreover, in the case
2K D KMdp , equality holds in (6.6). (We refer to Section 6.5 for a setting in which this
condition is fulfilled.) We defer the proof of Proposition 6.2 to Section 6.3 below. At this
stage, we only mention that it is achieved in two steps: We first show that F M

dp .!; h/

is independent of h and depends on ! only in terms of Hd�1.!/; see Proposition 6.6.
Then, in a second step we address the connection between F M

dp .Q
0; 1/,KMdp , and 2K; see

Proposition 6.7. We now proceed with the proof of the liminf inequality.
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Proof of Theorem 3.14. Let .y; u;P / 2A (see Definition 3.9), and let y"! .y; u;P / in
the sense of Definition 3.5, i.e., there are sequences ¹R"º", ¹P "º", ¹M"º", and ¹T "º" such
that (3.11)–(3.21) hold. Suppose that y 2 YR.�/ for R 2 SO.d/ (see (2.4)). To simplify
the exposition, we suppose that

ffl
�
y" dx D 0, i.e., by (3.16) we get

y" ! y strongly in H 1.�IRd /: (6.7)

By Propositions 3.6 (iii) and 3.8 (i), and Remark 3.13, possibly passing to another dis-
placement field being admissible for the sequence ¹y"º", we may without restriction
assume that [

j

@Pj \� � Ju: (6.8)

As � has Lipschitz boundary, by the definition of the set A in Definition 3.9 and by
Proposition 3.8 (i) there exist sequences ¹!yi ºi , ¹!

u
i ºi of Lipschitz domains in Rd�1 and

sequences ¹˛yi ºi , ¹˛
u
i ºi of real numbers such that

Jry D
[
i2N

!
y
i � ¹˛

y
i º and Ju n Jry D

[
i2N

!ui � ¹˛
u
i º: (6.9)

Let ı > 0. We can find Iy ; Iu 2 N such that

Hd�1.Jry/ � ı �

IyX
iD1

Hd�1.!
y
i � ¹˛

y
i º/;

Hd�1.Ju n Jry/ � ı �

IuX
iD1

Hd�1.!ui � ¹˛
u
i º/:

(6.10)

Moreover, we choose h > 0 such that the cylindrical sets (see (6.2)) ˛yi ed CD!yi ;h, i D
1; : : : ; Iy , and ˛ui ed CD!ui ;h, i D 1; : : : ; Iu, are pairwise disjoint, and do not intersect
the interfaces ¹!yi � ¹˛

y
i ººi>Iy and ¹!ui � ¹˛

u
i ººi>Iu . The latter is possible due to Jry �S

j @Pj \ � (see definition of A), Lemma 4.4, and Remark 4.7, which imply that the
interfaces ¹!yi � ¹˛

y
i ººi>Iy and ¹!ui � ¹˛

u
i ººi>Iu can only accumulate at @�; see [27,

proof of Proposition 3.1] for details, and the lower part of Figure 1 for an illustration.

By possibly passing to a smaller h > 0, we can choose Q!yi �� !
y
i and Q!ui �� !

u
i

with Lipschitz boundary such that

Hd�1.!
y
i / � Hd�1. Q!

y
i /C ı=Iy for i D 1; : : : ; Iy ;

Hd�1.!ui / � Hd�1. Q!ui /C ı=Iu for i D 1; : : : ; Iu;
(6.11)

and such that

D
y
i WD ˛

y
i ed CD Q!yi ;h

�� � for i D 1; : : : ; Iy ;

Du
i WD ˛

u
i ed CD Q!ui ;h

�� � for i D 1; : : : ; IuI

see Figure 5 below.
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D
y
3

Du2

D
y
2

Du1

D
y
1

Fig. 5. A visualization of the different interfaces and sets under (6.8). The phase regions associ-
ated to A and B are colored blue and orange, respectively. The cylindrical sets ¹Dyi ºiD1;:::;Iy and
¹Dui ºiD1;:::;Iu are drawn in green. The corresponding interfaces in Jry and Ju are highlighted
with thick red and dashed black lines, respectively.

Moreover, it is also not restrictive to assume that

IyX
iD1

Ld .D
y
i /C

IuX
iD1

Ld .Du
i / � ı: (6.12)

We define

�ı WD ¹x 2 �W dist.x; @�/ > ıº n
� Iy[
iD1

D
y
i [

Iu[
iD1

Du
i

�
: (6.13)

The main steps of the proof will consist in estimating the surface energies by

.i/ lim inf
"!0

E"

�
y";

Iy[
iD1

D
y
i

�
� K.Hd�1.Jry/ � 2ı/;

.ii/ lim inf
"!0

E"

�
y";

Iu[
iD1

Du
i

�
� 2K.Hd�1.Ju n Jry/ � 2ı/;

(6.14)

and the elastic energy by

lim inf
"!0

E".y
"; �ı/ �

ˆ
�ı

Qlin.ry;ru/ dx; (6.15)

where the quadratic form Qlin is defined in (2.11). Once these estimates have been settled,
in view of (3.24), we indeed obtain lim inf"!0 E".y

";�/� EA
0 .y;u;P / by letting ı! 0,

by taking (6.8) as well as (6.12)–(6.13) into account, and by using monotone convergence.
Let us now prove (6.14) and (6.15).
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Step 1: Proof of (6.14) (i). By (6.7), y 2 YR.�/, (6.9), and the fact that the sets ¹Dy
i ºi

are pairwise disjoint and contain only one interface, we get, for each i D 1; : : : ; Iy ,

R�1y".� C ˛
y
i ed /! yC0 or R�1y".� C ˛

y
i ed /! y�0 in L1.D Q!y

i
;hIR

d /:

Therefore, by H2, (6.3), and the comment thereafter,

lim inf
"!0

E"

�
y";

Iy[
iD1

D
y
i

�
�

IyX
iD1

lim inf
"!0

E".R
�1y".� C ˛

y
i ed /;D Q!yi ;h

/ �

IyX
iD1

F . Q!
y
i I h/:

Then, by Proposition 6.1 and (6.10)–(6.11) we get

lim inf
"!0

E"

�
y";

Iy[
iD1

D
y
i

�
� K

IyX
iD1

Hd�1. Q!
y
i / � K.H

d�1.Jry/ � 2ı/:

This shows (6.14) (i).

Step 2: Proof of (6.14) (ii). By (6.9) and the fact that the cylindrical sets are chosen to
be pairwise disjoint and to contain only one interface we know that ry is constant on
each Du

i , i D 1; : : : ; Iu. We choose Mi 2 ¹A;Bº such that ry D RMi on Du
i . We will

distinguish two cases, indicated by the index sets

I1 WD
°
i D 1; : : : ; IuW .!

u
i � ¹˛

u
i º/ \

[
j

@Pj \� D ;
±
; I2 WD ¹1; : : : ; Iuº n I1:

(6.16)

Step 2(a): i 2 I1. In view of (6.9), (6.16), and the fact that the cylindrical sets are pairwise
disjoint and contain only one interface, we getDu

i �Pk for some index k. Then by (3.15),
(3.17), (3.19), and (3.20) we get, as "! 0,

"�1.y" �R"Mix � t
"
k/! u in measure in Du

i : (6.17)

As the cylindrical sets are pairwise disjoint and contain only one interface, we find that
u.� C ˛ui ed / 2 Udp.D Q!u

i
;h/ (recall (6.4)). We define the function

Ny".x/ WD .R"/T y".x C ˛ui ed / � .R
"/T t"k �Mi˛

u
i ed

for x 2 D Q!u
i
;h, and we note by (3.14) and (6.17) that "�1. Ny" �Mix/! Nu in measure

in D Q!u
i
;h, where Nu WD RT u.� C ˛ui ed / 2 Udp.D Q!u

i
;h/. Then the sequences ¹ Ny"º" and

¹w"º" 2Wd defined by w" WD " for all " are admissible in (6.5). Thus, by the translational
and rotational invariance of the energy we get

lim inf
"!0

E".y
";Du

i / D lim inf
"!0

E". Ny
";D Q!u

i
;h/ � F

Mi
dp . Q!ui I h/: (6.18)

Step 2(b): i 2 I2. In this case, by (6.9) and the fact that the cylindrical sets are pairwise
disjoint and contain only one interface,Du

i intersects two components Pk and Pl , namely
Q!ui � .˛

u
i � h; ˛

u
i / � Pk and Q!ui � .˛

u
i ; ˛

u
i C h/ � Pl . As before, we have ry D RMi
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on Du
i . Let w" WD jt"k � t

"
l
j, where t"

k
; t"
l

are the elements from the translations T " corre-
sponding to the sets P "

k
and P "

l
. By (3.15), (3.17), (3.19), and (3.20) we get, as "! 0,

"�1.y" �R"Mix � t
"
j /! u in measure in Du

i \ Pj for j 2 ¹k; lº: (6.19)

By (3.18) we findw"="!1. Moreover, for a.e. xk 2Du
i \Pk and a.e. xl 2Du

i \Pl , by
multiplying (6.19) with " and using (6.7) we get lim sup"!0 jt

"
k
� t"

l
j � jy.xk/� y.xl /j C

jMi j jxk � xl j. This implies that lim"!0 w" D lim"!0 jt
"
k
� t"

l
j D 0 as y is continuous.

Thus, ¹w"º" 2Wd (see (3.25)). By possibly passing to a subsequence (not relabeled), we
may suppose that .t"

l
� t"

k
/=w" ! t0 2 Rd . We check that

y" � .R"Mix C t
"
k
/

w"
! t0�¹xd�˛ui º

in measure in Du
i . (6.20)

In fact, by (6.19) and "=w" ! 0, we first get

w�1" .y" �R"Mix � t
"
k/D ."=w"/"

�1.y" �R"Mix � t
"
k/! 0 in measure in Du

i \ Pk ;

and by again using (6.19), "=w" ! 0, as well as .t"
l
� t"

k
/=w" ! t0 we find

w�1" .y" �R"Mix � t
"
k/ D ."=w"/ "

�1.y" �R"Mix � t
"
l /C w

�1
" .t"l � t

"
k/! t0

in measure in Du
i \ Pl . Now, by (6.20) and by arguing along the lines of (6.17)–(6.18)

we can define a sequence ¹ Ny"º" via rotation and shifting such that ¹ Ny"º" and ¹w"º" 2Wd

are admissible in (6.5). Then, we deduce

lim inf
"!0

E".y
";Du

i / � F
Mi

dp . Q!ui I h/: (6.21)

We now conclude the proof of (6.14) (ii) as follows: Combining (6.18), (6.21), and Propo-
sition 6.2 we get

lim inf
"!0

E"

�
y";

Iu[
iD1

Du
i

�
�

IuX
iD1

F
Mi

dp . Q!ui I h/ � 2K

IuX
iD1

Hd�1. Q!ui /:

Then (6.14) (ii) follows from (6.10)–(6.11).

Step 3: Proof of (6.15). We start by recalling the definition of u" in (3.19) and by noting
that (3.21) implies

ˆ
�ı

jru"j2 dx � Cı for all " > 0; (6.22)

where Cı > 0 depends on the set �ı defined in (6.13), and thus on ı. We now define two
small exceptional sets: first, we let ˛ 2 .0; 1/, and we define the set of large linearized
strains by

�"strain WD ¹x 2 �ı W jru
".x/j � "�˛º: (6.23)



Two-well linearization for solid-solid phase transitions 673

By Chebyshev’s inequality and (6.22) we estimate

Ld .�"strain/ � "
2˛

ˆ
�ı

jru"j2 dx � Cı"2˛: (6.24)

Moreover, by (3.17) and by the continuous embedding of BV.�I Md�d / into
L1.�IMd�d / we find a sequence ¹ı"º" � .0;1/ such that ı" ! 0 and

lim
"!0

1

ı"

ˆ
�

ˇ̌̌X
j

.R"M "
j /�P "j

� ry
ˇ̌̌
dx D 0: (6.25)

Then, we define the set

�"phase WD

°
x 2 �ı W

ˇ̌̌X
j

.R"M "
j /�P "j

.x/ � ry.x/
ˇ̌̌
� ı"

±
(6.26)

of points where the phases along the sequence differ by at least ı" from the phases in the
limit. Clearly, (6.25) entails

lim
"!0

Ld .�"phase/ � lim
"!0

1

ı"

ˆ
�

ˇ̌̌X
j

.R"M "
j /�P "j

� ry
ˇ̌̌
dx D 0: (6.27)

By combining (6.24) and (6.27) we find

lim
"!0

Ld .�ı n�
"
good/ D 0; where �"good WD �ı n .�

"
strain [�

"
phase/: (6.28)

By (3.1) and the definition in (3.19) we get

E".y
"; �ı/ �

1

"2

ˆ
�ı

W.ry"/ dx �
1

"2

X
j

ˆ
�"good\P

"
j

W.R"M "
j C "ru

".x// dx:

(6.29)

By assumptions H2, H3, and H5 we can perform a Taylor expansion and write

W.RM C F / D 1
2
D2W.RM/F W F C !W .F /

for all F 2Md�d with jF j < ıW , where !W WMd�d ! R satisfies

lim
�!0C

�W .�/ D 0; where �W .�/ WD sup ¹!W .F /=jF j2W jF j � �º: (6.30)

This expansion along with (6.23), (6.29), and the fact that �"good \�
"
strain D ; yields, for

" small enough,

E".y
"; �ı/ �

X
j

ˆ
�"good\P

"
j

�
1

2
D2W.R"M "

j /ru
"
W ru" C

1

"2
!W ."ru

"/

�
dx

D

X
j

ˆ
�"good\P

"
j

�
1

2
D2W.R"M "

j /ru
"
W ru" C jru"j2

!W ."ru
"/

j"ru"j2

�
dx

�

X
j

1

2

ˆ
�"good\P

"
j

D2W.R"M "
j /ru

"
W ru" dx � �W ."1�˛/kru"k2L2.�"good/

:
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Then, by (6.22) and (6.30) we get

lim inf
"!0

E".y
"; �ı/ � lim inf

"!0

X
j

1

2

ˆ
�"good\P

"
j

D2W.R"M "
j /ru

"
W ru" dx: (6.31)

By H5, (6.26), and the fact that �"good \�
"
phase D ; we findˇ̌̌̌X

j

ˆ
�"good\P

"
j

.D2W.R"M "
j / �D

2W.ry//ru" W ru" dx
ˇ̌̌̌
� Oı"

ˆ
�"good

jru"j2 dx;

where ¹Oı"º" � .0;1/ is a sequence, depending on W and ¹ı"º", which satisfies Oı" ! 0.
This along with (6.22) and (6.31) yields

lim inf
"!0

E".y
"; �ı/ � lim inf

"!0

1

2

ˆ
�"good

D2W.ry/ru" W ru" dx: (6.32)

In view of (3.21) and (6.28), we have ru"��"good
* ru weakly in L2.�ı IMd�d /. Note

that D2W.RM/ is positive semidefinite for M 2 ¹A;Bº by H2 and H3. Thus, by (6.32)
and the weak lower semicontinuity of convex integral functionals, we conclude that

lim inf
"!0

E".y
"; �ı/ �

1

2

ˆ
�ı

D2W.ry/ru W ru dx:

This along with the definition in (2.11) shows (6.15), concluding the proof.

6.2. The limsup inequality

In this subsection we prove the optimality of the lower bound identified in Theorem 3.14,
under the additional condition that 2K D KMdp , for M 2 ¹A;Bº (cf. (3.5) and (3.27)). We
first collect some basic properties of the elastic energy density.

Lemma 6.3 (Elementary properties of the energy density). Let W WMd�d ! Œ0;1/ sat-
isfy assumptions H1–H5 and H7. Let 0 < ı � ıW =2, where ıW is the constant introduced
in H5:Define Vı D ¹F 2Md�d W dist.F;SO.d/¹A;Bº/ < ıº. Then there exists a constant
C > 0 only depending onW , a constant Cı > 0 additionally depending on ı, and �ı > 0
with �ı ! 0 as ı ! 0 such that

(i) W.F CG/ �W.F /CC
p
W.F / jGj C 1

2
D2W.F /G W G C �ı jGj

2 for all F 2 Vı ,
G 2 Bı.0/,

(ii) W.F CG/ � W.F /C Cı
p
W.F / jGj for all F 2Md�d n Vı , G 2 Bı.0/,

where Bı.0/ �Md�d denotes the open ball centered at 0 with radius ı.

The proof of this lemma is postponed to the end of this subsection.

We proceed with the construction of local recovery sequences around the interfaces.
To this end, recall the definition of K in (3.5). Let yC0 and y�0 be the maps defined
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right after (2.5). We recall the notion of cylindrical sets from (6.2) and the definition of
strictly star-shaped domains in (2.7). We start by stating the local construction of recovery
sequences for a single phase transition.

Proposition 6.4 (Local recovery sequence for single phase transition). Let d 2N, d � 2.
Let � � Rd be a bounded, strictly star-shaped Lipschitz domain. Let !0 � Rd�1 be a
bounded Lipschitz domain and h > 0 such that @!0 � .�h; h/ does not intersect �. Then
there exist sequences ¹vC" º"; ¹v

�
" º" � H

2.D!0;h \�IR
d / with

v˙" ! y˙0 in H 1.D!0;h \�IR
d / (6.33)

such that
lim
"!0

E".v
˙
" ;D!0;h \�/ D KHd�1..!0 � ¹0º/ \�/; (6.34)

and for " sufficiently small we have

v˙" D

´
I˙1;" ı y

˙
0 if xd � 3h=4;

I˙2;" ı y
˙
0 if xd � �3h=4;

(6.35)

where ¹I˙1;"º" and ¹I˙2;"º" are sequences of isometries which converge to the identity as
"! 0.

We emphasize that the above statement means that for any sequence ¹"iºi converging
to zero a local recovery sequence can be constructed. The crucial point is that the sequence
¹v˙" º" is rigid away from the interface. This will allow us to appropriately ‘glue together’
local recovery sequences around different interfaces.

The next result provides a local construction of recovery sequences for the case
in which two consecutive phase transitions create small intermediate layers at level "
between two portions of the material in the same phase (cf. Figure 3). Owing to the com-
patibility condition that 2K D KMdp for M 2 ¹A;Bº (cf. (3.5) and (3.27)), this provides a
double energetic contribution. Recall the mappings yMdp defined in (3.26).

Proposition 6.5 (Local recovery sequence for double phase transitions). Let d 2 N,
d � 2. Let � � Rd be a bounded, strictly star-shaped Lipschitz domain. Let !0 � Rd�1

be a bounded Lipschitz domain and h > 0 such that @!0 � .�h; h/ does not intersect �.
LetM 2 ¹A;Bº and suppose that the constantKMdp defined in (3.27) satisfiesKMdp D 2K.
Then for every ¹w"º" � Wd there exists a sequence ¹vM" º" � H

2.D!0;h \�IR
d / with

vM" �Mx

w"
! yMdp in measure on � \D!0;h (6.36)

such that
lim
"!0

E".v
M
" ; � \D!0;h/ D 2KHd�1..!0 � ¹0º/ \�/;

vM" D

´
IM1;" ıMx if xd � 3h=4;

IM2;" ıMx if xd � �3h=4;

(6.37)

where ¹IM1;"º" and ¹IM2;"º" are sequences of isometries converging to the identity as "! 0.
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We defer the proofs of Propositions 6.4 and 6.5 to Section 6.4. (Let us mention that
in the special case � D D!0;h the statement in Proposition 6.4 has already been proven
in [32, Proposition 4.7], and here we address the generalization to strictly star-shaped
Lipschitz domains �.)

We continue with the proof of the limsup inequality. As a final preparation, we intro-
duce the following convention: we say that a sequence ¹v"º" of functions converges to v
up to translation if there exist ¹˛"º" � R and ¹b"º" � Rd such that

v".� � ˛"ed / � b" ! v (6.38)

with respect to a given topology. In a similar fashion, we say that two functions v1; v2
coincide up to translation if v2 D v1.� � ˛ed / � b for some ˛ 2 R and b 2 Rd .

Proof of Theorem 3.15. Let .y;u;P / 2A. Without loss of generality, after a rotation, we
can assume that y 2 YId.�/. Moreover, similarly to the proof of Theorem 3.14, it is also
not restrictive to assume that

Jry �
[
j

@Pj \� � Ju: (6.39)

In fact, the first inclusion always holds true by Definition 3.9, and by using Proposi-
tion 3.8 (i) we may pass to another displacement field of the form Qu D u C T .y;P /

(see (3.23)), such that the second inclusion holds for Qu in place of u. In view of
Remark 3.13, this does not affect the energy and we observe that a recovery sequence
¹y"º" for .y; Qu;P / in the sense of Definition 3.5 is also admissible for the original triple
.y; u;P / by Proposition 3.6 (iii). As a further preliminary remark, we observe that by
a diagonal argument it suffices to find for every ı > 0 a recovery sequence ¹y"º" for
.y; u;P / such that

lim sup
"!0

E".y
"/ � EA

0 .y; u;P /C ı: (6.40)

In this context, we point out that the asymptotic representation introduced in Definition 3.5
is based on the convergences (3.11)–(3.21) which themselves are metrizable, i.e., diagonal
arguments are applicable.

For the convenience of the reader, we start with a short outline of the proof: In
Steps 1–2 we explain that it is not restrictive to treat only problems with a finite num-
ber of interfaces and that one can assume that ru is smooth. In Step 3 we construct
local approximate sequences around the interfaces. These are then ‘glued together’ to
obtain an auxiliary recovery sequence ¹ Qy"º" converging to y, and capturing correctly the
surface energy of the limiting triple .y; u;P /; see Step 4. To recover the displacement
field u in the limit and to estimate the elastic contributions correctly, we then perturb
¹ Qy"º" by adding a term of order ". We check that this new sequence ¹y"º" indeed satisfies
y" ! .y; u;P / (Step 5) and lim sup"!0 E".y

"/ � EA
0 .y; u;P / (Step 6). Finally, Step 7

is devoted to some technical estimates.
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Step 1: Reduction to a finite number of interfaces. Using the star-shapedness of the
domain (say, with respect to the origin) along with Remark 4.7, one can apply a scal-
ing argument to reduce the problem to limiting configurations where Ju consists of a
finite number of disjoint interfaces orthogonal to ed . For the details of this argument
we refer to [27, proof of Proposition 5.1] and also [32, proof of Theorem 4.4, Step I]).
We just mention that, for � > 1, one considers rescaled triples .y�; u�;P�/ of the form
y�.x/D �y.x=�/, u�.x/D �u.x=�/, and P �j D �Pj \� for each component P �j 2 P�.
This sequence satisfies EA

0 .y�; u�;P�/! EA
0 .y; u;P / as �! 1. The geometrical intu-

ition is that, since infinitely many interfaces can only occur close to the boundary (see also
the lower part of Figure 1), a rescaling allows one to reduce the study to a finite number
of interfaces. It suffices to construct recovery sequences for .y�; u�;P�/ since a recovery
sequence for .y; u;P / can then be obtained by a diagonal argument.

Summarizing, by (6.39) we can suppose that there exist finitely many Lipschitz
domains !i � Rd�1 and ˛i 2 R for i D 1; : : : ; I such that

Jry [
[
j

.@Pj \�/ [ Ju D Ju D

I[
iD1

.!i � ¹˛iº/: (6.41)

Since � is star-shaped, � n Ju is the union of I C 1 connected components denoted
by ¹BiºIC1iD1 . The sets are ordered in such a way that @Bi \ @BiC1 D !i � ¹˛iº for i D
1; : : : ; I , and the outer normal to Bi on @Bi \ @BiC1 is given by ed (see Figure 6 below).

Step 2: Reduction to displacement fields with smooth gradient. In a similar fashion, we
can also suppose that u 2 U .�/ has a smooth gradient: By Proposition 3.8 we find
¹biº

IC1
iD1 � Red such that the mapping

u0 WD u �

IC1X
iD1

bi�Bi (6.42)

satisfies u0 2 H 1.�IRd /. Choose a smooth sequence ¹u0
k
ºk � C

1.�IRd / approximat-
ing u0 inH 1.�IRd / and observe that uk WD u0k C

PIC1
iD1 bi�Bi 2U .�/ satisfies uk! u

in L1.�IRd / and ruk ! ru in L2.�IMd�d /. Again by a diagonal argument and by
using that the limiting energy EA

0 is continuous with respect to the strongL2-convergence
of displacement-gradients (see (3.24)), it suffices to construct recovery sequences for dis-
placement fields u 2 U .�/ such that ru 2 C1.�IMd�d /.

Step 3: Local construction of the approximate recovery sequence. We now start with
the construction of recovery sequences around the interfaces. For brevity, we set JP DS
j @Pj \�. In view of (6.39) and (6.41), we can write

Jry D
[
i2Iy

.!i � ¹˛iº/; JP n Jry D
[
i2IP

.!i � ¹˛iº/;

Ju n .Jry [ JP / D
[
i2Iu

.!i � ¹˛iº/;
(6.43)

where Iy , IP , and Iu are pairwise disjoint index sets with Iy [ IP [ Iu D ¹1; : : : ; I º.
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B4

B3

B2

B1

B7

B8

D7

D6

D5

D4

D3

D2

D1

Fig. 6. A visualization of the different interfaces and sets after the rescaling in Step 1 and under
(6.39). The phase regions associated to A and B are colored blue and orange, respectively. The
interfaces associated to the sets Iy and Iu are highlighted with thick red and dashed black lines,
respectively. The remaining interfaces correspond to the set IP . The connected components of
� n Ju are indicated as ¹Bi º8iD1, whereas the cylindrical sets ¹Di º7iD1 around the interfaces (see
(6.44)) are drawn in green.

As explained in [27, proof of Proposition 5.1], we can choose Lipschitz domains
!0i �� !i as well as h > 0 such that the sets @!0i � .˛i � h; ˛i C h/ do not intersect
�, the different cylindrical sets Di WD ˛ied CD!0

i
;h are pairwise disjoint, and one has

.!0i � ¹˛iº/ \� D !i � ¹˛iº: (6.44)

We again refer to Figure 6 for an illustration. We now distinguish the cases of the three
index sets Iy , IP , and Iu: First, we fix i 2 Iy . As the sets Di are pairwise disjoint,
on Di \� the function y coincides with yC0 or y�0 up to translation (recall convention
(6.38)). Thus, by Proposition 6.4 we can find a sequence ¹vC" º" or ¹v�" º" such that (6.33)
holds up to translation, (6.34)–(6.35) are satisfied, and ¹vC" º" or ¹v�" º" converges to y in
L1.Di \�IRd /.

For i 2 IP [ Iu, we observe that y coincides up to translation with Mx on Di \�
for some M 2 ¹A; Bº. If i 2 IP , we apply Proposition 6.5 for the sequence w" D

p
".

If i 2 Iu, we apply Proposition 6.5 for w" D jbiC1 � bi j" (cf. (6.42)). In this context,
we also note that by Proposition 3.8, the fact that �u D ed on Ju, and the ordering of
the sets ¹BiºIC1iD1 (see Step 1), we have .biC1 � bi /�¹xd>0º D jbiC1 � bi jy

M
dp with yMdp

defined in (3.26). In both cases, we obtain a sequence ¹v"º" �H 2.Di \�IRd / such that
(6.36) holds up to translation, (6.37) is fulfilled, and v"! y in measure onDi \�. More
precisely, (6.36) and the definition of ¹w"º" in each case imply

.i/ "�1.v" � y/! .biC1 � bi /�¹xd�˛i º on Di \� for i 2 Iu;

.ii/ "�1=2.v" � y/! yMdp .� � ˛ied / on Di \� for i 2 IP ,
(6.45)

where both properties hold in the sense of measure convergence.
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For convenience, we denote this local sequence by ¹vi"º" �H
2.Di \�IRd / for each

i D 1; : : : ; I . For later purposes, by using Lemma 2.1 we note that

vi" ! y strongly in H 1.Di \�IR
d / for all i D 1; : : : ; I . (6.46)

Step 4: Global construction of the recovery sequence. Recall that � n Ju D
SIC1
iD1 Bi ,

and let B 0i WD Bi n
SI
jD1Dj for all i D 1; : : : ; I C 1. Owing to Propositions 6.4 and 6.5,

using (6.46), and arguing as in [26, proof of Proposition 3.5], we then choose iteratively
isometries ¹I "i º

I
iD1 and ¹ OI "i º

IC1
iD1 such that all isometries converge to the identity as "! 0,

and setting

Qy" WD I "i ı v
i
" on Di \� and Qy" WD OI "i ı y on B 0i ;

the maps Qy"W�! Rd satisfy ¹ Qy"º" � H 2.�IRd / and

Qy" ! y strongly in H 1.�IRd /: (6.47)

Moreover, by (6.45) we get

.i/ "�1. Qy" � I "i ı y/! .biC1 � bi /�¹xd�˛i º if i 2 Iu;

.ii/ "�1=2. Qy" � I "i ı y/! y
Mi
dp .� � ˛ied / if i 2 IP ;

(6.48)

where both convergences hold in measure inDi \�, andMi 2 ¹A;Bº is such that ry D
Mi on Di \� if i 2 IP . Note that, up to translations, it is not restrictive to suppose thatffl
�
Qy" dx D 0. By construction we have

r Qy" 2 SO.d/¹A;Bº and r
2
Qy" D 0 on

IC1[
iD1

B 0i D � n

I[
iD1

Di (6.49)

for every ". Thus, again by the properties of the sequences ¹vi"º" obtained from Proposi-
tions 6.4 and 6.5, we find by (6.39), (6.43), (6.44), and (6.49) that

lim sup
"!0

E". Qy
"/ D lim

"!0

IX
iD1

E".v
i
";Di /

� K
X
i2Iy

Hd�1.!i � ¹˛iº/C 2K
X

i2IP[Iu

Hd�1.!i � ¹˛iº/

D KHd�1.Jry/C 2KHd�1
��
Ju [

�[
j

@Pj \�
��
n Jry

�
:

By (3.24) we then conclude that

lim sup
"!0

E". Qy
"/C

ˆ
�

Qlin.ry;ru/ dx � EA
0 .y; u;P /: (6.50)

So far, we have constructed a sequence ¹ Qy"º" �H 2.�IRd / satisfying Qy"! y strongly in
H 1.�IRd / and (6.50). In view of (6.50), we can apply Theorem 3.3 to obtain a limiting
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triple . Qy; Qu; QP / such that Qy" ! . Qy; Qu; QP / in the sense of Definition 3.5. We also note by
(3.16), (6.47), and

ffl
�
Qy" dx D 0 that Qy D y. Then, by (6.39), (6.50), and Theorem 3.14

we find
ˆ
�

Qlin.ry;r Qu/ dx C 2KHd�1
��
J Qu [

�[
j

@ QPj \�
��
n Jry

�
� 2KHd�1.Ju n Jry/: (6.51)

We write QP D ¹ QPj ºj . We will prove that

.i/
[
j

@ QPj \� D
[
j

@Pj \�;

.ii/ Ju D J Qu [
�[
j

@ QPj \�
�
:

(6.52)

In particular, (i) yields P D QP . We defer the proof of (6.52) to Step 7 below and now
proceed with the construction of the recovery sequence. Note that in general Qu ¤ u, and
therefore we need to perturb ¹ Qy"º" to obtain a sequence such that the rescaled displace-
ment fields converge to u. To this end, for each " > 0 we let

y" WD Qy" C "u0; (6.53)

where u0 is the (smooth) function corresponding to u defined in (6.42). We now check
that y" ! .y; u;P / in the sense of Definition 3.5 (Step 5) and then compute the energy
of the sequence (Step 6).

Step 5: Convergence to the limiting triple. The goal of this step is to show that y" !
.y; u;P / in the sense of Definition 3.5. Owing to (6.39) and recalling y 2 YId.�/, we
choose Mj 2 ¹A;Bº such that ry DMj on each component Pj . Similarly to (6.42), by
the fact that J Qu � Ju (see (6.52)) and Proposition 3.8 (i) applied for Qu we find ¹ QbiºIC1iD1

� Red such that Qu0 WD Qu �
PIC1
iD1
Qbi�Bi 2 H

1.�IRd /. By (6.51) and (6.52) (ii) we get´
�

Qlin.ry;r Qu/dx D
´
�

Qlin.ry;r Qu
0/dx D 0. Note that F 7!Qlin.M;FM/ is positive

definite on Md�d
sym by (2.12). Therefore, by Korn’s and Poincaré’s inequalities and the fact

that Qu0 2 H 1.�IRd /, it is elementary to check that Qu0 D
P
j .SMjx C Qsj /�Pj for some

S 2 Md�d
skew and suitable ¹Qsj ºj � Rd . (Note that the skew-symmetric matrix S here is

necessarily independent of the set Pj as Qu0 2 H 1.�IRd /.) Consequently, we get

Qu D
X
j

.SMjx C Qsj /�Pj C

IC1X
iD1

Qbi�Bi : (6.54)

Since ¹BiºIC1iD1 is a refinement of the partition ¹Pj ºj (see (6.41) and Figure 6), we find for
each i D 1; : : : ; I C 1 a corresponding index ji such that Bi � Pji . For i 2 IP [ Iu, this
implies

Œ Qu� D QbiC1 C QsjiC1 � .
Qbi C Qsji / on !i � ¹˛iº D @Bi \ @BiC1; (6.55)
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where ji D jiC1 if i 2 Iu (cf. (6.43)). Let ¹.R";P ";M";T "/º" be the quadruples given by
Theorem 3.3 for ¹ Qy"º" such that (3.11)–(3.21) hold. In particular, (3.15) and (3.19)–(3.20)
yield

"�1. Qy" � .R"M "
j x C t

"
j //! Qu in measure on Pj for every j : (6.56)

Fix i 2 Iu as defined in (6.43), and recall that Di \ � � Pj for some index j . By
(6.48) (i), the fact that ry D Mj on Pj , and by a compactness argument for affine map-
pings we find that (for a subsequence, not relabeled) "�1.I " ı y � .R"M "

j x C t
"
j //!

SiMjx C di pointwise almost everywhere on Di \ � for suitable Si 2 Md�d
skew and

di 2 Rd . (We omit the details here and refer to the proof of Proposition 3.6 above for
a very similar argument.) This along with (6.48) (i) and (6.56) yields

Qu D .biC1 � bi /�¹xd�˛i º C SiMjx C di on Di \�: (6.57)

Then, in view of (6.55) and the fact that ji D jiC1 for i 2 Iu, we check that biC1 � bi D
QbiC1 � Qbi for all i 2 Iu. Therefore, by (6.54) there exist ¹sj ºj � Rd such that

Qu D
X
j

.SMjx C sj /�Pj C

IC1X
iD1

bi�Bi : (6.58)

We define NuD uC
P
j .SMjxC sj /�Pj . We observe that u� Nu2 T .y;P /, and by (6.42)

and (6.58) we note that

Nu D QuC u0: (6.59)

In view of (6.53), (6.56), and (6.59), we find that

lim
"!0

"�1.y" � .R"M "
j x C t

"
j // D QuC lim

"!0
"�1.y" � Qy"/

D QuC u0 D Nu

in measure on Pj for every j . In other words, by (3.15) this means

u" ! Nu in measure in �; (6.60)

where ¹u"º" is defined in (3.19) for ¹y"º" and the quadruples ¹.R";P ";M"; T "/º". Now,
we see that .y;P ; Nu/ is an admissible limit for the quadruples ¹.R";P ";M"; T "/º".
Indeed, all properties apart from (3.13), (3.16), and (3.20)–(3.21) follow from the cor-
responding properties of ¹ Qy"º". For (3.13) and (3.16) we additionally take (6.53) and
u0 2 C1.�IRd / into account, and for (3.20) we use (6.60). Finally, to see (3.21), we
use r Qu" ! r Qu in L2loc.�IM

d�d /, where Qu" is defined in (3.19) for to ¹ Qy"º", and
r Nu D r Qu C ru by (6.42) and (6.59), as well as ru" D r Qu" C ru by (3.19), (6.42),
and (6.53). Thus, y" ! .y; Nu;P / in the sense of Definition 3.5. As u � Nu 2 T .y;P /, by
Proposition 3.6 (iii) we then also find y"! .y; u;P /, as desired. This concludes this step
of the proof.
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Step 6: Convergence of the energies. The goal of this step is to prove lim sup"!0E".y
"/�

EA
0 .y; u;P /. To this end, fix ı; � > 0. Recalling the construction of the local recovery

sequences in Step 3, it is not restrictive to suppose that

Ld
� I[
iD1

Di

�
� �2 (6.61)

by choosing the constant h > 0 sufficiently small (see before (6.44)). In view of (6.50),
we see that we essentially need to estimate the difference of E".y

"/ and E". Qy
"/.

First, we note that "jruj � ı for " small enough since ru 2 C1.�IMd�d /. Define
�" D ¹x 2 �W dist.ry"; SO.d/¹A;Bº/ < ıº. By (3.1), Lemma 6.3, (6.42), (6.53), and a
quadratic expansion we calculate

E".y
"/ � E". Qy

"/C
Cı

"

ˆ
�

p
W.r Qy"/ jruj dx

C

ˆ
�"

1

2
D2W.r Qy"/ru W ru dx C �ı

ˆ
�"

jruj2 dx C 
"; (6.62)

where �ı and Cı are the constants from Lemma 6.3, and 
" is defined by


" WD "
3

ˆ
�

2r2 Qy" W r2u dx C "4
ˆ
�

jr
2uj2 dx

C N�2";d

X
1�min ¹i;j º<d

ˆ
�

.2"@2ij Qy
" @2ijuC "

2
j@2ijuj

2/ dx:

As E". Qy
"/ � C by (6.50) and ru 2 C1.�IMd�d /, the fact that lim"!0 " N�";d D 0

(see (3.3)) along with Young’s inequality shows that lim"!0 
" D 0. (More precisely,

for the third term we use an estimate of the form N�2
";d
"@2ij Qy

" @2iju �
N�2
";d

2�2"
j@2ij Qy

"j2 C

1
2
"2 N�2

";d
�2" j@

2
ijuj

2 for a sequence ¹�"º" such that �" !1 and �"" N�";d ! 0.) Moreover,
for the second term in (6.62) we compute, by Hölder’s inequality, (6.49), H3, and (6.61),

1

"

ˆ
�

p
W.r Qy"/ jruj dx D

1

"

ˆ
S
i Di

p
W.r Qy"/ jruj dx

�
1

"

�ˆ
�

W.r Qy"/ dx
�1=2
krukL2.

S
i Di /

� CkrukL1.�/

�
Ld
�[
i

Di

��1=2
� C�; (6.63)

where in the penultimate step we have also used the fact that
´
�
W.r Qy"/ dx � C"2 by

(6.50). Then, from (6.47), (6.62), (6.63), 
" ! 0, the regularity of W , and the dominated
convergence theorem we obtain

lim sup
"!0

E".y
"/� lim sup

"!0

E". Qy
"/C

ˆ
�

Qlin.ry.x/;ru.x//dxCCCı� C �ıkruk2L2.�/;
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where Qlin is defined in (2.11). In view of (6.50), this yields

lim sup
"!0

E".y
"/ � EA

0 .y; u;P /C CCı� C �ıkruk
2
L2.�/

:

The limsup inequality now follows by first letting � ! 0, then ı ! 0, and by recalling
the comment in (6.40).

Step 7: Proof of (6.52). To conclude the proof, it remains to show the technical property
(6.52). We observe that it suffices to prove the estimates

.i/ Ju n Jry �
�
J Qu [

�[
j

@ QPj \�
��
n Jry ;

.ii/
[
j

.@Pj \�/ n Jry �
[
j

.@ QPj \�/ n Jry ;

.iii/
[
j

.@Pj \�/ n Jry �
[
j

.@ QPj \�/ n Jry :

(6.64)

In fact, (6.64) (ii, iii) along with Definition 3.9 show (6.52) (i). By (6.64) (i) and Definition
3.9 we obtain one inclusion in (6.52) (ii). The other one then follows from (6.51).

Let us now show (6.64) by contradiction. First, if (6.64) (i) were wrong, we would find
a cylindrical set ˛ied CD!i ;l for i 2 IP [ Iu (see (6.43)) and l > 0 sufficiently small and
some component QPj of QP such that .˛ied CD!i ;l / \� � QPj and .˛ied CD!i ;l / \ J Qu
D ;. By Theorem 3.3 applied for ¹ Qy"º", we then get (see also (6.56))

"�1. Qy" � .R"Mx C t"j //! Qu in measure on .˛ied CD!i ;l / \ QPj ; (6.65)

where R" ! Id, ¹t"j º" � Rd , and M is such that ry �M on QPj . In view of the fact that
.˛ied CD!i ;l /\ J Qu D ;, we obtain a contradiction to (6.48) (i, ii). On the other hand, if
(6.64) (ii) were wrong, we would find i 2 IP such that (6.65) holds. But then (6.65) and
the fact that Qu is finite a.e. contradict (6.48) (ii).

Finally, suppose that (6.64) (iii) were wrong. Then there would exist a cylindri-
cal set D WD ˛ed C D!;l which intersects two components QPj1 and QPj2 , but notS
i2IP

.!i � ¹˛iº/, i.e., there exists Pj such that D \ � � Pj . Similarly to (6.65), we
find sequences ¹t"j1º"; ¹t

"
j2
º" � Rd from the sequence ¹T "º" given in Theorem 3.3 such

that

"�1. Qy" � .R"Mx C t"jk //! Qu in measure on D \ QPjk for k D 1; 2; (6.66)

where M is such that ry � M on Pj . On the other hand, we find a sequence ¹I "º" of
isometries converging to the identity as "! 0 such that "�1. Qy" � I " ı y/ converges to a
finite value a.e. on�\D due to (6.48)–(6.49), where we exploit thatD does not intersectS
i2IP

.!i � ¹˛iº/. This along with (6.66) shows lim sup"!0 j.t
"
j1
� t"j2/="j <1, which

however, contradicts (3.18). This argument concludes the proof of (6.64), and thus we
have completed the proof of (6.52).
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We conclude this subsection by showing that W satisfies the estimates in Lemma 6.3.

Proof of Lemma 6.3. Fix 0 < ı � ıW =2. We start with (i). By a Taylor expansion, by
assumption H5, and the fact that D2W is uniformly continuous on Vı we find that for
any F 2 Vı and G 2 Bı.0/,

W.F CG/ � W.F /CDW.F / W G C 1
2
D2W.F /G W G C �ı jGj

2;

where �ı ! 0 as ı ! 0. Letting RF 2 SO.d/¹A;Bº be such that

jRF � F j D dist.F; SO.d/¹A;Bº/;

assumptions H3 and H4, together with the fact thatDW is Lipschitz on Vı andDW.RF /
D 0, give

jDW.F /j � jDW.RF /j C C jF �RF j D C dist.F; SO.d/¹A;Bº/ � .C=
p
c1/
p
W.F /

for a constant C only depending onW . By the Cauchy–Schwarz inequality this concludes
the proof of (i).

To prove (ii), we exploit H7 to find for F 2Md�d and G 2 Bı.0/ that

W.F CG/ � W.F /C c3.1C 2jF j C ı/jGj:

For F 2 Md�d n Vı one finds that max ¹ı; 1 C 2jF jº � Cı dist.F; SO.d/¹A; Bº/ for
a sufficiently large constant depending on ı. The desired estimate follows then again
from H4.

6.3. Properties of the double-profile energy

In this subsection we analyze the double-profile energy functional introduced in (6.5) and
address its relation to K and KMdp . In particular, we prove Proposition 6.2. We start by
stating the results of this subsection.

Proposition 6.6 (Properties of the double-profile energy function). The functions F M
dp ,

M 2 ¹A;Bº, satisfy, for all h > 0 and all open, bounded sets ! � Rd�1 with Hd�1.@!/

D 0:

(i) F M
dp .˛!I˛h/ � ˛

d�1F M
dp .!I h/ for all 0 < ˛ < 1.

(ii) F M
dp .!I h/ D Hd�1.!/F M

dp .Q
0I h/, where Q0 WD .�1=2; 1=2/d�1.

(iii) F M
dp .!I h/ D F M

dp .!I 1/.

We now address the relationship between the optimal-profile and double-profile
energies.

Proposition 6.7 (Relation between K and KMdp ). We have KMdp � F M
dp .Q

0; 1/ � 2K for
M 2 ¹A;Bº, where Q0 D .�1=2; 1=2/d�1, and K, KMdp are defined in (3.5) and (3.27),
respectively.
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Finally, if 2K DKMdp forM 2 ¹A;Bº, in the definition (3.27) one can replace cubes by
general Lipschitz domains, and the formula holds for every h>0 and general ¹w"º" 2Wd .

Proposition 6.8 (Characterization of KMdp ). Let M 2 ¹A;Bº, and suppose that the con-
stant KMdp defined in (3.27) satisfies KMdp D 2K. Then

inf
²

lim sup
"!0

E".y
";D!;h/W

y" �Mx

w"
! yMdp in measure in D!;h as "! 0

³
D KMdp Hd�1.!/ (6.67)

for every Lipschitz domain ! � Rd�1, h > 0, and ¹w"º" 2 Wd .

We point out that Propositions 6.6 and 6.7 directly imply Proposition 6.2. Proposition
6.8 will be instrumental in Section 6.4 for the proof of Proposition 6.5. We prove it here
as it completes the characterization of the relation between KMdp , M 2 ¹A; Bº, and the
double-profile energy functions. We now proceed with the proofs of Propositions 6.6, 6.7,
and 6.8. As a preparation, we start with a standard rescaling argument which we will use
several times.

Remark 6.9. For a configuration y 2 H 2.˛D!;hIR
d / and 0 < ˛ < 1, we define Ny 2

H 2.D!;hIR
d / by Ny.x/ D y.˛x/=˛. We observe that r Ny.x/ D ry.˛x/ and r2 Ny.x/ D

˛r2y.˛x/ for all x 2 D!;h. Since ¹ N�";d º" is increasing as " ! 0 (see (3.3)), we get
N�2p
˛";d
� ˛ N�2

";d
. Thus, by (3.1)–(3.2) we obtain

Ep˛".y; ˛D!;h/ �
1

˛"2

ˆ
˛D!;h

W.ry/ dx C ˛"2
ˆ
˛D!;h

jr
2yj2 dx

C ˛ N�2";d

ˆ
˛D!;h

.jr2yj2 � j@2ddyj
2/ dx

D
˛d�1

"2

ˆ
D!;h

W.r Ny/ dx C ˛d�1"2
ˆ
D!;h

jr
2
Nyj2 dx

C ˛d�1 N�2";d

ˆ
D!;h

.jr2 Nyj2 � j@2dd Nyj
2/ dx

D ˛d�1E". Ny;D!;h/: (6.68)

Proof of Proposition 6.6. We prove (i). Let 0 < ˛ < 1. By (6.5), for a given ı > 0, we find
sequences ¹"iºi with "i ! 0, ¹wiºi 2Wd , u 2Udp.˛D!;h/, and ¹yiºi �H 2.˛D!;hIR

d /

with w�1i .yi �Mx/! u in measure in ˛D!;h such that

lim inf
i!1

Ep˛"i .y
i ; ˛D!;h/ � F M

dp .˛!I˛h/C ı: (6.69)

Let ¹ Nyiºi � H 2.D!;hIR
d / be the rescaled functions defined before (6.68). Note that

˛w�1i . Nyi �Mx/ D w�1i .yi .˛x/ �M.˛x//! ˛ Nu

in measure in D!;h, where Nu.x/ D u.˛x/=˛ for x 2 D!;h. Then the definition of F M
dp ,
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(6.68), and (6.69) imply

ı C F M
dp .˛!I˛h/ � lim inf

i!1
Ep˛"i .y

i ; ˛D!;h/ � ˛
d�1 lim inf

i!1
E"i . Ny

i ;D!;h/

� ˛d�1F M
dp .!I h/:

Since ı > 0 was arbitrary, (i) follows.

The proof of (ii) and (iii) is exactly as in [32, Proposition 4.6], to which we refer for
the details. (See also [24, Lemma 4.3] for similar arguments.)

We now move to the proof of Proposition 6.7. We first state two technical lemmas.
Recall the definition of yC0 and y�0 below (2.5).

Lemma 6.10 (Lower energy bound). Let ¹"iºi be an infinitesimal sequence, and let
¹�iºi �R be a bounded sequence with "i=

p
�i! 0. Let ! �Rd�1 be a bounded Lipschitz

domain. Suppose that there exists a sequence ¹viºi with vi 2 H 2.D!;�i IR
d / and

��1i krv
i
� ryC0 k

2
L2.D!;�i /

! 0: (6.70)

Then

lim inf
i!1

E"i .v
i ;D!;�i / � KHd�1.!/; (6.71)

where K is the constant from (3.5).

Lemma 6.11 (Zooming to two interfaces). Let ¹"iºi be an infinitesimal sequence. Let
Q0 � Rd�1 be a cube and let h > 0. Let M 2 ¹A; Bº. For every i 2 N, let yi 2
H 2.DQ0;hIR

d / with E"i .y
i ; DQ0;h/ � C0 < 1, let ¹�iºi 2 Wd , let u 2 Udp.DQ0;h/,

and assume that

yi �Mx

�i
! u in measure in DQ0;h as i !1: (6.72)

Then, there exist � > 0, sequences ¹˛1i ºi ; ¹˛
2
i ºi � R such that Dj

i WD ˛
j
i ed CDQ0;��i ,

j D 1; 2, satisfy D1
i ; D

2
i � DQ0;h and D1

i \D
2
i D ;, and there exists a sequence ¹Iiºi

of isometries such that the maps vi 2 H 2.D1
i [D

2
i IR

d / defined by

vi .x/ D Ii ı y
i .x/ for every x 2 D1

i [D
2
i (6.73)

satisfy, up to a subsequence, for j D 1; 2,

min ¹��1i krv
i .� C ˛

j
i ed / � ry

C
0 k

2
L2.DQ0;��i

/
;

��1i krv
i .� C ˛

j
i ed / � ry

�
0 k

2
L2.DQ0;��i

/
º ! 0: (6.74)

The lemma states that one finds two cylindrical sets with height ��i such that
each ‘contains an interface’, i.e., asymptotically a big portion of Dj

i \ ¹xd � ˛
j
i º and
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B

A

A

A

BB

A

Fig. 7. By ‘zooming in’ one can identify two regions in which phase transitions occur: the interfaces
between the A- and B-phase regions become asymptotically flat as i !1.

D
j
i \ ¹xd � ˛

j
i º, respectively, is contained in the A- and B-phase region, respectively

(cf. Figure 7).

Loosely speaking, the result shows that, under assumption (6.72), there are at least
two interfaces and the interfaces between the A- and B-phase regions become asymptot-
ically flat, where the nonflatness is asymptotically small compared to the sequence ¹�iºi .
An analogous result for a single interface between the A- and B-phase region has been
derived in [32, Lemma 4.9].

We postpone the proofs of these two lemmas and proceed with the proof of Proposi-
tion 6.7.

Proof of Proposition 6.7. Let M 2 ¹A; Bº. First, the inequality KMdp � F M
dp .Q

0; 1/ fol-
lows immediately from the definitions in (3.27) and (6.5). We now show F M

dp .Q
0; 1/

� 2K. We again let Q D .�1=2; 1=2/d . Given ı > 0, we choose sequences ¹"iºi ,
¹wiºi 2 Wd , u 2 Udp.Q/, and ¹yiºi � H 2.QIRd / such that w�1i .yi �Mx/! u in
measure in Q, and

lim sup
i!1

E"i .y
i ;Q/ � F M

dp .Q
0; 1
2
/C ı D F M

dp .Q
0; 1/C ı; (6.75)

where the last step follows from Proposition 6.6 (iii). By Lemma 6.11 applied for Q0DQ0,
h D 1=2, and �i D wi we find � > 0 and pairwise disjoint sets Dj

i WD ˛
j
i ed CDQ0;�wi ,

j D 1; 2, with D1
i ; D

2
i � Q, and isometries ¹Iiºi such that the maps vi 2 H 2.D1

i [

D2
i IR

d / defined by vi .x/ D Ii ı yi .x/ for x 2 D1
i [D

2
i satisfy (6.74) (after extraction

of a subsequence). Possibly after a transformation of the form x 7! �vi .�x/, we may
suppose that w�1i krv

i .� C ˛
j
i ed / � ry

C
0 k

2
L2.DQ0;�wi

/
! 0 for j D 1; 2. Then H2 and

Lemma 6.10 for �i D wi (note that "i=
p
�i ! 0 by (3.25)) imply

lim inf
i!1

E"i .y
i ;Q/ �

X
jD1;2

lim inf
i!1

E"i .v
i .� C ˛

j
i ed /;DQ0;�wi / � 2K:

This along with (6.75) and the fact that ı > 0 was arbitrary concludes the proof.

We continue with the proofs of Lemmas 6.10 and 6.11.
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Proof of Lemma 6.10. First, suppose that �i � h > 0 for all i 2 N for some h > 0. Then
up to translations we have vi ! yC0 in L1.D!;hIRd /, and we immediately get

lim inf
i!1

E"i .v
i ;D!;�i / � lim inf

i!1
E"i .v

i ;D!;h/ � F .!I h/

by (6.3). The result now follows from Proposition 6.1.

We can therefore concentrate on the case �i ! 0. We prove the statement first for
! D Q0, where Q0 � Rd�1 is a cube. For notational convenience we set 
i WD ��1i . We
define yi 2 H 2.D
iQ0;1IR

d / by yi .x/ D vi .�ix/=�i . By using (6.68) with ˛i D �i , we
get

E"i .v
i ;DQ0;�i / D Ep�i

p

i "i .v

i ;DQ0;�i / � �
d�1
i Ep
i "i .y

i ;D
iQ0;1/: (6.76)

Let ı > 0. We can (almost) cover D
iQ0;1 by b
icd�1 pairwise disjoint translated copies
ofDQ0;1. This implies that we can find zi 2Rd�1 � ¹0º such that, by a classical De Giorgi
argument (see the explanation at the beginning of the proof of [27, Lemma 4.3] for the
details of this technique), for i 2 N sufficiently large we find by (6.76) and a change of
variables that

.i/ Ep
i"i .y
i ; zi CDQ0;1/ �

1C ı

b
icd�1
Ep
i"i .y

i ;D
iQ0;1/

�
1C ı

.b
ic�i /d�1
E"i .v

i ;DQ0;�i /;

.ii/ kryi � ryC0 k
2
L2.ziCDQ0;1/

�
C

ı
�d�1i kryi � ryC0 k

2
L2.D
iQ0;1/

D
C

ı�i
krvi � ryC0 k

2
L2.DQ0;�i

/
:

(6.77)

Since �i ! 0, we have �ib
ic ! 1. This along with (6.77) (i) yields

lim inf
i!1

Ep
i"i .y
i ; zi CDQ0;1/ � .1C ı/ lim inf

i!1
E"i .v

i ;DQ0;�i /: (6.78)

Moreover, by (6.70) (with ! D Q0) and (6.77) (ii) we obtain kryi � ryC0 k
2
L2.ziCDQ0;1/

! 0. Since
p

i"i ! 0 by assumption on ¹�iºi , (6.3), (6.78), and the translational invari-

ance of E" imply

F .Q0; 1/ � lim inf
i!1

Ep
i"i .y
i ; zi CDQ0;1/ � .1C ı/ lim inf

i!1
E"i .v

i ;DQ0;�i /:

Since ı > 0 was arbitrary, in view of Proposition 6.1 the statement follows for ! D Q0.

Now we consider a general bounded Lipschitz domain ! � Rd�1. Given ı > 0, we
can choose pairwise disjoint cubes Q0j � !, j D 1; : : : ; N , contained in ! such that

Hd�1.! n
SN
jD1 Q0j / � ı. Then by applying (6.71) on each cube Q0j we get

lim inf
i!1

E"i .v
i ;D!;�i / �

NX
jD1

lim inf
i!1

E"i .v
i ;DQ0

j
;�i
/ � K

NX
jD1

Hd�1.Q0j /

� K.Hd�1.!/ � ı/:

Since ı > 0 was arbitrary, (6.71) holds.
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Proof of Lemma 6.11. We prove the result only in the case M D A. The case M D B is
the same, up to notation. The proof is similar to the one of [32, Lemma 4.9] where the
problem with one interface only has been addressed.

Step 1: Subdivision into phases. As ¹�iºi 2Wd (see (3.25)), and ˛.d/D 1=.2d/, we can
choose �i D "

1C1=.4d/
i � .0; 1=4/ such that

��1i �i ! 0; "
�2C˛.d/
i �i�

.d�1/=d
i !1: (6.79)

We use Proposition 4.1 for yi 2 H 2.DQ0;hIR
d / to find a corresponding set Ti with

properties (4.1). Recall that Ti corresponds to the A-phase regions and DQ0;h n Ti to
the B-phase regions of the function yi . Let

T i
A D

®
t 2 .�h; h/W Hd�1..Q0 � ¹tº/ \ Ti / � .1 � �i /H

d�1.Q0/
¯
;

T i
B D

®
t 2 .�h; h/W Hd�1..Q0 � ¹tº/ n Ti / � .1 � �i /H

d�1.Q0/
¯
:

(6.80)

Define the indicator function  i W .�h; h/ ! ¹A; Bº by  i .t/ D A if sup ¹t 0 � t W t 0 2
T i
A [ T i

B º 2 T i
A and  i .t/ D B else. We get

H1..�h; h/ n .T i
A [ T i

B // � cC0"
2�˛.d/
i �

1�d
d

i .Hd�1.Q0//
2�d
d�1 ; (6.81)

and that the function  i jumps at most

Ni � 2cC0 .H
d�1.Q0//�1 C 1 (6.82)

times, where c > 0 is the constant from Proposition 4.1, and C0 > 0 is such that
E"i .y

i ; DQ0;h/ � C0 for all i 2 N. We point out that the above estimates are obtained
by performing analogous arguments to the ones in [32, proof of Lemma 4.9, (4.39)–
(4.43)]. The expert reader can thus skip the remaining part of this step and move directly
to Step 2. To keep the presentation self-contained, we include here a short proof of (6.81)
and (6.82).

For i sufficiently large (i.e., �i small), the relative isoperimetric inequality on Q0 � ¹tº

in dimension d�1 (cf. [35, Theorem 2, Section 5.6.2]) shows that

Hd�2..Q0 � ¹tº/ \ @�Ti / � �
d�1
d

i .Hd�1.Q0//
d�2
d�1 H) t 2 T i

A [ T i
B : (6.83)

Indeed, by the relative isoperimetric inequality we get

min ¹Hd�1..Q0 � ¹tº/ \ Ti /;H
d�1..Q0 � ¹tº/ n Ti /º � C

�
�
d�1
d

i .Hd�1.Q0//
d�2
d�1

�d�1
d�2

� �iH
d�1.Q0/

for i large enough, where we have used .d � 1/2=.d.d � 2// > 1. (For d D 2, the
term after the first inequality has to be interpreted as zero.) This gives (6.83). Thus, by
(4.1) (iii), (6.83), and E"i .y

i ;DQ0;h/ � C0 we obtain (6.81).
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To prove (6.82), we use the coarea formula to get, for H1-a.e. tA 2 T i
A , tB 2 T i

B ,

Hd�1
�
@�Ti \ .Q

0
� .tA; tB//

�
�

ˆ
@�Ti\.Q

0�.tA;tB //

jh�Ti ; ed ij dHd�1

D

ˆ
…d

H0
�
.z C .tA; tB/ed / \ @

�Ti \ .Q
0
� .tA; tB//

�
dHd�1.z/;

where …d WD Rd�1 � ¹0º, and �Ti denotes the outer unit normal to Ti . In view of (6.80)
and �i � 1

4
, we get

ˆ
…d

H0
�
.z C .tA; tB/ed / \ @

�Ti \ .Q
0
� .tA; tB//

�
dHd�1.z/ �

1

2
Hd�1.Q0/:

Property (6.82) then follows by (4.1) (i).

Step 2: Rigidity estimates. Theorem 3.2 and Proposition 4.1 yield rotations Ri 2 SO.d/
such that

kryi �RiAkL2.DQ0;h\Ti /
C kryi �RiBkL2.DQ0;hnTi /

� C"i ; (6.84)

where C depends on the uniform energy bound C0 and on DQ0;h. (Note that the estimate
holds in the entire set DQ0;h since it is a paraxial cuboid.) For later purposes, we estimate
integrals on sets D D ˛ed C DQ0;� � DQ0;h for ˛ 2 R and � > 0. Let L �

p
d be

sufficiently large such that dist.F;SO.d/¹A;Bº/ � jF �RM j=2 for all F 2Md�d with
jF j � L, R 2 SO.d/, and M 2 ¹A;Bº. We now show that for every q 2 ¹1; 2º,

.i/
ˆ
D

jRTi ry
i
� Ajq dx � C.Ld .D//1�q=2"

q
i C .2L/

qLd .D n Ti /;

.ii/
ˆ
D

jRTi ry
i
� Bjq dx � C.Ld .D//1�q=2"

q
i C .2L/

qLd .D \ Ti /:

(6.85)

To see this, define Ei D D \ ¹jryi j � Lº. First, by using H4 we observe that

kryi �RiAk
2
L2.DnEi /

C kryi �RiBk
2
L2.DnEi /

� C

ˆ
D

W.ryi / dx � C"2i ; (6.86)

where C depends on c1 and C0. For the integral on Ei , we calculate
ˆ
Ei

jRTi ry
i
� Ajq dx D

ˆ
Ei\Ti

jryi �Ri j
q dx C

ˆ
EinTi

jryi �Ri j
q dx

� .Ld .D//1�q=2
�ˆ

D\Ti

jryi �Ri j
2 dx

�q=2
C .2L/qLd .D n Ti /

for q 2 ¹1; 2º, where in the second step we have used Hölder’s inequality. This along with
(6.84), (6.86), and Hölder’s inequality shows (6.85) (i). In a similar fashion, one can show
(6.85) (ii).
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Step 3: Asymptotic behavior of phases. We now use (6.85) to show the properties

.i/ lim inf
i!1

1

�i
H1

�
T i
B \ .�h=2; h=2/

�
> 0;

.ii/ lim
i!1

H1
�
T i
B \

�
.�h; h/ n .�h=2; h=2/

��
D 0:

(6.87)

Suppose for contradiction that (6.87) (i) were false. Let D� WD DQ0;� for 0 < � < h=2.
Then by (6.79)–(6.81) we get (for a subsequence, not relabeled)

1

�i
Ld .D�

n Ti / �
1

�i
Hd�1.Q0/

�.�iH
1..��; �/\T i

A /CH1..��; �/\T i
B /CH1..��; �/n.T i

A [T i
B ///! 0: (6.88)

By (6.85) (i) for q D 1 and the fact that lim supi!1 "i=�i <1 (see (3.25)), this implies

lim sup
i!1

1

�i

ˆ
D�
jRTi ry

i
� Aj dx � C.2�Hd�1.Q0//1=2 lim sup

i!1

"i=�i � c�

for a constant c� with c� ! 0 as � ! 0. By Poincaré’s inequality and a BV compactness
result, we find ¹biºi � Rd such that the sequence

f �i .x/ WD �
�1
i .yi � .Rix C bi // for x 2 D�

converges weakly� in BV to some f � 2 BV.D� IRd / with jDf � j.D� / � c� . In view
of (6.72), it is not hard to check that f � .x/ D u.x/ C Sx C b for some S 2 Md�d

skew
and b 2 Rd . On the other hand, by (6.4), for � sufficiently small we find that c� <
jDjuj.Q0 � ¹0º/, where Dju denotes the jump part of the distributional derivative. This
contradicts the fact that jDjuj.D� / D jDjf � j.D� / � c� .

Now suppose that (6.87) (ii) were false. In view of (6.82), by passing to a subsequence,
we find h > � > 0 and ˛ 2 .�hC �; h� �/ such that H1..˛ � �; ˛ C �/\ T i

A / D 0 for
all i sufficiently large. Define D WD ˛ed CDQ0;� . Repeating the argument in (6.88), in
particular using (6.79)–(6.81), we find ��1i Ld .D \ Ti /! 0. Then, by (6.85) (ii) and the
fact that lim supi!1 "i=�i <1 we get

lim sup
i!1

1

�i

ˆ
D

jRTi ry
i
� Bj dx <1:

By Poincaré’s inequality and a BV compactness result, we find ¹biºi � Rd such that
the sequence fi .x/ WD ��1i .yi � .RiBx C bi // for x 2 D converges pointwise a.e. to
some f 2 BV.DIRd / (up to passing to a subsequence). By (6.72), this implies that
��1i ..Ri B �A/xC bi / converges a.e. onD to a finite limit. This, however, is impossible,
and therefore (6.87) (ii) holds.

Step 4: Definition of cylindrical sets. In the following, we denote by si1 < si2 <

� � � < � � � < siNi
the jump points of the function  i defined below (6.80). Let Ji D

¹0 � j � Ni W .s
i
j ; s

i
jC1/ \ T i

A D ;º, where we set si0 D �h and siNiC1 D h. Note that
for j 2 Ji n ¹0º we have .sij�1; s

i
j / \ T i

B D ;. Recalling (6.82), up to passing to a sub-
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sequence, we can assume that Ji and Ni are independent of i , which we denote by J

and N , respectively, for simplicity. Moreover, we can suppose that ¹sij ºi converges for all
1 � j � N . In view of (6.87) (i), possibly by selecting a further subsequence, we find an
index k 2 J and a constant Nc > 0 independent of i such that si

k
; si
kC1
2 .�h=2; h=2/ and

sikC1 � s
i
k � Nc�i : (6.89)

We now show that there exist 1 � j1 � k and k C 1 � j2 � N , as well as �1; �2 > 0,
such that

.i/ lim
i!1

��1i H1..sij1 � �1�i ; s
i
j1
/ \ T i

B / D 0;

lim
i!1

��1i H1..sij1 ; s
i
j1
C �1�i / \ T i

A / D 0;

.ii/ lim
i!1

��1i H1..sij2 � �2�i ; s
i
j2
/ \ T i

A / D 0;

lim
i!1

��1i H1..sij2 ; s
i
j2
C �2�i / \ T i

B / D 0:

(6.90)

Indeed, choose j1 2 J, j1 � k, as the largest index such that lim infi!1 ��1i .sij1 � s
i
j1�1

/

> 0 and set
�1 WD min

°
lim inf
i!1

��1i .sij1 � s
i
j1�1

/; Nc=2
±
> 0;

where Nc is the constant from (6.89). Note that such an index exists by (6.79), (6.81),
(6.87) (ii), and the fact that .sij�1; s

i
j / \ T i

B D ; for each j 2 J n ¹0º by the definition
of J. This immediately implies the first part of (6.90) (i). The second part of (6.90) (i)
follows from the fact that lim infi!1 ��1i .sij � s

i
j�1/ D 0 for all j 2 J with j1 < j � k,

.sij ; s
i
jC1/\ T i

A D ; for j 2 J, (6.89), and the fact that �1 � Nc=2. The index j2 � k C 1,
j2 … J, and �2 2 .0; Nc=2� in (6.90) (ii) can be chosen in a similar fashion: let j2 � k C 1,
j2 … J, be the smallest index such that lim infi!1 ��1i .sij2C1 � s

i
j2
/ > 0 and let �2 D

min ¹lim infi!1 ��1i .sij2C1 � s
i
j2
/; Nc=2º.

We define � D min ¹�1; �2º, ˛1i D s
i
j1

, and ˛2i D s
i
j2

. Then the sets D1
i WD ˛

1
i ed C

DQ0;��i and D2
i WD ˛2i ed C DQ0;��i satisfy D1

i \ D
2
i D ; by (6.89) and the fact that

� � Nc=2. Moreover,

.i/ ��1i .Ld .D1
i \ ¹xd � ˛

1
i º n Ti /CLd .D1

i \ ¹xd � ˛
1
i º \ Ti //! 0;

.ii/ ��1i .Ld .D2
i \ ¹xd � ˛

2
i º \ Ti /CLd .D2

i \ ¹xd � ˛
2
i º n Ti //! 0

(6.91)

as i !1. Indeed, e.g., for the first term in (6.91) (i), we compute by (6.79)–(6.81) and
(6.90) (i) that

��1i Ld .¹x 2 D1
i W xd � ˛

1
i º n Ti /

� ��1i Hd�1.Q0/
�
H1..�h; h/n.T i

A [T i
B //CH1..sij1��1�i ; s

i
j1
/\T i

B /C��i�i
�
! 0

as i !1. The other three terms can be treated in a similar fashion.

Step 5: Proof of (6.74). We define vi as in (6.73) for isometries Ii whose derivative is
given by RTi . To see (6.74), we apply (6.85) (i) for q D 2 on D D D1

i \ ¹xd � ˛
1
i º and

D D D2
i \ ¹xd � ˛

2
i º, as well as (6.85) (ii) for q D 2 on D D D1

i \ ¹xd � ˛
1
i º and
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D D D2
i \ ¹xd � ˛

2
i º. This along with (6.91) and ��1i "2i ! 0 (see (3.25)) shows the

desired estimate. This concludes the proof.

We conclude this subsection with the proof of Proposition 6.8.

Proof of Proposition 6.8. LetM 2 ¹A;Bº. First, it is clear that the left hand side in (6.67)
is no smaller than F M

dp .!; h/ (see (6.5)). We also note by Proposition 6.2 that

F M
dp .!; h/ � 2KHd�1.!/ D KMdp Hd�1.!/; (6.92)

where in the last step we used the assumptionKMdp D 2K. To prove the reverse inequality,
we argue by contradiction: if the statement were false, there would exist ı > 0, a Lipschitz
domain ! � Rd�1, h > 0, and a sequence ¹w"º" 2 Wd such that

inf
²

lim sup
"!0

E".y
";D!;h/W

y" �Mx

w"
! yMdp in measure in D!;h as "! 0

³
� .KMdp C 2ı/H

d�1.!/: (6.93)

Up to translations of !, we can select a cube Q0 � Rd�1 containing both ! and Q0 D
.�1=2; 1=2/d�1 such that ˛Q0 D Q0 for some 0 < ˛ < 1. In view of (3.27), we can find
a sequence of functions ¹y"º" � H 2.DQ0;˛hIR

d / such that .w"˛/�1.y" �Mx/! yMdp
in measure in DQ0;˛h and

lim sup
"!0

Ep˛".y
";DQ0;˛h/ � K

M
dp C ı˛

d�1Hd�1.!/: (6.94)

Then the functions ¹ Ny"º" � H 2.DQ0;hIR
d / defined by Ny".x/ D y".˛x/=˛ are such that

w�1" . Ny" �Mx/D .w"˛/
�1.y".˛x/�M.˛x//! yMdp in measure inDQ0;h. In particular,

as D!;h � DQ0;h, by (6.93) we find an infinitesimal sequence ¹"iºi such that

lim inf
i!1

E"i . Ny
"i ;D!;h/ � .K

M
dp C 2ı/H

d�1.!/: (6.95)

Then, using (6.5), (6.68), (6.92), and (6.95), we derive

lim inf
i!1

˛1�dEp˛"i .y
"i ;DQ0;˛h/ � lim inf

i!1
E"i . Ny

"i ;DQ0;h/

� lim inf
i!1

E"i . Ny
"i ;DQ0;h nD!;h/C lim inf

i!1
E"i . Ny

"i ;D!;h/

� F M
dp .Q

0
n !I h/C .KMdp C 2ı/H

d�1.!/

� KMdp Hd�1.Q0 n !/C .KMdp C 2ı/H
d�1.!/ D ˛1�dKMdp C 2ıH

d�1.!/:

In the last step, we have used ˛Q0 D Q0. This estimate, however, contradicts (6.94).

6.4. Construction of local recovery sequences

This subsection is devoted to the proofs of Propositions 6.4 and 6.5, i.e., to the con-
struction of local recovery sequences performing single and double phase transitions,
respectively, in an energetically optimal way. The crucial point is that the sequences coin-
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cide with isometries far from the interfaces as this allows us to ‘glue together’ different
sequences, as done in the proof of Theorem 3.15. We begin with the proof of Proposi-
tion 6.4.

Proof of Proposition 6.4. The result has been proved in [32, Proposition 4.7] in the spe-
cial case in which � D D!0;h. We briefly explain how to obtain the result for strictly
star-shaped sets� and cylindrical setsD!0;h such that .@!0 � .�h; h//\�D ;. Choose
! � Rd�1 such that ! � ¹0º D .!0 � ¹0º/ \ �. As � is strictly star-shaped, we can
find sequences ¹hiºi ; ¹˛iºi � R, with hi ! 0 and ˛i ! 0 as i !1, and a decreasing
sequence ¹!iºi of Lipschitz sets with ! �� !i �� !0 for all i 2 N and

Hd�1.!i / � Hd�1.!/C 1=i (6.96)

such that ˛ied CD!i ;hi � D!0;h and .@!i � .�hi C ˛i ; ˛i C hi // \� D ;.

We apply [32, Proposition 4.7] onDi WD ˛ied CD!i ;hi to obtain a recovery sequence
¹v
˙;i
" º" � H

2.Di IRd / and isometries ¹I˙;i1;" º", ¹I
˙;i
2;" º" such that (6.33) holds for Di in

place of D!0;h \� and for y˙0 .� � ˛ied / in place of y˙0 , and (6.35) holds for hi in place
of h, up to translation by ˛ied . Moreover, instead of (6.34) we get

lim
"!0

E".v
˙;i
" ;Di / D KHd�1.!i /: (6.97)

In view of (6.35) for v˙;i" and the fact that .@!i � .�hi C ˛i ; ˛i C hi //\� D ;, we can
extend v˙;i" to anH 2-function onD!0;h \� by setting v˙;i" D I

˙;i
1;" ı y

˙
0 on ¹˛i C 3hi=4

� xd < hº and v˙;i" D I
˙;i
2;" ı y

˙
0 on ¹�h < xd � ˛i � 3hi=4º, respectively. Note that

the extensions (not relabeled) still satisfy (6.33) (for y˙0 .� � ˛ied / in place of y˙0 ). Now
we obtain a sequence satisfying (6.33)–(6.35) by choosing a suitable diagonal sequence
in ¹v˙;i" º";i as "! 0 and i !1 via Attouch’s diagonalization lemma [9, Lemma 1.15
and Corollary 1.16], and by taking (6.96)–(6.97) into account.

The remaining part of this subsection is devoted to the proof of Proposition 6.5. The
argument hinges upon applying some careful transformations to maps locally attaining
the double-profile energy in Proposition 6.8, so that the modified maps satisfy (6.37). As
a first step, we show that the energy of optimal sequences concentrates near the interface.
We recall the definitions of Wd and yMdp in (3.25) and (3.26), respectively.

Lemma 6.12 (Concentration of the energy near the interface). Let h > � > 0, and let
! �Rd�1 be a bounded Lipschitz domain. LetM 2 ¹A;Bº and suppose thatKMdp D 2K.
Let ¹"iºi be an infinitesimal sequence and let ¹w"i ºi 2 Wd . Then there exists ¹y"i ºi �
H 2.D!;hIR

d / satisfying limi!1 ky
"i �MxkH1.D!;h/ D 0, and, as i !1, we have

E"i .y
"i ;D!;h/! 2KHd�1.!/;

E"i .y
"i ;D!;h nD!;� /! 0;

y"i �Mx

w"i
! yMdp in measure in D!;h:
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Proof. First, by Proposition 6.8, KMdp D 2K, and a standard diagonal argument we find a
sequence ¹y"i ºi � H 2.D!;hIR

d / with

lim sup
i!1

E"i .y
"i ;D!;h/ � 2KHd�1.!/;

y"i �Mx

w"i
! yMdp in measure in D!;h:

By (6.5) and Proposition 6.2, we also get lim infi!1 E"i .y
"i ; D!;� / � 2KHd�1.!/.

This in turn implies E"i .y
"i ;D!;h nD!;� /! 0 and E"i .y

"i ;D!;h/! 2KHd�1.!/. The
convergence in measure to yMdp along with w"i ! 0 implies that y"i ! Mx in measure
on D!;h. Then by Lemma 2.1 we deduce limi!1 ky

"i �MxkH1.D!;h/ D 0.

Motivated by Lemma 6.12, for 0 < � � h=4 we introduce the notion of "-closeness of
y to Mx, defined as

ıM" .yI!; h; �/ WD E".y;D!;h nD!;� /C .L
d .D!;4� //

�1
kry �Mk2

L2.D!;4� /
(6.98)

for M 2 ¹A; Bº. In the following, we will use the fact that, for given ! � Rd�1, 0 <
� � h=4, and ¹"iºi converging to zero, there exists a sequence ¹y"i ºi � H 2.D!;hIR

d /

of deformations attaining asymptotically the double-profile energy KMdp D 2K such that

ıM"i .y
"i I!; h; �/! 0 as i !1:

Owing to the quantitative rigidity estimate in Theorem 3.2, it is possible to find .d � 1/-
dimensional slices on which the energy of y and the L2-distance of ry from suitable
rotations ofM 2 ¹A;Bº can be quantified in terms of ıM" .yI!;h; �/. Recall � D jA�Bj,
and c1 in H4. In addition, define

pd WD

´
2 if d D 2;

2.d � 1/=d if d > 2:

Proposition 6.13 (Properties of .d � 1/-dimensional slices). Let d 2 N, d � 2, and
let M 2 ¹A; Bº. Let h > 0, 0 < � � h=4, and let !; O! � Rd�1 be bounded Lipschitz
domains such that ! �� O!. Then there exist "0 D "0.!; O!; h; �; c1; �/ 2 .0; 1/ and
C D C.!; O!; h; �; c1/ > 0 with the following properties:

For all 0 < "� "0 and for each y 2H 2.D O!;hIR
d / with ıM" .yI O!;h; �/� .�=64/

2 we
can find two rotations RC; R� 2 SO.d/ and two constants sC 2 .�; 2�/, s� 2 .�2�;��/
such that

.i/
ˆ
�C
jry �RCM jp dHd�1

C

ˆ
��
jry �R�M jp dHd�1

�
C

�
.ıM" .yI O!; h; �//

p=2 "p for all 1 � p � pd ;

.ii/ kry �Mk2
L2.sCedCD!;"2 /

C kry �Mk2
L2.s�edCD!;"2 /

� C"2ıM" .yI O!; h; �/;

.iii/ "2
ˆ
�C[��

jr
2yj2 dHd�1

C N�2";d

ˆ
�C[��

.jr2yj2 � j@2ddyj
2/ dHd�1

�
C

�
ıM" .yI O!; h; �/;
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.iv/ E".y; s
Ced CD!;"2/C E".y; s

�ed CD!;"2/ �
C"2

�
ıM" .yI O!; h; �/;

.v/ jRC � Idj2 C jR� � Idj2 � CıM" .yI O!; h; �/;

where we set �˙ D ! � ¹s˙º for brevity.

Proof. The statement has been proven in [32, Proposition 4.12] in the case in which the
bound on ıM" .yI!; h; �/ is replaced by a smallness assumption on

ı".yI!;h;�/ WDE".y;D!;h nD!;� /C .L
d .D!;4� //

�1
kry �ryC0 k

2
L2.D!;4� /

; (6.99)

where yC0 is the map defined right after (2.5) (see also [32, Section 4.5]). Since the identi-
fications ofR˙ and s˙ are completely independent from each other (see also [32, Remark
4.21]), Proposition 6.13 follows by analogous arguments.

Remark 6.14 (Integrability exponent). Note that the results in [32] are proved using
the most general formulation of the quantitative rigidity estimate in [32, Theorem 3.1],
thus allowing for different integrability exponents p, as well as for a smaller penalization
�";d < N�";d (see (3.3)). The proposition is stated in its generality in order to ease the refer-
ence to [32]. Under suitable simplifications (see [32, Remark 4.17]), analogous estimates
hold for p D 2.

The following lemma deals with the transition between a .d � 1/-dimensional slice
and a rigid movement. Recall the definition of c2 in H6.

Lemma 6.15 (Transition to a rigid movement). Let d 2N, d � 2, and letM 2 ¹A;Bº. Let
h; �; " > 0 and ! �� O! � Rd�1 satisfy the assumptions of Proposition 6.13. Assume that
the elastic energy densityW satisfies assumptions H1–H4 and H6. Let y 2H 2.D O!;hIR

d /

with ıM" .yI O!; h; �/ � .�=64/
2 and let RC; R� 2 SO.d/, sC 2 .�; 2�/, s� 2 .�2�;��/

be the associated rotations and constants provided by Proposition 6.13. Then there exist
a map yMC 2 H

2.! � .0;1/IRd / and a constant bMC 2 Rd such that

.i/ yMC D y on ! � .0; sC/;

yMC .x/ D R
CMx C bMC for all x 2 ! � .sC C �;1/;

.ii/ kryMC �R
CMk2

L2.!�.sC;1//
� C"2ıM" .yI O!; h; �/;

.iii/ E".y
M
C ; ! � .s

C;1// � CıM" .yI O!; h; �/;

(6.100)

whereCDC.!; O!;h;�;�;c1; c2/>0. Analogously, there exist yM� 2H
2.!�.�1;0/IRd /

and bM� 2Rd for which (6.100) holds with s� andR� in place of sC andRC, respectively.

Proof. The result follows directly by [32, Lemma 4.20]. Indeed, in [32, Lemma 4.20]
an analogous result is proven in the case in which the "-closeness ıM" is replaced by the
quantity defined in (6.99). The conclusion follows by observing that the constructions
around the slices sC and s� are independent (see also [32, Remark 4.21]).
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After these preparations, we are now in a position to exhibit local recovery sequences
performing a double phase transition in an energetically optimal way.

Proof of Proposition 6.5. We will prove the result only in the special case that�DD!0;h.
In fact, to treat the general case of strictly star-shaped sets � and cylindrical sets D!0;h
with .@!0 � .�h;h//\�D; one can apply the diagonal argument explained in the proof
of Proposition 6.4 in a similar fashion and therefore we omit the details. For simplicity,
we will write ! in place of !0 in the following.

Let M 2 ¹A; Bº, let h > 0, let ! � Rd�1 be a bounded Lipschitz domain, and
let ¹w"º" 2 Wd . Fix � > 0 and choose a Lipschitz domain Q! such that ! �� Q! with
Hd�1. Q! n !/ � �. We first observe that by Lemma 6.12 there exists a sequence ¹y"º" �
H 2.D Q!;hIR

d / such that

lim
"!0
ky" �MxkH1.D Q!;h/ D 0;

y" �Mx

w"
! yMdp in measure on D Q!;h; (6.101)

where yMdp is the function defined in (3.26), as well as

lim
"!0

E".y
";D Q!;h/ D 2KHd�1. Q!/; lim

"!0
E".y

";D Q!;h nD Q!;h=16/ D 0: (6.102)

In view of Lemma 6.12, the existence of a sequence ¹y"i ºi satisfying (6.101)–(6.102) is
guaranteed for every ¹"iºi with "i ! 0. Hence, in what follows, for notational simplicity
we directly work with the continuous parameter ".

Fix � D h=8. By (6.98) and (6.101)–(6.102) we find that ıM" .y
"I Q!; h; �/ ! 0 as

" ! 0. Without loss of generality we can assume that " < "0 (see Proposition 6.13)
and ıM" .y

"I Q!; h; �/ � .�=64/2. Applying Proposition 6.13 to ¹y"º" for O! D Q!, we find
sequences of rotations ¹RC" º"; ¹R

�
" º" � SO.d/ and of slices ¹sC" º" � .�; 2�/ and ¹s�" º" �

.�2�; ��/. Let now ¹yM";˙º" be the maps provided by Lemma 6.15. We define vM" 2
H 2.D!;hIR

d / by

vM" .x/ WD

8̂̂<̂
:̂
yM";C if xd � sC" ;

y" if s�" � xd � s
C
" ;

yM";� if xd � s�" ;

(6.103)

for every x 2 D!;h. We proceed by checking that ¹vM" º" satisfies (6.36)–(6.37). First,
since js˙" j � 2� and � D h=8, by Lemma 6.15 we find that vM" D I

M
1;" ıMx and vM" D

IM2;" ıMx for xd � 3h=8 and xd � �3h=8, respectively, for two suitable sequences of
isometries ¹IM1;"º"; ¹I

M
2;"º". This yields the second part of (6.37). For brevity, we define the

sets FC
!;h
D ! � .h=16; h/ and F �

!;h
D ! � .�h;�h=16/. A key step will be to show that

for "! 0,

w�1" .vM" �Mx/! yMdp in measure on F �!;h [ F
C

!;h
. (6.104)

This along with (6.101) and the fact that vM" D y
" on D!;h=8 then shows (6.36). More-

over, note that (6.104) also implies that the isometries ¹IM1;"º" and ¹IM2;"º" converge to the
identity as "! 0.
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Let us now show (6.104). We only show the result on FC
!;h

as the argument on F �
!;h

is analogous. Moreover, it clearly suffices to prove the property for any subsequence as
then convergence holds for the whole sequence by Urysohn’s property. First, we note
that E".v

M
" ; F

C

!;h
/! 0 as "! 0 by Lemma 6.15 (iii), (6.102), (6.103), and the fact that

ıM" .y
"I Q!;h; �/! 0. Then, applying the compactness result and the lower bound for�D

FC
!;h

(see Theorems 3.3 and 3.14) we find a subsequence (not relabeled) and .y;u;P /2A

such that vM" ! .y; u;P / and EA
0 .y; u;P / D 0, where the limiting energy EA

0 defined
in (3.24) is with respect to the set FC

!;h
.

In view of (3.24) and EA
0 .y; u;P / D 0, we find that P is trivial, consisting just of

the component FC
!;h

. Moreover, ry is constant, and then ry D M by (3.16), (6.101),
and the fact that vM" D y

" on GC
!;h
WD ! � .h=16; h=8/. (Recall that sC" � � D h=8.) As

EA
0 .y; u;P / D 0 and F 7! Qlin.M; FM/ is positive definite on Md�d

sym (see (2.12)), we
also see that u is affine on FC

!;h
and has the form u.x/ D SMx C s for each x 2 FC

!;h
,

where S 2Md�d
skew and s 2 Rd . Moreover, in view of (3.19)–(3.20), we find ¹t"º" � Rd

and ¹ NR"º" � SO.d/ such that

"�1.vM" � .
NR"Mx C t"//! u in measure in FC

!;h
. (6.105)

On the other hand, by (6.101) and the fact that vM" D y
" on GC

!;h
D ! � .h=16; h=8/, we

have

w�1" .vM" �Mx/! yMdp in measure in GC
!;h
: (6.106)

Passing to another subsequence (not relabeled) we can assume that � WD lim"!0 "=w"
exists (cf. (3.25)). By multiplying (6.105) with "=w" and by subtracting (6.106) we get

w�1" .Mx � . NR"Mx C t"//! �u � yMdp in measure in GC
!;h

.

As the mappings on the left-hand side, as well as u and yMdp , are affine, this convergence
also holds on the larger set FC

!;h
. This along with (6.105) yields

w�1" .vM" �Mx/! �u � .�u � yMdp / D y
M
dp in measure on FC

!;h
.

This concludes the proof of (6.104). To conclude, it remains to show the asymptotic
behavior of the energies in (6.37). Using (6.5), (6.36), and Proposition 6.2, it follows that
lim inf"!0 E".v

M
" ; D!;h/ � 2KHd�1.!/. To prove the opposite inequality, we observe

that by (6.103) and Lemma 6.15 (iii),

E".v
M
" ;D!;h/ � E".y

M
";C; !� .s

C
" ; h//CE".y

M
";�; !� .�h; s

�
" //CE".y

"; !� .s�" ; s
C
" //

� CıM" .y
"; Q!; h; �/CE".y

";D Q!;h/:

Thus, by (6.102), the fact that ıM" .y
"I Q!; h; �/! 0, and Hd�1. Q! n !/ � �, we have

lim sup
"!0

E".v
M
" ;D!;h/ � 2KHd�1. Q!/ � 2KHd�1.!/C 2K�:

The convergence in (6.37) then follows by the arbitrariness of � and by a diagonal argu-
ment.
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6.5. One-dimensional profiles and compatibility condition

In this subsection we assume that the densityW satisfies (3.28). We will show that in this
case optimal profiles for single transitions are one-dimensional in the sense to be made
precise below. Moreover, we show that the compatibility condition KAdp D KBdp D 2K

holds. Let us start by discussing a model case for (3.28) (see (3.29)). Suppose that W is
of the form

W.F / D �
�
dist.F; SO.d/A/; dist.F; SO.d/B/

�
for all F 2Md�d ;

where �W Œ0;1/2 ! Œ0;1/ is a smooth function with c1.min ¹t1; t2º/2 � �.t1; t2/ �
c2.min ¹t1; t2º/2 for all t1; t2 2 Œ0;1/, and is increasing in both entries. Then we can
check that H1–H6 hold. Moreover, also H7 is satisfied if � fulfills a corresponding local
Lipschitz condition. We can also confirm (3.28). Indeed, for each F 2Md�d , by H3, the
monotonicity assumptions on �, and the triangle inequality we compute

W.F / D �
�
dist.F; SO.d/A/; dist.F; SO.d/B/

�
D �

�
min

R2SO.d/
jF �RAj; min

R2SO.d/
jF �RBj

�
� �

�
min

R2SO.d/
jFed �RAed j; min

R2SO.d/
jFed �RBed j

�
� �

�ˇ̌
jFed j � jAed j

ˇ̌
;
ˇ̌
jFed j � jBed j

ˇ̌�
D �

�ˇ̌
jFed j � 1

ˇ̌
;
ˇ̌
jFed j � .1C �/

ˇ̌�
D �

�ˇ̌
IdC .jFed j � 1/edd � A

ˇ̌
;
ˇ̌
IdC .jFed j � 1/edd � B

ˇ̌�
� �

�
dist

�
IdC .jFed j � 1/edd ; SO.d/A

�
; dist

�
IdC .jFed j � 1/edd ; SO.d/B

��
D W.IdC .jFed j � 1/edd /: (6.107)

We now check that under condition (3.28) optimal profiles for single transitions are one-
dimensional.

Lemma 6.16 (One-dimensional profiles). Under condition (3.28),

K D inf
°

lim inf
"!0

E".y
";Q/W y".x/ D .x0;  ".xd // for x D .x0; xd / 2 Q;

lim
"!0
ky" � yC0 kL1.Q/ D 0

±
; (6.108)

where K is defined in (3.5).

Proof. We denote the right-hand side of (6.108) by K1d . Clearly, K1d � K. To see
the reverse inequality, by a standard diagonal argument we choose a sequence ¹y"º" �
H 2.QIRd / with lim"!0 ky

" � yC0 kL1.Q/ D 0 and

lim inf
"!0

E".y
";Q/ D K:
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Then, by Fatou’s lemma, and by Lemma 2.1, we can find x0 2 .�1=2; 1=2/d�1 such that

lim inf
"!0

ˆ 1=2

�1=2

�
1

"2
W.ry".x0; t //C "2jr2y".x0; t /j2

C N�2";d .jr
2y".x0; t /j2 � j@2ddy

".x0; t /j2/

�
dt � K (6.109)

as well as

lim
"!0

�ˆ 0

�1=2

jry".x0; t / � Bj2 dt C
ˆ 1=2

0

jry".x0; t / � A j2 dt
�
D 0: (6.110)

We let �" WD @dy
".x0; �/ 2 H 1..�1=2; 1=2/IRd / and we choose the unique function

 "W .�1=2; 1=2/! R with  ".0/ D 0 and . "/0 D j�"j. Then we define the sequence
¹v"º" � H

2.QIRd / by v".x0; xd / D .x0;  ".xd // for .x0; xd / 2 Q. We observe that

rv".x/ D

d�1X
iD1

ei i C j�
".xd /jedd : (6.111)

We note that ¹v"º" is an admissible sequence in the definition of K1d . Indeed, by H3,
(6.110), (6.111), and the triangle inequality we find
ˆ
Q

jrv" � ryC0 j
2 dx D

ˆ
Q\¹xd�0º

j@dv
"
� Bed j

2 dt C
ˆ
Q\¹xd�0º

j@dv
"
� A ed j

2 dt

D

ˆ 0

�1=2

ˇ̌
j@dy

".x0; t /j � jBed j
ˇ̌2 dt C

ˆ 1=2

0

ˇ̌
j@dy

".x0; t /j � jAed j
ˇ̌2 dt

�

ˆ 0

�1=2

j.ry".x0; t / � B/ed j
2 dt C

ˆ 1=2

0

j.ry".x0; t / � A/ed j
2 dt ! 0;

and therefore also v" ! yC0 in L1.QIRd / since v".0/ D 0 for all ". Consequently, in
view of (3.28), (6.108), (6.109), (6.111), and the fact that d

dt j�
"j.t/ � j@ddy

".x0; t /j for
t 2 .�1=2; 1=2/, we get

K1d � lim inf
"!0

E".v
";Q/ D lim inf

"!0

ˆ
Q

�
1

"2
W.rv"/C "2j@2ddv

"
j
2

�
dx

� lim inf
"!0

ˆ 1=2

�1=2

�
1

"2
W
�
IdC .jry".x0; t /ed j � 1/edd

�
C "2

ˇ̌̌̌
d
dt
j�"j.t/

ˇ̌̌̌2�
dt

� lim inf
"!0

ˆ 1=2

�1=2

�
1

"2
W.ry".x0; t //C "2j@2ddy

".x0; t /j2
�

dt � K:

This concludes the proof.

We point out that without an additional assumption, such as (3.28), optimal profiles
for single transitions are in general not one-dimensional: see [27, Remark 6.2] for an
example in a linearized setting. We are now in a position to prove Proposition 3.17.
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Proof of Proposition 3.17. We start with a consequence of Lemma 6.16. Define
QW WR!R by QW .t/DW.IdC .t � 1/edd / for t 2R. Note that QW is a two-well potential

with QW .t/D 0 if and only if t 2 ¹1; 1C �º (see H3). In view of (3.1) and (6.108), we find

K D inf
²

lim inf
"!0

ˆ 1=2

�1=2

�
1

"2
QW . 0"/C "

2
j 00" j

2

�
dt W

 " 2 H 2..�1=2; 1=2/IR/; lim
"!0
k " � QyC0 kL2.�1=2;1=2/ D 0

³
;

where QyC0 .t/ WD t�¹t>0ºC .1C �/t�¹t<0º for t 2 .�1=2; 1=2/. By a cut-off argument one
can further show that (see e.g. [24, proof of Proposition 5.3] for details)

K D inf
²

lim inf
"!0

ˆ 1=2

�1=2

�
1

"2
QW . 0"/C "

2
j 00" j

2

�
dt W

 " 2 H 2..�1=2; 1=2/IR/; lim
"!0
k " � QyC0 kL2.�1=2;1=2/ D 0;

 0".t/ D 1C � near t D �1=2;  0".t/ D 1 near t D 1=2
³
: (6.112)

We now start with the proof. We prove the result only for M D A; the arguments for
M DB are similar up to notation. LetQ0 D .�1=2;1=2/d�1. Fix ı > 0. In view of (3.27),
we choose h > 0 and ¹w"º" 2 Wd such that

KAdp � ı � inf
°

lim sup
"!0

E".y
";DQ0;h/W w

�1
" .y" � x/! yAdp in measure in DQ0;h

±
;

(6.113)
where we recall the notations in (3.26) and (6.2). We start by observing that it suffices to
show that there exists a sequence ¹z"º" � H 2..�h; h/IR/ such that

.i/ w�1" .z" � id/! �¹t>0º in measure in .�h; h/;

.ii/ lim sup
"!0

ˆ h

�h

�
1

"2
QW .z0"/C "

2
jz00" j

2

�
dt � 2K C ı:

(6.114)

In fact, the sequence y" 2 H 2.DQ0;hIR
d / defined by y".x0; xd / D .x0; z".xd // then

clearly satisfies
w�1" .y" � x/! yAdp in measure in DQ0;h

by (6.114) (i) it is admissible in (6.113), and thus lim sup"!0 E".y
"; DQ0;h/ � K

A
dp � ı.

By (3.1), (6.114) (ii), and the definition of QW , we also have lim sup"!0 E".y
"; DQ0;h/ �

2K C ı. Thus, KAdp � ı � 2K C ı and therefore KAdp � 2K by letting ı ! 0. The other
inequality KAdp � 2K follows from Proposition 3.16.

We now construct a sequence ¹z"º" �H 2..�h;h/IR/ satisfying (6.114). Given ı > 0,
we use (6.112) to find "0 > 0 and a function  2 H 2..�1=2; 1=2/IR/ such that

ˆ 1=2

�1=2

�
1

"20

QW . 0/C "20j 
00
j
2

�
dt � K C ı=2; (6.115)
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as well as  0.t/ D 1 C � near t D �1=2 and  0.t/ D 1 near t D 1=2. Let " > 0 be
sufficiently small and let � WD "="0 for brevity. We define z" 2 H 2..�h; h/IR/ as the
continuous function with z".0/ D 0 and with the derivative

z0".t/ WD

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

1 if t 2 .�h;��2/;

 0
�
1
�2
.�1

2
�2 � t /

�
if t 2 .��2; 0/;

1C � if t 2 .0; w�" /;

 0
�
1
�2
.t � w�" �

1
2
�2/
�

if t 2 .w�" ; w
�
" C �

2/;

1 if t 2 .w�" C �
2; h/;

for t 2 .�h; h/, where w�" is shorthand for w"=�. Indeed, we note that z0" is continuous
since  0 is constant near t D �1=2 and t D 1=2. By using QW .t/ D 0 for t 2 ¹1; 1C �º
and (6.115), it is not hard to check that
ˆ h

�h

�
1

"2
QW .z0"/C "

2
jz00" j

2

�
dt D 2

ˆ �2=2

��2=2

�
1

"2
QW . 0.t=�2//C

"2

�4
j 00.t=�2/j2

�
dt

D 2

ˆ 1=2

�1=2

�
1

"20

QW . 0.s//C "20j 
00.s/j2

�
ds � 2K C ı;

where in the second step we have used a change of variables and � D "="0. This shows
(6.114) (ii). We now prove (6.114) (i). As by a scaling argument we have

kz0"kL1..��2;0// C kz
0
"kL1..w�" ;w

�
"C�

2// � 2�
2

ˆ 1=2

�1=2

j 0j dt � C"2;

we get
kz0" � Qz

0
"kL1..�h;h// � C"

2;

where Qz" denotes the continuous piecewise affine function with Qz".0/ D 0, Qz0" D 1 on
.�h; 0/ [ .w�" ; h/, and Qz0" D 1 C � on .0; w�" /. By Poincaré’s inequality and z".0/ D
Qz".0/ D 0 this also yields

kz" � Qz"kL1..�h;h// � C"
2: (6.116)

Since w" ! 0 as "! 0 and w�" D w"=�, it is easy to check that w�1" . Qz" � id/! �¹t>0º
in measure in .�h; h/. This along with (6.116) and the fact that "2=w"! 0 as "! 0 (see
(3.25)) implies (6.114) (i), concluding the proof.

Appendix A. SBV functions and Caccioppoli partitions

Let d 2 N, and let � � Rd be a bounded open set. In the whole paper we use standard
notations for the space BV.�/. We refer the reader to [8] for definitions and main proper-
ties. We discuss here only some basic properties of special functions of bounded variation
.SBV/ and Caccioppoli partitions.
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Special functions of bounded variation

Let m 2 N. We say that a function u 2 BV.�IRm/ is a special function of bounded
variation, written u 2 SBV.�IRm/, if the Cantor part of its gradient (see [8, Definition
3.91]) satisfies

Dcu D 0:

In particular, for every u 2 SBV.�IRm/ we have

Du D ruLd
C .uC � u�/˝ �uHd�1

bJu;

where ru is the approximate differential, uC and u� are the approximate one-sided lim-
its, Ju is the jump set of u, and �u is the normal to Ju (see [8, Chapter 3]).

A function u 2 L1loc.�IR
m/ (i.e., u 2 L1.KIRm/ for every compact set K � �)

is a special function of locally bounded variation, written u 2 SBV loc.�IRm/, if u 2
SBV.OIRm/ for every open set O �� �.

We stress that SBV.�IRm/ is a proper subset of BV.�IRm/ [8, Corollary 4.3]. The
set SBV2.�IRm/ is defined as the collection of maps u 2 SBV.�IRm/ such that ru 2
L2.�IRm�d / and Hd�1.Ju/ <1.

Sets of finite perimeter and Caccioppoli partitions

For every Ld -measurable set E � Rd and every t 2 Œ0; 1�, we denote by Et the set of
points of E having density t :

Et WD
°
x 2 EW lim

�!0
Ld .E \ B�.x//=L

d .B�.x// D t
±
:

The essential boundary of E, denoted by @�E, is defined as @�E WDRd n .E0 [E1/. We
say thatE has finite perimeter if Hd�1.@�E/ <1. We refer the reader to [8, Sections 3.3
and 3.5] for basic properties. Moreover, a partition P D¹Pj ºj of� is called a Caccioppoli
partition if X

j

Hd�1.@�Pj / <1:

We say that a partition is ordered if Ld .Pi / � Ld .Pj / for i � j , and recall that every
Caccioppoli partition of a bounded domain induces an ordered one just by a permutation
of the indices.

We say that a set E of finite perimeter is indecomposable if it cannot be written as
E1 [E2 withE1 \E2 D ;, Ld .E1/;Ld .E2/ > 0 and Hd�1.@�E/DHd�1.@�E1/C

Hd�1.@�E2/. Note that this notion generalizes the concept of connectedness to sets
of finite perimeter. By [7, Theorem 1] for each set E of finite perimeter there exists a
unique finite or countable family ¹Eiºi of pairwise disjoint indecomposable sets such that
Hd�1.@�E/D

P
i Hd�1.@�Ei /. The sets Ei are called the connected components of E.

We conclude this section by stating a compactness result for ordered Caccioppoli
partitions (see [8, Theorem 4.19, Remark 4.20]).
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Theorem A.1 (Compactness for Caccioppoli partitions). Let��Rd be a bounded open
set with Lipschitz boundary. Let Pi D ¹Pj;iºj , i 2 N, be a sequence of ordered Cacciop-
poli partitions of � with

sup
i2N

X
j

Hd�1.@�Pj;i / <1:

Then there exists a Caccioppoli partition P D ¹Pj ºj and a subsequence .not relabeled/
such that Pj;i ! Pj in measure for all j 2 N as i !1.

In the proofs, we also sometimes use the fact that Pj;i ! Pj in measure for all j 2 N
as i !1 is equivalent to

P
j Ld .Pj;i4Pj /! 0.
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