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Abstract. In this paper we consider nonlinearly elastic, frame-indifferent, and singularly perturbed
two-well models for materials undergoing solid-solid phase transitions in any space dimensions,
and we perform a simultaneous passage to sharp-interface and small-strain limits. Sequences of
deformations with equibounded energies are decomposed via suitable Caccioppoli partitions into
the sum of piecewise constant rigid movements and suitably rescaled displacements. These converge
to limiting partitions, deformations, and displacements, respectively. Whereas limiting deformations
are simple laminates whose gradients only attain two values, the limiting displacements belong to
the class of special functions with bounded variation (SBV). The latter feature elastic contributions
measuring the distance to simple laminates, as well as jumps associated to two consecutive phase
transitions having vanishing distance, and thus undetected by the limiting deformations. By I'-
convergence we identify an effective limiting model given by the sum of a quadratic linearized
elastic energy in terms of displacements along with two surface terms. The first one is proportional
to the total length of interfaces created by jumps in the gradient of the limiting deformation. The
second one is proportional to twice the total length of interfaces created by jumps in the limiting
displacement, as well as by the boundaries of limiting partitions. A main tool of our analysis is a
novel two-well rigidity estimate which has been derived in [Calc. Var. Partial Differential Equations
59, art. 44 (2020)] for a model with anisotropic second-order perturbation.
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1. Introduction

Solid-solid phase changes are the physical phenomena for which, by strong temperature
or pressure variations, a solid can modify its crystalline structure without undergoing any
intermediate liquid phase. Well-known examples are temperature-induced phase transi-
tions between martensite and austenite in shape-memory alloys (see, e.g., [14, 20]), the
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nucleation of different ice forms at elevated pressure, or the mechanisms behind the evo-
lution of graphite into diamond in carbon composites.

In this paper we focus on materials exhibiting exactly two different phases by consid-
ering nonlinearly elastic, frame-indifferent, and singularly perturbed two-well models in
any space dimensions. Our goal is to perform a simultaneous passage from nonlinear to
linearized elastic energies and from diffuse to sharp interface descriptions of solid-solid
phase transitions. We start by introducing the modeling assumptions and discussing the
background. Afterwards, we describe our main results.

In the setting of nonlinear elasticity, the coexistence of two phases can be mathemati-
cally described by variational two-well problems, based on the study of energy functionals
of the form

HI(Q;Rd)ByH/QW(Vy)dx. (1.1)

In the expression above, 2 C Rd, d € N, is a bounded Lipschitz domain, representing
the reference configuration of a material undergoing a solid-solid phase transition between
phases A, B € M4*?_ (Here, MI?*¢ is the set of real d x d matrices.) The stored energy
density W': Méxd [0, 00) in (1.1) is a nonlinear, frame-indifferent function whose zero
set has the two-well structure

{F e M*¢: W(F) = 0} = SO(d)A U SO(d)B,

with SO(d) denoting the set of proper rotations in M4*?. The model in (1.1) is dis-
advantaged by a quite unphysical drawback. In fact, whenever A and B are rank-one
connected, low energy sequences for generic boundary value problems are known to
possibly exhibit highly oscillatory behaviors. In order to prevent this effect, ‘phenomeno-
logical’ higher order regularizations are often incorporated in the energy functional. These
may be interpreted as surface energies penalizing the transition between different energy
wells. A concrete example is provided by the following diffuse-interface model, where
transitions between the two wells SO(d)A and SO(d)B are controlled by augmenting
(1.1) via a second-order singular perturbation:

1
H2(Q:RY) 3y L(y):= 8_2/9 W(Vy)dx +82/Q [VZy|? dx. (1.2)

The competition between the two energy contributions in (1.2) is tailored by the smallness
parameter ¢ > 0, which introduces a length scale into the problem. (We adopt it with
exponent 2 since this will have notational advantages in the following.) As ¢ tends to zero,
the higher-order perturbation becomes more singular, and I, behaves more similarly to a
sharp-interface model. Roughly speaking, in fact, low-energy sequences for I, exhibit
transition layers between different phases of width &2 (see, e.g.,[11,13,18,51,58]).
Energy functionals as (1.2) are naturally linked to the study of classical Cahn-

Hilliard-Modica—Mortola energies [46,56,57], which in turn are strongly connected to the
theory of minimal surfaces and to the modeling of liquid-liquid phase transitions. As the
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width ¢ of transition layers tends to zero, the behavior of Modica—Mortola energies has
been shown to approach, in the sense of I'-convergence (see [16,29] for an overview),
that of a surface energy being proportional to the length of the interfaces between the
different phases. Amidst the extensive literature, we single out the seminal contributions
[12,15,36,61,64,65] for a characterization of both scalar and vectorial Modica—Mortola
energies, the results [53] for an analysis of local minimizers, [5, 10] for extensions to the
multiwell scenario, and the recent contribution [28] for the case of spatially dependent
wells. We finally mention [66] for related models for lithium-ion batteries.

The study of analogous sharp-interface limits in the solid-solid setting has been initi-
ated by S. Conti, I. Fonseca, and G. Leoni [24], neglecting the effects of frame indiffer-
ence. In dimension 2, the frame-indifferent purview has been characterized by S. Conti
and B. Schweizer for two rank-one connected wells A and B, first in a linearized setting
in [27], and then in the fully nonlinear framework of (1.2) in [25,26]. We also mention
the contributions [49, 50] for related microscopic models for two-dimensional martensitic
transformations.

The first analysis of sharp-interface limits for singularly perturbed frame-indifferent
energies in higher dimensions d > 2 has been obtained in our previous work [32],
for a slightly modified version of the model (1.2) where the energy contains a further
anisotropic perturbation. More specifically, when the two wells have exactly one rank-
one connection, after rotation, we can assume without loss of generality that B — A =
keg ® ey for k > 0. Then our model reads as follows:

HAQRY) 5 y o> Eop(y) i= 1.(y) + 1 /Q (VP — 2P dx (13)

for n > 0. Owing to the additional anisotropic perturbation, our analysis is restricted to the
case of exactly one rank-one connection. We stress that this additional energy term does
not affect frame indifference, and penalizes only transitions in the direction orthogonal to
the rank-one connection e; ® ey, while still allowing for phase transitions between the
two different energy wells. We refer to [44,45,52,67] for studies of related models involv-
ing anisotropic perturbations. We point out that our analysis is performed for n — oo as
& — 0. The anisotropic penalization has thus a strong simplifying effect on the model, for
it prevents phase transitions in directions that are different from the one identified by the
rank-one connection.

In [32] we have shown that, for a suitable choice of 1 (depending on &), the functionals
in (1.3) I'-converge as € — 0 (in the L!-topology) to the sharp-interface limit

KH4 1 (Jyy) if Vy € BV(Q; R{A, B}) for some R € SO(d),

& = 1.4
o) {w otherwise in L' (2; R9), (14

where K corresponds to the energy of optimal transitions between the two phases (see
(3.5) for the exact expression). Roughly speaking, limiting deformations are necessarily
piecewise affine with Jv,, consisting of hyperplanes orthogonal to e4 intersected with €2
(see [34] and Figure 1). We point out that, up to a possibly different constant K, the model
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in (1.4) is the same as the one identified in [26]. An essential ingredient in [32] is a novel
two-well rigidity estimate (see Theorem 3.2 below). It provides stronger estimates with
respect to previous results in the literature (see e.g. [21,26,47,54]) by introducing a phase
indicator, which allows one to identify the predominant phase at each point of 2.

In this paper we further build upon this new rigidity estimate to combine the per-
spective of deriving sharp-interface limits for phase transitions with the passage from
nonlinear to linearized elastic energies. In fact, triggered by the availability of rigidity
estimates (mainly [42]), the derivation of effective linearized models has attained a great
deal of attention over the last years. Their interest originates from the observation that they
generally provide good approximations of the behavior of nonlinear models for deforma-
tions that are ‘close’ to rigid movements in a suitable sense. In fact, under the assumption
that A is the identity matrix Id, a formal asymptotic expansion shows that, by considering
deformations y of the form y = id 4 eu for a smooth displacement u, we have

2
/ W(Vy)dx =/ W(d + eVu) dx ~ %/ D2W(d)Vu : Vi dx + o(e?),
Q Q Q

where D2W denotes the second-order differential of W and o(¢2)/e? — 0 as ¢ tends to
zero. In other words, the leading order behavior of the energy W is completely encoded
by the quadratic form of linearized elasticity % fg D2W(Id)Vu : Vu dx. While &? is
related to the width of transition layers, as explained above, the parameter ¢ represents the
typical order of elastic strains. This heuristic argument has been made rigorous by G. Dal
Maso, M. Negri, and D. Percivale in the seminal paper [31] for single-well energies under
standard growth conditions. An extension to the case of weaker growth conditions has
been the subject of [2]. We further refer to related studies on atomistic systems [17, 63],
homogenization [43, 59], viscoelasticity [39], plasticity [55], or fracture [37,38, 60].

Some of the aforementioned linearization results have been generalized to the mul-
tiwell setting for wells approaching the identity as ¢ — 0; see e.g. [1, 48, 62]. For fixed
wells (independent of ¢), results are limited to [3] (see [4] for an atomistic counterpart).
There, the authors consider a stronger higher-order perturbation compared to the ones in
(1.2) and (1.3). In particular, they characterize, under appropriate boundary conditions,
linearization around one of the two wells, i.e., a crucial feature is that only one phase
(say, the identity) is present in the limiting model. This is an effect of the stronger higher-
order perturbation that, roughly speaking, prevents the occurrence of macroscopic phase
transitions in the effective functional. In mathematical terms, their penalization is cho-
sen in a specific way to ensure compactness and convergence of rescaled displacements
u = (y —id)/e in suitable Sobolev norms.

The main novelty of this work consists in providing a new perspective on solid-solid
phase transitions, allowing simultaneously to have phase changes present in the limit, as
well as to perform a ‘pointwise dependent’ linearization that keeps track of the different
‘predominant phases’ in each region of the body. We consider here sequences of energies
of the form (1.3) for suitable e-dependent 1 (see Remark 3.1 below for details), denoted
by &, in the following. We point out that 7 is chosen to be ‘large enough’ to guarantee
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that our quantitative rigidity estimate in Theorem 3.2 provides enough compactness prop-
erties, but also ‘small enough’ so that the limiting behavior of the energies is not affected
by the anisotropic perturbation and no second-order derivatives of the deformations are
involved in the limiting description. We refer to [32, Remark 4.5 and paragraph before
Theorem 1.1] for a discussion of this point.

Our first result consists in showing that to every sequence of deformations {y®}, C
H2(Q:;R%) with equibounded &-energies we can associate a limiting deformation y €
H'(Q:R%), with Vy € BV(Q; R{A, B}) for some R € SO(d), a limiting displacement
u € SBVE (Q; R?) (see Appendix A), and a limiting Caccioppoli partition = {Pj};.
The jump set of u is the (at most) countable union of hyperplanes orthogonal to e; and
intersected with €2, and the components of & are given by the intersection of Q2 with
d-dimensional stripes having sides orthogonal to e .

The full statement of our result is quite technical: for this reason we present here a
simplified version and refer to Theorem 3.3 for the precise formulation.

Theorem 1.1 (Simplified compactness result). Let Q2 be a bounded Lipschitz domain
inR¥, d > 2, such that all its slices orthogonal to the e -direction are connected (see HS).
Let W satisfy HI-H4. Let {y®}, C H?(2;R9) be such that sup,. 4 Ec(y®) < oo. Then to
every deformation y® we can associate a rotation R® € SO(d), a Caccioppoli partition
P ={P/}j, phase indicators M* ={M}}; C{A, B}, and translations T° ={t}; C R,
as well as a limiting triple (y,u, ) with Vy € BV(Q2; R{A, B}) such that
R - R,
Pf — Pj in measure forall j,
1
I —— f(x)dx — strongly in H'(2;R?),
T /Q yo(x) y gly ( )
u® — u inmeasure in 2, and
Vu® — Vu  weakly in L2 _(2; M%*%),

loc

where u® denote rescaled displacement fields associated to ¢, M?, T¢, and R®, defined
by

_ - 2 (REMFx + 1) x pe

&

u®:

(1.5)

The assumptions on W are classical regularity and coercivity conditions for two-
well nonlinear elastic energies; cf. Section 2.1. In particular, the statement shows that
sequences of deformations with equibounded energies can be decomposed into the sum of
piecewise constant rigid movements ;(RPM jsx + t]‘?) xPpe and scaled displacements u°®.
The limiting quantities (y, u, &) play different roles in the description of the effective
model: roughly speaking, the limiting deformation y encodes the two different phases,
which are in general still present in the limit, and correspondingly indicates the surfaces
where phase transitions occur. The limiting displacement u and the partition J#, instead,
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keep track of the situation in which in the limiting model two neighboring areas are in
the same phase but at level ¢ they were separated by small intermediate regions in the
opposite phase having asymptotically vanishing width as & — 0; see Figure 3 below for
an illustration. More specifically, intermediate layers of width comparable to ¢ (i.e., the
order of elastic strains) are encoded by the jump set of u, and widths asymptotically larger
than ¢ are associated to the boundary of the partition dP; N 2, P; € P. Finally, u features
also elastic displacements.

In particular, Theorem 1.1 motivates the notion of admissible triples as the collection
of triples (v, u, &) that are attained in the sense of the convergences in Theorem 1.1,
starting from a sequence of deformations {y®}.. In what follows, we will refer to the
convergence properties in Theorem 1.1 as tripling of the variables. See also [37] for a
related notion of convergence.

The second step of our analysis consists in providing a characterization of admissible
limiting triples (y, u, J). For ease of presentation, we collect our findings in a simplified
statement and refer to Section 3.3 for the precise formulation of the results.

Theorem 1.2 (Simplified characterization of limiting triples). Let (y,u, ) be an admis-
sible triple for the sequence {y®}.. Then

e y and P are uniquely defined;

e u is uniquely defined up to piecewise translations of the form Zj tixp;, it} C R,
and global (infinitesimal) rotations;

Jvy C U2, 0P NQ;

the jump of u is constant on every connected component of its jump set.

The nonuniqueness of the displacement field is simply a consequence of the possible
nonuniqueness in the definition of u® (see (1.5)). The last point of the statement represents
a ‘laminate structure’ of limiting displacement fields. This regularity of u is achieved
thanks to the anisotropic penalization in (1.3) and neglects branching phenomena; see
also Remark 3.10 for more details.

Denoting by +4 the class of all admissible limiting triples (y, u, $), our main contri-
bution consists in showing that the asymptotic behavior of the energies &, is described by
the functional

ErMy.u, P) = %/QDZW(Vy(x))Vu(x) Vu(x)dx + KH9 7 (Jyy)

+ 2K Hd! ((Ju U (U aP; N Q)) \ va) (1.6)
J

for every (y,u, #) € 4. We point out that the constant K in (1.6) is the same as in (1.4).
We observe that 86”" reduces to (1.4) for u = 0 and & coinciding with the collection of
connected components of the two sets {x € Q: Vy(x) € SO(d)A} and {x € Q: Vy(x) €
SO(d)B}. Analogously, 80"" coincides with the quadratic form of linearized elasticity,
and hence with the limiting model in [3] for u € H(Q; Rd), for the trivial partition
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& consisting only of €2, and for a deformation y with Vy = Id in 2. In this sense,
our limiting description combines both the effects of the sharp-interface characterizations
[26,32] and those of the multiwell linearization [3]. In contrast to these results, it features
an additional surface term: as described above, the jump of u and the boundary of the
partition encode small intermediate layers in the opposite phase at level ¢ with width larger
than or comparable to ¢ which induce two ‘consecutive phase transitions’; see Figure 3.
Our I'-convergence result is proven under the compatibility condition that this additional
term enters the energy with double cost with respect to single phase transitions, i.e., we
suppose that

Kj =K} =2K, (1.7)

where Kcﬁ) and ch; represent, roughly speaking, the energy necessary for performing
these double-phase transitions at level ¢. (The subscript ‘dp’ stands for ‘double profile’.
We refer to (3.27) for their precise expression.) Our main result reads as follows:

Theorem 1.3. Let Q2 be a bounded strictly star-shaped domain (see (2.7)) satisfying
the further connectedness assumption in HS8. Let W satisfy H1-H7 and assume that the
compatibility condition in (1.7) holds true. Then &, T'-converges to 80"" in the topology
provided by the tripling of the variables in Theorem 1.1.

We refer to Sections 2.1 and 3.1 for the formulation of H1-H7. The difference between
our result and the I'-convergence analyses in [26, 32] and [3] is mostly in the adopted
topology. In [26, 32] an effective energy is identified in the strong L!-topology for defor-
mations y. The result in [3], instead, is derived in the weak H !-topology for rescaled
displacements (y — id)/e. Our model combines this ‘global’ point of view with a ‘local’
one: the limiting Caccioppoli partition plays the role of identifying subdomains where the
small-strains approximation of linearized elasticity, encoded by the limiting displacement
u, is well posed. Finally, the surface-energy term associated to the jump set of u and to
keeps track of the multiple phase changes that the material had to undergo at level ¢ on
regions with vanishing widths.

We stress here that the focus of our study is not on minimization problems and their
convergence but rather on the identification of the limiting energy functional. For com-
pleteness, we also mention that the case of incompatible wells, i.e., the setting where 4
and B have no rank-one connections, is not included in our analysis but would be much
simpler to handle. Indeed, the limiting model would linearize around just one of the two
phases, leading to a limiting description analogous to [3].

We point out that the lower bound in Theorem 1.3 holds under no further assumptions
on the two profile energies, i.e., the compatibility condition (1.7) is only needed for the
construction of recovery sequences. In Section 6.5 we present a self-contained discussion
showing that, under an additional assumption on the energy density (see (3.28) below)
optimal profiles are one-dimensional and the compatibility condition in (1.7) is indeed
satisfied. This assumption is fulfilled, e.g., when the energy only depends on the distance
of the deformation gradient from the two wells; see (3.29).
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We close the introduction with some comments on the proof structure. The proof of
Theorem 1.1 relies on a series of intermediate results: All statements involving limit-
ing rotations, partitions, and deformations are essentially proven in Proposition 4.2. The
sequence of translations and the limiting displacements are first exhibited on subsets of €2
and eventually on €2 itself in Propositions 4.5 and 4.6, respectively. Finally, a further
delicate construction is needed to ensure uniqueness of the limiting Caccioppoli parti-
tion. This is based on a certain selection principle; see (3.18). Indeed, without such a
requirement, there might be different possible choices for the limiting partition; see the
discussion in Example 3.4 for an in-depth analysis of this point. Key ingredients for the
compactness analysis are the two-well rigidity estimate recalled in Theorem 3.2 and a
characterization of the two phase regions established in [32, Proposition 3.7]; see also
Proposition 4.1.

The statements collected in Theorem 1.2 are the subject of three different proposi-
tions. In particular, the uniqueness properties of limiting deformation, displacement, and
partition are proven in Proposition 3.6. This latter one is shown to be a consequence of
the selection principle described above. The characterization of the jump set of Vy is
contained in Proposition 3.7, whereas that of the jump set of u is the subject of Proposi-
tion 3.8.

As is customary in I'-convergence analysis, the proof of Theorem 1.3 consists in first
showing that 86"’ provides a lower bound for the limiting behavior of the energies &,
(see Theorem 3.14), and then in showing that this lower bound is indeed optimal (see
Theorem 3.15). The proof of the liminf inequality essentially relies on providing a char-
acterization of the double-profile energies K 11;1 , M € {A, B}. An important point is to
show that optimal double phase transitions are, a priori, energetically more expensive
than gluing together two optimal profiles performing each a single phase transition in
an energetically optimal way (in other words, Kfpl > 2K); see Proposition 6.2. The
key ingredients for proving the upper bound are explicit constructions of local recov-
ery sequences performing energetically optimal single and double phase transitions; see
Propositions 6.4 and 6.5. Both sequences are constructed starting from a delicate slicing
argument introduced in [32] and recalled in Proposition 6.13 below. In addition, they are
chosen so that they coincide with isometries far from the interfaces, and they can then be
‘glued together’ in the proof of Theorem 3.15.

The paper is organized as follows: In Section 2 we review the state-of-the-art and
perform an overview of the main mathematical difficulties. In Section 3 we describe our
model and state the main results. Sections 4 and 5 are devoted to the proofs of the com-
pactness theorem and to the characterization of limiting triples, respectively. The proof of
Theorem 1.3 is the subject of Section 6.

1.1. Notation

In what follows, we fix d € N, d > 2, and we consider a bounded Lipschitz domain
Q c R¥. We will denote points x € R? as x = (x/, xz), with x’ € R~' and x; € R.In
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the whole paper we use standard notations for Sobolev spaces, as well as for BV(£2) and
SBV(2). We refer the reader to [8] for the definitions and main results. Some basic prop-
erties of special functions of bounded variation and Caccioppoli partitions are recalled in
Appendix A. We recall that, whenever we say that a sequence {u.}, converges weakly*
in BV(2) to a map u, this means that u, — u strongly in L' (Q) and Du, —* Du weakly*
in the sense of bounded Radon measures. We refer the reader to [8, Section 3.1] for an
interpretation of this convergence in the weak™ topology associated to a suitable dual
of BV(R2).

We say that a sequence { f; }. of measurable functions converges in measure to f on
Q if for every § > 0, limg—o £2({x € Q: | fu(x) — f(x)| > 8}) = 0.

We will omit the target space of our functions whenever this is clear from the context.
The identity map on R¢ will be denoted by id or, with a slight abuse of notation, simply
by x. For m € N, the m-dimensional Lebesgue and Hausdorff measures of a set will be
indicated by £™ and H™, respectively. We denote by f, the average integral $+(Q) Jo-

We denote by ey, ..., ez ande;;, i, j =1,...,d, the standard bases in R4 and M4*4
respectively. We will use the notation Id for the identity matrix in M“*? and denote by
SO(d) € M?*4 the set of proper rotations. The sets of symmetric and skew-symmetric
matrices are indicated by Mg,ﬁld and Mfkj“‘f , respectively. In what follows, we will use
the Frobenius scalar product between matrices, F : G := Tr(F TG) for F,G € M4*4,
and we will write | - | for the associated Frobenius norm. For every set S € R?, we
indicate by ys its characteristic function, defined as ys(x) = 1if x € S and ys(x) =0
otherwise. Given two sets S, S» C R?, we denote by S1AS, their symmetric difference.
Inclusions of sets §; C S5 are always understood to be up to sets of negligible measure,
ie., £4(S; \ S2) = 0. We denote by B,(x) the d-dimensional ball of radius p > 0 and
center x € R?. We say that a sequence { P;} of sets converges in measure to a set P as
& — Oif)(pe —> XP in L.

2. State-of-the-art, heuristics, and challenges

In this section we recall the state-of-the-art for sharp-interface limits in the theory of solid-
solid phase transitions, and for derivations of linearized models from nonlinear elastic
energies. We additionally highlight the main open questions and difficulties.

2.1. Models in nonlinear elasticity for two-well energies

To every deformation y € H'(2; R?) we associate the elastic energy
[ ey
Q

where W:M4*4 — [0, 00) is a map representing the stored-energy density, and satisfying
the following properties:
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H1 (Regularity) W is continuous.
H2 (Frame indifference) W(RF) = W(F) for every R € SO(d) and F € M4*4.

H3 (Two-well structure) W(A) = W(B) =0, where A =1Id and B =diag(1,...,1,1+«)
for k > 0.

H4 (Coercivity) There exists a constant ¢; > 0 such that
W(F) > ¢, dist*(F,SO(d){A, BY) forevery F € M%*?,

H5 (Quadratic behavior around the two wells) There exists i > 0 such that W is of
class CZ in
{F € M9*?: dist(F, SO(d){A, B}) < 8w}.

H6 (Growth condition from above) There exists a constant ¢, > 0 such that
W(F) < co dist?>(F,SO(d){A, B}) forevery F € M%*¢.

Assumptions H1-H5 are standard requirements on stored-energy densities in nonlin-
ear elasticity. We note that after an affine change of variables one can always assume that
the two wells have the form given in H3; see [34, Discussion before Proposition 5.1 and
Proposition 5.2]. Specifically, the choice ¥ > 0 amounts to the case of exactly one rank-
one connection between A and B, namely to the setting in which the only solution of
B—RA =a®vwith R € SO(d),a,v € R, and |v| = l is given by R = Id, v = ey,
anda = key.

We point out that assumption H6 is not compatible with the impenetrability condition
W(F) - oo as det F — 40, (2.1)

which is usually enforced to model a blow-up of the elastic energy under strong com-
pressions. In the derivation of sharp-interface limits for solid-solid phase transitions [26,
27,32], however, condition H6 is instrumental in the construction of recovery sequences.
(Note that, in dimension 2, by means of a more elaborate construction performed in [25],
assumption H6 may be dropped.)

In order to model solid-solid phase transitions, we analyze a nonlinear energy given
by the sum of a suitable rescaling of the elastic energy and a singular perturbation. For
every ¢ > 0, we consider the functional EEP: H?(Q; ]Rd) — [0, 00) defined by

1
EF(y):= = / W(Vy)dx + / Ps(V?y)dx, (2.2)
Q Q
where P, : R4*4*d 5[0, 00) is a function which depends on the small parameter ¢. In the
following subsections, we will specify the choice of P, according to different modeling
assumptions.

The parameter ¢ in the definition above represents the typical order of the strain,
whereas &2 is related to the size of transition layers [11, 13, 18,51, 58]. The first term
in the right-hand side of (2.2) favors deformations y whose gradient is close to the two
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wells of W, whereas the second term penalizes transitions between two different values
of the gradient.

In the following, we will call A and B the phases. Regions of the domain where Vy
is in a neighborhood of SO(d) A will be called A-phase regions of y and accordingly we
will speak of B-phase regions.

2.2. Review of existing results

We now continue by recalling some results about sharp-interface limits and derivation of
linearized models. The exact setting of the paper and our main results can be found in
Section 3. There, we will also recall a more recent result on sharp-interface limits which
we proved in [32], and which represents the departure point of our analysis.

A sharp-interface limit for a model of solid-solid phase transitions. Classical singu-
larly perturbed two-well problems are described by energies of the form

1
I(y) = —2/ W(Vy)dx+82/ [V2y|?dx (2.3)
2 Q Q

for every y € H2(Q2;R%), corresponding to the choice Ps(G) = 2|G |2, G € R4*dxd,
in (2.2). This subsection is devoted to a presentation of the analysis performed by S. Conti
and B. Schweizer [26] which addresses the sharp-interface limit of this model in dimen-
sion 2 as ¢ tends to zero. Although in [26] also the case of two rank-one connections is
considered, we focus here on compatible wells having exactly one rank-one connection
(see assumption H3).

Denote by %/ (£2) the class of admissible limiting deformations, defined as

() = U Yr(2), where
Reso(d) 2.4)
Yr(Q) ={y € H#I(Q;Rd):Vy € BV(R2; R{A, B})} for R € SO(d),

where H}(Q;R9) := {y € H'(Q;R?): f, y dx = 0}. For every open subset Q' C Q,
we will adopt the notation 2/ (€2’) to indicate the corresponding admissible deformations.
In [26, Proposition 3.2] the authors established the following compactness result.

Lemma 2.1 (Compactness). Letd € N, d > 2, and let Q2 C R4 be a bounded Lipschitz
domain. Let W satisfy assumptions H1-H4. Then, for all sequences {y®}, C H*(Q2;R?)
for which

sup I.(y°) < oo,

e>0

there exists a map y € % (2) such that, up to extracting a subsequence (not relabeled),

y® —][ ye(x)dx — y strongly in H'(Q2; R%).
Q
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The limiting deformations y have the structure of a simple laminate. Indeed, G. Dolz-
mann and S. Miiller [34] have shown that for y € ¥r(€2) the essential boundary of the set
T :={x € Q:Vy(x) € RA} consists of subsets of hyperplanes that intersect d2 and are
orthogonal to e, and that y is affine on balls whose intersection with 37 has zero #¢~1-
measure; cf. Figure 1 (see also Appendix A for the definition of essential boundary for a
set of finite perimeter).

Fig. 1. The gradient of a limiting deformation y € ¥14(2) in the case in which B — A = ke; ® ¢,.

. . o . . e 1 1 d
We now introduce the limiting sharp-interface energy. Denoting by Q := (-3, 5)
the d -dimensional unit cube centered in the origin and with sides parallel to the coordinate
axes, we consider the optimal-profile energy

Ko :=inf {liminfls(ye, 0): lim [|y® =y L) = 0}, (2.5)
e—>0 =0

where yaL eH!

loc

(R¥;R%) is the continuous function with Vy(')1r = AYix;>00 T BX{x <0}
and y; (0) = 0. (Here, y{x,>0) and y{x, <o} denote the characteristic functions of the two
halfplanes {x; > 0} and {x; < 0}, respectively.) Note that Ky corresponds to the energy
of an optimal phase transition from A to B, and that it is invariant under changing the roles
of the two phases, i.e., invariant under replacing yg' with the function y; € H!, (R?;R%)
satisfying yy(0) = 0 and Vyy = Bx(x,>0} + AX{x,<0}-

The sharp-interface limiting functional Io: L'($2; R?) — [0, o0] is defined as

KoHe 1 (Jy,) ify e Z(Q),
Io(y) = { g . (2.6)
o) otherwise.
In [26, Theorem 3.1] it was proved that, in the two-dimensional setting, Iy is the vari-
ational limit of the sequence {/.}. in the sense of I'-convergence. (For an exhaustive
treatment of I"-convergence we refer the reader to [16,29].)
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Theorem 2.2 (I'-convergence in dimension d = 2). Letd =2, let Q C R2 be a bounded,
strictly star-shaped Lipschitz domain, and let W satisfy H1-H4 and H6. Then

I'-lim I, = I
&—>0
with respect to the strong L'-topology.

We recall that an open set €2 is strictly star-shaped if there exists a point xo € €2 such
that

{tx + (1 —t)xe:t € (0,1)} C Q forevery x € 0LQ2. 2.7)

Here and in the sequel, we follow the usual convention that convergence of the continuous
parameter ¢ — 0 means convergence of arbitrary sequences {¢; }; with &; — 0 asi — oo
[16, Definition 1.45]. In [25], the same I"-convergence result as in Theorem 2.2 has been
obtained by dropping H6 via a more elaborate construction allowing one to incorporate
an impenetrability condition of the form (2.1).

The result in Theorem 2.2 is limited to the two-dimensional setting due to the lim-
sup inequality: the definition of sequences with optimal energy approximating a limit that
has multiple flat interfaces relies on a deep technical construction. This so-called H!/2-
rigidity on lines (see [26, Section 3.3]) is only available in dimension d = 2. We also refer
to a recent related study for microscopic models of two-dimensional martensitic transfor-
mations [50]. The issue of dimensionality has been overcome in [32] by considering a
slightly modified model; see Section 3.1 for details.

Linearization around the identity for multiwell energies. In the context of multiwell
linearization, R. Alicandro, G. Dal Maso, G. Lazzaroni, and M. Palombaro [3] investi-
gated a multiwell energy F,: H2(Q2; R?) — [0, 00) of the form

1
F.(y) := 8—2/S2W(Vy)dx+82_y"(r)/g|V2y|2dx (2.8)

for r €[1,2] and a suitable function y;:[1,2] — (0, 00), where for d =2 one has y,(r) =r
[3, (1.9)]. Here, the singular higher-order term penalizes transitions between different
wells in a stronger way with respect to (2.3). This corresponds to the choice P.(G) =
e277aM|G |2, G € R4*4*d in (2.2). In [3], the problem is studied in arbitrary dimension
for a finite number of different wells and under very general growth conditions for the
elastic energy and the second-order penalization. There, also the influence of external
forces, under different scalings of the singular perturbation, is thoroughly discussed. For
a simple exposition, however, we present only the basic case here and we specify the
result to our two phases A and B.

First, [3, Theorem 2.3] along with the well-known rigidity estimate in [42] yields the

following compactness result.

Lemma 2.3 (Compactness). Letd € N, d > 2, andr € (1,2]. Let Q C R4 be a bounded
Lipschitz domain. Let W satisfy assumptions H1-H4. Then, for all sequences {y®}, C
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H?(; RY) satisfying sup,. Fe(y°) < 0o we find rotations R® € SO(d), translations
£ € RY, and phases M€ € {A, B} such that

ys _ (RaMex +t8)
&

sup
>0

< Q.

‘WL’(Q)

Additionally imposing Dirichlet boundary conditions of the form y® = id + ¢g on a
part of the boundary with g € W1°(Q; R?) N H2(Q;R?), one can choose R® = Id,
t®* =0,and M® = A = Id in the above result; see [3, Theorem 1.8]. Additionally, one
can show that the volume of the set in which Vy, is close to B has small £2-measure.
This implies the uniform bound sup,..o [[u®||w1.r () < oo for the rescaled displacement
fields

4 y&—id
=—

(2.9)

In other words, for sequences with bounded F;-energy, Lemma 2.3 together with pre-
scribed boundary conditions ensures compactness in W17 for rescaled displacement
fields. We write the nonlinear energy in terms of the displacement fields by setting
ﬁg(u) = F,(id + eu) foru € H*(Q;R9).

Formally, the effective linearized energy Fo: W' (2:R¢) — [0, 00] can be calculated
by a Taylor expansion, and has the structure

@yin(1d, dx ifu e HY(Q;R?),
F()(u) — fQ hn( e(u)) X 1u . ( ) (210)
00 otherwise,
where Qjin: SO(d){A, B} x M%*4 ¢ [0, o0) is the quadratic form
112 .
Qiin(RM, F) := 3D"W(RM)F : F (2.11)

for every R € SO(d), M € {A, B}, and F € M?*¢_Note that frame indifference (see H2)

implies that the energy only depends on the symmetric part e(u) := %((VM)T + Vu) of

the strain; see (2.10). More generally, in view of H4, one can check that (cf. (5.3) below)
Qin(RM,SRM) =0 ifandonlyif R € SO(d), M €{A, B}, and S € M%*4

skew *

2.12)

The relation of I:"e and Fyp has been made rigorous by I'-convergence (see [3, Theo-
rem 1.9]).

Theorem 2.4 (Passage from nonlinear to linearized energies by I'-convergence). Let
deN,d>2andr e (1,2]. Let @ C R? be a bounded Lipschitz domain. Let W satisfy
assumptions H1-HS. Then
T-lim F, = F,
e—>0

with respect to the weak W " -topology.
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2.3. Phase transitions and linearization: Heuristics and challenges

Our goal is to combine the above two approaches and to identify a model which allows
both for phase transitions and for the passage to linearized energies in terms of rescaled
displacement fields. As a first observation, we note that the setting in (2.8) is more spe-
cific than the one considered in (2.3) in the sense that deformations with finite energy are
essentially in one phase, A or B; see Lemma 2.3. Imposing certain boundary conditions,
one can always infer that the same phase, e.g. A = Id, is predominant. Then it is indeed
meaningful to perform a linearization around the identity. This differs significantly from
the laminate structure of the limiting configurations obtained in Lemma 2.1, where differ-
ent phases may be active and phase transitions between the different phase regions occur
(see Figure 1). In (2.8), the second-order penalization is so strong that basically phase
transitions in the limit ¢ — 0 are forbidden. In the following, we discuss some of the chal-
lenges in more detail (we concentrate on the planar case d = 2 for simplicity), and then
describe the approach adopted in this work.

(a) Volume of the minority phase. In the model (2.8), the B-phase region, i.e., the set
where the deformation gradient Vy® takes values in a neighborhood of SO(d) B, denoted
by Ty in the following, has small &£2-measure. Heuristically, this property can be seen
as follows. From the boundedness of the energy and H4 one can deduce, for a suitable
definition of T}, that

H(8T5 N Q) < Clldist(Vy®, SO L2y I V¥ llL2@) < Ceer2(N/271 = g7/2,
(2.13)

where in the last step we have used y,(r) = r (see below (2.8)). (We refer to [32, proof
of Proposition 3.7, Step 1] for the details on the first inequality.) By the (relative) isoperi-
metric inequality we obtain

min {fz(Tg), 222\ Tg)} < Cée'.
Assuming that T} is the minority phase, i.e., the minimum is attained for T, we get
£2(TE) < Cé. (2.14)

This scaling of the area of the minority phase excludes phase transitions of the form given
in Figure 2 (a) where both £%(7}) and £2(2 \ T%) are bounded uniformly from below.
It is worth mentioning that the calculation (2.13) for the model (2.3) (corresponding to
r = 0) would give #'(dT}) < C. This reflects the fact that phase transitions in the limit
& — 0 are possible in that framework; see Lemma 2.1, Figure 1, and Figure 2 (a).

(b) Criticality of the scaling. For compactness of rescaled displacement fields u® =
(y® —id)/e (see (2.9)), we necessarily need :EZ(Tg) — 0 as otherwise |Vu?| — co on
a set of positive measure. More precisely, since |Vu®| ~ 1/e on T§, it turns out that the
bound in (2.14) is sharp for the uniform estimate ||Vu®|.r(@) < C (see Lemma 2.3 with
Rf =1d and M¢ = 1d).
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Fig. 2. (a) Illustration of the A- and B-phase regions of a deformation y¢ with finite energy (2.3)
in dimension d = 2. The shadowed regions, where a transition of the gradient between SO(2) A
and SO(2) B occurs, are horizontal reflecting the laminate structure of configurations with bounded
energy. For the energy (2.8), the phase transition at the lower boundary is possible, whereas the
transition in the upper part would lead to unbounded energies as ¢ — 0; cf. (2.13). (b) In the upper
part of the figure, we depict a minority island centered around a segment I', which may have length
~ 1 in the e1-direction, but width at most ~ &; cf. (2.15). Such a set necessarily has curved bound-
aries and is also penalized by the elastic energy in a neighborhood of the island. In the lower part,
the phenomenon described in (2.16) is illustrated.

Recall that (2.14) was derived from (2.13) via the isoperimetric inequality. One may
ask if this estimate is sharp, i.e., if the scaling §2772() = 277 of the penalization in (2.8)
is really necessary to obtain (2.14). For a small region near the boundary of 2 whose
boundary in €2 is a short straight line of length ~ &2 (see Figure 2 (a)) the scaling is
indeed critical. (We also refer to [3, Example 3.2].) As the interface between the two
phases is horizontal, such a transition is only realizable close to the boundary. For small
inclusions of the B-phase in the interior, so-called minority islands, this is impossible; see
Figure 2 (b).

(c) Minority islands. The situation for such minority islands is indeed quite different. In
dimension 2 and without a strong second-order penalization, merely under the assumption
that in a neighborhood N of the island the quantity [, |V2y¢| dx is smaller than a uni-
versal constant independent of €, S. Conti and B. Schweizer [26, Proposition 2.1] derived
the remarkable bound

L2(TE) < C/ dist(Vy®, SO(2){A, B})dx < Ce, (2.15)
Q

where the last step follows from the boundedness of the elastic energy. Roughly speak-
ing, they showed that minority islands, although possibly being long in the e;-direction
(the direction orthogonal to the rank-one connection), have width at most ~ ¢ in the
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e,-direction; cf. Figure 2 (b). Their result is indeed sharp in the sense that they provide
a configuration with a minority island of length ~ 1 and width ~ ¢ such that the energy
(2.3) is bounded uniformly in &; see [27, Remark 6.1]. A d-dimensional analogue has
been provided in [32, Remark 3.9].

(d) Internal jumps. This phenomenon excludes compactness in W™ for every r > 1,
even if for a sequence {y®}, there is only a single minority island of width ¢ in the e,-
direction around a 1-dimensional horizontal set I'. Indeed, in that scenario the strain |Vu?|
of the rescaled displacement fields u® (see (2.9)) would scale like 1/¢ on a set of &£2-
measure ~ &, and one could expect no Sobolev compactness. On the contrary, it would
be natural for u® to converge to an SBV function which jumps on I'. In the following, we
will refer to the setting described above as that of internal jumps. We again recall that this
issue is excluded in the model (2.8) by the bound (2.14).

(e) Double phase transitions. A similar phenomenon may occur in the presence of a
B-phase layer with width w, ~ ¢ as indicated in the lower part of Figure 2 (b) which corre-
sponds to two ‘consecutive phase transitions’. Heuristically, denoting by y7 (x'), y® (x’),
u% (x'), and u® (x') the traces of y® and u® on the upper and lower boundary (with respect
to the e,-direction) of such a layer, one expects that y% (x') ~ y® (x’) + w¢Bey, and thus

VLX) =) —weer . we(B — A)ez
m = lim ———~=

1' & / _ ¢ / — l
SI_I;[})(M+(X ) —u=(x) sl—>0 e e—0 €
= K lim —Ze,, (2.16)
e—>0 ¢

where we recall (2.9) and the fact that (B — A)e; = ke, (see H3). Consequently, the
limiting function would jump with constant jump height « limg ¢ “£e,. Interestingly, the
jump height is essentially determined by wy, i.e., by the width of the B-phase layer. Let us
also mention an additional problem occurring if we > ¢: in this latter setting the sequence

of rescaled displacement fields would not even converge to an SBV function (cf. (2.16)).

The perspective of the present work. The goal of the present contribution is to over-
come the above mentioned issues. In particular, building upon a novel two-well rigidity
estimate proved in [32] for a model augmented by a suitable anisotropic second-order
penalization (see Section 3.1), we will introduce a generalized definition of the rescaled
displacement fields which takes into account the presence of the two phases A and B in
different parts of the domain. Roughly speaking, these displacement fields will measure
the distance of the deformations y? from suitable rigid movements which may be different
on the components of a partition of 2 induced by the A- and B-phase regions. This more
flexible definition will allow us to carry out the following tasks in any dimension d > 2:

e derive a linearization result for configurations where both phases are present, in partic-
ular where phase transitions occur;

e obtain compactness results in a piecewise Sobolev setting for generalized rescaled dis-
placements, despite the presence of minority islands with macroscopic length;
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e identify an effective limiting model comprising linearized elastic energies and contri-
butions for single and double phase transitions.

In our investigation, however, we do not take the presence of internal jumps into account
for this would lead to a considerably more involved limiting energy; see Remark 3.10 for
a discussion in that direction. From a modeling point of view, this amounts to excluding
the presence of minority islands of width ~ ¢ (see Figure 2 (b)), whereas minority islands
of width « ¢ are allowed. In our model, this will be achieved by considering a suitable
anisotropic second-order penalization.

3. The model and main results

In this section we introduce our model with a refined singular perturbation, state the rigid-
ity estimate proved in [32], and present our main results.

3.1. A model with a refined singular perturbation and its sharp-interface limit

In this subsection we present the exact mathematical setting of this paper and recall our
previous work [32]. We analyze a nonlinear energy given by the sum of the nonconvex
elastic energy, a singular perturbation, and a higher-order penalization in the direction
orthogonal to the rank-one connection. To be more precise, for all €, n > 0, we consider
the functional

1
Ban0)i= 5 [ WO ar+e® [ [F3yRds 7 [ (95P =103, s
3.1)

for every y € H?(2;R?). This corresponds to the choice

d
PG) =GP +n*) . > |Gl GeRV,

=1 (jk)ell,....d}>%,
(.k)#(d.d)

in (2.2). Note that (3.1) coincides with the energy functional in (2.3) when n = 0. In what
follows, we will study the asymptotic behavior of the energies

e = Eej, 4, (3.2)
where {7, 4 }¢ is defined by
feq = e 17D with  a(d) == 1/2d). (3.3)

We refer to Remark 3.1 below for details on the choice of the parameter. We denote
the restriction of &, to a subset Q' C Q by &.(y, '). In [32, Proposition 4.3, Theo-
rem 4.4, and Remark 4.5] we have shown that the asymptotic behavior of the energies &,
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is described (via I'-convergence in the strong L!-topology) by the sharp-interface model
Eo: L1 (Q;R?) — [0, oc] given by

K#HIV(Jy,) ify e (Q),
Eo(y) = { g . (3.4)
00 otherwise,
where the optimal-profile energy is defined by
o . T + _
K := inf {hggf&(yg, Q): lim [1y* = yg L1y = 0}- 3.5)

Here, QO = (—1/2,1/2)? again denotes the d-dimensional unit cube centered at the
origin, yO+ was defined below (2.5), and for the definition of %' (2) we refer to (2.4).
Note that (3.5) is the counterpart to (2.5) for the model in (3.1). From the definition
of the optimal-profile energy and the fact that the penalization in (3.1) (with n = 7, 4)
is stronger than the one in (2.3), we deduce the inequality K > Kj. As pointed out in
[32, Remark 4.5], the additional penalization term in (3.1) with respect to (2.3) does not
affect the qualitative behavior of the sharp-interface limit, only the constant in (3.5) may
change. Moreover, the fact that 7, ; < ¢! guarantees that, asymptotically when passing
to a linearized strain regime, the resulting model does not feature second-order deriva-
tives; see [32, Introduction] and Remark 3.12 below.

We mention that anisotropic singular perturbations have already been used in related
problems; see e.g. [52, 67]. In the present context, the role of the perturbation is twofold:
(1) It allows us to use the two-well rigidity estimate proved in [32]; see Theorem 3.2
below. (2) As discussed at the end of Section 2.3, the penalization simplifies the analysis
by excluding the formation of internal jumps for limiting displacement fields; see Remark
3.10 below for more details. We remark that this anisotropy is the reason why we study
the case of exactly one rank-one connection.

Remark 3.1 (Choice of the penalization constant). We briefly mention that the result
in [32] is slightly more general in the sense that it also holds for penalization constants
{Ne.d}te With ng g <K 1.4 (see [32, (4.5)]), i.e., our choice of the penalization constant here
is ‘less sharp’. For the sake of simplicity rather than generality, we prefer to work with
(3.3) since it simplifies many estimates in the following. (In particular, the statement of
the rigidity estimate in Theorem 3.2 below becomes simpler.)

Let us now recall the two-well rigidity result which is the fundamental ingredient for
the proof of the aforementioned I'-convergence result and, at the same time, is instru-
mental in our work. More precisely, in the present paper, besides yielding properties on
optimal sequences in (3.5) necessary for deriving the sharp-interface limit, this estimate
plays additionally a pivotal role for showing compactness of sequences with equibounded
energies and for providing an optimal lower bound for the asymptotic behavior of the
sequence {&.}.. We present here a slightly simplified version of [32, Theorem 3.1] with
p = 2 and 7, 4 in place of .
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Theorem 3.2 (Two-well rigidity estimate). Let Q2 be a bounded Lipschitz domain in R?
with d > 2, and let {ij¢ q}s be as in (3.3). Suppose that W satisfies HI-H4. Let E > 0.
Then for each Q' CC Q there exists a constant C = C(Q, Q’,«k, ¢y, E) > 0 such that
forevery y € H?(Q2;R?) with §;(y) < E there exist a rotation R € SO(d) and a phase
indicator ® € BV(Q2;{A, B}) satisfying

IVy — R®| 20y < Ce and |DD|(RQ) < C. (3.6)

Additionally, the choice of the rotation R and the phase indicator ® is independent of the
set Q' CC Q. If Q is a paraxial cuboid, (3.6) holds on the entire domain 2 for a constant
C =C(R2,k,c1,E)>0.

We point out that the result in [32, Theorem 3.1] is more general. Indeed, it is stated
for any n > ¢ and for a range of integrability exponents. The present version for the
choice n = 71, 4 is the counterpart of the simplified version [32, Theorem 1.1] on general
bounded Lipschitz domains, and for a nonsharp choice of a(d). We refer to [32, Sec-
tion 3] for additional motivation for this estimate, in particular for a comparison with
other quantitative rigidity estimates for multiwell energies. We also stress that the phase
indicator @ is actually in SBV(2;{A, B}), for it is piecewise constant on the various parts
of the domain.

The focus of this contribution is on a I'-convergence analysis of the energies &; in a
topology different from the one specified above. It will lead to a limiting model simultane-
ously keeping track both of sharp interfaces between the two phases and of linearization
effects. The precise topology for our I'-convergence result is detailed in Section 3.2 below,
and the I'-limit is presented in Section 3.4. Due to the necessity of linearizing nonlinear
elastic energies, we additionally need a local Lipschitz condition for the construction of
recovery sequences: besides assumptions H1-H6 stated in Section 2.1, we also require

H7 (Local Lipschitz condition) There exists a constant c3 > 0 such that
\W(F1) = W(F2)| < c3(1 + |Fi| + | F2|)|[F1 — F5|  forall Fi, F, € M%7,
Moreover, for simplicity we will assume that

H8 (Geometric condition) For all # € R the set 2 N {x; = t} is connected (whenever
nonempty).

The latter condition is only needed for the compactness result in Theorem 3.3 and could
be dropped at the expense of more elaborate arguments; see Remark 4.3 for details.

3.2. Compactness

This subsection is devoted to our main compactness result. Our approach consists in
decomposing sequences {y®}, of deformations with equibounded &.-energies into the
sum of two parts:
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(a) Piecewise rigid movements, where ‘piecewise’ refers to associated Caccioppoli par-
titions induced by the A- and B-phase regions. These converge to the limit y of the
deformations {y®}..

(b) Displacements, rescaled by &, whose strain is equibounded in L2. These converge to
a limiting displacement field, which is piecewise Sobolev, with possible jumps with
normal in the e;-direction.

In order to formulate the main result of this subsection, we need to introduce some nota-
tion. Denote by &2(£2) the following collection of Caccioppoli partitions of Q2:

P(Q) = {:P = {P;}, partition of

Jarine c [ J®I x {s;}) N Q for {s;)i R}. 3.7)
J ieN

We point out that the partitions can be finite or may consist of countably many sets. (For
simplicity, we do not specify the index set corresponding to the indices j.) The definition
above implies that | J f dP; N Q consists of subsets of hyperplanes orthogonal to e, which
extend up to the boundary of €2. Note that every Caccioppoli partition on the bounded
domain €2 induces an ordered one just by a permutation of the indices. For this reason,
throughout the paper we always tacitly assume that partitions are ordered. We will say that
P? — P inmeasure as ¢ — 0 if ype — yp in L. Let % (Q) be the set of displacements
whose jump sets are the union of countably many subsets of hyperplanes orthogonal to e,
ie.,

UQ) = {u € SBV2 (Q:R%): J, C U(Rd—l x {s;}) N for {s;}; C JR}. (3.8)
ieN

For basic properties of Caccioppoli partitions and SBV functions we refer to Appendix A.
In particular, the essential boundary of a set is indicated by 0*. For sets Q' C Q and
S C @, we denote by 4 (S) the orthogonal projection of S onto the e,4-axis, and define
the layer set

Lo(S) = Q' N R x 74(8)). (3.9)

We now state our main compactness result. Recall the definition of ¥z (€2) in (2.4).

Theorem 3.3 (Compactness). Let Q@ C R? be a bounded Lipschitz domain satisfying HS.
Assume that W satisfies assumptions H1-H4, and let {y®}; C H*(Q;R?) be a sequence
of deformations satisfying the uniform energy estimate

sup E.(y°%) < Cp < 0. (3.10)

>0

Then, up to extracting a subsequence (not relabeled), the following holds:
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(a) (Piecewise rigidity) There exist Caccioppoli partitions ¢ := {P}}; of 2 such that
Fed-1 (U 8*Pjs> <cC, (3.11)
J

> min{£4(Q' N Pf). £ (Lo (P))\ Pf)} < Care?  forevery Q' CC Q.
j (3.12)

forsome p = p(d) € (1,2), where C depends only on Cy and 2, and Cgy additionally
on Q. There exist associated rotations R® € SO(d), as well as collections M*® :=
{Mf}j of phase indicators, with Mf € {A, B} for all j and &, such that

<Cqe foreveryQ CC Q. (3.13)

sup
e>0

&€ & &
‘vy - Z R M] XPJS Lz(Q’)
J

(b) (Limiting deformation and partition) There exist a limiting rotation R € SO(d), a
limiting deformation y € Yr(R2), and a limiting partition = {P;}; € P (Q) such

that
R® — R, (3.14)
Pf — P; in measure for all j, (3.15)
e —][ ye(x)dx — y strongly in H'(Q;R?), (3.16)
Q
> RMS xps = Vy  weakly* in BV(; Mé*4y, (3.17)

J

(c) (Displacements) There exist collections T° := {tf}j C R9 of constants, associated
to P¢, such that

ltf — 17|
1 00 foralli # j with £4(P;), £9(Pj) > 0, and lim M = lim M7,
£—> £—>

(3.18)
and defining the rescaled displacement fields associated to P¢, M¥, T¢, and R® by

yE =D i(REMFx +17)xpe
ut = ! 8" Chdil iy (3.19)

there exists u € % (2) such that

u® — u in measure in Q, (3.20)

Vu® — Vu  weakly in L2_(2; M?*%). (3.21)

loc

In view of our compactness result, sequences of deformations having equibounded
energies decompose into the sum of piecewise rigid movements with gradients
Zj RSMJt9 xPes reflecting also the different phases A and B, and scaled SBV-

displacements u® whose gradients are uniformly bounded in L3 _(2; M4*4)  Let us

comment on the compactness result and on some of the proof ideas.
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The definition of the piecewise rigid movements, as well as (3.11)—(3.13), follow from
the geometric two-well rigidity result recalled in Theorem 3.2. In particular, (3.12) shows
that each component has either small volume or coincides (up to a small set) with a ‘layer’
of . (We also refer to Figure 4 below for a 2d illustration.) At this point, the passage
to subdomains is necessary and in (3.13) we control the quantities only in Lﬁm (cf. (3.6)).
If Q is a paraxial cuboid, this passage can be avoided; see Remark 4.3 for details in
that direction. Let us also emphasize that the rotation R® is defined globally, i.e., it is

independent of the components of the partition J¢.

Standard compactness results (see Theorem A.1) imply (3.14)—(3.15), whereas (3.16)
follows from Lemma 2.1, and for (3.17) we also take (3.13) into account. The global
point of view for phase transitions given in Lemma 2.1 is combined with a local one in
(3.18)—(3.21): the Caccioppoli partitions play the role of identifying subdomains where
the small-strain displacement fields defined in (3.19) satisfy good compactness properties
(3.20)—(3.21).

In this context, condition (3.18) represents a selection principle for the Caccioppoli
partitions. (Note that limg_¢ M,f for k =i, j is well defined by (3.14), (3.15), and
(3.17).) Loosely speaking, it implies that two regions of the domain in the same phase, say
phase A, are represented in the limit by two different sets P; and P; if and only if along
the sequence {§°}, there is a layer contained in the B-phase region lying between P/
and Pf whose width is asymptotically (as ¢ — 0) much larger than ¢ (cf. the discussion
below (2.16)). We emphasize that, without the selection principle (3.18), there might be
different possible choices for the limiting partition, as the following example shows.

Example 3.4 (Nonuniqueness of limiting partition). The choice of different partitions at
level ¢ has an effect on the limiting description identified by the tripling of the variables.
In particular, different e-decompositions determine different limiting displacements and
Caccioppoli partitions, which may contain a different ‘amount of information’. To clarify
this, consider the following two-dimensional example. (For related examples, we refer to
[38, Example 2.5] or [37, Example 2.4]). Let

Q=1(0,1)x(0,2), 1 =1(0,1)x(0,1), K =1(0,1)x(1,2)
and fore > O0and / € {1/2, 1,2} consider the sets
QY = Dx1-e. 1+, @ =\, o =\

We define three different example sequences according to the value of [: first, define
7ol € H'(2:R?) by

X, X € Qi’l,
is’l(x) :=1{ Bx—k(1—¢)e,, xe¢ Qg’l,
X + 2kéles,, x € Q;’l,

for every x € €2, where « is given in H3, and then

1
yohi= 50 /),
&
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where ¢: R? — R? is a standard mollifier with supp(¢) C B;(0). One can check that
SUP,g~g &e( y#!) < 00. There are two natural alternative decompositions of the maps y&*,
namely

(1) yo! = (R MP x4+ 17" f pes + eud,
1

3
@ yo! = S RN x 0y pra ettt
j=1

where R/ = R®! = Id and the Caccioppoli partitions, phases, and constant translations
are defined as

(1) pf” =Q, Mf’l = A, tf’l =0,
/\s’l _ 8,1 A g,l _ 9 S,Z _ 9 S,l —
@ PPT=Qp, M =M =4, M7 =B,
it =0, &' =2keley —be, &5 =—k(1-e)es,

respectively, where b € R? is some arbitrary translation. This leads to the different limiting
displacement fields and Caccioppoli partitions

(1) w' =0y, +s'eaxa,, Pl =2,
@ @' =0-xq, +bya,. Pl=Qi. Pj=Q, Pi=0.

where s! 1= 2« limg_sq e=1forl e {1/2,1,2}.

In case (2), where the sets 21 and €2, are split in the limiting partition, the limiting
displacement does not provide any information on the behavior of the deformations at the
e-level. Note that the translation b € R? just expresses the nonuniqueness of the limiting
configuration and does not have any physically reasonable interpretation; see Proposi-
tion 3.6 below. On the contrary, in case (1) the jump height of the limiting displacement
on 921 N €2, provides information on the width of the intermediate layer Qg’l where the
deformation is in phase B: The jump heights s = 0 and s' = 2« express that the width
is of order < ¢ and ~ &, respectively. As s'/2 = 0o, we observe that u'/2 ¢ %/ (Q). Thus,
alternative (1) is not allowed in the case / = 1/2 and the sets 21 and €2, have to be split
in the limiting partition. The observation that coarser partitions provide more information
suggests defining the partition ‘as coarse as possible’. This intuition is exactly reflected in
the selection principle (3.18): for [ = 1,2 we apply case (1) and only for / = 1/2 do we
apply case (2). ]

As a consequence of Theorem 3.3, we introduce the following notion of convergence.

Definition 3.5. (i) We say that a sequence {y®}. of deformations is asymptotically rep-
resented by a limiting triple (v, u, P) € #(Q) x % () x L (), and write

e = (y.u, P),

if there are sequences { R®}¢, {P*}e, {M*}¢, and {T %}, such that (3.11)—(3.21) hold.
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(i) We call a sequence {(R?, P, M?, T°)}. of quadruples admissible for {y®}. if
(3.11)—(3.21) are satisfied.

(iii) We call a triple (y, u, P) € ¥ () x % (2) x L (L) admissible for {y®}. if {y®}.
is asymptotically represented by (y, u, P).

Although we use the notation — and call (y, u, ) a limiting triple, it is clear that
Definition 3.5 cannot be understood as convergence in the usual sense. In particular, a
specific feature of our limiting model is that in the limit ¢ — 0 a tripling of the variables
occurs. Another crucial aspect is that along the sequence a characterization in terms of
quadruples is needed. Let us highlight the relation between the quadruples and the limiting
triples: the deformation y € #/(2) is determined by the rotation R®, the partitions P?,
and the phases M? (see (3.17)). For the displacement field u we additionally need the
translations 7¢ (see (3.19)—(3.20)). Finally, the limiting partition & is directly related
to P by (3.15).

We will now proceed with a more specific characterization of the admissible limiting
triples for a sequence {y®}..

3.3. Characterization of admissible limiting triples

In this subsection, our aim is to give a complete characterization of all limiting triples
(y,u, #) which are admissible for a sequence {y®}, considered in Theorem 3.3. This, in
turn, specifies the domain of our effective energy discussed in the next subsection. Below
we will see that the choice of the deformation y and the partition & is unique. On the
other hand, however, we see that u is not determined uniquely:

Consider admissible quadruples {(R?, P¢, M?, T¢)}, for a sequence {y®}, which is
asymptotically represented by a triple (y,u, ), where 7¢ = {¢/};. Then, we find another
sequence {(R®, PE,ME, ’J%)}s of admissible quadruples by setting Rt = exp(—eS) R? for
S e Méxd, PE =P, ME= M, and T¢ = {f;}, with fjs = 1} — et for some f; € R4
for all j. (Here, exp denotes the matrix exponential.) In view of (3.17) and (3.19)—(3.20),
a short computation shows that this sequence of quadruples will give the limiting triple

(y, 0, P) with

u(x) =u(x) + ij)(})j (x) + SVy(x)x forall x € Q. (3.22)
J

To take this ambiguity of the limiting description into account, for a given deformation
y € #(2) and a given Caccioppoli partition = {P;}; € £?(2), we introduce the set

skew

Ty, P) = {T: Q- R T(x) =Y txp, (x) + SVy()x, 1; e RY, S € ded}
J (3.23)

of corresponding piecewise translations combined with global infinitesimal rotations. We
obtain the following characterization.
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Proposition 3.6 (Characterization of admissible limiting triples). Let {y®}. be a sequence
as in Theorem 3.3. Let (y', u', P1) and (y?,u?, P?) be two admissible triples. Then the
following assertions hold:

() y!' = y?and P! = P? (up to possible reorderings of the sets).
(ii) There exists T € T (y', P = T(y2, P?) such thatu' —u? = T.
(iii) Foreach T € T (y', PY), the triple (y',u' + T, P1) is admissible.

Property (i) states that the limiting deformation is uniquely determined. This fol-
lows from (3.16). The corresponding property for the partition is a consequence of the
selection principle in (3.18). Without such a condition other choices are possible; see
Example 3.4 for more details. Property (ii) states that the admissible displacement fields
for a sequence {y®¢}. are determined uniquely up to piecewise translations and a global
(infinitesimal) rotation. This nonuniqueness has been illustrated in (3.22).

The next result characterizes the jump sets involved in admissible limiting triples.

Proposition 3.7 (Admissible limiting triples; jump set and partition). Let {y®}. be a
sequence as in Theorem 3.3. Then for each admissible triple (y,u, $) in the sense of
Definition 3.5, we have
Jvy c| JopnQ.
J

There are examples of sequences {y®}¢ such that the inclusion is strict.

The fact that the inclusion may be strict can be seen in case (2) of Example 3.4
(corresponding to [ = 1/2). We also note by Proposition 3.6 (iii) that there is always
an admissible displacement field u with |_J ;0P N Q C Jy. This inclusion might be strict;
see case (1) in Example 3.4 with [ = 1. We proceed with a result which specifies the jump
heights of admissible limiting displacement fields. For u € % (L2), the normal on J,, is
given by v, = e;. We denote by u™ and u™ the corresponding one-sided limits of u and
welet [u] :=ut —u~.

Proposition 3.8 (Admissible limiting displacement fields; jump heights). Let (y, u, )
be an admissible triple in the sense of Definition 3.5 and let R € SO(d) be such that
y € Yr(Q). Then

() [u](x) is constant for H? -a.e. x € (R~ x {t}) N Q for all t € R with J,, N
RO~ x {t}) # 9,
(i) [u](x) € [0,00)Req for H¢ '-a.e. x € (Jy \ U; 9P)) N{Vy = RA},
(iii) —[u](x) € [0,00)Reg for H " -a.e. x € (J, \U; 3P;) N{Vy = RB}.
Roughly speaking, property (i) is a consequence of the geometry of the A- and B-

phase regions induced by the rigidity estimate. We refer to (3.12) and to Figure 4 for an
illustration. We also refer to the discussion on the jump height in (2.16). In particular,
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(i) implies that the jump set consists of subsets of hyperplanes orthogonal to ¢4, which
extend up to the boundary of 2. Some intuition for point (ii) has been provided in (2.16);
see also case (1) in Example 3.4 with / = 1. Point (iii) is similar by changing the roles of
the phases A and B. Note that (ii) and (iii) are well defined by Proposition 3.7.

limiting displacements outside the boundary of the limiting Caccioppoli partitions. The
fact that in case (2) of Example 3.4, instead, a jump term occurs along a general direction
b € R? is not in contradiction with the result above, for the jump described in case (2) of
Example 3.4 happens on the boundary of one of the sets forming the limiting Caccioppoli
partition and, as such, can be characterized as an element of the set .7 (y, &) in (3.23).

Definition 3.9. In view of Theorem 3.3, Proposition 3.7, and Proposition 3.8, we intro-
duce the set of admissible limiting triples

A= {0, P) € H(Q) x U(@) x 2(Q): Jvy < | Jop; N @,

J=1

u satisfies (i)—(iii) in Proposition 3.8}.

Remark 3.10 (Internal jumps). As discussed already heuristically in Section 2.3, the
choice of the penalization factor (3.3) simplifies the analysis by excluding the forma-
tion of internal jumps for limiting displacement fields; see Proposition 3.8 (i) and the
upper part of Figure 2 (b). This allows us to formulate our limiting model for displace-
ments in a piecewise Sobolev setting. Let us mention that without such a requirement
the domain of the limiting model is expected to be the space of generalized functions of
bounded variation, GSBD?(2), introduced in [30], with an additional constraint on the
jump sets of admissible functions. Note that this phenomenon is not just a technical math-
ematical issue, but is related to branching, i.e., to the presence of microstructures near
interfaces; see e.g. [19,23,33,52,67]. Particularly, see [23] for a simplified scalar model
in SBV addressing the low volume-fraction of one phase, and dealing with the problem
of internal jumps. (We also refer to [33] for some extensions to a vectorial model in the
geometrically linear setting, and to [22] for a corresponding scaling law in the case of a
martensitic nucleus embedded in an austenitic matrix.)

3.4. The effective limiting model and T"-convergence

This subsection is devoted to the identification of the effective limiting model. We start
by introducing the limiting energy functional. We preliminarily recall that, in view
of assumption HS5, the stored energy density W is C? in a neighborhood of the set
SO(d){A, B}. We also recall the quadratic form @y, defined in (2.11), Definition 3.9,
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and the asymptotic optimal-profile energy in (3.5). We define the functional
8r0.u, P) = / Qi (Vy. Vi) dx + KH4 ™ (Jv,)
Q

42K Jed1 ((Ju U (U aP; N Q)) \ va) (3.24)
J

for every (y,u, $) € 4. Note that the elastic term is well defined as Vy(x) € SO(d){A, B}
fora.e. x € Q.

We briefly compare this energy to the limiting models in Section 2.2 and explain the
relation to &, introduced in (3.2). First, the elastic energy is more general than the one in
(2.10) as it accounts for the two different phases indicated by Vy. Moreover, in contrast
to (2.6), the functional contains two surface terms: the jumps of Vy represent the energy
associated to single phase transitions between A- and B-phases, already appearing in
(2.6). The second surface term corresponds to two ‘consecutive phase transitions’, i.e.,
two transitions with a small intermediate layer whose width vanishes as ¢ — 0, which
remain undetected by y. More generally speaking, by relaxation in the limit &¢ — 0, the
first term (single transition) and the second term (double transition) effectively correspond
to an odd and an even number of consecutive phase transitions, respectively; cf. Figure 3.
Note that the second surface term enters the energy with double cost with respect to single
phase transitions. This term itself has two contributions: recalling the selection principle
for the partition in (3.18), small intermediate layers of width ~ & are associated to J,, in
the limit ¢ — 0, and layers with asymptotically much larger width are encoded by the
partition #. Layers of width < ¢ do not affect the limiting energy. This is illustrated in
Example 3.4.

Remark 3.11 (Comparison with (3.4)). We point out that the topology in which the
convergence of the energies occurs is the key difference between the limiting energies
identified in [26,32] and in (3.24). In fact, when considering a sequence of deformations
admitting a given asymptotic representation in the sense of the tripling of the variables,
we are imposing stricter conditions on the sequence than just its L!-convergence, for we
also prescribe the behavior of rescaled displacements. For this reason, the value of (3.24)
is, in general, greater than that of (3.4).

The difference in the limiting structure of the energy is essentially due to the refined
rescaling of the displacements considered in this article. Indeed, in contrast to [26,32], by
considering suitably rescaled displacements and keeping track of the associated Cacciop-
poli partitions, we are able to perform a finer analysis and to encode more features in our
limiting model. A special feature of the tripling of the variables convergence considered
here is that it allows one to simultaneously keep track of limiting behaviors arising on
different scales: both from a global point of view, encoded by the surface term associ-
ated to the jump set of the gradient of limiting deformations, and from a local point of
view associated to the limiting displacements and partitions, and described instead by the
linearized elastic energy and by the additional surface term.
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(a) (b)
A wel /T B\
w? A
wil, B \ wtl, B \
A A
(©)
wg /S~ B\
w? A
wll, B \
wE8 1 A
B

Fig. 3. Illustration of situations corresponding to even and odd numbers of consecutive phase tran-
sitions. We assume that wé — 0 as ¢ — 0 and that liminf,_,¢ wé/e >0fori =1,...,8. The
shaded regions describe the areas in which the phase transitions occur. (a) We depict here the case
of two phase transitions: the intermediate phase has infinitesimal width wgl and thus disappears in
the limit. Its presence at level ¢, though, still affects 864’. Indeed, in the second surface term, the
length of the interface between the two limiting A-regions will enter the energy with density 2K.
(b) The case of three intermediate phases is depicted. Although being different from (a) on level ¢,
this situation leads to the same effective energy. In this sense, two intermediate phases ‘compensate
each other’ in the limit. Note that the jump height of the limiting function is determined by wg
and wg only. (c) We illustrate here the situation of five phase transitions: the energy contribution is
accounted for in 86"‘ by the first surface term, i.e., the length of the interface between the limiting
A- and B-regions, reflected by Jv, will enter the energy only with density K.

Remark 3.12 (Second-gradient terms). The effective model described in (3.24) does not
contain second-gradient terms, neither in y nor in u. Indeed, the choice 7, 4 K ¢! guar-
antees that the effects of higher-order contributions, in particular of their anisotropic part,
enter the limiting energy only in terms of the value of the constant K, but no dependence
on second-order derivatives persists in the model after the limiting passage.

The main contribution of this paper consists in showing that the sequence {&,.}; is
asymptotically described by &%, in the sense of I'-convergence in the topology intro-
duced in Definition 3.5. As a preliminary observation, we note that the limiting energy is
invariant under changes of the asymptotic representative.
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Remark 3.13 (Energy invariance for different asymptotic representatives). Suppose that
a sequence {y®}, is asymptotically represented by two triples (y!,u!, 1), (y2,u?, $?)
in +. Then 85’"(y1, ul, 1) = 86”"(y2, u?, 2). This follows from (2.12), (3.23), Propo-
sition 3.6, and (3.24).

Our first result shows that 86’4’ provides a lower bound for the asymptotic behavior of
the energy functionals {&,}..

Theorem 3.14 (I'-liminf inequality). Let Q C R¢ be a bounded Lipschitz domain satisfy-
ing HS8. Let W satisfy assumptions H1-H5, let (y,u, P) € A, and let {y®}, C H*(Q2;R%)
be such that y¢* — (y,u, P). Then

liminf & (y%) > & (v, u, P).
e—0

Our second result is the proof that the lower bound identified in Theorem 3.14 is opti-
mal. For the construction of recovery sequences we need slightly stronger assumptions:
we require that the set is strictly star-shaped (see (2.7)), we assume H6 and H7, and we
need a specific condition for the asymptotic optimal-profile energy. In order to state our
result, we need some additional notation. Define the set of sequences

Wy = {{wg}g: we € (0,00), wg — 0, limi(l)lfwg/s > 0}, (3.25)
E—>
and define the functions

Vap = €dX{xg>0} Vi = —€d {xg>0}- (3.26)

For M € {A, B}, we introduce the double-profile energy

Ké‘g :=sup sup inf {limsup E:(y%, O’ x (=h, h)):
h>0{ws}s€W, e—0
y&E—Mx

— yé‘g in measure in Q' x (—h, h)}, (3.27)
We

where (here and in the following) Q' := (—1/2,1/2)4~1 ¢ R4~'. We defer a discussion

of the definition of K é‘l’)’ , and proceed with the I"-limsup inequality.

Theorem 3.15 (I'-limsup inequality). Let Q@ C R? be a bounded, strictly star-shaped,
Lipschitz domain in R? satisfying H8. Let W satisfy assumptions H1-H7, and suppose
that K&‘:} = K(ﬁ = 2K. Let (y,u, P) € A. Then there exists {y®}s C H?*(2; R?) such
that y¢ — (y,u, P) in A, and

limsup & (y°) < €2 (. u, P).
e—>0
The notion of strictly star-shaped sets will allow us to reduce the constructions to
the case of finitely many phase transitions, similarly to [26]. The additional assumptions
H6 and H7 are instrumental in controlling the nonlinear elastic energies of the recovery
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sequence, whenever the gradient is away from the two wells. We now address definition
(3.27) and explain the condition Ké‘]ia = K(f; =2K.

First, in order to understand the role of the sequences ‘W, defined in (3.25), recall the
setting in Figure 3 (a). The case in which, locally at level ¢, two portions of the domain in
the same phase are separated by an intermediate region in the opposite phase, is reflected
by an energy contribution in the limiting functional 85‘" whenever the width of the ‘inter-
mediate layer’ behaves asymptotically as one of the sequences in ‘W;. We recall that, if
liminf,—o we/€e € (0, 00), this is encompassed by the jump set of the limiting displace-
ment u, whereas the opposite scenario is captured by the limiting partition 5.

Intuitively, the value K 3‘110 in (3.27) provides an upper bound for the energy of an opti-
mal profile which contains two phase transitions, first from A to B and then from B to 4,
with an intermediate layer in the B-phase of width {w,}. (see Figure 3 (a)). The interpre-
tation of K 53 is the same after interchanging the roles of the phases. The compatibility
condition K é‘; =K (ﬁ = 2K is needed in the construction of recovery sequences. On the
one hand, it seems a natural condition as K and K (ﬁ), K cff) correspond to the case of one
and two phase transitions, respectively. On the other hand, for general densities W we are
able to prove only one inequality, and the other inequality only under extra assumptions
on W. More precisely, we have the following.

Proposition 3.16 (Relation of K, K¢, and K : inequality). The values K, K, and K

introduced in (3.5) and (3.27) satisfy min {K(ﬁ), K(g} > 2K.
We now discuss an additional assumption on W which implies equality. Assume that
the energy density additionally satisfies

W(F) > W(d + (|Feg| — 1)eqq) forall F e M9, (3.28)

As we will show in Lemma 6.16, this condition ensures that optimal profiles are one-
dimensional. It can be understood as a generalization of condition (H3) in [24] where
one-dimensionality of profiles has been discussed for a two-well problem without frame
indifference. Note that this condition is compatible with frame indifference. A model
case is a situation where the energy only depends on the distance of the two wells, i.e.,

W(F) = ¢(dist(F, SO(d) A), dist(F,SO(d)B)) forall F € M?*, (3.29)

where ¢: [0, 00)2 — [0, 00) is a smooth function with ¢;(min {t1,:})? < ¢(t1, 1) <
co(min {t1, 1,})? for all #;,1, € [0, c0) which is increasing in both entries. We refer to
(6.107) below for details.

Given condition (3.28), we are able to show the following.

Proposition 3.17 (Relation of K, K c11‘|13’ and K (f]i: equality). Suppose that (3.28) holds. The

values K, K&‘;, and K(f; introduced in (3.5) and (3.27) satisfy K(ﬁ) = ch; =2K.

We do not have an explicit example, but we conjecture that for certain energy densities

one might indeed have min {K}, K} > 2K . Moreover, in contrast to (2.6) and (3.5), we
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cannot apply a symmetry argument to show that K (f; equals K, &‘113. In general, K cﬁa and K (ﬁ,
might be different.

Intuitively, min {K é‘;, K (f;} > 2K means that two optimal profiles in (3.5) cannot be

combined to give a competitor in (3.27) without essentially increasing the energy. In any
case,ife.g. K (ﬁ) > 2K, the energy would probably depend on the width of the intermediate
B-layer and the limiting energy (3.24) would necessarily also depend on the jump height
of u. We do not pursue this more complicated case here, but only provide a result under the
aforementioned compatibility condition. In this case, the cost of a double phase transition
always equals 2K, independently of the width of the intermediate layer.

This concludes the presentation of our results. The remainder of the paper is devoted
to the proofs. The proof of Theorem 3.3 is the subject of Section 4. In particular, the
limiting deformations, rotations, and partitions are identified in Proposition 4.2, whereas
the limiting displacement fields are exhibited in Propositions 4.5 and 4.6. The remaining
part of the proof of Theorem 3.3 consists in showing that partitions and translations at the
e-level can be chosen so that the selection principle in (3.18) holds true. The characteri-
zation of limiting triples described in Section 3.3 is provided in Section 5. Theorems 3.14
and 3.15 are proven in Sections 6.1 and 6.2.

The main step of the proof of the lower bound in Theorem 3.14 consists in show-
ing that in the ‘bulk part’ of the domain and around the different limiting interfaces the
asymptotic behavior of the energies can be bounded from below by the elastic energy and
by the two surface terms, respectively. Key ingredients are the notions of optimal-profile
and double-profile energy functions (see (6.3) and (6.5)), as well as Propositions 6.1-6.2,
providing a characterization of the local behavior of the energy around the different lim-
iting interfaces. The former was proven in [32, Proposition 4.6]. The proof of the latter is
carried out in Section 6.3.

The proof of Theorem 3.15 relies on two main intermediate results, which are proven
in Section 6.4: (1) in Proposition 6.4 we generalize [32, Proposition 4.7] to construct local
recovery sequences around single phase transitions; (2) in Proposition 6.5 we prove the
corresponding result for double phase transitions. Eventually, in Section 6.5 we show that
under (3.28) optimal profiles for single phase transitions are one-dimensional (see Lemma
6.16), and that Kjl = K = 2K (see Proposition 3.17).

4. Compactness analysis

This section is devoted to the proof of our compactness result in Theorem 3.3. We proceed
in several steps: We first identify sequences of rotations, phase indicators, and partitions,
as well as a limiting deformation and partition such that (3.11)—(3.17) hold; see Proposi-
tion 4.2. Then, Propositions 4.5 and 4.6 are devoted to the construction of (sequences of)
translations and the definition of displacement fields (see (3.19)—(3.21)), first on subsets
of 2 and eventually on €2 itself. Finally, a further delicate construction is needed to show
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that by a suitable choice of the partitions and the translations also the selection principle
(3.18) can be guaranteed.

In what follows, we will use the notion of sets of finite perimeter and Caccioppoli
partitions. We refer to Appendix A for basic properties. Before we start, we recall the two-
well rigidity estimate in Theorem 3.2 and point out that the result hinges on the following
characterization of the two phase regions (see [32, Proposition 3.7 and Remark 3.8]). We
refer to Figure 4 for a two-dimensional visualization.

P

Fig. 4. A visualization of phase regions in dimension d = 2. The (anisotropic) second-order penal-
ization guarantees that phase transitions occur inside cylindrical layers of height e7/4. (Note that
a(d) =1/4 ford =2.) Additionally, e"/*isan upper bound on the height of minority islands in the
ep-direction. In other words, connected components of the phase regions have either small volume
or coincide (up to a small set) with a layer of 2. In higher dimensions, a similar interpretation is
possible, up to higher-order terms.

Proposition 4.1 (Decomposition into phases). Let ® be the phase indicator identified in
Theorem 3.2, and define T := {® = A}. Then

() HUTNO*T NQ) < c&:(y),

(ii) - QI(VT,e,-)Ided_lfcsz_"‘(d)&(y) fori=1,....d —1,
*TN

(iii) / HATZ(RIT X 1) NPT NQ)dr < ce279@ g, (y),
—0o0

4.1

where v denotes the outer normal to T, 0* T its essential boundary, a(d) is the quantity
introduced in (3.3), and & is the energy functional defined in (3.1)—(3.2).

We point out that the statement in [32, Proposition 3.7] is more general but reduces to
the proposition above for the choice n = 7. 4 (see (3.3)).

In the proof of the compactness result, the set T will be the starting point for con-
structing the partitions. Properties (4.1) (i, ii) are crucial to showing (3.11) and passing
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to a limiting partition in &?(£2) by compactness. Item (4.1) (iii) is instrumental in prov-
ing (3.12).

We now start by identifying the limiting deformation and limiting partition. Recall the
definition of ¥g(2) and L (L2) in (2.4) and (3.7), respectively.

Proposition 4.2 (Deformations and partitions). Let 2 be a bounded Lipschitz domain
satisfying HS8. Suppose that W fulfills H1-H4. Let {y®}, C H?*(2;R?) be a sequence of
deformations satisfying (3.10). Then there is a sequence of triples (R®, ¢, M?), a lim-
iting rotation R € SO(d), a limiting deformation y € Yr(Q), and a limiting partition
P = {Pj}; € P(RQ) such that (3.11)—=(3.17) hold after extracting a subsequence. The
components of P are connected.

We point out that in Theorem 3.3 the components are not connected in general. At
this intermediate stage, however, constructing the partition with this additional property
is instrumental in defining displacement fields in Propositions 4.5 and 4.6 below as it
allows us to apply Poincaré inequalities on each component.

Proof of Proposition 4.2. Let {y®}, C H*(2;R%) be a sequence of deformations satis-
fying (3.10). We let (a, b) denote the interval that is the orthogonal projection of 2 onto
the e4-axis.

Step 1: Preliminary estimates. First, we apply Theorem 3.2 to obtain sequences {R®}; C
SO(d) of rotations and {®*}, C BV(R2; {A, B}) of phase indicators such that for all
Q' ccq,

[Vy® = RED|| 2y = VY* — (R*Axre + R*Byo\re)ll 2y < Cave,

4.2
ID|(@) < C. *2

where T¢ = {®° = A } denotes the A-phase regions (see Proposition 4.1), Cq/ depends
on ', and C is related to Cy in (3.10).

In the following, we will need to apply the relative isoperimetric inequality on sections
of the form Q N {x; = t},t € (a, b). In general, the constant involved may depend on ¢.
As aremedy, we pass to suitable subsets of €2 with properties independent of ¢: for ¢ > 0,
we can choose 2° CC 2 with Lipschitz boundary, satisfying H8, and

sup H471(IQ°) < o0, lim dp (Q.Q°) =0 (4.3)
e—>

e>0

(dy denotes the Hausdorff distance) such that for each ¢ € (a, b) and each set £ C Q¢ N
{x4 = t} of finite perimeter,

min {H?V(E), #TH(QF N {xg = 1)\ E))
< e @D (Pd2Q*E N QT2 (44)

where «(d) is defined in (3.3). (For d = 2, the left hand side has to be interpreted as zero
if #°(0* E N Qf) = 0.) Indeed, these sets can be constructed as follows.
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For fixed p > 0, let 2”7 CC Q be a Lipschitz domain satisfying H8 which is a finite
union of cylindrical sets of the form w x (h~, ht) for @ € R4~! Lipschitz, i.e., there
are only a finite number of different shapes for Q2 N {x; = ¢}, denoted by w; x {t} for
Lipschitz domains w;,i = 1,..., N°. (We do not include p in the notation for simplicity.)
Givent € (a, b), choose w; such that w; x {t} = QP N {x; =t} and consider £ C Q* N
{x4q = t}. Then we can apply the relative isoperimetric inequality on w; to obtain (4.4)
for a constant C/ depending on w; in place of 7@ and Q* in place of Q°. (See [35,
Theorem 2, Section 5.6.2]; note that the theorem in this reference is stated and proved
in a ball, but the argument only relies on Poincaré inequalities, and thus easily extends
to bounded Lipschitz domains.) Choose an infinitesimal sequence {px}x C (0, c0) and
a corresponding strictly decreasing infinitesimal sequence {ex}r C (0, 00) such that the
sequence {Q2°k }; satisfies (4.3) (with Q°% in place of 2¢) and

max CP < %@,
i=1..Nok 0 Tk
To conclude, we apply the following diagonalization argument: for & € [gg, ex—1] we set
o 1= pr—1. The claim follows by considering the sets Q¢ := Q°°.

Step 2: Construction of auxiliary partitions. We start the actual proof by constructing a
finite partition of 7¢ N Q¥ as follows: We define f°: (a,b) — (0, 0) by

)= H T (xg =) N TN QY fort € (a,b). (4.5)
We observe that /¢ € BV((a, b)), and that its total variation can be estimated by
IDf|(a,b) < HI71*T® U IQ®). (4.6)

In fact, for any ¥ € C°(2) with ¥ = 1 on Q°, by Fubini’s theorem we get
|Df*|(a.b)
= sup / [ dt
(a.b)

0eCl(a,b), lloll L oo(q,p) <1

_ sup / xrenge (. xa) ¢'(a) A’ xg),
peCl(a,b), llollLooq.py=<1”

= /Q yrenge (v xa) div( (Do (xa)ea) (. xa).
9eCe (a,b), lloll oo @ py=<1

where we write x = (x', x4) with x’ € R¢~! and x; € R. Therefore,

|Df¢|(a,b) < sup / xrenge div(p) dx = |Dyrenge|(2).
9eC (QRD), [l oo (y=<1 7

Then (4.6) follows from [8, (3.29), (3.62)].
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Weset p:=1+ m € (1, 2). (The choice becomes clear later.) Choose o, €
(e? /2, €P) such that
gP
%0(8*{f’3 <o N (a,b)) <2e7P HO(*{f <s}N(a,b))ds
el /2

=27 7|Df*|(a.b), (4.7)

where the last step follows from the coarea formula for BV functions [8, Theorem 3.40].
We choose a < dy < -+ < dp—1 < bsuchthat 0*{ f* < o.} N (a,b) = {d; ;"z_ll, where
m—1<2e"P|Df?|(a,b) by (4.7). We define a finite partition of 7¢ N Q¢ consisting of
the sets

PE=TNQ°N{dj—y <xg<dj}, j=1,....m, (4.8)

where we let dyg = a and d,, = b. In view of the definition in (4.5), we can estimate
the ‘upper’ and ‘lower’ boundary of 13]? by de_l((a*P;" N Qe \ 0*T?) <20, < 2P
Therefore, since m — 1 < 2e7?|Df¥|(a, b) by (4.7), (4.6) yields

m
> N0 P) < 2meP + F4TN(9* T U 0QF)
j=1
< 5H47ND*T® U 9Q®) + 267, (4.9)

We repeat the above procedure for ¢ \ 7¢ in place of T° and obtain a finite par-
tition of Q¢ \ T¢ VYhich we denote by {f’js};‘:m 41 Arguing as in (4.9) we obtain
Z;;,fﬂ HATN@*PF) < 5471 (0*Te U 9QF) + 267 Weset PE, = (Q\ Q) NTF
and P; ., = Q\ (Q° U T?). Since HA~1(dQ) < oo, by (4.3), (3.10), and Proposi-
tion 4.1 (i) we conclude

n+2

DO HAETNO*PF) < 10H4TH(O* T U 9QF) + 4e” + HATH(I(Q\ Q)

j=1

+ 2KV TEN(Q\ Q) < C (4.10)

for a constant C > 0 independent of &. For later purposes, we note that each set 15]-"' is
contained either in 7¢ or in @ \ T°°.

Step 3: Limiting rotation, deformation, and partition. Extracting a subsequence (not rela-
beled), we may assume that
R® - R € S0(d),

i.e., we directly have (3.14). Applying Lemma 2.1, up to passing to a further subsequence,
we find y € #(R2) (see (2.4)) such that (3.16) holds. By (4.2) we see that there exists
® € BV(R2;{A, B}) such that

®° ~* ® weakly* in BV(Q; {4, B})

and hence almost everywhere in Q2. By (4.2), (3.14), and (3.16) we then get y € Yr(R2).
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By (4.10) and the compactness theorem for Caccioppoli partitions (Theorem A.1) we
obtain a limiting partition # := {I3j }; such that 13;’ — f’j in measure for all indices j
(up to a subsequence). Note that the components {Pj }j are possibly not indecomposable.
Therefore, we let > = {P;}; be the partition consisting of the connected components
of {ISJ- }j. (This partition exists due to [7, Theorem 1]; see also Appendix A.) By the lower
semicontinuity of the Hausdorff measure and (4.10) we also deduce

Y HdTr @ Py = 9Py < C. 4.11)
J J

We close this step of the proof by showing that P € Z(Q2). Clearly, by the definition
of P, it suffices to prove € £ (R2). To this end, it suffices to show that

vp, (x) = ey for H? 'ae x e *PiNQ, (4.12)

where v 3 denotes the outer unit normal to P Let Q' CcC Q. Fixi €{l,. —1}.
Since the function @(v) = |(v,e;)| is BV-elliptic (see [8, Theorem 5.20, Example 5.23)),
lower semicontinuity results for sets of finite perimeter [6, Theorem 2.1] imply

/ (v5, o) dH4T! < 11m1nf/ (v e, e;)] dFed™L (4.13)
9% B;nQ’ o Beng

e—>0

For ¢ sufficiently small we have Q" C Q° (see (4.3)). Then the definition of f’js (see (4.8))
implies

liminf/ |(va,e,)|dJ€d 1< hmlnf/ |(vre,e;)| dH 4! (4.14)
*PENQY PTeNQ

e—>0 J e—>0

since v e (x) = £ey for H9 1 ae x €9* 13;" \ 0*T“. In view of Proposition 4.1 (ii) and
J
(3.10), recalling the definition of a(d) = 1/(2d) in (3.3), we obtain by (4.13)—(4.14)

/ |(v1;_,ei)|d3€d_1:O foreveryi =1,...,d — 1.
*P;NQ’ ’

Thus, (4.12) holds since Q' CC Q was arbitrary. Therefore, P e P (2) and then also
P e 2(Q).

Step 4: Definition of the sequence of partitions and phase indicators. We now define the
partitions J¢ and the phase indicators M?¢, and show (3.11), (3.13), (3.15), and (3.17). The
proof of (3.12) is deferred to Step 5 below. Let ¢ = {P/}; be the partition consisting of
the nonempty components of

{PfN Pj: jk e N} (4.15)

Since I3ks — Pk for all indices k and P; C I3k for some k, we clearly see that (3.15) holds.
Additionally, property (3.11) follows from (4.10)—(4.11).
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Recall that each component of $¢ is contained in 7% or Q \ T (see the sentence
below (4.10)). We define the sequence M® = {M[};. by M} = A for all j such that
Pjs C T¢, and Mjs = B otherwise. Then (3.13) follows from (4.2). This along with (3.16)
also implies

loc

Z RSM]-S)(PJ; — Vy strongly in L2_(2; M4*%), (4.16)
J

Due to (3.11), we have Zj Jed—1 (B*Pjs) < C, which yields
)D(Z REM;"XPJ_e)
J

This along with (4.16) and a BV compactness argument yields (3.17).

Q) =C.

Step 5: Proof of (3.12). It remains to prove (3.12). Choose Q' CC Q and let ¢ be suf-
ficiently small such that Q' C Q¢ (see (4.3)). We show (3.12) only for the components
of #¢ which are contained in 7% N Q¢ since for components contained in Q% \ 7°¢ the
argument is the same. Denote by 74 (P;) the orthogonal projection of P; onto the eg-
axis. In view of (4.7)—(4.8), (4.15), and the fact that » € Z?(L2), we can decompose the
collection of components into the two sets

ge = {Pf C TN Q- Jgd—l(P]? N{xqg =1}) <o.forae.t € nd(Pf)},

4.17)
45 = {Pf CcT°NnQs: Jé’d_l(Pj?g N{xgy =t}) > o, forae. t € nd(Pf)}.
First, since 0, < &”, get by Fubini’s theorem we clearly
> 24Qf N Pf) < (b—a)o, < CeP, (4.18)

Pfegf
where C only depends on 2. We now consider the components in §5. We let
I; = {t c ma (P}): HATL(QF\ PP)Nixg =t}) > 0.} forevery j € g5. (4.19)

Since 0, < &7, we get

> / HATH(QE\ PH) N{xg =t} dt < (b—a)o. < CeP.  (4.20)
Peegs /ma (PPN
J 2

On the other hand, for a.e. t € I} we get by (4.4), applied for E = P/ N{xg =1}, and
by (4.17), (4.19) that

0 < min {J47N(PF 0 {xa = 1), HUTN(RT\ P N g = 1))

d—1
< e D (HI2@*(Pf N {xg = 1) N Q)72
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As 0, > €P/2, we find 1/2 < (1/2)@=2/@d=1) < o~(@(d)+p)(d-2)/(d-1) god=2(3* pe N
= ’ = = J
{xq =1} N 2°). Integrating over /; and summing over the components §3, we get

—(a(d)+p)(d—2)
E £'(I}) < Ce a-1

Pfegg

b
Z/ HIT20 PN {xq =t} N Q) dr.
[ a

We recall (4.15) and the fact that » € &2(2). Moreover, Uj a* f’f NREN{xg =t} C
*TE N QN {xy =1} for ae. t € (a,b), where ¢ '-ae. x € 9*T¢ is contained in
the boundary of at most two different components (see (4.8)). Then (3.10) and Proposi-
tion 4.1 (iii) yield

—(x — S
Y o2lUp) < cem T / HA2@TE N {xg =1} N Q) dr
Pfegs e

< Ce@@+p)d-2)/[d-1) 2-a(d).

where C > 0 depends on Cy. Recalling p =1+ ﬁd—a) and o(d) = 1/(2d), this yields

> pec 95 N0 f) < Ce&? by an elementary computation. This along with (4.20) and the
J

fact that H¢~1(Q° N {xg = t}) < (diam(2))¢ ! for all 7 € (a, b) yields

> & (Lae(PH)\ P) < (diam(Q)4" Y 2'(If)

Pfegi Pfeg,’g

+ Y / HOT(QE\ PH)N{xg =t})dt < CeP, (421
peegs / ma (PPN}
J

where the constant C depends only on Q2 and Cy, and Lge (Pjs) is defined in (3.9). By
combining (4.18) and (4.21) we get (3.12) since Q° D Q' (for ¢ small enough). This
concludes the proof. ]

Remark 4.3 (Geometry of €2). (i) Condition H8 could be dropped at the expense of
more elaborate estimates. First, in (3.12), Lgo/(P;) would have to be replaced by the
connected components of Lg/(P;) which intersect P;. Accordingly, the isoperimetric
inequality (4.4), applied in Step 5 of the proof, would need to be applied separately in
each of the components of Q¢ N {x; = ¢} to get an estimate along the lines of (4.21).

(i) The passage to a subdomain in (3.12)—(3.13) is not needed if €2 is a paraxial
cuboid: in this case, Theorem 3.2 can be replaced by an equivalent statement directly
on €2 [32, Theorem 3.1 and Remark 3.2]. Moreover, the isoperimetric inequality (4.4) in
Step 5 can be applied on the (identical) cuboids 2 N {x; = ¢} of dimension d — 1.

Recall the definition of % (£2) in (3.8). The next step will be to identify limiting dis-
placement fields for subsets Q' CC 2. Before that, we state an elementary local property
of partitions that we will use several times.
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Lemma 4.4 (Local property of partitions). Let K CC Q. Then, for each € P (R2), the
set K only intersects a finite number of sets contained in P.

Proof. The result is a direct consequence of the compactness of K, and of the definition
of Z(Q). L]

Proposition 4.5 (Rescaled displacement fields on subdomains). Consider the setting of
Proposition 4.2. Let Q' CC 2, and denote by { P; }§V=1 the components of P which inter-

sect Q' (see Lemma 4.4). Then there exist u € % (") with J,, C Uj 0P; and collections

{t]‘?}]N:l of constants for ¢ > 0 such that the rescaled displacements u®: Q' — R? defined
by

N
() i= e Y (0 () = (R*MFx + 1)) g (%)
j=1
+e7h Y (5 (0) = REMSx) xpe (%) (4.22)
j>N
for x € Q' satisfy (for a subsequence, not relabeled)

u® > u inmeasurein Q', Vu®— Vu weaklyin L*(Q'; M4*?). (4.23)
We note that the second summand in (4.22) is intended to be zero if {PJ-S }j consists
only of N components.

Proof of Proposition 4.5. First, we recall that the components { P; };Vzl are connected by
definition, that #¢~1(dP; \ 9* P;) = 0, and that vp; = tegq for Hilae.x€dP;NQ,
where the latter two properties follow from the fact that > € Z7(€2). Possibly choosing
another set Q' CC Q" CC Q we can assume that the sets P, N Q”, j =1,..., N, are
connected and have Lipschitz boundary. Clearly, it suffices to show the statement for "
in place of Q. For simplicity, we still denote this set by Q.

Let (R?, ¢, M?) be the triples identified in Proposition 4.2. By (3.13) we get

HZ(vys — R*M}) xps <Ce (4.24)
J

L2(Q) ~

for a constant C > 0 depending on €2’.

Step 1: Poincaré estimate on each component. Since P; N Q' is connected with Lip-
schitz boundary, we can choose an increasing sequence of smooth connected sets K, CC
P;j N Q' such that :Ed((Pj N )\ K,) — 0asn — oo. The sets can be chosen such that
the functions

fP) = e (0 (x) — REMFx — %) forevery x € Ky, (4.25)

for suitable t}”s € R¥, satisfy a Poincaré estimate

1" Nee k) < CIV L ek, (4.26)
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where the constant C depends on P;, but is independent of ¢ and n. By (3.15) and (3.12)
we get PP N Q' — P; N Q" and Lo/(Pf) — P; N Q' in measure as ¢ — 0. The latter and
the fact that K, CC @’ N P; show that K,, C Lg/(Pf) for ¢ small enough (depending
on n). Thus, by using again (3.12) and £¢ ((P]? NQYA(P; N Q")) — 0, we get

L (K \ Pf) < £7(Kn \ L (Pf)) + 29 (L (Pf) \ Pf)
= £ (Lo (P))\ Pf) < Ce? 4.27)

for & small enough depending on n, where p = p(d) € (1,2) is fixed. Let L be a suffi-
ciently large constant (independent of &, n) such that

dist(F, SO(d){A, B}) > |F — R°M£|/2 forall F € M?*? with [F — R°M{| > L.

Then |V fj"“3 ll»(k,) can be controlled by

||VJ_(,'”’8||LP(P]-80KH) + ||ijn’g||Lﬂ((1<n\Pf)n{wyS—RsMﬂgL})

+ ”ijn’s”LI’((K,,\Pj?)ﬂ(\VyS—REMJ‘?bL})

1 L
< g||Vys _ RsM]?||Lp(me,) + ;(:ﬁd(K,, \ Pje))l/p
2.
+ g||d15t(Vys, SO(dNA, B |Lrvys—reme|>LY)-

Using Holder’s inequality for p < 2, (4.24), (4.27), as well as (3.1), (3.10) together with
H4 we obtain the uniform estimate |V fl-"’gll L7(k,) < C for C > 0 independent of n
and ¢. Then (4.26) yields

||f,'n’s||Wlsp(K,,) <C. (4.28)

We now show that the translations {¢;“} and thus the functions { f;"*}¢ can actually be
chosen independently of n. Recall that K, D K; for all n € N. In view of (4.25) and
(4.28), we have

8_1|l,’-1’8 - f;"’s| £4(Ky) < ||f,-8’n||1,1(1(,,) + ||J3-£’m||Ll(Km) =<C (4.29)

for all m,n € N, where the constant C is independent of n, m, and . Thus, for every
& > 0 we find that {t;”e}n is a bounded sequence, and up to a subsequence (not relabeled)
there exists ZJ‘? such that

"

] € s t; asn— oo. (4.30)

The constants tf are the ones from the statement of the proposition. By (4.29) we get
e~ !t}"* —tf| < C for a constant C > 0 independent of 7 and . This along with (4.28)
implies that the functions

S =1 (y°(x) - R°Mjx —t]) forx € P} (4.31)
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satisfy, for all # € N and all ¢ small enough (depending on n),

1/ wrr ik, < C.

where the constant C > 0 is independent of ¢ and n. Thus, by a compactness and a
diagonal argument there exists a function f; € W12(P; N Q/; R4) such that (up to a
subsequence)

ff = f; weaklyin Wh?(P; N Q/;RY). (4.32)

Step 2: Definition of the limiting displacement field. Recall the functions f; identified in
(4.32) and the constants tf from (4.30). We set

N
u-= Z Jixp,
j=1

on ' and define u® as in (4.22). Below we will show that indeed u € % (') (see (3.8)),
but now we first confirm (4.23). In view of (4.31), we get u® = fje on Pje N Q'. We claim
that, up to a further subsequence,

(i) u®* — f; =u inmeasureon P; N Q forall j =1,...,N

(4.33)
(i) Vu® — Vu weakly in L?(Q"; M4*¢),

In fact, (4.32) along with (3.15) and u® = fjs on Pf N Q' implies measure convergence
on P; N Q'. This yields (i). To see (ii), we use (4.22) and (4.24) to get

Vut =7y (VY = REM{)yps =~ ¢
j

weakly in L2(Q; M4*?) for a suitable function g. Again by (4.32) we get g = Vi
on each P; N Q’, and therefore g = Vu a.e. on Q’. This yields (ii). Clearly, (4.33)
implies (4.23).

It remains to check that u € % (Q’). Recall that only the components P;, j =
1,..., N, intersect '. Since f; € WLP(P; N Q" R9) forall j =1,...,N, we get
Ju C Uj-vzl dP;. Thus, we find HA=1(J,) < oo since P is a Caccioppoli partition.
More precisely, as & € Z2(2), the jump set of u is contained in (d — 1)-dimensional
hyperplanes orthogonal to ey. It thus remains to show that u € SBV?(Q'; R?). First,
Vu € L2(Q; MdXd) by (4.33) (ii). Since each P; N Q' has Lipschitz boundary, we get
ulp;,ngr € Hl(Pj N Q";R?), and the trace of u on 0P; N Q' exists. As the number
of sets P; intersecting €2’ is finite, we obtain u € SBV2(Q'; R?) by applying [8, The-
orem 3.84]. [

We next show that the translations can be defined so that there exists a limiting
rescaled displacement field on the whole domain €2.

Proposition 4.6 (Rescaled displacement fields). Consider the setting of Proposition 4.2.
Then there exist collections T¢ = {tf }j of constants for ¢ > 0 and u € % (2) with J,, C
U i 0P; such that the rescaled displacements u® defined in (3.19) satisfy (3.20)—(3.21).
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Proof. Consider a sequence {2,}, of open sets, compactly contained in €2, satisfying
Q, C Q41 forevery n € N, and such that £4(Q \ ©2,) — 0asn — co. We denote by
{P?}; and P the partitions identified in Proposition 4.2. In view of Lemma 4.4, we can
reorder the partition $ = {P;}; in a specific way and can choose integers N; < N, <---
such that {P; };Vz"l are the components of J° which intersect €2,. For each n € N, the
translations given by Proposition 4.5 (with 2,, in place of Q') are denoted by {tf" }j.v="1.
The displacement fields on 2,, defined in (4.22) are denoted by u®". We denote their
limits by u" € % ($2) and recall that J,» C |J; 9P;. By a diagonal argument, we may
suppose that there exists a subsequence of ¢ (not relabeled) such that (4.23) holds for all
neN,i.e.,

u®" > u"  inmeasurein 2,, Vu®" — Vu" weaklyin L2(Q,; M?*?). (4.34)

Now it is elementary to check that for each n € N

-t exists and 1s finite for a <] < Np. .
en+l i dis finite forall 1 < j < N, (4.35)

lim e~ 1 (5"
e—0 ( J

J

Indeed, this follows from £ (P; N Q,) > 0 forall I < j < N, and the fact that

en+1 _ (un-i-l _

—1 1 S
e (] =17 D xpeng, = ut")xpeng, = u") xp;ne,

in measure (see (3.15) and (4.22)—(4.23), as well as (4.34)).

We define the collection 7¢ = {77}, of translations as follows: For each j, choose
n € N such that Ny—1 < j < Ny, and set ¢f = tf’", where we define Ny = 0 for conve-

nience. We define u¢: Q2 — R< as in (3.19). By recalling the definition of %" in (4.22),
we find that the restriction of u® on 2, for n € N, satisfies

Ny

& __ .,&n —1,.&n & —1,¢

U =u +§ e (1 —fj)Xansz,,—E € LiXPing, on 2.
J=1 J>Nn

We introduce the function v" € % (2,,) by
Ny
V=l Z(;i_rﬂ) e — :;)) PN (4.36)
i=1

which is well defined by (4.35) and the fact that tf = t;’m for the index 1 < m < n such
that Njy—1 < j < Np. In view of (3.15), (4.34), and the fact that P; N 2, = @ for all
j > Ny, we then get

u® —v"  inmeasure on Q,, Vu®— Vv" weaklyin L?(Qy; MdXd). 4.37)

This also shows that v = v™ on 2, for all n < m. This observation allows us to define
the function u: Q@ — R¥ by u = v" on 2, for all n € N. The fact that J,» C Uj oP;
along with (4.36) also yields J,, C Uj dP;. Clearly, we getu € % (2) since v"* € % (2,)
for all n € N. Finally, by (4.37) and the fact that u = v” on €2, we deduce that u® satisfies
(3.20)—(3.21). This concludes the proof. ]
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We conclude this section with the proof of Theorem 3.3. Given the above construc-
tions, it remains to show that the partitions and translations can be chosen in a specific
way such that also the selection principle (3.18) is satisfied. Although the realization of
this is very technical, the main idea is quite simple: whenever two components violate
(3.18), they are combined, and they are replaced by a single component in the partition.

Proof of Theorem 3.3. Let {y®}, C H?(2;R?) be a sequence of deformations satisfying
(3.10). Consider a sequence {2}, of open sets compactly contained in €2, satisfying
Qn C Q41 forevery n € N, and such that £4(Q \ Q,) — 0. We will prove that, after
extracting a subsequence in ¢ (not relabeled), for each n € N there exists a sequence of
quadruples (R, P&" M>", T &™) with P&" = {Pf’" b, MO = {Mf’” b, T8 = {tf’" b
and limiting triples (y, u”, P") € #(Q) x % (2) x Z(2) such that (3.11)—(3.17) and
(3.19)—(3.21) hold, and additionally we have

67" — 17"

&

PINQy # 0, PP N2y # 0,

(4.38)
limg 0 Mis,n = limg—o M;,na

— oo foralli # j with {
where {P}' }; denote the components of the limiting partition *”. Note that the deforma-
tion y and the rotations R® can be chosen independently of n € N. Moreover, we will see
that the objects can be constructed such that for each n > m and each ¢ > 0 we have

(i) forall j there exists /; such that P/ C Pli’n,

(ii) forall j we have M;”" = M "™ with [; given in (i),
/ (4.39)
j

(iv) u®" =u®™ on Q,, and Vu®" = Vu®™ on Q,

(iii) if £¢ (P]fs’m N Q) > 0, then tfjf" =17 with [; given in (i),

where u®" denote the rescaled displacement fields given in (3.19) for the quadruples
(RE, P&™ M&™, T*™). We defer the proof to Step 2 below and first show that this implies
Theorem 3.3 for a suitable diagonal sequence (Step 1).

Step 1: Extracting a diagonal sequence. First, we find by (3.20) on 2, and €2,,, and by
(4.39) (iv), that for all » > m we have u" = u™ on Q,, and Vu" = Vu™ on Q. This
observation allows us to define the function u: 2 — R? by u = u” on Q,, foralln € N.
Clearly, u € % (R2) since u" € % (2) for all n € N. In particular, for alln € N,

u=u" on,, Vu=Vu" onQ. (4.40)

As P is a coarsening of %™ for all n > m by (4.39) (i), we deduce that " is a coars-
ening of P for all n > m by (3.15). This gives ) de_l(aP]?’) <3 J(d_l(anl) <00
for all n € N. By Theorem A.1 there exists a partition > = {P;}; such that P]' — P;
in measure for all j € N. Note that this convergence also implies # € Z?(2). This and
(3.15) for each m € N yield

. d . _ . d em _
nangOZJe (PFAP) =0, g%ch (PP™APP") =0 forallmeN, (441)
J J
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where A denotes symmetric difference; see Theorem A.l below. Thus, by Attouch’s
diagonalization lemma [9, Lemma 1.15 and Corollary 1.16], we can choose a diagonal
sequence {n(¢)}, such that

Pf,n(a)

i — P; inmeasure as ¢ — O for all indices j. 4.42)

We now define the triples ¢ = pene)  pe = M) and 7¢ = 757 and check that
(3.11)—(3.21) hold for the limiting triple (y, u, P).

First, (3.11)—(3.12) follow directly from the corresponding properties of the parti-
tions P%". We observe that (4.39) (i, ii) yield

&,n(e) _ &1
2 RM" o = D RM g pi
J J

This implies (3.13), (3.14), (3.16), and (3.17) by using the corresponding properties for
the triple (R®, P!, M®1). Property (3.15) follows from (4.42).

Consider the rescaled displacement fields u&"® defined in (3.19). For each m € N
we have u®"(®) — y™ =y in measure on ,, by (4.39)(iv), (4.40), and (3.20) for m.
As m was arbitrary, we get (3.20). In a similar fashion, (3.21) follows also by taking into
account (4.39) (iv), (4.40), and (3.21) for each m.

It remains to check (3.18). To this end, we fix i # j such that £ (P;), c("id(Pj) > 0,
and lim,_,¢ Ml-s’"(g) =limg_o M ja’"(s). In view of (4.41)—(4.42), we can fix m € N (inde-
pendently of €) and g9 = g¢(m) > 0 such that for all 0 < ¢ < g9 we have, fork =1, j,

() 4PN Q) >0, LUPY" N Q) > 0,

(4.43)
Gi) £4(PE"OAPE™) < Led(PP™).

(To see (ii), we use
L4P"OAPE™) < 2U(PEMO AP + LY (PR AP + (P AP
k K )= k ) + LE(P AP + £Y(PUAP™) — 0

and id(P,f’m) — éﬁd(P,:") as ¢ — 0.) Possibly by passing to a smaller g9, we can
also suppose that n(g) > m for all & < g9. By (4.39) (i) for n = n(e) we find a com-
ponent Pl‘;’"(g) which contains P up to an £?-negligible set for k = i, j. By (4.43) (ii)
we necessarily have £ (PZ"® N P™) > 0. Thus, k = Iy This along with (4.43) (i)

limgo M;™ = limg_g M l'.s’m and therefore, taking also (4.38), (4.43) (i) into account,
we finally get

&,n(e) &,n(e) e,m e.m
. |ti —1 j | . |ti —1 j |
lim : = lim : = 00.
e—0 &€ e—0 &

Step 2: Coarsening scheme. We inductively construct sequences of quadruples
(RE, PEM, ME™, T8") and limiting triples (y, u”, ") for n € N such that (3.11)—(3.17),
(3.19)—(3.21), and (4.38)—(4.39) hold.
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We start with n = 1. We apply Proposition 4.6 to obtain rotations R® and triples
(P, M®,T¢), as well as a limiting triple (y, @, &) such that (3.11)—(3.17) and (3.19)-
(3.21) hold. We write ¢ ={Pf};, M* = {M[};, and T° = {ff}j We modify the triples
to get sequences which also satisfy (4.38).

Coarsening scheme forn = 1. We construct P&1, 751 and M*!, as well as the limiting
partition ! and the limiting displacement u! by the following iterative scheme: Suppose
that two components P; and P; of /> withi # j violate (4.38) on @1, i.e.,
liminfe!|7® — 7%| < 0o, lim Mf = lim M¢,
e—>0 J £—>0 e—0 (4.44)
P;NQy # 0, PjﬂQ]#@.

First, by passing to a subsequence in ¢ (not relabeled), we get ]\;If =M js for all e. Now,
we replace f’,- and ]3j in by P} = ﬁ,- U ﬁj. In a similar fashion, we replace 13!.‘9 and
13_]? in P¢ by P 1= ﬁis U }A’f for each & > 0. Accordingly, on the set Py ! we introduce
the translation &' = if and the phase MEY = Mf =M ¢ for each & > 0. In view of
Lemma 4.4, only finitely many components of % intersect 1. Thus, we can repeat this
construction at most a finite number of times until, for the resulting partition $! and
the triples (%!, M*!, 7¢1), each pair of components P;' and le satisfies (4.38). This
concludes the construction in the case n = 1. (The definition of the resulting displacement
field u! will be indicated below.)

We check that (3.11)—(3.17), (3.19)—(3.21), and (4.38) are satisfied. First, (4.38)
clearly holds true by construction. To confirm the other properties, we assume for sim-
plicity that the above coarsening scheme was applied only once for two sets P; and 13],
intersecting €2; since the general case follows by induction. First, (3.14) and (3.16) are not
affected by the modification, and therefore still hold. Since the function ) i R¢M je X pe
remains unchanged by construction, also (3.13) and (3.17) are still satisfied. To see (3.1 1])
and (3.15), it suffices to recall that P! = 131.5 U ﬁf, which implies that P! — Pl =
P U ﬁj in measure. We now show (3.12) for Q' CcC Q. As éﬁd(ﬁk NQy)>0fork=i,j,
for & small enough, (3.12) and (3.15) (for £¢) imply £4(Q' N Pf) = £4 (Lo (PE) \ PY)
fork =i, j. This also yields £4(Q' N PEY) > £9(Lo/(PEY) \ PEY) for & small enough.
Therefore, since £4 (Lo (P£Y) \ P& < D k=i éﬁd(Lgr(ﬁ,f) \ ﬁ,f) (3.12) holds as
well. We now finally introduce the limiting displacement field and check (3.20)—(3.21).
We observe

&,1 ~e _ —1,ze re
ut —ut =e (i —ti))(ﬁf,
where u®! and 71° are the corresponding displacement fields defined in (3.19) with respect
to the quadruples (R, &1, M&!, 751) and (R®, ¢, M?, T°), respectively. By (4.44)
we obtain 8_1(@‘-9 — 1) — 19 € R¥, possibly passing to a subsequence (not relabeled).
This implies that u®! converges in measure to

ul =u+ [0X13j € @/(Q) (4.45)

and gives (3.20). Finally, (3.21) follows from Vu®! = Vii® and Vu! = Vi.
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Now suppose that the quadruples (R, P&"~1, M&"~1 7&n~1) and the limiting triple
(y,u" 1, #71) in step n — 1 have been constructed such that (3.11)—(3.17), (3.19)-
(3.21), and (4.38) hold, and (4.39) is satisfied up to step n — 1. We define the objects in step
n as follows: If (4.38) holds with respect to the set 2,,, we simply set (P&", M>", T&") =
(P, mem=1 &1 and observe that all properties are automatically satisfied.

If (4.38) is violated, the strategy is to apply the coarsening scheme described above to
modify the partitions and translations such that all properties, in particular (4.38)—(4.39),
are fulfilled.

Coarsening scheme for general n. If two components Pi"_l and Pj"_1 violate (4.38)
(with respect to the set €2,,), we combine them into one component P} := Pl."_1 U Pj”‘l
and similarly we define Py”" := Pi‘e’"_1 U Pf’"_l for all ¢ > 0. Moreover, we define the
phase M{" = Mf’"_l =M f’"_l for all & > 0. Concerning the translation 75", we proceed
as follows: We observe that at most one of the two sets Pi"_l and Pj"_1 intersects 2,-1.
Indeed, it is not possible that both sets intersect €2,,_; as (4.38) holds by construction
in step n — 1, and we have assumed that Pi”_1 and Pj"_1 violate (4.38) with respect to
€, D Q,—1. Suppose that (at most) P/*~! intersects 2,_;. We define 7" := tf’"_l. We
repeat this procedure (at most a finite number of times, cf. Lemma 4.4) until all pairs of
components satisfy (4.38).

Then, for the resulting quadruple, (4.38) is satisfied by construction. Exactly as before
in step n = 1, we can check that (3.11)-(3.17) and (3.19)—(3.21) hold. Finally, let us
confirm (4.39): (i) follows from the fact that in the procedure we have iteratively combined
two components. Similarly, (ii) is a consequence of the fact that only sets with the same
phase are combined. Finally, (iii) and (iv) follow from the definition of the translations in
the coarsening scheme and the fact that if two components are combined, at least one did
not intersect 2, _1.

We perform this coarsening scheme for each n € N. Note that in each step we pass to
a further subsequence in ¢ (not relabeled). Then (4.38)—(4.39) follow for each n € N for
a suitable diagonal sequence. ]

Remark 4.7 (Local properties of jump sets). For later purposes, we remark that each
K CC Q intersects only a finite number of (d — 1)-dimensional hyperplanes orthogonal to
eg which intersect J,,. This can be seen as follows: The construction of the displacement
fields in the previous proof shows that J,» C | J i I3j for all n € N. This follows from
(4.45) and the fact that J; C | i P see Proposition 4.6 for # and 13_,~ in place of u

and Pj, respectively. Therefore, also J,, C | J 13}- by (4.40). The desired property now
follows from Lemma 4.4.

We close this section by mentioning that the definition and construction of the partition
in the previous proof is inspired by [37, Section 5] where in a different context partitions
with a property of type (3.18) are called coarsest partitions.
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5. Analysis of admissible limiting configurations

This section is devoted to the proofs of Propositions 3.6—-3.8. We first show that limiting
deformations and partitions are uniquely identified, whereas limiting displacements may
differ by global infinitesimal rotations and piecewise translations.

Proof of Proposition 3.6. Let {y®}, be a sequence as in Theorem 3.3 and let (y!,u!, P1),
(»2, u?, P?) be two admissible triples. We start with the proof of (i). First, y! = y2
follows directly from (3.16). In what follows, we thus simply denote the deformation
by y. Suppose for contradiction that the two partitions P! = {P/}; and P? = {P}};
are different. Up to reordering we may assume that P! N PZ and P} N P} have positive
£9-measure.

Let (R®!, P51 M&1, T51) and (R®2, P52, M52, T2) be sequences of quadruples
converging to the limiting triples (v, u!, ') and (y, u?, $2), respectively, in the sense
of (3.11)=(3.21). By (3.14) we have lim,_,¢ R®! = lim,_,o R®?> = R € SO(d), where R
is such that y € ¥Yg(2). By (3.15), (3.17), and the fact that P11 n P12 and P21 N P12 have
positive éﬁd-measure, we then obtain, for all ¢ small enough,

Myt =Myt = MR (5.1)

Since the rescaled displacement fields ! and u®2, defined in (3.19) with respect to the
two different quadruples, converge in measure in €2 by (3.20), we observe that also

1
< (CRIMP e = SURM 2+ 172
J J

converges in measure in 2. In view of (3.15), (5.1), and the fact that P11 N P12 and
le N Pl2 have positive éfid-measure, we obtain

R = RE2| 4 it =172+ |1 — 1% < Ce (52)

uniformly in ¢ for some C > 0. This is an elementary property for affine mappings. (See,
e.g., [41, Lemma 3.4]; the function ¥ therein can be chosen as in [40, Remark 2.2].) By
the triangle inequality this in particular yields |¢] - t28’1| < Ce. This, however, contra-
dicts (3.18) in view of (5.1). This concludes the proof of (i).

In the following, we denote the unique partition by &> = {P;}, to simplify notation.
We now show (ii). To this end, fix P; with positive measure. In view of (3.15) and (3.17),
we find Mf’l = M;’z for & small enough. As u®! — u®? converges in measure in Q by
(3.20), we thus obtain |R®! — R®2| < Ce and |t]'?’1 - tf’2| < Cje¢ for a constant C > 0
depending only on €2, and some C; > 0 depending on j but not on &; see (5.2) for a
similar argument. Using the formula (see [42, (3.20)])

(FRT)T + FRT
2

—Id

= dist(F, SO(d)) + O(|F — R|?) for F e M%*? R e SO(d), (5.3)
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we obtain §¢ € M2*9 with |S¢| < C such that

skew
RE,Z _ Rs,l — (RE,Z(RE,I)T _ Id)Ra,l — (SSS + 0(82))R€’1.

. . dxd
Thus, possibly passing to a subsequence (not relabeled), we find S € MZ 2

each j € N with éﬁd(Pj) > 0 a constant ¢; € R4 such that 8_1(1‘;’2 - tf’l) — t; and
e 1 (R®? — R®') — SR, where R € SO(d) is such that y € Yg(R2). In particular, note
that S is independent of the component P;. By (3.17), (3.19)—(3.20), and the fact that

M ]'-S’l =M ]-8’2 for & small enough we get, for almost every x € P;,

and for

1
ul(x) —u?(x) = lim @®! (x) — u®2(x)) = lim —((R®% — R®HMS x + 5% — 51
=0 e—>0 ¢ 7 7 7
= SVy(x)x +1.

Recalling the definition in (3.23) we obtain (ii).

We finally show (iii). To this end, fix T € Z(y, P), say T (x) = Zj fj)(pj (x) +
SVy (x)x for x € . We have to show that (y,u' + T, %) is an admissible triple. Recall
that the quadruples (R&L, P& M5 T converge to (y, u', P) in the sense of (3.11)—
(3.21).

Let ¢ = P&, M = M5! and define T¢ = {tr); by 17 = t]’?’l — ¢i; for all j.
Moreover, let R¢ € SO(d) be such that

|R® — (Id — eS)R®!| = dist((Id — eS)R>!, SO(d)),
which by (5.3) (for F = (Id — eS)R‘s’1 and R = R®!) implies
R® = (Id — eS)R®! + O(£?). (5.4)

We now see that (Rs, Pe.ME, ‘J:E) converges to (y, ul + T, &) in the sense of (3.11)—
(3.21). Indeed, as |R® — R®!| < Ce, the properties (3.11)—(3.17) are satisfied. Property
(3.18) follows from the corresponding property for 74! and the definition of 7. Define
u® as in (3.19). To confirm (3.20), we calculate for almost every x € P;, using (3.17) and
(5.4),

1 _ )
lim (8 (x) — u®'(x)) = lim —((R®' — RO )M>'x + 151 — %)
g—0 e—>0 & J J J
1 _ - - -
= lim ;(R“"’l —ROM'x +1; = SVy(x)x + ;.
e— -

Using (3.20) for u', we find #* — u' + T in measure on the bounded set 2. This yields
(3.20). Finally, (3.21) follows from a similar computation. ]

We proceed by characterizing the jump set of the gradients of limiting deformations.

Proof of Proposition 3.7. As y € Yr(2), we recall that d{x € Q:Vy(x) € RA} consists
of subsets of hyperplanes orthogonal to e; (see below Lemma 2.1). Now, assume for
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contradiction that Jv, ¢ |J ; 0P; N Q. Then, by £ € () and Lemma 4.4, we find
astripe D :={tg—p <xg <to+ p} N, with Q" CC Q, tp € R, and p > 0 small,
such that D C P; for some j € N and (up to reflection) D N {xz > to} C {Vy = RA}
and D N {xy; < to} C {Vy = RB}. In view of (3.14)—(3.15), however, this contradicts
(3.17). To see that the inclusion might be strict, we refer to case (2) in Example 3.4 with
I =1/2. |

We conclude this section with a characterization of the jump heights of limiting dis-
placements.

Proof of Proposition 3.8. We first observe that it suffices to show that, if Q' CC 2, then
the result holds for every x € €. Consider a (subset of a) hyperplane S := {x; = 1o} N Q'
with #¢~1(S N J,) > 0. We distinguish two situations:

@ 47 (snlJor) =0 and ) 47 (sn{ o) >o0.
J J

To simplify notation, we set without restriction 7o = 0. We start with case (a). Choose
another set Q" with Q' CC Q" CC Q. As P € £(Q), by Lemma 4.4 and Remark 4.7
we find p > 0 small enough such that the cylindrical set D := w X (—p, p), for some
o C R471, satisfies D N {xg; = 0} = S, is contained in a single component P;, is con-
tained in 2", and satisfies

JuNDCS={x;=0n. (5.5)

By Proposition 3.7, it is not restrictive to concentrate on the case Vy = RAon D C P;j,
which corresponds to proving properties (i) and (ii) of the statement. Analogously, prop-
erty (iii) may be derived after some modifications in the notation.

Step 1: case (a), property (ii). Let (R?, ¢, M?, T¢) be sequences of quadruples con-
verging to (y, u, ) in the sense of (3.11)—(3.21), and define u® as in (3.19). Assume also
that §° is the (at most countable) set of indices for the partition $°. We denote by 7 the
indices with £4(Q" N Pf) < £4 (Lo (Pf) \ Pf), and we let g5 = g¢\ g5. By (3.12),
(3.15), (3.20), (3.21), Fubini’s theorem, and Fatou’s lemma we find that for #%!-a.e.
x" € w there exists a sequence {&x }; C (0, 00) with g — 0 such that fora.e. 0 < p’ < p
we have
i) (x',—p), (x',p) e Pjsk for all k large enough,
utk (x', £p") - u(x', £p) ask — oo,
(i) Y E'(PF N ({x'yx (=o' p))
jedi
+ 30 £ (Lar (PN PP N (') x (=0 ') = C (el
jeds

(5.6)

4 _
(iii)/ [Vusk (x',1))*dr < C(x'),
_p/
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where C (x”) > 0 depends on ©” and x’, but is independent of p and {gx }x. We point out
that in general the sequence {g }; depends on x’. For later purposes, however, we note
that, for a.e. pair of points x}, x5 € w, we can choose a single sequence {&x }x such that
(5.6) holds.

Fix x’ € w and 0 < p’ < p such that (5.6) is satisfied. For notational simplicity, we
drop the subscript k of the corresponding sequence {&j }; and we omit the dependence
on x’. Define

el I\ . VAN €y o(x —
B ('5p) = {t € (=p ) Y Mfxpe(x'.1) = BY. (5.7)
J
By the fundamental theorem of calculus, in view of the definition of u® in (3.19), we get
p/
P =) = [t
_p/
p/
= s/ dqut(x' 1) dr + £ (B (x"; ) R*Beg + (20" — £ (B (x'; p'))) R® Aey.
_p/
Thus, by (5.6) (iii) and Holder’s inequality we find
ey, ) — yP (', —p") — 20’ R* ey — £ (B°(x"; ) R°(B — A)ey|

< 2C(NHV2 (5.8

Since Vy = RAon D C Pj, we get M]‘? = A for ¢ sufficiently small by (3.17). Thus, by
(3.19) and (5.6) (i), we also have

e (. p) =y (' —p) = 20 R* Aeg) = ut(x'. p) —uf(x, —p')
for every ¢ sufficiently small. Recall the definition of « in H3. By (3.14), (5.6) (i), and

(5.8), up to passing to a further subsequence (depending on p’), we find that £(x’; p’) :=
limg 0 e 1 (BE(x'; p')) > 0 exists, is finite, and satisfies

lu(x’, p') —u(x’, —p') — kl(x'; p')Req| < (2C (x")p') /2. (5.9)

Here, we have used the fact that C (x’) is independent of €. On the other hand, the funda-
mental theorem of calculus for the limiting displacement together with (5.5) yields

o’ _

(', p") = u(x', =p') — [l (x', 0)| < / lqu(x’, 1)l dt < 2C (x")p)'/?,  (5.10)
_p/

where the last inequality follows by (5.6) (iii), Holder’s inequality, and a lower semicon-
tinuity argument. By combining (5.9) and (5.10) we deduce

[u](x",0) — k £(x"; p) Rey| < 2(2C (x')p') /2. (5.11)

Property (ii) in case (a) now follows by recalling that £(x’; p’) > 0, by the fact that C (x')
may depend on x’ but is independent of p’, and by considering a sequence p’ — 0 such
that (5.6) holds. (We briefly note that property (iii) corresponds to Vy = RBon D C P;.
This case can be treated along similar lines, by interchanging the roles of A and B.)
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Step 2: case (a), property (i). We now prove property (i) by contradiction, where without
restriction we treat the case Vy = RA on D C P;. If the statement were wrong, we would
find x{,x} € w and 0 < p’ < p such that for each x;, i = 1,2, (5.6) holds (with x; in place
of x’, for a single sequence {¢ }x) and such that

I[] (x}. 0) — [u] (x5, 0)| = 5(2C p")'/2, (5.12)

where we set C = max;—i» C (x7). We again drop the index k of the sequence {ey }.
Define 8°(x;; p’) as in (5.7) for i = 1, 2. Repeating the reasoning in Step 1 (see in par-
ticular (5.11)), we find [[u](x],0) — k £(x]; p')Reg| < 2(26_',0/)1/2 fori = 1,2, where the
limits £(x]; p') := limg—o £ ' £ (B#(x]; p')) can again be assumed to exist after passage
to a subsequence. By the triangle inequality and (5.12), we find k [£(x]; p') — £(x5: p')| =
(2C p')"/2. This implies

inf e £ (B°(x]; p) — £1(B°(xy: )| > 0.
£>
In view of the definition (5.7), this contradicts (5.6) (ii) since p > 1. This concludes the

proof of (i) and of case (a).

Step 3: case (b), property (i). To complete the proof of the proposition, it remains to
show assertion (i) in case (b). (Note that assertions (ii) and (iii) are trivial in this case.)
In this situation, possibly passing to a smaller p, by Lemma 4.4 we find that the set D =
w x (—p, p) considered in case (a) (see before (5.5)) only intersects two components Pj,
and P;,, with DN P;; = D N{xg <0}and D N P;, = D N {xgz > 0}. In asimilar fashion
to (5.6), in view of (3.12), (3.15), (3.20), and (3.21), Fatou’s lemma implies that for Jed—1.
a.e. x’ € w there exists an infinitesimal sequence {ex }x such that for a.e. 0 < p’ < p,

x',—p) e P;lk, x',p) e Pji" for all k large enough, 5.13)

u® (x', £p") = u(x’, £p') ask — oo, .
and properties (ii) and (iii) of (5.6) are satisfied. Given x’ € w and 0 < p’ < p, arguing
exactly as in the proof of (5.8) in case (a), we find (we again drop the index k and the
dependence on x’ in the sequel)

ey (' p) =y —p') — 20 R° Aeq — £ (B°(x": p)) R*(B — A)ey|
< 2C(HH'2,
where B¢(x’; p’) is defined in (5.7). By (3.17), for ¢ sufficiently small, we may assume
that Mf = M; for j = ji, j». Thus, in view of (3.19) and (5.13), we get
e (v* (s 0") = (' =) — p'RE(Mjy + Mjy)eq) — e~ (1f, — 1)
=u*(x', p") —u*(x', —p).
This along with the previous estimate entails

Wt (x', p) — uf (x', —p') — ve(xs )| < 2C (x")p") /2, (5.14)
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where for brevity we have set
ve(x';p) 1= e LN (B p))RO(B — A)ea

+e W' REQA— (M), + Mj,))eq — e~ (1], — 1,

). (5.15)
Then (5.13) and (5.14) show that there exists a constant vector v(x’; p') € R¢ depending
on p’ and x’ such that, up to a subsequence, v.(x’; o) — v(x’; p). By using (5.5) and
(5.6) (iii), we find that (5.10) also holds in the present situation. Then, similar to the proof
of (5.11) in case (a), we obtain, by (5.13) and (5.14) ,

[u](x, 0) — v(x; p)| < 2(2C (x)p") /2. (5.16)

The proof of property (i) is now obtained by contradiction by following the lines of the
proof in case (a): Suppose that there were x7, x}, € @ and 0 < p" < p such that for each x/,
such that |[u](x},0) — [u](x5, 0)| > 5(2C p')!/2, where as before C := max;—1» C (x}).
By (5.16) this yields [v(x/; o) — v(x}; p)| > (2C p)/2. In view of (5.15), this however
contradicts (5.6) (ii), concluding the proof. [

6. Derivation of the effective linearized energy

This section is devoted to the proof of our I'-convergence result for the sequence of ener-
gies &, = E. j, , introduced in (3.1) (with 7¢ 4 from (3.3)) and the limiting energy 86"’
defined in (3.24). In Sections 6.1 and 6.2 we prove Theorems 3.14 and 3.15, respec-
tively. A key ingredient for the liminf inequality is a characterization of the double-profile
energy K é‘pl (see (3.27)), in particular its connection to the optimal-profile counterpart K
(see (3.5)). This result is the subject of Proposition 6.2 and is proven in Section 6.3. The
proof of the limsup inequality is performed under the additional assumption that

KM =2K for M € {A, B}, (6.1)

and essentially relies on Propositions 6.4 and 6.5. The latter provide constructions of local
recovery sequences around interfaces performing a single and a double phase transition,
respectively, and coinciding with isometries far from the interfaces. Their proofs are con-
tained in Section 6.4. Finally, in Section 6.5 we show that, under the additional assumption
in (3.28), condition (6.1) can be verified. This hinges on the property that in this case opti-
mal profiles for single phase transitions are one-dimensional; see Lemma 6.16.

6.1. The liminf inequality

In this subsection we show that the functional 85“” is a lower bound for the asymp-
totic behavior of the energy functionals &,. As a preparation, we introduce the notion
of optimal-profile and double-profile energy functions, and we state their main properties.
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Let w C R4~ be open and bounded, and let 2 > 0. For brevity, we use the following
notation for cylindrical sets:
Dy = x (=h,h). (6.2)

We define the optimal-profile energy function
F(w:h) = inf {nm inf 6:(y°, Dy.p): lim v = & 1o, ) = o} (6.3)
=0 &0 .

for every w C R9~! and i > 0, where y(‘)|r was defined below (2.5). As mentioned there,
due to the invariance of the energy functionals &, under the operation Ty (x) = —y(—x),
the optimal-profile energy is independent of the direction in which the transition between
the two phases A and B occurs, i.e., in (6.3) we can replace y; by the continuous func-
tion yy € H! (RY;R?) with y5(0) = 0 and Vyg = Bjy(x,>0} + AX{x, <0} We refer to
[27, Lemma 3.2] for details. We start with the property that the optimal-profile energy is
independent of 4 and depends on e only in terms of #¢~!(w). The following character-

ization has been proved in [32, Proposition 4.6].

Proposition 6.1 (Optimal-profile energy function). For all h > 0 and all open, bounded
sets o C RV with #4971 (dw) = 0 we have F (w; h) = KK~ (w), where K is the
constant from (3.5).

In a similar fashion, we investigate properties of the double-profile energy given
in (3.27). Recall 'W; in (3.25). We define the set of functions jumping on the interface
by

Ugp(Dop ) := {u € SBV2 (Dgy j: RY): H71(1) >0, Jy Cw x {0}).  (6.4)

Then, for M € {A, B}, we define the double-profile energy function

FM(w:h) = inf inf  inf {liminf &, (y%, Dy p):
w0 (O = b e, {1?351 o Do)

y&E—Mx

— u inmeasure in Dy, , as &€ — O} (6.5)
We

for every @ C R~ and & > 0. The double-profile energy can be characterized as follows.

Proposition 6.2 (Double-profile energy function). For all h > 0, all open, bounded sets
o C R4 with #4=1(dw) = 0, and for M € {A, B},

KM 39 () = FM (. h) = 2K 397 (), (6.6)
where K and Ké‘g are defined in (3.5) and (3.27), respectively.

Note that the result in particular implies Proposition 3.16. Moreover, in the case
2K = KdAg , equality holds in (6.6). (We refer to Section 6.5 for a setting in which this
condition is fulfilled.) We defer the proof of Proposition 6.2 to Section 6.3 below. At this
stage, we only mention that it is achieved in two steps: We first show that fdg’l (w, h)
is independent of / and depends on w only in terms of #<~!(w); see Proposition 6.6.
Then, in a second step we address the connection between ?dgl (0,1, K é‘l’f ,and 2K ; see
Proposition 6.7. We now proceed with the proof of the liminf inequality.
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Proof of Theorem 3.14. Let (y,u, P) € #A (see Definition 3.9), and let y® — (y,u, P) in
the sense of Definition 3.5, i.e., there are sequences { R®}¢, {P*}e, {MF},, and {T°}, such
that (3.11)—(3.21) hold. Suppose that y € ¥r(2) for R € SO(d) (see (2.4)). To simplify
the exposition, we suppose that fQ y®dx = 0, i.e., by (3.16) we get

y® — y strongly in H'(2:RY). (6.7)

By Propositions 3.6 (iii) and 3.8 (i), and Remark 3.13, possibly passing to another dis-
placement field being admissible for the sequence {y®}., we may without restriction
assume that

Jopina c /. (6.8)
J
As Q has Lipschitz boundary, by the definition of the set 4 in Definition 3.9 and by
Proposition 3.8 (i) there exist sequences {a)iy }i» {owf' };i of Lipschitz domains in R4~ and
sequences {aiy }i» {1} }i of real numbers such that

Juy =J o x{af} and J,\ Jvy = o} x{a}}. (6.9)
ieN ieN

Let § > 0. We can find I, I, € N such that

I.V
HE (Iyy) =8 <Y AN ] x {ef)).

i=1

; (6.10)
(T Juy) =8 <Y HT (o) x ).
i=1
Moreover, we choose 2 > 0 such that the cylindrical sets (see (6.2)) otiy eq + Dy, i =
1,....,1y, and aleg + Da)i”,h’ i =1,...,1,, are pairwise disjoint, and do not intersect
the interfaces {a)ly X {aiy}}i>1y and {@} x {a}}}i>r, - The latter is possible due to Jv,, C
U E d0P; N Q (see definition of +4), Lemma 4.4, and Remark 4.7, which imply that the
interfaces {a)iy X {aiy}}i>1y and {®} x {a}'}}i>r, can only accumulate at 9$2; see [27,
proof of Proposition 3.1] for details, and the lower part of Figure 1 for an illustration.

By possibly passing to a smaller # > 0, we can choose cbly ccC wiy and ®} CC o}

with Lipschitz boundary such that
HN @]y < HITN@Y) +8/1, fori=1,...,1,, 6.11)
KN wl) < KV @) + 6/1, fori =1,...,1,, '

and such that

DY = lyed+D~thCQ fori =1,...,1,,

1

DY .= "ed+D~uhCCQ fori =1,...,1;

4

see Figure 5 below.
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Fig. 5. A visualization of the different interfaces and sets under (6.8). The phase regions associ-
ated to A and B are colored blue and orange, respectively. The cylindrical sets {Dly Yi=1,.., 4, and
{D}}i=1,....4, are drawn in green. The corresponding interfaces in Jy, and J, are highlighted

with thick red and dashed black lines, respectively.

Moreover, it is also not restrictive to assume that

Iy Iu
PIEACHEDIE HODES

i=1 i=1
We define

1y Iy
Qs 1= {x € Q: dist(x, 9Q) > 8} \ (U p}ulJ D}‘).

i=1 i=1
The main steps of the proof will consist in estimating the surface energies by

Iy
() timint&(»*, [ DY) = K™ (Jv,) — 26),

i=1
Iy
(i) timinf & (", L_Jl DY) = 2K (J \ Jwy) = 26),

and the elastic energy by

liminf €:(y*, 25) = / Qin(Vy, Vu) dx,
£—>

Qg

(6.12)

(6.13)

(6.14)

(6.15)

where the quadratic form @y, is defined in (2.11). Once these estimates have been settled,
in view of (3.24), we indeed obtain lim inf, ¢ &.(y?¢, 2) > 85“’ (y,u, P) by letting § — 0,
by taking (6.8) as well as (6.12)—(6.13) into account, and by using monotone convergence.

Let us now prove (6.14) and (6.15).



Two-well linearization for solid-solid phase transitions 671

Step 1: Proof of (6.14)(i). By (6.7), y € Yr(R2), (6.9), and the fact that the sets {Diy},-
are pairwise disjoint and contain only one interface, we get, foreachi = 1,..., I,

R7Yye(-+ oeiyed) — y; or R7yS(-+ otiyed) — Yo in Ll(Dd)y,h;Rd).
Therefore, by H2, (6.3), and the comment thereafter,

Iy Iy Iy

.. .. -1 ~y.

hgn_gglf&(ye, U1 D,-y) > E lhﬁrl}é‘fge(R Yo(+aieq). Dy p) = E 1 F (&5 h).
i= i= i=

Then, by Proposition 6.1 and (6.10)—(6.11) we get

Iy I,
ligngS(ys, U Diy) > K #41@)) = K9 (Jyy) - 26).

i=1 i=1
This shows (6.14) (i).
Step 2: Proof of (6.14)(i1). By (6.9) and the fact that the cylindrical sets are chosen to
be pairwise disjoint and to contain only one interface we know that Vy is constant on

each D¥,i =1,..., . We choose M; € {A, B} such that Vy = RM; on D}. We will
distinguish two cases, indicated by the index sets

gy = {i =1, Iy (w;‘x{a;‘})ﬁUBPjﬂQ:Q}, o= {1, ... L)\ 4.
J

(6.16)

Step 2(a): i € 41. Inview of (6.9), (6.16), and the fact that the cylindrical sets are pairwise
disjoint and contain only one interface, we get D}' C Py for some index k. Then by (3.15),
(3.17), (3.19), and (3.20) we get, as ¢ — 0,

e '(y* — R°M;x —t{) — u in measure in D}. (6.17)

As the cylindrical sets are pairwise disjoint and contain only one interface, we find that
u(-+aleq) € ‘udp(Dc;)lu,h) (recall (6.4)). We define the function

FE(x) = (R)Ty*(x + aleq) — (R®)T1f — Mialeq

for x € D ., and we note by (3.14) and (6.17) that =1 (3¢ — M;x) — i in measure
in Dc?;;‘,h» where 7 := RTu(- + ateg) € ‘udp(D(;,l_u,h). Then the sequences {y°}, and
{we}e € Wy defined by w, := ¢ for all € are admissible in (6.5). Thus, by the translational
and rotational invariance of the energy we get

liminf €;(y°, DY) = liminf € (7°, Dy ) = Fr' (@} h). (6.18)
e—>0 £—0 i
Step 2(b): i € J,. In this case, by (6.9) and the fact that the cylindrical sets are pairwise

disjoint and contain only one interface, D} intersects two components Py and P;, namely
of X (off —h,at) C P and &} x (of,a} + h) C P;. As before, we have Vy = RM;
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on D}. Let we := [t — ]|, where 1,1/ are the elements from the translations T* corre-
sponding to the sets P]f and Pls. By (3.15), (3.17), (3.19), and (3.20) we get, as ¢ — 0,

e 1(y® — R*M;x — t{) — u inmeasure in D;' N P; for j € {k,1}. (6.19)

By (3.18) we find we /e — oco. Moreover, for a.e. x; € D} N Py anda.e. x; € DY N Py, by
multiplying (6.19) with ¢ and using (6.7) we get limsup,_,q |t — 17| <[y (xx) — y(x1)| +
|M;| |xx — x;|. This implies that lime—.o we = limg—¢ [f{ — /| = 0 as y is continuous.
Thus, {w}. € W; (see (3.25)). By possibly passing to a subsequence (not relabeled), we
may suppose that (t; —t7)/we — 1o € R¥. We check that

Ve = (R*Mix +1f)

We

— 10X {xy>a¥} inmeasure in D}. (6.20)

In fact, by (6.19) and ¢/w, — 0, we first get

w(v8 — REMix —tf) = (e/we)e” " (y* — R*Mix —tf) — 0 in measure in D} N P,

&€

and by again using (6.19), e/w, — 0, as well as (¢f —t7)/we — 1o we find
w (Y — REMix —tf) = (e/we) e (y° — REMix — tf) + w, ' (tf —1f) — 1o

in measure in D¥ N P;. Now, by (6.20) and by arguing along the lines of (6.17)—(6.18)
we can define a sequence {y°}, via rotation and shifting such that {y®}, and {w¢}, € Wy
are admissible in (6.5). Then, we deduce

liminf €,(y*. D}') = Foli @Y h). 6.21)
£—

We now conclude the proof of (6.14) (ii) as follows: Combining (6.18), (6.21), and Propo-
sition 6.2 we get

I, Iy I,
. . g My ~U, d— i
hg}lggfé}(yg,LJID;‘) > Zfdp (@F; h) ZZKX;” l(a)zu)
i= i=

i=1
Then (6.14) (ii) follows from (6.10)—(6.11).

Step 3: Proof of (6.15). We start by recalling the definition of #¢ in (3.19) and by noting
that (3.21) implies

/ [Vué|>dx < Cs foralle > 0, (6.22)
Qs

where Cs > 0 depends on the set Q5 defined in (6.13), and thus on §. We now define two
small exceptional sets: first, we let « € (0, 1), and we define the set of large linearized
strains by

Qs

strain

= {x € Qs: [Vu®(x)| = %} (6.23)
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By Chebyshev’s inequality and (6.22) we estimate

2408, < % /Sz |Vus|?dx < Cse. (6.24)
8

Moreover, by (3.17) and by the continuous embedding of BV(; M4*?) into
LY (Q:; M?*4) we find a sequence {8;}, C (0, 00) such that §, — 0 and

hm—/(Z(RE S)XPS—Vy)dx — 0. (6.25)

e—>0§

Then, we define the set

Qe = {¥ € Qo7 | D2 (REM) s (1) = Vy ()| = 6 (6.26)
J

of points where the phases along the sequence differ by at least &, from the phases in the
limit. Clearly, (6.25) entails

1
d : eEafe —
Jim 2£9/(Q0) < lim /Q ‘Z (R*M)xps — Vy’ dx = 0. (6.27)
J
By combining (6.24) and (6.27) we find

lim L4(Qs \ Qopog) = 0. where  QF = Q5 \ (0 U Qipce)- (6.28)

By (3.1) and the definition in (3.19) we get

& 1 & 1 € & &
&y . Q) = = [ W(VyHdx= 5> W(REMS + eVu®(x)) dx.
€ QS € ] ngndmpf

(6.29)

By assumptions H2, H3, and H5 we can perform a Taylor expansion and write
W(RM + F) = 1D*W(RM)F : F + ww(F)
for all F € M?*4 with | F| < 8w, where wy: M4*¢ — R satisfies

lim nw(p) = 0. where nw (p) := sup {ow (F)/|F*: [F| < p}).  (6.30)
o—>

This expansion along with (6.23), (6.29), and the fact that anod n Q¢
& small enough,

6.0, 25) = Z /|
> ow (eVu®)

= D2W(R:M 8V Vu?® Vubls-———2 ) d
Z/Qanpe( (REM)Vuc ”*'”'Wusv)x

good

> Z - / D2W(R*M{)Vuf : Vuf dx — "W(sl_“)||V“8||iz<ngmd>~

€ €
Qo0 P;

= 0 yields, for

strain

1
( D? W(R*M;)Vu® : Vu® + g—sz(SVus)) dx

gooanE
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Then, by (6.22) and (6.30) we get

3 &
eood VP

1
liminf & (%, Q) zlimian—/ D*W(R*M{)Vuf : Vufdx.  (6.31)
e—0 e—0 7 2 Q¢

By HS5, (6.26), and the fact that Q¢_, N Q2

good phase = ¥ we find

< 36/ |Vué|? dx,

&
good

Z/ (D>*W(R*MF) — D*W(Vy)Vu : Vu® dx
: Q¢ NP¢
J

good J

where {88}6 C (0, 00) is a sequence, depending on W and {3, }., which satisfies 36 — 0.
This along with (6.22) and (6.31) yields

1
liminf &, (y%, Qs) > liminf—/ D2W(Vy)Vu® : Vu® dx. (6.32)
£—>0 e—>0 2 Q0
In view of (3.21) and (6.28), we have Vua)(ggmd — Vu weakly in L2(Qs; M4*4). Note

that D2W(RM) is positive semidefinite for M € {A, B} by H2 and H3. Thus, by (6.32)
and the weak lower semicontinuity of convex integral functionals, we conclude that

1
liminf &,(y®, Qs) > —/ D*W(Vy)Vu : Vudx.
e—>0 2 Jas

This along with the definition in (2.11) shows (6.15), concluding the proof. [ ]

6.2. The limsup inequality

In this subsection we prove the optimality of the lower bound identified in Theorem 3.14,
under the additional condition that 2K = K ‘fg ,for M € {A, B} (cf. (3.5) and (3.27)). We
first collect some basic properties of the elastic energy density.

Lemma 6.3 (Elementary properties of the energy density). Ler W: M?*? — [0, 00) sat-
isfy assumptions H1-H5 and H7. Let 0 < § < 8y /2, where 8w is the constant introduced
in H5. Define Vs = {F € M%*4: dist(F,SO(d){A, B}) < 8}. Then there exists a constant
C > 0 only depending on W, a constant Cs > 0 additionally depending on §, and ps > 0
with ps — 0 as § — 0 such that

(i) W(F +G) <W(F)+ C JW(F)|G|+ 1D?>W(F)G : G + ps|G|? forall F € Vs,
G € Bs(0),
(i) W(F + G) < W(F) + Cs/W(F) |G| forall F € M%*4 \ V5, G € Bs(0),

where Bs(0) C M9*? denotes the open ball centered at 0 with radius §.

The proof of this lemma is postponed to the end of this subsection.

We proceed with the construction of local recovery sequences around the interfaces.
To this end, recall the definition of K in (3.5). Let yg' and y, be the maps defined
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right after (2.5). We recall the notion of cylindrical sets from (6.2) and the definition of
strictly star-shaped domains in (2.7). We start by stating the local construction of recovery
sequences for a single phase transition.

Proposition 6.4 (Local recovery sequence for single phase transition). Letd € N, d > 2.
Let @ C R? be a bounded, strictly star-shaped Lipschitz domain. Let ' C R4~ be a
bounded Lipschitz domain and h > 0 such that 0w’ x (—h, h) does not intersect Q. Then
there exist sequences {v} }e, {v7}e C H*(Dy 5 N Q;R?) with

vE = yE  in HY (Do N Q;RY) (6.33)

&

such that
lim E:(E, Dy p NQ) = KH (0 x {0}) N Q). (6.34)
&—>

and for ¢ sufficiently small we have

+_ {lfaoyét if xa > 3h/4,

v (6.35)
¢ Izﬂfs o ygt if xg <—=3h/4,

where {1 i}g and {Izis}g are sequences of isometries which converge to the identity as
e — 0.

We emphasize that the above statement means that for any sequence {¢; }; converging
to zero a local recovery sequence can be constructed. The crucial point is that the sequence
{v ei}g is rigid away from the interface. This will allow us to appropriately ‘glue together’
local recovery sequences around different interfaces.

The next result provides a local construction of recovery sequences for the case
in which two consecutive phase transitions create small intermediate layers at level ¢
between two portions of the material in the same phase (cf. Figure 3). Owing to the com-
patibility condition that 2K = de‘g for M € {A, B} (cf. (3.5) and (3.27)), this provides a

double energetic contribution. Recall the mappings yé‘g defined in (3.26).
Proposition 6.5 (Local recovery sequence for double phase transitions). Let d € N,
d > 2. Let Q@ C R? be a bounded, strictly star-shaped Lipschitz domain. Let ' C R4~

be a bounded Lipschitz domain and h > 0 such that 0w’ X (—h, h) does not intersect Q2.

Let M € {A, B} and suppose that the constant K é‘pl defined in (3.27) satisfies K é‘g =2K.
Then for every {w¢}, C Wy there exists a sequence {vé‘l Ye C H?* (Do N Q; R%) with
M
-M
Yo =X yé‘g in measure on 2 N Dy (6.36)
We

such that
lim €M QN Dy p) =2KH (0 x {0) N Q),
g—>

I oMx if x4 >3h/4, (6.37)
&

v =
% oMx if xg <—3h/4,

where {1 %}8 and {IzMe}g are sequences of isometries converging to the identity as ¢ — 0.
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We defer the proofs of Propositions 6.4 and 6.5 to Section 6.4. (Let us mention that
in the special case Q2 = D,y j the statement in Proposition 6.4 has already been proven
in [32, Proposition 4.7], and here we address the generalization to strictly star-shaped
Lipschitz domains 2.)

We continue with the proof of the limsup inequality. As a final preparation, we intro-
duce the following convention: we say that a sequence {v®}, of functions converges to v
up to translation if there exist {a;}, C R and {b,}, C R¥ such that

Vo(-—ageg) — by — v (6.38)

with respect to a given topology. In a similar fashion, we say that two functions vy, v
coincide up to translation if v, = v{(- — aeg) — b for some ¢ € R and b € RY.

Proof of Theorem 3.15. Let (y,u, #) € 4. Without loss of generality, after a rotation, we
can assume that y € ¥4(2). Moreover, similarly to the proof of Theorem 3.14, it is also
not restrictive to assume that

Jvy c | Jorinac i (6.39)
J

In fact, the first inclusion always holds true by Definition 3.9, and by using Proposi-
tion 3.8 (i) we may pass to another displacement field of the form & = u + T (y, )
(see (3.23)), such that the second inclusion holds for % in place of u. In view of
Remark 3.13, this does not affect the energy and we observe that a recovery sequence
{y®}¢ for (y,u, P) in the sense of Definition 3.5 is also admissible for the original triple
(v, u, ) by Proposition 3.6 (iii). As a further preliminary remark, we observe that by
a diagonal argument it suffices to find for every § > 0 a recovery sequence {y®}. for
(y,u, #) such that

limsup & (y®) < E*(y.u, P) + 6. (6.40)
e—>0
In this context, we point out that the asymptotic representation introduced in Definition 3.5
is based on the convergences (3.11)—(3.21) which themselves are metrizable, i.e., diagonal
arguments are applicable.

For the convenience of the reader, we start with a short outline of the proof: In
Steps 1-2 we explain that it is not restrictive to treat only problems with a finite num-
ber of interfaces and that one can assume that Vu is smooth. In Step 3 we construct
local approximate sequences around the interfaces. These are then ‘glued together’ to
obtain an auxiliary recovery sequence {y°}, converging to y, and capturing correctly the
surface energy of the limiting triple (y, u, #); see Step 4. To recover the displacement
field u in the limit and to estimate the elastic contributions correctly, we then perturb
{7?}¢ by adding a term of order &. We check that this new sequence {y®}. indeed satisfies
y& — (y,u, P) (Step 5) and limsup,_,, &:(y®) < 86’"()1, u, #) (Step 6). Finally, Step 7
is devoted to some technical estimates.
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Step 1: Reduction to a finite number of interfaces. Using the star-shapedness of the
domain (say, with respect to the origin) along with Remark 4.7, one can apply a scal-
ing argument to reduce the problem to limiting configurations where J,, consists of a
finite number of disjoint interfaces orthogonal to e;. For the details of this argument
we refer to [27, proof of Proposition 5.1] and also [32, proof of Theorem 4.4, Step 1]).
We just mention that, for p > 1, one considers rescaled triples (y,, u,, $,) of the form
Yo(x) = py(x/p), up(x) = pu(x/p), and Pjp = pP; N Q for each component P}O € Pp.
This sequence satisfies 85"" (Y up, Pp) = 83‘" (y,u, P) as p — 1. The geometrical intu-
ition is that, since infinitely many interfaces can only occur close to the boundary (see also
the lower part of Figure 1), a rescaling allows one to reduce the study to a finite number
of interfaces. It suffices to construct recovery sequences for (y,, u,, $5) since a recovery
sequence for (y, u, $) can then be obtained by a diagonal argument.

Summarizing, by (6.39) we can suppose that there exist finitely many Lipschitz

domains w; C R4-1 and o; € Rfori =1,...,1 such that
I
Juy Ul J@P N @)U Jy = Jy = (@i x {oi)). (6.41)
j i=1

Since 2 is star-shaped, €2 \ J,, is the union of / 4+ 1 connected components denoted
by {Bi}iI:ll. The sets are ordered in such a way that dB; N dB;j+1 = w; x {o;} fori =
1,..., 1, and the outer normal to B; on dB; N dB; 4 is given by e, (see Figure 6 below).

Step 2: Reduction to displacement fields with smooth gradient. In a similar fashion, we
can also suppose that u € 7/ (2) has a smooth gradient: By Proposition 3.8 we find
{b; }iI:ll C Rey such that the mapping
I+1
u i=u— Z bi x; (6.42)
i=1
satisfies u’ € H'($2;R?). Choose a smooth sequence {u) bk C C>(Q2;R%) approximat-
ing u’ in H'($2; R%) and observe that uy := up + Z,-I:ll bi xB; € % (Q) satisfies uy — u
in LY(Q;R9%) and Vuy — Vu in L2(Q; M?*4). Again by a diagonal argument and by
using that the limiting energy 85‘"’ is continuous with respect to the strong L2-convergence
of displacement-gradients (see (3.24)), it suffices to construct recovery sequences for dis-

placement fields u € % () such that Vu € C > (Q; M4*4),

Step 3: Local construction of the approximate recovery sequence. We now start with
the construction of recovery sequences around the interfaces. For brevity, we set Jp =
Ui d0P; N Q. In view of (6.39) and (6.41), we can write

Jvy = U (wi x{a;}), Jp\Jvy = U (wi x{a;}),
iedy iedp

T\ (Jvy UJp) = | (@i x {ai}).

iedy

(6.43)

where d,, d », and J,, are pairwise disjoint index sets with d, Udp U dy, = {1,...,T}.
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Fig. 6. A visualization of the different interfaces and sets after the rescaling in Step 1 and under
(6.39). The phase regions associated to A and B are colored blue and orange, respectively. The
interfaces associated to the sets J; and d,, are highlighted with thick red and dashed black lines,
respectively. The remaining interfaces correspond to the set d ». The connected components of
Q \ Jy are indicated as {B; }lszl, whereas the cylindrical sets {D; }i7=1 around the interfaces (see
(6.44)) are drawn in green.

As explained in [27, proof of Proposition 5.1], we can choose Lipschitz domains
w; DD w; as well as & > 0 such that the sets dw; x (o; — h, a; + h) do not intersect
Q, the different cylindrical sets D; := ajeq + Da’f’ , are pairwise disjoint, and one has

(0] x {a;}) N Q2 = w; x {a;}. (6.44)

We again refer to Figure 6 for an illustration. We now distinguish the cases of the three
index sets d,, do, and d,: First, we fix i € d,. As the sets D; are pairwise disjoint,
on D; N Q the function y coincides with y;' or y, up to translation (recall convention
(6.38)). Thus, by Proposition 6.4 we can find a sequence {v;" } or {v; } such that (6.33)
holds up to translation, (6.34)—(6.35) are satisfied, and {v]}, or {v] } converges to y in
LY(D; N Q;RY).

Fori € dp U d,,, we observe that y coincides up to translation with M x on D; N Q
for some M € {A, B}. If i € Jp, we apply Proposition 6.5 for the sequence w, = /e.
If i € d,, we apply Proposition 6.5 for we = |bj4+1 — b;|e (cf. (6.42)). In this context,
we also note that by Proposition 3.8, the fact that v, = e; on Jy,, and the ordering of
the sets {Bi}l.lill (see Step 1), we have (bj+1 — bi) Y{x >0y = |bi+1 — bi |y£g with yc{‘l’)’
defined in (3.26). In both cases, we obtain a sequence {v,}, C H?(D; N ©2;R¥) such that
(6.36) holds up to translation, (6.37) is fulfilled, and v, — y in measure on D; N 2. More
precisely, (6.36) and the definition of {w,}. in each case imply

(i) &' (ve =) = (bit1 = bi) Aixy2a;y on Di NQfori € dy,

(6.45)
(i) &2 (v — y) = yar (- — ieq) onD; NQfori € dp,

where both properties hold in the sense of measure convergence.
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For convenience, we denote this local sequence by {vi}, C H?(D; N Q; R?) for each
i =1,...,1.For later purposes, by using Lemma 2.1 we note that

vl —y stronglyin H'(D; N Q:R¥) foralli =1,....1. (6.46)

Step 4. Global construction of the recovery sequence. Recall that Q \ J,, = Uilill Bi,
and let B/ := B; \ U,I-=1 Djforalli =1,...,I + 1. Owing to Propositions 6.4 and 6.5,
using (6.46), and arguing as in [26, proof of Proposition 3.5], we then choose iteratively
isometries {If}il=l and {ff }f:ll such that all isometries converge to the identity as & — 0,
and setting

je:=1Ifovl onD,NQ and j°:=1Ifoy on B,
the maps 7°: Q@ — R satisfy {7°}, € H?(Q:R?) and
7¢ — y strongly in H'(Q2; R9). (6.47)
Moreover, by (6.45) we get

) E_I(jja —Ifoy)— (bit1 —bi) Xixyza;y i€y,

) (6.48)
(i) e V2~ Ifoy) > ypi( —weq)  ifi € dp,

where both convergences hold in measure in D; N 2, and M; € {A, B}issuchthat Vy =
M; on D; N Qifi € dp. Note that, up to translations, it is not restrictive to suppose that
fo 7€ dx = 0. By construction we have

I1+1 1
Vi € SO(d){A. B} and V?>j*=0 on | B/ =\ | D (6.49)
i=1 i=1

for every ¢. Thus, again by the properties of the sequences {v’}, obtained from Proposi-
tions 6.4 and 6.5, we find by (6.39), (6.43), (6.44), and (6.49) that

I
. SEY _ 1: i .
lnsnj(l)lp €:(y") = lim ;:1 €e (v, Di)

IA

K35 @ teah) + 2K 30 H @ix fo))

iedy ied pUdy

KH41(Jy,) + 2KJ€d_1(<Ju U (U aP; N 9)) \ va).
j

By (3.24) we then conclude that

lim sup &, (7°) + / Qin(Vy, Vu)dx < &1 (y,u, P). (6.50)
Q

e—>0

So far, we have constructed a sequence {7}, C H2(Q;R?) satisfying ¢ — y strongly in
H'(92:;R?) and (6.50). In view of (6.50), we can apply Theorem 3.3 to obtain a limiting
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triple (7, i1, #) such that ¢ — (7, i, £) in the sense of Definition 3.5. We also note by
(3.16), (6.47), and fQ y&dx = 0 that y = y. Then, by (6.39), (6.50), and Theorem 3.14
we find

/Q(an(Vy, Vii) dx + 2K J4! ((J,; U (U 9P; N 9)) \ va)
’ <2KHTV (I, \ Jyy).  (6.51)

We write £ = {ﬁj }i. We will prove that

i (Jorne=[Jop na.
j J
(6.52)
(i) Jy = Jz U (U 9B; N sz)
J

In particular, (i) yields & = $. We defer the proof of (6.52) to Step 7 below and now
proceed with the construction of the recovery sequence. Note that in general & # u, and
therefore we need to perturb {)®}. to obtain a sequence such that the rescaled displace-
ment fields converge to u. To this end, for each ¢ > 0 we let

&= 7° + eu, (6.53)

where u’ is the (smooth) function corresponding to u defined in (6.42). We now check
that y® — (y, u, &) in the sense of Definition 3.5 (Step 5) and then compute the energy
of the sequence (Step 6).

Step 5: Convergence to the limiting triple. The goal of this step is to show that y® —
(y,u, #) in the sense of Definition 3.5. Owing to (6.39) and recalling y € ¥(R2), we
choose M; € {A, B} such that Vy = M; on each component P;. Similarly to (6.42), by
the fact that J; C J,, (see (6.52)) and Proposition 3.8 (i) applied for # we find {Ei}iI:ll
C Reg such that it’ := i — Y7 b yp, € H'(R:R9). By (6.51) and (6.52) (ii) we get
Jo @in(Vy, Vit)dx = [ @ix(Vy, Vi) dx = 0. Note that F — @;;,(M, FM) is positive
definite on Msdy’;ld by (2.12). Therefore, by Korn’s and Poincaré’s inequalities and the fact
that i’ € H'(Q;R?), it is elementary to check that 77’ = > (SMjx +5;)xp; for some
S € M4xd and suitable {5;}; C RY. (Note that the skew-symmetric matrix S here is

necessarily independent of the set Pj as i1’ € H'(Q; R9).) Consequently, we get

I1+1
= (SMyx+35)xp, + Y bixs,- (6.54)
j i=1

Since {B; }1-1:11 is a refinement of the partition { P; }; (see (6.41) and Figure 6), we find for
eachi =1,...,1 + 1 acorresponding index j; such that B; C P;,. Fori € d» U d,,, this
implies

[i] = bit1 + 3y, — (bi +5j,) onw; x{e;} =3B; NdBis1,  (6.55)
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where j; = ji4+1ifi € 4y, (cf. (6.43)). Let {(R?, P*, M®, T ?)}, be the quadruples given by
Theorem 3.3 for {J¢}, such that (3.11)—(3.21) hold. In particular, (3.15) and (3.19)—(3.20)
yield

e (e - (R*M;x +t})) — @ in measure on P; forevery j. (6.56)

Fix i € d, as defined in (6.43), and recall that D; N  C P; for some index j. By
(6.48) (i), the fact that Vy = M; on P;, and by a compactness argument for affine map-
pings we find that (for a subsequence, not relabeled) e~!(/¢ o y — (REMJ?x + tf)) —
SiM;x + d; pointwise almost everywhere on D; N Q for suitable S; € M4*? and
d; € R%. (We omit the details here and refer to the proof of Proposition 3.6 above for

a very similar argument.) This along with (6.48) (i) and (6.56) yields
u = (bj+1 _bi))({xdzai} +SiMjx +d; onD; NQ. (6.57)

Then, in view of (6.55) and the fact that j; = j; 4 fori € d,,, we check that b; 1 — b; =
biy+1 —b; foralli € d,,. Therefore, by (6.54) there exist {s;}; C R4 such that

I+1
i =Y (SMjx +s;)xp;, + Y _ bixs; (6.58)
J i=1

We define tt =u + ., (SM;x + ;) xp; . We observe thatu —ii € T (y, #), and by (6.42)
and (6.58) we note that

u=1u+u'. (6.59)
In view of (6.53), (6.56), and (6.59), we find that
lim e (y® — (REMEx + 1)) = @i + lim ¢ 1 (y® — )
&—0 J 7 e—0
=i+u =u
in measure on P; for every j. In other words, by (3.15) this means
u® — % in measure in Q, (6.60)

where {u?}, is defined in (3.19) for {y®}, and the quadruples {(R?, P&, M?, T¢)},. Now,
we see that (y, &, u) is an admissible limit for the quadruples {(R?, P, M®, T°)},.
Indeed, all properties apart from (3.13), (3.16), and (3.20)—(3.21) follow from the cor-
responding properties of {y®}.. For (3.13) and (3.16) we additionally take (6.53) and
u € C°°(§; Rd) into account, and for (3.20) we use (6.60). Finally, to see (3.21), we
use Vi® — Vi in L2 (Q; M4*4) where ¢ is defined in (3.19) for to {7¢},, and
Vu = Vi + Vu by (6.42) and (6.59), as well as Vu® = Vu® + Vu by (3.19), (6.42),
and (6.53). Thus, y®* — (y, i, #) in the sense of Definition 3.5. Asu —u € 7 (y, P), by
Proposition 3.6 (iii) we then also find y®* — (y, u, #), as desired. This concludes this step
of the proof.
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Step 6: Convergence of the energies. The goal of this step is to prove lim sup,_, &:(»°) <
86"’ (y,u, P). To this end, fix §, 0 > 0. Recalling the construction of the local recovery
sequences in Step 3, it is not restrictive to suppose that

1

xd(U D,-) <92 6.61)

i=1
by choosing the constant # > 0 sufficiently small (see before (6.44)). In view of (6.50),
we see that we essentially need to estimate the difference of &.(y?) and &.(y?).

First, we note that ¢|Vu| < § for & small enough since Vu € C°°(§; I Xd). Define
Q. = {x € Q: dist(Vy?®,SO(d){A4, B}) < 6}. By (3.1), Lemma 6.3, (6.42), (6.53), and a
quadratic expansion we calculate

C
£:0°) = 6.7 + 2 /Q W59 |Vu| dx

1
+/ EDZW(vy~8)Vz4 : Vudx +p3/ |Vu|? dx + e, (6.62)
Q¢

&€

where ps and Cj are the constants from Lemma 6.3, and y; is defined by
Ve 1= 83/ 2V25¢ : Viudx + 84/ |V2u|? dx
Q Q

+ 774 Z /Q(zgaijsa,?juﬂﬂafjuﬁ)dx.

1<min{i,j}<d

As 8:(3%) < C by (6.50) and Vu € C®(; M9*9), the fact that lim;_ &fje.q = 0
(see (3.3)) along with Young’s inequality shows that lim,—¢ y. = 0. (More precisely,
=2

; ; =2 2 ~g 92 Me.d 192 5e2
for the third term we use an estimate of the form 7; ;&0 y® dj;u < 28)@ |07 VeI +
§s2ﬁ§,d/\g|a,.2ju|2 for a sequence {A¢} such that A, — oo and A&7}, 4 — 0.) Moreover,

for the second term in (6.62) we compute, by Holder’s inequality, (6.49), H3, and (6.61),

1 1
—/ VW(VyE) |Vu|dx —/ VW(Vy%) |Vu|dx
¢ Ja € JU; D

IA

| 1/2
([ wesa) 1vulg o,

< IVl (24(UD) " =co oy

where in the penultimate step we have also used the fact that fQ W(Vy¢)dx < Ce? by
(6.50). Then, from (6.47), (6.62), (6.63), ye — 0, the regularity of W, and the dominated
convergence theorem we obtain

lim sup &, (y®) < limsup &,(7°) + / @Qin(Vy(x), Vu(x))dx + CCs0 + ps ”Vu”%}(g)’
Q

e—>0 e—0
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where @y, is defined in (2.11). In view of (6.50), this yields

limsup € (y°) < & (y,u, P) + CCs0 + p5|Vul 72 -
e—0
The limsup inequality now follows by first letting & — 0, then § — 0, and by recalling
the comment in (6.40).

Step 7: Proof of (6.52). To conclude the proof, it remains to show the technical property
(6.52). We observe that it suffices to prove the estimates

() Ju\ Jyy C (Jﬁ U (U ap; N Q)) \ Jyy.
J
(i) | J@P, n@)\ Jvy, | JOP; nQ)\ Jv,, (6.64)
J J

(i) | J@P, n@)\ Jvy, D JOP; nQ)\ Jv,.
J J

3.9 we obtain one inclusion in (6.52) (ii). The other one then follows from (6.51).

Let us now show (6.64) by contradiction. First, if (6.64) (i) were wrong, we would find
acylindrical setajeq + Dy, ; fori € dp U Jy (see (6.43)) and [ > O sufficiently small and
some component ﬁj of & such that (aieq + Dy, 1) NQ2 C 13]- and (ajeq + Dy, 1) N Jg
= (. By Theorem 3.3 applied for {j°}., we then get (see also (6.56))

e (7 — (REM x + t{)) — U inmeasure on (&jeq + Dy, 1) N P;, (6.65)

where R® — 1d, {tj’.’"},9 C R4, and M is such that Vy = M on ISj. In view of the fact that
(aieq + Dy, 1) N Jz = @, we obtain a contradiction to (6.48) (i, ii). On the other hand, if
(6.64) (ii) were wrong, we would find i € J» such that (6.65) holds. But then (6.65) and
the fact that # is finite a.e. contradict (6.48) (ii).

Finally, suppose that (6.64) (iii) were wrong. Then there would exist a cylindri-
cal set D := aey + D, which intersects two components Isjl and 15]-2, but not
UiGJj) (w; x {a;}), i.e., there exists P; such that D N  C P;. Similarly to (6.65), we
find sequences {tj‘?1 Yes {tje2 }e € R? from the sequence {7¢}, given in Theorem 3.3 such
that

e 15— (REM x + t;.)) — U inmeasure on D N f’jk fork = 1,2, (6.66)

where M is such that Vy = M on P;. On the other hand, we find a sequence {/°}; of
isometries converging to the identity as ¢ — 0 such that e 7! (3° — I¢ o y) converges to a
finite value a.e. on 2 N D due to (6.48)—(6.49), where we exploit that D does not intersect
Uieho (wi x {e;}). This along with (6.66) shows limsup,_,, (¢} —¢,)/e| < oo, which
however, contradicts (3.18). This argument concludes the proof of (6.64), and thus we

have completed the proof of (6.52). ]
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We conclude this subsection by showing that W satisfies the estimates in Lemma 6.3.

Proof of Lemma 6.3. Fix 0 < § < §y /2. We start with (i). By a Taylor expansion, by
assumption H5, and the fact that D?W is uniformly continuous on Vs we find that for
any F € Vs and G € B;(0),
W(F +G) < W(F)+ DW(F): G + sD*W(F)G : G + ps|G|*,
where ps — 0 as 6 — 0. Letting Rr € SO(d){A, B} be such that
|RF — F| = dist(F, SO(d){A, B}),
assumptions H3 and H4, together with the fact that DW is Lipschitz on Vs and DW(RF)
= 0, give
|IDW(F)| < [DW(RF)| + C|F — Rp| = C dist(F, SO(d){A. B}) < (C//c1) Yy W(F)
for a constant C only depending on W. By the Cauchy—Schwarz inequality this concludes
the proof of (i).
To prove (ii), we exploit H7 to find for F € M?*4 and G € B; (0) that

W(F + G) < W(F) + c5(1 + 2|F| + 8)|G]|.

For F € M4*? \ V5 one finds that max {§, 1 + 2|F|} < Cs dist(F, SO(d){A, B}) for
a sufficiently large constant depending on §. The desired estimate follows then again
from H4. ]

6.3. Properties of the double-profile energy

In this subsection we analyze the double-profile energy functional introduced in (6.5) and
address its relation to K and Ké‘g . In particular, we prove Proposition 6.2. We start by
stating the results of this subsection.

Proposition 6.6 (Properties of the double-profile energy function). The functions ?dg” ,
M € {A, B}, satisfy, for all h > 0 and all open, bounded sets » C RA~1 with #¢~'(dw)

=0:
6)) }‘dﬁl(aw;ah) > ad_l?dg”(w; h) forall0 < a < 1.
(i) FM(w;h) = H (@) FM(Q':h), where Q' := (=1/2,1/2)471.
(iii) }‘dﬁ” (w; h) = J‘«‘dly (w; 1).
We now address the relationship between the optimal-profile and double-profile
energies.

Proposition 6.7 (Relation between K and Kc{‘g ). We have de‘;’ > ?dg’l (Q’,1) = 2K for
M € {A, B}, where Q' = (—1/2,1/2)%!, and K, K(fl’)[ are defined in (3.5) and (3.27),
respectively.
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Finally, if 2K = Ké‘g for M € {A, B}, in the definition (3.27) one can replace cubes by
general Lipschitz domains, and the formula holds for every > 0 and general {w,}. € W,.

Proposition 6.8 (Characterization of Ké‘g ). Let M € {A, B}, and suppose that the con-
stant Ké‘;’ defined in (3.27) satisfies Ké‘g = 2K. Then

&
-M
inf {lim sup & (¥°, Dy p): y -

— yé‘g in measure in D, j as € — O}
e—>0 3

= KM KN w)  (6.67)
for every Lipschitz domain @ C R2™1, h > 0, and {wg}s € W,.

We point out that Propositions 6.6 and 6.7 directly imply Proposition 6.2. Proposition
6.8 will be instrumental in Section 6.4 for the proof of Proposition 6.5. We prove it here
as it completes the characterization of the relation between K Ag , M € {A, B}, and the
double-profile energy functions. We now proceed with the proofs of Propositions 6.6, 6.7,
and 6.8. As a preparation, we start with a standard rescaling argument which we will use
several times.

Remark 6.9. For a configuration y € H2(aDy, p; R9) and 0 < a < 1, we define y €
H?(Dyp; R%) by j(x) = y(ax)/a. We observe that Vy(x) = Vy(ax) and V2j(x) =
aV2y(ax) for all x € D i Since {fj¢.q}¢ is increasing as ¢ — 0 (see (3.3)), we get
f’i/&s,d > aﬁid. Thus, by (3.1)—(3.2) we obtain

1
€ sas(y, Dy p) = E/

OlDw_h

W(Vy)dx + 0182/ |V2y|? dx

OlDw_h

+ait, / (ST
oDy h

Otd_l
=— W(vy-)dx+ad—182/ |V2 5|2 dx
£ w.h Dy .n
val ity [ (VP 85
Da),h
= a?7'6:(7. Dovp)- (6.68)

Proof of Proposition 6.6. We prove (i). Let 0 < o < 1. By (6.5), for a given § > 0, we find
sequences {&; }; withg; = 0, {w; }; € Wy, u € Ugp(aDy, 1), and {yi); C Hz(och,h;Rd)
with wi_1 (y! — M x) — u in measure in aD,, y such that

liminf € g, (. @Dy p) < Fl (aw:ah) + 6. (6.69)
i—00 ! ’
Let {3’} C H*(Do i R?) be the rescaled functions defined before (6.68). Note that
ozwl-_l(fi —Mx) = wi_l(yi(ozx) — M(ax)) — au

in measure in Dy, 5, where 1(x) = u(ax)/a for x € D, . Then the definition of ?dgl,
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(6.68), and (6.69) imply
8§+ FY (ewiah) > liminf € g, (v'.aDy ) = o' liminf &, (7. Dy 1)
i—00 i ? i—00 ! i
> a? ' FM (0 h).

Since § > 0 was arbitrary, (i) follows.

The proof of (ii) and (iii) is exactly as in [32, Proposition 4.6], to which we refer for
the details. (See also [24, Lemma 4.3] for similar arguments.) [ ]

We now move to the proof of Proposition 6.7. We first state two technical lemmas.
Recall the definition of y; and yg below (2.5).

Lemma 6.10 (Lower energy bound). Let {&;}; be an infinitesimal sequence, and let
{zi}i CR be a bounded sequence with e; [ \/Ti — 0. Letw C R4~ be a bounded Lipschitz
domain. Suppose that there exists a sequence {v'}; with v’ € H (Do R%) and

Vol — Vyt;r”izww.ri) — 0. (6.70)

Then

liminf &, (v, Dy 7)) = KH ™ (), 6.71)
1—>00

where K is the constant from (3.5).

Lemma 6.11 (Zooming to two interfaces). Let {€;}; be an infinitesimal sequence. Let
Q' Cc R4 be a cube and let h > 0. Let M € {A, BY. For every i € N, let y' €
HZ(DQ/,h;Rd) with 8gi (yi, D@/,h) < Cy < 00, let {‘L’,’}i € Wy, let u € udp(Da/,h),
and assume that

yi— Mx

— u inmeasure in D/ j asi — oo. (6.72)
Ti

Then, there exist L > 0, sequences {otil}i, {otiz},' C R such that Dij = otijed + Da/ ug;»
Jj = 1,2, satisfy Dl Dl-2 C Dg j, and Di1 N Dl-2 = (0, and there exists a sequence {1;};

1

of isometries such that the maps v’ € HZ(Di1 U Diz; R?) defined by

v (x) = I; 0 y'(x) foreveryx € D} UD? (6.73)
satisfy, up to a subsequence, for j = 1,2,
min {zlfl Vvl (- + aleq) — Vyd IIzz(D@/VM.),

TV (- + ol eq) — Vyalliz(%,m')} 0. (674)

The lemma states that one finds two cylindrical sets with height pt; such that
each ‘contains an interface’, i.e., asymptotically a big portion of Di] N{xg > oet.] } and
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A A
\—/_\
B B B
/\_/ /\/
A A

Fig. 7. By ‘zooming in’ one can identify two regions in which phase transitions occur: the interfaces
between the A- and B-phase regions become asymptotically flat as i — oc.

Dij N{xg < oeij }, respectively, is contained in the A- and B-phase region, respectively
(cf. Figure 7).

Loosely speaking, the result shows that, under assumption (6.72), there are at least
two interfaces and the interfaces between the A- and B-phase regions become asymptot-
ically flat, where the nonflatness is asymptotically small compared to the sequence {z;};.
An analogous result for a single interface between the A- and B-phase region has been
derived in [32, Lemma 4.9].

We postpone the proofs of these two lemmas and proceed with the proof of Proposi-
tion 6.7.

Proof of Proposition 6.7. Let M € {A, B}. First, the inequality Kg! > ;M (Q’, 1) fol-
lows immediately from the definitions in (3.27) and (6.5). We now show 5"(11;‘;4 Q.1
> 2K. We again let Q = (—1/2,1/2)?. Given § > 0, we choose sequences {¢;};,
{wi}i € Wa, u € Ugp(Q), and {y'}; € H2(Q;R?) such that w;!(y' — Mx) — u in
measure in @, and

limsup &, (y', 0) < Fgp' (0", 3) +8 = Fyi' (0" 1) +36. (6.75)

1—>00

where the last step follows from Proposition 6.6 (iii). By Lemma 6.1 1 applied for @' = Q’,
h =1/2,and ; = w; we find u > 0 and pairwise disjoint sets D} := o eq + Do’ juu; »
j = 1.2, with D}, D? C Q, and isometries {/;}; such that the maps v € H*(D} U
D% R?) defined by v (x) = I; o y!(x) for x € D} U D? satisfy (6.74) (after extraction
of a subsequence). Possibly after a transformation of the form x —vi(—x), we may
suppose that w; ! Vi (- + Ol,-jed) — Vy(;r”iZ(DQ/ ) 0 for j = 1,2. Then H2 and

Lemma 6.10 for t; = w; (note that ¢; /\/T; — 0 by (3.25)) imply

liminf &, (y', 0) = Y liminf &, (v'(- + &/ ea). Do/ pw;) = 2K.
1—>00 j=1,2 1—>00

This along with (6.75) and the fact that § > 0 was arbitrary concludes the proof. ]

We continue with the proofs of Lemmas 6.10 and 6.11.
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Proof of Lemma 6.10. First, suppose that t; > h > 0 for alli € N for some 4 > 0. Then
up to translations we have v! — yJ in L! (Do,h R%), and we immediately get

liminf &, (v', Dy 7,) > liminf &, (v, Dy 4) > F (w3 h)
1—>00 1—>00

by (6.3). The result now follows from Proposition 6.1.

We can therefore concentrate on the case t; — 0. We prove the statement first for
w = @, where @' C R4~ is a cube. For notational convenience we set Vi =71, 1 We
define y' € H2(Dy,@/.1;R?) by yi(x) = v (z;x)/7. By using (6.68) with o; = 7;, we
get
85[ (Uiv DQ’,ri) = 8ﬁﬁsi (Ui’ Dal/,rf) = T,d_lgﬁsi (yi’ Dyi(,‘l/,l)' (6.76)
Let § > 0. We can (almost) cover Dy, g/,1 by Ly; |41 pairwise disjoint translated copies
of D¢’ 1. This implies that we can find z; € R4~1 % {0} such that, by a classical De Giorgi
argument (see the explanation at the beginning of the proof of [27, Lemma 4.3] for the
details of this technique), for i € N sufficiently large we find by (6.76) and a change of
variables that

. i 1+6 ;
(1) 8ﬁai(y .zi + Dgrp) < W&msi (y ’Dyia/,l)

146 .
S T aa €;(v', Da’ ;).
(Lyiéfi) (6.77)
@) 1YY = V3§ 1726100 ) = grid‘l IVy' = Vygd II§2(DW@,.1)
C .
= E”vvl —_ vy(—)i_”iZ(D@/Tl)
Since 7; — 0, we have 7; | y; | — 1. This along with (6.77) (i) yields

11m inf8ﬁ8i (yi, Zi + D(!Z/,l) < (1 + 5) li'm infgai (Ui, DQ/,TI‘)‘ (678)
1—>00 1—>00
Moreover, by (6.70) (with @ = @’) and (6.77) (i) we obtain ||V y? — Vy(‘)"||iz(z'+Dé2 )
i /1

— 0. Since ,/yie; — 0 by assumption on {7;};, (6.3), (6.78), and the translational invari-
ance of &, imply

F@, 1< liminf & 7, (v'.zi + Dgr1) < (1 +6) lim inf &, (', Da/ 1)

Since § > 0 was arbitrary, in view of Proposition 6.1 the statement follows for w = @'.

Now we consider a general bounded Lipschitz domain @ € R¢~!. Given § > 0, we

can choose pairwise disjoint cubes (Q; Cw, j=1,...,N, contained in w such that
HAI N (w )\ U;V=1 Q) < 4. Then by applying (6.71) on each cube @ we get
liminf &, (v', Do 7;) = X; liminf &, (v'. Dy ) = K X; 41(@))
j= j=

> K(H9  (w) = §).
Since § > 0 was arbitrary, (6.71) holds. [
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Proof of Lemma 6.11. We prove the result only in the case M = A. The case M = B is
the same, up to notation. The proof is similar to the one of [32, Lemma 4.9] where the
problem with one interface only has been addressed.

Step 1: Subdivision into phases. As {t;}; € Wy (see (3.25)), and a(d) = 1/(2d), we can
choose A; = 81»1+1/(4d) C (0, 1/4) such that

ri_l)k,- — 0, s._z+“(d)r,-/1§d_l)/d — 0. (6.79)

1

We use Proposition 4.1 for y' € H 2(Da'.n; R9) to find a corresponding set T; with
properties (4.1). Recall that 7; corresponds to the A-phase regions and D/ p \ T; to
the B-phase regions of the function y’. Let

Ti={te(=h.h): H(Q@ <) NT) = (1 - 1) H1(@)),

. 6.80
T =t € Chiy HON@ <UD\ T = (- A @)y.

Define the indicator function ;: (—h, h) — {A, B} by ¢:(t) = A if sup{t' <1: 1" €
T UTAY € TF and ¥ (1) = B else. We get

. . 1-d _
H(~h )\ (T4 UTH) < cCos ™D 2,7 (3041 (@) 7, (6.81)
and that the function v; jumps at most
N;i <2¢Co (HN@) ' +1 (6.82)

times, where ¢ > 0 is the constant from Proposition 4.1, and Cy > 0 is such that
&, (»%, Dar.p) < Cp for all i € N. We point out that the above estimates are obtained
by performing analogous arguments to the ones in [32, proof of Lemma 4.9, (4.39)—
(4.43)]. The expert reader can thus skip the remaining part of this step and move directly
to Step 2. To keep the presentation self-contained, we include here a short proof of (6.81)
and (6.82).

For i sufficiently large (i.e., A; small), the relative isoperimetric inequality on @ x {¢}
in dimension d —1 (cf. [35, Theorem 2, Section 5.6.2]) shows that

d—1 _ , .
(@ x )N T) <A, 7 (HNQNTT = 1eTIUTE.  (6.83)
Indeed, by the relative isoperimetric inequality we get
d—1 —2.,d—1
min {J0971(@ x eh) N T), HOTH(@ X gD\ T < C (A, T (41 (@)a=T) =
< 4 HN@)

for i large enough, where we have used (d — 1)2/(d(d — 2)) > 1. (For d = 2, the
term after the first inequality has to be interpreted as zero.) This gives (6.83). Thus, by
(4.1) (iii), (6.83), and &, (y*, Da’4) < Co we obtain (6.81).
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To prove (6.82), we use the coarea formula to get, for Jlae. ty € ’J‘X, g € ’J‘g,
HITNO T N (@ % (ta, 18))) = / (v, eq)| dF 41
*T;N(Q'x(t4,tB))

= / Jfo((z + (t4.tg)eg) NO*T; N (Q x (Z‘A,[B))) d:%d_l(z),
Mg

where [T, := R9~1 x {0}, and v7; denotes the outer unit normal to 7;. In view of (6.80)
and A; < %, we get

/ HO((z + (ta.tB)ea) N 9*T; N (Q' x (ta.1p))) dH 7! (2) = %%d—l(c‘z’y
My

Property (6.82) then follows by (4.1) (i).

Step 2: Rigidity estimates. Theorem 3.2 and Proposition 4.1 yield rotations R; € SO(d)
such that

IVy' — RiAlL2(p g 0Ty + IVy' — RiBll12(pg ,\1;) = Céi, (6.84)

where C depends on the uniform energy bound Cy and on D 5. (Note that the estimate
holds in the entire set D¢/ ; since it is a paraxial cuboid.) For later purposes, we estimate
integrals on sets D = aeq + Do/ C Do fora € R and 0 > 0. Let L > Vd be
sufficiently large such that dist(F, SO(d){A, B}) > |F — RM|/2 for all F € M?*¢ with
|F| > L, R € SO(d),and M € {A, B}. We now show that for every g € {1, 2},

() [ IRTVY' = A1 ar = CEI D)% + @LIE D\ Ty,
b (6.85)

(ii) / |RTVy! — B|9dx < C(£9(D))'™9/%7 + 2L)1L4(D N'T).
D

To see this, define E; = D N {|Vy’| < L}. First, by using H4 we observe that
IVY' = Ri A7 pr g,y + 1VY' = RiBlJ2p\ gy = C /D W(Vy')dx < Cef, (6.86)

where C depends on c; and Cy. For the integral on E;, we calculate

/ |RiTVyi—A|qu=/ |Vyi—R,~|qu+/\ |Vy' — R;|? dx
i E;NT; i\T;

/2
< (id(D»l—q/Z( / vy R,-|2dx)q
D .

T;

+(2L)124(D\ T;)

for g € {1, 2}, where in the second step we have used Holder’s inequality. This along with
(6.84), (6.86), and Holder’s inequality shows (6.85) (i). In a similar fashion, one can show
(6.85) (ii).
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Step 3: Asymptotic behavior of phases. We now use (6.85) to show the properties
1 .
(i) liminf —J¢' (74 N (=h/2.h/2)) > 0,
1—>00 T;

(i) lim J¢' (T3 O ((=h. 1)\ (~h/2.h/2))) = 0.

(6.87)

Suppose for contradiction that (6.87) (i) were false. Let D? := D¢/ for 0 < o < h/2.
Then by (6.79)-(6.81) we get (for a subsequence, not relabeled)

Lyaponty < Lt @)
T; Ti
x A K (=0, 0)NT{) + H (—0,0)NTp) + H ((—0,0) \ (T UTE))) — 0. (6.88)

By (6.85) (i) for ¢ = 1 and the fact that limsup;_, ., €; /7; < oo (see (3.25)), this implies

1 ,
limsup — [ |RI'Vy' — A|dx < CQRoH*1(Q'))?limsupe; /1 < ¢o
i—»oo Ui JDo i—00

for a constant ¢, with ¢ — 0 as 0 — 0. By Poincaré’s inequality and a BV compactness
result, we find {b;}; C R¢ such that the sequence

£2(x) ==t (»" = (Rix + b)) forx € D

converges weakly* in BV to some f° € BV(D?;R?) with |[Df°|(D°) < ¢4 In view
of (6.72), it is not hard to check that f?(x) = u(x) + Sx + b for some S € I\\/Jlfk:vf
and b € R4, On the other hand, by (6.4), for o sufficiently small we find that ¢, <
|D7u|(@Q" x {0}), where D/ u denotes the jump part of the distributional derivative. This
contradicts the fact that | D/ u|(D%) = |D7 f°|(D°) < c,.

Now suppose that (6.87) (ii) were false. In view of (6.82), by passing to a subsequence,
wefindh >0 >0anda € (—h 4+ 0,h — o) such that #!((¢ — 0,00 + o) N fi;f) = 0 for
all i sufficiently large. Define D := ae; + Dg’ . Repeating the argument in (6.88), in
particular using (6.79)—(6.81), we find rifléﬁd (D N T;) — 0. Then, by (6.85) (ii) and the
fact that lim sup;_, ., & /7 < 0o we get

limsupl |R,~TVyi—B|dx<oo.
i»oco T JD
By Poincaré’s inequality and a BV compactness result, we find {b;}; C R? such that
the sequence f;(x) := ti_l(yi — (R; Bx + b;)) for x € D converges pointwise a.e. to
some f € BV(D;R?) (up to passing to a subsequence). By (6.72), this implies that
‘Ei_l ((R;i B — A)x + b;) converges a.e. on D to a finite limit. This, however, is impossible,
and therefore (6.87) (ii) holds.

Step 4: Definition of cylindrical sets. In the following, we denote by s’i < sé <
e < e < sjvi the jump points of the function ; defined below (6.80). Let ¢; =

{0<j < Ni: (s},s;+1) N7, = @}, where we set si = —h and sf\,iﬂ = h. Note that
for j € ¢i \ {0} we have (s}_,,s}) N T3 = @. Recalling (6.82), up to passing to a sub-
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sequence, we can assume that §; and N; are independent of i, which we denote by ¢
and N, respectively, for simplicity. Moreover, we can suppose that {s]‘ }i converges for all
1 < j < N.In view of (6.87) (i), possibly by selecting a further subsequence, we find an
index k € ¢ and a constant ¢ > 0 independent of i such that s,i, s,i 41 € (=h/2,h/2) and

Spiq — Sk >0 (6.89)

We now show that there exist 1 < j; <kand k + 1 < j, < N, as well as uq, up > 0,
such that . . .
() lim 7' H(s), — paiosi) N TE) =0,
1—>00
lim 77 0 ((sh L sh ) N T =0,
i—00 ' ) ) (6.90)
(i) lim 7,79 ((s), — pati sh,) N TH) =0,
1—>00
. 1l e o iy
Tim (s} s, + am) 0T = 0.

Indeed, choose j; € ¢, j1 <k, as the largest index such that lim inf; _, ri_l(sj".1 — s}l_l)
> () and set
41 1= min {li_minfti_l(s]’:1 — sj’:l_l),E/Z} > 0,
1—>00

where ¢ is the constant from (6.89). Note that such an index exists by (6.79), (6.81),
(6.87) (ii), and the fact that (s]’:_l,s;) N Té = @ for each j € ¢ \ {0} by the definition
of ¢. This immediately implies the first part of (6.90) (i). The second part of (6.90) (i)
follows from the fact that lim inf; _, oo ri_l(s} — s;_l) =0forall j € g with j; < j <k,
(st,s5, )N T4 =@ for j € g, (6.89), and the fact that y1; < &/2. The index j» > k + 1,
Jj2 & &, and s € (0,¢/2]in (6.90) (ii) can be chosen in a similar fashion: let j, > k + 1,
J2 ¢ &, be the smallest index such that liminf; . 7; 1(s}i-2 41— s]’:2) > 0 and let up, =
min {lim inf; _, o, tlfl(sj"-2+1 — s}z), c/2}.

We define p1 = min {11, ua}, &} = st , and o7 = s% . Then the sets D} := aleq +
D@ ir; and D? := a?eq + Dy, satisfy D} N D? = @ by (6.89) and the fact that

i < ¢/2. Moreover,
(i) (24D} N{xg <a}\T) + 24D} N{xg = a}} N T;)) -0, 6
(i) 7 (LYDEN{xg <2 NT) + LYD? N{xg = a2} \ T7)) — 0 '

as i — oo. Indeed, e.g., for the first term in (6.91) (i), we compute by (6.79)—(6.81) and
(6.90) (i) that

'@ ({x € D} xg <o} \Ty)
< '@ (A (—h N\ (TLUTE) + I (sh —patiost ) NTE) + putidi) — 0
as i — oo. The other three terms can be treated in a similar fashion.

Step 5: Proof of (6.74). We define v’ as in (6.73) for isometries /; whose derivative is
given by RT. To see (6.74), we apply (6.85) (i) forqg =2on D = D} N{x; < a}} and
D = D? N{xq > a}}, as well as (6.85) (i) for ¢ =2 on D = D} N {xg > &} and
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D = D? N{x4 < o?}. This along with (6.91) and 7; 'e? — 0 (see (3.25)) shows the
desired estimate. This concludes the proof. ]

We conclude this subsection with the proof of Proposition 6.8.

Proof of Proposition 6.8. Let M € {A, B}. First, it is clear that the left hand side in (6.67)

is no smaller than ff«‘dg’! (w, h) (see (6.5)). We also note by Proposition 6.2 that

Fal (. h) = 2K I () = K} H ™ (). (6.92)

where in the last step we used the assumption K é‘g = 2K. To prove the reverse inequality,
we argue by contradiction: if the statement were false, there would exist § > 0, a Lipschitz
domain w € R4~!, h > 0, and a sequence {w;}; € W, such that

€
-M
inf {lim sup &:(¥%, Dy p): M

— yé‘g in measure in Dy, ; as € — 0}
e—0 &

> (K +28) 79 (). (6.93)

Up to translations of w, we can select a cube @’ C R¢~! containing both @ and Q' =
(—=1/2,1/2)4~" such that @ = Q' for some 0 < @ < 1. In view of (3.27), we can find
a sequence of functions {y®}, C H2(D g/ qn; R¥) such that (wea) ™! (y® — M x) — yé‘l’)’
in measure in D g/ o5, and

limsup € sz, (¥, Doran) < KM + 80?1 397 (o). (6.94)

e—>0

Then the functions {y¢}¢ C H*(Dg' s; R?) defined by 7°(x) = y®(ax)/a are such that
w1 (7 — Mx) = (wea) 1 (y¥(ax) — M(ax)) — yé‘l’)’ in measure in D¢ 5. In particular,
as Dy, n C D@/ i, by (6.93) we find an infinitesimal sequence {¢;}; such that

liminf &, (7%, Do) > (K3 +28) K4~ (). (6.95)
1—>00
Then, using (6.5), (6.68), (6.92), and (6.95), we derive
liminfo' ™€ sz, (1. Dgran) > liminf &, (7%, Da',)
1—>00 1—>00
> liminf &, (75, Da/.p \ Do.p) + liminf &, (55, Dy, 1)
1—>00 1—>00
> Fip (@ \ wih) + (Kjy +28) %77 ()
> KM 1@\ ) + (K) +28) 797 (w) = o' K + 2897 ().

In the last step, we have used «@’ = Q. This estimate, however, contradicts (6.94). m

6.4. Construction of local recovery sequences

This subsection is devoted to the proofs of Propositions 6.4 and 6.5, i.e., to the con-
struction of local recovery sequences performing single and double phase transitions,
respectively, in an energetically optimal way. The crucial point is that the sequences coin-
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cide with isometries far from the interfaces as this allows us to ‘glue together’ different
sequences, as done in the proof of Theorem 3.15. We begin with the proof of Proposi-
tion 6.4.

Proof of Proposition 6.4. The result has been proved in [32, Proposition 4.7] in the spe-
cial case in which & = D,/ ;. We briefly explain how to obtain the result for strictly
star-shaped sets € and cylindrical sets D,y 5, such that (do’ x (—h, h)) N Q = @. Choose
o C R?71 such that w x {0} = (@’ x {0}) N Q. As Q is strictly star-shaped, we can
find sequences {/;};,{a;}; C R, with h; — 0 and o; — 0 as i — oo, and a decreasing
sequence {w; }; of Lipschitz sets with w CC w; CC @’ foralli € N and

HE N wy) < KN w) + 1/ (6.96)

such that ajeg + Do, p; C Do p and (0w; X (=h; + @i, 0 + hi)) N Q = 0.

We apply [32, Proposition 4.7] on D; := Ot, eq + le h; to obtain a recovery sequence
{v "\e € H*(D;;R?) and isometries {I1 . ", {I }a such that (6.33) holds for D; in
place of D, , N 2 and for y; £(-—ajeq) in place of yo , and (6.35) holds for 4; in place
of &, up to translation by «; ey . Moreover, instead of (6.34) we get

lim & D) = K4 (o). (6.97)
£—>

In view of (6 35) for vg " and the fact that (0w; x (—h; + a,,a, + hi)) N Q2 = @, we can

extend vs ' to an H2-function on D,y j N K2 by setting v‘9 = IjE o y0 on{a; + 3h; /4

< x4 <h}and v = Izis’ o y& on {—h < x4 < a; — 3h;/4}, respectively. Note that

the extensions (not relabeled) still satisfy (6.33) (for y; £(- — ajeq) in place of Y5 £). Now
we obtain a sequence satisfying (6.33)—(6.35) by choosing a suitable diagonal sequence
in {vgt’i}a,i as ¢ - 0 and i — oo via Attouch’s diagonalization lemma [9, Lemma 1.15
and Corollary 1.16], and by taking (6.96)—(6.97) into account. [

The remaining part of this subsection is devoted to the proof of Proposition 6.5. The
argument hinges upon applying some careful transformations to maps locally attaining
the double-profile energy in Proposition 6.8, so that the modified maps satisfy (6.37). As
a first step, we show that the energy of optimal sequences concentrates near the interface.
We recall the definitions of ‘W, and yé‘g in (3.25) and (3.26), respectively.

Lemma 6.12 (Concentration of the energy near the interface). Let h > t > 0, and let
o C R4 be a bounded Lipschitz domain. Let M € {A, B} and suppose that K(Ii‘pl =2K.
Let {&;}; be an infinitesimal sequence and let {w,, }; € Wg. Then there exists {y®}; C
H?(Dy p; R?) satisfying lim; o0 || 5 — Mx|gi(p,, ,) = 0. and, asi — oo, we have

e, (%1, Do p) = 2KH ™ (w),
885 (ygiv Dw,h \ Dw,r) — 0,
y& — Mx

W,

1

— yé‘g in measure in Dy, p,.
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Proof. First, by Proposition 6.8, K 011‘;1 = 2K, and a standard diagonal argument we find a
sequence {y® }; C H?(Dy n; R?) with

. & d—1 ys" —Mx M . .

limsup &, (y*, Dy p) < 2KH*™ (w), ——— — Yip inmeasurein Dy, .

i—>00 &
By (6.5) and Proposition 6.2, we also get liminf; o0 &, (y*, D,c) > 2KH4 N (w).
This in turn implies &g, (y*, Dy p \ Dw,z) = 0and &, (¥, Dy p) — 2K H 1 (w). The
convergence in measure to ydA;)I along with wg; — 0 implies that y® — M x in measure
on Dy j,. Then by Lemma 2.1 we deduce lim; o0 || y* — M x||g1(p,, ,) = 0- |

Motivated by Lemma 6.12, for 0 < 7 < h/4 we introduce the notion of e-closeness of
y to M x, defined as

5 (i@ b 1) 1= €61, Dy \ Dovye) + (L4 (Dooa)) VY = MliFsp, ) (698)

for M € {A, B}. In the following, we will use the fact that, for given w C Rd_l, 0<
T < h/4, and {¢;}; converging to zero, there exists a sequence {y*}; C H*(Dg 4; R9)
of deformations attaining asymptotically the double-profile energy K, é‘g = 2K such that

é’gf(ysi;w,h,r) —0 asi — oo.

Owing to the quantitative rigidity estimate in Theorem 3.2, it is possible to find (d — 1)-
dimensional slices on which the energy of y and the L2-distance of Vy from suitable
rotations of M € {A, B} can be quantified in terms of ¥ (y;w, h, 7). Recall k = |A — B|,
and c; in H4. In addition, define

2 ifd =2,
Pd=N 0@ = 1yd itd > 2.

Proposition 6.13 (Properties of (d — 1)-dimensional slices). Let d € N, d > 2, and
let M € {A,B}. Let h > 0, 0 < 1 < h/4, and let w,® C R?! be bounded Lipschitz
domains such that w CC @. Then there exist ¢9 = go(w, d, h, k, ¢y, 1) € (0, 1) and
C =C(w,d,h,k,c1) > 0 with the following properties:

Forall 0 < & < gy and foreach y € HZ(DC;),;,;]R"I) with M (y; &, h, t) < (k/64)% we
can find two rotations R, R~ € SO(d) and two constants s* € (z,21), s~ € (=21, —1)
such that

(i) / |Vy — RYM|Pdge?™" + / |Vy — R M |7 dx?!
r+ -
C
< —@M(y:d.h.0)P2e? foralll < p < pq.
T
@) IV =M Fateyin, 2 T 1YY= MlGagmg,ip, o) < CE8H (0. h0),
(111) 82/ |v2y|2de7€d_l+f}§d/ (|V2y|2_|a§dy|2)d(}€d—l
r+ur- > r+ur-

< g8;"I(y;c?),h,f),
T
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. _ Ce? .
(IV) gs(yvs+ed + Da),sz) + 88(}/,5 eq + Dw,az) = T(gé”(y»wvh’ T)’
(V) R =1dP +|R™ —1d* < C8Y (y:d0. h. 7).,

where we set TT = o x {sT} for brevity.

Proof. The statement has been proven in [32, Proposition 4.12] in the case in which the
bound on §M (y; w, h, 7) is replaced by a smallness assumption on

8e(y;0,h,7):=8(y,Dpp \ Dw,o) + (id(DwAt))_l Vy-— Vy(_)F ||1242(Dw,4r)’ (6.99)

where y(;r is the map defined right after (2.5) (see also [32, Section 4.5]). Since the identi-
fications of R* and s* are completely independent from each other (see also [32, Remark
4.21]), Proposition 6.13 follows by analogous arguments. ]

Remark 6.14 (Integrability exponent). Note that the results in [32] are proved using
the most general formulation of the quantitative rigidity estimate in [32, Theorem 3.1],
thus allowing for different integrability exponents p, as well as for a smaller penalization
Ne.d < 1g,a (see (3.3)). The proposition is stated in its generality in order to ease the refer-
ence to [32]. Under suitable simplifications (see [32, Remark 4.17]), analogous estimates
hold for p = 2.

The following lemma deals with the transition between a (d — 1)-dimensional slice
and a rigid movement. Recall the definition of ¢ in H6.

Lemma 6.15 (Transition to arigid movement). Letd € N, d >2, andlet M € {A, B}. Let
h,t,e>0and w CC & C R4 satisfy the assumptions of Proposition 6.13. Assume that
the elastic energy density W satisfies assumptions H1-H4 and H6. Let y € H 2(Da3’h :R%)
with $M (y; d, h,7) < (k/64)% and let RY, R~ € SO(d), s € (z,27), s~ € (=27, —71)
be the associated rotations and constants provided by Proposition 6.13. Then there exist
a map yi” € H?(w x (0,00); R?) and a constant bf € R? such that

(1) yi’l =y onwX (O,s+),
yi/[(x) =Rt Mx + bi’l forallx € w x (sT + 1, 00),
(@) VY = REM ot ooy = CE281 (730, 1. 7),
(iii) (v, 0 x (s7,00)) < CSM (y;d,h, 1),

(6.100)

where C =C(w,®,h,t,k,c¢1,¢2)>0. Analogously, there exist yy e H?(wx(—00,0); Rd)
and b e R? for which (6.100) holds with s~ and R~ in place of st and R, respectively.

Proof. The result follows directly by [32, Lemma 4.20]. Indeed, in [32, Lemma 4.20]
an analogous result is proven in the case in which the e-closeness 8?” is replaced by the
quantity defined in (6.99). The conclusion follows by observing that the constructions
around the slices s and s~ are independent (see also [32, Remark 4.21]). ]
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After these preparations, we are now in a position to exhibit local recovery sequences
performing a double phase transition in an energetically optimal way.

Proof of Proposition 6.5. We will prove the result only in the special case that 2 = Dy 5.
In fact, to treat the general case of strictly star-shaped sets €2 and cylindrical sets Dy p
with (dw’ X (—h,h)) N Q = @ one can apply the diagonal argument explained in the proof
of Proposition 6.4 in a similar fashion and therefore we omit the details. For simplicity,
we will write w in place of @’ in the following.

Let M € {A, B}, let h > 0, let ® C R"! be a bounded Lipschitz domain, and
let {w}e € Wy. Fix p > 0 and choose a Lipschitz domain & such that ® CC @ with
HA1 (& \ w) < p. We first observe that by Lemma 6.12 there exists a sequence {y¢}, C
H?(Dg; RY) such that

y&—Mx

lim [|y® — M x| g1p, =0, — y‘fg in measure on Dg 5, (6.101)
e—>0 @ ’

We

where yé‘g is the function defined in (3.26), as well as
lim €:(y*. Do) = 2KH7 (@), 1im &(°. Do \ Dapjie) =0.  (6.102)
&> E—>

In view of Lemma 6.12, the existence of a sequence {y® }; satisfying (6.101)—(6.102) is
guaranteed for every {g;}; with &; — 0. Hence, in what follows, for notational simplicity
we directly work with the continuous parameter &.

Fix © = h/8. By (6.98) and (6.101)—(6.102) we find that Sy(yg; @,h,t) > 0 as

& — 0. Without loss of generality we can assume that ¢ < gy (see Proposition 6.13)

and 8M (y%; @, h, t) < (k/64)%. Applying Proposition 6.13 to {y®}, for & = @, we find

sequences of rotations { R }¢, {R; }¢ C SO(d) and of slices {s; }; C (z,27) and {s; }s C

(=27, —71). Let now {yili}a be the maps provided by Lemma 6.15. We define vf” €

Hz(Da),h; Rd) by

y?,/l-i- if xg > Sj,

vM(x):=1{ye  ifsy <xg <sF. (6.103)
yM o ifxg <s;.

for every x € D, 5. We proceed by checking that {véu }e satisfies (6.36)—(6.37). First,
since |sF| < 2z and T = h/8, by Lemma 6.15 we find that v = I o Mx and v¥ =
I% o Mx for x; > 3h/8 and x; < —3h/8, respectively, for two suitable sequences of
isometries {/ ﬁ}g, {1 21\,48}8_ This yields the second part of (6.37). For brevity, we define the
sets F:’h =w X (h/16,h) and Fa;h = w X (—h,—h/16). A key step will be to show that

fore — 0,
w;l(vg'[ —Mx) —> yé‘;’ in measure on £, U Fa‘)"h. (6.104)

This along with (6.101) and the fact that UéM = y® on Dy, 5,3 then shows (6.36). More-
over, note that (6.104) also implies that the isometries {/ ﬂ”s}e and {/ 2Ma }e converge to the
identity as ¢ — 0.
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Let us now show (6.104). We only show the result on F(j_,h as the argument on F(; n
is analogous. Moreover, it clearly suffices to prove the property for any subsequence as
then convergence holds for the whole sequence by Urysohn’s property. First, we note
that 88(1)?’1, F:,h) — 0 as ¢ — 0 by Lemma 6.15 (iii), (6.102), (6.103), and the fact that

§M(y*:®,h, ) — 0. Then, applying the compactness result and the lower bound for =
F; 5 (see Theorems 3.3 and 3.14) we find a subsequence (not relabeled) and (y, u, P) € 4
such that vé"’ — (y,u, P) and 83‘"(y, u, ) = 0, where the limiting energy 86”“ defined
in (3.24) is with respect to the set F ; n
In view of (3.24) and 86’“ (y,u, ) = 0, we find that & is trivial, consisting just of
the component F{Ih. Moreover, Vy is constant, and then Vy = M by (3.16), (6.101),
and the fact that v = y® on G:;h = w x (h/16,h/8). (Recall that s;- > v = 1/8.) As
86"’(y, u,P)=0and F — @Qy,(M, FM) is positive definite on Mg,ﬁld (see (2.12)), we
also see that u is affine on Faj:h and has the form u(x) = SMx + s for each x € Fath,
where S € M4*¢ and 5 € R?. Moreover, in view of (3.19)~(3.20), we find {¢°}, C R¢
and {R®}; C SO(d) such that
e '(wM — (R°*Mx + %)) - u  in measure in F;’h. (6.105)

On the other hand, by (6.101) and the fact that v¥ = y® on G;’,h =w x (h/16,h/8), we
have

ws_l(vf'l —Mx) —> yé‘l’)’ in measure in G;;h. (6.106)

Passing to another subsequence (not relabeled) we can assume that A := lim,_,¢ &/w,
exists (cf. (3.25)). By multiplying (6.105) with ¢/w, and by subtracting (6.106) we get

w; ' (Mx — (REM x + %)) — Au — yé‘g in measure in G;r’h.

As the mappings on the left-hand side, as well as u and yé‘g , are affine, this convergence
also holds on the larger set F(;Lh. This along with (6.105) yields

w;l(vé” —Mx)— Au—(Au — yé‘g) = yé‘g in measure on Fth.

This concludes the proof of (6.104). To conclude, it remains to show the asymptotic
behavior of the energies in (6.37). Using (6.5), (6.36), and Proposition 6.2, it follows that
liminf, o & (vé"’ s Dpn) =2KH 4=1(w). To prove the opposite inequality, we observe
that by (6.103) and Lemma 6.15 (iii),

€M Do) < Ee(r My 0 x (7 1) + €M 0 x (<h,57)) + €. x (57, 57)
=< Caéﬂ(ye, d)’ hv 7:) + 88()’8, D(IJ,h)'
Thus, by (6.102), the fact that 8;‘4 (y%; o,h,t) = 0, and Jed-1 (o \ w) < p, we have
limsup (v, Dy, p) < 2KH (@) < 2KH " (w) + 2Kp.

e—>0

The convergence in (6.37) then follows by the arbitrariness of p and by a diagonal argu-
ment. .
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6.5. One-dimensional profiles and compatibility condition

In this subsection we assume that the density W satisfies (3.28). We will show that in this
case optimal profiles for single transitions are one-dimensional in the sense to be made
precise below. Moreover, we show that the compatibility condition Ké‘; = K(f; =2K
holds. Let us start by discussing a model case for (3.28) (see (3.29)). Suppose that W is
of the form

W(F) = ¢(dist(F, SO(d) A), dist(F,SO(d)B)) forall F € M¥*¢

where ¢: [0, 00)? — [0, 00) is a smooth function with ¢;(min {t1,:})? < ¢(t1, 1) <
co(min {t1, 1,})? for all 11, 1, € [0, 00), and is increasing in both entries. Then we can
check that H1-H6 hold. Moreover, also H7 is satisfied if ¢ fulfills a corresponding local
Lipschitz condition. We can also confirm (3.28). Indeed, for each F € Mé4xd , by H3, the
monotonicity assumptions on ¢, and the triangle inequality we compute

W(F) = ¢(dist(F,SO(d)A), dist(F, SO(d ) B))

=¢( min |F~RA|, min |F - RB|)
ReSO(d)

> ¢<Rgslci)1(ld) |Feq — RAeq|, m1n |Fed — RBed|)
> ¢(||Feq| — —|B€d|\
= ¢(||[Feq| — 1|, || Feal — (1 + 1))
= ¢(|ld + (|Feq| — Dega — —1)eqq — B|)

> ¢<dist(Id + (|Feq| — 1eaq. SO(d)A). dist(ld + (| Feq| — 1)eqq. SO(d)B))
— W(d + (|Feq| — Deaa). (6.107)

We now check that under condition (3.28) optimal profiles for single transitions are one-
dimensional.

Lemma 6.16 (One-dimensional profiles). Under condition (3.28),

K = inf {liminf €, 0): ¥*(x) = (x', ¥*(x0)) for x = (', x4) € O,
£—>
lim [ = i 1oy = 0. (6.108)
where K is defined in (3.5).

Proof. We denote the right-hand side of (6.108) by K;4. Clearly, K14 > K. To see
the reverse inequality, by a standard diagonal argument we choose a sequence {y®}, C
H?(Q;RY) with lim,—g || y® — yg l|1(0) = 0 and

liminf €,(y%, Q) = K
e—>0
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Then, by Fatou’s lemma, and by Lemma 2.1, we can find x” € (—1/2,1/2)¢~! such that

e—>0

1/2 1
liminf/ (—ZW(Vye(x/, 1) + £2|V2ye(x', 1)
—1/2 &
TP = [, 0P )&t < K (6109

as well as

0 1/2
lim (/ [Vys(x',t) — B|*dt +/ [Vys(x',t) — A |2dt) =0. (6.110)
e—>0 —1/2 0

We let 8 := dyy%(x’,-) € H'((—1/2,1/2); R?) and we choose the unique function
Ye:(—1/2,1/2) — R with *(0) = 0 and (¢°)’ = |t*|. Then we define the sequence
(v} € H2(Q:R¥) by v¥(x’, xg) = (x', ¥4(xq)) for (x’, x4) € Q. We observe that

d—1
Voi(x) = ) eii + [t (xa)leaa- (6.111)

i=1

We note that {v®}, is an admissible sequence in the definition of K;4. Indeed, by H3,
(6.110), (6.111), and the triangle inequality we find

/ |Vv£—Vy3'|2dx=/ |8dv£—Bed|2dt+/ 10408 — A eg|? dt
Q On{xq =<0} ON{xq >0}

0 1/2
2 2
=/ Iyl = 1Beal dt+/ 11845 (1)) — | Aeql|? dr
1/2 0

0 1/2
< / (VyS(c' 1) — B)ea|?dr + / (V5 (x'.1) — A)eq[? dr — 0,
-1/2 0

and therefore also v® — y(')"' in L'(Q;R?) since v¥(0) = 0 for all &. Consequently, in
view of (3.28), (6.108), (6.109), (6.111), and the fact that %|T€|(l‘) < |0gqye(x’, t)]| for
te(—=1/2,1/2), we get

1
Kig < limiélfé”e(vg, Q) = limiélf/ (—ZW(VUS) + 52|ajdu€|2) dx
£—> e—> 0 &

12 /1 d 2
< liminf/ (—2W(Id + (IVye(x', )eq| — Dega) + & E|Ts|(z) )dt
— &

e—>0 1/2

e—>0

1/2 1
< liminf/ (—ZW(Vys(x’, 1)) + &2[03, v (¥, t)|2) dr < K.
—1/2\ €
This concludes the proof. ]

We point out that without an additional assumption, such as (3.28), optimal profiles
for single transitions are in general not one-dimensional: see [27, Remark 6.2] for an
example in a linearized setting. We are now in a position to prove Proposition 3.17.
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Proof of Proposition 3.17. We start with a consequence of Lemma 6.16. Define
W:R—-Rby W(t)=W(Id+ (t — 1)eqq) fort € R. Note that W is a two-well potential
with W (t) = Oifand only if ¢ € {1, 1 + «} (see H3). In view of (3.1) and (6.108), we find

1/2 1 .
K= inf{liminf/ ( > W) + g2|w!|2) dr:

e—>0 _1/2 8_
Ve e H*((—1/2,1/2);R), 811_r>r(1) [¥® — )70+||L2(—1/2,1/2) = 0},

where )70+ () :==txu>oy + (1 +K)t x <0y fort € (=1/2,1/2). By a cut-off argument one
can further show that (see e.g. [24, proof of Proposition 5.3] for details)

1/2 1 -
K = inf{liminf/ (—ZW(w;) + 52|¢;/|2) dr:
_ &

e—>0 1/2
Y e H2((=1/2.1/2):R). im |1y = 58 ll21/2,1/2) = 0.

V.(t) =1+«kneart = —1/2, Y(t) = 1 neart = 1/2}. (6.112)

We now start with the proof. We prove the result only for M = A; the arguments for
M = B are similar up to notation. Let Q' = (—1/2,1/2)4~1. Fix § > 0. In view of (3.27),
we choose i > 0 and {w,}, € W, such that

Ké‘llj — 4§ <inf {lim sup E:(y®, Do/ p): w;'(yf —x) — y(‘;]i3 in measure in DQ/,h},
e—>0

(6.113)
where we recall the notations in (3.26) and (6.2). We start by observing that it suffices to
show that there exists a sequence {z.}, C H?((—h, h);R) such that

(i) w;l(ze —id) = x>0y inmeasure in (—£,h),
(6.114)

h
1 -
(i) lim sup/ (—2W(Z;) + 82|Z;/|2) dt <2K +6.
e—>0 J-h\¢€
In fact, the sequence y € H2(Dgr j; R?) defined by y*(x’, x4) = (x', z¢(x4)) then
clearly satisfies
w; (e —x) — y(ﬁ) in measure in Do/,
by (6.114) (i) it is admissible in (6.113), and thus limsup, .o &.(y®, Do/ ) > K&‘; — 4.
By (3.1), (6.114)(ii), and the definition of W, we also have lim sup, 9 (¥, Do p) <
2K + 5. Thus, K(ﬁ) — 6 < 2K + § and therefore Ké‘; < 2K by letting § — 0. The other

inequality K “]19 > 2K follows from Proposition 3.16.

We now construct a sequence {z}, C H2((—h.h);R) satisfying (6.114). Given § > 0,
we use (6.112) to find &9 > 0 and a function ¥ € H?((—1/2,1/2);R) such that

1/2 1 -
/ (—ZW(t//’) +e%|w”|2) dt < K +5/2, (6.115)
-1/2\ &y
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as well as ¥/(t) = 1 + x near t = —1/2 and ¥'(¢) = 1 near t = 1/2. Let ¢ > 0 be
sufficiently small and let € := &/gq for brevity. We define z, € H?((—h, h); R) as the
continuous function with z,(0) = 0 and with the derivative

1 ifr € (—h, —€?),
V(L1 —n) if 1 € (—€2,0),

Zé(l) =114k if 1 € (0, wy),
V(&G -t = 3e) it e wf s+ ),
1 if 1 € (W< + €2, h),

for t € (—h, h), where w¥ is shorthand for w,/«. Indeed, we note that z, is continuous
since v’ is constant near t = —1/2 and ¢t = 1/2. By using W(¢) = 0 fort € {1,1 + «}
and (6.115), it is not hard to check that

h 1 - 62/2 1 . 82
/ (—2W(z.;) T e2|z;’|2) a=2 (—ZW(w’a/ez)) + —|w”<r/ez)|2) d
—h \ & &

—€2/2 €4

1/2 1 -
=2 [ (Lo er) s <2k s
—-1/2 \ &y

where in the second step we have used a change of variables and € = £/&(. This shows
(6.114) (i1). We now prove (6.114) (i). As by a scaling argument we have

1/2

Izell L1 (—e2,0) F 122l L1 (i wk +e2)) < 262/ P ly'|dt < Ce?,

we get
- >
lze = ZllL (—npyy < Ce™

where Z, denotes the continuous piecewise affine function with Z;(0) = 0, Z, = 1 on
(—h,0) U (w¥, h), and Z, = 1 + k on (0, w¥). By Poincaré’s inequality and z.(0) =
Z¢(0) = 0 this also yields

Ize = ZellL1 (nay < Ce?. (6.116)

Since w, — 0 as ¢ — 0 and w¥ = w,/k, it is easy to check that w; ! (Z, —id) = xg>o}
in measure in (—h, k). This along with (6.116) and the fact that &2 /w, — 0 as ¢ — 0 (see
(3.25)) implies (6.114) (i), concluding the proof. [

Appendix A. SBV functions and Caccioppoli partitions

Letd € N, and let @ C R? be a bounded open set. In the whole paper we use standard
notations for the space BV (£2). We refer the reader to [8] for definitions and main proper-
ties. We discuss here only some basic properties of special functions of bounded variation
(SBV) and Caccioppoli partitions.
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Special functions of bounded variation

Let m € N. We say that a function u € BV(Q2; R™) is a special function of bounded
variation, written u € SBV(€2; R™), if the Cantor part of its gradient (see [8, Definition
3.91]) satisfies
D¢y = 0.
In particular, for every u € SBV(2; R™) we have
Du=Vud? + ut —u") Qv H* | Uy,

where Vu is the approximate differential, u™ and u™~ are the approximate one-sided lim-
its, Jy, is the jump set of u, and v,, is the normal to J, (see [8, Chapter 3]).

A function v € L} (2;R™) (i.e., u € L'(K;R™) for every compact set K C )
is a special function of locally bounded variation, written u € SBV,.(2; R™), if u €
SBV(O;R™) for every open set O CC €.

We stress that SBV(2; R™) is a proper subset of BV(£2; R™) [8, Corollary 4.3]. The
set SBV2(Q2; R™) is defined as the collection of maps u € SBV(2; R™) such that Vu
L2(€;R™*4) and H4~1(J,) < cc.

Sets of finite perimeter and Caccioppoli partitions

For every £¢-measurable set E C R¢ and every ¢ € [0, 1], we denote by E’ the set of
points of E having density ¢:

E' = {x € E: lim £(E N B,y(x))/ 2% (B,(x)) = z}.
p—0

The essential boundary of E, denoted by * E, is defined as * E := R \ (E° U E'). We
say that E has finite perimeter if #¢~1(9* E) < oo. We refer the reader to [8, Sections 3.3
and 3.5] for basic properties. Moreover, a partition > = { P; }; of Q2 is called a Caccioppoli
partition if
> w49 Py) < oo
J

We say that a partition is ordered if £¢(P;) > £¢ (Pj) fori < j, and recall that every
Caccioppoli partition of a bounded domain induces an ordered one just by a permutation
of the indices.

We say that a set E of finite perimeter is indecomposable if it cannot be written as
EVUE?with E'NE2 =0, £4(EY), £4(E?) > 0and X4 1 (0*E) = #¢"1(3*E") +
F471(3* E?). Note that this notion generalizes the concept of connectedness to sets
of finite perimeter. By [7, Theorem 1] for each set E of finite perimeter there exists a
unique finite or countable family { E; }; of pairwise disjoint indecomposable sets such that
HAVQ*E) = > JA=1(3*E;). The sets E; are called the connected components of E.

We conclude this section by stating a compactness result for ordered Caccioppoli
partitions (see [8, Theorem 4.19, Remark 4.20]).
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Theorem A.1 (Compactness for Caccioppoli partitions). Let Q@ C R? be a bounded open
set with Lipschitz boundary. Let P; = {Pj;}j, i € N, be a sequence of ordered Cacciop-
poli partitions of Q with

sup Z de—l(a*P,-,,-) < 00.
ieN ]

Then there exists a Caccioppoli partition P = {P;}; and a subsequence (not relabeled)
such that P;; — Pj in measure forall j € N asi — oo.

In the proofs, we also sometimes use the fact that P;; — P; in measure forall j € N
as i — oo is equivalent to Zj iﬂd(Pj,iAPj) — 0.
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