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The category‚2, derived modifications, and deformation
theory of monoidal categories

Piergiorgio Panero and Boris Shoikhet

Abstract. A complex C
q
.C;D/.F;G/.�; �/, generalising the Davydov–Yetter complex of a mon-

oidal category (Davydov (1998) and Yetter (1998)), is constructed. Here,C;D are k-linear (corresp.,
dg) bicategories, F; GWC ! D are k-linear (corresp., dg) strong functors, and �; � W F ) G are
strong natural transformations. Morally, it is a complex of “derived modifications” �V � ; likewise
for the case of dg categories, one has the complex of “derived natural transformations” F ) G,
given by the Hochschild cochain complex of C with coefficients in C -bimodule D.F�; G D/.

The complex C
q
.C; D/.F; G/.�; �/ naturally arises from a 2-cocellular dg vector space

A.C; D/.F; G/.�; �/W‚2 ! C
q
.k/, as its ‚2-totalisation (here, ‚2 is the category dual to the

category of Joyal 2-disks (Joyal (1997))).
It is shown that for a k-linear monoidal category C , the third cohomology vector space

H3.C
q
.C; C /.Id; Id/.id; id// is isomorphic to the vector space of the outer (modulo twists) infin-

itesimal deformations of the k-linear monoidal category which we call the full deformations. It
means that the following data is to be deformed: (a) the underlying dg category structure, (b) the
monoidal product on morphisms (the monoidal product on objects is a set-theoretical datum and
is maintained under the deformation), and (c) the associator. The data (a), (b), (c) is subject to the
(infinitesimal versions of) numerous monoidal compatibilities, which we interpret as the closeness
of the corresponding degree 3 element. Similarly,H2.C

q
.C;D/.F;F /.id; id// is isomorphic to the

vector space of the outer infinitesimal deformations of the strong monoidal functor F .
A relative totalisation Rp�A.C;D/.F; F /.id; id/ along the projection pW‚2 ! � is defined,

and it is shown to be a cosimplicial monoid, which fulfils the Batanin–Davydov 1-commutativity
condition (Batanin and Davydov (2023)). Then it follows from loc. cit. that C

q
.C;D/.F;F /.id; id/

is a C q.E2Ik/-algebra. Conjecturally, C
q
.C;C /.Id; Id/.id; id/ is a C q.E3Ik/-algebra; however, the

proof requires more sophisticated methods.

1. Introduction

1.1. In formal deformation theory, with a deformation functor (defined on a suitable
category of commutative differential graded (dg) coalgebras), one associates a differ-
ential graded Lie algebra (or, more generally, an L1 algebra), whose completed chain
Chevalley–Eilenberg complex pro-represents the deformation functor. In characteristic 0,
such representability has been a proven statement [17, 24, 30]. Sometimes the underly-
ing complex of the dg Lie algebra (corresp., of an L1 algebra) is called the deformation
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complex. In many particular deformation problems, such complex is easier to find than
the entire dg Lie algebra structure. The first cohomology of the deformation complex is
isomorphic to the infinitesimal deformations mod out equivalences, whence the dg Lie
algebra encodes, via the Maurer–Cartan equation, the formal (global) deformations mod
out formal equivalences. When the “base of deformation” can be chosen as aEn-coalgebra
(in a suitable sense, e.g., a coalgebra over the dg operad C q.EnI k/, or a coalgebra over
the Koszul resolution hoen of the operad en D H q.EnIk/, etc.), such that it gives rise to
a deformation functor defined on a suitable category of En-coalgebras, the shifted by Œn�
deformation complex has a structure of EnC1-algebra, [24, 34, 36].

The higher structures on a deformation complex are important if we are interested
in the formality phenomena. For instance, the Deligne conjecture asserts that the Ger-
stenhaber bracket on the Hochschild cohomological complex of a (dg) algebra A (which
defines a dg Lie algebra structure) can be “extended” to a C q.E2I k/-algebra structure
(it has found several proofs; see [5, 22, 27, 28, 37]). It was used by Tamarkin [35] in his
proof of (a stronger version of) the Kontsevich formality theorem [21]. The idea is roughly
that the higher the structure on the deformation complex we consider, the more rigid the
deformation complex with this structure becomes. Thus, the original formality theorem
of Kontsevich was stated for dg Lie algebra structure on the Hochschild cohomological
complex of a polynomial algebra and was proven by methods inspired by the Topological
Quantum Field Theory. The idea of Tamarkin was to consider the entire higher structure
of homotopy 2-algebra on the complex, and using the aforementioned rigidity, it can be
proven by homotopy theoretical methods. The “transcendental part” of the proof becomes
hidden in a solution to the Deligne conjecture.

1.2. In this paper, we are interested in the deformation theory of monoidal dg categories
(and more generally of dgbicategories). Our interest originates in the (partlyopen) deform-
ation theory of associative bialgebras. In this case, the deformation complex was construc-
ted byGerstenhaber andSchack[15]; its intrinsic interpretation in terms of abelian category
of tetramodules over the bialgebra was given in [33]. This interpretation made it possible
to compute the Gerstenhaber–Schack cohomology for the case of B D S.V /, the (co)free
(co)commutative bialgebra. The answer was (as it had been conjectured by Kontsevich)

H k
GS

�
S.V /

�
D

M
aCbDk

Hom.V ˝a; V ˝b/ D Sk
�
V �Œ�1�˚ V Œ�1�

�
:

The symmetric algebra H
q
.B/GS D S.V �Œ�1� ˚ V Œ�1�/ has a Poisson algebra struc-

ture of degree �2, which comes from the degree �2 pairing V �Œ�1� ˚ V �Œ�1� ! k.
It gives, along with the graded commutative product, a structure of e3-algebra, where
e3 D H q.E3I k/. An interesting and important open question is how one can lift this
structure to the Gerstenhaber–Schack complex for B D S.V /, or for general B .

Motivated by the problem of finding the higher structures on the (Gerstenhaber–Schack)
deformation complex of a bialgebraB , we consider in this paper the deformation theory of
a (dg or k-linear) monoidal category C . In the example associated with the deformation
theory of B , the monoidal category C D Mod.B/ is the category of left modules over
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the underlying algebra B; it is known to be a monoidal category: for M;N 2 Mod.B/,
the tensor product M ˝k N is a B ˝k B-module; then the precomposition along the
coproduct map�WB ! B ˝k B makesM ˝k N a B-module. The counit map "WB ! k
makes k the unit for this monoidal structure.

The link between the deformations of Mod.B/ and the deformations of B is par-
tially established by the Tannaka–Krein duality (though in what concerns the deformation
complexes this link has to be understood better). An advantage of the monoidal category
approach is that the higher structures on the deformation complex of a dg monoidal cat-
egory are more manageable and can be explicitly found. A recent paper [6], where the
authors deal with a truncation of our complexes, called the Davydov–Yetter complex of
a monoidal category. In loc. cit. the authors constructed a C q.E3I k/-algebra structure
on this truncated deformation complex. The Davydov–Yetter complex controls only the
(infinitesimal) deformations of the associator, whence our complex controls the (infin-
itesimal) deformations of all linear data (the associator, the underlying dg category, the
morphisms part of the product bifunctor, see (A1)–(A4) in Section 7).

The work in progress [32] aims to find a structure of C q.E3Ik/-algebra on the (non-
truncated) deformation complex, employing the technique of Batanin n-operads [2–4].
According to [3], an action of a contractible .n � 1/-terminal (pruned and reduced) n-
operad on a complex gives, via the symmetrisation functor and the cofibrant replacement,
an action of the chain operad C q.EnI k/ on it. In our opinion, the theory of n-operads
provides, via the aforementioned result, a very flexible and powerful approach to higher
generalisations of the Deligne conjecture. In [7], a version of Deligne conjecture for gen-
eral n is stated, and it is proven in [8] for n D 2.

1.3. Let k be a field. We consider k-linear bicategories; see [20, 23]. We recall the basic
definitions related to (enriched) bicategories in Section 4. A particular case of a (k-linear)
bicategory with a single onject is a (k-linear) monoidal category. For a k-linear monoidal
category C , we provide a complex C

q
.C; C /.Id; Id/.id; id/, whose 3rd cohomology is

proven to parametrise the infinitesimal deformations of C mod out the infinitesimal equi-
valences (see Theorem 7.3). We also construct more general complexes. More precisely,
for dg monoidal categories (resp., dg bicategories) C;D, two strong k-linear monoidal
(resp., strong bicategorical) functors F;GWC ! D, and two strong bicategorical natural
transformations �; � WF ) G, we provide a complex C

q
.C;D/.F; G/.�; �/, whose 0-th

cohomology is equal to the modifications �V � (playing the role of 3-morphisms for the
tricategory of bicategories, see Section 4). The entire complex C

q
.C;D/.F;G/.�; �/ (or

rather the closed elements of it) plays the role of derived modifications.
Thus, what we are dealing with here is a set-up for further theory one level (dimension)

higher than the one developed in Tamarkin’s paper “What do dg categories form?” [37].
The work in progress [32] aims to construct a contractible Batanin 3-operad [3, 4] acting
on the corresponding 3-quiver (whose underlying 2-quiver is a strict 2-category), which
would provide a homotopy 3-algebra structure on C

q
.C;C /.Id; Id/.id; id/. Here, we con-

struct the 3-quiver itself.
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The complexes C
q
.C;D/.F;G/.�; �/ emerge as the totalisation1 of 2-cocellular com-

plexes, that is, of functors A.C;D/.F; G/.�; �/W‚2 ! C
q
.k/. Here, ‚2 is the category

dual to the category of Joyal 2-disks [10, 11, 19].

1.4. Our complex C
q
.C; C /.Id; Id/.id; id/ can be thought of as a relaxed version of the

Davydov–Yetter complex [13, 39] of a monoidal category, which fits better for aims of
deformation theory. Recall that the Davydov–Yetter cochains in degree n are natural trans-
formations from the functor M n to itself, where

M n.X1; : : : ; Xn/ D X1 ˝
�
X2 ˝

�
: : : .Xn�1 ˝Xn/ : : :

��
:

It gives rise to a cosimplicial (dg) vector space. Then, the Davydov–Yetter complex is
defined as the totalisation of this cosimplicial vector space.

Often the Davydov–Yetter complex is said to compute the infinitesimal deformations
of a monoidal category. In fact, it is not quite correct, where the Davydov–Yetter complex
only encodes the deformations of the associator, leaving the underlying k-linear category
and the monoidal product on morphisms fixed.

In our set-up of k-linear monoidal category, it is natural to deform all k-linear data.
More precisely, we assume that the monoidal product on objects remains fixed, while the
underlying k-linear category, the monoidal product of morphisms, and the associator are
being deformed. We refer to such deformations as full.

Theorem 7.3 states that H 3.C
q
.C; C /.Id; Id/.id; id// parametrises the infinitesimal

full deformations of C mod out the infinitesimal equivalences.
The link between C

q
.C; C /.Id; Id/.id; id/ and the Davydov–Yetter complex can be

described as follows. The natural embedding � ��! ‚2 makes it possible to consider
C
q
.C;C /.Id; Id/.id; id/ as a bicomplex, with the horizontal differential d0 and the vertical

differential d1. One can show that C
q
DY .C / is the kernel of the vertical differential d1

restricted to the 0-th row of this bicomplex (with the differential d0).
The naturality of the Davydov–Yetter cochains is dropped in C

q
.C; C /.Id; Id/.id; id/

and is replaced by the naturality with respect to monoidal structural maps. The reader
is advised to look directly to Section 5.1 for more detail on the connection between the
Davydov–Yetter and our complexes and on this restricted naturality for cochains.

One of our motivations here was the recent paper [6], where a C q.E3I k/ algebra
structure on the Davydov–Yetter complex C

q
DY .C / of a k-linear monoidal category C

was constructed. In [6], the authors consider more generally n-commutative cosimplicial
monoids and prove that the totalisation of such cosimplicial monoid has a structure of
homotopy .n C 1/-algebra. On the other hand, it is shown in [6] that C

q
DY .C / is the

totalisation of a 2-commutative cosimplicial monoid, which implies that C
q
DY .C / is a

homotopy 3-algebra.

1By ‚2-totalisation we mean here the corresponding (non-normalised) cochain Moore complex, as it
is defined in (3.1), (3.2); see also discussion in Section 3.1.
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Unfortunately, the 2-commutativity fails for our complex (even for the strict case).
More precisely, there is a natural projection pW‚2 ! �, which defines a cosimplicial
complexR

q
p�.A.C;D/.F;G/.�; �//.2 For the case F DG, �D � D id, this cosimplicial

complex is in turn a cosimplicial (dg) monoid. One easily shows that the �-totalisation
of the latter monoid is equal to the ‚2-totalisation of A.C; D/.F; G/.�; �/. However,
the cosimplicial monoid Rp�.A.C; C /.Id; Id/.id; id// fails to be 2-commutative. (It is,
in a sense, a homotopy 2-commutative monoid, a cosimplicial monoid in which the 2-
commutativity relation holds only up to homotopy, in a suitable sense, which conjecturally
should be enough for its totalisation to be a homotopy 3-algebra.)3

On the other hand, for a strong bicategorical k-linear functor F WC ! D, the cosim-
plicial monoid R

q
p�A.C; D/.F; F /.id; id/ is 1-commutative (Proposition 6.4). Then it

follows from [6, Cor. 2.46] that the complex C
q
.C; D/.F; F /.id; id/ is a homotopy 2-

algebra (Theorem 6.6).

1.5. Organisation of the paper

The paper consists of 6 sections and 1 appendix.
In Section 2, we recall definitions and well-known results on the categories ‚n, Joyal

n-disks, and their interplay. None of the results of Section 2 is new; we basically follow
[10, 11, 19].

In Section 3, we define the totalisation of a 2-cocellular complex (that is, of a functor
‚2 ! C

q
.k/), as well as the relative totalisation along the projection pW‚2 ! �. For

X W‚2 ! C
q
.k/, the relative totalisation Rp�.X/ is a functor �! C

q
.k/. In Proposi-

tion 3.7, we prove, for any X as above, the transitivity property for its totalisations:

Tot‚2.X/ D Tot�
�
Rp�.X/

�
:

In Section 4, we recall the basic notions related to bicategories and introduce a (seem-
ingly, new) concept of a 2-bimodule over a bicategory. We introduce a “bicategorical”
version y‚2 of the category ‚2 and study the left Kan extension along the projection
y‚

op
2 ! ‚

op
2 .

In Section 5, we introduce our main new construction, the 2-cocellular complexes
A.C; D/.F; G/.�; �/. The definition is more tricky than one could expect; namely, the
components A.C;D/.F; G/.�; �/T are subcomplexes of the corresponding components
of a “more natural” complex yA.C; D/.F; G/.�; �/T . The passage from yA to A is per-
formed by imposing the bicategorical relations (5.4)–(5.6) and taking the corresponding
subspaces; without that, the assignment T  yA.C;D/.F; G/.�; �/T itself fails to be 2-
cocellular.

2One can not state that R
q
p�.A.C; D/.F; G/.�; �// is the right homotopy Kan extension because

A.C;D/.F; G/.�; �/ fails to be Reedy fibrant. One can alternatively define R
q
p�.� � � / as “relative total-

isation”; see Section 3.1.
3It would be interesting to define the concept of a cosimplicial homotopy n-commutative monoid; its

totalisation should be an algebra over C
q
.EnC1Ik/.
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In Section 6, we employ the results of [6] for studying higher structures on the com-
plexes C

q
.C; D/.F; G/.�; �/. It is possible due to the transitivity property of Proposi-

tion 3.7. We prove that C
q
.C; D/.F; F /.id; id/ is a homotopy 2-algebra, for any strong

k-linear 2-functor, in Theorem 6.6.
Section 7 contains an identification of H 3.C

q
.C; C /.Id; Id/.id; id// with infinites-

imal full deformations of C mod out infinitesimal equivalences. It justifies our complexes
C
q
.C;D/.F;G/.�; �/ as related to the deformation theory of monoidal k-linear categor-

ies (and, more generally, of k-linear bicategories).
In the appendix, we list the relations between (co)dimension 1 operators in ‚2, used

throughout the paper.

2. The categories‚n

Here, we recall the definition of the categories ‚n, n � 1, and some related concepts.

2.1. n-ordinals and n-leveled trees

We denote by Œn� the ordinal 0 < 1 < � � � < n having n C 1 elements. Recall that the
simplicial category � has objects Œn�; n � 0, that is, all non-empty finite ordinals. Its
morphisms are the mononotonous maps f W Œk�! Œ`�, that is, f .i/ � f .j / if i � j .

Recall the relations between the standard elementary face operators @i W Œn � 1�! Œn�

and the elementary degeneracy operators "i W ŒnC 1�! Œn�, i D 0; : : : ; n, in �:

@j @i D @i@j�1 if i < j
"j "i D "i"jC1 if i � j

"j @i D

8̂<̂
:
@i"j�1 if i < j
id if i D j; j C 1
@i�1"j if i > j C 1:

(2.1)

An ordinal as above is also called a 1-ordinal. The following definition is due to M.
Batanin.

Definition 2.1. An n-ordinal S is a sequence of surjective maps in �:

Œkn�
�n�1
���! Œkn�1�

�n�2
���! � � �

�1
�! Œk1�

�0
�! Œ0�: (2.2)

The category Ordn of n-ordinals has all n-ordinals as its objects, and the morphisms S !
T are commutative diagrams

Œkn�
�n�1 //

fn

��

Œkn�1�
�n�2 //

fn�1

��

� � �
�1 // Œk1�

�0 //

f1

��

Œ0�

id
��

Œ`n�
�0n�1 // Œ`n�1�

�0n�2 // � � �
�01 // Œ`1�

�00 // Œ0�

(2.3)

in which f1; : : : ; fn are not necessarily maps in �, but a weaker condition holds: for any
a 2 Œkj � the restriction of fjC1 to ��1j .a/ is order-preserving.
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Remark: note that fj ’s are not necessarily morphisms in �; the above condition is
weaker than order-preserving.

An object of Ordn is a non-empty n-ordinal.
When the assumption that the maps ¹�iº are surjective is dropped, the object (2.2) is

called an n-level tree (or, shortly, an n-tree). A morphism of n-trees is defined as in (2.3).

The difference between the n-ordinals and the n-level trees is that the former have all
input vertices at the top n-th level, whence an n-tree may have input vertices at all levels.
Sometimes n-ordinals are called pruned n-trees.

Introduce some terminology related to leveled trees, which is used later in the paper.
We represent n-level trees as a collection of finite sets ¹T .i/º0�i�n endowed with a

map iT WT�1 ! T which lowers the level by 1. The map iT is defined as �i�1 at level i .
For x 2 T .i/ we write ht.x/D i . By definition, nD ht.T /D maxx2T ht.x/. A vertex

x of a leveled tree is called an input, or a leaf, if i�1T .x/ D ¿. Note that for an n-leveled
tree, the height of an input may be smaller than n (but there always exists an input of the
height n).

An edge is a pair .x; y/ with x D iT .y/. The set of edges of T is denoted by e.T /.
We define the dimension d.T / D ]e.T /. A leveled tree is called linear if d.T / D ht.T /.

For each vertex x 2 T , the ordered set of incoming edges ex.T / is defined as i�1T .x/.
For a leveled tree T define a leveled tree xT as follows. For each x 2 T , we set ex. xT /D

ex.T / [ .x; x�/ [ .x; xC/ with the order in which .x; x�/ is the minimal element and
.x; xC/ is the maximal element. Thus, we add the leftmost and the rightmost element to
each set ex.T /. It results in xT .i/ D T .i/ C 2T .i � 1/, and ht. xT / D ht.T / C 1. A T -
sector of height k is a triple .xI yL; yR/ where x 2 T .k/, yL; yR 2 xT .k C 1/, i xT .yL/ D
i xT .yR/ D x, and yL; yR are consecutive elements of xT .k C 1/. We say that x supports a
sector .xIyL; yR/. It follows that each input vertex x of T supports a unique sector (which
is .xI x�; xC/).

2.2. The wreath product definition of‚n

The definition of the categories ‚n, n � 1, is given inductively via the wreath product
� oA; see below.

Definition 2.2. Let A be a category. The objects of the category � o A are tuples .Œ`�I
A1; : : : ;A`/, whereA1; : : : ;A` 2A. A morphismˆW .Œ`�IA1; : : : ;A`/! .Œm�IB1; : : : ;Bm/

is a tuple .�I�1; : : : ; �`/ where �W Œ`�! Œm� is a morphism in �, and

�i D
�
�
�.i�1/C1
i ; : : : ; �

�.i/
i

�
is a tuple of morphisms in A, with �ki WAi ! Bk . The composition is defined in the natural
way.

The reader is advised to look at Lemma 2.9 which explains a natural framework in
which the category � oA emerges.

We set
‚1 D � and ‚n D � o‚n�1; n � 2: (2.4)
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Remark 2.3. The case `D0 is allowed for an object of‚n. In this case, the object .Œ0�I¿/
is final.

2.3. n-globular sets and strict n-categories

There is another category equivalent to the category ‚n.
Recall that an n-globular set is the data one has on the underlying sets of objects, 1-

morphisms, : : : ; n-morphisms of a strict n-category. In this sense, it is a “pre-n-category”.
For n D 1, it is a quiver.

The general definition is as follows.

Definition 2.4. An n-globular set is a collection of sets X0; X1; : : : ; Xn and maps

Xn

sn�1
���!
���!
tn�1

Xn�1

sn�2
���!
���!
tn�2

� � �X1

s0
��!
��!
t0

X0

(here sk are source maps and tk are target maps), such that

skskC1 D sktkC1; tkskC1 D tktkC1; 0 � k � n � 1:

For two n-globular setsX;Y , a morphism f WX ! Y is defined as a sequence of maps
fi WXi ! Yi , 0 � i � n, which commute with the source and the target maps s and t .

The category of n-globular sets is denoted by Globn. The reader easily interprets the
category Globn as some presheaf category.

The following question arises: how can one define the free strict n-category generated
by an n-globular set? More precisely, the question is in defining the left adjoint functor !n
to the forgetful functor RWCatn! Globn. (The nD 1 case is the well-known construction
of the free category generated by a quiver.)

The construction of M. Batanin [2, Sect. 4], which associates an n-globular set T �

with an n-ordinal T , is served to solve this problem.
We recall this construction, following a more explicit treatment given in [10, Lem. 1.2].

Lemma 2.5. Let T be an n-leveled tree, and denote by T �
k

the set of all sectors of T of
height k, 0 � k � n. Then, T � is an n-globular set.

Proof. Let .xIyL; yR/ 2 T �k . We have to define sk�1.xIyL; yR/ and tk�1.xIyL; yR/. Let
xL; x; xR be the three consecutive elements in xT .k/. Define

sk�1.xIyL; yR/ D
�
iT .x/I xL; x

�
and tk�1.xIyL; yR/ D

�
iT .x/I x; xR

�
:

One easily sees that the globular identities hold; see [10, Lem. 1.2] for more detail.

Example 2.6. Some examples for 2-level trees are shown in Figure 1.

Example 2.7. For the 2-level tree T having n vertices at level 1 with the preimages having
`1; : : : ; `n vertices at level 2, the 2-globular set T � is schematically shown in Figure 2.
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T1

T
∗

1

T2 T3

T
∗

2
T

∗

3

Figure 1. Examples of 2-level trees.

0 1 n

0

ℓ1

0

ℓ2

0

ℓn

Figure 2. The 2-globular set T � for T from Example 2.7.

With the help of the T � construction, one can define the left adjoint !nWGlobn! Catn
to the forgetful functor RWCatn ! Globn, as follows.

Let X be an n-globular set. We define an n-globular set !n.X/ and prove that it is a
strict n-category.

Set �
!n.X/

�
k
D

a
T Wht.T /�k

HomGlobn.T
�; X/ (2.5)

(one often uses the notation HomGlobn.T
�; X/ D XT ).

First of all, we show that !n.X/ is an n-globular set.
Denote by @kT the .k � 1/-leveled tree, obtained by removing all vertices of height

higher than k � 1. There are two maps of n-globular sets s�
k�1

; t�
k�1
W .@kT /

�! .@kC1T /
�.

In general, a map of globular sets S� ! T � is determined by its restriction to the input
sectors of S�; see [10, Lem. 1.3]. The map s�

k�1
(corresp., t�

k�1
) is obtained by assigning

to each input vertex x of @kT (which uniquely defined its input sector) the leftmost (resp.,
rightmost) input sector in @kC1T supported by x. One shows that the maps s�

k�1
; t�
k�1

satisfy the identities dual to the globular identities. Thus, for any n-globular setX , and for
a k-leveled tree T , k � n, the precompositions with the maps s�

k�1
; t�
k�1

define maps

sk�1; tk�1WX
T
! X@kT :

It follows that these maps satisfy the globular identities. Thus, !n.X/ is a globular set.
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Next, prove that !n.X/ is a strict n-category.
The following statement is proven in [11, Thm. 3.7].

Proposition 2.8. For any n-ordinals S; T , one has

‚n.S; T / D Catn
�
!n. xS

�/; !n. xT
�/
�
:

The proof is obtained, by induction, from the following nice interpretation of the
wreath product, [11, Prop. 3.5].

Lemma 2.9. Let a small category A be a full subcategory of a cocomplete cartesian
monoidal category V. Then, � oA is a full subcategory of V-Cat.

Proof. Any 1-ordinal Œn� can be considered a linear category n with nC 1 objects 0; : : : ;n,
with a single morphism in n.i; j / for i � j and with empty set of morphisms otherwise.
Having n objects A1; : : : ;An of A, we regard them as objects of V, and consider the linear
V-quiver:

0
A1
�! 1

A2
�! 2

A3
�! � � �

An
��! n:

Consider the V-category generated by this quiver, and denote it by FV.A1; : : : ; An/ (here
we use cocompleteness of V to show that the forgetful functor from V-categories to V-
quivers has a left adjoint).

For B1; : : : ; Bm 2 A, a V-functor ˆWFV.A1; : : : ; An/! FV.B1; : : : ; Bm/ is defined
by its restriction to “generators”, that is, by a map �W Œn�! Œm�, and, for any 1 � i � n,
a morphism

Ai ! FV

�
�.i � 1/; �.i/

�
D B�.i�1/C1 � � � � � B�.i/:

We conclude that these V-functors are the same as the morphisms�
Œn�; A1; : : : ; An

�
!
�
Œm�; B1; : : : ; Bm

�
in � oA.

Example 2.10. For the case‚2 D� o�, we set VD Cat, using the imbedding�! Cat,
Œn� n. Thus, to the element .Œn�; Œ`1�; : : : ; Œ`n�/ is associated the 2-category generated
by the following 2-globular set (see Figure 2).

Of course, this globular set is T �, where T is the corresponding 2-ordinal Œ`1 C � � � C
`n C n � 1�! Œn � 1�.

2.4. Disks

The category of disks was introduced in [19]. An interval is a finite ordinal, and a map of
intervals is a map in � preserving the leftmost and the rightmost elements. The category
of the non-empty intervals is denoted by �f . Joyal (loc. cit.) showed that �op

f
' �C

where �C is the category of all finite ordinals (including the empty ordinal which is the
initial object, we denote it by Œ�1�). The functor F W�op

C ! �f is Œn� 7! �C.Œn�; Œ1�/,
F.Œn�/ D ŒnC 1�. The dual functor GW�op

f
! �C is Œn� 7! �f .Œn�; Œ1�/, then the initial

object Œ�1� is �f .Œ0�; Œ1�/, and in general G.Œn�/ D Œn � 1�.
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Definition 2.11. A disk of finite setsD q is a sequenceD1;D2; : : : of finite sets, equipped
with the following data:

(a) a map pWDk ! Dk�1 such that for any x 2 Dk�1 the pre-image p�1.x/ has an
interval structure, k � 1,

(b) two maps d0;d1WDk�1!Dk sending x 2Dk�1 to the leftmost and the rightmost
elements of the interval p�1.x/, k � 1,

(c) for k � 1, the diagram

d0.Dk�1/ [ d1.Dk�1/! Dk

d0
��!
��!
d1

DkC1

is an equaliser, where the first arrow is the canonical embedding,

(d) D0 is a single point.

A map of two disks F WD q ! D0q is a collection of maps ¹Fk WDk ! D0
k
ºk�0 com-

patible with p; d0; d1, such that for any x 2 Dk the map p�1.x/! p�1.Fk.x// is a map
of intervals, k � 0.

The category of disks is denoted by Disk.
For a disk D q, the interior i.Dk/ is defined as Dk n ¹d0.Dk�1/ [ d1.Dk�1/º. It is

an ordinal, and the sequence of maps of ordinals pW i.Dk/ ! i.Dk�1/, k � 1 makes
i.D q/D ¹i.Dk/ºk�0 a leveled tree. The height ht.D q/ is defined as the height of the level
tree i.D q/. The category of disks of height � n is denoted by Diskn.

The functor i sends disks to leveled trees. The functor T 7! xT is a left adjoint to it.
For any leveled tree T , the leveled tree xT is a disk of finite sets. The elements of xT in the
image of i are internal, and the elements in xT n T are boundary.

A map of disks xS ! xT is “more general” than a map of leveled trees S ! T . The
reason is that a map of disks xS ! xT may map an internal point to a boundary point in xT .
Thus, the category Ordn is identified with a not full subcategory of Diskn.

The following proposition is [10, Prop. 2.2].

Proposition 2.12. For any n-leveled trees S; T , one has

Catn
�
!n. xS

�/; !n. xT
�/
�
D Diskn. xT ; xS/:

Thus, the assignment T 7! xT provides an equivalence of ‚op
n and Diskn.

Remark 2.13. We can restrict the assignment from the proof [10, Prop. 2.2] to the maps
of disks xS! xT which come from maps of leveled trees S! T (that is, which map internal
points to internal). The corresponding sub-category C of Catn has objects !n. xT �/,
T 2 Ordn, and has the set of morphisms C.!n. xS�/; !n. xT �// which is the subset of
Catn.!n. xS�/; !n. xT �// formed by maps of n-categories, preserving minima and maxima,
in an appropriate sense. For n D 2, this equivalence is used by Tamarkin [37].

In fact, this equivalence (rather than the equivalence of Proposition 2.12) can be
thought of as a proper analogue of the Joyal equivalence �f ' �

op
C , for n � 2.
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2.5. The categories‚n as higher analogues of the category�: inner and outer face
maps

We have three equivalent descriptions of the category ‚n which are

(a) the definition via the wreath product (2.4),

(b) the definition via morphisms of free strict n categories !n. xT �/, Proposition 2.8,

(c) the dual of the category Diskn, Proposition 2.12.

We will take advantage of all three equivalences. In particular, (c) is used to naturally
define the realisation/totalisation, (b) is used to see that any strict n category C has a
nerve which is a cocellular set N.C/W‚op

n ! Sets, and (a) is the most combinatorially
explicit and manageable.

The existence of the nerve was the main motivation in [19], where the disk categories
were defined. It also makes it possible to consider ‚n as an analogue of �, for n � 2.

Note that the nerve N.C/ of the ordinary category C is a simplicial set, whose com-
ponents can be defined as

N.C/k D Cat.k; C /

(where k is the linear category with k C 1 objects). We see directly that it gives rise to a
simplicial set because a map Œk�! Œm� in � amounts to the same thing as a map of the
linear categories k! m.

Let now C be a strict n-category. Define its n-nerve as a cellular set

N.C/W‚op
n ! Sets;

for which
N.C/T D Catn

�
!n. xT

�/; C
�
: (2.6)

It gives rise to an n-cellular set because, by Proposition 2.8,

‚n.S; T / D Catn
�
!n. xS

�/; !n. xT
�/
�
:

For any strict n-category C , the n-cellular set N.T / has a property which is a higher
n counterpart of the Boardman–Vogt inner horns filling property for n D 1, called the
“weak Kan complexes”. The simplicial sets with inner horns filling condition were further
studied by Joyal (under the name quasi-categories) and Lurie (under the name .1; 1/-
categories), as a model for weak analogues of ordinary categories. The aim in [19] was
to define a model for weak analogues of strict n-categories, and it was the motivation for
introducing the categories ‚n.

In ‚n, there are two classes of maps, face maps and degeneracy maps, and face maps
are further subdivided to outer face maps and inner face maps.

The most direct way to define them is by using the category of disks Diskn; see Pro-
position 2.12.

Let S; T be two n-leveled trees.
A map xS ! xT in Diskn is called a degeneracy if it is an embedding on each interval

p�1.x/, and jS j C 1 D jT j.
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A map f W xS ! xT is called an inner face map if jS j D jT j C 1, f contracts two
neighbour inner points a; b at some interval p�1.x/ and is a shuffling map on the interiors
of the intervals p�1.a/ and p�1.b/ (when such shuffling is fixed, the map of disks with
these conditions is uniquely defined).

Let x 2 S , a 2 p�1.x/, a 2 i.S/ be an extreme (= leftmost or rightmost) vertex of
p�1.x/ in i.S/. We call a a special extreme vertex if a is also an input vertex of i.S/. Let
f W xS ! xT be a map in Diskn, jS j D jT j C 1, a is a special extreme vertex in S , and b is
a vertex in @p�1.x/ � xS (left or right) neighbour to a (the vertex b is unique except for
the case when p�1.x/ � xS consists of 3 vertices, two of which are boundary). We call f
the outer face map associated with .a; b/ as above if T D S n ¹aº and f maps a to b.

It is clear that any surjective map of codimension 1 is either an inner or outer face map.

Remark 2.14. The inner (resp., all) face maps are used to define inner horns (resp., all
horns) in [19, Def. 2] and to define weak n-categories (resp., weak n-groupoids) as cellular
sets X W‚n ! Sets with inner (resp., all) horns filling property. This idea was further
elaborated in [1, 10, 11].

2.6. The Reedy structure on‚2, description of elementary coface and
codegeneracy maps

One can translate the above definition of coface and codegeneracy maps to the wreath
product definition of ‚2. For D D .Œk�I Œn1�; : : : ; Œnk �/ 2 ‚2, define dimension of D as

jDj D k C n1 C � � � C nk : (2.7)

It was proven in [10, Lem. 2.4 (a)] that ‚2 is a Reedy category, in which degree is equal
to the dimension (2.7), and there are two classes of morphisms, coface maps and code-
generacy maps, which raise (corresp., lower) the degree. The construction was clarified in
[12], using the wreath product definition. (In [10,12], a Reedy structure on‚n for general
n � 1 is defined.)

Recall following [12] the Reedy category structure on ‚2.
Recall that an object of ‚2 is given by a tuple .Œk�I Œn1�; : : : ; Œnk �/, a morphism

ˆW .Œn�I Œ`1�; : : : ; Œ`n�/! .Œm�I Œk1�; : : : ; Œkm�/ is .�I�1; : : : ; �n/, where �W Œn�! Œm� is a
morphism in �, and �i D .�

�.i�1/C1
i ; : : : ; �

�.i/
i /, �si W Œ`i �! Œks� is a tuple of morphisms

in �.
Define two subcategories ‚�2 ; ‚

C
2 � ‚2, such that Ob‚�2 D Ob‚C2 D Ob‚2. We

say that ˆ 2 ‚�2 if � is surjective, and for �.i � 1/ < �.i/ the map ��.i/i W Œki �! Œ`�.i/�

is surjective. We say that a map ˆ 2 ‚C2 if � is injective, and for any i the family of maps
¹�
j
i W Œki �! Œ j̀ �º�.i�1/C1�j��.i/ is jointly injective; that is, for any a; aC 1 2 Œki � there

is j such that �ji .a/ ¤ �
j
i .aC 1/ (note that individual �ji may not be injective for all j ).

The following statement is a particular case of [12, Prop. 2.11].
Anyˆ 2 ‚2 can be uniquely decomposed asˆD ˛C ı ˛� with ˛C 2 ‚C2 , ˛� 2 ‚�2 .

One hasˆ 2‚C2 \‚
�
2 ifˆD id, the morphisms in‚�2 decrease jDj, and the morphisms

in ‚C2 raise jDj.
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Below we list the codim D ˙1 (with respect to j � j) coface and codegeneracy maps
in the wreath product model of ‚2.

We denote by @j the j -th coface maps @j W Œn�! ŒnC 1� in �, 0 � j � nC 1.

Inner coface maps of codimension 1.

(F1) n D m, `i D ki for i ¤ p, kp D p̀ C 1, all �si D id except for ��.p/p equal to
the j -th coface map

@j W Œ p̀�! Œ p̀ C 1�; j ¤ 0; p̀ C 1

(that is, @j is an inner coface map in �). We denote this coface map @jp .

(F2) m D n C 1, the morphism �W Œm� D Œn�! Œn C 1� is @j , j ¤ 0; n C 1. Next,
ks D `s except for s D j; j C 1, kj C kjC1 D j̀ , and all �s D id except for
s D j . Let � be a .kj ; kjC1/-shuffle permutation in †

j̀
. The permutation �

defines two maps pW Œkj � 1� ! Œ j̀ � 1� and qW ŒkjC1 � 1� ! Œ j̀ � 1� in �.
They define the Joyal dual maps p�W Œ j̀ � ! Œkj � and q�W Œ j̀ � ! ŒkjC1� in �
preserving the end-points. Then, .p�; q�/W Œ j̀ �! Œkj � � ŒkjC1�, extended by the
identity maps of the ordinals Œ`i �, i ¤ j , defines a map in‚2. It is the codimD 1
coface map associated with a shuffle permutation � .
We denote this coface map by Dj;� .
Let us define p�; q� explicitly, unwinding the definition. We think of the sets
¹1; : : : ; kj º, ¹1; : : : ; kjC1º, ¹1; : : : ; j̀ º as the elementary arrows in the interval
categories Ikj ; IkjC1 , and I

j̀
, correspondingly. Then, p� and q� are defined as

follows. Both p� and q� preserve the end-points. If ��1.
����!
i; iC1/D

�����!
a; aC12Ikj ,

then
p�.i/ D a; p�.i C 1/ D aC 1; q�.i/ D q�.i C 1/:

If ��1.
����!
i; i C 1/ D

�����!
b; b C 1 2 IkjC1 , then

q�.i/ D b; q�.i C 1/ D b C 1; p�.i/ D p�.i C 1/:

Outer coface maps of codimension 1.

(F3) n D m, `i D ki for i ¤ p, kp D p̀ C 1, all �si D id except for ��.p/p equal to
the j -th coface map @j W Œ p̀�! Œ p̀ C 1�, j D 0; p̀ C 1 (that is, @j is an outer
coface map in �). We denote this coface map @jp .

(F4) The two remaining codim 1 coface maps areDmin andDmax. In both cases,m D
nC 1. For the case of Dmin, � D @0, and k1 D 0, ks D `s�1 for s � 1, the maps
�i D .�

iC1
i /D .id/. For the case ofDmax, kmC1D 0, �D @nC1, �i D .�ii /D .id/.

More generally, we call a map

ˆW
�
Œn�I Œ`1�; : : : ; Œ`n�

�
!
�
Œm�I Œk1�; : : : ; Œkm�

�
; ˆ D .�I�1; : : : ; �n/;

a coface map if �W Œn�! Œm� is injective, and each �i W Œ`i �! Œk�.i�1/C1� � � � � � Œk�.i/� is
a (jointly) injective map (the latter means that for any a; b 2 Œ`i �, a ¤ b, for at least one
�si ; �.i � 1/C 1 � s � �.i/, one has �si .a/ ¤ �

s
i .b/).
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Here is the list of elementary codegeneracy maps in ‚2:

(D1) n D m, `i D ki for i ¤ p, kp D p̀ � 1, all �si D id except for ��.p/p equal to
the j -th codegeneracy map "j W Œ p̀�! Œ p̀ � 1�.
We denote this codegeneracy map by "jp .

(D2) n � 1 D m, the first component p.ˆ/ is "pW Œn�! Œn � 1�. For any Œ p̀C1�, it
extends uniquely to a morphism

ˆW
�
Œn�I Œ`1�; : : : ; Œ p̀�; Œ p̀C1�; Œ p̀C2�; : : : ; Œ`n�

�
!
�
Œn � 1�I Œ`1�; : : : ; Œ p̀�; Œ p̀C2�; : : : ; Œ`n�

�
for which �1; : : : ; �p; �pC2; : : : ; �n are identity maps.
We denote this operator ‡p

p̀C1
. Note that the morphism ‡

p

p̀C1
is of codimension

1 iff p̀C1 D 0. We define ‡p
`
D 0 if ` ¤ p̀C1.

One can show that the morphisms in ‚2 listed above form a set of generators for ‚2.
For relations between these generators, see the appendix.

3. The totalisation of a 2-cocellular vector space

Here, we define the non-normalised ‚2-totalisation of a 2-cocellular complex. Also, we
define a relative p-totalisation Rp�, for the functor pW‚2! �, and prove the transitivity
property saying that Tot� ıRp� D Tot‚2 .

3.1. Generalities on realisations and totalisations

Recall that for a general category „ and a functor C W„ ! C
q
.k/, the corresponding

realisation in C
q
.k/ is a functor Sets„

op
! C

q
.k/ defined as the left Kan extension of C

along the Yoneda embedding „! Sets„
op

. That is, the realisation depends on a functor
C W„ ! C

q
.k/. For X 2 Sets„

op
, we denote by jX jC or just jC j its realisation with

respect to the functor C . Dually, for the same „ and C , define the totalisation functor
Sets„ ! C

q
.k/ as the right Kan extension of C opW„op ! C

q
.k/op by the dual Yoneda

functor „op ! .Sets„/op. The result is a functor Sets„ ! C
q
.k/. For Y 2 Sets„, we

denote by TotC .Y / or Tot.Y / its totalisation.

Remark 3.1. One similarly defines the realisation (resp., the totalisation) with values in
any cocomplete (resp., complete) category E (replacing the category C

q
.k/ in the above

definition) out of a functor C W„! E. For example, for „ D � one can take E D Top,
„.Œn�/D�n, or E D Cat,„.Œn�/D In (where In is the linearly ordered poset with nC 1
objects), etc. In the case Xi D �, E D C

q
.k/, one can take C.Œn�/ D N.k�.D; Œn�//,

or C.Œn�/ D CMoore.k�.D; Œn�// for a realisation/totalisation in E D C
q
.k/ (here, CMoore

and N denote the Moore chain complex and the normalised Moore chain complex of a
simplicial vector space).
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It follows from the definition that the realisation commutes with all small colimits and
the totalisation commutes with all small limits.

Using this observation, one proves that the realisation of a simplicial set X in C
q
.k/,

for C.Œn�/ equal to the non-normalised Moore complex of k�.D; Œn�/, is equal to the non-
normalised Moore complex of X . This fact is fairly standard, but as we employ a similar
argument for „ D ‚2 later in the paper, we recall the argument for completeness.

Represent X D colimhŒj �!X hŒj �, where hŒj �.Œi �/ D �.Œi �; Œj �/. Then,

jX j D j colimhŒj �!X hŒj �j D colimhŒj �!X jhŒj �j
�
D colimhŒj �!X C

�
Œj �
�

D colimhŒj �!X C
q

Moore.hŒj �/

where in the equality marked by � we use that the Yoneda functor is fully faithful and that
the unit of the left Kan extension adjunction along a fully faithful functor is the identity
[31, Cor. 1.4.5]. The rightmost complex has its i -th term equal to colimhŒj �!X k�.Œi �; Œj �/.
Then,�

colimhŒj �!X C
q�
Œj �
��
i
D colimhŒj �!X

�
khŒj �

�
Œi �
��
D
�

colimhŒj �!X khŒj �
�
Œi �D X

�
Œi �
�
:

Similarly, we show, for C.Œn�/ D N.k�.D; Œn�//, the totalisation counterparts of these
statements.

In this paper, we consider the realisation and the totalisation for

C
�
Œn�
�
D C

q
Moore

�
k�

�
D; Œn�

��
;

for the case of �, and C.T / D C
q
.k‚2.D; T //, where C

q
.D/ is the complex defined in

(3.1) and (3.2).
We also define “relative totalisation” with respect to the projection pW‚2 ! �. For

the case of realisation, it can be defined as the following left Kan extension ofˆ along the
Yoneda embedding

‚2 Sets‚
op
2

C
q
.k/�

op
,

+

ˆ
Lan

where the functorˆ sends an object T 2‚2 to the functor�op! C
q
.k/, Œn� 7!RŒn�.T /;

see (3.3).
Note that the functor � ! C

q
.k/, Œ`� 7! C

q
Moore.k�.D; Œ`�// is a resolution of the

constant functor Œ`� 7! k. The functor T 7! C.T / is a projective resolution by Yonedas of
the constant functor T 7! k (as is proven in Section 3.2), and the functorˆ above is a res-
olution of the functor T 7! ¹Œn� 7! k�.Œn�; p.T //º (as it is proven in Lemma 3.3 below).

Morally, we wanted to talk about the homotopy right Kan extension along p, instead
of the p-relative totalisation. We want to use the transitivity of the right homotopy Kan
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extensions for the composition ‚2
p
�! � ! �, which is clear from the derived functor

of composition theorem, to prove Proposition 3.7. However, the totalisation agrees with
the homotopy right Kan extension for the projection to � only for Reedy fibrant cosimpli-
cial (resp., 2-cocellular) complexes of vector spaces (see [18, Sect. 18.7]). Typically, the
cosimplicial space whose Moore complex is the Hochschild complex is not Reedy fibrant
(despite the fact that the corresponding bar-complex is Reedy cofibrant). To overcome this
difficulty, we talk about the “relative totalisation” along pW‚2! �, choosing the functor
ˆ exactly as a resolution of k�.Œn�; p.T // by the (projective) Yoneda functors. Then, we
prove the transitivity comparing the explicit formulas for the totalisations.

3.2. The (absolute) totalisation of a 2-cocellular vector space

Let X W‚2 ! C.k/ be a cocellular complex. First of all, we define its non-normalised
Moore complex explicitly, as the complex whose degree ` component is

Tot‚2.X/
`
D

M
T2‚2

dimTD`

XT (3.1)

and the differential of degree C1 is equal to the sum of (taken with appropriate signs) all
codimension 1 face maps:

d jXT D
X

coface maps @jp
(F1), (F3)

.�1/k1C���Ckp�1Cp�1Ci�1@ip

C

X
coface maps
Dp;� (F2)

.�1/k1C���Ckp�1Cp�1C].�/Dp;�

CDmin C .�1/
k1C���CknCnDmax;

(3.2)

where T D .Œn�I Œk1�; : : : ; Œkn�/, dimT D k1 C � � � C kn C n, and for the notations for the
face maps, see Section 2.6.

Lemma 3.2. One has d2 D 0.

Proof. It follows from relations (A.1)–(A.7) that the summands in d2 come in pairs, in
which the two operators are equal one to another. One checks by hand that for each pair
the two terms have opposite signs, which makes them mutually cancelled.

This formula can be “explained” in the following way. We compute Hom‚2
.K

q
; X/

where K
q

is a (projective) resolution of the constant 2-cocellular vector space k, formed
by the (linearised) Yoneda modules k‚2.�; T /, for T 2 ‚2 (here, Hom‚2

stands for
Hom taking values in C

q
.k/, and it can be equally defined as enriched natural transform-

ations [31, Sect. 7.3]). In this way, it is the “semi-derived” functor of colim‚2 X because
Hom‚2.k; X/ D colim‚2 X , but it is not properly derived because X is not, in general,
Reedy fibrant. We can not claim that for another choice of resolution of k we get a quasi-
isomorphic complex.
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Here is an explicit resolution.
Fix T 2 ‚2. Denote by K

q
.T / a complex whose components are

K�`.T / D
M
T 02‚2
jT 0jD`

k‚2.T
0; T /:

The differential d WK�`.T /! K�`C1.T / is defined likewise the differential in (3.2), so
that K

q
.�; T / for a given T is the realisation of the cellular vector space ‹ 7! k‚2.‹; T /.

We check d2 D 0 as in Lemma 3.2.
Clearly the post-composition makesK

q
.T / functorial in T . One remains to show that,

for given T , .K
q
.T /; d/ is quasi-isomorphic to k.

Consider .K
q
.T /; d/ as the total complex of a bicomplex, with “vertical” component

of the differential

d1 D
X

coface maps @jp (F1), (F3)

.�1/k1C���Ckp�1Cp�1Ci�1@ip

and the “horizontal” component

d0 D
X

coface maps
Dp;� (F2)

.�1/k1C���Ckp�1Cp�1C].�/Dp;� CDmin C .�1/
k1C���CknCnDmax:

We claim that d0d1 C d1d0 D 0; we check it later in the proof of Proposition 3.5.

3.3. The p-relative totalisation Rp�.X/: an explicit description

3.3.1. The ordinary enriched right Kan extension of X along pW‚2 ! � is taken equal
to

p�.X/
�
Œn�
�
D Hom‚2

�
k�

�
Œn�; p.�/

�
; X.�/

�
;

where, as above, Hom‚2
taking values in C

q
.k/ is the enriched natural transformations.

We replace k�.Œn�; p.T // by its resolution RŒn� by Yoneda modules. Note that it is not
the homotopy right Kan extension along p, for the case X is not Reedy fibrant. Therefore,
we can not say that for any other choice of resolution we get a quasi-isomorphic complex.
The resulting �-complex Hom‚2.R; X/ is “closely related” to our relative realisation.

We have to resolve the functor T 7! k�.Œn�;p.T // (for a given Œn� 2�) by the Yoneda
functors hT 0.T / D k‚2.T 0; T /. Below we provide an explicit resolution R

q
Œn�

(which is a
complex of vector spaces over k).

The degree ` component is

R`
Œn�.T / D

M
T 02‚2; p.T

0/DŒn�
dimT 0Dn�`

k‚2.T
0; T /: (3.3)

Thus, the complex R
q
Œn�

has non-zero components in degrees � 0.
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The differential d WR`
Œn�
!R`C1

Œn�
is defined as the alternated sum of the “vertical” face

operators (acting on the first argument T 0), that is, of face operators (F1) and (F3) from the
list in Section 2.6. More precisely, for T D .Œq�I Œt1�; : : : ; Œtq�/, T 0 D .Œn�I Œk1�; : : : ; Œkn�/,
ˆ D .�I�1; : : : ; �n/WT

0 ! T , one has

d.ˆ/ D

nX
sD1

ksX
iD0

.�1/k1C���Cks�1Cs�1Ciˆs;i ; (3.4)

where ˆs;i WT 0s;i ! T is defined as the pre-composition ˆ ı @is (see Section 2.6, (F1) and
(F3)), and T 0s;i D .Œn�I Œm1�; : : : ; Œmn�/, where mj D kj for j ¤ s, ms D ks � 1, and
@is WT

0
s;i ! T 0 is the corresponding “vertical” face operator. Note that this pre-composition

does not affect the “horisontal” map �. It is clear that d2 D 0.

Lemma 3.3. The following statements are true:

(1) degree 0 cohomology of R
q
Œn�

is isomorpic to k�.Œn�; p.T //,

(2) the higher cohomology (in the negative degrees � �1) vanishes.

Proof. (1) The degree 0 component R0
Œn�

is a direct sum˚kˆ, where

ˆW
�
Œn�I Œ0�; : : : ; Œ0�

�
! T;

which is the same asˆD.�W Œn�!Œq�IT1; : : : ;Tn/where Ti 2 Œt�.i�1/C1� � � � � � Œt�.i/�, an
element (recall that Œq� D p.T /). Degree 0 cohomology is equal to the quotient-space by
the image of˚kˆ0, withˆ0W .Œn�I Œ0�; : : : ; Œ0�; Œ1�; Œ0�; : : : ; Œ0�/!T . For a given �W Œn�! Œq�,
all choices of Ti become equal in the quotient-spaceH 0.R

q
Œn�
/ D R0

Œn�
=d.R�1

Œn�
/. It shows

that H 0.R
q
Œn�
/ ' k�.Œn�; Œq�/ D k�.Œn�; p.T //.

(2) We construct a contracting homotopy operatorH of degree �1, that is, an operator
such that .dH CHd/jR`

Œn�
D c`, where c` is the multiplication by an integer c`, non-zero

for ` ¤ 0. This H is constructed in a standard way as the alternated sum of the “vertical”
degeneracy operators.

Remark 3.4. It is clear that the complex R
q
Œn�

is a direct sum ˚�R
q
Œn�;�

over �W Œn�!
p.T / because the differential does not affect �. Each complex R

q
Œn�;�

is a resolution of k
(where k denotes the complex-object k in degree 0).

One checks that R
q
Œn�

is a functor‚2! C
q
.k/, where the action of‚2 is given by the

post-composition. It commutes with the differential as the general post-composition and
pre-composition do.

3.3.2. The action of �. Our next task is to endow our resolution R
q
Œn�

with a struc-
ture of a functor �op ! C

q
.k/, when Œn� varies. Note that unlike for the cohomology

k�.Œn�; p.T // of R
q
Œn�

, the “lifted” action of � on R
q
Œn�

does not come automatically.
We need to define the actions of the elementary face operators @i and the elementary

degeneracy operators "j in �, which we denote, in this context, by �i� and ‡j�, corres-
pondingly.
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Here are the definitions.
Let ˆWT 0 ! T be an element in R`

Œn�
, p.T 0/ D Œn�.

�i�.ˆ/ D
X
�

˙ˆ ıDi;� ˙ˆ ıDmin ˙ˆ ıDmax; ‡
j
�.ˆ/ D ˙ˆ ı ‡

j
0 ;

where ‡j0 W .Œn�I Œ`1�; : : : ; Œ j̀ �; Œ0�; Œ j̀C2�; : : : ; Œ`n�/! T . Note that we take only T 0 with
Œ j̀C1� D Œ0�.

(See Section 2.6 for the notations Di;� and ‡j .)

Proposition 3.5. The following statements are true:

(1) the operators �i� and ‡j� define maps of complexes �i�WR
q
Œn�
! R

q
Œn�1�

and
‡
j
�WR

q
Œn�
! R

q
ŒnC1�

, preserving the cohomological degree,

(2) the operators �i� and ‡j� fulfil the simplicial relations, defining a simplicial
object R

q
‹
W�op! C

q
.k/, functorial in T . The cohomologyH

q
.R

q
Œn�
/ with respect

to the differential (3.4), with its simplicial action, is isomorphic to �.Œn�; p.T //
with its natural simplicial action.

The proof of Proposition 3.5 is a straightforward computation using relations between
the generators of ‚2 listed in the appendix. It is reproduced in [29, Appx. B].

3.3.3. Finally, here is Rp�.X/. For X 2 Fun.‚2; C
q
.k//, define Rp�.X/Œn� 2 C

q
.k/

as the following complex:

0! Rp�.X/Œn�
0 d
�! Rp�.X/Œn�

1 d
�! Rp�.X/Œn�

2 d
�! � � �

where
Rp�.X/Œn�

`
D

M
T2‚2; p.T /DŒn�

dimTDnC`

X.T /

and the differential d is the alternated sum of “vertical” face operators (of type (F1) and
(F3) in Section 2.6):

d jX.T / D

p.T /X
iD1

TiX
jD0

.�1/T1C���CTi�1Cj @
j
i

where we write T D .p.T /I ŒT1�; : : : ; ŒTp.T /�/.
According to Proposition 3.5, when Œn� 2 � varies, it gives rise to a functor � !

C
q
.k/.
More precisely, we have formulas for the coface maps

�i�WRp�.X/Œn�! Rp�.X/ŒnC 1�; i D 0; : : : ; nC 2

similar to the ones stated in Proposition 3.5 and the codegeneracy maps‡j�WRp�.X/Œn�!
Rp�.X/Œn � 1�, j D 0; : : : ; n:

�i� D
X
�

˙Di;� ˙Dmin ˙Dmax (3.5)



The category ‚2, derived modifications, and deformation theory of monoidal categories 173

and
‡
j
� D ˙‡

j
0 (3.6)

in the notations of Section 2.6. The signs are the same as in Proposition 3.5.

Proposition 3.6. The coface and codegeneracy operators (3.5) and (3.6) commute with the
differentials on Rp�.X/Œn� for a given n and satisfy the standard cosimplicial identities.

For a proof, we have two options. We can either note that the proof of Proposition 3.5
is literally applied to a proof of Proposition 3.6, with the same computations, or, alternat-
ively, we can deduce it from Proposition 3.5 and the definition of Rp�.X/ŒD� as the right
Kan extension

‚
op
2 .Sets‚

op
2 /op

�
C
q
.k/�

op�op

*

ˆ
Ran D Rp�.�/

Here, ˆ is defined as above, T 7! ¹Œn� 7! RŒn�.T /º. In this way, the �-action on RŒ‹�.T /

given by Proposition 3.5 is translated to the action of � on Rp�.X/Œ‹�.

3.3.4. Tot�.Rp�.X// ' Tot‚2
.X/. Here we prove the following.

Proposition 3.7. LetX W‚2! C.k/ be a 2-cocellular vector space. Then, the�-totalisa-
tion Tot�.Rp�.X// of Rp�.X/ is a complex isomorphic to the‚2-totalisation Tot‚2.X/.

Proof. When one applies the usual non-normalised cochain complex functor to the cosim-
plicial vector space Rp�.X/, we get exactly the formula (3.1) for the (non-normalised)
‚2-totalisation.

4. Bicategories and 2-bimodules over bicategories

4.1. Reminder on bicategories

Here, we recall the basic definitions related to bicategories, basically aiming to fix our
terminology and notations. The reference are [9, 20, 23, 25].

Shortly, a bicategory is a lax category enriched in Cat. Here, “lax” indicates that the
associativity of composition holds up to a 2-arrow which is an isomorphism. Below is a
detailed definition (of a small bicategory).

Definition 4.1. A small bicategory C consists of the following data:

(1) a set C0 whose elements are called the objects of C ,

(2) for x; y 2 C0, a set C1.x; y/ whose elements are called 1-morphisms or 1-arrows,

(3) for any x; y 2 C0 and f; g 2 C1.x; y/, a set C2.x; y/.f; g/ called 2-morphisms
or 2-arrows,
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(4) for any x; y 2 C0, one has a small category C.x; y/ whose objects are C1.x; y/
and whose arrows f ! g are C2.x; y/.f; g/,

(5) for any x; y; z 2 C0, there is a compositionmx;y;z WC.y; z/� C.x; y/! C.x; z/,
which is a functor of categories,

(6) for any x; y; z; w 2 C0, there is a natural transformation

C.z;w/ � C.y; z/ � C.x; y/

C.z; w/ � C.x; z/

C.y;w/ � C.x; y/

C.x;w/

*˛x;y;z;wid�mx;y;z

my;z;w � id

mx;z;w

mx;y;w

whose components are given by isomorphisms (for which we often use the nota-
tion ˛h;g;f assuming ˛x;y;z;w.h � g � f /),

(7) for any x; y 2 C0, there are 2-arrows �x;y and �x;y defined as

C.x; y/ � 1

C.x; y/ � C.x; x/ C.x; y/

*�x;y

1 � C.x; y/

C.y; y/ � C.x; y/ C.x; y/

*�x;y

id� idx
'

mx;x;y

idy � id
'

mx;y;y

whose components are isomorphisms (we often denote�x;y.f�id/ and�x;y.id�g/
by �.f / and �.g/, correspondingly)

which are subject to the following identities:

(i) The associator ˛x;y;z;w is subject to the usual pentagon diagram:

.t ı h/ ı .g ı f /

t ı
�
h ı .g ı f /

�

t ı
�
.h ı g/ ı f

� �
t ı .h ı g/

�
ı f

�
.t ı h/ ı g

�
ı f

˛tıh;g;f˛t;h;gıf

˛t;hıg;f

mt;˛h;g;f m˛t;h;g ;f

(ii) for any x; y 2 C0, the unit 2-arrows

�.f /Wmx;y;y.idy ; f /) f

and
�.f /Wmx;x;y.f; idx/) f
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are subject to the following unit identity, for f 2 C1.x; y/, g 2 C1.y; z/:

g ı .idy ı f /
˛x;y;z;w

//

id.g/ı�.f /
&&

.g ı idy/ ı f

�.g/ıid.f /
xx

g ı f:

The composition of 2-arrows coming from the composition in C.x; y/ is called ver-
tical (notation: f ıv g, where f; g 2 C.x; y/), while the composition of 2-arrows coming
from mx;y;z WC.y; z/ � C.x; z/! C.x; z/ is called horizontal (notation: g ıh f , where
f 2 C.x; y/; g 2 C.y; z/).

Examples. (i) When ˛x;y;z;w ; �.f /; �.f / are the identity 2-arrows, one gets the concept
of a 2-category (which is then a “strict” bicategory).

(ii) When C0 D ¹�º, the bicategory is a monoidal category.
Next, we recall lax-functors of bicategories and lax-natural transformations thereof.

Also, we recall the concept of a modification between two lax natural transformations,
playing the role of 3-arrows in the (weak) 3-category of bicategories (they form a tricat-
egory; see [16]).

Definition 4.2. Let C;D be bicategories. A lax-functor F WC ! D is given by the fol-
lowing data:

(1) an assignment F WC0 ! D0 of objects,

(2) for any x; y 2 C0, a functor Fx;y WC.x; y/! D.Fx; Fy/,

(3) for any x; y; z 2 C0, there is a natural transformation �x;y;z making the diagram
below commutative:

C.y; z/ � C.x; y/

D.Fy; F z/ �D.Fx; Fy/

C.x; z/

D.F x; F z/

)�x;y;zFy;z �Fx;y

mCx;y;z

mDFx;Fy;F z

Fx;y

(we use notations �g;f WFg ı Ff ) F.gf /),

(4) for any x 2 C0, there is a natural transformation �x making the diagram below
commutative:

1

1

C.x; x/

D.F x; F x/

)�x

Ix

D Fx;x

I 0F x

which are subject to the following properties:
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(i) the hexagon diagram

.F h ı Fg/ ı Ff F.h ı g/ ı Ff F
�
.h ı g/ ı f

�

Fh ı .Fg ı Ff / F h ı F.g ı f / F
�
h ı .g ı f /

�

� ı id �

F .˛C /˛D

id ı � �

commutes,

(ii) the unit commutative diagrams for �x (see, e.g., [23, Sect. 1.1]).

When ¹�x;y;zº and ¹�xº are isomorphisms, the lax functor F is called strong; when they
are identity natural transformations, the lax functor is called strict.

Definition 4.3. Let C;D be bicategories, F D .F;�/;G D .G; /WC !D lax-functors.
A lax natural transformation �WF ) G is given by the following data:

(1) a collection of 1-arrows �x WFx ! Gx, x 2 C0,

(2) a collection of natural transformations

C.x; y/ D.F x; Fy/

D.Gx;Gy/ D.F x;Gy/

)�x;y

Fx;y

Gx;y .�y/�

.�x/
�

which are subject to commutative diagrams expressing the compatibility of ¹�f º
with the composition f2 ı f1 and of ¹�xº with unit morphisms; see, e.g., [23,
Sect. 1.2]. The 2-arrows �x;y are given in components by 2-arrows

�f WG.f / ı �x ) �y ı F.f /WF.x/! G.y/; for any f 2 C1.x; y/:

A lax-monoidal transformation of bicategories is called strong if the 2-arrows ¹�f º are
isomorphisms, and it is called strict if they are identity 2-arrows.

Definition 4.4. Let C;D be bicategories, F; GWC ! D lax-functors, �; � WF ) G lax
natural transformations. A modification �W�V � is given by a collection of 2-arrows ¹�xº
for x 2 C0:

Fx Gx+�x

�x

�x

(denoted as �W �V � ) which are subject to the following axiom: for any f Wx! y 2 C1,
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the diagram below commutes:

Gf ı �x Gf ı �x

�y ı Ff �y ı Ff

id ı �x

�f �f

�y ı id

Definition 4.5. For a symmetric monoidal category V, by V-enriched bicategory we mean
a modification of the previous definition, in whichC2.x;y/.f;g/2V (whileC0;C1.x;y/2
Sets), so that each category C.x; y/ is a V-enriched category, for any x; y 2 C0, and the
compositions mx;y;z are given by V-functors. Similarly, one defines V-lax functors, V-lax
natural transformations, and V-modifications. Namely, one adjusts axioms by requiring
that the 2-arrows �x ; �x;y;z ; �x ; �x;y ; �x are objects of V. The reader will find details
in [20].

A particular case we deal with in this paper is V D C
q
.k/, the category of complexes

over a field k. In this case, we call a V-enriched bicategory a dg bicategory.

4.1.1. Coherence for bicategories. We will need the coherence theorem for bicategories
[9, 23, 25].

Let C; D be two bicategories. They are said to be biequivalent if there are strong
functors F WC !D andGWD! C and strong natural transformations idC ! G ı F and
F ıG ! IdD (that is, we use only the underlying 1-category structure on the bicategory
ŒC; D�; the modifications are irrelevant for this definition). The coherence theorem for
bicategories is the following result.

Theorem 4.6. Every bicategory is biequivalent to a 2-category.

See, e.g., [23, Sect. 2.3] for a short proof, based on the Yoneda embedding.
In a 2-category, the associator and the identity maps are equal to identity. The fol-

lowing statement, which we primarily will use in the paper, is a direct consequence of
Theorem 4.6.

Corollary 4.7. Let C be a bicategory, x; y 2 C0, f; gWC1.x; y/. Let �; � W f ) g be two
natural transformations each of which is a composition of the associators and the unit
maps. Then, � D � .

A similar statement holds for enriched bicategories, in particular, for dg bicategories.

4.2. 2-bimodules over a bicategory

Let V be a symmetric monoidal category, C a V-enriched bicategory (see Definition 4.5).
A C -2-bimodule consists of the following data:

(i) a 2-globular set M whose second component M2 is V-enriched, and M�1 D
C�1,
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(ii) the upper and the lower vertical compositions:

Nı
v
�WM2.g; h/˝C2.f; g/!M2.f; h/; Nı

v
CWC2.g; h/˝M2.f; g/!M2.f; h/

where f; g; h 2 C1.x; y/,

(iii) the left and the right horizontal compositions

Nı
h
�WM2.g1; g2/˝ C2.f1; f2/!M2.g1f1; g2f2/;

Nı
h
CWC2.g1; g2/˝M2.f1; f2/!M2.g1f1; g2f2/;

where f1; f2 2 C1.x; y/, g1; g2 2 C1.y; z/,

which are subject to the following properties:

(1) the vertical compositions are strictly associative, in the sense that for f1; f2; f3; f4
2 C1.x; y/, the following three identities hold:

mNıv�. ı
v �/ D .mNıv� /Nı

v
��;

where m 2M2.f3; f4/, � 2 C2.f1; f2/,  2 C2.f2; f3/,

 NıvC.mNı
v
��/ D . Nı

v
Cm/Nı

v
��;

where  2 C2.f3; f4/, m 2M2.f2; f3/, � 2 C2.f1; f2/,

 NıvC.� Nı
v
Cm/ D . ı �/Nı

v
Cm;

where  2 C2.f3; f4/, � 2 C2.f2; f3/, m 2M2.f1; f2/,

(2) the horizontal compositions are associative up to the associator ˛ inC , in the sense
that for x; y; z;w 2 C0, f1; f2 2 C1.x; y/, g1; g2 2 C1.y; z/, h1; h2 2 C1.z;w/,
one has

˛h2;g2;f2 Nı
v
C

�
mNıh�. ı

h �/
�
D
�
.mNıh� /Nı

h
��
�
Nı
v
� f̨1;g1;h1 ; (4.1)

where � 2 C2.f1; f2/,  2 C2.g1; g2/, m 2M2.h1; h2/,

f̨2;g2;h2 Nı
v
C

�
 NıhC.mNı

h
��/

�
D
�
. NıhCm/Nı

h
��
�
Nı
v
� f̨1;g1;h1 ; (4.2)

where � 2 C2.f1; f2/, m 2M2.g1; g2/,  2 C2.h1; h2/,

f̨2;g2;h2 Nı
v
C

�
 NıhC.� Nı

h
Cm/

�
D
�
. ı �/NıC

h
m
�
Nı
v
� f̨1;g1;h1 ; (4.3)

where � 2 C2.g1; g2/,  2 C2.h1; h2/, m 2 C2.f1; f2/,

(3) the four Eckmann–Hilton identities (depending on the place among the four argu-
ments at which an element of M2 is, then there are elements of C2 on the three
others). One among these 4 identities reads:

.�3 Nı
v
Cm/Nı

h
�.�2 ı

v �1/ D .�3 ı
h �2/Nı

v
C.mNı

v
��1/;

where f1;f2;f32C1.x;y/, g1;g2;g32C1.y;z/, �12C2.f1;f2/, �22C2.f2;f3/,
�32C2.g1; g2/, m2M2.g2; g3/; the three other identities are similar and are left
to the reader,
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(4) let x; y 2 C0, f; g 2 C1.x; y/, m 2M2.f; g/; then,

�.g/NıvC
�
mNıh�id.x/

�
Nı
v
��.f /

�1
Dm; �.g/NıvC

�
id.y/NıhCm

�
Nı
v
��.f /

�1
Dm: (4.4)

The category of 2-bimodules over a bicategory C is denoted by Bimod2.C /.
As a trivial example, M D C satisfies the axioms; it is called the tautological 2-

bimodule over C .

4.3. Examples

4.3.1. The free 2-bimodule. There is a forgetful functor U from C -2-bimodules to 2-
globular sets whose second component is enriched over V. Assume for simplicity that VD
Vect.k/ or C

q
.k/. The functor U has a left adjoint L; the corresponding C -2-bimodule

L.M0/ is called the free C -2-bimodule generated by the V-enriched 2-globular set M0.
We set L.M0/�1 D C�1, let x; y 2 C0, and f; g 2 C1.x; y/. Define

M.f; g/ D
M

z0;z12C0
˛2C1.x;z0/; ˇ2C1.z1;y/

f0;g02C1.z0;z1/

C.ˇ ı g0 ı ˛; g/˝M0.f0; g0/˝ C.f; ˇ ı f0 ı ˛/=�

where the equivalence relation identifies the following elements, in notations of diagram
(4.6) below:�

�2 ı
v .�2 ı

h idg0 ı
h �1/

�
˝m˝ �1 � �2 ˝m˝

�
.�2 ı

h idf0 ı
h �1/ ı

v �1
�
; (4.5)

x z0 z1 y*�1 *m *�2

*�2

*�1

˛C

˛�

ˇC

ˇ�

g0

f0

g

f

(4.6)

One easily checks that indeed

HomBimod2

�
L.M0/; N / ' HomGlob2.M0; U.N /

�
:

4.3.2. The 2-bimoduleM.C;D/.F;G/.�; �/. Let C;D be k-linear bicategories,

F;GWC ! D

strong lax functors, �; � WF ) G two strong lax natural transformations.
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We associate with this data the following 2-C -bimodule M.C;D/.F;G/.�; �/:

M.C;D/.F;G/.�; �/.f; g/ D D
�
�.y/ ı F.f /;G.g/ ı �.x/

�
; (4.7)

where f; g 2 C.x; y/.

Lemma 4.8. In notations as above, M.C;D/.F;G/.�; �/ is a 2-bimodule over C .

Proof. Let m 2M.C;D/.F;G/.�; �/.f; g/.
For a 2-morphism ˛Wf 0) f , the vertical compositionmNıv�˛ is defined as the vertical

composition m ıv .�.y/ ı F.˛// in D. Similarly, for ˇWg) g0, the vertical composition
ˇ NıvCm is defined as the vertical composition .G.ˇ/ ı �.x// ıv m.

For f0; g0 2 C.w; x/; ˛ 2 C.f0; g0/, define the 2-morphism .m ıh� ˛/0 in D as the
horizontal composition inm ıh F.˛/ inD post-composed vertically with the 2-morphism
�.x/ ı F.g0/ ) G.g0/ ı �.x0/ (whiskered by G.g/). Define the horizontal compos-
ition mNıh�˛ D  ıv .m ıh� ˛/0 ı

v � where � is the vertical composition of 2-arrows
�.y/ ı F.f ı f0/

�
�! �.y/ ı .F.f / ı F.f0//

�
�! .�.y/ ı F.f // ı F.f0/, and  is the

composition G.g/ ı .G.g0/ ı �.w//
�
�! .G.g/ ıG.g0// ı �.w/

�
�! G.g ı g0/ ı �.w/.

For f1; g1 2 C.y; z/, ˇ 2 C.f1; g1/, define the 2-morphism .ˇ ıvC m/0 in D as the
horizontal composition mıhG.ˇ/ in D pre-composed vertically with the 2-morphism
�.z/ ı F.f1/ ) G.f1/ ı �.y/ (whiskered by F.f /). Define the horizontal composi-
tion ˇ NıvCm as  ıv .ˇ ıvC m/0 ı

v �, where � is the vertical composition of 2-arrows

�.z/ ı F.f1 ı f /
�
�! �.z/ ı .F.f1/ ı F.f //

�
�! .�.z/ ı F.f1// ı F.f /, and  is the ver-

tical compositionG.g1/ ı .G.g/ ı �.x//
�
�! .G.g1/ ıG.g// ı �.x/

�
�! G.g1 ı g/ ı �.x/.

F.w/

G.w/

F .x/

G.x/

F .y/

G.y/

*F.˛/

*m

*�.g0/

*'

* 

�.w/ �.x/ �.y/

F .f0/

F .g0/

G.g0/ G.g/

F .f /

F .f ı f0/

G.g ı g0/

One has to check the compatibilities with the associator (4.1)–(4.3) and the compatib-
ility with the unit (4.4). It is left to the reader.

Note that the particular caseC DD, F DGD Id, �D � D id recovers the tautological
2-bimodule over C (for which M2.x; y/ D C2.x; y/).
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4.4. The category y‚2

In analogy with the category ‚2, we define here its “bicategorical extension” y‚2, playing
an important role in definition of the complex A.C;D/.F;G/.�; �/ in the next section.

The objects of y‚2 are the same as the objects of ‚2, that is, the 2-level trees T . The
morphisms are defined in terms of 2-globular sets T �; namely,

y‚2.S; T / D HomBicat
�
y!2.S

�/; y!2.T
�/
�
;

where y!2.D/ denotes the free bicategory generated by the 2-globular set D, and the set
HomBicat.�;�/ stands for the set of strict functors of bicategories.

In sequel, we need somewhat a more explicit description of morphisms of y‚2.
First of all, we have the following explicit description of the bicategory y!2.T �/ (which

follows from the Coherence Theorem 4.6). The vertices are the 0-cells of T � which we
denote by ¹0; 1; : : : ; kº. Consider an ordered set S with n elements. We consider an exten-
ded set S.m/, adding some m marked new elements to the n elements of S , along with
a total order on S.m/ compatible with the total order on S . Define an extended paren-
thesising of S as a full parenthesising of S.m/, m � 0. The 1-morphism set .y!2/1.i; j /
is empty if i < j and is the set of extended parenthesisings of the ordered set of element-
ary 1-morphisms in the paths �.i; j / from i to j in .T �/1 (the marked elements indicate
the positions of identity 1-morphisms). The two such paths are considered different also
if they differ only by parenthesising or number and position of marked elements. The
composition of 1-morphisms is defined naturally.

The set of 2-morphisms y!2.�.i; j /; �0.i; j // consists of a single element if �0.i; j /
dominates �.i; j / (that is, in each column between i and j of T �, the element of �0.i; j /
in this column is � than the element of �.i; j / in this column, and the domination relation
does not depend on the new marked elements) and is an empty set otherwise. The vertical
and the horizontal compositions of 2-arrows are defined by the unique possible way.

It gives rise to the following wreath-product-like description of morphisms in y‚2.
A morphism ˆ from .Œk�I Œn1�; : : : ; Œnk �/ to .Œ`�I Œm1�; : : : ; Œm`�/ in y‚2 is given by

.�; ¹�iº/

(i) a morphism �W Œk�! Œ`� in �,

(ii) for each 1 � i � k maps �ji W Œni �! Œnj �, �.i � 1/C 1 � j � �.i/,

(iii) for each a 2 Œni � an extended parenthesising of the .�.i/ � �.i � 1//-element
set (considered as the set ¹�ji .a/ºj ) (for given i , the number of added marked
elements and the extended parenthesising may depend on a 2 Œni �).

The composition of morphism is defined naturally. The only new feature compared with
the case of ‚2 is that here we also compose parethesisings, in the operadic way.

We are interested in the explicit form of the left Kan extension Lanpop.F / of a functor
F W y‚

op
2 ! E along the functor

pop
W y‚

op
2 ! ‚

op
2 ;

where in our main examples E is an abelian category.
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Let �WD ! D0 be a map in ‚2; we are interested in a lift y�WD ! D0 in y‚2, so that
p.y�/ D �. It is clear that each map � admits a non-empty (in fact, a finite) set of lifts.
They depend on (multiple) insertions of the associator 2-arrows and the unit 2-arrows.

Lemma 4.9. Let F W y‚op
2 ! E be a functor to an abelian category E. Then, the left Kan

extension Lanpop.F / along the projection popW y‚
op
2 ! ‚

op
2 is given by

Lanpop.F /.D/ D F.D/=VD;

where VD � F.D/ is generated by the elements of the form y��.F /.�/� yy��.F /.�/, where

�WD ! D1 is a map in ‚2, and y�; yy� are its two lifts to a morphism in y‚2, � 2 F.D1/.

Proof. By the classical formula for a point-wise Kan extension, one has

Lanpop.F /.D/ D colimD1!D2pop=D F.D1/:

The colimit is taken over the comma-category whose objects are D1 2 y‚
op
2 and a map

p.D1/ D D1 ! D in ‚op
2 ; the morphisms �W .i1WD1 ! D/! .i2WD2 ! D/ are maps

y�WD1 ! D2 in y‚op
2 such that i1 D i2 ı pop.y�/. Replacing the opposite categories by the

non-opposite ones, the colimit is taken over the category ID whose objects are morphisms
i1WD!D1 in y‚2, and a morphism �W .i1WD!D1/! .i2WD!D2/ is given by a map
y�WD2 ! D1 in y‚2 such that i1 D p.y�/ ı i2.

Clearly, any object �WD ! D1 of ID admits a morphism to idWD ! D (one has to
take any lift y�WD! D1 of �). That is, idWD! D is a generalised final object: any other
object admits a (non-unique) morphism to it. It follows that the colimit is a quotient of
F.D/. One easily gets the description of the quotient given in the statement.

Now we want to get a more explicit description of the quotient in the statement of
Lemma 4.9. It turns out that we easily can restrict ourselves with some “minimal” maps
�WD ! D1 in ‚2. We call them “standard maps”. There are two types of them: the
associator morphism type and the unit morphism type.

The associator type maps. Let D D .Œk�I Œn1�; : : : ; Œnk �/,

D1 D
�
Œk C 2�I Œn1�; Œn2�; : : : ; Œna�; Œna�; Œna�; ŒnaC1�; : : : ; Œnk �

�
:

Consider the map
ˆ D

�
�; ¹�

j
i º
�
WD ! D1;

where �.0/D 0; : : : ; �.a�1/D a�1, �.a/DaC2; : : : ; �.k/DkC2, �ji D id for all i
and j (clearly one has a unique j for i ¤ a, and there are j D a; aC 1; aC 2 for i D a).
Consider a lift ŷ for which �a.`/ is either .`a`aC1/`aC2 or `a.`aC1`aC2/ (the choice
depends on ` 2 Œna�) (we denote by j̀ the element ` 2 Œnj �). One has to specify the image
of the two-morphisms. Clearly, the two-morphisms corresponding to 1-morphisms in Œni �
(considered as the interval category Ini ) are defined as the corresponding two-morphisms,
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for i ¤ a. When i D a, the prescription is as follows: the image of the 2-morphism cor-
responding to m` WD `! `C 1 in Œna� is8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

�
.m`/a ıh .m`/aC1

�
ıh .m`/aC2

if both �a.`/ and �a.`C 1/ are of type .��/�

.m`/a ıh
�
.m`/aC1 ıh .m`/aC2

�
if both �a.`/ and �a.`C 1/ are of type � .��/

˛ ıv
��
.m`/a ıh .m`/aC1

�
ıh .m`/aC2

�
if �a.`/ D .`a`aC1/`aC2; �a.`C 1/ D .`C 1/a

�
.`C 1/aC1.`C 1/aC2

���
.m`/a ıh .m`/aC1

�
ıh .m`/aC2

�
ıv ˛

�1

if �a.`/ D `a.`aC1`aC2/; �a.`C 1/ D
�
.`C 1/a.`C 1/aC1

�
.`C 1/aC2

(note that we use here non-conventional writing from the left to the right for the compos-
ition of 1-morphisms and for the horizontal composition of 2-morphisms).

We refer to such morphisms as Type A ones.

The unit type maps. Here,DD .Œk�I Œn1�; : : : ; Œnk �/,ˆD IdWD!D in‚2, but ŷ WD!D

in y‚2 is defined by insertion of several marked points to Œk� (corresponding to the identity
1-morphisms). Accordingly, each �ji is the identity modulo the market points, but with
their presence it is given by some parenthesising (of words only 1 element of which is not
marked). The images of elementary 2-morphisms are defined accordingly, pre- or post-
composing vertically with the unit 2-morphisms or their inverse ones.

We refer to such morphisms as Type U ones.

Proposition 4.10. In the notations of Lemma 4.9,

Lanpop.F /.D/ D F.D/=WD;

whereWD � F.D/ is generated by the elements of the form y��.F /.�/� yy��.F /.�/, where

�WD ! D1 is a map in ‚2 listed in Type A or in Type U, and y�; yy� are its two lifts to a
morphism in y‚2, listed in Type A or Type U, � 2 F.D1/.

Proof. It follows from Lemma 4.9 and (a rather evident) observation that any morphism

y�WD ! D1 factors as D
y 
�! D0 ! D1, where y is of Type A or of Type U.

5. The 2-cocellular vector space A.C;D/.F;G/.�; �/

5.1. The Davydov–Yetter complex and an attempt of generalisation

Let C; D be k-linear monoidal categories (that is, k-linear bicategories with a single
object), F WC ! D a strong monoidal functor. For n � 1, denote

F˝nWC˝n ! D
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defined on objects as

F˝n.X1; : : : ; Xn/ D F.X1/˝D F.X2/˝D � � � ˝D F.Xn/

(one has to fix any parenthesising of the right-hand side, for example, from the left to the
right).

Define

An.F / D Nat.F˝n; F˝n/

D

Y
X1;:::;Xn2C

D
�
F.X1/˝ � � � ˝ F.Xn/; F .X1/˝ � � � ˝ F.Xn/

�
Nat;

where Nat stands for (linear) natural transformations.
The assignment Œn� An.F / gives rise to a cosimplicial object. Its non-normalised

dg totalisation is called the Davydov–Yetter complex of F W C ! D. Let us recall this
definition, with notations for simplicial coface and codegeneracy maps from the begin-
ning of Section 2.1. Let ‰ 2 yAn.F /. The elementary coface maps @i W Œn � 1� ! Œn�,
1� i � n� 1, act by pluggingXi ˝XiC1 in place of the i -th argumentXi of‰, followed
by the application of the colax-map F.Xi ˝ XiC1/! F.Xi / ˝ F.XiC1/ and rearran-
ging the parentheses (note that by the MacLane coherence theorem one need not specify
the way by which the parentheses are rearranged, as any two such maps are equal). The
extreme coface map @0 acts by ‰ 7! idF.X0/ ˝‰.X1 ˝ � � � ˝Xk/, and the other extreme
coface map @k acts by ‰ 7! ‰ ˝ idF.Xk/, followed by the necessary reparenthesising.
The codegeneracy map "i acts on k-cochain ‰ by plugging the monoidal unit e to the
i -th position of ‰, thus decreasing the number of arguments by 1, followed by the neces-
sary rearrangements. The reader is referred to [14, Chap. 7] or [6] for a more detailed
description.

Now the question is: does the construction still give rise to a cosimplicial object in V

when the polynaturality condition of Davydov–Yetter is dropped? The answer is negative,
unless the monoidal category is strict (the associator and the unit maps are the identity
maps), because the relations in� are no longer respected. Denote the action of elementary
cosimplicial operators as above by O. Then, for instance, the actions of O.@iC1/ ı O.@i /

differ from O.@i / ı O.@i / only by the i -th argument, which is .Xi ˝ XiC1/˝ XiC2 for
the first composition, andXi ˝ .XiC1˝XiC2/ for the second one. These two expressions
are mapped one to another by the associator map ˛. Therefore, in order for the relation
@iC1@i D @i@i to be respected under the action O, one has to require the naturality with
respect to ˛ on the i -th argument. Similar considerations are applied to the unit map and
degeneracy operators.

It is clear from this reasoning that the naturality under all monoidal structure morph-
isms maps (that is, compositions of products, the associator, the unit maps, and its inverse,
with the identity maps on some factors) acting in each argument is the minimal naturality
condition one has to impose on the cochains to get a cosimplicial object in V.

A drawback of the Davydov–Yetter complex, from the point of view of the deforma-
tion theory, is that it controls only the deformation of the associator. The full deformation
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theory of a linear monoidal category should also control deformations of the underlying
linear category (which are controlled by the Hochschild cochain complex of this underly-
ing category) and the action of morphisms on the monoidal product (the monoidal product
on objects is non-linear data and thus is assumed to remain unchanged under the deform-
ation). So our goal is to define a “bigger” bicomplex of Davydov–Yetter type, whose
“vertical” differential is of the Hochschild type, and whose “horizontal” differential is
of Davydov–Yetter type. The classical Davydov–Yetter complex is obtained by a sort of
truncation. This truncation is the kernel of the vertical (Hochschild type) differential of the
0-th row of the bicomplex (so the truncated complex is a subcomplex of the 0-th row of our
bicomplex). Taking this kernel affects imposing the Davydov–Yetter naturality condition.

5.2. A functor BarW y‚2 ! Bimod2

Let C be small dg bicategory. In this subsection, we define a functor

Bar.C /W y‚op
2 ! Bimod2.C /

(playing the role of a bicategorical bar-complex), as follows.
Let T D .Œk�I Œn1�; : : : ; Œnk �/ be an object of ‚2. Let x0; y0 2 C0; f0; g0 2 C1.x0; y0/.

Define

.MT /2.f0; g0/ D
M

x0;:::;xk2C0; x0Dx; xkDy
fij2C1.xi�1;xi /; jD0���ni
fıminDf0; fımaxDg0

O
iD1���k
jD1���ni

C.fi;j�1; fi;j /; (5.1)

where

fımin WD fk0 ı
�
fk�1;0 ı

�
� � � .f20 ı f10/ � � �

��
;

fımax D fknk ı
�
fk�1;nk�1 ı

�
� � � .f2n2 ı f1n1/ � � �

��
:

(5.2)

It is considered the second component of the enriched 2-globular set MT such that
.MT /�1 D C�1.

Next, define a dg 2-bimodule Bar.C /T over C as

Bar.C /T D L.MT /; (5.3)

where LWGlob2 ! Bimod2 is the left adjoint functor to the forgetful functor, which was
discussed in Section 4.3.1.

Explicitly, for x; y 2 C0; f; g 2 C1.x; y/, one has

Bar.C /T .f; g/

D

M
˛2C1.x;x0/; ˇ2C1.y0;y/

C
�
f; ˇ ı .f0 ı˛/

�
˝k .MT /2.f0; g0/˝kC

�
ˇ ı .g0 ı˛/; g

�
=�;

where � is the relation in (4.5).
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Proposition 5.1. In the notations as above, the assignment T  Bar.C /T is an object
part of a functor

Bar.C /W y‚2 ! Bimod2.C /:

Remark 5.2. It will be clear from the proof that the assignment T  MT , Ob.y‚2/!
Glob2 cannot be extended to a functor y‚2 ! Glob2. So it becomes a functor only after
the application of L.�/.

Proof. If we considered an ordinary (set-enriched) bicategory C , we would use the fact
that the set of strict functors Homstr

Bicat.y!2.T
�/; C / is functorial with respect to strict bic-

ategory maps y‚2.S; T / D Homstr
Bicat.y!2.S

�/; y!2.T
�//. On the other hand, a strict functor

y!2.T /! C is the same as a map of 2-globular sets T � ! U.C/, where U.C/ denotes
the underlying 2-globular object. A map of 2-globular sets T � ! U.C/ is defined by its
values on the sets of i -cells, i D 0; 1; 2. The set of these maps is “very closed” to ourMT .
More precisely, the set of maps of 2-globular sets T � ! U.C/ is

M 0T D
a

x0;:::;xk2C0
fij2C1.xi�1;xi /; jD0���ni

Y
iD1���k
jD1���ni

C.fi;j�1; fi;j /

(with dropped condition fımin D f0, fımax D g0).

It follows from the discussion just above that the assignment T  M 0T gives rise to a
functor M 0.C /W y‚op

2 ! V.
Note that if a map p.ˆ/2‚2 is not dominant (that is, does not necessarily preserve all

minima and maxima), the projection along several factors is used to define an action ofˆ.
We are mostly interested in the case when the bicategory C is dg k-linear, and in this

case, the projections of V ˝W to V and to W are not defined. Moreover, it is not true
that, for a k-linear bicategory C ,

M 00T D
M

x0;:::;xk2C0
fij2C1.xi�1;xi /; jD0���ni

O
iD1���k
jD1���ni

C.fi;j�1; fi;j /

is Homstr
Bicat.k/.ky!2.T

�/; C /, where ky!2.T �/ denotes the free k-linear bicategory gener-
ated by T � made k-linear in dimension 2. Indeed, a homogeneous element of a complex
of vector space V is not the same as C

q
.k/.k; V /.

On the other hand, the same formulas with the direct product of sets replaced by the
tensor product of complexes of k-vector space define an action of y‚dom

2 onM 00, where the
upper script dom stands for the subcategory of morphisms ˆ such that p.ˆ/ is dominant.

Now instead of non-existing projections we use the “from inside” action in the free
2-bimodule case (it can be considered a 2-dimensional version of the two-sided bar-
construction). It gives an action of general (possibly non-dominant) morphisms. Also,
the parenthesising in (5.2) is fixed, so after an application of a morphism in y‚2, one may
get a wrong parenthesising in fımin and fımax. The same holds when extra identity 1-
morphisms are present after an application of a morphism in y‚2. In these cases, we have
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to reduce fımin and fımax to the standard parenthesising and without extra identity morph-
isms, by applying the associator and the unit 2-morphisms “from inside” on the (upper and
lower) 2-bimodule arguments. The reader easily checks that this description indeed gives
rise to a functor Bar.C /W y‚2 ! Bimod2.C /.

5.3. The 2-cocellular complex A.C;D/.F;G/.�; �/

Let C;D be dg bicategories, F;GWC ! D strong functors, �; � WF ) G strong natural
transformations. We associate with this data a complex A.C;D/.F;G/.�; �/ 2 C

q
.k/.

In Section 5.2, we associated with a dg bicategory C a functor

Bar.C /W y‚op
2 ! Bimod2.C /:

Let pW y‚2!‚2 be the projection which is the identity on objects. The left Kan extension
Lanpop.Bar.C // is a functor ‚op

2 ! Bimod.C /.
Define

A‚.C;D/.F;G/.�; �/T

D Bimod2.C /
��

Lanpop Bar.C /
�
T
;M.C;D/.F;G/.�; �/

�
2 C

q
.k/:

Here, the Hom is taken internally with respect to complexes of vector spaces, so it takes
values inC

q
.k/, and the 2-C-bimoduleM.C;D/.F;G/.�;�/was defined in Section 4.3.2.

For the final object T� D .Œ0�I¿/, we set

A‚.C;D/.F;G/.�; �/T� D
Y

X2Ob.C/

D2.�X ; �X /:

Finally, define

A.C;D/.F;G/.�; �/ D TotT2‚2 A
‚.C;D/.F;G/.�; �/T :

In Sections 5.5 and 5.6 below, we unwind this definition making it more explicit.
We consider this complex as “derived modifications” �V � (see Definition 4.4 for

the definition of a classical modification).

Remark 5.3. Likewise, for the dg 1-categories C;D, and two dg functors F;GWC !D,
the Hochschild complex

Hoch
q �
C;D

�
F.�/; G.D/

��
D Bimod.C /

�
Bar.C /;D

�
F.�/; G.D/

��
is interpreted as “derived natural transformations”F)G, in the sense that closed degree 0
0-cochains correspond to classical dg natural transformations. Here, Bar.C / is the clas-
sical bar-complex of the dg category C , taking values in C -bimodules.

More precisely, one has the following proposition.
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Proposition 5.4. Assume that C;D are dg bicategories, F; GWC ! D strong functors,
�;� WF)G strong dg transformations. Then, the vector spaceV�A‚.C;D/.F;G/.�;�/T�
of degree 0 closed elements in A.C;D/.F; G/.�; �/ is isomorphic to the vector space of
degree 0 modifications �V � .

Proof. A general element‰ ofA‚.C;D/.F;G/.�; �/T� belongs to
Q
X2C D.�X ; �X /. Its

boundary belongs to the arity T1D.Œ1�I Œ0�/. A general cochain inA‚.C;D/.F;G/.�;�/T1
is an element of Y

f WX!Y2C1

D2
�
�Y ı F.f /;G.f / ı �X

�
:

Let ‰ have the components ‰X 2 D2.�X ; �X /, X 2 C0. Then, d‰ has the components
.d‰/f , f 2 C1.X; Y /, which are

.d‰/f D ‰Y ı F.f / �G.f / ı‰X :

(The two summands come from the two morphisms T¿ ! T1 in ‚2 corresponding to
the two morphisms Œ0�! Œ1� in�; they areDmin andDmax in the notations of Section 2.6,
(F4).)

Then, .d‰/f D 0 for any f 2 C.X;Y / is precisely the condition for ‰ being a modi-
fication.

5.4. Some properties of the category of 2-bimodules

Lemma 5.5. Let C be a k-linear bicategory, k a field. The category Bimod2.C / of 2-
bimodules over C is abelian k-linear. The 2-bimodules L.M/ are projective, where L is
the left adjoint to the forgetful functor U WBimod2.C /! Glob2.k/; see Section 4.2.

Proof. Consider the truncation functor

�WGlob2.k/! Glob1;

where Glob2.k/ denotes the category of 2-globular objects enriched in Vect.k/ in degree 2
(so that the degree 0 and the degree 1 components are sets). It is clear that the comma-
category � n Y is an abelian k-linear category for any Y 2 Glob1. One can consider the
forgetful functor U as a functor U� WBimod2.C /! � n C�1.

Let f WM !N be a morphism of 2-bimodules over C . The kernel and the cokernel of
U�.f / have natural structures of C -2-bimodules. Then, the first statement follows from
the fact that the comma-category � n C�1 is abelian.

For the second statement, there is an adjunction

L� W � n C�1
���!
 ��� Bimod2.C /WU� ;

where the free 2-bimodule functor L� is the same as the functor L defined in Section 4.2.
The equality

Bimod2.C /
�
L.M/;N

�
D .� n C�1/

�
M;U�.N /

�
and the projectivity of M 2 � n C�1 proves the second statement.
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Remark 5.6. Consider B.C/ D RealT2‚2 Lanpop Bar.C /T , where Real stands for the
‚2-realisation. It is not true that B.C/ is a resolution of the tautological 2-bimodule C
over C . Consequently, Lemma 5.5 does not imply that

A.C;D/.F;G/.�; �/ D RHomBimod2.C/
�
C;M.C;D/.F;G/.�; �/

�
: (*)

As we show now, (*) cannot be true.
Indeed, consider the most limit case of a k-linear bicategory, namely, when it has a

single object and a single 1-morphism (the identity morphism id of this object). Such a cat-
egory is just a commutative algebra X D C2.id; id/ over k. Our results of Section 7 show
that H 3.A.C;C /.Id; Id/.id; id// computes infinitesimal deformations of X as a commut-
ative k-algebra. When X is singular, such cohomology may not vanish. On the other
hand, the category of 2-bimodules over such C is just the category of left X -modules. If
(*) was true, we would have that this cohomology is H 3.RHomMod.X/.X; X//, but the
latter cohomology vanishes for any X .

It would be interesting to compare, for such a 1-terminal bicategory C , the cohomo-
logy of A.C;C /.Id; Id/.id; id/ with the Andre–Quillen cohomology of X .

5.5. The complex A.C;D/.F;G/.�; �/: an explicit description

In this subsection, we provide a more direct description ofA.C;D/.F;G/.�; �/ and of the
differential on it, defined in Section 5.3, where C;D are k-linear bicategories, F;G strong
functors, �; � strong natural transformations. The reader easily checks that the description
given below agrees with the one given in Section 5.3.

We define A.C;D/.F;G/.�; �/T , for T D .Œk�I Œn1�; : : : ; Œnk �/, as a graded subspace
(subcomplex) of yA.C;D/.F;G/.�; �/T ; the latter is defined as follows.

For x; y 2 C0, f; g 2 C1.x; y/, n � 0, denote

C nx;y.f; g/ D
M

f0;:::;fn2C1.x;y/
f0Df;fnDg

C1.fn�1; fn/˝k C1.fn�2; fn�1/˝k � � � ˝k C1.f0; f1/

(when n D 0, we must have f D g). We use the notation � for an element in C nx;y.f; g/,
and then �.i/ D fi . Also, we use the notation �.�1; : : : ; �n/ for such an element, where
�i 2 C2.fi�1; fi /.

We will need one more notation. Let x; y; z; w 2 C0, fi 2 C1.x; y/, f 0i 2 C1.y; z/,
f 00i 2 C1.z;w/, �i 2 C2.fi�1; fi /, �

0
i 2 C1.f

0
i�1; f

0
i /, �

00
i 2 C1.f

00
i�1; f

00
i /. Denote †�i D

� 00i ı
h .� 0i ı

h �i /, †Ci D .�
00
i ı

h � 0i / ı
h �i . Then, we denote by � .3/.†1; : : : ; †k/ the cor-

responding element in C kx;w , where each †i is either †Ci or †�i . In particular, we may
consider � .3/.†�1 ; : : : ; ˛ ı

h †�i ; †
C

iC1; : : : ; †
C

k
/ where ˛ is the associator.

Then, for T D .Œk�I Œn1�; : : : ; Œnk �/, one has

yA.C;D/.F;G/.�; �/T

D

Y
x0;:::;xk2C0

fi ;gi2C1.xi�1;xi /

Homk

�
C n1x0;x1.f1; g1/˝k � � � ˝k C

nk
xk�1;xk

.fk ; gk/;

D.�xk ı f
F

tot ; g
G
tot ı �x0/

�
;
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where

f Ftot D F.fk/ ı
�
F.fk�1/ ı

�
� � �
�
F.f2/ ı F.f1/

�
� � �
��
;

gGtot D G.gk/ ı
�
G.gk�1/ ı

�
� � �
�
G.g2/ ıG.g1/

�
: : :
��
:

For T D .Œ0�I¿/, we set

yA.C;D/.F;G/.Œ0�I¿/ D
Y
x2C0

D2.�x ; �x/:

Now, A.C;D/.F;G/.�; �/T is a subcomplex of yA.C;D/.F;G/.�; �/T formed by the
cochains ‰ 2 yA.C;D/.F;G/.�; �/ depicted by the following conditions.

The conditions are divided into two groups: the associator and the unit map conditions.
They are direct consequences of Proposition 4.10.

The associator conditions read:

‰
�
�1˝ � � � ˝�j�1˝�

.3/
j .†�1 ; : : : ; ˛ ı

v †�i ; †
C

iC1; : : : ; †
C
nj
/˝�jC1˝ � � � ˝�k

�
D ‰

�
�1 ˝ � � � ˝ �j�1 ˝ �

.3/
j .†�1 ; : : : ; †

�
i ; †

C

iC1 ı
v ˛;†CiC2; : : : ; †

C
nj
/

˝ �jC1 ˝ � � � ˝ �k
�
; 1 � j � k; 1 � i � nj � 1;

‰
�
�1˝ � � � ˝�j�1˝�

.3/
j .†C1 ; : : : ; ˛

�1
ı
v †Ci ; †

�
iC1; : : : ; †

�
k /˝�jC1˝ � � � ˝�k

�
D ‰

�
�1 ˝ � � � ˝ �j�1 ˝ �

.3/
j .†C1 ; : : : ; †

C

i ; †
�
iC1 ı

v ˛�1; †�iC2; : : : ; †
�
k /

˝ �jC1 ˝ � � � ˝ �k
�
; 1 � j � k; 1 � i � nj � 1;

‰
�
�1 ˝ � � � ˝ �

.3/
j .†C1 ı

v ˛;†C2 ; : : : ; †
C
nj
/˝ � � � ˝ �k

�
D ‰

�
�1 ˝ � � � ˝ �

.3/
j .†C1 ; : : : ; †

C
nj
/˝ � � � ˝ �k

�
ı
v
z̨j ; 1 � j � k;

‰
�
�1 ˝ � � � ˝ �

.3/
j .†�1 ; : : : ; †

�
nj�1

; ˛ ıv †�nj /˝ � � � ˝ �k
�

D z̨j ı
v ‰

�
�1 ˝ � � � ˝ �

.3/
j .†�1 ; : : : ; †

�
nj
/˝ � � � ˝ �k

�
; 1 � j � k;

‰
�
�1 ˝ � � � ˝ �

.3/
j .†�1 ı

v ˛�1; †�2 ; : : : ; †
�
nj
/˝ � � � ˝ �k

�
D ‰

�
�1˝ � � � ˝�

.3/
j .†�1 ; †

�
2 ; : : : ; †

�
nj
/˝ � � � ˝�k

�
ı
v
z̨
�1
j ; 1�j �k;

‰
�
�1 ˝ � � � ˝ �

.3/
j .†C1 ; : : : ; ˛

�1
ı
v †Cnj /˝ � � � ˝ �k

�
D z̨

�1
j ı

v ‰
�
�1 ˝ � � � ˝ �

.3/
j .†C1 ; : : : ; †

C
nj
/˝ � � � ˝ �k

�
; 1 � j � k;

(5.4)

where ˛ is the associator 2-morphism, and z̨j (resp., z̨�1j ) stand for the whiskering of ˛
(resp., of ˛�1) acting on j -th output with suitable identity 2-morphisms.

When nj D 0 for some j , the list above for this j gives (and is reduced to) the follow-
ing equations:

z̨j ı
v ‰

�
�1 ˝ � � � ˝ �

.3/.idf 00ı.f 0ıf //˝ � � � ˝ �k
�

D ‰
�
�1 ˝ � � � ˝ �

.3/.id.f 00ıf 0/ıf /˝ � � � ˝ �k
�
ı
v
z̨j ;
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z̨
�1
j ı

v ‰
�
�1 ˝ � � � ˝ �

.3/
j .id.f 00ıf 0/ıf /˝ � � � ˝ �k

�
D ‰

�
�1 ˝ � � � ˝ �

.3/
j .idf 00ı.f 0ıf //˝ � � � ˝ �k

�
ı
v
z̨
�1
j (5.5)

(compare with the discussion in Section 5.1).
The unit map conditions read:

‰
�
�1 ˝ � � � ˝ �j .�1; : : : ; �

�1
ı
v �i ; id ıh �iC1; : : : ; id ıh �nj /˝ � � � ˝ �k

�
D ‰

�
�1 ˝ � � � ˝ �j

�
�1; : : : ; �i ; .id ıh �iC1/ ıv ��1; id ı �iC1; : : : ; id ı �nj

�
˝ � � � ˝ �k

�
; 1 � j � k

‰
�
�1 ˝ � � � ˝ �j .id ıh �1; : : : ; id ıh �i�1; �i ıv �; �iC1; : : : ; �nj /

�
D ‰

�
�1 ˝ � � � ˝ �j

�
id ıh �1; : : : ; � ıv .id ıh �i�1/; �i ; : : : ; �nj

�
˝ �jC1 ˝ � � � ˝ �k

�
; 1 � j � k

‰
�
�1 ˝ � � � ˝ �j .�1 ı

v �; �2; : : : ; �nj /˝ � � � ˝ �k
�

D ‰.�1 ˝ � � � ˝ �j .�1; : : : ; �nj /˝ �jC1 ˝ � � � ˝ �k/ ı
v z�j ; 1 � j � k

‰
�
�1 ˝ � � � ˝ �j

�
.id ıh �1/ ıv ��1; id ıh �2; : : : ; id ıh �nj

�
˝ � � � ˝ �k

�
D ‰

�
�1˝ � � � ˝�j .id ıh �1; : : : ; id ıh �nj /˝�jC1˝ � � � ˝�k

�
ı
v z��1j ; 1�j �k

‰
�
�1 ˝ � � � ˝ �j

�
id ıh �1; : : : ; id ıh �nj�1; � ı

v .id ıh �nj /˝ � � � ˝ �k
��

D z�j ı
v ‰

�
�1˝ � � � ˝�j .id ıh �1; : : : ; id ıh �nj /˝�jC1˝ � � � ˝�k

�
; 1�j �k

‰
�
�1 ˝ � � � ˝ �j .�1; : : : ; �nj�1; �

�1
ı
v �nj /˝ � � � ˝ �k

�
D z��1j ı

v ‰
�
�1 ˝ � � � ˝ �j .�1; : : : ; �nj /˝ � � � ˝ �k

�
; 1 � j � k;

(5.6)

where �f W id ıh f ! f is the left unit map, and z�j (resp., z��1j ) stands for whiskering of
� acting on the j -th factor of the output with the suitable identity maps.

As well, one has similar relations for the right unit map �, which we do not write down
here.

The next point is to extend the assignment

T  A.C;D/.F;G/.�; �/

to a functor
A.C;D/.F;G/.�; �/W‚2 ! C

q
.k/:

Once again, the existence of such functor follows from the construction given in Sec-
tion 5.3, and our task here is to provide explicit formulas for the action of morphisms
of ‚2.

We restrict ourselves to the case when C and D are strict 2-categories, F; G strict
functors, and �;� strict natural transformations. The reason is that even this case shows the
nature of the aforementioned action, but essentially simplifies the formulas. The formulas
for the ‚2-action in the general case differ by numerous conjunctions with the structure
2-isomorphisms.
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5.6. An explicit description of the complex A.C;D/.F;G/.�; �/, II

5.6.1. Let C be a dg bicategory, x; y 2 C0, and let �W Œm�! Œn� be a morphism in �. We
associate with � a map of complexes

Cx;y.�/WC
n
x;y.f0; fn/!C2.f�.m/; fn/

AL.�/

˝kC
m
x;y.f�.0/; f�.m//

M.�/

˝kC2.f0; f�.0//
AR.�/

(5.7)

as follows.
We use the notation �n˝� � �˝�1 for an element inC nx;y.f0;fn/, where �i2C2.fi�1;fi/

(a general element in C nx;y.f0; fn/ is a linear combination of such elements).
The two “extreme” factors AL.�/ and AR.�/ are defined as the compositions

AL.�/ D �n ı
v
� � � ı

v ��.m/C1; AR.�/ D ��.0/ ı
v
� � � ı

v �1

(AL.�/ is by definition equal to id.fn/ if �.m/ D n, and AR.�/ is id.f0/ if �.0/ D 0).
The middle factor

M.�/.��.m/ ˝ � � � ��.0/C1/ D !m ˝ � � � ˝ !1 2 C
m
x;y.f�.0/; f�.m//

is defined by

!a D !a.�/ D

´
�c�1 ı

v � � � ıv �b Wfb ! fc if �.a � 1/ D b; �.a/ D c; c > b;

id.fb/ if �.a � 1/ D �.a/ D b:

It completes the definition of Cx;y.�/.

Remark 5.7. The reader certainly realises that this construction just mimics the classical
nerve construction in a non-cartesian monoidal (k-linear) case. In the classical case of
enrichment in Sets, one just projects along the two extreme factors AL.�/ and AR.�/.
Our “bimodule” version is a way to phrase out the same construction in the situation
when the projections (with respect to the monoidal product) do not exist.

5.6.2. Let C be as above, and let x0; : : : ; xk 2 C0. Assume we are given maps in �
�1W Œm�! Œn1�; : : : ; �k W Œm�! Œnk �. For fi0; : : : ; fini 2 C1.xi�1; xi /, 1 � i � k, define

fmin D f˝0 D fk0 ı fk�1;0 ı � � � ı f10; fmax D f˝n D fknk ı � � � ı f1n1

and, for 0 � s � m,
f˝�.s/ D fk�k.s/ ı � � � ı f1�1.s/:

We define a map generalising the map defined above when we had k D 1:

Cx0;:::;xk .�1; : : : ; �k/WC
n1
x0;x1

.f10; f1n1/˝k � � � ˝k C
nk
xk�1;xk

.fk0; fknk /

! C2.f˝�.m/; f˝n/
AL.�1;:::;�k/

˝k C
m
x0;xk

.f˝�.0/; f˝�.m//
B.�1;:::;�k/

˝k C2.f˝0; f˝�.0//
AR.�1;:::;�k/

; (5.8)



The category ‚2, derived modifications, and deformation theory of monoidal categories 193

where

AL.�1; : : : ; �k/ D AL.�k/ ı
h AL.�k�1/ ı

h
� � � ı

h AL.�1/ 2 C2.f˝�.m/; f˝n/;

AR.�1; : : : ; �k/ D AR.�k/ ı
h
� � � ı

h AR.�1/ 2 C2.f˝0; f˝�.0//;

B.�1; : : : ; �k/ D �1 ˝k � � � ˝k �m 2 C2.f˝�.0/; f˝�.m//;

(5.9)

where

�i D !i .�k/ ı
h !i .�k�1/ ı

h
� � � ı

h !i .�1/ 2 C2.f˝�.i�1/; f˝�.i//:

5.6.3. Let TD.Œk�I Œm1�; : : : ; Œmk �/, SD.Œ`�I Œn1�; : : : ; Œn`�/, and letˆD.�I¹�i;`º/WT!S ,
a morphism in ‚2. Here, we construct a map of complexes

ˆ�WA.C;D/.F;G/.�; �/T ! A.C;D/.F;G/.�; �/S :

Let‰2A.C;D/.F;G/.�;�/T , and let x0; : : : ;x`2C0, ¹fij 2C1.xi�1;xi /ºiD1���`; jD0���ni ,
and ®

�ij 2 C2.fi;j�1; fi;j /
¯
iD1���`; jD1���ni

a datum “of shape S”.
We have to define

ˆ�.‰/
�
¹�ij º

�
2 D2

�
�x` ı F.f`0/ ı � � � ı F.f10/; G.f`n`/ ı � � � ıG.f1n1/ ı �x0

�
:

Let min D �.0/, max D �.k/.
For each 0�i�k�1, one gets a sequence of maps ¹�i;j W Œmi �!Œnj �º�.i�1/C1�j��.i/.

Assume �.i � 1/ < �.i/, and then the construction of Section 5.6.2 ((5.8) and (5.9)) gives
a map

C
n�.i�1/C1
x�.i�1/;x�.i�1/C1.f�.i�1/C1;0;f�.i�1/C1;n�.i�1/C1/˝k � � �˝kC

n�.i/
x�.i/�1;x�.i/.f�.i/;0;f�.i/;n�.i//

!C2.f˝�i .mi /; f˝i;max/
AiL

˝kC
mi
x�.i�1/;x�.i/

.f˝�i .0/; f˝�i .mi //

B i

˝kC2.f˝i;0; f˝�i .0//
AiR

;

where
f˝�i .s/ D f�.i/;��.i/i .s/

ı � � � ı f
�.i�1/C1;�

�.i�1/C1
i .s/

;

where 0 � s � mi , and

f˝i;0 D f�.i/;0 ı f�.i/�1;0 ı � � � ı f�.i�1/C1;0

f˝i;max D f�.i/;n�.i/ ı f�.i/�1;n�.i/�1 ı � � � ı f�.i�1/C1;n�.i�1/C1 :

For the case when �.i � 1/ D �.i/, we set

AiL D id 2 C2.idx�.i/ ; idx�.i//;

AiR D id 2 C2.idx�.i/ ; idx�.i//;

B i D idx�.i/
id
�! idx�.i/

id
�! � � �

id
�! idx�.i/ ;

where B i is the chain with mi arrows.
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Define

G.A˝L / D G.A
k
L/ ı

h G.Ak�1L / ıh � � � ıh G.A11/;

F .A˝R/ D F.A
k
R/ ı

h F.Ak�1R / ıh � � � ıh F.A1R/:

For a string

fj0
�j1
��! fj1

�j2
��! fj2 � � �

�jnj
���! fjnj

(fjs 2 C1.xj�1; xj / for 0 � s � nj ), denote

�j;tot D �jnj ı
v
� � � ı

v �j0:

Let min D �.0/;max D �.k/, and denote

�˝min D �min;tot ı
h �min�1;tot ı

h
� � � ı

h �1;tot ı
h �0;tot

�˝.maxC1/ D �`;tot ı
h �`�1;tot ı

h
� � � ı

h �maxC1;tot:

Finally, we have

ˆ�.‰/ D G.�˝.maxC1// ı
h
��
G.A˝L /

�
ı
v ‰.B1 ˝k � � � ˝k B

k/ ıv
�
F.A˝R/

��
ı
h F.�˝min/: (5.10)

Formula (5.10) is an explicit expression for the definition of A.C;D/.F;G/.�; �/, in
particular when C;D;F;G;�; � are strict. The general case differs by numerous insertions
of structure 2-isomorphisms, which makes them more complicated and tedious, but can
be written down in a similar way.

Note that it follows from the discussion in Sections 4.4, 5.2, and 5.3 that the prescrip-
tion (5.10) gives rise to a functor ‚2 ! C

q
.k/.

5.7. An example: a shuffle permutation

Consider in more detail the action of an inner face map Dj;� (F2) (see Section 2.6) on
A.C;D/.F;G/.�; �/, corresponding to an .mj ; mjC1/-shuffle permutation � .

Let t 2 †
j̀

be an .mj ; mjC1/-shuffle, j̀ D mj C mjC1. Let p�W Œ j̀ � ! Œmj � and
q�W Œ j̀ � ! ŒmjC1� be the two maps Joyal dual to the natural embeddings Œmj � 1� !
Œ j̀ � 1� and ŒmjC1 � 1�! Œ j̀ � 1� (see Section 2.6, (F2)). Let

T D
�
Œn�I Œ`1�; : : : ; Œ`n�

�
; SD

�
ŒnC 1�I Œ`1�; : : : ; Œ j̀�1�; Œmj �; ŒmjC1�; Œ j̀C1�; : : : ; Œ`nC1�

�
:

Consider the morphism ˆ D Dj;t WT ! S in ‚2, corresponding to the shuffle t .
Then, the morphism Dj;t acts on A.C;D/.F;G/.�; �/ as follows.
Use the notation f

s
for a chain of 2-morphisms ¹�si Wfs;i�1 ! fsiº in C :

fs0
�s1
��! fs2

�s2
��! � � �

�s;ms
���! fs;ms :



The category ‚2, derived modifications, and deformation theory of monoidal categories 195

For a cochain ‰ 2 A.C;D/.F;G/.�; �/T , one has�
Dj;t�.‰/

�
.f
1
; : : : ; f

nC1
/ D ‰T .f1

; : : : ; f
j�1

; g
j
; f
jC2

; : : : ; f
nC1

/;

where g
j

is the chain

fjC1;0 ı fj0
!1
�! � � �

!mjCmjC1
�������! fjC1;mjC1 ı fj;mj

and

!i D

´
id ıh �ja if t�1.i/ D a; 0 � a � mj

�jC1;b ı
h id if t�1.i/ D b; mj C 1 � b � mj CmjC1:

5.8. Normalised vs non-normalised chain complexes of a 2-cellular object in C
q
.k/

In the proof of Theorem 7.3, we use that the‚2-cochain complex of A.C;D/.F;G/.�; �/
is quasi-isomorphic to its normalised subcomplex

A.C;D/.F;G/.�; �/norm.C;D/.F;G/.�; �/:

The latter is, by definition, the sub-complex which consists of all cochains ‰ which are
equal to 0 if some of its 2-morphism arguments �i;j are the identity morphism of a 1-
morphism.

In Proposition 5.9, we prove that the complexes

A.C;D/.F;G/.�; �/ and Anorm.C;D/.F;G/.�; �/

are quasi-isomorphic. Theorem 7.3 is a statement about cohomology. Therefore, due to
Proposition 5.9, one can assume in its proof that we work with the normalised complex.

Recall that for a simplicial object in an abelian category A, its normalised Moore
complex N.X/ is defined as the quotient-complex of the ordinary Moore complex C.X/
by the subcomplex DC.X/ spanned by elements of the form siy (here, si stands for the
simplicial version of the degeneracy morphisms "i 2 �; see Section 2.1).

Recall the following classical result, in a slightly more general version.

Proposition 5.8. Let X W�op ! C
q
.k/ be a simplicial object in C

q
.k/. Then, the total

sum complex Tot˚.C.X// of the Moore complex of X is quasi-isomorphic to the total
sum complex Tot˚.N.X// of the normalised Moore complex.

Proof. The proof given in [26, Sect. VIII. 6] can be easily adopted to this case. Indeed,
MacLane constructs a map gW C.Y /=DC.Y / ! C.Y /, for Y a simplicial object in an
abelian category, such that g is a “quasi-inverse” to the natural projection � W C.Y / !
C.Y /=DC.Y / in the sense that � ı g D id, and g ı � is chain homotopic to the identity.
The chain homotopy constructed in loc. cit. clearly commutes with “inner” differentials on
Xi s. Consequently, if one defines � 0WTot˚.C.X//!Tot˚.N.X// and g0WTot˚.N.X//!
Tot˚.C.X//, one still has � 0g0 D id and g0� 0 chain homotopic to the identity.
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The next step is to generalise Proposition 5.8 to the case of 2-cellular objects in C
q
.k/,

that is, to the case of functors X W‚op
2 ! C

q
.k/.

For Y W‚op
2 ! Vect.k/, its chain complex is defined as the complex C.Y /, with

C�`.Y / D ˚T;dimTD`YT

with the differential dual to (3.2), and its normalised complex is defined as the quotient-
complex of C.Y / by the subcomplex DC.Y / generated by the elements "jp.y/ of type
(D1) (see Section 2.6), y 2 YD:

N.Y / D C.Y /=DC.Y /:

That is, we use only “vertical” degeneracy morphisms of type (D1), not “horizontal”
degeneracy morphisms of type (D2), in the definition of DC.Y /.

For the case of a functorX W‚op
2 ! C

q
.k/ as above, C.X/;DC.X/;N.X/ are defined

as Tot˚.C.X//;Tot˚.DC.X//;Tot˚.N.X//, correspondingly.

Proposition 5.9. Let X W‚op
2 ! C

q
.k/ be a 2-cellular complex. Then, the natural projec-

tion � WTot˚.C.X//! Tot˚.N.X// is a quasi-isomorphism of complexes.

Proof. One can not follow directly the same line as in the proof of [26, Chap. VIII,
Thm. 6.1], for the following reason. The subspaces DiC.X/, i � 0 (or rather their dir-
ect analogues) are not subcomplexes of C.X/ because the components Dj;� of type (F2)
(see Section 2.6) in the differential (3.2) may increase i . Indeed, these components act as
“deshuffling” of two neighbour columns, resulting in a column of a greater length, so this
operation may send "ipy to "i

0

q .y
0/ with i 0 > i (here, q D p or p � 1).

To overcome this obstacle, we employ the following spectral sequence argument.
Denote by FN � C.X/ the subspace spanned by XT , T D .Œn�I Œ`1�; : : : ; Œ`n�/ with

n � N . Then, FN is a subcomplex: the boundary operators of type (F1) and (F3) pre-
serve n, and the boundary operators of types (F2) and (F4) decrease n by 1; see Section 2.6.

We get an exhausting ascending filtration of C.X/ by subcomplexes:

F0 � F1 � F2 � � � � :

A similar filtration exists forN.X/ as well; denote the corresponding subspaces byF 0N .
The natural projection � WC.X/! N.X/ sends FN to F 0N ; hence, � induces a map of the
corresponding spectral sequences. Denote these spectral sequences by ¹Epqn º and ¹E 0pqn º,
so that � induces a map ��W .E

pq
n ; dn/! .E

0pq
n ; d 0n/.

The spectral sequences at the term E0 (resp., E 00) are non-zero at the lower half plane
y � 0, and the differential d0 is horizontal. So the spectral sequences converge by dimen-
sional reasons.

Lemma 5.10. The map ��W .E
q;`
0 ; d0/ ! .E

0
q;`
0 ; d 00/ is a quasi-isomorphism, for any

` � 0. In particular, �� defines an isomorphism ��WE
pq
1 ! E

0pq
1 , for all p; q.

Proof. For any fixed `, the complex .E
q;`
0 ; d0/ is C .`/.X/, whose degree �n component

is equal to the direct sum˚TXT over T D .Œ`�I Œn1�; : : : ; Œn`�/ with dimT D n, and with



The category ‚2, derived modifications, and deformation theory of monoidal categories 197

the differential components given only by (F1) and (F3) types; see Section 2.6. That is,
the contribution of types (F2) and (F4) components in (3.2) becomes 0 in the associated
graded complex C .`/.X/ D F`=F`�1. The complex .E 0

q;`
0 ; d 00/ has a similar description.

It makes it possible for us to employ the construction of the proof of [26, Chap. VIII,
Thm. 6.1]. Namely, we define subcomplexes DiC .`/.X/, for any i � 0, such that

DiC1C
.`/.X/ � DiC

.`/.X/ and DC .`/.X/ D
[
i�0

DiC
.`/.X/:

As in loc. cit., we construct a map hi WC .`/.X/ ! C .`/.X/ chain homotopic to id and
mapping Di to Di�1. The composition of these maps is well defined, is chain homotopic
to id, and sendsDC .`/.X/ to 0. It gives a map gWN .`/.X/! C .`/.X/ such that ��g D id
and g�� is chain homotopic to id, which completes the proof.

It follows from this lemma that �� defines an isomorphism at E1 sheet; hence, � is a
quasi-isomorphism.

We can prove the following theorem.

Theorem 5.11. The natural embedding

i WAnorm.C;D/.F;G/.�; �/! A.C;D/.F;G/.�; �/

is a quasi-isomorphism of complexes.

Proof. One can apply the arguments “dual” to the ones provided above, for the case of a
2-cocellular complex. Define ˆp � A.C;D/.F;G/.�; �/D A as the subcomplex formed
by cochains which vanish on Fp defined above. Then, ¹ˆpº form a descending filtration
of A. This filtration is complete in the sense that

A D lim
 
A=ˆpA:

The term E0 lives in x � 0 half of the plane; thus, it is bounded below. It follows from the
complete convergence theorem [38, Thm. 5.5.10] (in its version when d has degree C1)
that the sequence converges. A similar convergent spectral sequence exists on Anorm,
given by the filtration ˆp

0

Anorm D .ˆ
pA/ \ Anorm. The argument given in the 2-cellular

case gives a quasi-isomorphism of complexes ˆp
0

Anorm=ˆ
.pC1/0Anorm ! ˆpA=ˆpC1A

induced by i . Then, the result follows from the complete comparison theorem [38,
Thm. 5.5.11].

6. The p-relative totalisation Rp�.A.C;D/.F;G/.�; �// and higher
structures via Davydov–Batanin

We know from Propositions 3.5 and 3.7 that the relative totalisation of the cosimplicial
vector space Rp�.A.C;D/.F;G/.�; �// is a cosimplicial vector space, and its �-Moore
complex is equal to the (absolute) ‚2-totalisation such that its non-normalised Moore
complex is isomorphic to the (absolute) ‚2-totalisation of A.C;D/.F;G/.�; �/.
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In this section, we apply some results of [6] for studying the higher structures on the
complexes C

q
.C;D/.F;G/.�; �/. We show that .Rp�/.X/ enjoys, for the case

X D A.C;D/.F; F /.id; id/;

the property of being a 1-commutative cosimplicial monoid, in the sense of [6]. Con-
sequently, C

q
.C; D/.F; F /.id; id/ is a homotopy 2-algebra, for any k-linear strict 2-

functor F WC ! D.
At the same time, for the case

X D A.C;C /.Id; Id/.id; id/;

the cosimplicial monoid .Rp�/.X/ is not 2-commutative (unlike the case of the Davydov–
Yetter complex). At the moment, we do not know the correct homotopy refinement of 2-
commutativity, which would imply that C

q
.C;D/.Id; Id/.id; id/ is a homotopy 3-algebra.

6.1. The totalisation Tot‚2
A.C;D/.F;F /.id; id/ is a homotopy 2-algebra

Recall a cosimplicial monoid X (in a symmetric monoidal category C) is a cosimplicial
object in the category of monoids Mon.C/. The question raised in [6] is the following:

Which condition on X implies that the totalisation Tot.X/ admits an action of an
operad (homotopy equivalent to) En?

It follows immediately that the condition that X is a cosimplicial monoid implies that
X

q
is a monoid with respect to the Batanin �-product [4]. Thus, it follows from loc. cit.

that for a cosimplicial monoid X
q
, the totalisation Tot.X/ is an A1 monoid, that is, a

E1-algebra.
In [6, Sect. 2.2], the following definition is given.

Definition 6.1. Let � W Œp�! Œm� and � W Œq�! Œm� be two maps in�. A shuffling of length
n of �; � is a decomposition of the images of � and � into disjoint union of connected
intervals

Im.�/ D A1 [ A2 [ � � � [ As; A1 < A2 < � � � < As

Im.�/ D B1 [ B2 [ � � � [ Bt ; B1 < B2 < � � � < Bt

s C t D nC 1

which satisfy either
A1 � B1 � A2 � B2 � � � �

or
B1 � A1 � B2 � A2 � � � �

(that is, the rightmost end-point of Ai may coincide with the leftmost end-point of the
sequel B).

The linking number lk.�; �/ is defined as the minimal possible shuffling of �; � has
length n.

See [6, Sect. 2.2], for examples.



The category ‚2, derived modifications, and deformation theory of monoidal categories 199

Definition 6.2. Let X be a cosimplicial monoid, n � 0. X is called n-commutative if for
any � W Œp�! Œm�, � W Œq�! Œm� in � with lk.�; �/ � n, the diagram below commutes:

X.p/˝X.q/
X.�/˝X.�/

//

��

X.m/˝X.m/

�

��

X.q/˝X.p/
X.�/˝X.�/

// X.m/˝X.m/
�

// X.m/:

The following result is proven in [6, Thm. 2.45, Cor. 2.46].

Theorem 6.3. Let X be an n-commutative cosimplicial monoid in C.k/. Then, there is
an action of the operad homotopy equivalent to C q.EnC1;k/ on the totalisation Tot.X/ 2
C.k/.

In [6], some explicit formulas for the degree �n Lie bracket are provided; see [6,
Sects. 2.9 and 2.10].

We easily prove the following proposition.

Proposition 6.4. LetC;D be k-linear bicategories,F WC!D a strong bicategorical func-
tor. Then, the cosimplicial vector space Rp�.A.C;D/.F; F /.id; id// is a 1-commutative
cosimplicial monoid.

Proof. Let �m;nW Œn�! ŒmC n� and �m;nW Œm�! ŒmC n� be defined as �m;n.i/ D i and
�m;n.j / D nC j . It is clear that lk.�m;n; �m;n/ D 1. Moreover, the general case of the
linking number 1 is reduced to this particular case, due to the following simple observation
[6, Lem. 2.1].

Let � W Œp�! Œm�; � W Œq�! Œm� be morphisms in � and

Œp�! Œp0�
� 0

�! Œm�; Œq�! Œq0�
� 0

�! Œm�

their epi-mono factorisations. Then, lk.�; �/ D lk.� 0; � 0/.
We check the 1-commutativity ofRp�.A.F;F //. We firstly assume thatC is strict and

F is strict. Letˆ 2 Rp�.A.C;D/.F;F /.id; id//n,‰ 2 Rp�.A.C;D/.F;F /.id; id//m be
represented by cochainsˆ 2 A.C;D/.F;F /.id; id/D ,‰ 2 A.C;D/.F;F /.id; id/D0 , with
p.D/D Œn�;p.D0/D Œm�. AssumeDD .Œn�I Œk1�; : : : ; Œkn�/ andD0D .Œm�I Œ`1�; : : : ; Œ`m�/.
Then, �m;n.ˆ/ takes a non-zero value on the object

yD D
�
ŒnCm�I Œk1�; : : : ; Œkn�; Œ0�; : : : ; Œ0�

�
and is equal to

�m;n.ˆ/.�; XnC1; : : : ; XmCn/ D ˆ.�/ ı
h .idF.XnC1ı���ıXnCm//:

Analogously, �m;n.‰/ takes a non-zero value on yD0D.ŒmCn�I Œ0�; : : : ; Œ0�; Œ`1�; : : : ; Œ`m�/,
and

�m;n.‰/.Y1; : : : ; Ym;�/ D idF.Y1ı���ıYm/ ı
h ‰.�/:
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Finally, for their product in the monoid Rp�.A.C;D/.F; F /.id; id//mCn, one has

�m;n.ˆ/ � �m;n.‰/.T1; : : : ; TmCn/

D
�
ˆ.T1; : : : ; Tn/ ı

h idF.XnC1ı���ıXmCn/
�
ı
v
�
idF.Y1ı���ıYn/ ı

h ‰.TnC1; : : : ; TmCn/
�

D ˆ.T1; : : : ; Tn/ ı
h ‰.TnC1; : : : ; TmCn/; (6.1)

where Ti is a string of morphisms of length ki for 1 � i � n and j̀�n for j D n C

1; : : : ; nCm, starting at Xi and ending at Yi .
We clearly get the same expression when computing

�m;n.‰/ � �m;n.ˆ/.T1; : : : ; TmCn/;

and the 1-commutativity for Rp�.A.C;D/.F; F /.id; id// follows. It completes the proof
for F strict.

Now, when C is a bicategory and F is a strong bicategorical functor, we argue as
follows.

There are two sorts of the structure isomorphisms which figure in (the strong counter-
part of) (6.1). These two sorts are (a) the structure constraints of the bicategory and (b) the
structure constraints of the functor F . It follows from Definition 4.2 that the structure con-
straints of type (a) commute with the structure constraints of type (b); on the other hand,
the elements Rp�.A.C; D/.F; F /.id; id// commute with the constraints of type (a), in
the sense of (5.4)–(5.6). These two properties imply that the presence of these constraints
does not affect the previous speculation in the strict case.

Remark 6.5. The fulfilment of the Batanin–Davydov 1-commutativity condition [6] for
Rp�.A.C; D/.F; F /.id; id// is a lucky situation, which is easily generalised from the
corresponding proof for the classical Davydov–Yetter complex in [6, Thm. 3.4]. Namely,
(although our cochains are not natural transformations) one does not use the naturality of
cochains for general morphisms in this proof. One does use the naturality with respect to
the identity morphisms, which automatically holds.

The case of the 2-commutativity of Rp�.Id; Id/ is not that lucky because the cor-
responding proof for the classical counterpart given in [6, Thm. 3.8] essentially uses
the naturality for non-identity morphisms. Our cochains are not natural transformations,
which results in the failure of 2-commutativity forRp�.A.C;D/.F;F /.id; id//. However,
a sort of “homotopy 2-commutativity” still holds.

Theorem 6.6. Let C;D be k-linear bicategories, F WC !D a strong bicategorical func-
tor. Then, the 2-cocellular totalisation Tot‚2.A.C;D/.F;F /.id; id// has a structure of an
algebra over an operad homotopically equivalent to C q.E2Ik/.
Proof. By Proposition 3.7,

Tot‚2
�
A.C;D/.F; F /.id; id/

�
� Tot�

�
Rp�

�
A.C;D/.F; F /.id; id/

��
:

By Proposition 6.4,Rp�.A.C;D/.F;F /.id; id// is a 1-commutative cosimplicial monoid.
Then, the result follows from Theorem 6.3.
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7. The totalisations Tot‚2
.A.C;D/.F;F /.id; id// and

Tot‚2
.A.C;C /.Id; Id/.id; id// as deformation complexes

7.1. Infinitesimal deformation theory of a monoidal dg category C

We start with the deformations of a monoidal category C .
Let C be a k-linear monoidal category (or a monoidal dg category over k). The

deformations we consider are formal deformations; that is, Ct may not make sense unless
t D 0. That is, the category Ct is a monoidal category over the formal power series kŒŒt ��.

We consider flat deformations Ct of C in the following sense: the set of objects, the
vector spaces (complexes) Ct .x; y/ of morphisms, and the monoidal product on objects
remain undeformed.

Then, the data which is being deformed is as follows:

(A1) the composition of morphisms mX;Y;Z WC.Y;Z/˝ C.X; Y /! C.X;Z/,
X; Y;Z 2 C ,

(A2) for f 2 C.X;X 0/; g 2 C.Y; Y 0/, the monoidal products of morphisms mX;g D
idX ˝ gWC.X; Y /! C.X; Y 0/ and mf;Y D f ˝ idY WC.X; Y /! C.X 0; Y /,

(A3) the associator ˛X;Y;Z WX ˝ .Y ˝Z/! .X ˝ Y /˝Z, X; Y;Z 2 C ,

(A4) the left and right unit maps �X W e ˝X ! X and �X WX ˝ e ! X .

It is assumed that (a) the identity morphism idX , X 2 C , (b) the monoidal unit e, (c) the
maps �Y , �X , and (d)mf;e andme;g are stable under the deformations, and (e)mX;idY D
midX ;Y D idX˝Y .

The following example shows that this set-up is realistic.

Example 7.1. Let A be a bialgebra over k, C D Mod.A/ the category of left A-modules
over the underlying algebra. It is a monoidal category in a standard way: for two modules
M;N , the tensor product of the underlying vector spacesM ˝k N is naturally an A˝A-
module, and the precomposition with �WA! A˝ A makes it an A-module.

Assume that A is a Hopf algebra. Then, the monoidal product A ˝ A of two free
modules of rank 1 is a free module again, whose underlying vector space is canonically
isomorphic to A˝ Au, where Au is the underlying vector space of A.

Indeed, define the maps ˛WA˝ A! A˝ Au and ˇWA˝ Au ! A˝ A as

˛.a˝ b/ D
X

a1 ˝ S.a2/b;

ˇ.a˝ b/ D
X

a1 ˝ a2b;

where S WA! A is the antipode, and we use the Swindler notations �.a/ D
P
a1 ˝ a2.

Assume that ˛ and ˇ are maps of A-modules, and ˛ ı ˇ D id, ˇ ı ˛ D id. It proves
the claim.

Thus, if we consider a deformation At of a Hopf algebra A, the k-linear subcategory
Cfree.At / is a deformation of a monoidal k-linear category Cfree.A/, for which the condi-
tions (A1)–(A3) are fulfilled.
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The data listed in (A1)–(A4) is subject to the following axioms:

(R1) the composition mX;Y;Z in (A1) is associative,

(R2) for maps in (A2), one has .f ˝ idy/ ı .idx ˝ g/ D .idx ˝ g/ ı .f ˝ idy/ (both
sides are equal to f ˝ gWX ˝ Y ! X 0 ˝ Y 0; therefore, the deformation of
f ˝ g is determined by deformations of f ˝ idy and idx ˝ g),

(R3) for any two composable morphisms X
f
�! X 0

f 0

�! X 00, and any Y 2 C , one has
mf 0;Y ımf;Y D mf 0ıf;Y ; similarly, for any two composable morphisms

Y
g
�! Y 0

g 0

�! Y 00;

and any X 2 C , one has mX;g 0 ımX;g D mX;g 0ıg ,

(R4) this and the next two axioms express naturality of the associator. Let f WX !X 0

be a morphism in C , and Y;Z objects. The following diagram commutes:

X ˝ .Y ˝Z/
˛X;Y;Z

//

mf;Y˝Z
��

.X ˝ Y /˝Z

mmf;Y ;Z

��

X 0 ˝ .Y ˝Z/
˛X 0;Y;Z

// .X 0 ˝ Y /˝Z

(R5) let gW Y ! Y 0 be a morphism in C , X;Z objects. The following diagram com-
mutes:

X ˝ .Y ˝Z/
˛X;Y;Z

//

mX;mg;Z
��

.X ˝ Y /˝Z

mmX;g ;Z
��

X ˝ .Y 0 ˝Z/
˛X;Y 0;Z

// .X ˝ Y 0/˝Z

(R6) let hWZ ! Z0 be a morphism in C , X; Y objects. Then, the following diagram
commutes:

X ˝ .Y ˝Z/
˛X;Y;Z

//

mX;mY;h
��

.X ˝ Y /˝Z

mX˝Y;h
��

X ˝ .Y ˝Z0/
˛X;Y;Z0

// .X ˝ Y /˝Z0

(R7) the pentagon equation for the associator is

.X ˝ Y /˝ .Z ˝ T /

X ˝
�
Y ˝ .Z ˝ T /

�

X ˝
�
.Y ˝Z/˝ T

� �
X ˝ .Y ˝Z/

�
˝ T

�
.X ˝ Y /˝Z

�
˝ T

˛X˝Y;Z;T˛X;Y;Z˝T

˛X;Y˝Z;T

mX;˛Y;Z;T m˛X;Y;Z;T

(7.1)
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(R8) left unit functionality: for any map f WX ! X 0, the diagram

X ˝ e
�X //

mf;e

��

X

f

��

X 0 ˝ e
�X 0

// X 0

commutes,

(R9) right unit functionality: for any gWY ! Y 0, the diagram

e ˝ Y
�Y //

me;g

��

Y

g

��

e ˝ Y 0
�Y 0

// Y 0

commutes,

(R10) left right unit compatibility: the two possible maps �e; �eW e˝ e! e are equal.

Among the deformations Ct , there are ones which we consider “trivial”. This appears
in the literature under the name “twist”; however, here we consider “upgraded” twists
acting not only on the associator, but also on the underlying category structure and on the
action of morphisms on the monoidal product.

In the deformation theory, one identifies two deformations if one is obtained from
another by a twist and interests in the “quotient-space”.

Lemma 7.2. Let C be a k-linear (or dg over k) monoidal category, and denote by Cu
the underlying k-linear quiver of C . Assume that, for any X;Y 2 C , we are given an iso-
morphism 'X;Y WC.X; Y /! C.X; Y /, and an isomorphism  X;Y 2 C.X ˝ Y;X ˝ Y /.
Then, these data give rise to a monoidal equivalence functor F from C to another mon-
oidal k-linear (resp., dg over k) category zC on the quiver Cu, such that F is the identity
map on any object of C .

Proof. It is standard. We define F on morphisms by F.f / D 'X;Y .f / if f 2 C.X; Y /,
and define monoidal constraints F.X ˝ Y /! F.X/˝ F.Y / as the isomorphisms  X;Y .
Then, the monoidal category structure on zC is uniquely determined by the requirement
that F is a monoidal functor.

We assume that 'X;X .idX / D idX ,  e;Y D ide˝Y ,  X;e D idX˝e . As well, we assume
that the constraint F.e/! e is the identity map.

For the convenience of the reader, we provide explicit formulas for the new com-
position of morphisms, for the action of morphisms on the tensor product, and for the
associator. We use the same notations decorated by � for the corresponding data (A1)–
(A3) of the new category on zC . We use the same notations as in (A1)–(A3). One has

QmX;Y;Z.f; g/ D 'X;Z
�
mX;Y;Z

�
'�1Y;Z.g/; '

�1
X;Y .f /

��
(7.2)
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QmX;g Qı X;Y D  X;Y 0 Qı'X˝Y;X˝Y 0.mX;'�1
Y;Y 0

g/

Qmf;Y Qı X;Y D  X 0;Y Qı'X˝Y;X 0˝Y .m'�1
X;X 0

f;Y /;
(7.3)

where Qı denotes the composition in zC (given by (7.2)).
The two last equations follow from the commutative diagram:

F.X ˝ Y / //

F.f˝g/
��

F.X/˝ F.Y /

F.f /˝F.g/
��

F.X 0 ˝ Y 0/ // F.X 0/˝ F.Y 0/;

where Qı is the composition in zC , and F.‹/ D‹ for any object ‹ 2 C :

z̨X;Y;Z D Qm X;Y ;Z Qı X˝Y;Z Qı'.˛X;Y;Z/Qı 
�1
X;Y˝Z Qı QmX; �1Y;Z

: (7.4)

It comes from the commutative diagram:

F
�
X ˝ .Y ˝Z/

� F.˛/
//

 X;Y˝Z

��

F
�
.X ˝ Y /˝Z

�
 X˝Y;Z

��

F.X/˝ F.Y ˝Z/

idX˝ Y;Z
��

F.X ˝ Y /˝ F.Z/

 X;Y˝idZ
��

F.X/˝
�
F.Y /˝ F.Z/

� z̨ //
�
F.X/˝ F.Y /

�
˝ F.Z/;

where Qı is the composition in zC , and F.‹/ D‹ for any object ‹ 2 C .
One can check directly that QmX;Y;Z ; QmX;g ; Qmf;Y ; z̨X;Y;Z satisfy (R1)–(R7) and thus

define a monoidal category zC , such that the functor

F WC ! zC

is a monoidal equivalence.

Note that in the assumption of the lemma, 'X;Y and  X;Y are arbitrary isomorphisms.
Now we switch back to the formal deformation theory.

By definition, a trivial deformation depends on the following data:

(T1) a formal power series 'X;Y WC.X;Y /! C.X;Y /, for any X;Y 2 C of the form

'X;Y .t/ D IdC.X;Y / C t � '1X;Y C t
2
� '2X;Y C � � � ; (7.5)

where 'iX;Y 2 Homk.C.X; Y /; C.X; Y //, i � 1,

(T2) a formal power series  X;Y WC.X ˝ Y;X ˝ Y /, for any X; Y 2 C , of the form

 X;Y D IdX˝Y C t �  1X;Y C t
2
�  2X;Y C � � � (7.6)

where  iX;Y 2 C.X ˝ Y;X ˝ Y /, i � 1.

Out of this data, a formal deformation of C is constructed as in (7.2)–(7.4).
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One defines the concepts of an infinitesimal deformation and of a trivial infinitesimal
deformation of a monoidal (linear or dg) category by replacing in the previous definitions
the ring of formal power series kŒŒt �� by the dual numbers kŒt �=.t2/. We say that two infin-
itesimal deformations belong to the same equivalence class if the corresponding monoidal
categories are equivalent by an (extended) twist, as in Lemma 7.2 but over kŒt �=.t2/.

One has the following theorem.

Theorem 7.3. Let C be a k-linear (or a dg over k) monoidal category. The third cohomo-
logyH 3.Tot‚2 A..C;C /.Id; Id/.id; id/// is isomorphic to the equivalence classes of infin-
itesimal deformations (in the sense specified above) of the monoidal (dg) category C .

Proof. The proof is a rather long but standard computation, for which we refer the reader
to [29, Sect. 5].

7.2. Infinitesimal deformation theory of a strict monoidal functor

The following theorem is proven analogously but is easier than Theorem 7.3, and we leave
the details to the reader.

Theorem 7.4. Let C; D be k-linear (or dg over k) monoidal categories, F W C ! D

a monoidal functor. The second cohomology H 2.Tot‚2 A.C; D/.F; F /.id; id// is iso-
morphic to the equivalence classes of infinitesimal deformations of the functor F .

By Theorem 6.6, Tot‚2 A.C;D/.F;F / is a homotopy 2-algebra. In fact, one can con-
struct a dg Lie algebra on Tot‚2 A.C;D/.F; F /Œ1� directly (without any use of loc. cit.),
and develop, via the Maurer–Cartan equation and the deformation functor associated with
dg Lie algebra formalism, the “global” deformation theory for F WC ! D over kŒŒt ��.

Appendix: Relations in‚2

One has the following relations between the elementary face and degeneracy maps in ‚2,
which are checked straightforwardly:

Dq;� 0Dp;� D Dp;�Dq�1;� 0 if p < q � 1; (A.1)

Dq;�2Dq�1;�1 D Dq�1;�2Dq�1;�1 : (A.2)

Here is an explanation of the notations: any .a; b/-shuffle �1 and .a C b; c/-shuffle �2
define uniquely a .b; c/-shuffle �1 and an .a; b C c/-shuffle �2 such that �2 ı .�1; idc/ D
�2 ı .ida; �1/ (the latter is an .a; b; c/-shuffle). Consider

@jp@
i
q D @

i
q@
j
p if p ¤ q; (A.3)

@jp@
i
p D @

i
p@
j�1
p if i < j; (A.4)

Dq;�@
j
p D

´
@
j
pC1Dq;� if p > q;

@
j
pDq;� if p < q;

(A.5)
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Dp;�@
i
p D

8<: @apDp;x� if ��1.
����!
i; i C 1/ D

�����!
a; aC 1 2 Œ0; kp�;

@bpC1Dp;x� if ��1.
����!
i; i C 1/ D

�����!
b; b C 1 2 Œkp; kp C kpC1�;

(A.6)

where x� is the shuffle obtained from � by collapsing ��1.
����!
i; i C 1/, and ¹ksº is used as in

Section 2.6, (F2). Consider

@ipDmin D Dmin@
i
p�1 if p � 1;

Dp;�Dmin D DminDp�1;� if p � 1
(A.7)

and similarly for Dmax. Moreover,

"jp ı "
i
q D "

i
q ı "

j
p if p ¤ q;

"jp ı "
i
p D "

i
p ı "

j�1
p if i � j;

‡
q
0 ı ‡

p
0 D ‡

p
0 ı ‡

qC1
0 if p � q;

‡
q

`
ı "jp D

8̂̂<̂
:̂
"
j
p�1 ı ‡

q

`
if p > q C 1;

"
j
p ı ‡

q

`
if p � q;

‡
q

`C1
if p D q C 1;

@ip ı "
j
q D "

j
q ı @

i
p if p ¤ q;

"jp ı @
i
p D

8̂̂<̂
:̂
@ip ı "

j�1
p if i < j;

id if i D j; j C 1;

@i�1p ı "
j
p if i > j C 1;

‡
q

`
ı @jp D

8̂̂<̂
:̂
@
j
p�1 ı ‡

q

`
if p > q C 1;

@
j
p ı ‡

q

`
if p � q;

‡
q

`�1
if p D q C 1;

Dq;� ı "
i
p; D

8̂̂̂̂
<̂
ˆ̂̂:
"ipC1 ıDq;� if q < p;

"ip ıDq;� if q > p;

"ap ıDq;� 0 if q D p; ��1.
����!
i; i C 1/ D

�����!
a; aC 1 2 Œ0; kp�;

"bpC1 ıDq;� 0 if q D p; ��1.
����!
i; i C 1/ D

�����!
b; b C 1 2 Œkp; kp C kpC1�;

where � 0 is obtained from � by adding a new element (blowing up) at ��1.
����!
i; i C 1/. Then,

‡
q
0 ıDp;� D

8̂̂̂̂
<̂
ˆ̂̂:
Dp;� ı ‡

q�1
0 if p < q;

Dp�1;� ı ‡
q
0 if p > q C 1;

id if p D q; � D .0; kp C kpC1/;

id if p D q C 1; � D .kp C kpC1; 0/;

Dmin ı "
i
p D "

i
pC1 ıDmin;
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Dmax ı "
i
p D "

i
p ıDmax;

‡
q
0 ıDmin D

´
Dmin ı ‡

q�1
0 if q > 0;

id if q D 0;

‡
q
0 ıDmax D

´
Dmax ı ‡

q
0 if q < nC 1;

id if q D nC 1:
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