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Algebraic aspects of connections: From torsion,
curvature, and post-Lie algebras to Gavrilov’s double

exponential and special polynomials
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Abstract. Understanding the algebraic structure underlying a manifold with a general affine con-
nection is a natural problem. In this context, A. V. Gavrilov introduced the notion of framed Lie
algebra, consisting of a Lie bracket (the usual Jacobi bracket of vector fields) and a magmatic
product without any compatibility relations between them. In this work, we will show that an
affine connection with curvature and torsion always gives rise to a post-Lie algebra as well as a
D-algebra. The notions of torsion and curvature together with Gavrilov’s special polynomials and
double exponential are revisited in this post-Lie algebraic framework. We unfold the relations among
the post-Lie Magnus expansion, the Grossman–Larson product, and theK-map, ˛-map, and ˇ-map,
three particular functions introduced by Gavrilov with the aim of understanding the geometric and
algebraic properties of the double-exponential, which can be understood as a geometric variant of
the Baker–Campbell–Hausdorff formula. We propose a partial answer to a conjecture by Gavrilov,
by showing that a particular class of geometrically special polynomials is generated by torsion and
curvature. This approach unlocks many possibilities for further research such as numerical integra-
tors and rough paths on Riemannian manifolds.

1. Introduction

Let M be a smooth manifold, and let XM D DerC1.M/ be the Lie algebra of vector
fields on M. An affine connection on M gives rise to a covariant derivative operator r on
XM. It is well-known that the induced binary product � defined by

X � Y WD rXY

is left pre-Lie when the connection is flat and torsion-free. This fact can be traced back
to A. Cayley’s famous 1857 article on vector fields and rooted trees [6]. See for exam-
ple [5, 24, 25]. An affine connection with constant torsion and vanishing curvature gives
rise to a post-Lie algebra [28], a structure which appeared in a paper by B. Vallette on
partition posets [33]. The closely related notion of D-algebra appeared independently in
joint work by one of the present authors together with W. Wright [30] in the context of
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numerical schemes for differential equations on Lie groups and homogeneous spaces. Pre-
Lie algebras, also known as chronological algebras [1], are rather well-studied in algebra,
combinatorics, and geometry. On the other hand, research on post-Lie and D-algebras is
more recent. See for instance [3, 7, 9, 12, 22, 26, 28].

Understanding the algebraic structure underlying a manifold with a more general
affine connection is a natural problem which attracted some attention [14, 16, 18, 20].
An obvious structure on the space XM is that of a so-called framed Lie algebra, con-
sisting of a Lie bracket (the usual Jacobi bracket of vector fields) and a binary product
(the right triangle �) without any compatibility relations between them. This setting was
studied in depth by A. V. Gavrilov in the 2006 work [14]. Our contribution aims at exhibit-
ing a natural post-Lie algebra g associated with these geometric data and reinterpreting
the main geometric notions in this framework, that is, torsion and curvature as well as
Gavrilov’s special polynomials and double exponential1. To sum up, we advocate in the
present paper the relevance of the post-Lie framework for a deeper and more refined under-
standing of Gavrilov’s major findings on framed Lie algebras which are not necessarily
post-Lie, including vector fields on a manifold endowed with an affine connection with
curvature and torsion.

The paper is organized as follows. Section 2 is devoted to post-Lie and D-algebras.
Several of the lengthier algebraic computations in the proofs of the algebraic statements
in this section have been collected in Appendix A. After the necessary background is
recalled in Section 2.1, the free D-algebra and the free post-Lie algebra generated by
a magmatic algebra M are defined, in terms of the free unital associative algebra (the
tensor algebra) TM D

L
k�0M

�k and the free Lie algebra Lie.M/, respectively. The
particular case of a free post-Lie and free D-algebra generated by a set A is detailed
in Section 2.2.2 using planar rooted trees and forests decorated by elements from A. In
Appendix B, we present briefly the notion of planar multi-grafting. Of particular interest is
equation (2.10) relating right Butcher product and left grafting on rooted trees. Reminders
on the enveloping algebra of a post-Lie algebra (Section 2.3) and the post-Lie Magnus
expansion (Section 2.4) are followed by a longer subsection on Gavrilov’s K-map, K W
TM ! TM , seen from a post-Lie algebra point of view (Section 2.5). This map is re-
interpreted as a linear automorphism of TM mapping the Grossman–Larson product �
onto the defining product � of TM (Theorem 3). An explicit non-recursive expression of
the inverse map, K�1, is given in terms of set partitions (Proposition 6). Section 2.5.3
concludes this section by stating equation (2.31) relating theK-map, the post-Lie Magnus
expansion, �, and the logarithm Z W y 7! log�K.exp�.y//.

Section 3 is devoted to Gavrilov’s ˇ-map [14], obtained by pre-composing the afore-
mentioned logarithm Z with the canonical projection p from the tensor algebra onto the

1The latter is a formal binary product on vector fields which can be understood as a geometric variant
of the Baker–Campbell–Hausdorff formula. It is not associative in general, unless the connection is flat.
Concrete examples can be found in applied differential geometry, for instance, in the context of numerical
schemes on manifolds [19].
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enveloping algebra of a completed graded framed Lie algebra . yL;�; ŒŒŒŒ: ; :����/. This map is a
keystone in the expression of Gavrilov’s double exponential [14] considered in Section 6.
A simple formula is obtained in terms of theK-map, the post-Lie Magnus expansion, and
the projection p (equation (3.1)).

In Section 4, we apply the mentioned algebraic results to the concrete setting of the
framed Lie algebra XM of vector fields on a smooth manifold M endowed with an affine
connection. Higher-order covariant derivatives are recast in the post-Lie framework in
terms of theK-map. We show in Proposition 7 that the free Lie algebra g (resp., the tensor
algebra A of XM) over the ring R WD C1.M/ is a post-Lie algebra (resp., aD-algebra).
As a consequence (Remark 12), we obtain in equation (4.5) an alternative expression of
Gavrilov’s ˇ-map. The particular case of a flat connection with constant torsion, in which
the framed Lie algebra XM itself is post-Lie, is detailed in Section 4.3.

Section 5 is devoted to Gavrilov’s special polynomials [14]. We provide a partial
answer to a conjecture put forward in [14], by showing that a natural (and rather broad)
family of special polynomials can be expressed in terms of torsion, curvature, and their
higher-order covariant derivatives (Theorem 5). An important intermediate result (Propo-
sition 8) expresses the kernel J of the action � of g by derivations on C1.M/ (which
is an ideal for the Grossman–Larson Lie bracket) in terms of the so-called curvature ele-
ments, denoted by s.a � b/ and introduced in Definition 5. We also show that the kernel
K of the action � of g on XM is a Grossman–Larson ideal included in the kernel J, and
we exhibit a nonzero element of K by means of the first Bianchi identity. The inclusion
J �K is in general strict, manifesting the presence of curvature.

Finally, Section 6 discusses Gavrilov’s double exponential, which we first describe
heuristically by comparison of consecutive parallel transports. Then, we express it in pre-
cise terms using the post-Lie Magnus expansion (Theorem 6).

We close the paper with a short synthesis of the results followed by a brief outlook.

2. Post-Lie andD-algebras

2.1. Reminders on post-Lie andD-algebras

Let k be a field of characteristic zero, which will be the real numbers R whenever differ-
ential geometry comes into play.

Definition 1 ([33]). A post-Lie algebra on k is a Lie algebra .g; Œ�; ��/ together with a
bilinear mapping �: g � g! g compatible with the Lie bracket, in the following sense:

x � Œy; z� D Œx � y; z�C Œy; x � z�; (2.1)

Œx; y�� z D a�.x; y; z/ � a�.y; x; z/; (2.2)

for any elements x;y; z 2 g. Here, a�.x; y; z/ is the associator with respect to the product
� defined by

a�.x; y; z/ WD x � .y � z/ � .x � y/� z:
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Any Lie algebra can be seen as a post-Lie algebra by setting the second product �
to zero. Another possibility is to take for the second product � the opposite of the Lie
bracket. A (left) pre-Lie algebra is just an Abelian post-Lie algebra, i.e., a post-Lie algebra
with trivial Lie bracket, implying that (2.2) reduces to the (left) pre-Lie identity

0 D a�.x; y; z/ � a�.y; x; z/:

In other words, for a (left) pre-Lie algebra, the associator is symmetric in the first two
entries. On any post-Lie algebra, particular combinations of the Lie bracket and the �
product yield two other operations, as follows:

Jx; yK WD x � y � y � x C Œx; y�; (2.3)

x � y WD x � y C Œx; y�;

for all x; y 2 g. From (2.1) and (2.2) above, one can easily deduce that .g; J�; �K/ forms
a Lie algebra, and the triple .g;�Œ�; ��;�/ is another post-Lie algebra [7, 28] sharing the
same double Lie bracket:

Jx; yK D x � y � y � x C Œx; y�

D x � y � y � x � Œx; y�

D x � y � y � x:

Example 1. Let XM be the space of vector fields on a smooth manifold M, which is
equipped with an affine connection. For vector fieldsX;Y 2XM, the covariant derivative
of Y in the direction of X is denoted rXY DW X � Y . This defines an R-linear, non-
associative binary product on XM. The torsion t is defined by

t .X; Y / WD X � Y � Y �X � ŒŒŒŒX; Y ����;

where the bracket ŒŒŒŒ: ; :���� on the right is the usual Jacobi bracket of vector fields. It admits a
covariant differential rt . The curvature tensor r is given by

r.X; Y /Z WD X � .Y �Z/ � Y � .X �Z/ � ŒŒŒŒX; Y �����Z:

It is known that for a flat connection with constant torsion, r D 0 D rt , we have that
.XM;�t .�; �/;�/ defines a post-Lie algebra. The first Bianchi identity (see (4.2) below)
shows that �t .�; �/ obeys the Jacobi identity; skew-symmetry of t implies anti-symmetry.
Flatness is equivalent to identity .2.2/, whereas property .2.1/ follows from the definition
of the covariant differential of t :

0 D .rX t /.Y;Z/ D X � t .Y;Z/ � t .Y;X �Z/ � t .X � Y;Z/:

Definition 2 ([30]). Let .D; ����;�/ be an associative algebra with productmD.u˝ v/Du����v
and unit 1, carrying another product � W D ˝D! D such that 1� v D v for all v 2 D.
Let

d.D/ WD
®
u 2 D j u� .v ����w/ D .u� v/����w C v ����.u� w/; 8v;w 2 D

¯
:



Connection algebra 301

The triple .D; ����;�/ is called a D-algebra if the algebra product ���� generates D from
¹1;d.D/º and furthermore for any x 2 d.D/ and v;w 2 D,

v � x 2 d.D/;

.x ����v/� w D a�.x; v; w/: (2.4)

Lemma 1. Let .D; ����;�/ be as in Definition 2. Then, d.D/ together with� and Lie bracket
Œu; v� WD u����v � v ����u is a post-Lie algebra.

Proof. Remark that d.D/ is the set of x 2 D such that L�x WD x � � is a derivation for
the associative product. One only needs to verify that d.D/ is stable under the Lie bracket
.x; y/ 7! x ����y � y ����x, which amounts to prove that L�x ����y�y ����x is a derivation. From

L�x ����y D L
�

x ı L
�

y � L
�

x�y ;

which is a reformulation of (2.4), we get

L�x ����y�y ����x D ŒL
�

x ; L
�

y � � L
�

x�y�y�x ;

which proves the claim. Identity (2.1) results from the fact that any derivation for the
associative product is also a derivation for the Lie bracket, and (2.2) is checked immedi-
ately.

Example 2. The space DM of differential operators on the manifold M endowed with
an affine connection r with vanishing curvature and constant torsion is a D-algebra such
that d.DM/ D XM.

This non-trivial example is treated in detail in [28]. We shall revisit it in Section 4.3
below.

2.2. Free post-Lie and freeD-algebras

2.2.1. The free D-algebra generated by a magmatic algebra. Recall that a magmatic
algebra consists of a set equipped with a binary operation and no further relations.

Theorem 1. Let .M;�/ be any magmatic algebra. Let T .M/ be the tensor algebra over
M with concatenation as product. Extending the magma product � to T .M/ as

x � .V W / D .x � V /W C V.x �W /; (2.5)

.xV /�W D a�.x; V;W /; (2.6)

for any element x 2M and V;W 2 T .M/, defines a D-algebra structure on T .M/.

Proof. It is clear that (2.5) and (2.6) uniquely define the extended magma product �, by
induction on the lengths of the elements involved. The tensor algebra is a Hopf algebra
with the usual unshuffle coproduct,��.A/ WD A.1/ ˝A.2/ (we use Sweedler’s notation).
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The elements in the magmatic algebra M are primitive, i.e., ��.x/ D x ˝ 1C 1˝ x for
all x 2M . A more explicit formula for the unshuffle coproduct is given by

��.x1 � � � xn/ D
X

ItJD¹1;:::;nº

xI ˝ xJ ;

with the obvious word notation xI WD xi1 � � � xip for index set I D ¹i1; : : : ; ipº with i1 <
� � � < ip . The set PrimT .M/ of primitive elements is actually the free Lie algebra Lie.M/

generated by M . This is the vector subspace of T .M/ generated by iterated Lie brackets
of elements of M [31]. An iteration of (2.5) yields

U � .V W / D .U.1/ � V /.U.2/ �W /; (2.7)

which is easily checked on monomials U D x1 � � � xn (with x1; : : : ; xn 2 M ) by induc-
tion on the length n. We deduce from (2.7) that the set of U 2 T .M/ such that L�U is
a derivation is precisely Lie.M/. It remains to show that (2.6) is valid for any element
x 2 Lie.M/. It suffices to check that the set of elements of T .M/ verifying (2.5) and
(2.6), which contains M , is a Lie subalgebra. Let us choose two elements X and Y in
T .M/ verifying (2.5) and (2.6). The claim follows from a straightforward computation
detailed in Appendix A.

Remark 1. It is easily checked that T .M/ is the free D-algebra generated by the mag-
matic algebra .M;�/. In fact, for any D-algebra .D;˘; �/, any magmatic morphism  W

M!.D; /̆ can be uniquely extended to an associative algebra morphism‰ W T .M/!D,
which happens to be a D-algebra morphism. Similarly, Lie.M/ is the free post-Lie alge-
bra generated by the magmatic algebra M . This has been first remarked by L. Foissy
[13, Theorem 1 and Proposition 2].

It is easily seen that L�x .y/ WD x � y is a coderivation with respect to the coprod-
uct �� for any x 2 M . More generally, the coproduct is compatible with the extended
magmatic product.

Proposition 1. For any U; V 2 T .M/, we have

��.U � V / D ��.U /���.V / D U.1/ � V.1/ ˝ U.2/ � V.2/:

Proof. We can suppose thatU is a monomial, and we proceed by induction on its length `.
The details are given in Appendix A.

We mention the following result for later use.

Proposition 2. For any U; V;W 2 T .M/, the following holds:

U � .V �W / D
�
U.1/.U.2/ � V /

�
�W: (2.8)

Proof. We can suppose without loss of generality that U is a monomial. We proceed by
induction on the length ` of U . The details are given in Appendix A.
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Definition 3. The Grossman–Larson product on T .M/ is defined by

U � V WD U.1/.U.2/ � V /: (2.9)

It is easily seen to be associative:

.U � V / �W D U.1/.U.2/ � V.1//
��
U.3/.U.4/ � V.2//

�
�W

�
D U � .V �W /:

This is a straightforward computation using the cocommutativity of the unshuffle coprod-
uct, left to the reader (see the proof of Proposition 3.3 in [9]).

Proposition 3. The Grossman–Larson product (2.9) is compatible with the unshuffle co-
product: for any U; V 2 T .M/, we have

��.U � V / D ��.U / ���.V / D U.1/ � V.1/ ˝ U.2/ � V.2/:

Proof. This is a straightforward check using (2.9) and Proposition 1.

2.2.2. The free D-algebra generated by a set: Planar rooted trees and grafting. The
following is immediate in view of Remark 1.

Proposition 4. Let A be a finite alphabet and .Mag.A/;�/ the free magmatic algebra
over A. Then, Dalg.A/ D T .Mag.A//, with the product � extended as in Theorem 1,
is the free D-algebra generated by A. Similarly, PostLie.A/ D Lie.Mag.A// is the free
post-Lie algebra generated by A.

It is known that the free magma generated by A can be represented in terms of planar
rooted trees

T
pl
A D

²
a ;

a

b ;
a

b

c

;
a

b c ;
a

b

c

d

;
a

b

c d

;
a

b c

d

;
a

b

c

d ;
a

b c d ; : : :

³
with nodes decorated by elements of A. Here, the magmatic product ˘ W T pl

A � T
pl
A ! T

pl
A

is the right Butcher product defined as follows: � ˘ � is the A-decorated planar rooted tree
obtained by grafting � on the root of � on the right; for example,

d

e
˘

c

a b D
c

a b d

e

:

Then, .T pl
A ; ˘/ is the free magma generated by A via the inclusion A ,! T

pl
A given by

a 7! a . Now, let T
pl
A denote the vector space freely spanned by A-decorated planar rooted

trees. The left-graftingÕW T pl
A � T

pl
A ! T

pl
A is defined as the k-linear product given by

� Õ a WD � ˘ a

and
� Õ .�1 ˘ �2/ D .� Õ �1/ ˘ �2 C �1 ˘ .� Õ �2/ (2.10)
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for �; �1; �2 2 T
pl
A . For example,

b

a
D a Õ b D a ˘ b and

b

a Õ
e

c d D
b

a Õ
�
d ˘

e

c
�

D
�
b

a Õ d

�
˘

e

c
C d ˘

�
b

a Õ
e

c
�

D
d

b

a

˘
e

c
C d ˘

�
e

b

a

c C

e

c

b

a�
D

e

c d

b

a

C
e

b

a

c d C

e

c

b

a

d
:

Lemma 2. Let ' WMag.A/! T
pl
A be the unique linear map defined by '.a/ WD a for all

a 2A and '.� � �/ WD '.�/Õ '.�/ for all �;� 2Mag.A/. The map ' is an isomorphism;
i.e., the magmatic algebras .T pl

A ;Õ/ and .Mag.A/;�/ are isomorphic.

Proof. We have just seen that the correspondence �, defined by �.a/ D a for all a 2 A
and

�.�1 � �2/ D �.�1/ ˘ �.�2/;

is a magma isomorphism. This is obviously still true for the correspondence x� analogously
defined with the right Butcher product ˘ replaced by its left version ı& , where �1ı& �2 is
the A-decorated planar rooted tree obtained by grafting �1 on the root of �2 on the left; for
example,

c

a bı
&

d

e
D

d

c

a b

e :

Now, both magmatic algebras .T pl
A ;
ı
& / and .T pl

A ;Õ/ are isomorphic. Indeed, the unique
morphism ‰ W .T

pl
A ;
ı
& /! .T

pl
A ;Õ/ extending the identity on one-vertex trees can be

put in upper-triangular matrix form with 1’s on the diagonal, hence being a linear iso-
morphism. Full details are given in [2]. The isomorphism ' is therefore given by ' D
‰ ı x�.

As an example, we consider the tree

c

a b D a Õ . b Õ c / � . a Õ b /Õ c :

Then, we have

'�1
�

c

a b
�
D '�1

�
a Õ . b Õ c / � . a Õ b /Õ c

�
D a � .b � c/ � .a � b/� c

D a�.a; b; c/:

Remark 2. In view of Lemma 2, the free magmatic algebra .Mag.A/;�/ can be repre-
sented by the linear span of planar A-decorated rooted trees, endowed by either the right
Butcher product ˘ or the left graftingÕ.

2.3. The enveloping algebra of a post-Lie algebra

Proposition 5. If .g; Œ�; ��;�/ is a post-Lie algebra, then .U.g/; �;�/ is a D-algebra,
and the set of primitive elements g D Prim U.g/ is the post-Lie algebra d.U.g// of the
D-algebra U.g/.
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Proof. Let us consider the D-algebra structure on T .g/ given in Section 2.2.1. The ideal
J generated by ¹|x;y WD x � y � y � x � Œx; y�; x; y 2 gº is also a two-sided ideal for the
product �. To see this, choose any x; y 2 g and any U;A; B in T .g/. By iterating (2.5),
we have

U � .A � |x;y � B/ D .U.1/ � A/ � |U.2/�x;U.3/�y � .U.4/ � B/ 2 J;

using Sweedler’s notation for the iterated unshuffle coproduct. Starting from |x;y �U D 0

which is a simple consequence of (2.6), we also have .|x;y �B/�U D 0 by equation (2.8),
taking primitiveness of |x;y into account. Equation (2.8) also proves .A � |x;y �B/�U 2 J
by induction on the length of A. Hence, the D-algebra structure on T .g/ naturally gives
rise to a D-algebra structure on the quotient U.g/ D T .g/=J .

Remark 3. From this follows the existence of a pair of adjoint functors between the
categories of D-algebras and post-Lie algebras

U.�/ W postLie� D-algebra W g.�/:

In other words, there is a natural isomorphism

HompostLie
�
g.A/; B

�
! HomD-algebra

�
A;U.B/

�
:

Remark 4. The Grossman–Larson product also makes sense on U.g/ and is given by
(2.9). From Proposition 3, it is compatible with the coproduct, making .U.g/; �; �/ a
Hopf algebra isomorphic to the enveloping algebra of .g; J�; �K/. This has been first estab-
lished in [9]; see Proposition 3.3 therein. From Proposition 2 and (2.9), we have

U � .V �W / D .U � V /�W (2.11)

for any U; V;W 2 U.g/.

Note however that both Hopf algebras have different antipodes. As an example, we
compare the two antipodes for product x � y and x � y, x; y 2 g:

S�.x � y/ D �x � y � S�.x/ � y � S�.y/ � x

D y � x C x � y

D y � x C x � y C y � x

D S.x � y/C x � y C y � x

and

S.x � y/ D �x � y � S.x/ � y � S.y/ � x

D y � x � x � y

D y � x � x � y � y � x

D S�.x � y/ � x � y � y � x:

The following theorem is key to many upcoming computations.
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Theorem 2. In the Hopf algebra .U.g/; �; ��; "; S/, the product can be expressed in
terms of the Grossman–Larson product (2.9) as follows:

A � B D A.1/ �
�
S�.A.2//� B

�
; A; B 2 U.g/: (2.12)

Proof. We use (2.9) on the right-hand side of (2.12), which gives

A.1/ �
�
S�.A.2//� B

�
D A.1/.1/ �

�
A.1/.2/ �

�
S�.A.2//� B

��
(2.11)
D A.1/.1/ �

��
A.1/.2/ � S�.A.2//

�
� B

�
D A.1/ �

��
A.2/.1/ � S�.A.2/.2//

�
� B

�
D A.1/ �

�
m�.id˝ S�/��.A.2//� B

�
D A � B:

In the third equality, we used coassociativity.

Remark 5. Using (2.7) and x 2 g ,!U.g/ being primitive, i.e.,��.x/D x˝ 1C 1˝ x,
implying S�.x/ D �x, we find from (2.12) the recursion

x1 � � � xn D x1 � .x2 � � � xn/ � x1 � .x2 � � � xn/

(2.9)
D x1 � .x2 � � � xn/ �

nX
iD2

x2 � � � .x1 � xi / � � � xn: (2.13)

We used that for x 2 g ,! U.g/, the left-multiplication operator L�x acts as a deriva-
tion on elements in U.g/. Further below, we will revisit these identities in the context of
Gavrilov’s K-map and special polynomials.

For example, let x; y; z 2 g. Then, as these elements are primitive with respect to the
unshuffle coproduct ��, we find

x � y D x � y � x � y;

x � y � z D x � .y � z/ � x � .y � z/

D x � y � z � x � .y � z/ � x � .y � z/C x � .y � z/:

Remark 6. From (2.11), we immediately get

.x1 � � � � � xn/� B D L
�

x1
� � �L�xnB: (2.14)

Hence, Grossman–Larson products of elements in g ,!U.g/ transfer to compositions of
left-multiplication maps. Therefore, any operator of the form A � �, where A 2 U.g/,
translates into a L�-polynomial. For example, for any x; y 2 g,

.x � y/� B D .x � y � x � y/� B D .L�x L
�

y � L
�

x�y/� B:
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In light of (2.14) and the recursion (2.13), we can extend the definition of the L�-operator
to words, x1 � � � xn 2 U.g/, by defining inductively

yL�x1���xn WD L
�

x1
yL�x2���xn �

nX
iD2

yL�x2���x1�xi ���xn :

One checks that yL� is an algebra morphism from .U.g/;�/ into End.U.g//; that is,

yL�A�B D
yL�A
yL�B ;

for A;B 2 U.g/. For example,

yL�x1�x2 D
yL�x1x2Cx1�x2 D

yL�x1x2 C L
�

x1�x2

D L�x1L
�

x2
� L�x1�x2 C L

�

x1�x2
D L�x1L

�

x2
:

Further below, we will see that these polynomials are closely related to Gavrilov’sK-map.

2.4. Reminder on post-Lie Magnus expansion

We consider now the free D-algebra generated by a set A, i.e., the universal enveloping
algebra F

pl
A WD U.L.T

pl
A // of the free post-Lie algebra .L.T pl

A /; Œ�; ��;�/, graded by the
number of vertices of the forests2. Denote by 4

U.L.T
pl
A // its completion with respect to

the grading. The unshuffle coproduct,��, is naturally extended to the completion. The set
Prim.F pl

A / consists in primitive elements, whereas G.F pl
A / denotes the set of group-like

elements:

Prim.F pl
A / WD

®
˛ 2

4
U
�
L.T

pl
A /
�
j ��.˛/ D 1˝ ˛ C ˛ ˝ 1

¯
D

2
L.T

pl
A /;

G.F
pl
A / WD

®
˛ 2

4
U
�
L.T

pl
A /
�
j ��.˛/ D ˛ ˝ ˛

¯
:

Both products on U.L.T
pl
A // – the concatenation and the Grossman–Larson product –

can also be extended to products on the completion 4
U.L.T

pl
A //. As a result, two different

exponential functions can be defined on 4
U.L.T

pl
A //; namely,

exp�.y/ D
1X
nD0

y�n

nŠ
D 1C y C

1

2
y � y C

1

6
y � y � y C � � � ;

exp�.y/ D
1X
nD0

y �n

nŠ
D 1C y C

1

2
y � y C

1

6
y � y � y C � � � :

On a manifold, the exponential exp�.y/will be seen to represent the exact flow of a vector
field, while exp�.y/ represents the flow along geodesics.

2Here, the magmatic product is not precised: in view of Remark 2, it can be either the right Butcher
product ˘ or the left graftingÕ.



M. J. H. Al-Kaabi, K. Ebrahimi-Fard, D. Manchon, and H. Z. Munthe-Kaas 308

Both these exponential functions map Prim.F pl
A / bijectively onto G.F pl

A /. See [9] for

details. The post-Lie Magnus expansion � is the bijective map from 2
L.T

pl
A / onto itself

defined by the following relation between exponentials:

exp�
�
�.y/

�
D exp�.y/I (2.15)

namely,
�.y/ D log�

�
exp�.y/

�
:

The post-Lie Magnus expansion can be characterized by taking the derivation with
respect to t of exp�.�.ty//D exp�.ty/. Recall the dexp-formulas [4] for derivations of the
exp-map in a noncommutative setting

d

dt
exp

�
�.t/

�
D dexp�.t/

�
P�.t/

�
exp

�
�.t/

�
D exp

�
�.t/

�
dexp��.t/

�
P�.t/

�
:

Using the group-likeness of the two exponentials, exp�.�.ty// and exp�.ty/, yields

d

dt
exp�

�
�.ty/

�
D exp�.ty/ � y

(2.12)
D exp�.ty/ �

�
S�
�

exp�.ty/
�
� y

�
(2.15)
D exp�

�
�.ty/

�
�
�
S�
�

exp�
�
�.ty/

��
� y

�
D exp�

�
�.ty/

�
�
�

exp�
�
� �.ty/

�
� y

�
;

from which we deduce that

exp�
�
� �.ty/

�
�
d

dt
exp�

�
�.ty/

�
D dexp�

��.ty/

�
P�.ty/

�
D exp�

�
� �.ty/

�
� y:

Therefore, �.ty/ solves the Magnus-type differential equation

P�.ty/ D dexp��1
��.ty/

�
exp�

�
� �.ty/

�
� y

�
; �.0/ D 0:

The classical formula d
dt

exp.�A.t// D � exp.�A.t// d
dt
.exp.A.t/// exp.�A.t// implies

for the identity dexp�
��.ty/. P�.ty// D exp�.��.ty//� y that the function

˛.y; t/ WD exp�
�
� �.ty/

�
� y

satisfies the differential equation

d

dt
˛.y; t/ D

d

dt
exp�

�
� �.ty/

�
� y

D

�
d

dt
exp�

�
� �.ty/

��
� y

D

�
� exp�

�
� �.ty/

�
�

�
d

dt
exp�

�
�.ty/

��
� exp�

�
� �.ty/

��
� y
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D
�
� dexp�

��.ty/

�
P�.ty/

�
� exp�

�
� �.ty/

��
� y

D �dexp�
��.ty/

�
P�.ty/

�
�

�
exp�

�
� �.ty/

�
� y

�
D �˛.y; t/� ˛.y; t/:

Hence, ˛.y; t/ satisfies the post-Lie flow equation8<: ˛.y; 0/ D y;

d

dt
˛.y; t/ D �˛.y; t/� ˛.y; t/:

(2.16)

We can therefore describe the Grossman–Larson exponential exp�.�.ty// as a solution of
a linear non-autonomous initial value problem

d

dt
exp�

�
�.ty/

�
D exp�

�
�.ty/

�
� ˛.y; t/: (2.17)

The inclusion of any element y into the completed post-Lie algebra 2
L.T

pl
A / yields

a unique injective morphism from the completed free magmatic algebra bMy into it. We
define now the map

ıy WbMy !bMy

to be the unique derivation, with respect to the magmatic product �, such that ıyy D
y � y. For instance,

ıy.ıyy/ D ıy.y � y/ D .y � y/� y C y � .y � y/:

It is then clear that etıy is a one-parameter group of automorphisms for the product �.
This yields

d

dt
e�tıyy D �e�tıy ıy.y/ D �e

�tıy .y � y/ D �.e�tıyy � e�tıyy/:

This means that the function t 7! e�tıyy solves as well the post-Lie flow equation (2.16)
from which we deduce the intriguing identity

exp�
�
� �.ty/

�
� y D e�tıyy: (2.18)

The right-hand side of (2.18) is therefore the purely magmatic expression of the map ˛
introduced by A. V. Gavrilov in [14], and the left-hand side is its post-Lie reformulation.

The inverse of �.ty/, which we denote by �.ty/, is obviously characterized by

exp�.ty/ D exp�
�
�.ty/

�
: (2.19)

From this we deduce in an analogous manner the differential equation

P�.ty/ D dexp��1
��.ty/

�
exp�

�
�.ty/

�
� y

�
; �.0/ D 0:
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The first terms of the post-Lie Magnus expansion � and its inverse � are given by [3,
Appendix A]

�.y/ D y �
1

2
y � y C

1

12
y � .y � y/C

1

4
.y � y/� y C

1

12
Œy � y; y�C � � �

D y�
1

2
y�yC

1

6
y�.y�y/C

1

6
.y�y/�yC

1

12
Jy�y; yKC� � � ; (2.20)

�.y/ D y C
1

2
y � y C

1

6
y � .y � y/C

1

12
Œy; y � y�C � � �

D yC
1

2
y�yC

1

12
y � .y�y/C

1

12
.y�y/�yC

1

12
Jy; y�yKC� � � : (2.21)

Note that (2.20) and (2.21) follow from identity (2.3), which relates the Lie brackets

.y � y/� y � y � .y � y/C Œy � y; y� D Jy � y; yK:

We remark that the post-Lie Magnus expansion � and its inverse � make sense in any
complete graded post-Lie algebra.

Remark 7. Returning to the linear initial value problem (2.17), we see that exp�.�.ty//D
exp�.�.˛.y; t///, and therefore

�.ty/ D �
�
˛.y; t/

�
;

where the Magnus expansion

�
�
˛.y; t/

�
D

Z t

0

ds
X
n�0

.�1/n
Bn

nŠ
ad�.n/� ˛.y; s/:

Here, Bn are the Bernoulli numbers, B0 D 1, B1 D 1=2, B2 D 1=6, B3 D 0; : : : ; and ad�

refers to the fact that the Grossman–Larson Lie bracket is used. Note that the .�1/n factor
on the right-hand side affects only the first Bernoulli number B1. Computing up to fourth
order in t , we find

�
�
˛.y; t/

�
D ty �

t2

2
y � y C

t3

6

�
.y � y/� y C y � .y � y/

�
C
t3

12
Jy � y; yK

�
t4

24

��
.y � y/� y

�
� y C

�
y � .y � y/

�
� y C 2.y � y/� .y � y/

C y �
�
.y � y/� y

�
C y �

�
y � .y � y/

��
C
t4

24

q
y; .y � y/� y C y � .y � y/

y
C � � � :

This should be compared with the terms in (2.20).

2.5. Gavrilov’s K -map

We recall here A. V. Gavrilov’sK-map [14,18]. We give an explicit formula for its inverse
in terms of set partitions, and we show the link with noncommutative Bell polynomials [8,
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22, 32]. Finally, we recall the differential equation satisfied by the generating series [14,
Lemma 2]

K
�

exp�.ty/
�
D

X
n�0

tn

nŠ
K.y �n/:

As a consequence, its logarithm can be expressed in terms of the Magnus expansion (in
its right-sided version) applied to Gavrilov’s ˛-map [14, Section 5].

2.5.1. TheK -map and theD-algebra structure. Let .M;�/ be any magmatic algebra,
and let T .M/ be the tensor algebra over M , endowed with the D-algebra structure of
Section 2.2.1. For any element y 2 M , let ��y be the linear endomorphism of T .M/

defined by ��y .w/ D y � w for any w 2 T .M/. By (2.5), it is a derivation. The map

K W T .M/! T .M/

is recursively defined by K.1/ D 1, K.y/ D y for any y 2M , and

K.yU / D yK.U / �K ı ��y .U / (2.22)

for any y 2M and U 2 T .M/. In particular,

K.y1y2/ D y1y2 � y1 � y2

and

K.y1y2y3/ D y1K.y2y3/ �K ı �
�

y1
.y2y3/

D y1y2y3 � y1.y2 � y3/ � .y1 � y2/y3

� y2.y1 � y3/C y2 � .y1 � y3/C .y1 � y2/� y3:

The map K is clearly invertible, as K.U / � U is a linear combination of terms of strictly
smaller length than the length of U 2 T .M/. The inverse K�1 is uniquely determined by
K�1.1/ D 1, K�1.y/ D y for any y 2M , and the recursive relation

.Ly C �
�

y / ıK
�1
D K�1 ı Ly (2.23)

for any y 2 M , where Ly W T .M/ ! T .M/ is defined by Ly.U / WD yU . Recall the
Grossman–Larson product (2.9) on T .M/ given in Definition 3.

Theorem 3. The K-map is a unital algebra isomorphism from T .M/ equipped with the
Grossman–Larson product, .T .M/;�/, onto the tensor algebra .T .M/; �/.

Proof. Recall that for U; V 2 T .M/, we have U � V WD U.1/.U.2/ � V /. We prove

K.U � V / D K.U / �K.V /

by induction on the length of the tensor U 2 T .M/. The length zero case is trivial, and the
length one case is given by (2.22). Now, let us compute, with x 2M , using the induction
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hypothesis:

K
�
.xU / � V

�
D K.x � U � V / �K

�
.x � U/ � V

�
D K.x/ �K.U � V / �K.x � U/ �K.V /

D
�
xK.U / �K.x � U/

�
�K.V /

D K.xU / �K.V /:

2.5.2. An explicit formula for K�1 in terms of set partitions. An explicit formula for
K�1.y1 � � � yn/ is available in terms of set partitions of the strictly ordered set Œn� WD
¹1; : : : ; nº: for any such partition � , let us denote its blocks by B1; : : : ; Bj�j, where we
have ordered them according to their maximum:

maxB1 < � � � < maxBj�j:

For any block B , say, of size `, define the element yB 2M by

yB WD yb1 �
�
yb2 �

�
� � �� .yb`�1 � yb`/ � � �

��
;

where the elements b1< � � �<b` ofB are arranged in increasing order. For any partition � ,
let .y1 � � �yn/� 2 T .M/ be the element given by

.y1 � � �yn/
�
WD yB1 � � �yBj�j :

Proposition 6.
K�1.y1 � � �yn/ D

X
� set partition

of ¹1;:::;nº

.y1 � � �yn/
� :

Proof. We prove this result by induction on the length n. The cases n D 0 and n D 1 are
trivial, and the cases n D 2 and n D 3 read

K�1.y1y2/ D y1y2 C y1 � y2;

K�1.y1y2y3/ D y1y2y3 C y1.y2 � y3/C y2.y1 � y3/

C .y1 � y2/y3 C y1 � .y2 � y3/:

In the case of n� 2, we have a sum of two terms which correspond to the two partitions of
the set ¹1; 2º, one with two blocks and one with two single blocks, respectively. The case
n D 3 includes all set partitions of order three. Supposing the result is true up to length n,
we have, using (2.23),

K�1.y0y1 � � �yn/ D y0K
�1.y1 � � �yn/C y0 �K

�1.y1 � � �yn/

D

X
� set partition

of ¹1;:::;nº

y0.y1 � � �yn/
�
C y0 � .y1 � � �yn/

�
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D

X
� set partition

of ¹0;:::;nº;B1D¹0º

.y0y1 � � �yn/
�

C

X
� set partition

of ¹1;:::;nº

j�jX
jD0

yB1 � � �yBj�1yBjt¹0ºyBjC1 � � �yBj�j

D

X
� set partition

of ¹0;:::;nº;B1D¹0º

.y0y1 � � �yn/
�
C

X
� set partition

of ¹0;:::;nº;B1¤¹0º

.y0y1 � � �yn/
�

D

X
� set partition
of ¹0;:::;nº

.y0y1 � � �yn/
�:

Corollary 1. Gavrilov’s K-map is recursively given by

K.y1 � � �yn/
(2.13)
D y1K.y2 � � �yn/ �

nX
iD2

K
�
y2 � � � .y1 � yi / � � �yn

�
(2.24)

D y1 � � �yn �
X

� set partition
of ¹1;:::;nº; �¤y0

K
�
.y1 � � �yn/

�
�
; (2.25)

where y0 stands for the unique partition of ¹1; : : : ; nº with n blocks.

In other words, from Theorem 3 and Proposition 6, we have

y1 � � � � � yn D y1 � � �yn C
X

� set partition
of ¹1;:::;nº; �¤y0

.y1 � � �yn/
� ;

which is in line with Remark 5.
Extending the derivation �� WM ! Der.T .M// to an algebra homomorphism

y�� W T .M/! Endk
�
T .M/

�
;

and using (2.13) and (2.14) (we replace here yL� with y��), together with (2.24), we can
deduce a particular formula for the GL-product which already appeared in Gavrilov [16,
p. 1003]:

A � B D A.1/.A.2/ � B/ D A.1/y�
�

K.A.2//
B:

Remark 8. Let us consider the terms bn WD K�1.yn/ for some y 2M . We can see these
expressions as elements of the free magmatic algebra My generated by y. From (2.23),
we have

bn D .Ly C ıy/bn�1:

Hence, the bn’s are the noncommutative Bell polynomials ([32], see also [8, 22]).
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2.5.3. Gavrilov’s ˛ and � maps and the logarithm of K.exp�.ty//. The recursive
expression (2.25) does not deliver easily a closed formula. Gavrilov tackled the problem
from another angle in [14], by solving a first-order linear differential equation verified
by the generating function t 7! K.exp�.ty// 2 T .My/JtK. Namely, following reference
[14, Lemma 2], we have

d

dt
K
�

exp�.ty/
�
D K

�
exp�.ty/

�
� ˛.y; t/: (2.26)

Here, ˛ D ˛.y; t/ 2 MyJtK solves the initial value problem (2.16) [14, Lemma 1]. The
first terms of the series ˛.y; t/ are given by

˛.y; t/ D e�tıyy

D y � ty � y C
t2

2

�
.y � y/� y C y � .y � y/

�
�
t3

3Š

��
.y � y/� y

�
� y C

�
y � .y � y/

�
� y C 2.y � y/� .y � y/

C y �
�
.y � y/� y

�
C y �

�
y � .y � y/

��
C � � �

D � t C
t2

2Š

�
C

�
�
t3

3Š

�
C C2 C C

�
C� � � : (2.27)

In the last equality, we have represented the monomials in the free magmatic algebra
.My ;�/ as planar binary trees, the magmatic product� being the right Butcher product ˘
here. In view of (2.10), the derivation ıy is given by the left grafting yÕ �. We encounter
a planar version of the so-called Connes–Moscovici coefficients in front of the trees, which
can be interpreted as the number of possible levelings of the corresponding planar binary
tree obtained by inverse (right) Knuth rotation [10]. The ordinary (non-planar) Connes–
Moscovici coefficient of a rooted tree is obtained by summing up the coefficients of its
planar representatives. Introducing one more generator z, the element

�.ty; z/ WD e�tıyz 2 T .My;z/JtK (2.28)

satisfies the differential equation [14, Lemma 3]

d

dt
�.ty; z/ D �ıy.e

�tıyz/ D �e�tıy .y � z/ D �˛.y; t/� �.ty; z/:

Remark 9. Going back to (2.18), we deduce from (2.27) and (2.28), using Proposition 2,

˛.y; t/ D e�tıyy D exp�
�
� �.ty/

�
� y;

�.ty; z/ D e�tıyz D exp�
�
� �.ty/

�
� z:

(2.29)

The solution of (2.26) is given by the exponential of the Magnus expansion [23] (in its
right-sided version):

K
�

exp�.ty/
�
D exp�

�Z t

0

P�
�
˛.y;�/

�
.s/ ds

�
;
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where P� D P�ŒA� is implicitly defined for any series A D AŒt� in the indeterminate t by

d

dt
�ŒA�.t/ D

ad�ŒA�
1 � e�ad�ŒA�

A.t/ D

1X
nD0

.�1/nBn

nŠ
adn�ŒA�A.t/: (2.30)

As before, Bn are the modified Bernoulli numbers. The integration of equation (2.30)
leads to an infinite series for �ŒA�, the first terms of which are

�ŒA�.t/ D

Z t

0

A.s1/ds1 C
1

2

Z t

0

� Z s1

0

A.s2/ds2; A.s1/

�
ds1 C � � � :

Indeed, we have
P�ŒsA� D

X
r�1

sr zAr ;

where s is an indeterminate, with zA1 D A, zA2 D 1
2
A F� A and the recursive procedure

zAr D
X
m�0

.�1/mBm

mŠ

X
r1C���CrmDr�1

zAr1 F�
�
zAr2 F�

�
� � � F� . zArm F� A/ � � �

��
:

The binary operation F� is the pre-Lie product defined by

.A F� B/.t/ WD

� Z t

0

A.s/ ds; B.t/

�
:

For A.t/ WD ˛.y; t/ D
P
`�0 ˛`.y/t

`, we therefore get

Z.ty/ WD log�K
�

exp�.ty/
�
D

X
n�1

Zn.y/t
n;

where the coefficients Zn.y/ are recursively given by Z1.y/ D y and

.nC 1/ZnC1.y/ D
X
m�0

.�1/mBm

mŠ

X
a1C���CamC`Dn;

aj�1;`�0

adZa1 .y/ ı � � � ı adZam .y/
�
˛`.y/

�
:

It turns out that the series Z D Z.ty/ is closely related to the post-Lie Magnus expansion
�D�.ty/. Indeed, the definition of �, recalled in Section 2.4, and Theorem 3, which states
that the K-map is a unital algebra isomorphism from .T .M/; �/ to .T .M/; �/, together
with identity (2.15) yield

Z.ty/ D log�K
�

exp�.ty/
�

D log�K
�

exp�
�
�.ty/

��
D log� exp�

�
K
�
�.ty/

��
D K

�
�.ty/

�
: (2.31)
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Safely dropping the indeterminate t , the map Z WD K ı � makes sense as a map from
2Lie.M/ into itself, whereM is any graded magmatic algebra and where the hat stands for
completion.

From (2.20), we therefore get

Z.ty/ D ty �
t2

2
y � y C

t3

6
y � .y � y/C

t3

6
.y � y/� y C

t3

12
Œy � y; y�C � � � :

Here, we use K.Jy � y; yK/ D Œy � y; y�. The series Z in turn gives rise to Gavrilov’s
ˇ-map [14, Lemma 6]. We will return to this point in Section 3 below.

3. Framed Lie algebras and Gavrilov’s ˇ map

We now recall Gavrilov’s notion of framed Lie algebra [14].

Definition 4 ([14]). A framed Lie algebra is a triple .l;�; ŒŒŒŒ: ; :����/ where � is any bilinear
product on the vector space l, and where ŒŒŒŒ: ; :���� is a Lie bracket on l.

No compatibility relations of any sort are requested between the magmatic product �
and the Lie bracket, which we denote in bold, ŒŒŒŒ: ; :����, to stress the distinction with the two
Lie brackets, Œ�; �� and J�; �K, of a post-Lie algebra. An obvious example is given by the Lie
algebra of vector fields, lDXM, on a manifold M endowed with an affine connection r.
In this case, the magmatic product is given byX � Y WD rXY , and the natural Lie bracket
is the usual Jacobi bracket.

The free framed Lie algebra generated by a single element y is denoted by Ly , and
its completion with respect to the natural grading is denoted by yLy . One also denotes by
U.Ly/ (resp., yU.Ly/) the enveloping algebra of .Ly ; ŒŒŒŒ: ; :����/ (resp., its completion). The
canonical projection

p W T .Ly/! U.Ly/

readily extends to the completion. Its restriction to the free Lie algebra Lie.Ly/ generated
by Ly is a Lie algebra morphism from .Lie.Ly/; Œ�; ��/ onto .Ly ; ŒŒŒŒ: ; :����/. Gavrilov showed
the following lemma.

Lemma 3 ([14, Lemma 6]). There exists a unique series ˇ D ˇ.y/ in the completion yLy

such that
p ıK

�
exp�.y/

�
D exp

�
ˇ.y/

�
2 yU.Ly/:

The series ˇ.ty/ verifies ˇ.0/ D 0 and

d

dt
ˇ.ty/ D

adˇ.ty/
1 � e�adˇ.ty/

˛.y; t/:

Proof. The series ˇ.ty/ D p.Z.ty//, with Z defined in Section 2.5.3, is a solution to the
problem. Uniqueness, as a solution to an initial value problem, follows.
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From (2.31), the series ˇ.ty/ is explicitly given by

ˇ.ty/ D p ıK ı �.ty/: (3.1)

Safely dropping the indeterminate t , the map

ˇ WD p ıK ı �j yLy

(3.2)

is a linear endomorphism of the completed framed Lie algebra yLy . We therefore have the
following from (2.20):

ˇ.y/ D y �
1

2
y � y C

1

6
y � .y � y/C

1

6
.y � y/� y C

1

12
ŒŒŒŒy � y; y����C � � � :

Remark 10. Note that (3.2) defines Gavrilov’s ˇ-map in the completion of any graded
framed Lie algebra. It is obviously bijective due to the fact that ˇ is equal to the identity
modulo higher degree terms.

4. Affine connections on manifolds and covariant derivation

4.1. Reminders on connections, torsion, curvature, and Bianchi identities

Let E be a vector bundle on a smooth manifold M, and let �.E/ be the C1.M/-module
of its smooth sections. An affine connection on E is a bilinear map

r W XM � �.E/! �.E/

.X; s/ 7! rXs;

subject to the relations

rfXs D f rXs;

rX .f s/ D .X � f /s C f rXs
(4.1)

for any f 2 C1.M/ and any s 2 �.E/. For clarity, we write rE if the vector bundle has
to be made precise, and we use the convenient notation

X � s WD rXs:

This includes the case of the trivial line bundle L, where �.L/ then coincides with
C1.M/, and the natural connection is given by

X � f WD X � f D hDf;Xi:

The Leibniz rule (4.1) can therefore be rewritten as follows:

X � .f s/ D .X � f /s C f .X � s/:
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Given a connection on two vector bundles,E and F , connections onE˝F and Lin.E;F /
D E� ˝ F are naturally given respectively by the Leibniz rules

X � .s ˝ s0/ D .X � s/˝ s0 C s ˝ .X � s0/;

.X � '/.s/ D X � '.s/ � '.X � s/:

The curvature of an affine connection is given by

r.X; Y /s WD X � .Y � s/ � Y � .X � s/ � ŒŒŒŒX; Y ����� s

and is also denoted by R.X; Y; s/. It is skew symmetric in .X; Y / and C1-linear with
respect to each of the three arguments. In the case E D TM, the torsion is given by

t .X; Y / WD X � Y � Y �X � ŒŒŒŒX; Y ����:

This is skew-symmetric, and C1-linear with respect to both arguments. The two Bianchi
identities are given byI

XYZ

R.X; Y;Z/ D

I
XYZ

.X � t /.Y;Z/ �

I
XYZ

t
�
X; t.Y;Z/

�
; (4.2)I

XYZ

.X �R/.Y;Z;W / D

I
XYZ

R
�
X; t.Y;Z/;W

�
(4.3)

for any X; Y;Z;W 2 XM. Here, the symbol
H

stands for summing over circular permu-
tations of the three arguments. For a detailed account, see e.g. [20].

4.2. Higher-order covariant derivatives

We keep the notations from the previous paragraph and consider the post-Lie algebra
associated with a manifold with connection. Let R WD C1.M/. The R-module XM D

Der.R/ is denoted by V . We adopt the notations X � Y WD rXY , for X; Y 2 V , and
X � f WD X � f , for f 2 R. Let DM be the algebra of differential operators on M,
which is the subalgebra of linear operators on C1.M/ generated by the vector fields and
the multiplication operators �f W g 7! fg.

Let A.TmM/ and Lie.TmM/ be the free unital associative algebra (i.e. the tensor
algebra) and the free Lie algebra both defined over the tangent space at any point m 2M.
Each of these free algebras put together form respectively the free unital algebra bundle
AM and the free Lie algebra bundle LieM. The free R-associative unital algebra A D

TR.V/ on V is the R-module of sections of AM. We clearly have

A D TR.V/=C ;

where C is the two-sided ideal generated by the elements fX � Y � X � f Y with f 2
C1.M/ and X; Y 2 V . We denote by � the natural projection from TR.V/ onto A (let
us recall that TR.V/ is the free D-algebra generated by the magmatic algebra .V ;�/).
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Similarly, the R-module g of sections of LieM is the free R-Lie algebra LieR.V/ on the
vector fields, and we have

g D Qg=.C \ Qg/;

where Qg D LieR.V/ is the free post-Lie algebra generated by .V ;�/. The tautological
action of V by derivations on R is extended to Qg as follows:

ŒX; Y �� f WD X � .Y � f / � .X � Y /� f � Y � .X � f / � .Y �X/� f;

and similarly, for X 2 V and U 2 TR.V/,

.X � U/� f WD X � .U � f / � .X � U/� f:

These rules, which define the action recursively with respect to the degree, are adapted
from the second post-Lie axiom and the second D-algebra axiom, respectively.

Theorem 4. The map � W TR.V/ �R! R defined above factorizes into a map

� W A �R! R:

In other words, IdV extends to a surjective R-linear morphism

� W A! DM:

It restricts to
� W g! V :

Proof. It suffices to prove that

�.x1 � � � xn/ D .x1 � � � xn/� y

is C1.M/-linear in each argument xi 2 XM. This is obvious for n D 1 and proven by
induction for n � 2 using (2.5) and (2.6):

.f1x1 � � � fnxn/� y

D f1x1 �
�
.f2x2 � � � fnxn/� y

�
�
�
f1x1 � .f2x2 � � � fnxn/

�
� y

D f1x1 �
�
f2 � � � fn.x2 � � � xn/� y

�
�
�
f1x1 � .f2x2 � � � fnxn/

�
� y

D f1 � � � fnx1 � .x2 � � � xn � y/C
�
f1x1 � .f2 � � � fn/

�
.x2 � � � xn � y/

� f1

nX
iD2

�
f2x2 � � �

�
.x1 � fi /xi C fi .x1 � xi /

�
� � � xn

�
� y

D f1 � � � fn
�
x1 �

�
.x2 � � � xn/� y

�
�
�
x1 � .x2 � � � xn/

�
� y

�
:

Remark 11. The previous formalism can be generalized to any vector bundleE endowed
with a connection rE , replacing XM by the C1.M/-module �.E/ of smooth sections
of E. The higher-order covariant derivatives are also recursively defined by (2.6), and
Theorem 4 holds for the action � W TR.V / � �.E/! �.E/.
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We note that several notations are used in the literature for higher covariant derivatives;
namely [16],

�.x1 � � � xn/y D .x1 � � � xn/� y

D r
n
x1���xn

y

D .x1 � � � xn/r
ny

D r
ny.xnI � � � I x1/:

Proposition 7. g (resp., A) is a post-Lie algebra (resp., a D-algebra), and g D d.A/.

Proof. It is sufficient to show that the Lie ideal C 0 WD C \ Qg, generated by the elements
ŒfA;B�� ŒA; fB�, f 2R, A;B 2 Qg, is also an ideal for the product� extended to Qg. Let
U;A;B 2 g and f 2 R. From the straightforward computation

U �
�
ŒfA;B� � ŒA; fB�

�
D
�
.U � f /A;B

�
C
�
f .U � A/;B

�
C ŒfA;U � B�

� ŒU � A; fB� �
�
A; .U � f /B

�
�
�
A; f .U � B/

�
;

we get U � C 0 � C 0 for any U 2 g. From�
ŒfA;B� � ŒA; fB�

�
� U

D fA� .B � U/ � .fA� B/� U � B � .fA� U/

C .B � fA/� U � A� .fB � U/C .A� fB/� U

C fB � .A� U/ � .fB � A/� U

D �.A� f /B � U C .A� f /B � U � .B � f /A� U C .B � f /A� U

D 0;

we get C 0 � U � C 0 for any U 2 g. The proof of the fact that A is aD-algebra is similar,
and the last assertion is clear.

Let us recall two more Lie brackets at hand:

• The usual Jacobi bracket ŒŒŒŒ: ; :���� on V , defined by

ŒŒŒŒX; Y ����� f D X � .Y � f / � Y � .X � f /

for any X; Y 2 g and any f 2 R.

• The Grossman–Larson bracket J�; �K on g, which satisfies for any Z 2 g

JX; Y K�Z D X � .Y �Z/ � Y � .X �Z/:

From the post-Lie algebra identity JX;Y KD ŒX; Y �CX � Y � Y �X , for X;Y 2 g, we
get

�JX; Y K D �.X/ ı �.Y / � �.Y / ı �.X/ D ŒŒŒŒ�.X/; �.Y /����: (4.4)
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Hence, .LieM; J�; �K/ is a Lie algebroid on M with anchor map �. We refer the reader to
[29] which discusses in detail the fact that post-Lie algebroids are action algebroids.

The canonical projection p W TR.V/!U.V/ restricts to p W Qg!V . The two following
diagrams commute (see also [16, Lemma 2]):�

TR.V/;�
� K

�
//

�

����

�
TR.V/; �

�
p

����

.A;�/

�
)) ))

U.V/

z�
����

DM;

�
Qg; J�; �K

� K

�
//

�
����

�
Qg; Œ�; ��

�
p

����

�
g; J�; �K

�
�

(( ((
V :

Here, the map z� stands for the natural projector from the universal enveloping algebra
U.V ; ŒŒŒŒ: ; :����/ onto DM, and, in view of Theorem 3, all arrows are algebra (resp., Lie algebra)
morphisms.

Remark 12. Gavrilov’s ˇ-map is a bijection from xV into itself, where xV is the com-
plete filtered framed Lie algebra obtained from V D XM by extending the scalars from
real numbers R to power series without constant terms, in one or several indeterminates;
e.g., xV D tVJtK or xV D tVJt; sK C sVJt; sK. On the other hand, both graded post-Lie
algebras, Qg and g, come with their own post-Lie Magnus expansions, z� and �. Using the
natural extensions of z�, � and the projection � to the associated completed versions of Qg
and g, we have

� ı z� D � ı �:

In view of (3.1), we therefore have

ˇ D p ıK ı z� ı | D � ı � ı z� ı | D � ı � ı �

where | (resp., �) is the natural injection of xV into NQg (resp., Ng). Hence,

ˇ D � ı �j xV
: (4.5)

The situation can be summarized by the following commutative diagram:

NQg
z�

�
//

�

����

�
NQg; J�; �K

� K

�
//

�

����

�
NQg; Œ�; ��

�
p

����

Ng
�

�
//
�
Ng; J�; �K

�
�

(( ((xV
5�

|

HH

0�
�

AA

ˇ

�
// xV :
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4.3. Differential operators

It is easily seen that we can identify the algebra DM of differential operators withU.V/=	,
where 	 is the two-sided ideal generated by the elements X.f v/ � .fX/v � .X � f /v
for f 2 C1.M/, X 2 V and v 2 U.V/.

Now, we develop Example 2 outlined above. Supposing that the connection is flat
with constant torsion, the D-algebra structure on DM will immediately arise in view of
the following result.

Lemma 4. When the affine connection r on M is flat with constant torsion, .V ;�; ŒŒŒŒ: ; :����/
is a post-Lie algebra, and both projections T .XM/

p
�!! U.XM/

z�
�!! DM are D-algebra

morphisms.

Proof. It suffices to show that the ideal 	 is also a two-sided ideal with respect to the mag-
matic product �. The proof, left to the reader, uses the cocommutativity of the coproduct
on U.XM/ and proceeds similarly to the one of Proposition 5.

5. Special polynomials

We now study Gavrilov’s special polynomials [14] from the post-Lie viewpoint.

5.1. Torsion and curvature revisited in the post-Lie framework

We use the notations introduced at the beginning of Section 4.

Definition 5. The torsion of two elements a; b 2 V is defined by

t .a � b/ WD a � b � b � a � ŒŒŒŒa; b����:

The curvature of three elements a; b; c 2 V is defined by

r.a � b/.c/ WD a � .b � c/ � b � .a � c/ � ŒŒŒŒa; b����� c:

This is sometimes denoted by R.a � b � c/. One can show that t 2 LinR.V ˝R V ;V/

(a tensor of type .2; 1/) and that R 2 LinR.V ˝R V ˝R V ;V/ (a tensor of type .3; 1/).
We can rewrite the curvature in our post-Lie framework as follows:

r.a � b/.c/ D s.a � b/� c: (5.1)

On the right-hand side of (5.1), we identify a new element.

Definition 6. The curvature element s.a � b/ 2 g is defined by

s.a � b/ WD Ja; bK � ŒŒŒŒa; b���� D Œa; b�C t .a � b/: (5.2)

In turn, s.a � b/ permits to express the torsion in terms of the three Lie brackets
involved:

t .a � b/ D Ja; bK � Œa; b� � ŒŒŒŒa; b����:
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5.2. The ideals J and K

Proposition 8. Let J WD Ker� � g, and let zJ be the ideal of g, for the Grossman–Larson
bracket (GL-bracket), generated by the curvature elements s.a � b/, a; b 2 V . Then,

zJ D J:

We also have the decomposition
g D V ˚ J: (5.3)

Proof. The direct sum decomposition (5.3) is immediate in view of V D �.g/ and J D

.I � �/.g/. From (4.4) and (5.2), we immediately get the inclusion zJ � J, as well as the
fact that J is an ideal for the GL-bracket.

Conversely, we use the grading g D ˚n�0gn by the length of the iterated brackets.
Looking at the definition of the GL-bracket, it is easy to show that g.m/ WD ˚miD1gi is
the R-linear span of iterated GL-brackets of length smaller than or equal to m. By using
Jacobi identity as many times as necessary, any such iterated bracket can be rewritten as a
sum X

i

Jai ; viK

with ai 2V and vi 2 g.n�1/. Suppose now that any element of g.n�1/ \J is in g.n�1/ \ zJ.
This is trivial for n � 1 D 1 and clear for n � 1 D 2 in view of (5.2). Considering any
element u D

P
iJai ; viK 2 g.n/, we have

u � �.u/ D
X
i

�
Jai ; viK � ŒŒŒŒai ; �.vi /����

�
D

X
i

Jai ; vi � �.vi /KC
X
i

�
Jai ; �.vi /K � ŒŒŒŒai ; �.vi /����

�
D

X
i

Jai ; vi � �.vi /KC
X
i

s
�
ai � �.vi /

�
;

which proves J � zJ by induction on n.

Proposition 9. For any u 2 g and b; c; d 2 V , we have�
u� r.b � c/

�
.d/ D Ju; s.b � c/K� d;�

.u� r/.b � c/
�
.d/ D

�
Ju; s.b � c/K � s

�
.u� b/ � c

�
� s

�
b � .u� c/

��
� d:

Proof. From the Leibniz rule, we have

u�
�
s.b � c/� d

�
D u�

�
r.b � c/.d/

�
D
�
u� r.b � c/

�
.d/C r.b � c/.u� d/

D
�
u� r.b � c/

�
.d/C s.b � c/� .u� d/: (5.4)
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Now, we have

u�
�
s.b � c/� d

�
� s.b � c/� .u� d/ D Ju; s.b � c/K� d: (5.5)

From (5.4) and (5.5), we get�
u� r.b � c/

�
.d/ D Ju; s.b � c/K� d;

which proves the first assertion. The second one comes from the first together with the
Leibniz rule

.u� r/.b � c/.d/ D
�
u� r.b � c/

�
.d/ � r

�
.u� b/ � c

�
.d/ � r.b � .u� c/

�
.d/

D
�
u� r.b � c/

�
.d/ � s

�
.u� b/ � c

�
� d � s.b � .u� c/

�
� d:

Now, let us consider the map

ˆ W g! EndR.V/

u 7! u� �;

and introduce K WD Kerˆ. Using earlier notation, ˆ.u/ D L�u .

Proposition 10. The restriction of ˆ to J takes its values into EndR.V/. Moreover, K is
an ideal for the Grossman–Larson bracket, and we have the strict inclusions

¹0º ¨K ¨ J:

Proof. The first assertion is immediate from the Leibniz rule. From

Ju; vK� a D u� .v � a/ � v � .u� a/

for any u; v 2 g and a 2 V , we getˆ.Ju; vK/D Œˆ.u/;ˆ.v/� (bracket of operators on V );
hence, K is an ideal for the Grossman–Larson bracket.

Now, for any f 2R, a 2 V , and u 2K , we have u� aD u� faD 0, and therefore,
u� f D 0 by the Leibniz rule; hence, K � J. Moreover, for any a; b 2 V , the curvature
element s.a � b/ belongs to J but has no reason to belong to K unless the connection is
flat. Finally, from the second identity of Proposition 9 and from the differential Bianchi
identity (4.3), the expression

Ja; s.b � c/KCJb; s.c � a/KCJc; s.a � b/K� s
�
a � t .b � c/

�
� s
�
b � t .c � a/

�
� s
�
c � t .a � b/

�
Cs
�
a � .b � c � c � b/

�
C s

�
b � .c � a � a � c/

�
C s

�
c � .a � b � b � a/

�
defines a nontrivial element of K , which can also be rewritten as

Ja; s.b � c/KC Jb; s.c � a/KC Jc; s.a � b/KC s
�
a � Œb; c�

�
C s

�
b � Œc; a�

�
C s

�
c � Œa; b�

�
2K:
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5.3. Lie monomials

We denote by T rs .V/ the space of tensors of type .r; s/; namely,

T rs .V/ WD V ˝R � � � ˝R V„ ƒ‚ …
r

˝R V� ˝R � � � ˝R V�„ ƒ‚ …
s

;

such that T 10 .V/ WD V and T 00 .V/ WD R.

Definition 7. A Lie monomial of degree n is an R-linear map ˛ W T n0 .V/! gn defined
by an iteration of Lie brackets. In particular, it is a tensor of type .n; n/.

As an example, consider

˛.a � b � c � d � e/ WD
�
Œa; b�;

�
c; Œd; e�

��
;

which defines a Lie monomial of degree 5. The following statement is straightforward and
left to the reader.

Proposition 11. A degree n Lie monomial w 7! ˛.w/ 2 gn defines three tensors

˛ 2 T nn .V/;

�t˛ WD � ı ˛ 2 T
1
n .V/; (5.6)

R˛ WD x1 � � � xnC1 7!
��
.I � �/ ı ˛

�
.x1 � � � xn/

�
� xnC1 2 T

1
nC1.V/:

Definition 8. The tensors t˛ and R˛ are respectively the generalized torsion and the gen-
eralized curvature associated with the Lie monomial ˛. Note the minus sign in (5.6), so
that the definition matches torsion and curvature for ˛.a � b/ WD Œa; b�. For later use, we
also define the generalized curvature element

s˛ WD .I � �/ ı ˛;

so that
R˛.x1 � � � xnC1/ D s˛.x1 � � � xn/� xnC1:

Let us give the V ˚ J decomposition of Lie monomials of low degrees:

• Degree one: ˛ D IdV and the J-part is equal to zero.

• Degree two:
˛.a � b/ D Œa; b� D s.a � b/„ ƒ‚ …

2J

� t .a � b/„ ƒ‚ …
2V

:

The torsion t D � ı ˛ belongs to T 12 .V/; the curvature R˛ D R belongs to T 13 .V/.

• Degree three:

˛.a � b � c/ D
�
Œa; b�; c

�
D Js.a � b/; cKC s

�
.c � a/ � b

�
C s

�
a � .c � b/

�
� s

�
t .a � b/ � c

�„ ƒ‚ …
2J

� �s.a � b/� c C .c � t /.a � b/C t
�
t .a � b/ � c

�„ ƒ‚ …
2V

: (5.7)



M. J. H. Al-Kaabi, K. Ebrahimi-Fard, D. Manchon, and H. Z. Munthe-Kaas 326

5.4. Special polynomials

We use the language of operads here. Let us recall that a S-module P is a collection
.Pn/n�0 of modules over some base commutative unital ring, together with a right action
of the symmetric groupoid S D

F
n�0 Sn, i.e., a right action of the symmetric group Sn

on Pn for each n � 0. An operad is a S-module P together with global compositions


 W Pn ˝Pk1 ˝ � � � ˝Pkn ! Pk1C���Ckn

functorial with respect to symmetric group actions, and subject to associativity and uni-
tality axioms [21, 27]. We denote by P .V/ the operad of R-multilinear maps3 on V ;
namely, Pn.V/ D HomR.V

˝n;V/. The symmetric groups act on the right by permuting
the variables, and the compositions 
 are obviously defined. The unit for the composition
is IdV 2 P1.V/.

A monomial of degree (also named arity) n � 0 is a nonzero element of Pn.V/. A
polynomial is a finite sum of monomials, possibly of different arities.

Definition 9. Let us introduce three particular families of polynomials, defined as follows.

• A geometrically special polynomial [17] is a polynomial ! for which there exists an
R-linear map z! WA! V such that ! D z! ı � , where � is the natural projection from
TR.V/ onto A.

• A special polynomial [14] is a polynomial made, by means of iterated compositions,
of derivatives of torsion and curvature, possibly permuted.

• A polynomial of Lie type is a polynomial made, by means of iterated compositions,
of derivatives of t˛’s and R˛’s (where ˛ is a Lie monomial), possibly permuted.

The corresponding sets are respectively denoted by PR.V/, �.V/, and PLie.V/. It is
obvious from Definition 9 above that those are three suboperads of P .V/. More precisely,
�.V/ is the suboperad generated by ¹rnt;rnR; n � 0º, and PLie.V/ is the suboperad
generated by ¹rnt˛;rnR˛; n� 0; ˛ Lie monomialº. For later use, we define an extended
version.

Definition 10. An extended geometrically special polynomial [17] is a finite sum of
monomials ! W V˝n ! DM for which there exists an R-linear map z! W V˝n

R
! DM

such that ! D z! ı � .

The higher-order covariant derivative � W V˝n!DM is an example of extended geo-
metrically special monomial.

The inclusion �.V/ � PR.V/ holds; i.e., any special polynomial is geometrically
special, and the reciprocal is conjectured [14, Section 7]. The inclusion PLie.V/�PR.V/

is obvious from Proposition 11. We partly answer Gavrilov’s conjecture as follows.

Theorem 5. PLie.V/ D �.V/.

3The standard notation in the literature is End V or Endop V .
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Proof. The inclusion �.V/ � PLie.V/ is obvious. In order to show the reverse inclusion,
it suffices to prove that the generalized curvature and torsion t˛ and R˛ are special poly-
nomials for any Lie monomial ˛. We proceed by induction on the degree: the claim is
obvious in degrees one and two, and for ˛.a � b � c/ D ŒŒa; b�; c�, we have, from (5.7),

t˛.a � b � c/ D R.a � b � c/ � .c � t /.a � b/ � t
�
t .a � b/ � c

�
and

R˛.a � b � c � d/ D �.c �R/.a � b � d/ �R
�
t .a � b/ � c � d

�
;

which proves the claim. By an iterated use of the Jacobi identity, any Lie monomial of
degree nC 1 can be written as a linear combination of Lie monomials of the form

˛.x1 � � � xnC1/ D
�
xj ; ˇ.x1 � � � bxj � � � xnC1/�;

where ˇ is a Lie monomial of degree n. For example, consider the equality�
Œa; b�; Œc; d �

�
D �

�
d;
�
Œa; b�; c

��
C
�
c;
�
Œa; b�; d

��
:

We therefore compute, with X WD x1 � � � bxj � � � xnC1:

˛.x1 � � � xnC1/ D
�
xj ; ˇ.x1 � � � bxj � � � xnC1/�

D Jxj ; ˇ.X/K � xj � ˇ.X/C ˇ.X/� xj
(2.5)
D Jxj ; ˇ.X/K � ˇ.xj �X/C ˇ.X/� xj
D �Jxj ; tˇ .X/KC tˇ .xj �X/ � tˇ .X/� xj
C Jxj ; sˇ .X/K � sˇ .xj �X/C sˇ .X/� xj
D �Jxj ; tˇ .X/KC ŒŒŒŒxj ; tˇ .X/����C tˇ .xj �X/ � tˇ .X/� xj
� ŒŒŒŒxj ; tˇ .X/����C Jxj ; sˇ .X/K � sˇ .xj �X/C sˇ .X/� xj
D �s

�
xj � tˇ .X/

�
� t
�
xj � tˇ .X/

�
� .xj � tˇ /.X/

C Jxj ; sˇ .X/K � sˇ .xj �X/C sˇ .X/� xj

from which we get

t˛.x1 � � � xnC1/ D t
�
xj � tˇ .X/

�
C .xj � tˇ /.X/ �Rˇ .X � xj /

and

R˛.x1 � � � xnC2/ D
�
Jxj ; sˇ .X/K � s

�
xj � tˇ .X/

�
� sˇ .xj �X/

�
� xnC2

D xj �
�
sˇ .X/� xnC2

�
� sˇ .X/� .xj � xnC2/

�R.xj � tˇ .X/ � xnC2/ �Rˇ
�
.xj �X � xnC2/

�
D xj �Rˇ .X � xnC2/ �Rˇ

�
X � .xj � xnC2/

�
�R.xj � tˇ .X/ � xnC2/ �Rˇ

�
.xj �X/ � xnC2

�
D .xj �Rˇ /.X � xnC2/ �Rˇ

�
.xj �X/ � xnC2

�
;

which ends up the induction step and therefore proves the result.
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x

tv.x/

sw.x/

sW.y/

q�.tv; sw/.x/

y D exprx tv.x/

z D expry sW.y/ D exprx q�.tv; sw/.x/

Figure 1. Gavrilov’s double exponential.

6. Gavrilov’s double exponential

Gavrilov’s double exponential [14] is a formal series in two indeterminates, t and s, with-
out a constant term, which can be explicitly written as follows:

q�.tv; sw/ D ˇ
�1
�

BCH
®
ˇ.tv/; ˇ

�
s�.tv; w/

�¯�
: (6.1)

Here, v and w are two vector fields on a smooth manifold M endowed with an affine
connection r. The notation BCH refers to the usual Baker–Campbell–Hausdorff series in
the completed Lie algebra

xV D
�
tXMJs; tKC sXMJs; tK; ŒŒŒŒ: ; :����

�
;

and ˇ stands for Gavrilov’s ˇ-map described earlier in Section 3. The map � was intro-
duced in Section 2.5.3. The double exponential (6.1) can be informally described in geo-
metrical terms as follows: starting from a point x 2M in the direction given by the vector
field v at x and following the geodesic exprx t

0v.x/ up to time t 0 D t , one reaches the
point y D exprx tv.x/ 2M. Let W.y/ be the vector field w at x parallel-transported to
the point y. Following the geodesic expry t

0W.y/ up to time t 0 D s, one reaches a third
point z D expry sW.y/ on M. Gavrilov’s double exponential permits to express this point
following a geodesic starting from x 2M:

z D exprx q�.tv; sw/.x/ 2M:

6.1. Heuristic approach

Let us briefly outline how formula (6.1) can be heuristically obtained from this geometric
description. Any tangent vector u at any point x 2 M gives rise to a vector field on M

(at least on a sufficiently small neighborhood of x) by parallel-transporting u at any point
x0 along the unique geodesic joining x to x0. We denote somewhat abusively by ˇ.u/ this
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vector field, and we denote its flow by exp tˇ.u/ or expˇ.tu/. Let ı be the unique tangent
vector at x such that x0 D exprx .ı/. We denote by �.ı; u/ the parallel transport of u at x0

along the geodesic t 7! exprm.tı/. Figure 1 can be read as the composition of two flows:

expˇ.tv/ expˇ.sW / D expˇ
�
q�.tv; sw/

�
I

hence,
expˇ.tv/ expˇ

�
�.tv; sw/

�
D expˇ

�
q�.tv; sw/

�
; (6.2)

which gives (6.1). The value of the series q�.tv; sw/ at point x indeed depends only on the
values at x of the two vector fields v andw [14, Proposition 4]. We will give in Section 6.2
our own proof of this crucial fact (Remark 13).

6.2. Another expression of the double exponential

As before, let R D C1.M/, let V D .XM;�; ŒŒŒŒ: ; :����/ be the framed Lie algebra of vector
fields, and let .g;�; Œ�; ��/ D LieR.V/ be the post-Lie algebra defined in Section 4.2. Let
1U.g/ be the completion of the enveloping algebra of g, endowed with both associative
products � and the GL-product, �.

Proposition 12. Let v; w 2 g, and let Qw 2 Og such that .exp� v/� Qw D w. Then, the fol-
lowing holds in 1U.g/:

exp� v � exp� Qw D exp� z�.v; w/

with

z�.v; w/ D BCH�.v; w/ D v C w C
1

2
Œv; w�C

1

12

�
Œv; w�; w � v

�
C � � � :

Proof. Using that exp� v is grouplike for the coproduct�� and thatL�exp� v D .exp� v/��
is an automorphism for the product �, we get

exp� v � exp� Qw D exp� v �
�
.exp� v/� exp� Qw

�
D exp� v �

�
exp�

�
.exp� v/� Qw

��
D exp� v � exp�w

D exp� z�.v; w/:

From (4.5), ˇ D � ı �j xV, and (6.2), we get

�
�

exp� �.tv/ � exp� �
�
�.tv; sw/

��
D �

�
exp� �

�
q�.tv; sw/

��
I

hence,
�
�

exp�.tv/ � exp�
�
�.tv; sw/

��
D �

�
exp�

�
q�.tv; sw/

��
:

From Proposition 12 together with (2.29), saying that �.tv; sw/ D exp�.��.tv// � sw,
we therefore get

�
�

exp�
�
z�.tv; sw/

��
D �

�
exp�

�
q�.tv; sw/

��
: (6.3)
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This in turn yields

�
�
z�.tv; sw/

�
D �

�
q�.tv; sw/

�
modulo J:

Bearing in mind that q�.tv; sw/ belongs to xV contrarily to z�.tv; sw/, and using (4.5)
again, we finally get the following theorem.

Theorem 6. Gavrilov’s double exponential can be alternatively expressed as follows:

q�.tv; sw/ D ˇ
�1
�
� ı �

�
z�.tv; sw/

��
:

Remark 13. As already proved by Gavrilov ([15, main Theorem] and [14, Section 4]),
for any x 2M, the (formal) tangent vector q�.tv; sw/.x/ depends only on the two tan-
gent vectors v.x/ and w.x/. Our interpretation of this fact in the post-Lie framework
is the following: observe that the expression �.exp�.z�.tv; sw/// is geometrically special
in the sense of Definition 10. In other words, for any function f 2 R, the expression
�.exp�.z�.tv; sw///f .x/ depends on the vector fields v and w through v.x/ and w.x/
alone. Identity (6.3) then implies the same for �.exp�.q�.tv; sw///f .x/. As q�.tv; sw/ is
a (formal) vector field, we have that

�
�

exp�
�
q�.tv; sw/

��
f .x/ D �

�
exp�.Q/

�
f .x/ D Exp.Q/f .x/; (6.4)

whereQ2 xV is the unique geodesic formal vector field such thatQf.x/D q�.tv;sw/f .x/
for any function f in R, and where Exp.Q/ 2 DMJs; tK stands for its formal flow. The
geodesic property of Q is expressed as

Q �Q D 0; (6.5)

from which we get
exp�.Q/ D exp�.Q/: (6.6)

Here, we used (2.19) together with the fact that (6.5) implies that the inverse post-Lie
Magnus expansion reduces to the identity map. From (6.3), (6.4), and (6.6), the evaluation
Exp.Q/f .x/D �.exp�.Q//f .x/ of the formal flow at x depends on v andw only through
v.x/ and w.x/. The same is therefore true for

Qf.x/ D �
�

log� exp�.Q/
�
f .x/:

We finally deduce fromQf.x/D q�.tv; sw/f .x/ that q�.tv; sw/f .x/ depends on v and
w through v.x/ and w.x/ only.

Conclusion

In this work, we have explored Gavrilov’s results in [14,16–18] from the post-Lie algebra
perspective, thus showing the important role of this notion in differential geometry. This
approach should be relevant in even broader contexts, such as Lie algebroids [29] and
Lie–Rinehart algebras [11], their algebraic counterparts.
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A. Proofs of Section 2

The final computation of the proof of Theorem 1 is as follows:�
.XY � YX/U

�
� V D

�
X.Y U /

�
� V �

�
Y.XU /

�
� V

D X � .Y U � V / � .X � Y U /� V � .X $ Y /

D X �
�
Y � .U � V /

�
�X �

�
.Y � U/� V

�
�
�
.X � Y /U

�
� V �

�
Y.X � U/

�
� V � .X $ Y /

D X �
�
Y � .U � V /

�
�X �

�
.Y � U/� V

�
� .X � Y /� .U � V /C

�
.X � Y /� U

�
� V

� Y �
�
.X � U/� V

�
C
�
Y � .X � U/

�
� V � .X $ Y /

D XY � .U � V / � YX � .U � V / �
�
.XY � YX/� U

�
� V

D a�.XY � YX;U; V /;

which proves Theorem 1.
The induction in the proof of Proposition 1 is given here. The length zero case is

trivial and the length one case is the coderivation property mentioned above. Supposing
U D x � U 0, we compute, using the induction hypothesis:

��.U � V / D ��.xU
0
� V /

D ��
�
x � .U 0 � V / � .x � U 0/� V

�
D .x ˝ 1C 1˝ x/���.U � V / ���.x � U

0/���.V /

D x � .U 0.1/ � V.1//˝ U
0
.2/ � V.2/ C U

0
.1/ � V.1/ ˝ x � .U

0
.2/ � V.2//

� .x � U 0.1//� V.1/ ˝ U
0
.2/ � V.2/ � U

0
.1/ � V.1/ ˝ .x � U

0
.2//� V.2/

D xU 0.1/ � V.1/ ˝ U
0
.2/ � V.2/ C U

0
.1/ � V.1/ ˝ xU

0
.2/ � V.2/

D U.1/ � V.1/ ˝ U.2/ � V.2/;

which proves Proposition 1.
The induction in the proof of Proposition 2 is given here. The case ` D 1 is just a

reformulation of (2.6). For ` � 2, we can suppose U D xU 0 where x 2M and where U 0

is a monomial of length ` � 1. We compute

U � .V �W /

D xU 0 � .V �W /

(2.6)
D x �

�
U 0 � .V �W /

�
� .x � U 0/� .V �W /

D x �
��
U 0.1/.U

0
.2/ � V /

�
�W

�
� .x � U 0/� .V �W / .from induction/

(2.6)
D
�
xU 0.1/.U

0
.2/ � V /C x �

�
U 0.1/.U

0
.2/ � V

�
� .x � U 0/.1/

�
.x � U 0/.2/ � V

��
�W

(from induction again)
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(2.5)
D
�
xU 0.1/.U

0
.2/ � V /C U

0
.1/

�
x � .U 0.2/ � V /

�
� .x � U 0.2//� V

�
�W

(from the fact that Lx is a coderivation)

D
�
xU 0.1/.U

0
.2/ � V /C U

0
.1/.xU

0
.2/ � V /

�
�W

D
�
U.1/.U.2/ � V /

�
�W;

which yields (2.8) and therefore proves Proposition 2.

B. Planar multi-grafting

We use the left grafting representation here (see Remark 2). We have T ..Mag.A/;�// D
.F

pl
A ;�/, where F

pl
A is the linear span of ordered forests of planar rooted trees, and �

is extended by means of (2.5) and (2.6). Recall that any planar rooted tree � 2 T pl
A with

the root decorated by a 2 A can be written in terms of the so-called BaC-operator; that is,
� D BaCŒ�1 � � � �n�, for �1 � � � �n 2 F

pl
A . It adds a root decorated by a 2 A and connects it

via an edge to every root in the forest �1 � � � �n. For example, denoting the empty tree by 1,
we have

a D BaCŒ1�; a

b D BaCŒ b �;
a

c

b

D BaCŒ c
b �;

a

c b D BaCŒ c b �:

We will now consider a multivariate extension of the grafting operation by defining
the following brace operations:

�
nC1
W TnC1

�
Mag.A/

�
�Mag.A/! Mag.A/: (B.1)

Here, Tk.Mag.A// denotes the k-th component in the tensor algebra. The multi-grafting
in (B.1) is recursively defined for �1; �2 2 T

pl
A and a planar forest ! of length n by

.�1!/�
nC1 �2 WD �1 � .! �

n �2/ � .�1 � !/�
n �2: (B.2)

In the case of �1; : : : ; �n 2 T
pl
A and �2 D a , this simplifies to

.�1 � � � �n/�
n

a D .�1 � � � �n/�
n BaCŒ1� D B

a
CŒ�1 � � � �n�:

Rule (B.2) can be summarized combinatorially as follows: graft the trees �1; : : : ; �n in all
possible ways onto the tree � , (i) excluding the grafting of any �i onto any �j and (ii) when
grafting several trees, �j1 ; : : : ; �jk , 1 � j1 < � � � < jk � n, onto a vertex v of � , then they
must be grafted to the left of the leftmost edge going out from the vertex v of � in such a
way that the order among those trees is preserved. As an example, we consider

�� �2
c

a b D
c

� � a b C
c

� a

�

b C
c

� a b

�

C
c

� a

�

b C
c

a

� �

b

C
c

a

�

b

�

C
c

� a b

�

C
c

a

�

b

�

C
c

a b

� �

:



Connection algebra 333

Acknowledgments. M. Al-Kaabi would like to thank the Department of Mathematics,
College of Science, Mustansiriyah University, for continued support to carry out this work.
K. Ebrahimi-Fard would like to thank the Department of Mathematics, Saarland Univer-
sity, for warm hospitality during a sabbatical visit.

Funding. This work was partially supported by the project Pure Mathematics in Norway,
funded by Trond Mohn Foundation and Tromsø Research Foundation. M. Al-Kaabi was
funded by the Iraqi Ministry of Higher Education and Scientific Research. K. Ebrahimi-
Fard and H. Munthe-Kaas are supported by the Research Council of Norway through
project 302831 Computational Dynamics and Stochastics on Manifolds (CODYSMA).
D. Manchon is supported by Agence Nationale de la Recherche, projet Combinatoire
algébrique, résurgence, probabilités libres et opérades CARPLO ANR20-CE40-0007.

References

[1] A. A. Agrachev and R. V. Gamkrelidze, Chronological algebras and nonstationary vector
fields. J. Sov. Math. 17 (1980), 1650–1675 Zbl 0473.58021

[2] M. J. H. Al-Kaabi, Monomial bases for free pre-Lie algebras. Sém. Lothar. Combin. 71 (2014),
article no. B71b Zbl 1303.17023 MR 3262181

[3] M. J. H. Al-Kaabi, K. Ebrahimi-Fard, and D. Manchon, Post-Lie Magnus expansion and BCH-
recursion. SIGMA Symmetry Integrability Geom. Methods Appl. 18 (2022), article no. 023
Zbl 1500.16034 MR 4397644

[4] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, The Magnus expansion and some of its applications.
Phys. Rep. 470 (2009), no. 5–6, 151–238 MR 2494199

[5] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J.
Math. 4 (2006), no. 3, 323–357 Zbl 1151.17301 MR 2233854

[6] A. Cayley, On the theory of the analytical forms called trees. Lond. Edinb. Dubl. Phil. Mag.
13 (1857), no. 85, 172–176

[7] C. Curry, K. Ebrahimi-Fard, and B. Owren, The Magnus expansion and post-Lie algebras.
Math. Comp. 89 (2020), no. 326, 2785–2799 Zbl 1450.34015 MR 4136547

[8] K. Ebrahimi-Fard, A. Lundervold, and D. Manchon, Noncommutative Bell polynomials,
quasideterminants and incidence Hopf algebras. Internat. J. Algebra Comput. 24 (2014),
no. 5, 671–705 Zbl 1309.16023 MR 3254718

[9] K. Ebrahimi-Fard, A. Lundervold, and H. Z. Munthe-Kaas, On the Lie enveloping algebra of
a post-Lie algebra. J. Lie Theory 25 (2015), no. 4, 1139–1165 Zbl 1360.17015 MR 3350091

[10] K. Ebrahimi-Fard, D. Manchon, and Y. Y. Zhang, Framed Lie algebras and the Magnus expan-
sion. In preparation

[11] G. Fløystad, D. Manchon, and H. Z. Munthe-Kaas, The universal pre-Lie-Rinehart algebras of
aromatic trees. In Geometric and harmonic analysis on homogeneous spaces and applications,
pp. 137–159, Springer Proc. Math. Stat. 366, Springer, Cham, 2021 Zbl 1487.17055
MR 4378950

[12] G. Fløystad and H. Munthe-Kaas, Pre- and post-Lie algebras: The algebro-geometric view.
In Computation and combinatorics in dynamics, stochastics and control, pp. 321–367, Abel
Symp. 13, Springer, Cham, 2018 Zbl 1446.17002 MR 3967389

https://doi.org/10.1007/BF01084595
https://doi.org/10.1007/BF01084595
https://zbmath.org/?q=an:0473.58021
https://zbmath.org/?q=an:1303.17023
https://mathscinet.ams.org/mathscinet-getitem?mr=3262181
https://doi.org/10.3842/SIGMA.2022.023
https://doi.org/10.3842/SIGMA.2022.023
https://zbmath.org/?q=an:1500.16034
https://mathscinet.ams.org/mathscinet-getitem?mr=4397644
https://doi.org/10.1016/j.physrep.2008.11.001
https://mathscinet.ams.org/mathscinet-getitem?mr=2494199
https://doi.org/10.2478/s11533-006-0014-9
https://zbmath.org/?q=an:1151.17301
https://mathscinet.ams.org/mathscinet-getitem?mr=2233854
https://doi.org/10.1080/14786445708642275
https://doi.org/10.1090/mcom/3541
https://zbmath.org/?q=an:1450.34015
https://mathscinet.ams.org/mathscinet-getitem?mr=4136547
https://doi.org/10.1142/S0218196714500283
https://doi.org/10.1142/S0218196714500283
https://zbmath.org/?q=an:1309.16023
https://mathscinet.ams.org/mathscinet-getitem?mr=3254718
https://zbmath.org/?q=an:1360.17015
https://mathscinet.ams.org/mathscinet-getitem?mr=3350091
https://doi.org/10.1007/978-3-030-78346-4_9
https://doi.org/10.1007/978-3-030-78346-4_9
https://zbmath.org/?q=an:1487.17055
https://mathscinet.ams.org/mathscinet-getitem?mr=4378950
https://doi.org/10.1007/978-3-030-01593-0_12
https://zbmath.org/?q=an:1446.17002
https://mathscinet.ams.org/mathscinet-getitem?mr=3967389


M. J. H. Al-Kaabi, K. Ebrahimi-Fard, D. Manchon, and H. Z. Munthe-Kaas 334

[13] L. Foissy, Extension of the product of a post-Lie algebra and application to the SISO feedback
transformation group. In Computation and combinatorics in dynamics, stochastics and control,
pp. 369–399, Abel Symp. 13, Springer, Cham, 2018 Zbl 1446.17003 MR 3967390

[14] A. V. Gavrilov, Algebraic properties of covariant derivative and composition of exponential
maps. Siberian Adv. Math. 16 (2006), no. 3, 54–70 Zbl 1249.53013 MR 2279368

[15] A. V. Gavrilov, The double exponential map and covariant derivation. Siberian Math. J. 48
(2007), no. 1, 56–61 Zbl 1164.53315 MR 2304878

[16] A. V. Gavrilov, Higher covariant derivatives. Siberian Math. J. 49 (2008), no. 6, 997–1007
Zbl 1224.53027 MR 2499098

[17] A. V. Gavrilov, Special polynomials in free framed Lie algebra. Algebra Logic 47 (2008), no. 5,
321–329 Zbl 1164.17016 MR 2508318

[18] A. V. Gavrilov, Commutation relations on the covariant derivative. J. Algebra 323 (2010),
no. 2, 517–521 Zbl 1190.53011 MR 2564853

[19] N. Guigui and X. Pennec, Numerical accuracy of ladder schemes for parallel transport on
manifolds. Found. Comput. Math. 22 (2022), no. 3, 757–790 Zbl 1496.53019 MR 4433113

[20] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I. Reprint of the 1963
original. John Wiley & Sons, New York, 1996 Zbl 0119.37502 MR 1393940

[21] J.-L. Loday and B. Vallette, Algebraic operads. Grundlehren Math. Wiss. 346, Springer, Hei-
delberg, 2012 Zbl 1260.18001 MR 2954392

[22] A. Lundervold and H. Munthe-Kaas, Hopf algebras of formal diffeomorphisms and numerical
integration on manifolds. In Combinatorics and physics, pp. 295–324, Contemp. Math. 539,
American Mathematical Society, Providence, RI, 2011 Zbl 1291.65212 MR 2790315

[23] W. Magnus, On the exponential solution of differential equations for a linear operator. Comm.
Pure Appl. Math. 7 (1954), 649–673 Zbl 0056.34102 MR 67873

[24] D. Manchon, A short survey on pre-Lie algebras. In Noncommutative geometry and physics:
renormalisation, motives, index theory, pp. 89–102, ESI Lect. Math. Phys., Eur. Math. Soc.,
Zürich, 2011 Zbl 1278.17001 MR 2839054

[25] R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, Butcher series: A story of rooted
trees and numerical methods for evolution equations. Asia Pac. Math. Newsl. 7 (2017), no. 1,
1–11 MR 3751443

[26] I. Mencattini, A. Quesney, and P. Silva, Post-symmetric braces and integration of post-Lie
algebras. J. Algebra 556 (2020), 547–580 Zbl 1446.16035 MR 4088448

[27] M. A. Méndez, Set operads in combinatorics and computer science. SpringerBriefs in Mathe-
matics, Springer, Cham, 2015 Zbl 1338.18003 MR 3308919

[28] H. Z. Munthe-Kaas and A. Lundervold, On post-Lie algebras, Lie-Butcher series and moving
frames. Found. Comput. Math. 13 (2013), no. 4, 583–613 Zbl 1327.17001 MR 3085679

[29] H. Z. Munthe-Kaas, A. Stern, and O. Verdier, Invariant connections, Lie algebra actions, and
foundations of numerical integration on manifolds. SIAM J. Appl. Algebra Geom. 4 (2020),
no. 1, 49–68 Zbl 1433.53035 MR 4057606

[30] H. Z. Munthe-Kaas and W. M. Wright, On the Hopf algebraic structure of Lie group integra-
tors. Found. Comput. Math. 8 (2008), no. 2, 227–257 Zbl 1147.16028 MR 2407032

[31] C. Reutenauer, Free Lie algebras. London Math. Soc. Monogr. (N.S.) 7, Oxford University
Press, New York, 1993 Zbl 0798.17001 MR 1231799

[32] R. Schimming and S. Z. Rida, Noncommutative Bell polynomials. Internat. J. Algebra Com-
put. 6 (1996), no. 5, 635–644 Zbl 0899.33006 MR 1419136

[33] B. Vallette, Homology of generalized partition posets. J. Pure Appl. Algebra 208 (2007), no. 2,
699–725 Zbl 1109.18002 MR 2277706

https://doi.org/10.1007/978-3-030-01593-0_13
https://doi.org/10.1007/978-3-030-01593-0_13
https://zbmath.org/?q=an:1446.17003
https://mathscinet.ams.org/mathscinet-getitem?mr=3967390
https://zbmath.org/?q=an:1249.53013
https://mathscinet.ams.org/mathscinet-getitem?mr=2279368
https://doi.org/10.1007/s11202-007-0006-4
https://zbmath.org/?q=an:1164.53315
https://mathscinet.ams.org/mathscinet-getitem?mr=2304878
https://doi.org/10.1007/s11202-008-0096-7
https://zbmath.org/?q=an:1224.53027
https://mathscinet.ams.org/mathscinet-getitem?mr=2499098
https://doi.org/10.1007/s10469-008-9027-8
https://zbmath.org/?q=an:1164.17016
https://mathscinet.ams.org/mathscinet-getitem?mr=2508318
https://doi.org/10.1016/j.jalgebra.2009.07.027
https://zbmath.org/?q=an:1190.53011
https://mathscinet.ams.org/mathscinet-getitem?mr=2564853
https://doi.org/10.1007/s10208-021-09515-x
https://doi.org/10.1007/s10208-021-09515-x
https://zbmath.org/?q=an:1496.53019
https://mathscinet.ams.org/mathscinet-getitem?mr=4433113
https://zbmath.org/?q=an:0119.37502
https://mathscinet.ams.org/mathscinet-getitem?mr=1393940
https://doi.org/10.1007/978-3-642-30362-3
https://zbmath.org/?q=an:1260.18001
https://mathscinet.ams.org/mathscinet-getitem?mr=2954392
https://doi.org/10.1090/conm/539/10641
https://doi.org/10.1090/conm/539/10641
https://zbmath.org/?q=an:1291.65212
https://mathscinet.ams.org/mathscinet-getitem?mr=2790315
https://doi.org/10.1002/cpa.3160070404
https://zbmath.org/?q=an:0056.34102
https://mathscinet.ams.org/mathscinet-getitem?mr=67873
https://doi.org/10.4171/008-1/3
https://zbmath.org/?q=an:1278.17001
https://mathscinet.ams.org/mathscinet-getitem?mr=2839054
https://mathscinet.ams.org/mathscinet-getitem?mr=3751443
https://doi.org/10.1016/j.jalgebra.2020.03.018
https://doi.org/10.1016/j.jalgebra.2020.03.018
https://zbmath.org/?q=an:1446.16035
https://mathscinet.ams.org/mathscinet-getitem?mr=4088448
https://doi.org/10.1007/978-3-319-11713-3
https://zbmath.org/?q=an:1338.18003
https://mathscinet.ams.org/mathscinet-getitem?mr=3308919
https://doi.org/10.1007/s10208-013-9167-7
https://doi.org/10.1007/s10208-013-9167-7
https://zbmath.org/?q=an:1327.17001
https://mathscinet.ams.org/mathscinet-getitem?mr=3085679
https://doi.org/10.1137/19M1252879
https://doi.org/10.1137/19M1252879
https://zbmath.org/?q=an:1433.53035
https://mathscinet.ams.org/mathscinet-getitem?mr=4057606
https://doi.org/10.1007/s10208-006-0222-5
https://doi.org/10.1007/s10208-006-0222-5
https://zbmath.org/?q=an:1147.16028
https://mathscinet.ams.org/mathscinet-getitem?mr=2407032
https://zbmath.org/?q=an:0798.17001
https://mathscinet.ams.org/mathscinet-getitem?mr=1231799
https://doi.org/10.1142/S0218196796000362
https://zbmath.org/?q=an:0899.33006
https://mathscinet.ams.org/mathscinet-getitem?mr=1419136
https://doi.org/10.1016/j.jpaa.2006.03.012
https://zbmath.org/?q=an:1109.18002
https://mathscinet.ams.org/mathscinet-getitem?mr=2277706


Connection algebra 335

Received 25 April 2023.

Mahdi Jasim Hasan Al-Kaabi
Department of Mathematics, College of Science, Mustansiriyah University, Palestine Street,
P.O. Box 14022, Baghdad, Iraq; mahdi.alkaabi@uomustansiriyah.edu.iq

Kurusch Ebrahimi-Fard
Department of Mathematical Sciences, Norwegian University of Science and Technology,
Sentralbygg 2, 1342, Gløshaugen, Alfred Getz’vei 1, 7491 Trondheim, Norway;
kurusch.ebrahimi-fard@ntnu.no

Dominique Manchon
Laboratoire de Mathématiques Blaise Pascal, CNRS–Université Clermont-Auvergne,
3 place Vasarély, CS 60026, 631718 Aubière, France; dominique.manchon@uca.fr

Hans Z. Munthe-Kaas
Department of Mathematics, University of Bergen, Realfagbygget, Allégaten 41, Postboks 7803,
5020 Bergen, Norway; hans.munthe-kaas@uib.no

mailto:mahdi.alkaabi@uomustansiriyah.edu.iq
mailto:kurusch.ebrahimi-fard@ntnu.no
mailto:dominique.manchon@uca.fr
mailto:hans.munthe-kaas@uib.no

	1. Introduction
	2. Post-Lie and D-algebras
	2.1. Reminders on post-Lie and D-algebras
	2.2. Free post-Lie and free D-algebras
	2.2.1 The free D-algebra generated by a magmatic algebra
	2.2.2 The free D-algebra generated by a set: Planar rooted trees and grafting

	2.3. The enveloping algebra of a post-Lie algebra
	2.4. Reminder on post-Lie Magnus expansion
	2.5. Gavrilov's K-map
	2.5.1 The K-map and the D-algebra structure
	2.5.2 An explicit formula for K^{-1} in terms of set partitions
	2.5.3 Gavrilov's \alpha and \lambda maps and the logarithm of K(\exp^{\cdot}(ty))


	3. Framed Lie algebras and Gavrilov's \beta map
	4. Affine connections on manifolds and covariant derivation
	4.1. Reminders on connections, torsion, curvature, and Bianchi identities
	4.2. Higher-order covariant derivatives
	4.3. Differential operators

	5. Special polynomials
	5.1. Torsion and curvature revisited in the post-Lie framework
	5.2. The ideals \mathcal{J} and \mathcal{K}
	5.3. Lie monomials
	5.4. Special polynomials

	6. Gavrilov's double exponential
	6.1. Heuristic approach
	6.2. Another expression of the double exponential

	Conclusion
	A. Proofs of Section 2
	B. Planar multi-grafting
	References

