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Connected sum for modular operads and
Beilinson-Drinfeld algebras

Martin Doubek, Branislav Jurco, Lada Peksova, and Jan Pulmann

Abstract. Modular operads relevant to string theory can be equipped with an additional structure,
coming from the connected sum of surfaces. Motivated by this example, we introduce a notion of
connected sum for general modular operads. We show that a connected sum induces a commutative
product on the space of functions associated to the modular operad. Moreover, we combine this
product with Barannikov’s non-commutative Batalin—Vilkovisky structure present on this space of
functions, obtaining a Beilinson—Drinfeld algebra. Finally, we study the quantum master equation
using the exponential defined using this commutative product.

Dedicated to the memory of Martin Doubek

1. Introduction

The Batalin—Vilkovisky (BV) formalism [3] is a formal integration technique that origin-
ated in quantum field theory. Its basic ingredients are an odd, second order differential
operator A on the space of functionals and a A-closed functional e5/%, i.e., a quantum
master action. Observables are then computed by taking an integral over a Lagrangian
submanifold in the space of fields, weighted by e5/%. The closedness of 5/ ensures that
the result is independent of the choice of the Lagrangian, generalizing gauge independ-
ence.

It was observed by Barannikov [1] that one can obtain a similar algebraic setup for
any modular operad J [16] in dg vector spaces. Concretely, for any odd symplectic vector
space V', Barannikov defined a vector space Fungp (V') equipped with a BV operator and
a bracket, giving a non-commutative version of a BV algebra. For » = @€, the quantum
closed modular operad, one recovers the usual BV formalism for V [1,21,26].

The goal of this work is to give a construction of the so-far missing commutative
product usually present in the BV formalism. To this end, we introduce the notion of
a connected sum on a modular operad &. For a modular operad & with such connec-
ted sum, we define a commutative product on the space Fungp (V'), compatible with the
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structure introduced by Barannikov. However, in this way we obtain a Beilinson—Drinfeld
algebra [4, 10], a close relative of a BV algebra. In the examples @€ and @O coming
from 2D topology, this structure is induced by the actual connected sum of surface. Thus,
the distinction between BV and BD algebras acquires a topological explanations: see Fig-
ure 3. We explicitly describe the commutative products in these two examples, getting the
expected products of polynomials and cyclic words built from letters in V*.

Instead of the equation AeS/% =0, one usually writes the formally equivalent quantum
master equation

2hAS +{S.S} =0,

which was also the form used in [1]. Using the commutative product, we can now make
sense of the exponential e5/% after an appropriate completion. With a simple non-degen-
eracy condition on the connected sum, we prove that the above quantum master equation
is equivalent to AeS/* = 0.

Commutative products and BV algebra structures on Fung (V') coming from the dis-
Jjoint union of surfaces were considered by Kaufmann, Ward and Zdniga in [20]; see also
[19,24,25]. Connected sum for the modular operad @@ appeared in the recent work of
Berger and Kaufmann [5]. See Remark 6 for a more detailed review.

1.1. Notations and conventions

We consider Z-graded vector spaces over a field with characteristic zero. The degree of a
homogeneous element v is be denoted |v|. Differentials have degree +1.

We denote by LI the disjoint union and \ the set difference. By [n], we will denote the
set {1,2,...,n}. The permutation group of [1] is denoted by %,. The cardinality of a set
A is denoted card A.

2. Modular operads and the connected sum

Modular operads were introduced by Getzler and Kapranov [16]. We start by recalling a
definition of a modular operad in the spirit of [12, 13].

Definition 1. Denote Cor the category of stable corollas: the objects are pairs (C, G) with
C afinite set and G a non-negative half-integer such that the stability condition is satisfied,

2(G —1) + card(C) > 0. 2.1)

Morphisms (C, G) — (D, G') exist only if G = G’, in which case they are bijections
C > D.

Remark 2. The condition of stability was introduced in the context of modular operads by
Getzler and Kapranov, and its name comes from the theory of moduli spaces of curves. In
our context, the stability condition will ensure convergence of certain formal exponentials,
see Corollary 35.1.
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Definition 3. A modular operad & is a functor J from Cor to the category of dg vector
spaces (with morphisms of degree 0), together with a collection of degree 0 chain maps
{aop: P(C1 U{a}, G1) ® P(C2 L {b}, G2)
— P(C1UCy, Gy + G2) | (C1,Gy), (Ca, Gy) € Cor}
and
{ogp = opa: P(C U{a,b},G) - P(C,G+ 1) | (C,G) € Cor}.

These data are required to satisfy the following axioms:

MO1) (P (plc, Uole)) a® = p@)oo®) (P (p) ® P(0)),

(MO2) 2(plc) °ab = p(a)pv) P (P)

(MO3) 40p(x ® y) = ()M o, (y ® x) for any x € P(Cy U {a}. Gy), y €
P(Co U {d}, Gy),

(MO4) ogp 0ca = ©cd Oab,

(MOS) ©4p ¢°d = ©cd a®b,

(MO6) gop(oca ® 1) = 0cq a©p, and

MO7) 40p(1 ® c0g) = co4(a0p ®1),
whenever the expressions make sense.

Asin [12,13], we also define odd modular operads, which are special cases of twisted
modular operads of [16].

Definition 4. An odd modular operad is defined similarly to the modular operad with
the only exception of the operadic compositions, now denoted as ;e and e, being of
degree 1. Correspondingly, the above axioms (MO4)—(MO7) will get an extra minus sign.
See [13, Def. 4] for details.

2.1. Connected sum

Let us now define the connected sum on a modular operad, motivated by the connected
sum operation on surfaces.

Definition 5. A modular operad with a connected sum is a modular operad J equipped
with two collections of degree 0 chain maps'

#: P(C,G)@ P(C',G') — P(CUC',G+G +1)

and
#:P(C,G) —> P(C,G +2)

such that

IThe seemingly strange shift of G by 1 and 2 is chosen to match already existing conventions, see
Remark 12 for details.
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(CS1) (P(oua)))t =#(P(0)Q P(0), P(o)#, = # P (o) for all bijections
0:C - D,o’:C' - D/,

(CS2) #, vt = #,, where 7 is the monoidal symmetry (from the category of graded
vector spaces),

(CS3)  #(1 ®@#) = th(th ®1), ©H(# Q1) = # #,

(CS4) asmaps P(C U{a,b},G) — P(C,G + 3),

Oab #1 = #1 oab,
(CS5a) asmaps P(C,G)® P(C',G') - P(CUC'\{a,b},G + G +2),

#y(ogp ®1) ifa,beC,
#(1®oyp) ifa,beC’,
#1 40p ifae C,beC’,
#1 504 ifbeC,aec(C,

Oab #y =

(CS5b) asmaps P(C U{a},G) @ P(C'U{b},G)—> P(CUC', G+ G +2),
aop(#1 ®1) = #; 40p,

(CS6) asmaps P(C U{a},G)® P(C',G)R P(C",G") - P(CuUC' UC"\
{b},G+G +G"+1),

#h(40p @1) ifthecC,

op(l ) =
a0 2) {#2(1®aob)(t®1) ifbeC”,

where the map (t ® 1): P(C,G) @ P(C',G') Q@ P(C",G")—P(C',G")®
P(C,G) ® P(C”,G") switches the first two tensor factors.

Remark 6. If one considers the disjoint union of surfaces, instead of the connected sum,
its compatibility with the operadic compositions ,0p and o, will look similarly to Defin-
ition 5. An important difference will appear in axiom (CS5a): the disjoint union followed
by ogp is just equal to ,0p, and there is no analogue of #,. Such approach to operads,
abstracting the disjoint union, was (to our knowledge) first considered by Schwarz [24,
Sec. 2]. There, v is used for the disjoint sum, o for the self-composition o, ; the compos-
ition 403 can be defined from these two operations.

Later, a similar operation was considered in generality by Borisov and Manin [6] and
for modular operads by Kaufmann and Ward [19], under the name of mergers/horizontal
compositions. See, e.g., [19, egs. (5.4), (5.5)] for the disjoint-union-analogue of (CS5a).
The commutative product and the resulting BV algebra was studied by Kaufmann, Ward
and Zddiga in [20]. A notable precursor in string field theory is the work of Sen and
Zwiebach [25, Sec. 7.1].
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The connected sum of surfaces was considered, for the modular operad @0, by Ber-
ger and Kaufmann [5, Sec. 5.6]. There, they notice the need for an analogue of (CS5a)
[5, Sec. 5.6, “equation 2.9 does not hold”] and remark that such connected sums define
Feynman categories, functors out of which are equivalent to our modular operads with
connected sum.

Similarly to Definition 5, we can consider an odd modular operad equipped with a
connected sum.

Definition 7. An odd modular operad with a connected sum is as in Definition 5, with the
black bullet replacing the white one.

Note that #; and #, are again degree O operations. To make the difference between the
odd and untwisted cases more explicit, we will write down the axioms (CS5a) and (CS6),
evaluated on elements, in both cases.

If pe P(C,G), p € P(C’',G’) and p” € P(C”,G"), then in the untwisted case
(CS5a),

(oup p)#2 p’ ifa,beC,
pH(og p) ifa,beC’,
#1(paop p’) ifaeC,beC’,
#1(ppog p’) ifbeC,acC’,

oqp(p #2 P/) =

and in the odd case,

(oar D)t P’ ifa,beC

# ') = p#Z(.ab P/)(—l)lp‘ ifa,beC’
(Pt p') = , ) )
#(paop D) ifaeC,beC
#1(ppea P') ifbeC,aeC’.

Concerning (CS6), in the untwisted case, we have

(pacp P # p” ifbeC’,

/ "
Ob # =
Pa (P 2P ) {P/#z(PaOb p//) ifh e C//,

whereas in the odd case,

(paep P p” ifb e C’,

’ "o
P ear(p# pT) = {(_l)lplp/+lp’|p/#2(pa.b »") ifbecC”.

Remark 8. In all of the examples we will consider, #; will be injective. In this case, the
axiom (CS5a) determines the operadic compositions 40 in terms of ogp, #,, and #;, and
similarly for ,ep.
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2.2. Examples of connected sum

We will now describe a connected sum on two basic modular operads: the quantum closed
operad @€ and the quantum open operad @O (see [12,13] for their description as modular
operads).

Example 9. The quantum closed modular operad Q€ is the modular envelope of the
cyclic commutative operad, but has an explicit description as follows. For each finite
set C and each non-negative integer g, we define Q€ (C,2g + card(C)/2— 1) to be a
one-dimensional vector space, with generator called C&. This should be seen the homeo-
morphism class of connected compact oriented surfaces of genus g and with punctures la-
belled by elements of C. The operadic structure corresponds to sewing punctures together.
See Remark 12 for the origin of the definition G = 2g 4+ card C/2 — 1.
The connected sum is defined simply as

Cigl # Cﬁgz =(Ciu Cz)g1+g2,
#(C8) = C8+1,

which increases the “operadic” genus G = 2g + card(C)/2 — 1 by 1 and 2, respect-
ively. Geometrically, #, corresponds to the connected sum of surfaces and #; to adding a
handle, as in Figure 1 involving connected sums of C| and C? with card(C;) = 1 and
card(C;) = 3.

The axioms of the connected sum are satisfied trivially, but they also have a topological
interpretation, as in Figure 2.

Example 10. The quantum open modular operad @0 is defined as follows. A cycle o in
a set O is a (possibly empty) cyclic word made of several distinct elements of O. The
components of the modular operad @@ are given as

b
QO(0,G) = Spank{{ol, ...,0p}8 | b, g € Ny, 0; cyclein O, |_| 0, =0,
i=1

G=2g+b—l}.

Figure 1. Connected sum on the quantum closed operad.
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Figure 2. Axiom (CS5a) — cases o,p #; = #2(0,p ®1) and o,p #y = #] 40p.

Geometrically, the generators correspond to the homeomorphism class of a compact ori-
ented surface with genus g, b boundaries and punctures on the boundaries labelled by
elements of O. The operadic compositions correspond to sewing/self-sewing of surfaces
along punctures.

Similarly to the previous example, the modular operad QO is the modular envelope of
the cyclic associative operad Ass by a result of Doubek [11].

The connected sum is defined as

{01.....0p, 15 #2{0]..... 0} }¥* = {01.....0p,.0].... 0} }E' T8
+1
#1({01,....0p}¥) = {o1,...,05}%
with the same geometric interpretation as in the previous example.
These two examples can be combined as follows.

Example 11. Although we did not introduce colored modular operads, it is easy to see
that we can straightforwardly combine the quantum closed operad and quantum open
operad into a two-colored quantum open-closed operad Q@€ [13]. It has components
QO€(C, 0, G) generated by homeomorphism classes of surfaces with closed punctures
labelled by C and open punctures (lying on the boundary) labelled by O. In this case,
G =2g+b+card(C)/2—1.

Remark 12. Using the above examples, we can explain the dependence of G on g and
the shifts of G in Definition 5. Already for the operad @@, the operadic self-composition
04p can act on punctures on two different boundary components or on the same boundary.
Since these two cases change g and b differently, we are led to define G as their linear
combination.

If we require the operations o;; and ;o; to change G by +1 and 0, then for the more
general quantum open-closed operad Q O€ we can choose

-1 -2
a card(C) + ¢

G=otg+%b+ card(0) + 1 —«
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for any . Moreover, #, will increase G by « — 1 and #; by «. Our choice of G corresponds
to a = 2, which was used in [13] and ultimately comes from the work of Zwiebach, where
he wants G = 0 for the disk with three open punctures on the boundary [27, eq. (3.11)].

Similarly, there exists colored generalizations of these operads coming from string
field theory, let us mention the one coming from the type II superstring field theory.

Example 13. A four-colored operad relevant to type II superstring field theory was intro-
duced in [18]. The geometric picture here is based on super Riemannian surfaces with
four kinds of punctures corresponding to the four respective sectors NS — NS, NS — R,
R — NS and R — R. The geometric representation of the connected sum would remain
the same as above.

2.3. Endomorphism operad and the connected sum

In this section, we will describe our main example of an odd modular operad with a con-
nected sum, the endomorphism operad. Let us first recall the definition of the unordered
tensor product and positional derivatives.

Definition 14. For a finite set C with card(C) = n and a vector space V', we define the
unordered tensor product as

® V = @ V®n/~,
C ¥:C—[n]

where the equivalence relation is given by iy, (V1 ® -+ ® V) ~ igy (0(V1 @ -+ ® Vp)),
where 0 € I, and iy: V" — @.c_,p,) V®" is the canonical inclusion into the y-th
summand?. 5

The map V& = Q¢ V., the inclusion iy, followed by the natural projection, is an
isomorphism. Its inverse @ V — V" will be denoted as w > (w)y.

Here are some useful facts about the unordered tensor product, see [13, Def. 10] and
[22, Lem. 4].

Lemma 15. (1) For an isomorphism : C = [n] and a permutation o [n] — [n]
Woy =0(W)y, wEe ® V.
C
(2) Any isomorphism p: C =D defines an isomorphism p: Qo V — Qp V by

(px)p = (Vgp. x € RV, ¢:D > [card (D)]. 2.2)
D

%In other words, choosing a linear order of C gives an isomorphism between @ V and V®", with
different isomorphisms related by the corresponding permutation.
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(3) There is a canonical isomorphism (Qc V) @ (Qp V) = Qcup(V), given by
an ordering on C U D induced on the orderings on C and D, i.e., by

(@ 7)o (QV) D% yoemsrammn O @y
C D CcubD

where Y U ¢ is the induced ordering on C U D from y:C = [card (C)] and
¢: D = [card (D)].

The composition (Qc V) ® (Qp V) = Rcup(V) = (QRp V) ® (R V) isthe
monoidal symmetry T: (Qec V) @ (Qp V) = (Qp V) @ (K¢ V).

For ¢ € C, it makes sense to talk about the c-th element of ®C V*, for example we
can contract it with v € V. This operation is captured in the following definition.

Definition 16. For v € V' and a finite set C of cardinality n, let us define a positional
derivative
00 Q) V>RV
cufc} c
by setting, for f € Q@cpye; V"

@) )y = v @ Lyen (f)g

where, for arbitrary ¥: C it [1], the map 1;/;: C U{c} it [n 4 1] is defined by IZ(C) =1
and ¥ (¢') = ¥ (c¢’) + 1 for ¢’ € C. On the right hand side, we see v € V asamap V* — k
viaa > (=)l (v).

Here we collect some of the useful properties of the positional derivative.
Lemma 17. (1) Under the isomorphism Q¢ eyup V™ = (Qcuiey V™) ® (Qp V™),

the positional derivative a,(f) is sent to 85,0) ® lg, v+

) Forc e C and p:C = D we have ,o|c\{c}8,(f) = i,

(3) The positional derivatives graded-commute, i.e., 850)8,(5) = (—1)'”“w|3§§i)85,c).

Now, we can turn to the definition of an endomorphism modular operad.

Definition 18. Let (1, d) be a dg vector space which is degree-wise finite-dimensional.
An odd symplectic form w:V ® V — k of degree —1 is a non-degenerate graded-anti-
symmetric bilinear map’. If d(w) = 0, i.e.,

wod®ly+1y®d) =0,

we call (V, d, ) a dg symplectic vector space.

3Note, this means that (i, v) # 0 implies [u| + |v| = 1 and w(v,u) = (=1)"#H 1 (U, v) = - (u, v).
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If {¢;} is a homogeneous basis of V and wy; = w(ex, e;), we define

Z( 1)|ez\w er.

Note that w*!, defined by Zl wk a)lm = Sm, is well defined, for V' degree-wise finite-
dimensional. This is because the infinite matrix w;; is non-zero only in finite blocks
corresponding to Vi and Vi_, and we only need to invert those blocks. Similarly, the
sum in the definition of ¢ is well defined, since it has only a finite number of non-zero
terms for fixed k. The fact that w is degree —1 implies |e¥| = 1 — |ex].

Definition 19. The odd endomorphism modular operad &y is the odd modular operad
defined by*

Ev(C.G)=QQ)V*.
(o}

with an action of p: C — D given by (2.2).
The compositions and self-compositions are defined as follows. If f € &y (C; U {a},
G1) and g € 8y (C, U {b}, G3), then

(faosg) = Y (DY@ ) @ 1D g), 23)
k

where we use the canonical isomorphism (K¢, V*) ® (Qc, V™) = Qc,uc, (V™)
The self-composition for f € @, (a,b} V* is given by

o [ = Z 3@y f. (2.4)

This is well defined because f is a finite sum of tensor products of elements of V' *.
This operad is equipped with a differential given for f € @, V* by

(df)y = dyxyeeac (fy,

where the differential on o € V* is (da)(v) = (—1)*Tla(dv) is defined in this way so
that the pairing V* ® V' — k is a chain map.

Lemma 20. The operations e, and ,ep from (2.3) and (2.4) define a structure of an odd
modular operad on Ey .

Proof. These operations agree with the standard definition of an odd endomorphism mod-
ular operad of Markl, i.e., [22, egs. (12b) and (13b)], just that we use ®C (V*) instead of
(®c V)*. This is because the partial derivative 3@: V & Qcuiar V* = Q¢ V*is the

composition
ve @ v* ~V®V*®®V* RiaN ®V*
Clu{a}

“Note that the tensor powers of 1 * are not degree-wise finite-dimensional, even for degree-wise finite-
dimensional V' *.
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We get the standard definition because our degree 1 tensor e; ® e’ comes from left in the
definition of ;e and e,.

Alternatively, the (odd versions of the) axioms from Definition 3 follow easily from
Lemma 15 and Lemma 17. For example, axiom (MO3) is

b b
a0 (f®8) =32 @0 (f ®g) =-D/ED 80P r(g® f)
b
= D)Y@ o0l @ 0 (g ® )
and Y, e ® ek =Y, (—1)elwFe; @ e =, ¢! ® 7, which holds in the direct

product ]_[i Vi ® Vi—;. Thus, using item (3) of Lemma 15, we get that the right hand
side is indeed (—1)/118] Lo, (g ® f). (]

Now, we can define the connected sum on the endomorphism operad.

Definition 21. Define
#:8v(C,G) — &y (C,G +2)

to be the identity on Q) V* and define
#:8y(C1,G1) ® Ey(Cr,Gz) — Ev(CLUCy, G+ G+ 1)

to be the canonical isomorphism (Q) ¢, V™) ® (Qc, V™) = Qc,uc, (V-

Lemma 22. The odd modular operad 8y, with the above defined operations #, and #,, is
an odd modular operad with a connected sum.

Proof. (CS1) follows easily from the definition of the action of isomorphisms (2.2). (CS2)
follows from item (3) of Lemma 15. (CS3) follows from associativity of the tensor prod-
uct. (CS4) and (CS5b) are trivial, since #; is the identity. The remaining axioms follow
from Lemma 17, for example (CS5a) gives

wopty = 30950 4,
k
and commuting the positional derivatives through #,, we get the four possibilities via
item (1) of Lemma 17. [

Remark 23. To encode a modular operad £, it is enough to keep the spaces & ([n], G).
The operations then involve a choice of ordering on, e.g., [n1] U [n5] for #,. Choosing the
ordering by placing [n;] before [n;], the operadic structure map of &y acquires a particu-
larly simple form [13, Sec. 3.4, 3.5]; the connected sum #, turns into the identification

€([n1], G1) ® E([n2], Go) = (V¥)®M @ (V*)®m2 % (V*)®mtn)
=&([n1 +n2],G1 + Ga + 1).

Since we replaced the category of corollas by its skeleton {([r], G)}, this version of a
modular operad is usually called skeletal.
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3. Beilinson-Drinfeld algebras and the connected sum

In [, Sec. 5], Barannikov introduced a dg Lie algebra structure on the (shifted) space
of formal J-functions, for a modular operad #. If & is endowed with a connected sum,
this space of functions acquires a commutative product and becomes a Beilinson—Drinfeld
algebra, a close relative to a Batalin—Vilkovisky algebra.

3.1. Beilinson—Drinfeld algebras

Beilinson—Drinfeld algebras, or BD algebras for short, appeared in the work of Beilinson
and Drinfeld [4], see also [10, 17].

Definition 24. A BD algebra is a graded commutative associative algebra on a graded
module ¥ over k[[x]], flat over k[[x]], with a bracket {, }: #®? — ¥ of degree 1 that
satisfies

(X,Y} = _(_1)(\X|+1)(|Y\+1){Y’ X}
(XAY.Z)) = (XY} Z} + ()OO (X, Z3,
(X.YZ} ={X.Y}Z + (-1)(XED¥ Iy (x 73,
and a square zero operator A: ¥ — ¥ of degree 1 such that
AXY) = (AX)Y + (—DXIXAY + (=D Xle{x, Y} (3.1
If ¥ is also equipped with a differential, we require A and the bracket to commute with

it. For algebras with unit 1, we will require A(1) = 0.

3.2. Formal functions associated to a modular operad

Let us consider a modular operad # and an odd modular operad @. Define
Fun(P,Q)(n,G) = (P(n.G) @ Q(n, G))*",
Fun(?.@) = [ [ [ ] Fun(?.@)(n.G).
n>0G>0

In [1], Barannikov introduced the following operations of degree 1, defined on compon-
ents,

d:Fun(P,Q)(n,G) — Fun(P, Q)(n, G),
A:Fun(P,Q)(n +2,G) - Fun(P,Q)(n,G + 1),
{—,—}:Fun(P,Q)(n1 + 1,G1) @ Fun(LP, Q)(n, + 1, Gy)
— Fun(P, Q)(n1 + na2, G1 + G1),
by
d=dp®1—-1Qdg,
A = (ogp Q)0 ®0), 3.2)
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for an arbitrary bijection® 0: [n + 2] = [n] U{a,b}; and

XY} =EDE2 Y (40 ®40p) (01 @0, ® 60, ®0)(1RTR DX ®Y). (3.3)
C1,C2
where we sum over all disjoint decompositions C1 UCp = [n1 +n3], such that card(Cy) =
ny, card(Cy,) = n,, the bijections® 0;:[n; + 1] = Cy U {a}, 65:[n2 + 1] = C, U {b}
are chosen arbitrarily, and t is the monoidal symmetry. These operations are then extended
to the whole Fun(P, @).

Theorem 25 ([1]). The maps d, A and {—, —} are well defined, independent of the choice
of 0, 61, 0, and they satisfy the following properties:

d? =0,

di— -} +{——}d®1+1®d) =0,
A2 =0,

A==} +{——}(A®R1+1®A) =0,
Ad +dA =0,

and the bracket satisfies
{(X,Y) = —(—l)(‘XHl)(lY""l){Y,X},
XAY.Z}) = (XY}, Z} + ()X (X, 7y
See [1, Sec. 5] and also [13, Thm. 20] for a more detailed proof (our bracket {X, Y}
equals (=1)X12 times their bracket). This structure was called a generalized Batalin—
Vilkovisky algebra in [13], since it lacks a compatible commutative product.
The motivation for this structure comes from the fact that morphisms from the

Feynman transform of & to @ are in bijection with degree 0 elements S € Fun(f?, @)
that satisfy the quantum master equation dS + AS + %{S ,S}=0,see[l,13].

3.3. Connected sum and a commutative product

Now we introduce a commutative product and an operation ff: Fun(#, @) — Fun(#, @),
coming from #, and #,.

Definition 26. Let » be a modular operad and @ an odd modular operad. Moreover,
assume each of them equipped with a connected sum. Define a product

*: Fun(P, @)(l/ll, G]) 024 Fun(ﬂ’, (Q)(nz, Gz) — Fun(ﬂ’, (Q)(l’ll +ny, Gy + Gy + 1)

as

x= Y () @60 01T 1), (3.4)
C1,C2

SWe write § ® 0 instead of & (9) ® @ () for brevity.
®No summation over those.
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where, as before, the sum runs over all disjoint decompositions CJ UCy = [n + ns],
such that card(C;) = ny, card(Cs) = n5, the bijections 6;: [n,] = Ci, 65: [n2] = C»
are chosen arbitrarily, and t is the monoidal symmetry.

We also define the operator f§: Fun(P, @)(n, G) — Fun(P, Q)(n,G + 2) as

f=# Q#.
Finally, we extend * and § on Fun(#, @) linearly.
Lemma 27. The maps *, { are well defined and x does not depend on the choice of 61, 0,.

Proof. The product  is well defined since only a finite number of terms contributes to the
component Fun(#, @)(n, G) of the result, i.e., those components (71, G1) and (n2, G3)
suchthatn = ny + n, and G = Gy + G, + 1. The result is independent of choices of 6;,
because different choices of 6; differ by precomposition with a permutation of [n;], under
which Fun(#, @)(n;, G;) is invariant. [

Theorem 28. If P and @ are as in Definition 26, then Fun(P, @), with operations
d, A, {—,—}, i and x defined above, satisfies

(1) = is a commutative associative product, i.e., on elements
XY =DXMy o x and (X *Y)xZ =X (Y » Z).
2) Ax=x(AR1)+ x(1® A) + #{—,—}, i.e., on elements
AX *Y)=(AX)* Y + (=DXIX » (AY) + DXIg{x. Y}  3.5)
B){——11®@%x)=*x({——,} 1) +*x(1 ®{—,—. }(t ® 1), i.e., on elements
(X,Y « Z} ={X, Y} » Z + (=)IXHYHYTy o ox 7). (3.6)

(4) The maps § and * are chain maps with respect to the differential d.

(5) The map §f commutes with the other operations, i.e., Af = A, {—, —}(1 @) =
{(— -1t ®1) =#{—,—}and x(1 @ §) = x(§ ® 1) = fi*. On elements, this gives

A(LX) = #(AX),
(X4} ={1X. Y} =f{X. Y},
Xx@Y)=HX) Y =X xY).

Proof. Let X =Y, xi, ® xlg € Fun(P, @)(nx, Gx), where x%, € P (nx.Gx) and xlg €
Q(nx, Gx). For the sake of brevity, we will omit the summation over i (including the
index) from the notation. Hence, we will write X = xp ® x¢g. Similarly, we write ¥ =
YiVe @y =yp ®ygand Z =), 2z, ® zly = zp ® zg where yi, € P(ny, Gy)
etc..
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The point (1) follows from (CS1), (CS2) and (CS3). For commutativity,
XxY = Z (_1)|xa|'\y?|(91x? # 0,y9) ® (B1xg #, 02ya),

C1,C2
Y« X =) (=DP7Mel6,y5# 6:xp) @ (6170 # 62xa)
C1,C2
L3 (cpyhelbaltieelbeitialiel g,xp # 6, v9) ® (20 # 61 v0)
C1,C2

= ()X »y.
For associativity,

XxY)*Z =) (~)FeP21(Bsx0#04y2) ® (B3xa #264y0)) * Z
C3,C4
— Z (_1)(IX(Q|+|J)(,QI)-|Z?\(_1)IX(;2|-|J'3>|(91 (O3xp #: 04y ) #2 022)

C1,C,
C3,Cy

® (01(03xq@ #2 04yq) #2 022q),

where Cy U C, = [ny +ny 4+ n] and Cs U Cy = [nx + ny), 01:[nx +n,] = Cy, 65
[n:] = Ca, 03:[nx] = Cs, 04:[ny] — C4 are chosen arbitrarily. From (CS1), we get

01(83xp #,04yp) = 01(6: U 0a)(xp # y o),

where (63 U 04): [nx] U (nyx + [ny]) = C3 U C4 = [nx + ny] and similarly for the Q-
part. Therefore, we can rewrite the sums over decompositions Cy LI C, and C3 Ll C4 and
actions of 0’s as

D DA UYL UYs)(xp #a yp) ta2p) ® (Y1 U Y U Ys) (xa # ya)#a Za).
E\UE;UES
where A = (Ixe| + yel) - 1zp| + |xe| - [y2|, ¥1:[nx] = Ei, yai[ny] = Ea, r3:[n:]
— E3 and the sum is over all decompositions E; Ll E; U E3 = [ny + ny + n;]. Similarly,
one gets

X+ (Y x2Z)= Y (1) l(X w3y dazp) ® (¢3ya #: daza))
D3,D4

= Y (nelbrirlrh)bellZrl(g xp # ¢y (¢ yp #: azp)
Dy,Ds,
D3.D4

® (p1xq #2 P2(Pp3ya #2 $aza)),

where ¢1: [nx] = D1, ¢a: [ny + nz] = Da, ¢p3:[ny] = D3, ¢a: [n;] — D4. Rewriting
this as a sum over decompositions £y U E, LI E3 = [ny + n, + n_], this gives

Z (—DAW1 U2 UYs) (xp #a(yp # 22)) ® (Y1 U U Ps)(xa #(va # 2a)).

E\UE;UES
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By (CS3), we finally get (X x V) x Z = X x (Y x Z).
The point (2) follows from (CS5a). The left side of the required equality is

AX xY)

= Z 0up P(O1xp #:,02y9) ® o4 p(O1xg #> gzya)(_l)\x@Hysv|+|xg>|+|yg>|’
C1,C

where C; U C, = [ny + n,] and where we have chosen ¢ = Liny+ny) (i€ @ = ny +
ny —1,b = ny + ny). Now, we split the sum by distinguishing four cases according to
positions of @, b in the decomposition C; LI C; (cf. axiom (CS5a)), see also Figure 3,

AX xY)

= Z (0ub 1X2) # 2y P ® (8gp O1x@) #s B2y (—1)Fell2l+x2+lyrl

C1,Ca,
a,beC1

+ Y 1xp#a(oap 027:2) ® O1xa #a(oap Baya) (- )Pellr It il

C1,Ca,
a,bGCz

+ Y #1(01xp a0 2y2) ® #1(01x@ a®p O2ya) (—1) T2 IH2IHY 2]

C1,C2,
aeCy ,bECz

+ D #1(01xp 50oa b2y ) ® #1(O1xq poa Baya) (D)2 Hy2l
C1,Cs,
aeC,,beCy
It is easy to verify that the third and fourth lines give the same result. We compare the
previous calculation with

(AX)xY = Z(@l Oub DX ) #r 02y 9 @ (01 84y dx@) #2021 va (—)xr I+ U+xablyrl
C1,C

a/\\b a//—\\ a,m> a” __ T«
SN -, olq P \\I //“\b
=
- b > i S =
- - _ \\‘ \\‘ Ve
_ - _ > O
\\“ /
Za,bEX*Y Za,beX Za,beY Zan,bEY

Figure 3. Equation (3.5) pictorially. On the left hand side, the operator A acts on a connected sum of
two surfaces, connecting all pairs of punctures. On the right hand side, we see three possible cases,
depending on whether the punctures are both on the first surface, the second surface or there is one
puncture on each surface. In the last case, the result has additional handle, giving the term #{ X, Y}
of (3.5).
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where C U Cy = [ny + ny — 2] with the choice ¢ = 1[,,janda = ny — 1,b = ny,
(=D XX » (AY)
= D Oixp #2602(0ap $y2) ® ixa  Ox(sap ¢ya) (-7 TRalthrlrixalyz,
C1,C2

where we take ¢ = l[ny] anda =n, —1,b =ny, and
DX, vy

=2 Z #1(01xp 40p 02y9) @ #1(01x@ a®p gzya)(_l)\mIIy,¢\+|x,7>|+|y,7>|‘
C1,C2

It is now easy to see that the required equality holds.
The point (3) follows from (CS1) and (CS6). First observe that

(XY « Z)

=2 ) ($1x9 4% $2(01 Y2 #:622)) ® (1% a® $2(B1ya #26220))(—1)%,

C1,C2

Dy,D,
where we sum over all decompositions C; U Cy = [ny +nz], D1 U Dy =[nx +ny +n; —
2] and 0;: [ny] — Cy, 021 [n;] = Ca, ¢1:[nx] = Dy U{a}, ¢o:[ny, +n;] — Dy U{b}
are arbitrary bijections and B = [ya| - |z2| + |xa| - (|y2| + |z2]) + |x2| + |y2| +
|ze| + | X|. We split the sum into two according to the position of b (b € ¢»(Cy) or
b € ¢2(C3)) and compare with the two terms on the right hand side of (3.6). The first term
is

(X.Y}xZ
=2 (01($1x9 a0 $2V2) #16229) ® (01 (¢1Xa a® P2v@) #2 0220) ()€,

where we sum over alLdecompositioni CiuC, =[nx+n,+ nz— 2], Dy U D, =
[nx + ny] and ¢1:[ny] — Dy, ¢2:[ny] = Do, 011 [nx +ny —2] — Cy, 621 [n;] — C2
are arbitrary bijections, C = |xg| - |ye| + |x2| + |ve| + |z2| - (xa| + [yal + 1) + | X]
anda € D1, b € D, are arbitrary. The second term is

Y % {X,Z}
=2 (01 # 02($1x9 a0 $222)) ® (O1ya # 02(d1Xa % $220)) (—1)”,

where we sum over allwdecompositiOHSNCl UuCy =1ln x tny+n;— 2], Dy U 122 =
[nx +n] and ¢1: [nx] = D1, ¢p2:[nz] = Do, 01:[ny] = Cy, Oa:[nx +n, —2] = Ca
are arbitrary bijections, D = |xg| - |zp| + |x2| + |z2| + |yal - (|x2]| + |z2]) + | X | and
a € D1, b € D, are arbitrary.

Using (CS1) and (CS6) and collecting all the signs, one gets

(XY »Z) = {X. Y} x Z + ()XY +YTy L (x 73y,
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The point (4) follows directly from the definition of ff and «. In point (5), the compat-
ibility of § with A follows from (CS4). The equation {#{X, Y} = #{X, Y } follows directly
from (CS5b), the remaining equality follows from the symmetry of the bracket {—, —}.
Similarly, the compatibility of ff and % follows from (CS3) and the symmetry of . ]

3.4. Beilinson—Drinfeld algebras
Using the action of §, we can turn Fun(#, @) to a (non-unital) BD algebra.

Definition 29. For f =Y, fix' € k[[x]] and p = > -n.G>0 Pn.G € Fun(P, @), define
the action of f on p by - -
fp="Y fitf'(pno).
n,G,i>0
Note that only terms coming from p, g for G’ < G contribute to the component
Fun(P,Q)(n,G) = (P(n,G) ® Q(n, G))™, and thus the result is well defined.

Lemma 30. The space Fun(P, @) equipped with the action of k[[x]] becomes a graded
module over k[[x]] and the operations d, A, {—, —} and * are maps of graded modules.

This module is flat over k[[x]] if and only if the maps #: (P (n,G) ® Q(n, G))*» —
(P(n,G +2)® Qn,G + 2))* are injective for all n, G.

Thus, if {f is injective, Fun(J, @) becomes a non-unital BD algebra. Note that in all of
our examples (@€, QO and &y ), all #; are injective, which is a stronger condition than
the injectivity of f.

Proof. The first part of the lemma follows from Theorem 28.

Since k[[x]] is a PID, being flat is equivalent to being torsion-free, i.e., no non-zero
element of Fun(J, @) is annihilated by a non-zero element of k[[x]] [15, Cor. 6.3]. This
is furthermore equivalent to Ker » = 0, since any non-zero element of k[[x]] is equal to x’
up to an invertible element, and if ' X = 0 for minimal i, then x*~! X = 0 is annihilated
by ». Let us now show the two implications.

If 4(X) = 0 for some non-zero invariant X € £ (n, G) ® @(n, G), then x» € k[[x]]
annihilates X . On the other hand, let us suppose that x annihilates an element »_ x, g.
Then each of the summands, an element of Fun(#, @)(n, G), is in the kernel of . |

3.5. Quantum master equation

To be able to talk about the exponentials /%, we need to introduce negative powers
of x. To avoid various convergence issues, we will restrict the possible negative powers
of x. See Remark 36 at the end of this section explaining the motivation for the following
definition.
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Definition 31. Consider the space of fixed weight w € %Z.

Fyp = P Fun(P, Q)(n,G) ® kax?
n/24+G+2g+1=w

where by kx?, g € Z, we mean a 1-dimensional vector space, with a generator »4.

Similarly, let
Fou = ] Fa.

With the multiplication given by % and by 9! x x92 = »91192_ this space becomes
a graded-commutative algebra, with operations d, A and {—, —} extended by x-linearity
(the bracket is possibly defined only partially, since it decreases the weight by 2). The
action x: %9 > %971 makes Fs,, into a k[[x]]-module.

Definition 32. Define the space Fung,,(#, @) by the following quotient:
FunExp(j)v Q) = Fz%/{ﬁx —xX | X e ﬁz—%}'

Lemma 33. (1) The space Fungy (P, Q) inherits the algebra structure, action of
k([[x]] and the operations x, d, A and {—, —}, with the bracket defined only for
arguments of total weight > 5/2. In the inherited weight grading, the maps %, d, A
have weight 0, the bracket has weight —2 and x has weight 2. As a k[[x]]-module,
it is flat.

(2) The natural map : Fun(, @) — Fung (P, @), with the image in weight > 2
of Fung (P, Q), is a map of BD algebras. It is injective iff the condition from
Lemma 30 is satisfied, i.e., if the maps : (P (n,G) ® Q(n,G))* — (P (n,G +2)
® Q(n, G + 2))*" are injective for all n, G.

Proof. (1) By Theorem 28, the subspace J = {ff{X —xX | X € 15__%} is an ideal preserved
by the BD algebra maps. The weight grading is preserved since both ff and multiplication
by x increase the weight by 2.

To show the flatness with respect to the action of k[[x]], it is enough to show that multi-
plication of » is injective. Let X € Fung,, (&, @) besuchthat xX =0,ie,x(X +J)e J,
i, xX = xY —fY forsome Y € Fy>12. Then X = x(Y/x) — (Y /%) € J.

(2) The map ¢ is well defined, since only elements withn/2 + G = w — 1 contribute to
the weight w component of Fung, (&, @). The image of « has weight > 2 by the stability
condition (2.1).

To show the injectivity of ¢, consider an element ¥ € Fun(J, @) which gets sent to
the ideal J,i.e.,Y = X — » X for some X € ﬁz—%' Since the ideal J is compatible with
the weight grading, we can assume that ¥ and X have a definite weight. We expand X in
powers of x

n
X =) Xgn
—m
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where the sum is finite thanks to the direct sum in definition of F,,. Since Y = gX —xX,
we get an equality of Laurent polynomials in »,

BX o™ + (X + X )" o b (X + X)) + X" = Y ®

because Y € Fun(#, @) has no powers of x in itself. If §f is injective, then we obtain from
this equality that Xo = X_; = 0, which implies Y = 0. On the other hand, if {} is not
injective, an element K of its kernel satisfies K = f#{(K/x) — »(K/x), which lies in the
ideal from Definition 32. |

This allows us to define formal exponentials and logarithms. As an image of the expo-
nential, we will consider FunEXID (P, @), amultiplicative abelian group of elements 1 + X
with X € Fung,, (8, @), on which the BD algebra operations can be defined in an obvious
way.

Definition 34. Define two maps
exp(X): Fungy, (P, Q) FunErp(J @):1log(X)

by
exp(X) =1+ X + X?/2! + X3/3! 4 ---

and
log(1 +X)=X—-X?/24+X3/34....

Lemma 35. These two maps are well-defined, mutually inverse maps. The exponential
behaves with respect to the A as

1
A(eX) = (AX + EM{X, X})eX
Proof. Tt is a simple consequence of equations (3.5) and (3.6) that

nn—1)
2

AX" =nX"TAX + X, X} X2,

Thus, for a power series f(X) =, f» X", we have in the quotient of Definition 32

A0 = 3 et ax + 2D e
n>0
— FX)AX + %f”(X)}f{X, X}, .

Thus we arrive at another characterization of morphisms from the Feynman transform
of P
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Corollary 35.1. Assume that the condition on f§ from Lemma 30 is satisfied. Then, a
degree 0 element S € Fun(P, Q) satisfies the quantum master equation

m+ms+§&a=o

if and only if
(d + AN)e'S/* =0
holds in Fung,, (P, @).
Proof. Thanks to the stability condition (2.1), t(S)/x has positive weight, and we have

W(dS + AS + 1{S.S})
X

0=(d+ A)etS* = et (8)/x

which is equivalent to the quantum master equation for injective ¢. ]

Remark 36. The weight w = n/2 + G 4+ 2q + 1 is a generalization of the weight
2(g + q) + n introduced by Braun and Maunder [7, Def. 2.8]; this choice is motivated
by A, %, /x having weight 0. This weight, and the stability condition (2.1), make it pos-
sible to define the expression Aet®)/% See also [14, Sec. 2.2] for similar considerations
for the QT case.

The power of » should be thought of as the geometric genus g, motivated by the
relation x = {f in Definition 32. Zwiebach uses powers of % to count G in the open-closed
string theory context [27, eqs. (3.1), (3.11)], which is why we used the letter x instead.

3.6. Examples

We will now describe the BD algebra structure coming from the two modular operads
Q€ and Q0O. Apart from the connected sum and the induced commutative product, these
algebras were described in [13]. Using the commutative product, we obtain a slightly
simplified description, since d, A and the bracket are can be specified on generators of
the algebra.

Let us fix an odd symplectic vector space V with a symplectic form w and a differen-
tial d. Let e¢; be a basis of V', which determines the dual basis ¢i of V* and the matrix
wij = w(e;, ej) with inverse w" .

3.6.1. The operad Q€. The space of formal functions on V, recalled in the following
definition, is a BD algebra. We will now show that (up to a few non-stable elements), this
BD algebra is isomorphic to Fun(@Q¢€, &y).
Definition 37. On Fungy, (V) =[], Sym" (V*) ® k|[x]], define d and A
- 1671 (1 9
d==D"Y¢ OdV)aTﬂ"
82

— (1)l i
A= (-1) w]8¢>"8¢>f'

3.7
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The space (Fungm(V),d, A) is a BV algebra, and thus (Fung,(V), d, xA, {—, —})
is a BD algebra, where (—1)X1{X, Y} = A(XY) — A(X)Y — (1) XIXA(Y). For com-
pleteness, this gives
X oY
¢! 07
Recall from Section 3.2 that the space Fun(Q€, §y) is spanned by X,-invariant

tensors of the form C§ ® w, where C§ is the generator of Q€(n,2g + n/2 — 1) and
w e (V*)®n,

(XY} = (_1)\¢"\+|X|(|¢f|+1)wij

Lemma 38. The map V:Fun(Q¢C, €y) — Fungy,(V), given by
Cf@w — (n) ' w]x

is an injective map of BD algebras over k[[x]], with the image given by the elements
with 2g +n > 2. The map w — [w] is the projection (V*)®" — Sym™(V*) given by
P11 Q- Q ¢y > P1 -+ @y, the graded-commutative product of ¢;.

Proof. The space @€ (n, G) is the trivial representation of the permutation group X,, and
thus Fun(Q€, &y)(n, G) is the subspace of invariants in (V*)®”. This implies that W is
an injection with the image specified by the stability condition 2(G — 1) +n > 0 <
2g +n > 2.

Compatibility with the action of x is immediate. To check the compatibility of ¥ with
products, note that the terms of the sum in (3.4) differ only by an action of X,, 44,, as
follows from Lemma 15. Thus, after the projection by [—], all the (" ! :1 "2) terms give the
same contribution. Concretely, calculating the product, we get

ny+no

V(CE @ wy % CF2 ® wy) = (
ni

1
)m[wl ® wz]}tg1+g2
1 2):

which indeed equals
1
Y(CE @ wy) - W(CE @ wy) = T[wl][u&];{gl+gz_
ni:ny!

This is thanks to the normalization of W and to the property [w; ® wz] = [w1][w2].

As W is compatible with products, it is enough to check d on linear elements and
A on quadratic elements C§ ® (¢’ ® ¢/ + (—1)?'l1#'1¢/ ® ¢'). This is because these
maps are determined by their values on such elements, possibly after multiplying with a
high-enough power of x to fulfil the stability condition. We discuss only the case of A,
defined in (2.4) and (3.2), which sends the above quadratic element to

CEM @ (=) N[ () (F) + (1) 117 (e) ' ()]
=208 @ (1)l

which W sends to (—1)!#'|2w" x&+1. This agrees with the action of xA from (3.7) on

¢’i¢j}fg~ |
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3.6.2. The operad @QO. Let V be as before. We will now define a BD algebra struc-
ture on symmetric powers of cyclic words with letters from V*. Related BV structures
appeared, for example, in the work of Cieliebak, Latschev and Fukaya [9, Sec. 10] and
Barannikov [2, Sec. 1.2].

Definition 39. The space of cyclic words in V* of length & is the space of coinvariants
under the action of Zj by cyclic permutations

Cyc, (V*) = (V) %)z,

with elements denoted by (¢ - - - ¢b,) = (—1)1911U821++IenD (g, ... 5, ). Then, we define
the following algebra:

Fune (1) = [T Sy (€D Cyee™) ). €1

n>0 k>1

This algebra carries a natural BD structure continuous in x and £. The Laplacian is defined
by
n—2
A - g™) = Y Fh k(@ g (e ) feyel. (38)

k=0

where the sign % in the first term is equal to (—1)!#" [H1@*+21(#"2 [+-+1¢% 1D 1 the terms
k = 0and k = n — 2, one of the cyclic words is empty as is replaced by £. The remainder
denoted “+-cycl.” contains the n — 1 terms obtained by cyclically permuting the indices
i1,...,in in the first term and by multiplying by the Koszul sign of this cyclic permutation.
On products of cycles, A is extended to a BD operator as in (3.1), using the bracket

(@7 9™, (@7 - ¢7r2)} = £201)1 (9 - @™ 7 - §72) + cyel. x cyel. (3.9)

where the sign = in the first term is equal to (—1)¢" [+(#" [+-+&"1 DS/ I+1) The term
“+cycl. x cycl.” consists of n1n, — 1 terms obtained from the first term by cyclic per-
mutations among indices i and j, multiplied by the appropriate sign. For n; = n, =1,
the empty cycle is replaced by &.

The induced differential is given as in Definition 37.

Remark 40. In contrast to Fung,(V), this BD algebra cannot be induced from a BV
algebra by replacing some Agy with »¥Agy. This can be seen on the level of the operad
QQ0: the self-composition o, applied on a disk is an annulus, which cannot be written as
an image of #,. However, both the BD and the BV structure come from a graded involutive
Lie bialgebra structure on the space of cyclic words on V*, given by a (degree 1) Lie
cobracket (3.8) and a Lie bracket (3.9) (see, e.g., [8, Sec. 5] for the BV case).
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Example 41. To illustrate the above formulas, let us give a few simple examples the BD
structure defined above.

Ap?¢") = 2(=1)* g,
A9 ¢¢) = 2((=1)*" 0™ (¢°) + cycl g
= 2D () + (=Dl (p)
+ (_1)|¢b\|¢cl+|¢”|wca (¢b))§’
{49, @")} = 207%.
We would like to show that Fune,. (V') contains Fun(Q0, €y), with » counting the
geometrical genus of the element of @ and £ counting the empty punctures.
In this case, the ¥, invariants in QO (n, G) ® (V*)®" can be described as follows
(see also [13, Sec. 5.3]): the ¥, -representation @@ (n, G) comes from the set of all cycles
on letters 1...n, with its X,-action given by renumbering. Orbits of this set-theoretic

action are completely specified by sequences’ (b, b, ...) € NN, where b; is the number
of cycles of length i. Choose the following element in each orbit:

= 0. 00) ... (b)) (b + D1 +2))... ... (3.10)
S—— ——— ——
by times by times by times

For each such admissible b and w € (V*)®” invariant under the stabilizer of x;,, we have
an invariant element

Z oxXp Q@ ow. (3.11)
o€X, /Stab(b)

The space of invariants (QO (n, G) ® (V*)®")Zn is spanned by such elements®.
Define a map ©: (Q0(n,G) ® (V*)®")En — Fung,(V) by

1
0: Z oxp @ owy > —-b»b'[wb]}‘g'fbov
GEZ, /Stab(b) Hizl 170h;:

where w — [w] is the composition

(V)" — Q) (Cye; (V)P — (X) Sym” (Cyc; (V*)) < Funeye(V).
i>1 i>1
Lemma 42. The map ©:Fun(Q0, &y) — Funey (V) is an injective map of BD algebras
over K[[x]], with the image given by elements with 2g + b 4+ n/2 > 2. Here, b is by plus
the total number of cyclic words, n is the total number of letters.

"These are subject to the obvious conditions Yybi=band) ;ib =n.

81f G is a finite group, X a finite G-set and W a G-representation, then (kX ® W)% =~ &) o; W Stabx;
where the sum is over all orbits of the G-action in X and x; € O; is an arbitrarily chosen element of the
orbit.
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Proof. The injectivity of ® follows from the fact that the map w +— [w] is an isomorphism
from invariants to coinvariants for the stabilizer subgroup of b.
Let us check the compatibility of ® with the products. In the product of two elements

Z oxXpw ® ow® « Z o'xp ® o'w®
o

0~/
bV b - . -
there are [ [, ( ! b(”l ) contributions to the term xyw @ ® W, and their contributions

to the tensor W all differ by a permutation only among cycles of the same length, i.e., a

permutation stabilizing Xy )@ . Thus, in [W], they are all equal, and the combinatorial
bV +b? . iy
factor [, (™ oS ) cancels thanks to [] 1/b;! in the definition of ©.

Using the compatibility of ® with products, it is now enough to check d, A and the
bracket on elements with only one cycle.

Let us calculate A(¢™ ...¢"). The cyclic word (¢ ...¢") can by obtained by ©
from the element

A..)@I 41+ +1" P Q@--- Q™) +---,

where 7 is the cyclic permutation of 1 +> 2 +> -+ +> n +> 1 and the - - - at the end denote
the (n — 1)! — 1 remaining terms. In (3.2), we choose 6 as

0(1)=a, 02)=b, Ok)=k—-2 fork >2.

The operator A then cuts the relabelled cycle (1...a...b...n) at a and b into two
(possibly empty) cycles. To calculate ®, we need to find which terms contribute to the
terms xp ® - - -, i.e., which cuts the result in two cycles in the standard form (3.10). There
are 2k(n — 2 — k) such contributions’ to each possible length of cycles, coming from
terms labelled (a[l...k]b[k +1...n —2]) and (alk + 1...n —2]b[1...k]) for any
0 <k <n/2— 1. Using the symmetry of (—1)!?“lw?® | re-expressing the tensor [1 + 7 +
oo 4 " 1git . ¢ using a cyclic permutation exchanging a <> b and collecting the
signs, one obtains that these contributions are equal.

The factor k(n — 2 — k) cancels with the normalization [];.oi% of the map ©. The
factor 2 can be removed by expanding the possible values of k ton—2iftk=n—2—k
and the two cycles are of the same length, this factor of 2 instead cancels the 2! from the
normalization of ®. Together, we thus obtain

AP ... ¢")

= Z[(—l)(l¢i2|+--~+|¢‘k+1 DIE2Igshine (g2 glian)(@hirs . g™n) + cyel],
k=0

9fk = 0 orn — 2 — k = 0, there are still two contributions; let us not mention this technicality again.
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with the convention that an empty cycle (for k = 0 or k = n — 2) is replaced by £. The
n — 1 terms in 4 cycl. are obtained from ¢! ® --- ® ¢ for | <m <n — 1, i.e., they
also contain the sign from permuting the graded covectors ¢.

The bracket, defined in (3.3), is computed similarly. Looking at

(@™ ...p"), (7" ... p7m)}

for ny,n, > 1, the only terms from the sum over decompositions which contribute to the
cycle (1...n1 + ny — 2) are those where C; is aninterval {/,...,[ +n; — 1} mod (n; +
ny — 2). Moreover, for each such decomposition, only one permutation from the sum
(3.11) contributes. There are n; + n, — 2 choices for [, which are all equal after the
projection [—]; this cancels the normalization of ©.

The case n, = 1 is different: there is only one choice of a decomposition, and n; — 1
different permutations from (3.11) contribute, namely the cyclic permutations of the inter-
val {l,...,n; — 1}. [

Remark 43. Let us finish by considering the “classical” versions of @€ and Q0, i.e., the
cyclic operads Com and Ass. For @€, we have G = 2g + n/2 — 1, thus Com can be seen
as the sequence {Q€(n,n/2 — 1)}, of vector spaces generated by punctured spheres. This
sequence is closed under ;o; and #,; the sewing ;o; is equal to the operadic composition
on Com, while #, endows Com with a “horizontal composition”, which induces the sym-
metric product on the Gerstenhaber algebra Sym(V*) = @, (Com(n) ® (V*)®m)Zn [20].

On the other hand, for @O we have G = 2g + b — 1. Thus, Ass, seen as the sequence
of disks {€0(n,0)},, is closed under ;o;, but not under #,, since the connected sum of
two disks is an annulus. Thus, for the cyclic operad Ass, we do not get a natural product
on Cyc(V*) = P, (Ass(n) ® (V*)®")=n,
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