
J. Noncommut. Geom. 19 (2025), 73–104
DOI 10.4171/JNCG/560

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

On the classification of simple amenable C�-algebras with
finite decomposition rank, II

George A. Elliott, Guihua Gong, Huaxin Lin, and Zhuang Niu

Abstract. We prove that every unital simple separable C�-algebraAwith finite decomposition rank
which satisfies the UCT has the property that A˝Q has generalized tracial rank at most one, where
Q is the universal UHF-algebra. Consequently, A is classifiable in the sense of Elliott.

1. Introduction

In a recent development in the Elliott program, the program of classification of amenable
C�-algebras, a certain class of finite unital simple separable amenable C�-algebras, de-
noted by N1, was shown to be classified by the Elliott invariant [15, 16]. One important
feature of this class of C�-algebras is that it exhausts all possible values of the Elliott
invariant for unital simple separable C�-algebras which have finite decomposition rank
(a property introduced in [20]; see Definition 2.10 below).

The purpose of this note is to show that, in fact, every unital simple separable (non-
elementary) C�-algebra which has finite decomposition rank and satisfies the Universal
Coefficient Theorem (UCT) is in the class N1. Since every C�-algebra in N1 was shown
in [15, 16] to be isomorphic to the inductive limit of a sequence of subhomogeneous C�-
algebras with no dimension growth, the C�-algebras in N1 have finite decomposition rank
(see Remark 4.7 below). In other words, the class N1 is precisely the class of all unital
simple separable (non-elementary) C�-algebras which have finite decomposition rank and
satisfy the UCT, and hence we obtain a classification for all of these C�-algebras.

Theorem 1.1. LetA be a unital simple separable (non-elementary) C�-algebra with finite
decomposition rank, and assume that A satisfies the UCT. Then, A 2 N1. (See Defini-
tion 2.6 below.) Hence (by [16, Theorem 29.8]), if A and B are two (non-elementary)
unital simple separable C�-algebras with finite decomposition rank which satisfy the UCT,
then A Š B if and only if�
K0.A/;K0.A/C; Œ1A�0;K1.A/;T.A/; rA

�
Š
�
K0.B/;K0.B/C; Œ1B �0;K1.B/;T.B/; rB

�
:

In fact, we shall obtain (see Theorem 4.4 below) the formally stronger result that every
finite unital simple separable (non-elementary) C�-algebra with finite nuclear dimension,
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which satisfies the UCT, and whose tracial states are all quasidiagonal, is in the class N1.
This result, combined with the recent result of [36] that the quasidiagonality hypothesis is
redundant, yields that the class N1 includes all finite unital simple separable C�-algebras
with finite nuclear dimension which satisfy the UCT—see Theorem 4.10 below. (The case
of infinite unital simple separable C�-algebras with finite nuclear dimension was dealt
with over twenty years ago by Kirchberg and Phillips—see Remark 4.11 below.)

In a recent paper [11], two of us (G. A. E. and Z. N.) proved that every unital simple
separable (non-elementary) C�-algebra A with finite decomposition rank, satisfying the
UCT, and such that K0.A/ has torsion-free rank one, belongs to N1. The present paper is
a continuation of [11] with, now, a definitive result.

It is perhaps worth mentioning that the mathematical content of this paper (for exam-
ple, Theorem 4.9) is independent of that of [15, 16]. Please also see Remark 4.6.

2. Preliminaries

Definition 2.1. As usual, let Q denote the field of rational numbers. Let us use the notation
Q for the UHF-algebra with K0.Q/ D Q and Œ1Q� D 1.

Definition 2.2 (N. Brown [3]). Let A be a unital C�-algebra. Denote by T.A/ the tracial
state space ofA, and denote by Tqd.A/ the subset of the quasidiagonal tracial states—those
� 2 T.A/ with the following property: For any finite subset F and " > 0, there exists a
unital completely positive map ' W A! Q such thatˇ̌

�.a/ � tr
�
'.a/

�ˇ̌
< "; a 2 F ;

'.a/'.b/ � '.ab/

 < "; a; b 2 F ;

where tr is the unique tracial state of Q.

Definition 2.3. Let F1 and F2 be two finite-dimensional C�-algebras and let  0;  1 W
F1 ! F2 be two unital homomorphisms. Consider the corresponding mapping torus,

C D C.F1; F2;  0;  1/

D
®
.f; a/ 2 C

�
Œ0; 1�; F2

�
˚ F1 W f .0/ D  0.a/ and f .1/ D  1.a/

¯
:

Denote by C the class of unital C�-algebras obtained in this way. C�-algebras in the class
C are often called Elliott–Thomsen building blocks. They are also called one-dimensional
non-commutative CW complexes.

Denote by C0 the subclass of C consisting of those C�-algebras C 2 C such that
K1.C / D ¹0º.

We shall in fact only work with the Q-stabilizations of these algebras, which can be
described just by replacing F1 and F2 with finite direct sums of copies of Q.

Definition 2.4 ([15, Definition 9.1]). Let A be a (non-elementary) unital simple C�-
algebra. We shall say that A has generalized tracial rank at most one if the following
property holds.
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Let " > 0, let a 2 AC n ¹0º, and let F � A be a finite subset. There exist a non-zero
projection p 2 A and a sub-C�-algebra C 2 C with 1C D p such that

kxp � pxk < "; x 2 F ;

dist.pxp; C / < "; x 2 F ;

1 � p . a:

The last condition means that there exists a partial isometry v 2 A such that v�v D 1� p
and vv� 2 aAa. If A has generalized tracial rank at most one, we will write gTR.A/ � 1.
It was shown in [15] that if gTR.A/ � 1, then A is quasidiagonal and Z-stable if it is also
amenable.

Definition 2.5. Let A and B be unital C�-algebras and let L W A! B be a contractive
completely positive map. Let G be a finite subset of A and ı > 0. Recall that L is said to
be G -ı-multiplicative if kL.x/L.y/ � L.xy/k < ı for all x; y 2 G . Given a finite subset
P of projections in A, if G is sufficiently large and ı is sufficiently small, then there is a
projection q 2 B such that kL.p/ � qk < 1=4. Moreover, for each projection p 2 G , if
ı < 1=4, then the projection q can be chosen such that

L.p/ � q

 < 2ı: (2.1)

Note that if q0 2 B is another projection such that kL.p/ � q0k < 1=4, then q0 and q are
unitarily equivalent. Recall that ŒL.p/� often denotes this equivalence class of projections
(see e.g. [21]). As usual, when ŒL.p/� is written, it is understood that G is sufficiently
large and ı is sufficiently small that ŒL.p/� is well defined.

Definition 2.6 ([15]). Let A be a unital simple separable C�-algebra. Let us say that A
has rational generalized tracial rank at most one if gTR.A˝Q/ � 1.

Let us say that A belongs to the class N1 if, in addition, it is amenable and satisfies
the UCT [34] and is Jiang–Su stable, i.e., is invariant under tensoring with the Jiang–Su
C�-algebra ([18]; see also [8]). As pointed out above, it follows from [16] (together with
[38]) that, instead of the last property, it is equivalent to assume finite decomposition rank
(or, by [39], even just finite nuclear dimension); see Definition 2.10 below. (By now, we
know (see [4,29,35]) that a unital separable simple nuclear C�-algebra is Jiang–Su stable
if and only if it has finite nuclear dimension—see “Added November 2, 2021” at the end
of this paper.)

The following are the main results of [15, 16].

Theorem 2.7. Let A and B be two unital C�-algebras in N1. Then, A Š B if and only if
Ell.A/ Š Ell.B/, i.e., A Š B if and only if�
K0.A/;K0.A/C; Œ1A�0;K1.A/;T.A/; rA

�
Š
�
K0.B/;K0.B/C; Œ1B �0;K1.B/;T.B/; rB

�
:

Moreover, any isomorphism between Ell.A/ and Ell.B/ can be lifted to an isomorphism
between A and B .
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Proof. The first part of the statement follows from [16, Theorem 29.8].
The second part of the statement needs some explanation. Note that A and B satisfy

the assumption of [16, Theorem 29.5], by [15, Corollary 19.3]. Let � W Ell.A/! Ell.B/ be
an isomorphism. Repeat [16, proof of Theorem 29.5] until the second-last sentence of that
proof: namely, “One then obtains a unitary suspended isomorphism which lifts � along
Zp;q (see [40])”. For the present purpose (note that the lifting statement is not explicitly
formulated in [16]), replace the last sentence of that proof by the sentence “It follows from
[40, Theorem 7.1] thatA˝Z andB ˝Z are isomorphic and the isomorphism lifts �”.

Theorem 2.8 ([15, Theorem 13.50]). For any non-zero countable weakly unperforated
simple ordered group G0 with order unit u, any countable abelian group G1, any non-
empty metrizable Choquet simplex T , and any surjective affine map r W T ! Su.G0/
(Su.G0/ is the state space ofG0—always non-empty), there exists a (unique) unital simple
C�-algebra C in N1, which is the inductive limit of a sequence of subhomogeneous C�-
algebras with two-dimensional spectrum, such that

Ell.C / D
�
G0; .G0/C; u;G1; T; r

�
:

Definition 2.9. Let A and B be C�-algebras. Recall ([20]) that a completely positive map
' W A! B is said to have order zero if

ab D 0 H) '.a/'.b/ D 0; a; b 2 A:

Definition 2.10 ([20,42]). A C�-algebra A has nuclear dimension at most n if there exists
a net .F�;  �; '�/, � 2 ƒ, such that the F� are finite-dimensional C�-algebras, and such
that  � WA! F� and '� W F�!A are completely positive maps satisfying the following:

(1) '� ı  � ! idA pointwise (in norm),

(2) k �k � 1,

(3) for each �, there is a decomposition F�DF
.0/

�
˚ � � � ˚F

.n/

�
such that each restric-

tion '�jF .j /
�

is a contractive order zero map.

Moreover, if the the map '� can be chosen to be contractive itself, then A is said to
have decomposition rank at most n.

Recall that finite nuclear dimension immediately implies nuclearity, which by [5, 17]
is equivalent to amenability. The nuclear dimension of a certain C�-algebra associated
with a discrete metric space is related to asymptotical dimension of the underlying space,
and the concept of asymptotical dimension has fundamental applications to geometry and
topology (see [43, 44]).

The main theorem of this paper is that the class N1 of C�-algebras actually con-
tains (and hence coincides with) the class of all (non-elementary) unital simple separable
C�-algebras with finite decomposition rank which also satisfy the UCT. In particular, it
follows (on using both Theorems 2.7 and 2.8) that every such C�-algebra is the inductive
limit of a sequence of subhomogeneous C�-algebras (with no dimension growth).
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3. Some existence theorems

Denote by K the C�-algebra of all compact operators on l2, an infinite-dimensional sep-
arable Hilbert space. Let ¹ei;j º be the canonical system of matrix units for K . We will
use the fact that K ˝K Š K and assume that such an isomorphism has been fixed. Let
B be a C�-algebra. We may identify B ˝K with .B ˝K/ ˝ e1;1. Let A be another
C�-algebra and let  1;  2; : : : ;  n W A! B ˝K be linear maps. For convenience, when
there is no confusion, using the identification above, we shall write

ˆ WD  1 ˚  2 ˚ � � � ˚  n W A! B ˝K

to denote the orthogonal sum:

ˆ.a/ D

nX
iD1

 i .a/˝ ei;i for all a 2 A: (3.1)

Likewise, for projections p1; p2; : : : ; pm 2 B ˝K , we shall write

P WD p1 ˚ p2 ˚ � � � ˚ pm 2 B ˝K

if there is no confusion. Therefore, in the case that  i .A/� pi .B ˝K/pi , 1 � i � n, we
may view ˆ as mapping A to P.B ˝K/P .

We will use this convention repeatedly.

Lemma 3.1. Let A be a unital simple separable amenable quasidiagonal C�-algebra
satisfying the UCT. Assume that A Š A˝Q.

Let a finite subset G of A and "1; "2 > 0 be given. Let p1; p2; : : : ; ps 2 A be projec-
tions such that Œ1�; Œp1�; Œp2�; : : : ; Œps� 2 K0.A/ are Q-linearly independent. (Recall that
K0.A/ŠK0.A˝Q/ŠK0.A/˝Q.) There are a G -"1-multiplicative completely positive
map � W A! Q with �.1/, a projection satisfying

tr
�
�.1/

�
< "2

(where tr denotes the unique tracial state onQ), and ı > 0, such that, for any r1; r2; : : : ; rs
2 Q with

jri j < ı; i D 1; 2; : : : ; s;

there is a G -"1-multiplicative completely positive map � W A ! Q, with �.1/ D �.1/,
such that �

�.pi /
�
�
�
�.pi /

�
D ri ; i D 1; 2; : : : ; s:

Proof. Let us agree that � and � (to be constructed below) are also understood to be
required to be sufficiently multiplicative on p1; p2; : : : ; pk that the classes Œ�.pi /� and
Œ�.pi /� make sense (see Definition 2.5 above) (similarly for other completely positive
approximately multiplicative maps, to be introduced below).
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Denote by G0 the subgroup of K0.A/ generated by ¹Œ1A�; Œp1�; : : : ; Œps�º. Since Œ1A�;
Œp1�; : : : ; Œps� are Q-linearly independent, for each i D 1; 2; : : : ; s, there exists a homo-
morphism ˛i W K0.A/! Q Š K0.Q/ such that

˛i
�
Œpi �

�
D 1; ˛i

�
Œ1A�

�
D 0; and ˛i

�
Œpj �

�
D 0; j 6D i: (3.2)

We may regard ˛i as an element of KL.A; Q/ (see [7]). Since A is a unital simple
amenable quasidiagonal C�-algebra, by [1], A is a unital simple strong NF-algebra. It
follows from [1] that A D

S1
nD1An, where ¹Anº is an increasing sequence of unital,

amenable, residually finite-dimensional C�-algebras. It follows from [21, Theorem 5.9]
that there are G -"1-multiplicative completely positive maps �i ; �i W A! Q ˝K such
that �i .1A/ and �i .1A/ are projections, and

Œ�i �
ˇ̌
G0
� Œ�i �

ˇ̌
G0
D ˛i jG0 ; i D 1; 2; : : : ; s: (3.3)

Since ˛i .Œ1A�/ D 0, we have Œ�i .1A/� D Œ�i .1A/�. Therefore, without loss of generality,
we may assume that

�i .1A/ D �i .1A/ DW Pi ; i D 1; 2; : : : ; s:

Consider the projection

P WD

sM
iD1

.Pi ˚ Pi /;

and the unital G -"1-multiplicative completely positive map
sM
iD1

.�i ˚ �i / W A! P.Q˝K/P;

where �i ˚�i means the map a 7! �i .a/˚�i .a/ (see the beginning of this section). Note
that P.Q ˝K/P Š Q. Choose a projection R 2 Q ˝K with 0 < tr.R/ � min¹1; "2º
and a rescaling homomorphism

S W Q˝K ! Q˝K; P 7! R:

Consider the map

� WD S ı

 
sM
iD1

.�i ˚ �i /

!
W A! Q˝K

and the strictly positive number

ı WD
tr.R/
tr.P /

:

(Here, tr denotes the tensor product of the traces on Q and K , normalized to be 1 on
1Q ˝ e11.) Note that since tr.R/ � 1, one has

tr
�
�.1/

�
D tr.R/ � 1;

and so we may regard � as a map from A to Q (rather than Q˝K).
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Let us show that � and ı satisfy the condition of the lemma.
Let r1; r2; : : : ; rs 2 Q be given with

jri j < ı; i D 1; 2; : : : ; s:

For each i D 1; 2; : : : ; s, choose a projection Ri 2 Q ˝K with tr.Ri / D jri j, and
choose a rescaling homomorphism

Si W Q˝K ! Q˝K; 1˝ e 7! Ri ;

where e is a minimal non-zero projection of K . For each i D 1; 2; : : : ; s, consider the pair
of maps

Si ı �i ; Si ı �i W A! Q˝K:

Then, for each i D 1; 2; : : : ; s,�
Si ı �i .pi /

�
�
�
Si ı �i .pi /

�
D jri j;�

Si ı �i .1/
�
�
�
Si ı �i .1/

�
D 0;�

Si ı �i .pj /
�
�
�
Si ı �i .pj /

�
D 0; j D 1; 2; : : : ; s; j ¤ i:

Consider the direct sum maps

Q� WD
�M
ri>0

Si ı �i

�
˚

�M
ri<0

Si ı �i

�
;

Q� WD
�M
ri>0

Si ı �i

�
˚

�M
ri<0

Si ı �i

�
:

It follows from (3.2) and (3.3) that�
Q�.pi /

�
�
�
Q�.pi /

�
D ri ; i D 1; 2; : : : ; s:

Note that

� D S ı

 
sM
iD1

.�i ˚ �i /

!
D

sM
iD1

�
.S ı �i /˚ .S ı �i /

�
: (3.4)

For each i D 1; 2; : : : ; s, since

tr
�
Si .P /

�
D tr.P / � tr

�
Si .1˝ e/

�
D tr.P / � tr.Ri /

D tr.P /jri j < tr.P /ı D tr.R/ D tr
�
S.P /

�
;

there is a rescaling homomorphism Ti W Q˝K ! Q˝K such that

ŒS� D ŒSi �C ŒTi � D ŒSi ˚ Ti � on K0.Q/ Š Q:
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Therefore, by (3.4), on G0,

Œ�� D

sX
iD1

��
.S ı �i /

�
C
�
.S ı �i /

��
D

sX
iD1

�
ŒSi ı �i �C ŒTi ı �i �

�
C

sX
iD1

�
ŒSi ı �i �C ŒTi ı �i �

�
D

h�M
ri>0

�
.Si ı �i /˚ .Ti ı �i /

��
˚

�M
ri�0

�
.Si ı �i /˚ .Ti ı �i /

��
˚

�M
ri<0

�
.Si ı �i /˚ .Ti ı �i /

��
˚

�M
ri�0

�
.Si ı �i /˚ .Ti ı �i /

��i
D Œ Q��˚ Œ
�;

where

 D

�M
ri>0

.Ti ı �i /
�
˚

�M
ri�0

�
.Si ı �i /˚ .Ti ı �i /

��
˚

�M
ri<0

.Ti ı �i /
�
˚

�M
ri�0

�
.Si ı �i /˚ .Ti ı �i /

��
:

Consider the direct sum completely positive map

� WD Q�˚ 
:

We have �
�.pi /

�
�
�
�.pi /

�
D
�
Q�.pi /

�
�
�
Q�.pi /

�
D ri ; i D 1; 2; : : : ; s;

as desired (with � regarded as a map from A to Q, as �.1/ D �.1/).

Remark 3.2. The assumption that A is amenable in Lemma 3.1 can be removed. In the
proof one can apply [6, Theorem 5.5] in place of [21, Theorem 5.9].

Let l; r D 1; 2; : : : be given. In the rest of the paper, we identify K0.Ql / with Ql (and
K0.Qr / with Qr ) by identifying Œ1Ql � with .1; 1; : : : ; 1„ ƒ‚ …

l

/ and (Œ1Qr � with .1; 1; : : : ; 1„ ƒ‚ …
r

/),
where

Ql
D Q˚ � � � ˚Q„ ƒ‚ …

l

; Qr
D Q˚ � � � ˚Q„ ƒ‚ …

r

:

If  W Ql ! Qr are unital, then

. /�0.1; 1; : : : ; 1„ ƒ‚ …
l

/ D .1; 1; : : : ; 1„ ƒ‚ …
r

/;

and therefore
. /�0.t; t; : : : ; t„ ƒ‚ …

l

/ D .t; t; : : : ; t„ ƒ‚ …
r

/; t 2 Q: (3.5)



Classification of C�-algebras, II 81

Lemma 3.3. Let A be a unital simple separable amenable quasidiagonal C�-algebra
satisfying the UCT. Assume that A Š A˝Q.

Let G be a finite subset of A, let "1; "2 > 0, and let p1; p2; : : : ; ps 2 A be projections
such that Œ1A�; Œp1�; Œp2�; : : : ; Œps� 2 K0.A/ are Q-linearly independent. There exists ı > 0
satisfying the following condition.

Let  k W Ql ! Qr , k D 0; 1, be unital homomorphisms, where l; r D 1; 2; : : :. Set

D D
®
x 2 Ql

W . 0/�0.x/ D . 1/�0.x/
¯
� Ql :

There exists a G -"1-multiplicative completely positive map † W A!Ql , such that †.1A/
is a projection, with the following properties:

�
�
†.1A/

�
< "2; � 2 T.Ql /;�

†.1A/
�
;
�
†.pj /

�
2 D; j D 1; 2; : : : ; s;

and, for any r1; r2; : : : ; rs 2 Qr satisfying

jri;j j < ı;

where ri D .ri;1; ri;2; : : : ; ri;r /, i D 1; 2; : : : ; s, there is a G -"1-multiplicative completely
positive map � W A! Qr , with �.1A/ a projection, such that�

 0 ı†.pi /
�
�
�
�.pi /

�
D ri ; i D 1; 2; : : : ; s;

and �
�.1A/

�
D
�
 0 ı†.1A/

�
:

Proof. Put p0 D 1A and P D ¹Œ1A�; Œp1�; : : : ; Œps�º. Applying Lemma 3.1, we obtain a
G -"1-multiplicative � W A! Q and ı > 0 satisfying the conclusion of Lemma 3.1 with
respect to G , "1, "2, and P .

Let us show that ı is as desired.
For a given integer l D 1; 2; : : :, consider the map † W A! Ql , the sum of l copies

of � ,
† D � ˚ � ˚ � � � ˚ �:

Let us show that † has the required properties. Let r D 1; 2; : : : and  k W Ql ! Qr ,
k D 0; 1, be given (as in the statement of the condition on ı to be verified). Since  0 and
 1 are assumed to be unital, Œ1Qr � D .1; 1; : : : ; 1/ 2 D. It then follows that�

†.pi /
�
D
��
�.pi /

�
;
�
�.pi /

�
; : : : ;

�
�.pi /

��
D
�
�.pi /

�
.1; 1; : : : ; 1/ 2 D; i D 0; 1; 2; : : : ; s;

where Œ�.pi /� is regarded as a rational number. In other words,�
 0 ı†.pi /

�
D
�
 1 ı†.pi /

�
; i D 0; 1; 2; : : : ; s:
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Since tr.Œ�.1A/�/ < "2, one has

�
��
†.1A/

��
< "2; � 2 T.Ql /:

Let r1; r2; : : : ; rs 2Qr be given such that jri;j j< ı, j D 1;2; : : : ; r and i D 1;2; : : : ; s.
Let us show that � exists as required.

Fix j D 1; 2; : : : ; r and let �j W A!Q (in place of �) denote the G -"1-multiplicative
completely positive map given by Lemma 3.1 for the s-tuple r1;j ; r2;j ; : : : ; rs;j . That is,
�j .1A/ D �.1A/, and�

�.pi /
�
�
�
�j .pi /

�
D ri;j 2 K0.Q/; i D 1; 2; : : : ; s: (3.6)

Define � W A! Qr by

�.a/ D
�
�1.a/; �2.a/; : : : ; �r .a/„ ƒ‚ …

r

�
; a 2 A:

Then, for each i D 1; 2; : : : ; s,�
 0 ı†.pi /

�
�
�
�.pi /

�
D . 0/�0

� �
�.pi /

�
;
�
�.pi /

�
; : : : ;

�
�.pi /

�„ ƒ‚ …
l

�
�
� �
�1.pi /

�
;
�
�2.pi /

�
; : : : ;

�
�r .pi /

�„ ƒ‚ …
r

�
D
� �
�.pi /

�
;
�
�.pi /

�
; : : : ;

�
�.pi /

�„ ƒ‚ …
r

�
�
� �
�1.pi /

�
;
�
�2.pi /

�
; : : : ;

�
�r .pi /

�„ ƒ‚ …
r

�
.by (3.5)/

D
���
�.pi /

�
�
�
�1.pi /

��
;
��
�.pi /

�
�
�
�2.pi /

��
; : : : ;

��
�.pi /

�
�
�
�r .pi /

���
D .ri;1; ri;2; : : : ; ri;r / D ri .by (3.6)/;

as desired. A similar computation shows that Œ 0 ı†.1A/� D Œ�.1A/�.

Lemma 3.4. Let A be a unital simple separable amenable quasidiagonal C�-algebra
satisfying the UCT. Assume that A Š A˝Q.

Let G � A be a finite subset, let "1; "2 > 0, and let p1; p2; : : : ; ps 2 A be projections
such that Œ1A�; Œp1�; Œp2�; : : : ; Œps� 2 K0.A/ are Q-linearly independent. Then, there exists
ı > 0 satisfying the following condition.

Let  k W Ql ! Qr , k D 0; 1, be unital homomorphisms, where l; r D 1; 2; : : : : Set

D D
®
x 2 Ql

W . 0/�0.x/ D . 1/�0.x/
¯
� Ql :

There exists a G -"1-multiplicative completely positive map † W A!Ql , such that †.1A/
is a projection, with the following properties:

�
�
†.1A/

�
< "2; � 2 T.Ql /;�

†.1A/
�
;
�
†.pi /

�
2 D; i D 1; 2; : : : ; s;
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and, for any r1; r2; : : : ; rs 2 Ql satisfying

jri;j j < ı;

where ri D .ri;1; ri;2; : : : ; ri;l /, i D 1; 2; : : : ; s, there is a G -"1-multiplicative completely
positive map � W A! Ql , with �.1A/ D †.1A/, such that�

†.pi /
�
�
�
�.pi /

�
D ri ; i D 1; 2; : : : ; s:

Proof. This is similar to the proof of Lemma 3.3. Put Œp0�DŒ1A�, PD¹Œp0�; Œp1�; : : : ; Œps�º.
Applying Lemma 3.1, we obtain a G -"1-multiplicative � W A! Q and ı > 0 satisfying
the conclusion of Lemma 3.1 with respect to .G ; "1; "2/.

Let us show that ı is as desired.
Consider the map † W A! Ql , the sum of l copies of � ,

† D � ˚ � ˚ � � � ˚ �;

for a given l D 1; 2; : : : : Then, the same argument as that of Lemma 3.3 shows that�
†.pi /

�
2 D; i D 0; 1; 2; : : : ; s:

It is also clear that
�
�
†.1A/

�
< "2; � 2 T.Ql /:

Let r1; r2; : : : ; rs 2Ql be given such that jri;j j< ı, j D 1; 2; : : : ; l and i D 1; 2; : : : ; s.
Let us show that � exists as required.

Fix j D 1; 2; : : : ; l and let �j W A!Q (in place of �) denote the G -"1-multiplicative
completely positive map given by Lemma 3.1 for the s-tuple r1;j ; r2;j ; : : : ; rs;j . That is,
�j .1A/ D �.1A/, and�

�.pi /
�
�
�
�j .pi /

�
D ri;j 2 K0.Q/; i D 1; 2; : : : ; s: (3.7)

Define � W A! Ql by

�.a/ D
�
�1.a/; �2.a/; : : : ; �l .a/

�
; a 2 A:

Then, for each i D 1; 2; : : : ; s,�
†.pi /

�
�
�
�.pi /

�
D
� �
�.pi /

�
;
�
�.pi /

�
; : : : ;

�
�.pi /

�„ ƒ‚ …
l

�
�
��
�1.pi /

�
;
�
�2.pi /

�
; : : : ;

�
�l .pi /

��
D
���
�.pi /

�
�
�
�1.pi /

��
;
��
�.pi /

�
�
�
�2.pi /

��
; : : : ;

��
�.pi /

�
�
�
�l .pi /

���
D .ri;1; ri;2; : : : ; ri;l / D ri .by (3.7)/;

as desired. Moreover, since �j .1A/ D �.1A/, we have †.1A/ D �.1A/.
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4. The main result

Let us begin by recalling the (stable) uniqueness result used in [11].

Lemma 4.1 ([11, Corollary 2.6]; see also [15, Lemma 4.14] and [22, Definition 5.6 and
Theorem 5.9]). Let A be a unital simple separable amenable C�-algebra which satisfies
the UCT. Assume that A Š A˝Q.

For any " > 0, any finite subset F of A, there exist ı > 0, a finite subset G of A, a
finite subset P of projections in A, and an integer n 2 N with the following property.

For any three completely positive contractions '; ; � W A! Q which are G -ı-multi-
plicative, with '.1/ D  .1/ D 1Q � �.1/ a projection, Œ'.p/�0 D Œ .p/�0 in K0.Q/ for
all p 2 P , and tr.'.1//D tr. .1// < 1=n, where tr is the unique tracial state ofQ, there
exists a unitary u 2 Q such that

u��'.a/˚ �.a/�u �  .a/˚ �.a/

 < "; a 2 F :

The following two existence results are related to [15, Lemma 16.9] (and its proof).
We will use the following known facts: Q ˝Q Š Q, and any unital endomorphism

' W Q! Q is approximately unitarily equivalent to the identity map.

Lemma 4.2. Let A be a unital simple separable amenable C�-algebra which satisfies the
UCT. Assume that A˝Q Š A.

For any " > 0 and any finite subset F of A, there exist ı > 0, a finite subset G of A,
and a finite subset P of projections in A with the following property.

Let  ;' W A!Q be two unital G -ı-multiplicative completely positive maps such that

Œ �
ˇ̌
P
D Œ'�

ˇ̌
P
:

Then, there are a unitary u 2 Q and a unital F -"-multiplicative completely positive map
L W A! C.Œ0; 1�;Q/ such that

�0 ı L D  and �1 ı L D Adu ı ': (4.1)

Moreover, if ˇ̌
tr ı .h/ � tr ı'.h/

ˇ̌
< "0; h 2 H ; (4.2)

for a finite set H � A and "0 > 0, then L may be chosen such thatˇ̌
tr ı�t ı L.h/ � tr ı�0 ı L.h/

ˇ̌
< "0; h 2 H ; t 2 Œ0; 1�: (4.3)

Here, �t W C.Œ0; 1�;Q/! Q is the point evaluation at t 2 Œ0; 1�.

Proof. This is a direct application of the stable uniqueness theorem [11, Corollary 2.6],
restated as Lemma 4.1 above. Let F � A be a finite subset and let " > 0 be given. We
may assume that 1A 2 F and every element of F has norm at most one. Write F1 D ¹ab W

a; b 2 F º. Note that F � F1.
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Let ı, G , P , and n be as assured by Lemma 4.1 for F1 and "=4. We may also assume
that F � G and ı � "=4.

Let '0;  0 W A! Q˝Q be defined by '0.a/ D '.a/˝ 1 and  0.a/ D  .a/˝ 1 for
all a 2 A. Pick mutually equivalent projections e0; e1; e2; : : : ; en 2 Q satisfying

nX
iD0

ei D 1Q:

Then, consider the maps 'i ;  i W A! Q˝ eiQei , i D 0; 1; : : : ; n, which are defined by

'i .a/ D '.a/˝ ei and  i .a/ D  .a/˝ ei ; a 2 A;

and consider the finite sequence of maps from A to Q˝Q

ˆnC1 WD '
0
D '0 ˚ '1 ˚ � � � ˚ 'n; ˆ0 WD  

0
D  0 ˚  1 ˚ � � � ˚  n;

and
ˆi WD '0 ˚ � � � ˚ 'i�1 ˚  i ˚ � � � ˚  n; i D 1; 2; : : : ; n:

Since ei is unitarily equivalent to e0 for all i , one has

Œ'i �
ˇ̌
P
D Œ j �

ˇ̌
P
; 0 � i; j � n;

and in particular,
Œ'i �

ˇ̌
P
D Œ i �

ˇ̌
P
; i D 0; 1; : : : ; n: (4.4)

Note that, for each i D 0; 1; : : : ; n,

ˆi �  i ˚ .'0 ˚ '1 ˚ � � � ˚ 'i�1 ˚  iC1 ˚  iC2 ˚ � � � ˚  n/;

ˆiC1 � 'i ˚ .'0 ˚ '1 ˚ � � � ˚ 'i�1 ˚  iC1 ˚  iC2 ˚ � � � ˚  n/;

where � denotes the relation of unitary equivalence. In view of this and (4.4) (identifying
Q˝Q with Q), applying Lemma 4.1 to ' WD 'i ,  WD  i and

� WD .'0 ˚ '1 ˚ � � � ˚ 'i�1 ˚  iC1 ˚  iC2 ˚ � � � ˚  n/;

we obtain unitaries ui 2Q˝Q, i D 0; 1; : : : ; n (with u0 D 1Q˝Q and ẑ 0 D ˆ0 D  0),
such that 

 ẑ

i .a/ � AduiC1 ıˆiC1.a/


 < "=4; a 2 F1;

where ẑ i WD Adui ıˆi , i D 1; 2; : : : ; n.
Consequently,

 ẑ

iC1.a/ � ẑ i .a/


 < "=4; a 2 F1; i D 0; 1; : : : ; n: (4.5)

Put ti D i=.nC 1/, i D 0; 1; : : : ; nC 1, and define L0 W A! C.Œ0; 1�;Q˝Q/ by

�t ı L
0
D .nC 1/.tiC1 � t / ẑ i C .nC 1/.t � ti / ẑ iC1; t 2 Œti ; tiC1�; i D 0; 1; : : : ; n:
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By construction,

�0 ı L
0
D ẑ 0 D  

0 and �1 ı L
0
D ẑnC1 D AdunC1 ı  0: (4.6)

Since ẑ i , i D 0; 1; : : : ; n, are G -ı-multiplicative (in particular F -"=4-multiplicative), it
follows from (4.5) that L0 is F -"-multiplicative. Let u0 D unC1. Then, �0 ı L0 D  0 and
�1 ı L

0 D Adu0 ı  0.
Choose an isomorphism s WQ˝Q!Q. Note that tr.s.a//D tr.a/ for all a 2Q˝Q.

Recall that the endomorphism s ı j WQ!Q is approximately unitary equivalent to idQ W
Q!Q, where j WQ!Q˝Q is defined by j.x/D x˝ 1. Thus, there are two unitaries
w0; w1 2 Q such that 

Adw0 ı s ı j

�
 .a/

�
�  .a/



 < "=4;

Adw1 ı s ı j
�
'.a/

�
� '.a/



 < "=4; (4.7)

for all a 2 F1. Note that j ı  D  0 and j ı ' D '0. Now define L W A! C.Œ0; 1�;Q/
by

L.t/ D

8̂̂̂̂
<̂
ˆ̂̂:
.1 � 3t/ C 3t Adw0 ı s ı  0; t 2 Œ0; 1=3�;

Adw0 ı Ad
�
s.u0/

�
ı s ı L0

�
3.t � 1=3/

�
; t 2 Œ1=3; 2=3�;

3.t � 2=3/Adw0 ı Ad
�
s.u0/

�
ı Adw�1 ı '

C .3 � 3t/Adw0 ı Ad
�
s.u0/

�
ı '0; t 2 Œ2=3; 1�:

Finally let u D w0.s.u0//w�1 ; we have �0 ıL D  and �1 ıL D Adu ı '. It follows
from (4.7) and the choice of F1 that L is F -"-multiplicative (L0 is already F -" multi-
plicative). Note that tr.ˆ0.a// D tr. 0.a// D tr. .a// for all a 2 A. Suppose that (4.2)
holds for some finite subset H and given "0. From the definition of ˆi , we know

 tr

�
ˆi .h/

�
� tr

�
ˆ0.h/

�

 D i

nC 1



 tr
�
'.h/

�
� tr

�
 .h/

�

 < "0 for all h 2 H : (4.8)

It is then straightforward to verify that L also satisfies (4.3). In fact, if �0; �1; � W A! Q

(D Q˝Q/ are three linear maps satisfying k tr.�i .h// � tr.�.h//k < "0 (i D 0; 1) for all
h 2H , then any convex combination � 0 WD t�0C .1� t /�1 (where 0� t � 1) also satisfies

 tr

�
� 0.h/

�
� tr

�
�.h/

�

 < "0 for h 2 H :

Note that up to unitary equivalence, L.t/ (for t 2 Œ1=3; 2=3�) is a convex combination of
s ıˆi and s ıˆiC1 (for suitable i ). Hence, for t 2 Œ1=3; 2=3�,

 tr

�
L.t/.h/

�
� tr

�
L.0/.h/

�

 D 

 tr
�
L.t/.h/

�
� tr

�
 .h/

�


D


 tr

�
L.t/.h/

�
� tr

�
ˆ0.h/

�

 < "0
for h 2 H . The inequality also holds for t 2 Œ0; 1=3� (since tr. .a// D tr. 0.a// for all
a 2 A) and for t 2 Œ2=3; 1� (since tr.'.a// D tr.'0.a// for all a 2 A). We obtain (4.3), as
desired.
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Lemma 4.3. Let A be a unital simple separable amenable C�-algebra with T.A/ D
Tqd.A/ which satisfies the UCT. Assume that A˝Q Š A.

For any � > 0, " > 0, and any finite subset F ofA, there exist a finite set of projections
P in A and ı > 0 with the following property.

Denote by G � K0.A/ the subgroup generated by P [ ¹1Aº. Let � W G! K0.C / be a
positive homomorphism with �.Œ1A�/D Œ1C �, where C D C.Œ0; 1�;Q/, and let � W T.C /!
T.A/ be a continuous affine map such thatˇ̌

�
�
�
�
Œp�
��
� �.�/.p/

ˇ̌
< ı; p 2 P ; � 2 T.C /: (4.9)

(In particular, this entails that T.A/¤ Ø.) Then, there is a unital F -"-multiplicative com-
pletely positive map L W A! C such thatˇ̌

� ı L.a/ � �.�/.a/
ˇ̌
< �; a 2 F ; � 2 T.C /: (4.10)

Proof. Let ", � , and F be given. We may assume that every element of F has norm at
most one.

Let ı1 (in place of ı), G , and P be as assured by Lemma 4.2 for F and ". We may
assume that F [P � G .

Adjoining 1A to P , write

P D ¹1A; p1; p2; : : : ; psº:

Deleting one or more of p1; p2; : : : ; ps (but not 1A), we may assume that the set®
Œ1A�; Œp1�; : : : ; Œps�

¯
is Q-linearly independent. (Since A Š A˝Q, we have K0.A/ Š K0.A/˝Q.)

Let ı2 > 0 (in place of ı) be as assured by Lemma 3.1 for "1 D ı1, "2 D �=4, G , and
¹p1; p2; : : : ; psº.

Put ı D min¹ı1; ı2=8; 1=4º, and let us show that P and ı are as desired.
Let � and � be given satisfying (4.9).
Let �� W Aff.T.A// ! Aff.T.C // be defined by ��.f /.�/ D f .�.�// for all f 2

Aff.T.A// and � 2 T.C /. Identify @e.T.C // with Œ0; 1� (that is, identify tr ı�t with t ,
where �t W C D C.Œ0; 1�; Q/ ! Q is the point evaluation at t 2 Œ0; 1�), and put � D
min¹ı; �=12º. Choose a partition

0 D t0 < t1 < t2 < � � � < tn�1 < tn D 1

of the interval Œ0; 1� such thatˇ̌
��. Og/.tj / � ��. Og/.tj�1/

ˇ̌
< �; g 2 G ; j D 1; 2; : : : ; n: (4.11)

(Here, recall that Og 2 Aff.T.A// is given by Og.�/ D �.g/ for any � 2 T.A/.)
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Since T.A/ D Tqd.A/, there are unital G -ı-multiplicative completely positive maps
‰j W A! Q, j D 0; 1; 2; : : : ; n, such thatˇ̌

tr ı‰j .g/ � ��. Og/.tj /
ˇ̌
< �; g 2 G : (4.12)

It then follows from (2.1), (4.12), and (4.9) that, for each i D 1; 2; : : : ; s and each j D
1; 2; : : : ; n,ˇ̌

tr
��
‰j .pi /

��
� tr

��
‰0.pi /

��ˇ̌
< 4ı C 2�C j��. Opi /.tj / � ��. Opi /.t0/

ˇ̌
< 4ı C 2�C 2ı C

ˇ̌
tr ı�tj

�
�
�
Œpi �

��
� tr ı�0

�
�
�
Œpi �

��ˇ̌
D 2�C 6ı � 8ı � ı2:

(4.13)

(Here, as before, �t is the point evaluation at t 2 Œ0;1�.) We also have, by (4.11) and (4.12),
that ˇ̌

tr
�
‰j .g/

�
� tr

�
‰jC1.g/

�ˇ̌
< 3�; g 2 G ; j D 1; 2; : : : ; n: (4.14)

Consider the differences

ri;j WD tr
��
‰j .pi /

��
� tr

��
‰0.pi /

��
; i D 1; 2; : : : ; s; j D 1; 2; : : : ; n: (4.15)

By (4.13), ri;j < ı2. Applying Lemma 3.1, we obtain a projection e 2 Q with tr.e/ <
�=4 and G -ı1-multiplicative unital completely positive maps  0;  j W A ! eQe, j D
1; 2; : : : ; n, such that�

 0.pi /
�
�
�
 j .pi /

�
D ri;j ; i D 1; 2; : : : ; s; j D 1; 2; : : : ; n: (4.16)

Consider the direct sum maps

ˆ0j WD  j ˚‰j W A! .e ˚ 1/M2.Q/.e ˚ 1/; j D 0; 1; 2; : : : ; n:

Since ı � ı1, these are G -ı1-multiplicative. By (4.15) and (4.16),�
ˆ0j .pi /

�
D
�
ˆ00.pi /

�
; i D 1; 2; : : : ; s; j D 1; 2; : : : ; n: (4.17)

Define s W Q! Q by s.x/ D x=.1C tr.e//, x 2 Q. Choose a (unital) isomorphism

S W .e ˚ 1/M2.Q/.e ˚ 1/! Q

such that S�0 D s.
Consider the composed maps, still G -ı1-multiplicative, and now unital,

ĵ WD S ıˆ
0
j W A! Q; j D 0; 1; 2; : : : ; n:

By (4.17),
Œ ĵ �

ˇ̌
P
D Œ ĵ�1�

ˇ̌
P
; j D 1; 2; : : : ; n;
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and by (4.14) and the fact that tr.e/ < �=4,ˇ̌
tr ı ĵ .a/ � tr ı ĵ�1.a/

ˇ̌
< 3�C �=4 � �=2; a 2 F ; j D 1; 2; : : : ; n: (4.18)

It follows by Lemma 4.2, applied successively for jD1;2; : : : ;n (to the pairs .̂ 0;ˆ1/,
.Adu1ıˆ1;Adu1ıˆ2/; : : : ; .Adun�1 ı � � � ıAdu1ıˆn�1;Adun�1 ı � � � ıAdu1ıˆn/),
that there are, for each j , a unitary uj 2 Q and a unital F -"-multiplicative completely
positive map Lj W A! C.Œtj�1; tj �;Q/ such that

�0 ı L1 D ˆ0; �t1 ı L1 D Adu1 ıˆ1; (4.19)

and
�tj�1 ı Lj D �tj�1 ı Lj�1;

�tj ı Lj D Ad uj ı � � � ı Adu1 ı ĵ ;

j D 2; 3; : : : ; n:

(4.20)

Furthermore, applying the “moreover” part of Lemma 4.2, in view of (4.18), we may
choose the maps Lj such thatˇ̌

tr ı�t ı Lj .a/ � �.tr ı�t /.a/
ˇ̌
< �; t 2 Œtj�1; tj �; a 2 F ; j D 1; 2; : : : ; n: (4.21)

Define L W A! C.Œ0; 1�;Q/ by

�t ı L D �t ı Lj ; t 2 Œtj�1; tj �; j D 1; 2; : : : ; n:

Since Lj , j D 1; 2; : : : ; n, are F -"-multiplicative (use (4.19) and (4.20)), we have that L
is a unital F -"-multiplicative completely positive map A! C.Œ0; 1�; Q/. (Note that the
construction of the map L is different from—is based on—the construction of the map L
in the proof of Lemma 4.2.) It follows from (4.21) that L satisfies (4.10), as desired.

Theorem 4.4. Let A be a unital simple separable C�-algebra with finite nuclear dimen-
sion. Assume that T.A/DTqd.A/ 6DØ and thatA satisfies the UCT. Then, gTR.A˝Q/�1,
and so (if A is not elementary), A 2 N1.

Proof. SinceA is simple, the assumption T.A/D Tqd.A/ 6DØ immediately implies thatA
is both stably finite and quasidiagonal. Since A is unital, simple, separable, and with finite
nuclear dimension, by [39], it is Z-stable. By the definition of N1, it remains to show that
gTR.A ˝Q/ � 1. To prove that gTR.A ˝Q/ � 1, we may assume that A ˝Q Š A.
With this assumption, by [33], A has stable rank one.

By [8] (see also [15, Corollary 13.51]), together with the assumption A Š A ˝Q,
there is a unital simple C�-algebra C D limn!1.Cn; {n/, where each Cn is the tensor
product of a C�-algebra in C0 with Q and {n is injective, such that�

K0.A/;K0.A/C; Œ1A�0;T.A/; rA
�
Š
�
K0.C /;K0.C /C; Œ1C �0;T.C /; rC

�
:

Choose an isomorphism � as above, and write �Aff for the corresponding map from
Aff.T.A// to Aff.T.C //.



G. A. Elliott, G. Gong, H. Lin, and Z. Niu 90

Let a finite subset F of A and " > 0 be given.
Let the finite set P of projections inA, the finite subset G ofA, and ı > 0 be as assured

by Lemma 4.2 for F and ". We may assume that 1A 2P . Write P D ¹1A;p1;p2; : : : ;psº.
Deleting some elements (but not 1A), we may assume that the set®

Œ1A�; Œp1�; Œp2�; : : : ; Œps�
¯
� K0.A/

is Q-linearly independent. (Recall K0.A/ Š K0.A/˝Q as A Š A˝Q.)
We may also assume, without loss of generality, that F [ P � G , ı � ", and every

element of G has norm at most one.
Let � > 0. Let ı1 > 0 (in place of ı) be as assured by Lemma 3.3 for G , ı (in place of

"1), and �=64 (in place of "2). We may assume that ı1 � 8ı.
Let ı3 > 0 (in place of ı) be as assured by Lemma 3.4 for G , ı1=8 (in place of "1), and

min¹ı1=32; �=256º (in place of "2).
Let P1 (in place of P ) and ı2 > 0 (in place of ı) be as assured by Lemma 4.3 for ı1=8

(in place of "), min¹ı1=32; �=256º (in place of � ), and G (in place of F ). Replacing P

and P1 by their union, we may assume that P D P1.
By [11, Lemma 2.9], there is a unital positive linear map


 W Aff
�

T.A/
�
! Aff

�
T.Cn1/

�
for some n1 � 1 such that

.{n1;1/Aff ı 
. Of / � �Aff. Of /



 < min¹77�=128; ı2; ı3=2º; f 2 F [P : (4.22)

We may assume, without loss of generality, that there are projections p01; p
0
2; : : : ; p

0
s 2

Cn1 such that �.Œpi �/ D {n1;1.Œp
0
i �/, i D 1; 2; : : : ; s. To simplify notation, assume that

n1 D 1. Let G0 denote the subgroup of K0.A/ generated by P . Since G0 is generated
freely by Œ1A�; pi ; i D 1; 2; : : : ; s, we can define � 0 W G0 ! K0.C1/ by

� 0
�
Œ1A�

�
D Œ1C1 �; � 0

�
Œpi �

�
D Œp0i �; i D 1; 2; : : : ; s: (4.23)

Hence,
.{1;1/�0 ı �

0
D �jG0 :

Since the pair .�Aff; �jK0.A// is compatible, as a consequence of (4.22) and (4.23), we
have 

bp0i � 
.bpi /

1 < min¹ı2; ı3=2º; i D 1; 2; : : : ; s: (4.24)

Write

C1 D . 0;  1;Q
r ;Ql /

D
®
.f; a/ 2 C

�
Œ0; 1�;Qr

�
˚Ql

W f .0/ D  0.a/ and f .1/ D  1.a/
¯
;

where  0;  1 W Ql ! Qr are unital homomorphisms.
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Denote by
�e W C1 ! Ql ; .f; a/ 7! a

the canonical quotient map and by j W C1 ! C.Œ0; 1�;Qr / the canonical map

j
�
.f; a/

�
D f:

Denote by

� W T.C1/! T.A/

the continuous affine map dual to 
 . Denote by �1; �2; : : : ; �l the extreme tracial states of
C1 factoring through �e W C1 ! Ql .

By the assumption T.A/DTqd.A/, there exists a unital G-min¹ı1=8;ı3=8º-multiplicative
completely positive map ˆ W A! Ql such thatˇ̌

trj ıˆ.a/� 
�.�j /.a/
ˇ̌
< min¹13ı1=32; ı3=4; �=32º; a 2 G ; j D 1; 2; : : : ; l; (4.25)

where trj is the tracial state supported on the j th direct summand of Ql . Moreover, since
P � G , as in (2.1), we also have thatˇ̌

trj
��
ˆ.pi /

��
� trj

�
ˆ.pi /

�ˇ̌
< ı3=4; i D 1; 2; : : : ; s; j D 1; 2; : : : ; l: (4.26)

Set
D WD .�e/�0

�
K0.C1/

�
D ker

�
. 0/�0 � . 1/�0

�
� Ql :

It follows from (4.25) thatˇ̌
�
�
ˆ.a/

�
� .�e/Aff

�

. Oa/

�
.�/
ˇ̌
<min¹13ı1=32;ı3=4;�=32º; a 2 G ; � 2 T.Ql /; (4.27)

where
.�e/Aff W Aff

�
T.C1/

�
! Aff

�
T.Ql /

�
is the map induced by �e. By (4.27) for a 2 P � G , together with (4.26) and (4.24),ˇ̌

�
��
ˆ.pi /

��
� � ı .�e/�0 ı �

0
�
Œpi �

�ˇ̌
< ı3; � 2 T.Ql /; i D 1; 2; : : : ; s:

Therefore, applying Lemma 3.4, with ri D Œˆ.pi /� � .�e/�0 ı �
0.Œpi �/, we obtain G -

ı1=8-multiplicative completely positive maps †1; �1 W A! Ql , with †1.1A/ D �1.1A/
a projection, such that

�
�
†1.1A/

�
< min¹ı1=32; �=256º; � 2 T.Ql /; (4.28)�

†1.P /
�
� D; (4.29)�

†1.pi /
�
�
�
�1.pi /

�
D
�
ˆ.pi /

�
� .�e/�0 ı �

0
�
Œpi �

�
; i D 1; 2; : : : ; s: (4.30)

Consider the (unital) direct sum map

ˆ0 WD ˆ˚ �1 W A!
�
1˚†1.1A/

�
M2.Q

l /
�
1˚†1.1A/

�
: (4.31)
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Note that ˆ0, like �1 and ˆ, is G -ı1=8-multiplicative. It follows from (4.30) that for each
i D 1; 2; : : : ; s,

. 0/�0
��
ˆ0.pi /

��
D . 0/�0

��
�1.pi /

�
C
�
ˆ.pi /

��
D . 0/�0

��
†1.pi /

�
C .�e/�0 ı �

0
�
Œpi �

��
; (4.32)

. 1/�0
��
ˆ0.pi /

��
D . 1/�0

��
�1.pi /

�
C
�
ˆ.pi /

��
D . 1/�0

��
†1.pi /

�
C .�e/�0 ı �

0
�
Œpi �

��
: (4.33)

It follows from (4.32) and (4.33), in view of (4.29) and the fact (use (4.23)) that .�e/�0 ı

� 0.Œpi �/ 2 .�e/�0.K0.C1// D D, that Œˆ0.pi /� 2 D, i D 1; 2; : : : ; s, i.e.,

. 0/�0
��
ˆ0.pi /

��
D . 1/�0

��
ˆ0.pi /

��
; i D 1; 2; : : : ; s: (4.34)

Set B D C.Œ0; 1�; Qr /, and (as before) write �t W B ! Qr for the point evaluation
at t 2 Œ0; 1�. Since 1A 2 P , by (4.29), Œ†1.1A/� 2 D, and so there is a projection e0 2 B
such that �0.e0/ D  0.†1.1A// and �1.e0/ D  1.†1.1A//. It then follows from (4.28)
(applied just for � factoring through  0—alternatively, for � factoring through  1) that

�.e0/ < min¹ı1=32; �=256º; � 2 T.B/: (4.35)

Let j � W T.B/! T.C1/ denote the continuous affine map dual to the canonical unital
map j W C1 ! B . Let 
1 W T.B/! T.A/ be defined by 
1 WD 
� ı j �, and let � W G0 !
K0.B/ be defined by � WD j�0 ı � 0. Then, by (4.23) and (4.24),ˇ̌

�
�
�
�
Œpi �

��
� 
1.�/.pi /

ˇ̌
D
ˇ̌
�
�
j�0
�
� 0
�
Œpi �

���
� .
� ı j �/.�/.pi /

ˇ̌
D
ˇ̌
j �.�/

�
Œp0i �

�
� 
.bpi /�j �.�/�ˇ̌ < ı2 (4.36)

for all � 2 T.B/, i D 1; 2; : : : ; s.
The estimate (4.36) ensures that we can apply Lemma 4.3 with � and 
1 (note that

� 0.Œ1A�/D Œ1C1 � and hence �.Œ1A�/D Œ1B �) to obtain a unital G -ı1=8-multiplicative com-
pletely positive map ‰0 W A! B such thatˇ̌

� ı‰0.a/ � 
1.�/.a/
ˇ̌
< min¹ı1=32; �=256º; a 2 G ; � 2 T.B/: (4.37)

Amplifying ‰0 slightly (by first identifying Qr with Qr ˝Q and then considering

H0.f /.t/ D f .t/˝
�
1C e0.t/

�
for t 2 Œ0; 1�), we obtain a unital G -ı1=8-multiplicative completely positive map ‰ W A!
.1˚ e0/M2.B/.1˚ e0/ such that (by (4.37) and (4.35))ˇ̌

� ı‰.a/ � 
1.�/.a/
ˇ̌
< 2min¹ı1=32; �=256º D min¹ı1=16; �=128º; (4.38)

for all a 2 G and � 2 T.B/. Note that for any element a 2 C1,

�
�
 0
�
�e.a/

��
D �

�
�0
�
j.a/

��
; �

�
 1
�
�e.a/

��
D �

�
�1
�
j.a/

��
; � 2 T.Qr /: (4.39)
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(Recall that j W C1 ! B is the canonical map.) Therefore (by (4.39)), for any a 2 G and
� 2 T.Qr /,ˇ̌
�
�
 0
�
ˆ.a/

��
� 
. Oa/.� ı �0 ı j /

ˇ̌
D
ˇ̌
�
�
 0
�
ˆ.a/

��
� 
. Oa/.� ı  0 ı �e/

ˇ̌
D
ˇ̌
� ı  0

�
ˆ.a/

�
� .�e/Aff

�

. Oa/

�
.� ı  0/

ˇ̌
< min¹13ı1=32; �=32º .by (4.27)/: (4.40)

The same argument shows thatˇ̌
�
�
 1
�
ˆ.a/

��
� 
. Oa/.� ı �1 ı j /

ˇ̌
<min¹13ı1=32; �=32º; a 2 G ; � 2 T.Qr /: (4.41)

Then, for any � 2 T.Qr / and any a 2 G , we haveˇ̌
� ı  0 ıˆ

0.a/ � � ı �0 ı‰.a/
ˇ̌

D
ˇ̌
� ı  0

�
ˆ.a/˚ �1.a/

�
� � ı �0 ı‰.a/

ˇ̌
<
ˇ̌
� ı  0

�
ˆ.a/˚ �1.a/

�
� 
1.� ı �0/.a/

ˇ̌
Cmin¹ı1=16; �=128º .by (4.38)/

<
ˇ̌
� ı  0

�
ˆ.a/

�
� 
1.� ı �0/.a/

ˇ̌
Cmin¹3ı1=32; 3�=256º .by (4.28)/

D
ˇ̌
� ı  0

�
ˆ.a/

�
� 
. Oa/.� ı �0 ı j /

ˇ̌
Cmin¹3ı1=32; 3�=256º

< min¹13ı1=32; �=32º Cmin¹3ı1=32; 3�=256º

� 13ı1=32C 3ı1=32 D ı1=2 .by (4.40)/: (4.42)

The same argument, using (4.41) instead of (4.40), shows thatˇ̌
� ı  1 ıˆ

0.a/ � � ı �1 ı‰.a/
ˇ̌
< min¹13ı1=32; �=32º Cmin¹3ı1=32; 3�=256º

� ı1=2; � 2 T.Qr /; a 2 G : (4.43)

((4.42) and (4.43)—the � estimates—will be used later to verify (4.51) and (4.52).)
Noting that ‰ and ˆ0 are ı1=8-multiplicative on ¹1A; p1; p2; : : : ; psº, by our conven-

tion (see (2.1)), we have, for all � 2 T.Qr /,ˇ̌
�
��
�t ı‰.pi /

��
� �

�
�t ı‰.pi /

�ˇ̌
< ı1=4;ˇ̌

�
��
 j ıˆ

0.pi /
��
� �

�
 j ıˆ

0.pi /
�
j < ı1=4;

i D 1; 2; : : : ; s, where t 2 Œ0; 1� and j D 0; 1.
Combining these inequalities with (4.42) and (4.43), we haveˇ̌
�
��
�0 ı‰.pi /

��
� �

��
 0 ıˆ

0.pi /
��ˇ̌
< ı1; i D 1; 2; : : : ; s; � 2 T.Qr /: (4.44)

Therefore (in view of (4.44)), applying Lemma 3.3 with ri D Œ�0 ı‰.pi /�� Œ 0 ıˆ0.pi /�,
we obtain G -ı-multiplicative completely positive maps †2 W A! Ql and �2 W A! Qr ,
taking 1A into projections, such that�

 k ı†2.1A/
�
D
�
�2.1A/

�
; k D 0; 1; (4.45)�

†2.P /
�
� .�e/�0

�
K0.C1/

�
D D; (4.46)

�
�
†2.1A/

�
< �=64; � 2 T.Ql /; (4.47)
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and, taking into account (4.46),�
 0 ı†2.pi /

�
�
�
�2.pi /

�
D
�
 1 ı†2.pi /

�
�
�
�2.pi /

�
D
�
�0 ı‰.pi /

�
�
�
 0 ıˆ

0.pi /
�
; (4.48)

where i D 1; 2; : : : ; s. By (4.45), there are unitaries wk 2 Qr , k D 0; 1 such that

 k ı†2.1A/ D Adwk ı �2.1A/; k D 0; 1:

Let ¹w.t/º0�t�1 be a continuous path of unitaries in Qr such that

w.0/ D w0 and w.1/ D w1:

Consider the four G -ı-multiplicative direct sum maps (note thatˆ0 and‰ are G -ı1=8-
multiplicative, and ı1 � 8ı), from A to M3.Q

r /,

ˆ0 WD . 0 ıˆ
0/˚ . 0 ı†2/; ˆ1 WD . 1 ıˆ

0/˚ . 1 ı†2/;

‰0 WD .�0 ı‰/˚ Adw0 ı �2; ‰1 WD .�1 ı‰/˚ Adw1 ı �2:
(4.49)

We then have that for each i D 1; 2; : : : ; s,�
‰0.pi /

�
�
�
ˆ0.pi /

�
D
��
.�0 ı‰/.pi /

�
C
�
�2.pi /

��
�
��
. 0 ıˆ

0/.pi /
�
C
�
. 0 ı†2/.pi /

��
D
��
.�0 ı‰/.pi /

�
�
�
. 0 ıˆ

0/.pi /
��
�
��
. 0 ı†2/.pi /

�
�
�
�2.pi /

��
D 0 .by (4.48)/;

and�
‰1.pi /

�
�
�
ˆ1.pi /

�
D
��
.�1 ı‰/.pi /

�
C
�
�2.pi /

��
�
��
. 1 ıˆ

0/.pi /
�
C
�
. 1 ı†2/.pi /

��
D
��
.�1 ı‰/.pi /

�
�
�
. 1 ıˆ

0/.pi /
��
�
��
. 1 ı†2/.pi /

�
�
�
�2.pi /

��
D
��
.�0 ı‰/.pi /

�
�
�
. 1 ıˆ

0/.pi /
��
�
��
. 1 ı†2/.pi /

�
�
�
�2.pi /

��
.�0 and �1 are homotopic/

D
��
.�0 ı‰/.pi /

�
�
�
. 0 ıˆ

0/.pi /
��
�
��
. 1 ı†2/.pi /

�
�
�
�2.pi /

��
D0 .by (4.34)/

D 0 .by (4.48)/:

Summarizing the calculations in the preceding paragraph, we have

Œˆi �
ˇ̌
P
D Œ‰i �

ˇ̌
P
; i D 0; 1: (4.50)

On the other hand, for any a 2 F � G and any � 2 T.Qr /, we haveˇ̌
�
�
ˆ0.a/

�
� �

�
‰0.a/

�ˇ̌
D
ˇ̌
�
�
. 0 ıˆ

0/.a/˚ . 0 ı†2/.a/
�
� �

�
.�0 ı‰/.a/˚ �2.a/

�ˇ̌
<
ˇ̌
�
�
. 0 ıˆ

0/.a/
�
� �

�
.�0 ı‰/.a/

�ˇ̌
C �=32 .by (4.47)/

< min¹13ı1=16; �=32º Cmin¹3ı1=16; 3�=256º C �=32 .by (4.42)/

� 5�=64: (4.51)
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The same argument, using (4.43) instead of (4.42), also shows thatˇ̌
�
�
ˆ1.a/

�
� �

�
‰1.a/

�ˇ̌
< 5�=64; a 2 F ; � 2 T.Qr /: (4.52)

Since 1A 2 P , by (4.46), Œ†2.1A/� 2 D, and so there is a projection e1 2 B such that
�0.e1/ D  0.†2.1A// and �1.e1/ D  1.†2.1A//. From the construction,

‰i .1A/ D ˆi .1A/ D 1˚ �i .e0/˚ �i .e1/; i D 0; 1:

It then follows from (4.47) (applied just for � factoring through  0—alternatively, for �
factoring through  1) that

�.e1/ < �=64; � 2 T.B/: (4.53)

Set E 00 D 1˚ �0.e0/˚ �0.e1/, E
0
1 D 1˚ �1.e0/˚ �1.e1/, and D0 D E 00M3.Q

r /E 00,
D1 D E

0
1M3.Q

r /E 01.
Pick a sufficiently small r 0 2 .0; 1=4/ such that

‰.a/�.1C 2r 0/t � r 0��‰.a/.t/

 < �=64; a 2 G ; t 2

�
r 0

1C 2r 0
;
1C r 0

1C 2r 0

�
: (4.54)

It follows from Lemma 4.2 (in view of (4.50), (4.51), and (4.52)) that there exist
unitaries u0 2 D0 and u1 2 D1 and unital F -"-multiplicative completely positive maps
L0 W A! C.Œ�r 0; 0�;D0/ and L1 W A! C.Œ1; 1C r 0�;D1/, such that

��r 0 ı L0 D ˆ0; �0 ı L0 D Adu0 ı‰0; (4.55)

�1Cr 0 ı L1 D ˆ1; �1 ı L1 D Adu1 ı‰1; (4.56)ˇ̌
� ı �t ı L0.a/ � � ı �0 ı L0.a/

ˇ̌
< 5�=32; t 2 Œ�r 0; 0�; (4.57)ˇ̌

� ı �t ı L1.a/ � � ı �1 ı L1.a/
ˇ̌
< 5�=32; t 2 Œ1; 1C r 0�; (4.58)

where a 2 F , � 2 T.Qr /, and (as before) �t is the point evaluation at t 2 Œ�r 0; 1C r 0�.
Write E3 D 1˚ e0 ˚ e1 2 M3.C.Œ0; 1�; Qr // and B1 D E3.M3.C.Œ0; 1�; Qr ///E3.

There exists a unitary u 2 B1 such that u.0/D u0 and u.1/D u1. Consider the projection
E4 2M3.C.Œ�r 0; 1C r 0�;Qr // defined by E4jŒ�r;0� D E 00, E4jŒ0;1� D E3, and E4jŒ1;1Cr�
D E 01. Set

B2 D E4
�
M3

�
C
�
Œ�r 0; 1C r 0�;Qr

���
E4:

Define a unital F -"-multiplicative (note that F � G and ı � ") completely positive map
L0 W A! B2 by

L0.a/.t/ D

8̂̂<̂
:̂
L0.a/.t/; t 2 Œ�r 0; 0/;

Adu.t/ ı .�t ı‰ ˚ Adw.t/ ı �2/.a/; t 2 Œ0; 1�;

L1.a/.t/ t 2 .1; 1C r 0�:

(4.59)
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Note that for any a 2 G , and any � 2 T.Qr /, by (4.59), if t 2 Œ0; 1�, thenˇ̌
�
�
�t
�
L0.a/

��
� 
1

�
��t .�/

�
.a/
ˇ̌

D
ˇ̌
�
�

Ad u.t/ ı
�
�tı‰ ˚ Adw.t/ ı �2/.a/

�
� 
1

�
��t .�/

�
.a/
ˇ̌

D
ˇ̌
�
�
�t
�
‰.a/

��
C �

�
�2.a/

�
� 
1

�
��t .�/

�
.a/
ˇ̌

<
ˇ̌�
��t .�/

��
‰.a/

�
� 
1

�
��t .�/

�
.a/
ˇ̌
C �=64 .by (4.45) and (4.47)/

< min¹ı1=16; �=128º C �=64 � 3�=128 .by (4.38)/; (4.60)

where ��t W T.Q
r /! T.B/ is the dual of �t W B !Qr . Furthermore, if t 2 Œ�r 0; 0�, then

for any a 2 F , and any � 2 T.Qr /,ˇ̌
�
�
�t
�
L0.a/

��
� 
1

�
��0 .�/

�
.a/
ˇ̌

D
ˇ̌
�
�
L0.a/.t/

�
� 
1

�
��0 .�/

�
.a/
ˇ̌

<
ˇ̌
�
�
L0.a/.0/

�
� 
1

�
��0 .�/

�
.a/
ˇ̌
C 5�=32 .by (4.57)/

D
ˇ̌
�
�
‰0.a/

�
� 
1

�
��0 .�/

�
.a/
ˇ̌
C 5�=32 .by (4.55)/

D
ˇ̌
�
�
.�0 ı‰/.a/˚ Adw0 ı �2.a/

�
� 
1

�
��0 .�/

�
.a/
ˇ̌
C 5�=32

<
ˇ̌
�
�
.�0 ı‰/.a/ � 
1

�
��0 .�/

�
.a/
ˇ̌
C �=64C 5�=32 .by (4.45) and (4.47)/

< min¹ı1=16; �=128º C �=64C 5�=32 < 23�=128 .by (4.38)/: (4.61)

Again, if t 2 Œ1; 1 C r 0�, then the same argument shows that for any a 2 F , and any
� 2 T.Qr /, ˇ̌

�
�
�t
�
L0.a/

��
� 
1

�
��1 .�/

�
.a/
ˇ̌
< 23�=128: (4.62)

Let us modify L0 to a unital map from A to B . First, let us renormalize L0. Consider
the isomorphism � W Qr ! Qr defined by

�.x1; x2; : : : ; xr / D

�
1

tr1.E3/
x1;

1

tr2.E3/
x2; : : : ;

1

trr .E3/
xr

�
;

for all .x1; x2; : : : ; xr / 2Qr , where (as before) trk is the tracial state supported on the kth
direct summand ofQr (recall that E3 has constant rank on Œ0; 1�). Then, there is a (unital)
isomorphism ' W B2! C.Œ�r 0; 1C r 0�;Qr / such that '�0 D �. Let us replace the map L0

by the map ' ı L0, and still denote it by L0. Note that it follows from (4.60), (4.35), and
(4.53) that for any t 2 Œ0; 1�, any a 2 F , and any � 2 T.Qr /,ˇ̌

�
�
�t
�
L0.a/

��
� 
1

�
��t .�/

�
.a/
ˇ̌

< 3�=128C sup
®
�.e0/ W � 2 T.Qr /

¯
C sup

®
�.e1/ W � 2 T.Qr /

¯
< 3�=128Cmin¹ı1=16; �=64º C �=64 � 7�=128: (4.63)

The same argument, using (4.61) and (4.62) instead of (4.60), shows that for any a 2 F

and � 2 T.Qr /,ˇ̌
�
�
�t
�
L0.a/

��
� 
1

�
��0 .�/

�
.a/
ˇ̌
< 27�=128; t 2 Œ�r 0; 0�; (4.64)ˇ̌

�
�
�t
�
L0.a/

��
� 
1

�
��1 .�/

�
.a/
ˇ̌
< 27�=128; t 2 Œ1; 1C r 0�: (4.65)
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Now, put, for a 2 A,

L00.a/.t/ D L0.a/
�
.1C 2r 0/t � r 0

�
; t 2 Œ0; 1�: (4.66)

This perturbation will not change the trace very much, as for any a 2 F and any � 2
T.Qr /, if t 2 Œ0; r 0=.1C 2r 0/�, thenˇ̌

�
�
L00.a/.t/

�
� �

�
L0.a/.t/

�ˇ̌
D
ˇ̌
�
�
L0.a/

�
.1C 2r 0/t � r 0

��
� �

�
L0.a/.t/

�ˇ̌
.by (4.66)/

D
ˇ̌
�
�
L0.a/

�
.1C 2r 0/t � r 0

��
� �..‰.a/.t//C Adw.t/ ı �2.a//j

<
ˇ̌
�
�
L0.a/

�
.1C 2r 0/t � r 0

��
� �

�
‰.a/.t/

�ˇ̌
C �=64 .by (4.45) and (4.47)/

<
ˇ̌
�
�
L0.a/.0/

�
� �

�
‰.a/.t/

�ˇ̌
C 5�=32C �=64 .by (4.57)/

D
ˇ̌
�
�
‰0.a/

��
� �

�
‰.a/.t/

�ˇ̌
C 11�=64 .by (4.55)/

< �=64C 11�=64 D 3�=16 .by (4.45) and (4.47)/:

Furthermore, the same argument, now using (4.58) and (4.56), shows that for any a 2 F ,
� 2 T.Qr /, and t 2 Œ.1C r 0/=.1C 2r 0/; 1�,ˇ̌

�
�
L0.a/

�
.1C 2r 0/t � r 0

��
� �

�
‰.a/.t/C Adw1 ı �2.a/

�ˇ̌
< 3�=16;

and if t 2 Œr 0=.1C 2r 0/; .1C r 0/=.1C 2r 0/�, thenˇ̌
�
�
L0.a/

�
.1C 2r 0/t � r 0

��
� �

�
L0.a/.t/

�ˇ̌
D
ˇ̌
�
�
‰.a/

�
.1C 2r 0/t � r 0

�
�‰.a/.t/

�ˇ̌
< �=64 .by (4.54)/:

Thus,ˇ̌
�
�
L00.a/.t/

�
� �

�
L0.a/.t/

�ˇ̌
< 3�=16; a 2 F ; � 2 T.Qr /; t 2 Œ0; 1�: (4.67)

Hence,ˇ̌
�
�
�t
�
L00.a/

��
� 
1

�
��t .�/

�
.a/
ˇ̌

�
ˇ̌
�
�
L00.a/.t/

�
� �

�
L0.a/.t/

�ˇ̌
C
ˇ̌
�
�
L0.a/.t/

�
� 
1

�
��t .�/

�
.a/
ˇ̌

< 3�=16C 27�=128 D 51�=128 .by (4.67), (4.63), (4.64), and (4.65)/: (4.68)

Note that L00 is a unital map from A to B . It is also F -"-multiplicative since L0 is.
Consider the order isomorphism �0 W Ql ! Ql defined by

�0.y1; y2; : : : ; yl / D .a1y1; a2y2; : : : ; alyl /; .y1; y2; : : : ; yl / 2 Ql ;

where
aj D

1

trj
�
1˚†1.1A/˚†2.1A/

� ; j D 1; 2; : : : ; l; (4.69)
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and (as before) trj is the tracial state supported on the j th direct summand of Ql . There
exists a unital homomorphism

Q' W
�
1˚†1.1A/˚†2.1A/

�
M3.Q

l /
�
1˚†1.1A/˚†2.1A/

�
! Ql

such that
Q'�0 D �

0:

Therefore, by the constructions of L00, L0, L0, and L1 ((4.66), (4.59), (4.55), and (4.56)),
we may assume that

 0 ı Q' ı .ˆ
0
˚†2/ D �0 ı L

00 and  1 ı Q' ı .ˆ
0
˚†2/ D �1 ı L

00; (4.70)

replacing L00 by Ad v ı L00 for a suitable unitary v if necessary.
Define L W A ! C1 by L.a/ D .L00.a/; Q'.ˆ0.a/ ˚ †2.a///, an element of C1 by

(4.70). Since L00 and Q' ı .ˆ0 ˚ †2/ are unital and F -"-multiplicative (since ˆ0 and †2
are G -ı-multiplicative, F � G , and ı � "), so also is L.

Moreover, for any a 2 F , any � 2 T.Qr /, and any t 2 .0; 1/, it follows from (4.68)
that ˇ̌

�
�
�t
�
j
�
L.a/

���
� 
1

�
��t .�/

�
.a/
ˇ̌
< 51�=128: (4.71)

If � 2 T.Ql /, then, for any a 2 F ,ˇ̌
�
�
�e
�
L.a/

��
� 
�

�
��e .�/

�
.a/
ˇ̌

D
ˇ̌
�
�
Q'
�
ˆ0.a/˚†2.a/

��
� 
�

�
��e .�/

�
.a/
ˇ̌

<
ˇ̌
�
�
ˆ0.a/˚†2.a/

�
� 
�

�
��e .�/

�
.a/
ˇ̌
C �=32 .by (4.69), (4.35), and (4.47)/

<
ˇ̌
�
�
ˆ0.a/

�
� 
�

�
��e .�/

�
.a/
ˇ̌
C 3�=64 .by (4.47)/

<
ˇ̌
�
�
ˆ.a/

�
� 
�

�
��e .�/

�
.a/
ˇ̌
C �=8 .by (4.28)/

< �=32C �=8 < 51�=128 .by (4.27)/:

Since each extreme trace of C1 factors through either the evaluation map �t or the canon-
ical quotient map �e, by (4.71),ˇ̌

�
�
L.a/

�
� 
�.�/.a/

ˇ̌
< 51�=128; � 2 T.C1/; a 2 F : (4.72)

Therefore, for any a 2 F and � 2 T.C /, we haveˇ̌
�
�
{1;1

�
L.a/

��
� �Aff. Oa/.�/

ˇ̌
<
ˇ̌
�
�
{1;1

�
L.a/

��
� 
�

�
.{1;1/T.�/

�
.a/
ˇ̌
C
ˇ̌

�
�
.{1;1/T.�/

�
.a/ � �Aff. Oa/.�/

ˇ̌
D
ˇ̌
�
�
{1;1

�
L.a/

��
� 
�

�
.{1;1/T.�/

�
.a/
ˇ̌
C
ˇ̌
.{1;1/Aff. Oa/.�/ � �Aff. Oa/.�/

ˇ̌
< 51�=128C 77�=128 D � .by (4.72) and (4.22)/;

where .{1;1/T W T.A/! T.C1/ is the affine map induced by {1;1.
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Since F , ", and � are arbitrary, in this way we obtain a sequence of unital completely
positive maps Hn W A! C such that

lim
n!1



Hn.ab/ �Hn.a/Hn.b/

 D 0; a; b 2 A;

and
lim
n!1

sup
®ˇ̌
� ıHn.a/ � �Aff. Oa/.�/

ˇ̌
W � 2 T.C /

¯
D 0; a 2 A:

On using again that the given C�-algebra A has finite nuclear dimension, so that also
A˝Q does, it follows by [25, Lemma 3.4]—which uses results obtained in [32, 41]—
that gTR.A˝Q/ � 1. This together with Z-stability of A (which we established at the
very beginning of this proof) says that the given algebra A belongs to the class N1.

Theorem 1.1 follows from the following corollary.

Corollary 4.5. Let A be a unital simple separable C�-algebra with finite decomposition
rank, satisfying the UCT. Then, gTR.A˝Q/ � 1. In particular, A is classifiable.

Proof. Since A has finite decomposition rank, A is nuclear (see Definition 2.10 above)
and quasidiagonal [20, Theorem 5.3]. It follows from [37, Theorem 2.4] that T.A/ 6D Ø.
By [2, Proposition 8.5], T.A/ D Tqd.A/. Now, the corollary follows from Theorem 4.4
together with Theorem 2.7.

Remark 4.6. We would like to state the following special case of Corollary 4.5. Let A be
as in 4.5. Suppose that�

K0.A˝Q/;K0.A˝Q/C; Œ1A˝Q�0;T.A˝Q/; rA˝Q
�

Š
�
K0.C /;K0.C /C; Œ1C �0;T.C /; rC

�
(4.73)

for some unital simple AT -algebra C . Then, TR.A˝Q/� 1. If this holds for some unital
AF-algebra C , then TR.A˝Q/ D 0.

To see this we note that, in the beginning of the proof of Theorem 4.4, we assume that
A D A˝Q. If C in (4.73) can be chosen to be a unital simple AT -algebra, then the end
of the proof shows that A˝Q has tracial rank at most one. In the same way one sees that
if C in (4.73) can be chosen to be a unital simple AF-algebra, then A˝Q has tracial rank
zero.

The preceding (abstract) classification result (Corollary 4.5) depends on (by reduc-
ing to) the recent (semi-abstract) classification result of [15, 16]. In fact, there is a more
restricted, but still very interesting, setting in which a correspondingly restricted abstract
result can be established by reducing to a much earlier result.

Let A be a unital simple separable C�-algebra, satisfying the hypotheses of the pre-
ceding corollary (or theorem). Suppose in addition that SŒ1A�.K0.A//, the state space of
K0.A/, is a Choquet simplex, and that the map rA W T.A/! SŒ1A�.K0.A// takes extreme
points to extreme points. Without using [15] or [16], the proof of the present Theorem 4.4,
above, shows that A is classifiable.
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Indeed, by [27], there is a unital simple separable C�-algebra, B , satisfying the UCT,
such that B ˝Q has tracial rank at most one (in the sense of [23]) and such that Ell.A/D
Ell.B/. Since Ki .B ˝Q/ is torsion-free, by the classification of C�-algebras of tracial
rank at most one (see [9, 23]), C D B ˝Q is an inductive limit of circle algebras (i.e.,
is AT ). By the first paragraph of this remark, A˝Q has tracial rank at most one. Hence,
by [24, Corollary 11.9] (see also [28]), A is classifiable.

In particular, the Jiang–Su algebra Z is the only unital separable simple amenable C�-
algebra in the UCT class that has the same Elliott invariant as that of C. The proof just
given of this statement does not rely on [15] or [16].

Remark 4.7. It was shown in [13] that any unital simple separable Jiang–Su stable ap-
proximately subhomogeneous C�-algebra has decomposition rank at most two. Therefore,
it follows from Corollary 4.5 that such a C�-algebra is classifiable. This in particular
recovers the classification theorem of [10]. Moreover, by [16] together with the result in
[13] mentioned above, every unital simple C�-algebra belonging to the class N1 has finite
decomposition rank.

Remark 4.8. The special case of Corollary 4.5 for C�-algebras for which K0 separates
traces, e.g. the case of unique trace, is known. (See [38, Corollary 5.2] and [26, Theo-
rem 5.4].)

Theorem 4.4 and Corollary 4.5 can also be combined and stated as follows.

Theorem 4.9. Let A be a unital simple separable amenable (non-zero) C�-algebra which
satisfies the UCT. Then, the following properties are equivalent:

(1) gTR.A˝Q/ � 1;

(2) A˝Q has finite nuclear dimension and T.A˝Q/ D Tqd.A˝Q/ 6D Ø;

(3) the decomposition rank of A˝Q is finite.

Given the fact that every tracial state of a unital simple separable C�-algebra with finite
decomposition rank is quasidiagonal [2, Proposition 8.5], it is reasonable to expect that
every tracial state of a finite unital simple separable C�-algebra with finite nuclear dimen-
sion is also quasidiagonal. Indeed, shortly after the present paper was first announced (and
posted on arXiv), Tikuisis, White, and Winter proved that, in fact, every tracial state on
a unital simple separable amenable C�-algebra which satisfies the UCT is quasidiagonal
[36, Theorem A]. Therefore, we have the following statement.

Theorem 4.10. Let A be a finite unital simple separable C�-algebra with finite nuclear
dimension which satisfies the UCT. Then, gTR.A˝Q/� 1. In particular,A is classifiable
(and is approximately subhomogeneous (ASH)—see Theorems 2.7 and 2.8).

Remark 4.11. It was established by Kirchberg and Phillips [19, 31] that purely infinite
unital simple separable amenable C�-algebras which satisfy the UCT are classifiable.
It has been shown that these C�-algebras have finite nuclear dimension (see [30]). It is
also known that every unital simple separable C�-algebra with finite nuclear dimension is



Classification of C�-algebras, II 101

either finite or purely infinite (see [14, 39]). Therefore, Theorem 4.10 can now be com-
bined with [19, 31] to obtain the following overall statement.

Corollary 4.12. The class of all unital simple separable (non-elementary) C�-algebras
with finite nuclear dimension which satisfy the UCT is classifiable by the Elliott invariant.

Added November 2, 2021. This paper was originally posted on arXiv in late 2015. Since
then, there have been some new developments. Notably, in [4] (also [29, 35]), it was
shown that every Jiang–Su stable (Z-stable) unital simple separable amenable C�-algebra
has finite nuclear dimension. This yields many examples which come under the aegis of
Corollary 4.12. For instance, since by [18], the Jiang–Su algebra, Z, is itself Z-stable,
the tensor product of any C�-algebra A with Z is Z-stable, and so by [4], if A is a uni-
tal simple separable amenable C�-algebra and satisfies the UCT, then A˝ Z is covered
by (4.12). Sometimes, it can be established without tensoring by Z that a C�-algebra is
Jiang–Su stable. For example, this was achieved in [12] for a simple C�-algebra arising
from a minimal homeomorphism of an infinite compact metrizable space of mean dimen-
sion zero (which includes the cases that the space is finite-dimensional or has a unique
invariant measure).
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