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Self-similar quantum groups

Nathan Brownlowe and David Robertson

Abstract. We introduce the notion of self-similarity for compact quantum groups. For a finite setX ,
we introduce a C�-algebra AX , which is the quantum automorphism group of the infinite homo-
geneous rooted tree X�. Self-similar quantum groups are then certain quantum subgroups of AX .
Our main class of examples are called finitely constrained self-similar quantum groups, and we find
a class of these examples that can be described as quantum wreath products by subgroups of the
quantum permutation group.

1. Introduction

Self-similar groups are a class of groups acting faithfully on an infinite rooted homogen-
eous tree X�. In particular, given an automorphism g 2 Aut.X�/ and a vertex w 2 X�,
by identifying wX� with g.w/X�, we get an automorphism gjw 2 Aut.X�/ which is
uniquely determined by the identity

g � .wv/ D .g � w/gjw � v for all v 2 X�:

The automorphism gjw is called the restriction of g by w, and a subgroup G � Aut.X�/
is self-similar if it is closed under restrictions. Self-similar groups are a significant class of
groups that play an important role in geometric group theory, and have been a rich source
of groups displaying interesting phenomena. Most notably, the Grigorchuk group [6] is a
self-similar group which is an infinite, finitely generated periodic group and provided the
first example of a group with intermediate growth, as well as the first known amenable
group to not be elementary amenable.

When the group of automorphisms Aut.X�/ is equipped with the permutation topo-
logy, the closed self-similar groups are examples of compact, totally disconnected groups,
and hence are profinite groups. A particular class of examples of interest are the self-
similar groups of finite type, which are subgroups of automorphisms of X� that act like
elements of a given finite group locally around every vertex. Grigorchuk introduced this
concept in [5], where he also showed that the closure of the Grigorchuk group is a self-
similar group of finite type. Note that these groups are called finitely constrained self-
similar groups in [9], and we will use that terminology.
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The theory of compact quantum groups is by now a very substantial part of the wider
field of quantum groups, and one which sits in the framework of operator algebras.
The theory started with Woronowicz’s introduction of the quantum SU.2/ group in [14].
Woronowicz then defined compact matrix quantum groups in [13], before developing a
general theory of compact quantum groups in [15]. An important class of compact matrix
quantum groups was identified and studied by Wang through his quantum permutation
groups in [12]. Wang was motivated by one of Connes’ questions from his noncommut-
ative geometry program: what is the quantum automorphism group of a space? Wang’s
work in [12] provided an answer for finite spaces; in particular, Wang formally defined
the notion of a quantum automorphism group, and then showed that his quantum per-
mutation group As.n/ is the quantum automorphism group of the space with n points.
For three or fewer points this algebra is commutative, and hence indicating no quantum
permutations; but for four or more points, remarkably the algebra is noncommutative and
infinite-dimensional.

Since the appearance of [12], follow-up work progressed in multiple directions, in-
cluding the results of Bichon in [2] in which he introduced quantum automorphisms of
finite graphs. These algebras are quantum subgroups of the quantum permutation groups.
Bichon used this construction to define the quantum dihedral group D4. Later still in [1],
Banica and Bichon classified all the compact quantum groups acting on four points; that is,
all the compact quantum subgroups of As.4/. Quantum automorphisms of infinite graphs
have recently been considered by Rollier and Vaes in [8], and by Voigt in [10].

Our current work is the result of us asking the question: is there a reasonable notion of
self-similarity for quantum groups? We answer this question in the affirmative for com-
pact quantum groups. We do this by first constructing the quantum automorphism group
AX of the homogeneous rooted tree X�, and then identifying the quantum analogue of
the restriction maps g 7! gjw for g 2 Aut.X�/, w 2 X�. We then define a self-similar
quantum group to be any quantum subgroup A of AX for which the restriction maps
factor through the quotient map AX ! A. We characterise self-similar quantum groups in
terms of a certain homomorphism A˝ C.X/! C.X/˝ A, which can be thought of as
quantum state-transition function. The main class of examples we examine are quantum
analogues of finitely constrained self-similar groups. In our main theorem about these
examples we describe a class of finitely constrained self-similar groups as free wreath
products by quantum subgroups of quantum permutation groups.

We start with a small preliminaries section in which we collect all the required defin-
itions from the literature on compact quantum groups. In Section 3, we then identify a
compact quantum group AX which we prove is the quantum automorphism group of
the homogeneous rooted tree X�. The C �-algebra AX is a noncommutative, infinite-
dimensionalC �-algebra whose abelianisation is the algebra of continuous functions on the
automorphism group of the treeX�. In Section 4, we introduce the notion of self-similarity
for compact quantum groups, and we characterise self-similar quantum groups A in terms
of morphisms A ˝ C.X/ ! C.X/ ˝ A, mimicking the fact that classical self-similar
actions are governed by the maps G �X ! X �GW .g; x/ 7! .g � x; gjx/.
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In Section 5, we define finitely constrained self-similar quantum groups, which are
the quantum analogues of the classical finitely constrained self-similar groups studied in
[4, 9]. In particular, we consider subalgebras Ad of AX , which are the quantum auto-
morphism groups of the finite subtreesX Œd� ofX� of depth d . To each quantum subgroup
P of Ad , we construct a quantum subgroup AP , which we prove is a self-similar quantum
group. We then build on the work of Bichon in [3] by constructing free wreath products
of compact quantum groups by quantum subgroups of the quantum permutation group
(which corresponds to the subalgebra A1 of AX ), and we prove that every AP coming
from a quantum subgroup P of A1 is canonically isomorphic to the free wreath product
AP �w P .

2. Preliminaries

In this section, we collect some basics on compact quantum groups. We start with Woro-
nowicz’s definition of a compact quantum group [15].

Definition 2.1. A compact quantum group is a pair .A;ˆ/ where A is a unital C �-algebra
and ˆ W A! A˝ A is a unital �-homomorphism such that

(1) .ˆ˝ id/ˆ D .id˝ˆ/ˆ,

(2) .A˝ 1/ˆ.A/ D A˝ A D .1˝ A/ˆ.A/.

We call ˆ the comultiplication and (1) is called coassociativity.

Remark 2.2. It is proved in [15] that .A; ˆ/ is a compact quantum group if and only if
there is a family of matrices ¹a� D .a�i;j / 2 Md�.A/ W � 2 ƒº for some indexing set ƒ
such that

(1) ˆ.a�i;j / D
Pd�
kD1

a�
i;k
˝ a�

k;j
for all � 2 ƒ and 1 � i; j � d�,

(2) a� and its transpose .a�/T are invertible elements of Md�.A/ for every � 2 ƒ,

(3) the �-subalgebra A of A generated by the entries ¹a�i;j W 1 � i; j � d�; � 2 ƒº is
dense in A.

Example 2.3. A key example for us are Wang’s quantum permutation groups .As.n/;ˆ/
from [12]. Here, n is a positive integer, and As.n/ is the universal C �-algebra generated
by elements aij , 1 � i; j � n, satisfying

a2ij D aij D a
�
ij for all 1 � i; j � n,

nX
jD1

aij D 1 for all 1 � i � n,

nX
iD1

aij D 1 for all 1 � j � n.

The comultiplication ˆ satisfies ˆ.aij / D
Pn
kD1 aik ˝ akj for all 1 � i; j � n.
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Definition 2.4. If .A1; ˆ1/ and .A2; ˆ2/ are compact quantum groups, then a morphism
� from .A1; ˆ1/ to .A2; ˆ2/ is a homomorphism of C �-algebras � WA1 ! A2 satisfying
.� ˝ �/ ıˆ1 D ˆ2 ı � .

Definition 2.5. Let .A;ˆ/ be a compact quantum group. A Woronowicz ideal is an ideal I
ofA such thatˆ.I /� ker.q˝ q/, where q is the quotient mapA!A=I . Then .A=I;ˆ0/,
whereˆ0WA=I !A=I ˝A=I satisfiesˆ0 ı q D .q˝ q/ ıˆ is a compact quantum group
called a quantum subgroup of .A;ˆ/.

Definition 2.6. A (left) coaction of a compact quantum group .A; ˆ/ on a unital C �-
algebra B is a unital �-homomorphism ˛WB ! A˝ B satisfying

(1) .id˝ ˛/˛ D .ˆ˝ id/˛,

(2) ˛.B/.A˝ 1/ D A˝ B .

We refer to (1) as the coaction identity and (2) is known as the Podleś condition.

3. Quantum automorphisms of a homogeneous rooted tree

In this section, we introduce a compact quantum group AX which we prove is the quantum
automorphism group of the infinite homogeneous rooted treeX�. We start with the notion
of an action of a compact quantum group on X�. Note that for n � 0 we write Xn for all
the words in X of length n, and then the tree X� can be identified with

S
n�X

n, where
X0 D ¹¿º and ¿ is the root of the tree.

Definition 3.1. Let X be a finite set and let .A; ˆ/ be a compact quantum group. An
action of A on the homogeneous rooted tree X� is a system

˛ D .˛nWC.X
n/! A˝ C.Xn//

of left coactions, such that for any m < n the diagram

C.Xm/ C.Xn/

A˝ C.Xm/ A˝ C.Xn/

im;n

˛m ˛n

id˝im;n

commutes, where im;n W C.Xm/! C.Xn/ is the injective homomorphism satisfying

im;n.pw/ D
X

w 02Xn�m

pww 0 :

We now define the main object of interest in this section, the C �-algebra AX , before
proving that it is indeed a compact quantum group in Theorem 3.4. At some point in
the later stages of this project we became aware of [8], and their notion of the quantum
automorphism group QAut… of a locally finite connected graph …. A straightforward
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argument shows that AX is QAut… for … the homogeneous rooted tree, but we include
the proof of Theorem 3.4 for completeness.

Definition 3.2. Let X be a finite set. Define AX to be the universal C �-algebra generated
by elements ¹au;v W u; v 2 Xn; n � 0º subject to the following relations:

(1) a¿;¿ D 1,

(2) for any n � 0, u; v 2 Xn, a�u;v D a
2
u;v D au;v ,

(3) for any n � 0, u; v 2 Xn and x 2 X ,

au;v D
X
y2X

aux;vy D
X
z2X

auz;vx :

Remarks 3.3. (i) For each d 2 N we denote by Ad the subalgebra of AX gener-
ated by ¹au;v W u; v 2 Xd º. Note that A1 is Wang’s quantum permutation group
As.jX j/ from Example 2.3.

(ii) We can interpret (3) as follows: each projection au;v decomposes as an jX j � jX j
square of projections ¹aux;vy W x;y 2Xºwith a magic square type property where
every row and column sums to au;v . For example, if X D ¹0; 1; 2º we have the
following structure:

au;v 7!

au0;v0

au1;v0

au2;v0

au0;v1

au1;v1

au2;v1

au0;v2

au1;v2

au2;v2

:

(iii) Repeated applications of (3) from Definition 3.2 show that for all u;u0; v; v0;w 2
Xn; n 2 N, we have

u ¤ u0; v ¤ v0 H) au;wau0;w D 0 D aw;vaw;v0 ;

and that for all u D u1 � � �un, v D v1 � � � vn 2 Xn, n 2 N, and x; y 2 X we have

ax;yau;v D au;vax;y D

´
au;v if u1 D x, v1 D y,

0 otherwise.

We will freely use these two identities without comment throughout the rest of
the paper.

Theorem 3.4. The C �-algebra AX is a compact quantum group with comultiplication
�WAX ! AX ˝AX satisfying

�.au;v/ D
X
w2Xn

au;w ˝ aw;v;

for all u; v 2 Xn and n � 1.
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Proof. To see that � exists, it is enough to show that the elements

bu;v WD
X
w2Xn

au;w ˝ aw;v

for u; v 2 Xn and n � 1 satisfy Definition 3.2.
Firstly, b¿;¿ D �.a¿;¿/ D a¿;¿ ˝ a¿;¿ D 1˝ 1. For (2), we have

b�u;v D
X
w2Xn

a�u;w ˝ a
�
w;v D

X
w2Xn

au;w ˝ aw;v D bu;v

and

b2u;v D

� X
w2Xn

au;w ˝ aw;v

�2
D

X
w;z2Xn

au;wau;z ˝ aw;vaz;v

D

X
w2Xn

a2u;w ˝ a
2
w;v

D

X
w2Xn

au;w ˝ aw;v

D bu;v:

For (3), fix u; v 2 Xn and x 2 X . Then

bu;v D
X
w2Xn

au;w ˝ aw;v

D

X
w2Xn

X
z2X

aux;wz ˝ aw;v

D

X
w2Xn

X
z2X

aux;wz ˝
X
y2X

awz;vy

D

X
y2X

X
w2XnC1

aux;w ˝ aw;vy

D

X
y2X

bux;vy :

So by the universal property of AX there is a homomorphism �WAX ! AX ˝ AX such
that

�.au;v/ D
X
w2Xn

au;w ˝ aw;v:

For coassociativity, we have

.id˝�/ ı�.au;v/ D
X
w2Xn

au;w ˝�.aw;v/

D

X
w2Xn

au;w ˝

� X
z2Xn

aw;z ˝ az;v

�
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D

X
z2Xn

� X
w2Xn

au;w ˝ aw;z

�
˝ az;v

D

X
z2Xn

�.au;z/˝ az;v

D .�˝ id/ ı�.au;v/:

Finally, we show that the set of matrices®
an D .au;v/u;v2Xn 2MXn.AX / W n � 1

¯
satisfies the conditions of Remark 2.2. Conditions (1) and (3) are clear. For (2) we show
that given any n � 1 the matrix an is invertible with inverse given by .an/T . Given u; v 2
Xn we have

.an.an/
T /u;v D

X
w2Xn

au;wav;w D ıu;v
X
w2Xn

au;w D ıu;v1A:

Likewise, we can show ..an/
T an/u;v D ıu;v1A and hence .an/T D a�1n as required.

Remark 3.5. The canonical dense �-subalgebra of AX is the �-subalgebra generated by
the projections ¹au;v W u;v 2Xn; n� 0º. This is a Hopf �-algebra with counit "WAX !C
and coinverse �WAX ! AX satisfying ".au;v/ D ıu;v and �.au;v/ D av;u, for u; v 2 Xn,
n 2 N.

We now show that .AX ; �/ is the quantum automorphism group (in the sense of [12,
Definition 2.3]) of the homogeneous rooted tree.

Proposition 3.6. There is an action 
 D .
n/1nD1 of AX onX�. Moreover, if ˛ D .˛n/1nD1
is an action of a compact quantum group .A; ˆ/ on X� then there is a quantum group
homomorphism � WAX ! A such that .� ˝ id/ ı 
n D ˛n for any n � 1.

Proof. For any n � 1, the elements

qw WD
X
w 02Xn

aw;w 0 ˝ pw 0 2 AX ˝ C.X
n/

for each w 2 Xn are mutually orthogonal projections and satisfyX
w2Xn

qw D
X

w;w 02Xn

aw;w 0 ˝ pw 0 D 1˝ 1:

Therefore, there is a unital �-homomorphism 
nWC.X
n/! AX ˝ C.Xn/ satisfying


n.pw/ D qw . We have

.�˝ id/
n.pw/ D
X
w 02Xn

�.aw;w 0/˝ pw 0

D

X
w 0;z2Xn

aw;z ˝ az;w 0 ˝ p
0
w
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D

X
z2Xn

aw;z ˝ ˛n.pz/

D .id˝ 
n/
n.pw/;

and so each 
n satisfies the coaction identity.
For a fixed v 2 Xn we haveX
u2Xn


n.pu/.au;v ˝ 1/ D
X

u;w2Xn

au;wau;v ˝ pw D
X
u2Xn

au;v ˝ pv D 1˝ pv:

Multiplying by any element a ˝ 1 2 AX ˝ 1 shows that 
n.C.Xn//.AX ˝ 1/ contains
the elements a˝ pv of AX ˝ C.Xn/ and hence the required density is satisfied.

Finally, fix m < n and w 2 Xm. Then

.id˝ im;n/
m.pw/ D
X
z2Xm

aw;z ˝ im;n.pz/

D

X
z2Xm

X
z02Xn�m

aw;z ˝ pzz0

D

X
z2Xm

X
z02Xn�m

X
w 02Xn�m

aww 0;zz0 ˝ pzz0

D

X
w 02Xn�m

˛n.pww 0/

D 
n.im;n.pw//;

and so the collection 
 D .
n/
1
nD1 defines an action of .AX ; �/ on the homogeneous

rooted tree X�.
Now suppose .˛n/1nD1 is an action of a compact quantum group .A; ˆ/ on X�. Let

b¿;¿ WD 1 2 A and for n � 1 and u; v 2 Xn define bu;v 2 A to be the unique elements
satisfying

˛n.pu/ D
X
v2Xn

bu;v ˝ pv:

The coaction identity for ˛n says that

ˆ.bu;v/ D
X
w2Xn

bu;w ˝ bw;v (3.1)

for any u; v 2 Xn.
We claim that the collection ¹bu;v W u; v 2 Xn; n � 0º � A satisfies Definition 3.2.

Condition (1) is by definition. For (2) and (3), we appeal to the universal property of
the quantum permutation groups As.jX jn/ for n � 1. Since for any n � 1, ˛n defines a
coaction of .A; ˆ/ on C.Xn/, [12, Theorem 3.1] says that the elements ¹bu;v W u; v 2
Xnº satisfy conditions (3.1)–(3.3) of [12, Section 3]. Condition (3.1) is precisely (2).
Conditions (3.1) and (3.2) say that for any v 2 Xn we haveX

u2Xn

bu;v D 1A D
X
w2Xn

bv;w :
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For any u 2 Xn and x 2 X we have

pux �
X
y2X

puy D in;nC1.pu/;

and hence X
v2Xn

X
y2X

bux;vy ˝ pvy D ˛nC1.pux/

� ˛nC1.in;nC1.pu//

D .idA ˝ in;nC1/˛n.pu/

D

X
v2Xn

X
y2X

bu;v ˝ pvy :

It follows that bux;vy � bu;v for any x; y 2 X . Therefore, for any u; v 2 Xn and x 2 X
we have

bu;v D bu;v

� X
w2Xn

X
y2X

bux;wy

�
D

X
y2X

bux;vy :

Likewise for any y 2 X we have bu;v D
P
x2X bux;vy and (3) holds.

Therefore, the universal property of AX provides a homomorphism � WAX ! A sat-
isfying �.au;v/ D bu;v . It follows from (3.1) that .� ˝ �/ ı � D ˆ ˝ � and so � is
a compact quantum group homomorphism. The identity .� ˝ id/ ı 
n D ˛n is immedi-
ate.

Proposition 3.7. For jX j � 2 the C �-algebra AX is noncommutative and infinite-dimen-
sional.

Proof. Without loss of generality, assume X D ¹0; 1º. Let B be the universal unital C �-
algebra generated by two (noncommuting) projections p and q. It is known from [7] that
B Š C �.Z2 �Z2/, which is noncommutative and infinite-dimensional. Define the matrix

.bu;v/u;v2X2 D

0BB@
p 1B � p 0 0

1B � p p 0 0

0 0 q 1B � q

0 0 1B � q q

1CCA 2M4.B/:

Define b¿;¿ D b0;0 D b1;1 D 1B , b0;1 D b1;0 D 0 and for u; v 2 X2 and w; w0 2 X�

define buw;vw 0 WD ıw;w 0bu;v . Then these elements satisfy the relations in Definition 3.2
and hence there is a surjective homomorphism AX ! B . Since B is noncommutative and
infinite-dimensional so is AX .

Remark 3.8. The group Aut.X�/ of automorphisms of a homogeneous rooted tree X�

is a compact totally disconnected Hausdorff group under the permutation topology. A
neighbourhood basis of the identity is given by the family of subgroups®

Gu WD ¹g 2 Aut.X�/ W g � u D uº W u 2 X�
¯
;
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and since the orbit of any u 2 X� is finite, each of these open subgroups is closed and
hence compact. Cosets of these subgroups are of the form Gu;v WD ¹g 2 G W g � v D uº.
Then ¹Gu;v W u; v 2 X�º is a basis of compact open sets for the topology on Aut.X�/. It
follows that the indicator functions fu;v WD 1Gu;v span a dense subset of C.Aut.X�//. It
is easily checked that the elements fu;v satisfy (1)–(3) of Definition 3.2 and the universal
property of C.Aut.X�// then implies that it is the abelianisation of AX .

4. Self-similarity

If g 2Aut.X�/ and x 2X , the restriction gjx is the unique element of Aut.X�/ satisfying

g � .xw/ D .g � x/gjx � w for all w 2 X�:

A subgroup G � Aut.X�/ is called self-similar if G is closed under taking restrictions.
That is, whenever g 2 G and x 2 X , the restriction gjx is an element of G. With the
topology inherited from Aut.X�/, the restriction map G ! GW g 7! gjx is continuous.
If G is any group acting on X� by automorphisms, we call the action self-similar if the
image of G in Aut.X�/ is self-similar.

To have a reasonable notion of self-similarity for quantum subgroups of AX , we need
to understand how restriction manifests itself in the function algebra C.Aut.X�//. Given
x 2 X and u; v 2 Xn we have

¹g W gjx � u D vº D

� [
y2X

¹g W g � x D yº

�
\ ¹g W gjx � u D vº

D

[
y2X

�
¹g W g � x D yº \ ¹g W gjx � u D vº

�
D

[
y2X

¹g W g � .xu/ D yvº;

and hence the corresponding indicator functions satisfy

1¹gWgjx �uDvº D
X
y2X

1¹gWg �.xu/Dyvº:

This formula motivates the following result.

Proposition 4.1. For each x 2 X there is a homomorphism �x WAX ! AX satisfying

�x.au;v/ D
X
y2X

ayu;xv;

for all u; v 2 Xn.

We illustrate the formula for a restriction map in Figure 1 by consideringX D ¹0; 1; 2º
and looking at what the restriction map �1 does to the projection a1;2.
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7!

Figure 1. �1.a1;2/ D a01;12 C a11;12 C a21;12

Proof of Proposition 4.1. Fix x 2 X . We show that the elements

¹bu;v WD �x.au;v/ W u; v 2 X
n; n � 1º

satisfy the conditions of Definition 3.2. For (1) we have

b¿;¿ D �x.a¿;¿/ D
X
y2X

ay;x D 1:

For (2), we have

b�u;v D

�X
y2X

ayu;xv

��
D

X
y2X

a�yu;xv D
X
y2X

ayu;xv D bu;v

and

b2u;v D

�X
y2X

ayu;xv

�2
D

X
y;z2X

ayu;xvazu;xv D

�X
y2X

ayu;xv

�
D bu;v:

For (3), fix y 2 X . ThenX
z2X

buy;vz D
X
z2X

X
w2X

awuy;xvz D
X
w2X

awu;xv D bu;v:

A similar calculation shows
P
z2X buz;vy D bu;v . Hence there is a homomorphism �x

with the desired formula.

Remark 4.2. We define �¿ to be the identity homomorphism AX ! AX , and for w D
w1 � � �wn 2 X

n we define �w to be the composition �w1 ı � � � ı �wn . A routine calculation
shows that for all u; v 2 Xn we have

�w.au;v/ D
X
z2Xn

azu;wv:

Remark 4.3. A similar argument to the one in the proof of Proposition 4.1 shows that for
each x 2 X there is a homomorphism �x WAX ! AX satisfying

�x.au;v/ D
X
y2X

axu;yv

for all u; v 2 Xn, n 2 N. It is straightforward to see that �x D � ı �x ı �, where � is the
coinverse.
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We can now state the main definition of the paper.

Definition 4.4. We call �w the restriction by w. A quantum subgroup A of AX is self-
similar if for each x 2 X the restriction �x factors through the quotient map qWAX ! A;
that is, if there exists a homomorphism e�x WA! A such that the diagram

AX AX

A A

�x

q qf�x
commutes.

To motivate the main result of this section, let G be a group. To construct a self-
similar action of G on X�, it suffices to have a function f WG � X ! X � G such that
f .e; x/ D .x; e/ for all x 2 X , and such that the following diagram commutes:

G �G �X G �X

G �X �G

X �G �G X �G:

mG�idX

idG�f

f

f �idG
idX�mG

This data allows us to define an action of G on X�, which is self-similar with g � x and
gjx the unique elements of X and G satisfying .g � x; gjx/ WD f .g; x/.

Our next result is a compact quantum group analogue of the above result. We will be
working with multiple different identity homomorphisms and units. For clarity we adopt
the following notational conventions: we write idA for the identity homomorphism on a
C �-algebraA, and for n� 1write idn for the identity homomorphism on the commutative
C �-algebra C.Xn/. Likewise, 1A will denote the unit of A, 1 and 1n will denote the units
of C.X/ and C.Xn/ respectively.

Theorem 4.5. Suppose .A; ˆ/ is a compact quantum group equipped with a unital �-
homomorphism  WC.X/˝ A! A˝ C.X/ satisfying

.ˆ˝ id1/ D .idA ˝  /. ˝ idA/.id1 ˝ˆ/ (4.1)

and
 .C.X/˝ 1A/.A˝ 1/ D A˝ C.X/: (4.2)

Then .A; ˆ/ acts on the homogeneous rooted tree X� and, moreover, the image of AX ,
under the homomorphism � WAX ! A from Proposition 3.6, is a self-similar compact
quantum group.

Proof. We begin by defining an action of .A;ˆ/ onX�. IdentifyC.X/withC.X/˝ 1A �
C.X/˝ A and let ˛1 WD  jC.X/˝1A . Then ˛1 is clearly unital and the coaction identity
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and Podleś condition for ˛1 follow from (4.1) and (4.2). Now inductively define ˛nC1 WD
. ˝ idn/.id1 ˝ ˛n/WC.XnC1/! A˝ C.XnC1/ for n � 1, where we are suppressing
the canonical isomorphism C.XnC1/ Š C.X/ ˝ C.Xn/. Again, ˛nC1 is clearly unital
whenever ˛n is. If we assume ˛n satisfies the coaction identity, then

.ˆ˝ idnC1/˛nC1 D .ˆ˝ idnC1/. ˝ idn/.id1 ˝ ˛n/

D .idA ˝  ˝ idn/. ˝ idA ˝ idn/.id1 ˝ˆ˝ idn/.id1 ˝ ˛n/

D .idA ˝  ˝ idn/. ˝ idA ˝ idn/.id1 ˝ idA ˝ ˛n/.id1 ˝ ˛n/

D .idA ˝  ˝ idn/.idA ˝ id1 ˝ ˛n/. ˝ idn/.id1 ˝ ˛n/

D .idA ˝ ˛nC1/˛nC1;

and so ˛nC1 also satisfies the coaction identity. Since ˛1 is a coaction, we see that ˛n
satisfies the coaction identity for any n � 1.

To see that each ˛n satisfies the Podleś condition, we argue by induction. We know it
is satisfied for n D 1. Suppose for some n � 1 that

˛n.C.Xn//.A˝ 1n/ D A˝ C.X
n/:

Fix a spanning element a˝ pu ˝ px 2 A˝ C.XnC1/ where u 2 Xn and x 2 X . By the
inductive hypothesis we can approximate

a˝ pu �
X
i

˛n.fi /.ai ˝ 1n/;

where fi 2 C.Xn/ and ai 2 A. Then

a˝ pu ˝ px �
X
i

.˛n.fi /˝ 1/.1A ˝ 1n ˝ px/.ai ˝ 1nC1/: (4.3)

By definition of ˛n, for any f 2 C.Xn/ we have

˛n.f /˝ 1 D
�
. ˝ idn�1/ � � � .idn�1 ˝  /.f ˝ 1A/

�
˝ 1

D . ˝ idn/ � � � .idn�1 ˝  ˝ id1/.f ˝ 1A ˝ 1/

D . ˝ idn/ � � � .idn�1 ˝  ˝ id1/.idn ˝  /.f ˝ 1˝ 1A/

D ˛nC1.f ˝ 1/:

So we can write (4.3) asX
i

˛nC1.fi ˝ 1/.1A ˝ 1n ˝ px/.ai ˝ 1nC1/:

Since  is unital, we have

1A ˝ 1n ˝ px D . ˝ idn/.1˝ 1A ˝ 1n�1 ˝ px/;
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which can be approximated using the induction hypothesis by

. ˝ idn/.1˝ 1A ˝ 1n�1 ˝ px/ � . ˝ idn/
�
1˝

X
j

˛n.gj /.bj ˝ 1n/

�
D . ˝ idn/

�X
j

.id1 ˝ ˛n/.1˝ gj /.1˝ bj ˝ 1n/
�

D

X
j

˛nC1.1˝ gj /. ˝ idn/.1˝ bj ˝ 1n/:

Finally, applying the Podleś condition for ˛1, we can approximate

 .1˝ bj / �
X
k

˛1.hk/.ck ˝ 1/ D
X
k

 .hk ˝ 1A/.ck ˝ 1/;

so

. ˝ idn/.1˝ bj ˝ 1n/ �
X
k

. .hk ˝ 1A/˝ 1n/.ck ˝ 1nC1/

D

X
k

˛nC1.hk ˝ 1n/.ck ˝ 1nC1/:

Combining these approximations we can write

a˝ pu ˝ px �
X
i;j;k

˛nC1..fi ˝ 1/.hk ˝ gj //.ckai ˝ 1nC1/;

where fi ; gj 2 C.Xn/, hk 2 C.X/ and ai ; ck 2 A. Thus ˛nC1 satisfies the Podleś condi-
tion and so by induction ˛n satisfies the Podleś condition for every n � 1.

It remains to show that ˛n ı im;n D .idA ˝ im;n/ ı ˛m for any m < n. As in the proof
of Proposition 3.6 , for any n � 1 and u; v 2 Xn we will let bu;v 2 A be the unique
elements satisfying

˛n.pu/ D
X
v2Xn

bu;v ˝ pv:

We know from the same proof that for any n � 1 and v 2 Xn we haveX
u2Xn

bu;v D 1A:

If m < n, for any u 2 Xm we have

˛n ı im;n.pu/ D . ˝ idn�1/ � � � .idm�1 ˝  ˝ idn�m/.idm ˝ ˛n�m/.im;n.pu//

D

X
w2Xn�m

. ˝ idn�1/ � � � .idm�1 ˝  ˝ idn�m/.idm ˝ ˛n�m/.pu ˝ pw/

D

X
w;z2Xn�m

. ˝ idn�1/ � � � .idm�1 ˝  ˝ idn�m/.pu ˝ bw;z ˝ pz/
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D

X
z2Xn�m

. ˝ idm�1/ � � � .idm�1 ˝  /
�
pu ˝

X
w2Xn�m

bw;z

�
˝ pz

D

X
z2Xn�m

. ˝ idm�1/ � � � .idm�1 ˝  /.pu ˝ 1A/˝ pz

D

X
z2Xn�m

˛m.pu/˝ pz

D

X
v2Xm

bu;v ˝
X

z2Xn�m

pv ˝ pz

D

X
v2Xm

bu;v ˝ im;n.pv/

D .idA ˝ im;n/ ı ˛m.pu/:

So we have that .˛n/1nD1 defines an action of .A;ˆ/ on X�.
Finally, let � WAX ! A be the homomorphism from Proposition 3.6. We have

�.au;v/ D bu;v

for any u; v 2 Xn and n � 1. For each x 2 X , define a homomorphism e�x WA! A by

 .1˝ a/ D
X
x2X

e�x.a/˝ px ;
where a 2 A. For any u 2 Xn we have

˛nC1.1˝ pu/ D
X
y2X

˛nC1.pyu/ D
X
v2Xn

X
x;y2X

byu;xv ˝ px ˝ pv:

On the other hand, we know ˛nC1 D . ˝ idn/.id1 ˝ ˛n/ and

. ˝ idn/.id1˝ ˛n/.1˝pu/D
X
v2Xn

 .1˝ bu;v/˝pv D
X
v2Xn

X
x2X

e�x.bu;v/˝px ˝pv;
and by comparing tensor factors, we see that e�x.bu;v/ DPy2X byu;xv . Hence, the dia-
gram

AX AX

�.AX / �.AX /

�x

� �f�x
commutes, and so �.AX / � A is a self-similar quantum group.

Proposition 4.6. The following are equivalent:

(1) .A;ˆ/ is a quantum self-similar group, and

(2) .A; ˆ/ is a quantum subgroup of .AX ; �/ and there is a homomorphism  W

C.X/˝ A! A˝ C.X/ satisfying the hypotheses of Theorem 4.5.
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Proof. Theorem 4.5 is the implication (2) ) (1). To see (1) ) (2) suppose .A; ˆ/ is
a quantum self-similar group. By definition there is a surjective quantum group morph-
ism qWAX ! A. It is routine to check that there is a homomorphism  WC.X/ ˝ A!

A˝ C.X/ satisfying

 .px ˝ q.au;v// D
X
y2X

q.axu;yv/˝ py :

Given u; v 2 Xn we have

.ˆ˝ id1/ .px ˝ q.au;v// D
X
y2X

ˆ.q.axu;yv//˝ py

D

X
w2Xn

X
y;z2X

q.axu;zw/˝ q.azw;yv/˝ py

D .idA ˝  /
� X
w2Xn

X
z2X

q.axu;zw/˝ pz ˝ q.aw;v/

�
D .idA ˝  /. ˝ idA/

� X
w2Xn

px ˝ q.au;w/˝ q.aw;v/

�
D .idA ˝  /. ˝ idA/.id1 ˝ˆ/.px ˝ q.au;v//;

and so  satisfies (4.1). For (4.2) notice that for any q.a/ 2 A and z 2 X we have

q.a/˝ pz D .1˝ pz/.q.a/˝ 1/

D

�X
x2X

q.ax;z/˝ pz

�
.q.a/˝ 1/

D

� X
x;w2X

.q.ax;w/˝ pw/.q.ax;z/˝ 1/

�
.q.a/˝ 1/

D

X
x2X

 .px ˝ 1/.q.ax;za/˝ 1/:

Example 4.7. If G is a closed subgroup of Aut.X�/ which is self-similar, then C.G/ is
a commutative self-similar quantum group. The quotient map AX ! C.Aut.X�// takes
a generator au;v to the indicator function fu;v defined in Remark 3.8. For a function f 2
C.Aut.X�// and x 2 X the restriction homomorphism e�x satisfies e�x.f /.g/ D f .gjx/,
for any g 2 G.

5. Finitely constrained self-similar quantum groups

5.1. Classical finitely constrained self-similar groups

Fix d � 1, and let X Œd� D
S
k�d X

k be the finite subtree of X� of depth d . The group of
automorphisms Aut.X Œd�/ is a quotient of Aut.X�/, and the quotient map is given by re-
striction to the finite subtree. We write rd WAut.X�/! Aut.X Œd�/ for this restriction map.
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Fix a subgroup P � Aut.X Œd�/. Define

GP WD
®
g 2 Aut.X�/ W rd .gjw/ 2 P for all w 2 X�

¯
:

By the properties of restriction, if g; h 2 GP , then for any w 2 X�

rd ..gh/jw/ D rd .gjh�whjw/ D rd .gjh�w/rd .hjw/ 2 P:

Likewise, rd .g�1jw/ D rd .gjg�1�w/�1 2 P . Hence GP is a self-similar group, called a
finitely constrained self-similar group. More details for these groups can be found in [9].

5.2. Finitely constrained self-similar quantum groups

Consider the subalgebra Ad �AX generated by the elements ¹au;v W juj D jvj � dº. Since
�WAd ! Ad ˝ Ad , the subalgebra Ad is a quotient quantum group. The abelianisation
of Ad is the algebra C.Aut.X Œd�/ of continuous functions on the finite group Aut.X Œd�/.

Definition 5.1. Suppose P is a quantum subgroup of Ad , where P D Ad=I . Denote by
qI WAd ! P the quotient map; so I D ker.qI /. We denote by J the smallest closed 2-sided
ideal of AX generated by ¹�w.I / W w 2 X�º, and by AP the quotient AP WD AX=J . In
the next result we prove that AP is a self-similar quantum group, and we call it a finitely
constrained self-similar quantum group.

Proposition 5.2. Each AP is a self-similar quantum group.

To prove Proposition 5.2 we need two lemmas. Recall that for g;h 2Aut.X�/;w 2X�

we have
.gh/jw D gjh�whjw :

In the first lemma, we establish an analogous relationship between the comultiplication�
on AX and the restriction maps �w .

Lemma 5.3. For any n � 1;w 2 Xn and a 2 AX we have

.� ı �w/.a/ D
X
y2Xn

.1˝ ay;w/.�y ˝ �w/.�.a//:

Proof. Let au;v be a generator of AX , with juj D jvj D k � 0. Then

.� ı �w/.au;v/ D �

� X
˛2Xn

a˛u;wv

�
D

X
y2Xn

X
ˇ2Xk

X
˛2Xn

a˛u;yˇ ˝ ayˇ;wv

D

X
y2Xn

X
ˇ2Xk

�y.au;ˇ /˝ ayˇ;wv

D

X
y2Xn

X
ˇ2Xk

�y.au;ˇ /˝ ay;w�w.aˇ;v/
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D

X
y2Xn

.1˝ ay;w/.�y ˝ �w/

� X
ˇ2Xk

au;ˇ ˝ aˇ;v

�
D

X
y2Xn

.1˝ ay;w/.�y ˝ �w/.�.au;v//:

To see that this formula extends to AX , it is enough to show that for any w 2 X� the map

a 7!
X
y2Xn

.1˝ ay;w/.�y ˝ �w/.�.a//

is linear and multiplicative. Linearity is clear, and multiplicativity follows from the ortho-
gonality of the projections 1˝ ay;w and 1˝ az;w for y ¤ z.

Lemma 5.4. Consider the quotient maps qI WAd ! Ad=I and qJ WAX ! AX=J . Then
for any n � 1 and y;w 2 Xn

ker.qI ˝ qI / � ker..qJ ı �y/˝ .qJ ı �w//:

Proof. By definition of J we have I � J ı �w for any w 2 X�. Therefore there is a
commuting diagram

Ad AX

Ad=I AX= ker.qJ ı �w/:

qI qJ ı�w

�w

Then if c 2 ker.qI ˝ qI / we have

.qJ ı �y/˝ .qJ ı �w/.c/D .�y ı qI /˝ .�w ı qI /.c/D .�y ˝ �w/ ı .qI ˝ qI /.c/D 0;

as required.

Proof of Proposition 5.2. To see that AP is a compact quantum group, it suffices to show
that J is a Woronowicz ideal. In other words, we need to show that�.J / � ker.qJ ˝ qJ /
where qJ WAX ! AX=J DW AP is the quotient map. Since J is generated as an ideal byS
w2X� �w.I /, it is enough to show that

.qJ ˝ qJ /.� ı �w.i// D 0

for any i2I andw2X�. Since I is a Woronowicz ideal we know that�.i/2ker.qI ˝ qI /.
Then by Lemmas 5.3 and 5.4 we have

.qJ ˝ qJ /.� ı �w.i// D .qJ ˝ qJ /

� X
y2Xn

.1˝ ay;w/.�y ˝ �w/.�.i//

�
D

X
y2Xn

.1˝ qJ .ay;w//.qJ ı �y ˝ qJ ı �w/.�.i//

D 0:

Finally,AP is self-similar since by definition of J we have �w.J /� J for anyw 2X�.
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5.3. Free wreath products

It is well known that for any d � 1 the group Aut.X ŒdC1�/ is isomorphic to the wreath
product Aut.X Œd�/ o Sym.X/. Since Aut.X�/ is the inverse limit over d of the groups
Aut.X Œd�/, it can be thought as the infinitely iterated wreath product : : : o Sym.X/ o
Sym.X/. It follows that Aut.X�/ŠAut.X�/ o Sym.X/. More generally, it is shown in [4]
that if P � Sym.X/ D Aut.X Œ1�/, then the finitely constrained self-similar group GP is
the infinitely iterated wreath product : : : o P o P . In this section, we prove in Theorem 5.7
an analogue of this result for finitely constrained self-similar quantum groups.

In [3], Bichon constructs a free wreath product of a compact quantum group by the
quantum permutation group As.n/. Bichon also comments in [3, Remark 2.4] that there
is a natural analogue of this construction for free wreath products by quantum subgroups
of As.n/. In this section, we formally extend this definition to take free wreath products
by any quantum subgroup of As.n/, and we prove that the finitely constrained self-similar
quantum group AP induced from a quantum subgroup P of As.n/ is a free wreath product
by P . We begin by recalling the definition of the free wreath product from [3]; note that
we use our notation A1 instead of As.jX j/.

Definition 5.5. Let X be a set of at least two elements. Let .A;ˆ/ be a compact quantum
group, and P a quantum subgroup of A1. For each x 2 X , we denote by �x the inclusion
of A in the free product C �-algebra .�x2XA/ � P . The free wreath product of A by P is
the quotient of .�x2XA/ � P by the two-sided ideal generated by the elements

�x.a/qI .ax;y/ � qI .ax;y/�x.a/; x; y 2 X; a 2 A:

The resulting C �-algebra is denoted by A �X;w P , and the quotient map is denoted by qw .
If X is understood, we typically just write A �w P .

Theorem 5.6. Let .A;ˆ/ be a compact quantum group, and P a quantum subgroup of A1.
The free wreath product A �w P from Definition 5.5 is a compact quantum group with
comultiplication ˆw satisfying

ˆw.qw.qI .ax;y/// D
X
z2X

qw.qI .ax;z//˝ qw.qI .az;y//; (5.1)

ˆw.qw.�x.a/// D
X
z2X

.qw ˝ qw/
�
.�x ˝ �z/.ˆ.a//.qI .ax;z/˝ 1/

�
; (5.2)

for each x; y 2 X and a 2 A.

Proof. Since I is a Woronowicz ideal, we have �jI � ker.qI ˝ qI /, and so the map
.qI ˝ qI / ı�A1 descends to a map

�WP ! P ˝ P � ..�x2XA/ � P /˝2:

Then .qw ˝ qw/ ı �WP ! .A �w P /˝2 satisfies

.qw ˝ qw/ ı �.qI .ax;y// D
X
z2X

qw.qI .ax;z//˝ qw.qI .az;y// for all x; y 2 X:
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For each x 2 X , consider the continuous linear map �x WA! .A �w P /˝2 given by

�x.a/ D .qw ˝ qw/

�X
z2X

.�x ˝ �z/.ˆ.a//.qI .ax;z/˝ 1/

�
:

We claim that �x is a homomorphism. To see this, let ¹a� D .a�i;j / 2 Md�.A/ W � 2 ƒº

be a family of matrices satisfying (1)–(3) of Remark 2.2, and A be the �-subalgebra of
A spanned by the entries a�i;j . Let a; b 2 A and use Sweedler’s notation to write ˆ.a/ D
a.1/ ˝ a.2/ and ˆ.b/ D b.1/ ˝ b.2/. We have

�x.a/�x.b/ D
X
z;z02X

qw
�
�x.a.1//qI .ax;z/�x.b.1//qI .ax;z0/

�
˝ qw

�
�z.a.2//�z0.b.2//

�
;

and then since

qw
�
�x.a.1//qI .ax;z/�x.b.1//qI .ax;z0/

�
D qw

�
�x.a.1/b.1//qI .ax;zax;z0/

�
D ız;z0qw

�
�x.a.1/b.1//qI .ax;z/

�
;

we have

�x.a/�x.b/ D
X
z2X

qw
�
�x.a.1/b.1//qI .ax;z/

�
˝ qw

�
�z.a.2//�z.b.2//

�
D .qw ˝ qw/

�X
z2X

.�x ˝ �z/.a.1/b.1/ ˝ a.2/b.2//.qI .ax;z/˝ 1/

�
D .qw ˝ qw/

�X
z2X

.�x ˝ �z/.ˆ.ab//.qI .ax;z/˝ 1/

�
D �x.ab/:

Since A is dense in A, it follows that �x is a homomorphism on A.
The universal property of .�x2XA/ � P now gives a homomorphism ẑ W .�x2XA/ �

P ! .A �w P /˝2 satisfying

ẑ .qI .ax;y// D
X
z2X

qw.qI .ax;z//˝ qw.qP .az;y//;

ẑ .�x.a// D
X
z2X

.qw ˝ qw/
�
.�x ˝ �z/.ˆ.a//.qI .ax;z/˝ 1/

�
:

For each a 2 A; x; y 2 X we have

ẑ .�x.a/qI .ax;y// D
X
z;z02X

qw
�
�x.a.1//qI .ax;z/qI .ax;z0/

�
˝ qw

�
�z.a.2//qI .az0;y/

�
D

X
z;z02X

qw
�
qI .ax;z/�x.a.1//qI .ax;z0/

�
˝ qw

�
qI .az0;y/�z.a.2//

�
D ẑ .qI .ax;y/�x.a//:
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It follows that ẑ .�x.a/qI .ax;y// D ẑ .qI .ax;y/�x.a// for each a 2 A; x; y 2 X , and
hence ẑ descends to the desired ˆw WA �w P ! .A �w P /˝2.

We now claim that .id˝ˆw/ ıˆw D .ˆw ˝ id/ ıˆw . Since A is dense in A, to see
that .id˝ ˆw/ ı ˆw and .ˆw ˝ id/ ı ˆw agree on each qw.�x.A//, it suffices to show
that

.id˝ˆw/ ıˆw.qw.�x.a�i;j ///

D .ˆw ˝ id/ ıˆw.qw.�x.a�i;j ///; for all � 2 ƒ; 1 � i; j � d�:

Routine calculations using (5.1) and (5.2) show that both sides of this equation are equal
to X

z;z02X

X
1�k;l�d�

q˝3w
�
�x.a

�
i;k/qI .ax;z/˝ �z.a

�
k;l /qI .az;z0/˝ �z0.a

�
l;j /

�
;

and hence are equal. So we have

.id˝ˆw/ ıˆw.qq.�x.A/// D .ˆw ˝ id/ ıˆw.qq.�x.A///

for each x 2 X . It is straightforward to check that evaluating both .id˝ ˆw/ ı ˆw and
.ˆw ˝ id/ ıˆw at qI .ax;y/ givesX

z;z02X

q˝3w
�
q˝3I .ax;z ˝ az;z0 ˝ az0;y/

�
:

Hence we have .id˝ˆw/ ıˆw D .ˆw ˝ id/ ıˆw .
We now define the matrix aX by aXx;y WD qw.qI .ax;y//, for x; y 2 X ; and for each

� 2 ƒ, 1 � i; j � d�, x; y 2 X , the elements

a
.�;X/

.i;x/;.j;y/
WD qw.�x.a

�
i;j /qI .ax;y// 2 A �w P ;

define matrices a.�;X/ D .a.�;X/
.i;x/;.j;y/

/. To finish the proof we have to show that these
matrices satisfy (1)–(3) of Remark 2.2.

We have

ˆw.a
.�;X/

.i;x/;.j;y/
/ D

�X
z2X

.qw ˝ qw/
�
.�x ˝ �z/.ˆ.a

�
i;j //.qI .ax;z/˝ 1/

��
� .qw ı qI /

˝2.�.ax;y//:

We know that (1) is satisfied for the matrix aX . For each z 2 X we have

.qw ˝ qw/
�
.�x ˝ �z/.ˆ.a

�
i;j //.qI .ax;z/˝ 1/

�
.qw ı qI /

˝2.�.ax;y//

D .qw ˝ qw/

�
.�x ˝ �z/

� X
1�k�d�

a�i;k ˝ a
�
k;j

�
.qI .ax;z/˝ 1/

�
� .qw ı qI /

˝2.�.ax;y//
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D

X
1�k�d�

�
qw.�x.a

�
i;k//˝ qw.�z.a

�
k;j //

�
� .qw.qI .ax;z//˝ 1/.qw ı qI /

˝2.�.ax;y//

D

X
1�k�d�

�
qw.�x.a

�
i;k//˝ qw.�z.a

�
k;j //

� X
z02X

qw.qI .ax;zax;z0//˝ qw.qI .az0;y//

D

X
1�k�d�

�
qw.�x.a

�
i;k//˝ qw.�z.a

�
k;j //

��
qw.qI .ax;z//˝ qw.qI .az;y//

�
D

X
1�k�d�

qw.�x.a
�
i;k/qI .ax;z//˝ qw.�z.a

�
k;j /qI .az;y//:

It follows that

ˆw.a
.�;X/

.i;x/;.j;y/
/ D

X
z2X

X
1�k�d�

qw.�x.a
�
i;k/qI .ax;z//˝ qw.�z.a

�
k;j /qI .az;y//

D

X
z2X

X
1�k�d�

a
.�;X/

.i;x/;.k;z/
˝ a

.�;X/

.k;z/;.j;y/
;

and so (1) holds for all matrices a.�;X/. To see that a.�;X/ is invertible, we define b.�;X/

by
b
.�;X/

.i;x/;.j;y/
WD qw.qI .ay;x/�y..a

�/�1i;j //:

Then we have

.a.�;X/b.�;X//.i;x/;.j;y/ D
X
z2X

X
1�k�d�

a
.�;X/

.i;x/;.k;z/
b
.�;X/

.k;z/;.j;y/

D qw

�X
z2X

X
1�k�d�

�x.a
�
i;k/qI .ax;z/qI .ay;z/�y..a

�/�1k;j /

�
D ıx;yqw

� X
1�k�d�

�x.a
�
i;k/

�X
z2X

qI .ax;z/

�
�x..a

�/�1k;j /

�
D ıx;yqw

�
�x

� X
1�k�d�

a�i;k.a
�/�1k;j

��
D ıx;yqw.�x..a

�.a�/�1/i;j //

D ıx;yıi;j 1:

A similar calculation shows that .b.�;X/a.�;X//.i;x/;.j;y/ D ıx;yıi;j 1, and so a.�;X/ is
invertible. Similar calculations also show that c.�;X/ with entries

c
.�;X/

.i;x/;.j;y/
WD qw.qI .ax;y/�x...a

�/T /�1i;j //

is the inverse of .a.�;X//T .
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We also have

.aX .aX /T /x;y D
X
z2X

aXx;za
X
y;z D qw

�
qI

�X
z2X

ax;zay;z

��
D ıx;y1:

Similarly, .aX /T aX is the identity. So aX and .aX /T are mutually inverse, and (2) is
satisfied.

We now claim that the entries of the matrices ¹a.�;X/ W � 2 ƒº [ ¹aXº span a dense
subset of A �X;w P . For each x;y 2 X we obviously have qw.qI .ax;y// in this span since
they are the entries of aX . For each x 2 X , � 2 ƒ and 1 � i; j � d� we haveX

y2X

a
.�;X/

.i;x/;.j;y/
D qw

�
�x.a

�
i;j /qI

�X
y2X

ax;y

��
D qw.�x.a

�
i;j //;

and so each qw.�x.a�i;j // is in the span of the entries. The claim follows, and so (3)
holds.

Theorem 5.7. Let AP be a finitely constrained self-similar quantum group in the sense of
Definition 5.1. There is a unital quantum group isomorphism � WAP !AP �w P satisfying

�.qJ .axu;yv// D qw.qI .ax;y/�x.qJ .au;v///

for all x; y 2 X , u; v 2 Xm, m � 0.

Proof. We define b¿;¿ to be the identity of AP �w P , and for each x; y 2 X , u; v 2 Xm,
m � 0,

bxu;yv WD qw.qI .ax;y/�x.qJ .au;v///:

We claim that this gives a family of projections satisfying (1)–(3) of Definition 3.2. Con-
dition (1) holds by definition. We have

b�xu;yv D qw.�x.qJ .a
�
u;v//qI .a

�
x;y//

D qw.�x.qJ .au;v//qI .ax;y//

D qw.qI .ax;y/�x.qJ .au;v///

D bxu;yv

and

b2xu;yv D qw
�
qI .ax;y/�x.qJ .au;v//qI .ax;y/�x.qJ .au;v//

�
D qw

�
qI .a

2
x;y/�x.qJ .a

2
u;v//

�
D bxu;yv:

So (2) holds. For each w 2 X we haveX
z2X

bxuw;yvz D
X
z2X

qw.qI .ax;y/�x.qJ .auw;vz///

D qw

�
qI .ax;y/�x

�
qJ

�X
z2X

auw;vz

���
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D qw.qI .ax;y/�x.qJ .au;v///

D bxu;yv;

and X
z2X

bxuz;yvw D
X
z2X

qw.qI .ax;y/�x.qJ .auz;vw///

D qw

�
qI .ax;y/�x

�
qJ

�X
z2X

auz;vw

���
D qw.qI .ax;y/�x.qJ .au;v///

D bxu;yv;

and hence (3) holds. This proves the claim, and hence the universal property of AX now
gives a homomorphism z� WAX ! AP �w P satisfying

z�.axu;yv/ D qw.qI .ax;y/�x.qJ .au;v///;

for all x; y 2 X , u; v 2 Xm, m � 0.
We now claim that J is contained in ker z� . To see this, fix w 2 Xn, with w D w1w0

for w1 2 X , w0 2 Xn�1. We first prove the claim that for each xk WD au1;v1 � � � auk ;vk ,
where k � 1 and each pair ui ; vi 2 Xmi for some mi � 0, we have

z�.�w.xk// D
X
y2X

qw.qI .ay;w1/�y.qJ .�w 0.xk////: (5.3)

Let k D 1. Then

z�.�w.au1;v1// D
X
y2X

X
˛2Xn�1

z�.ay˛u1;wv1/

D

X
y2X

X
˛2Xn�1

qw.qI .ay;w1/�y.qJ .a˛u1;w 0v1///

D

X
y2X

qw

�
qI .ay;w1/vy

�
qJ

� X
˛2Xn�1

a˛u1;w 0v1

���
D

X
y2X

qw.qI .ay;w1/�y.qJ .�w 0.au1;v1////;

and so (5.3) holds for k D 1. We now assume true for xk , and prove for xkC1. Note that
for y; y0 2 X we have qI .ay;w1/qI .ay0;w1/ D ıy;y0qI .ay;w1/, and hence

qw
�
qI .ay;w1/�y.qJ .�w 0.xk///qI .ay0;w1/�y0.qJ .�w 0.aukC1;vkC1///

�
D qw

�
�y.qJ .�w 0.xk///qI .ay;w1/qI .ay0;w1/�y0.qJ .�w 0.aukC1;vkC1///

�
D ıy;y0qw

�
�y.qJ .�w 0.xk///qI .ay;w1/�y.qJ .�w 0.aukC1;vkC1///

�
D ıy;y0qw

�
qI .ay0;w1/�y.qJ .�w 0.xk///�y.qJ .�w 0.aukC1;vkC1///

�
D ıy;y0qw

�
qI .ay0;w1/�y.qJ .�w 0.xkaukC1;vkC1///

�
:
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It follows that

z�.�w.xkC1// D z�.�w.xk//z�.�w.aukC1;vkC1//

D

X
y2X

qw
�
qI .ay0;w1/�y.qJ .�w 0.xkaukC1;vkC1///

�
;

and it follows that (5.3) holds for all k. Since linear combinations of products of the form
xk are a dense subalgebra of AX , it follows that

z�.�w.a// D
X
y2X

qw
�
qI .ay;w1/�y.qJ .�w 0.a///

�
for all a 2 AX . Now, if a 2 I , then �w 0.a/ 2 J D ker qJ , and hence the above equations
show that z�.�w.a// D 0. Hence �w.a/ 2 ker z� for all w 2 Xn and a 2 I , and hence
J � ker z� . This means z� descends to a homomorphism � WAP ! AP �w P satisfying

�.qJ .axu;yv// D qw.qI .ax;y/�x.qJ .au;v///

for all x; y 2 X , u; v 2 Xm, m � 0.
We now show that � is an isomorphism by finding an inverse. For each x 2X consider

the homomorphism qJ ı �x WAX!AP , where �x is the homomorphism from Remark 4.3.
Since �x D � ı �x ı �, and we know from [11, Remark 2.10] that �.J / � J , it follows
that qJ ı �x descends to a homomorphism �x WAP ! AP satisfying

�x.qJ .au;v// D qJ .�x.au;v// D
X
y2X

qJ .axu;yv/;

for all u; v 2 Xm, m � 0.
Each �x , and the map qI .a/ 7! qJ .a/ from P toAP , now allow us to apply the univer-

sal property of the free product .�x2XAP / � P to get a homomorphism z�W .�x2XAP / �

P ! AP satisfying z� ı �x D �x for each x 2 X , and z�.qI .a// D qJ .a/ for all a 2 A1 �
AX . We claim that

z�
�
�x.qJ .au;v//qI .ax;y/ � qI .ax;y/�x.qJ .au;v/

�
D 0;

for each x 2 X , u; v 2 Xm, m 2 N. We have

z�
�
�x.qJ .au;v//qI .ax;y/ � qI .ax;y/�x.qJ .au;v/

�
D �x.qJ .au;v//qJ .ax;y/ � qG.ax;y/�x.qJ .au;v//

D

X
y2X

qJ .axu;yv/qJ .ax;y/ �
X
y02X

qJ .ax;y/qJ .axu;y0v/

D qJ .axu;yv/ � qJ .axu;yv/

D 0:
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It follows that z� descends to a homomorphism �WAP �w P ! AP satisfying

�.qw.�x.qJ .au;v//// D qJ .�x.au;v// D
X
y2X

qJ .axu;yv/

for all x 2 X , u; v 2 Xm, m � 0, and

�.qw.qI .ax;y/// D qJ .ax;y/

for all x; y 2 X .
We claim that � and � are mutually inverse. For x;y 2 X , u; v 2 Xm;m � 0, we have

�.�.qJ .axu;yv/// D �
�
qw.qI .ax;y/�x.qJ .au;v///

�
D qJ .ax;y/

X
y2X

qJ .axu;yv/ D qJ .axu;yv/;

and it follows that � ı � is the identity on AP . For x 2 X , u; v 2 Xm, m � 0, we have

�.�.qw.�x.qJ .au;v///// D �

�X
y2X

qJ .axu;yv/

�
D

X
y2X

qw.qI .ax;y/�x.qJ .au;v///

D qw

�
qI

�X
y2X

ax;y

�
�x.qJ .au;v//

�
D qw.�x.qJ .au;v///;

and for all x;w 2 X we have

�.�.qw.qI .ax;y//// D �.qJ .ax;y// D qw.qI .ax;y//:

Hence � ı � is the identity on AP �w P , and so � is an isomorphism.
We now need to show that � is a homomorphism of compact quantum groups, which

means that�w ı � D .� ˝ �/ ı�J , where�J is the comultiplication onAP . For x;y 2
X , u; v 2 Xm, m � 0, we have

.� ˝ �/ ı�J .qJ .axu;yv//

D

X
˛mC1

�.qJ .axu;˛//˝ �.qJ .a˛;yv//

D

X
z2X

X
ˇ2Xm

�.qJ .axu;zˇ //˝ �.qJ .azˇ;yv//

D

X
z2X

X
ˇ2Xm

qw.qI .ax;z/�x.qJ .au;ˇ ///˝ qw.qI .az;y/�x.qJ .aˇ;v///:
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We have

�w ı �.qJ .axu;yv// D �w.qw.qI .ax;y///�w.qw.�x.qJ .au;v////;

where
�w.qw.qI .ax;y/// D

X
z2X

qw.qI .ax;z//˝ qw.qP .az;y//; (5.4)

and

�w.qw.�x.qJ .au;v//// D
X
z02X

.qw ˝ qw/
�
.�x ˝ �z0/.�J .qJ .au;v///.qI .ax;z0/˝ 1/

�
D

X
z02X

X
ˇ2Xm

qw.�x.qJ .au;ˇ //qI .ax;z0//˝ qw.�z0.qJ .aˇ;v///:

(5.5)

A typical summand in the product of the expressions in (5.4) and (5.5) is

qw
�
qI .ax;z/�x.qJ .au;ˇ //qI .ax;z0/

�
˝ qw

�
qP .az;y/�z0.qJ .aˇ;v//

�
D qw

�
�x.qJ .au;ˇ //qI .ax;z/qI .ax;z0/

�
˝ qw

�
qP .az;y/�z0.qJ .aˇ;v//

�
D ız;z0qw

�
�x.qJ .au;ˇ //qI .ax;z/

�
˝ qw

�
qP .az;y/�z.qJ .aˇ;v//

�
D ız;z0qw

�
qI .ax;z/�x.qJ .au;ˇ //

�
˝ qw

�
qP .az;y/�z.qJ .aˇ;v//

�
:

Hence

�w ı �.qJ .axu;yv//

D

X
z2X

qw.qI .ax;z//˝ qw.qP .az;y//

D

X
z2X

X
ˇ2Xm

qw
�
qI .ax;z/�x.qJ .au;ˇ //

�
˝ qw

�
qI .az;y/�x.qJ .aˇ;v//

�
D .� ˝ �/ ı�J .qJ .axu;yv//;

and it follows that �w ı � D .� ˝ �/ ı�J .

Example 5.8. An immediate consequence of Theorem 5.7 is that AP is noncommutative
whenever P is a noncommutative quantum subgroup of A1. A class of such examples
comes from Banica and Bichon’s [1, Theorem 1.1], in which they classify all the quantum
subgroups P of A1 for jX j D 4; the corresponding list of quantum groups AP gives us a
list of potentially interesting self-similar quantum groups for further study.
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