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Fundamentals of Lie categories

Žan Grad

Abstract. We introduce the basic notions and present examples and results on Lie categories –
categories internal to the category of smooth manifolds. Demonstrating how the units of a Lie cate-
gory C dictate the behavior of its invertible morphisms G .C/, we develop sufficient conditions for
G .C/ to form a Lie groupoid. We show that the construction of Lie algebroids from the theory of
Lie groupoids carries through, and ask when the Lie algebroid of G .C/ is recovered. We reveal that
the lack of the invertibility assumption on morphisms leads to a natural generalization of rank from
linear algebra, develop its general properties, and show how the existence of an extension C ,! G

of a Lie category to a Lie groupoid affects the ranks of morphisms and the algebroids of C . Fur-
thermore, certain completeness results for invariant vector fields on Lie monoids and Lie categories
with well-behaved boundaries are obtained. Interpreting the developed framework in the context
of physical processes, we yield a rigorous approach to the theory of statistical thermodynamics by
observing that entropy change, associated to a physical process, is a functor.

1. Introduction

Since its conception, category theory has proven to provide a unified framework for the
language of mathematics, by making use of the observation that objects and morphisms
thereof arise regardless of the mathematical field one considers. This paradigm has also
been adopted by physicists (see, e.g., [6]), namely that one can interpret physical states
(contained in a certain phase space) as objects, and physical processes as morphisms
between them, thus forming a category which corresponds to the physical system at hand.
In order to provide such a realization of a given physical system, the corresponding cate-
gory should ideally have the capacity to straightforwardly describe the phenomena which
pertain to the given physical system, and also capture the means for describing and cal-
culating relevant physical quantities. For a physicist, the latter is generally done using the
basic tools of calculus, in terms of a preferred set of coordinates.

There is a natural way of obtaining such a unified framework for describing physical
processes, by intertwining category theory with the theory of smooth manifolds. That is,
we require the set of objects (states) and the set of morphisms (processes) of an abstract
category to be a pair of smooth manifolds, and that the composition law .f; g/ 7! fg is a
smooth map (concatenation of two processes); the mathematical structure obtained is that
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of a category internal to the category Diff of smooth manifolds. Historically, this kind of
a mathematical structure, which we will define in more precise terms as a Lie category,
was first introduced and briefly studied by Charles Ehresmann in his seminal paper [4];
in the same paper, Ehresmann further focused on the notion of a Lie groupoid, which
additionally imposes that all morphisms are invertible. This latter notion has nowadays
been thoroughly researched and continues to have a status of an active field of research,
whereas the same cannot be said for Lie categories; apart from the work of Ehresmann,
this is the first paper dedicated to their systematic treatment. The main reason behind the
fact that Lie categories have gained negligible attention compared to Lie groupoids lies in
the fact that the assumption on morphisms being invertible implies that all left and right
translations are diffeomorphisms, which accounts for certain preferable properties of the
structure of a Lie groupoid, that will also be highlighted in this paper.

Our motivation for studying Lie categories, and not merely groupoids, stems from
the physical interpretation that invertible morphisms correspond to reversible processes,
and in physics not all processes in a given system are reversible; this is well known from
the theory of thermodynamics, where reversible processes are precisely those where the
change of entropy when transiting between two states is zero; we will describe this in
precise terms in Section 8. Another, perhaps more notorious motivation, is given by irre-
versibility of wave-function collapse in quantum theory, which was actually our initial
motivation for dropping the invertibility assumption.

As we will see, it will turn out to be desirable to allow the space of morphisms of a
Lie category to possess a boundary – we will encounter both, mathematical and physical
examples where the boundary of the space of morphisms will play a distinguished role.
To temporarily appease and motivate the reader to this regard, let us briefly note that Lie
monoids are examples of Lie categories with the set of objects a singleton, and that the
monoid Œ0;1/ – either for multiplication or addition – provides a first example of a Lie
category with boundary. This simple example already shows certain intriguing qualities:
for instance, considering Œ0;1/ for multiplication, all its invertible elements are contained
in its interior, and considering Œ0;1/ for addition, its only invertible element is in its
boundary. This phenomenon, as may be expected, is one of the features of Lie categories,
namely that the units dictate the behavior of invertibles.

Overall, we aim to convince the reader that the interplay of geometrical and categorical
structures alone (without the invertibility assumption) provides new exciting questions
which were so far overlooked within the scope of Lie theory. Let us summarize our main
objectives.

(i) To demonstrate that Lie categories allow for an abundance of interesting exam-
ples which have so far been missed in the theory of Lie groupoids.

(ii) To expose some ideas and constructions which carry through to Lie categories
from the theory of Lie groupoids, e.g., the Lie algebroid construction.

(iii) To inspect the relation between Lie groupoids and Lie categories, and show that
novel notions can be obtained when invertibility is dropped.
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(iv) Last, but not least, to provide an algorithm for constructing Lie categories that
describe physical systems by making use of the notion of entropy, and to reveal
that the mathematical structure implicitly present in the foundations of statistical
thermodynamics is that of a Lie category.

Notation

All our categories are small, i.e., the classes of objects and morphisms are sets. We will
denote a category by C � X, where C is the set of morphisms, X is the set of objects,
and the two arrows indicate the source map sWC ! X and target map t WC ! X, which
are defined by

s.x
g
�! y/ D x; t.x

g
�! y/ D y;

for any morphism gWx! y in C . Alongside these two maps, a category C comes equipped
with the composition map

mWC .2/ ! C ; .g; h/ 7! gh;

where C .2/ D ¹.g; h/ 2 C � C j s.g/ D t .h/º is the set of all pairs of composable mor-
phisms. Moreover, C comes equipped with the unit map

uWX ! C ; x 7! 1x :

We also define

Cx D s
�1.x/; Cy D t�1.y/; Cyx D Cx \ Cy ;

and call Cx the source fibre at x, and Cy the target fibre at y. Note that any morphism
g 2 C determines the maps

Lg WC
s.g/
! C t.g/; Lg.h/ D gh;

Rg WCt.g/ ! Cs.g/; Rg.h/ D hg;
(1.1)

called the left translation and right translation by g, which are just the pre-composition
and post-composition by g, respectively.

2. Basic definitions and examples

Definition 2.1. A Lie category is a small category C�X, where C is a smooth manifold
with or without boundary, X is a smooth manifold without boundary, and there holds:

(i) The source and target maps s; t WC ! X are smooth submersions.

(ii) The unit map uWX ! C and the composition map mWC .2/ ! C are smooth.

If C has a boundary, we also assume that C � X has a regular boundary, that is:

(iii) The restrictions @s; @t W @C ! X of s and t are smooth submersions.
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Remark 2.2. Given any x 2 X, assumptions (i) and (iii) ensure that Cx and Cx are neat
submanifolds of C (see [5, p. 60] or [10, Proposition 4.2.9]), that is

@.Cx/ D Cx \ @C and @.Cx/ D Cx \ @C :

Moreover, assumptions (i) and (iii) ensure that the set

C .2/ D .s � t /�1.�X/

of composable morphisms is a neat submanifold of C � C , that is

@.C .2// D C .2/ \ @.C � C/ D C .2/ \ .C � @C [ @C � C/; (2.3)

by the transversality theorem, see Corollary A.7. This corollary also ensures that if C

has a boundary, the corner points of C .2/ are precisely the composable pairs in @C � @C ;
moreover, the tangent space of C .2/ at a composable pair .g; h/ equals

T.g;h/C
.2/
D ¹.v; w/ 2 TgC ˚ ThC j ds.v/ D dt .w/º:

Smoothness of C .2/ implies that the requirement of smoothness of the composition map
mW C .2/ ! C makes sense, and furthermore that left and right translations Lg ; Rg are
smooth maps between appropriate fibres, as defined by equations (1.1); we thus obtain a
covariant functor C ! Diff, given on objects as x 7! Cx and on morphisms as g 7! Lg ,
and a contravariant one given by x 7! Cx , g 7! Rg .

Remark 2.4. The unit map uWX!C of a Lie category C�X is an embedding, which is
a consequence of the fact that it is a smooth section of the source (and target) map, hence
an injective immersion which is a homeomorphism onto its image, whose continuous
inverse is given by sju.X/.

Definition 2.5. A morphism of Lie categories is a smooth functor F WC ! D . A Lie cat-
egory C is said to be a Lie subcategory of D , if there is an injective immersive morphism
F WC ! D of Lie categories.

Remark 2.4 implies that any morphism of Lie categories induces a smooth map be-
tween the respective object manifolds of C and D . We now turn to examples of Lie
categories.

Example 2.6. In the case when the object space X is a singleton, a Lie category C� ¹�º
will be called a Lie monoid. Simply put, a Lie monoid is a monoid M together with a
structure of a smooth manifold with or without boundary, such that the multiplication
mWM �M !M is smooth.

Concrete examples of Lie monoids frequently arise as embedded submonoids of Lie
groups. For instance, we may consider the closed ray Œ0;1/ � R for addition, or more
generally, the n-dimensional half-space Hn D Rn�1 � Œ0;1/ � Rn, where n 2 N, which
is a commutative Lie monoid for the usual addition. On the other hand, the closed ray
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Œ0;1/ for multiplication is not1 a submonoid of any Lie group. Further examples of Lie
monoids that do not arise as submonoids of Lie groups are the following.

(i) The set Rn�n of square n-dimensional matrices is a Lie monoid for matrix multi-
plication; more generally, we may consider the Lie monoid End.V / of endomor-
phisms of a finite-dimensional vector space V , under composition. Even more
generally, any finite-dimensional unital algebra is a Lie monoid that is enriched
over the category Vect of vector spaces, since the multiplication map is bilinear.
In particular, this includes the real line, the complex plane, and quaternions for
multiplication.

(ii) The closed unit disk D � C, an abelian Lie monoid for complex multiplication,
and the closed unit 4-ball xB4, a non-abelian Lie monoid for quaternionic multi-
plication.

The following example generalizes the similar notion of triviality from the theory of
Lie groupoids.

Example 2.7. Let X be a smooth manifold without boundary and M a Lie monoid. A
trivial Lie category is defined by C D X �M � X and X D X , with s D pr3, t D pr1
and the composition as

.z; g; y/.y; h; x/ D .z; gh; x/:

That the composition is smooth follows from the smoothness of multiplication in M . In
the case when M D ¹eº is a trivial monoid, we obtain the well-known pair groupoid.

The next example reveals the spirit of the notion of a Lie category – that is, it can be
thought of as a smooth family of endomorphisms of an abstract structure, parametrized
by the base manifold X. This is aligned with the philosophy that a Lie groupoid can be
thought of as a smooth collection of automorphisms (symmetries) of a structure parame-
trized by X.

Example 2.8. Let � WE ! X be a vector bundle over a smooth manifold X without
boundary, whose typical fibre is a fixed vector space V . The endomorphism category of
E ! X is the category End.E/� X , where the set of morphisms is defined as the set

End.E/ D ¹�WEx ! Ey j � is linear; x; y 2 Xº

of linear homomorphisms between the fibres of E ! X , and the structure maps s; t;m; u
are defined in the obvious way. To show that End.E/ admits a structure of a Lie category
without boundary, we must define a smooth structure on End.E/; it is induced by local
trivializations on E in the following way. Denote by®

Ui � V
 i
�! ��1.Ui / j i 2 I

¯
1This is easily seen since it has a non-cancellative (absorbing) element.
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an atlas of local trivializations of E over an open cover .Ui /i2I of X , and denote by
�ij WUi \ Uj ! GL.V / the respective transition maps, i.e.,  �1i  j .x; v/ D .x; �ij .x/v/.
For any two indices i; j 2 I , we define the map

‰
j
i WUj � End.V / � Ui ! End.E/UjUi D s

�1.Ui / \ t
�1.Uj /;

‰
j
i .y; A; x/.ejx/ D  j .y; AprV 

�1
i .ejx//;

whose inverse is

.‰
j
i /
�1.�WEx ! Ey/ D .y; v 7! prV 

�1
j � i .x; v/; x/:

The smoothness of transition maps in this atlas is easily checked by computing

.‰lk/
�1‰

j
i .y; A; x/ D .y; �jl .y/

�1A�ik.x/; x/;

where x 2 Ui \ Uk and y 2 Uj \ Ul . From the local charts, it is clear that s and t
are submersions, and the smoothness of composition map m follows from the smooth-
ness of multiplication in End.V /; finally, this composition is bilinear when restricted to
End.E/zy � End.E/yx � End.E/.2/, so End.E/ is moreover enriched over the category
Vect of vector spaces.

Example 2.9 (Bundles of Lie monoids). A Lie category with coinciding source and tar-
get map s D t DW p is called a bundle of Lie monoids. In this case, two morphisms are
composable if and only if they are in the same fibre of p.

A concrete example of such a Lie category is the endomorphism bundleE� ˝E ! X

of a vector bundle E ! X , with the composition given on simple tensors as

.'2 ˝ v2/.'1 ˝ v1/ D '2.v1/ '1 ˝ v2;

and extended by bilinearity; this can easily be identified with the composition of linear
maps Ex ! Ex , so E� ˝ E � End.E/ is a subcategory of End.E/. Using Lemma 2.13,
it is not hard to see that it is actually an embedded Lie subcategory of End.E/, with respect
to the inclusion map.

Another concrete example of a bundle of Lie monoids is the exterior bundle,

ƒ.E/ D

rankEM
iD0

ƒk.E/;

of an F -vector bundle E ! X , i.e., ƒ.E/ consists of all multivectors in E, and com-
position of ˛ 2 ƒk.Ex/ and ˇ 2 ƒl .Ex/ is given as ˛ ^ ˇ. The units are given by
1x D 1 2 F D ƒ0.Ex/, for any x 2 X . Again, the given composition map is smooth,
which follows easily from bilinearity of the wedge product; moreover, ƒ.E/ is again
enriched over Vect. In general, bundles of Lie monoids enriched over Vect would right-
fully be called smooth bundles of unital associative algebras.
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Example 2.10 (Action categories). An action of a Lie monoid M on a smooth manifold
X is a smooth map �WM � X ! X , denoted by �.g; x/ D gx, which satisfies ex D x
and g.hx/ D .gh/x, for any x 2 X and g; h 2 M . We observe that contrary to the case
of Lie group actions, the map � may not be submersive since the action is no longer by
automorphisms ofX , thus the target map in the naïve generalization of the action groupoid
would not be a submersion.

To remedy this, we construct the action category of a given Lie monoid action �WM �
X ! X as follows. Denote by

M ËX D ¹.g; x/ 2M �X j � is a submersion at .g; x/º

the set of regular points of the action �.2 Defining the structure maps as usual, i.e.,
s.g; x/ D x, t .g; x/ D gx, the units as u.x/ D .e; x/, and the composition as

.g; hx/.h; x/ D .gh; x/;

we obtain a Lie categoryM ËX�X . Indeed, sinceM ËX �M �X is an open subset,
we only need to check that if � is a submersion at the points .h; x/ and .g; hx/, it is also
a submersion at .gh; x/. To that end, we first notice that we may write the condition
g.hx/ D .gh/x as an equality of maps M �M �X ! X ,

� ı .pr1; � ı .pr2; pr3// D � ı .m ı .pr1; pr2/; pr3/;

where mWM �M !M denotes the multiplication in the Lie monoid M . Differentiating
this equality at .g; h; x/, we obtain

d�.g;hx/ ı .pr1; d�.g;x/ ı .pr2; pr3// D d�.gh;x/ ı .dm.g;h/ ı .pr1; pr2/; pr3/:

By assumption, the left-hand side is surjective, thus the same holds for the first map on
the right-hand side. Hence M ËX � X is a category and thus a Lie category.

Example 2.11. A simple, yet important example of a Lie category is the order category
of R, which is defined as the wide subcategory of the pair groupoid G D R � R� R,
given by

C D ¹.y; x/ 2 R �R j x � yº:

The space of morphisms is thus the half-space below the diagonal in R2, and the source
and target maps are the projections to the vertical and the horizontal axis, respectively,
implying that the boundary of C is regular. Moreover, since the inversion in the pair
groupoid G is given by the reflection over the diagonal, the units in C are precisely the ele-
ments of the diagonal, and these are the only invertibles. The composition in C is depicted
in Figure 1.

2Intuitively, the action category accounts only for the non-critical dynamics pertaining to the given
action.
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.y; x/

.z; y/

.z; y/.y; x/

Cy

Cy

Figure 1. Composition in the order category on R.

Although simple, this example has an important property: C can be seen as the pre-
image of the set Œ0;1/ under the functor

f WR �R! .R;C/; f .y; x/ D y � x:

The following example is a generalization of this; we will make use of it when considering
applications to statistical thermodynamics in Section 8.

Example 2.12. Suppose a Lie category D�X without boundary is given, together with
a smooth functor f WD ! .R;C/ such that

(i) 0 2 R is a regular value of f ,

(ii) sjf �1.0/ and t jf �1.0/ are submersions.

Then the preimage C D f �1.Œ0;1// is a Lie category. Indeed, since 0 is a regular value
of f , C is a smooth embedded submanifold in D with boundary @C D f �1.0/, see, e.g.,
[5, p. 62]. Moreover, since f �1..0;1// D Int C is open in D , the restrictions sjC ; t jC
of the source and target maps to C are submersions. Functoriality of f implies that C

is a wide subcategory of D with all invertibles contained within @C , and moreover it
also implies that @C is a wide subcategory of C . The assumption (ii) enables us to use
Lemma 2.13 below to conclude that C is an embedded Lie subcategory of D .

Lemma 2.13. Let C be a wide subcategory of a Lie category D � X. Suppose C is
also an embedded submanifold of D , such that sjC ; t jC are submersions and either of the
following holds:

(i) C has no boundary.

(ii) C has a boundary and sj@C ; t j@C are submersions.

Then C is an embedded Lie subcategory of D .

Proof. The only thing needed to be proven is that the restriction mjC .2/ WC
.2/ ! C of the

composition map mWD.2/ ! D , is smooth. To that end, it is enough to check that C .2/ is
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a submanifold of D.2/; notice that C .2/ D D.2/ \ .C � C/, so we will make use of the
transversality theorem.

Suppose first that C and D have no boundary, so that by the usual transversality theo-
rem it is enough to check that D.2/ and C � C are transversal in D �D , i.e.,

T.g;h/D
.2/
C TgC ˚ ThC D TgD ˚ ThD ; for all .g; h/ 2 C .2/:

To show this equality, let .v; w/ 2 TgD ˚ ThD . Since sjC is a submersion, there is a
vector v0 2 TgC with dsg.v0/ D dth.w/. Define v00 D v � v0, and now, since t jC is a
submersion, there is a vector w0 2 ThC such that

dth.w0/ D dth.w/ � dsg.v00/:

Now define w00 D w � w0. Clearly, .v0; w0/ 2 TgC ˚ ThC , and on the other hand, the
definition of w0 and w00 implies

dsg.v00/ D dth.w/ � dth.w0/ D dth.w00/;

so that .v00; w00/ 2 T.g;h/D.2/, which concludes our proof for the boundaryless case. If D

has a boundary, then the above proof together with Proposition A.8 used on the inclusion
C � C

�
,�! D �D , ensures that � t D.2/, and since D.2/ �D �D is a neat submanifold,

C .2/ � C � C � D �D is a submanifold by Proposition A.4, and hence since C .2/ �

D.2/, it is a submanifold of D.2/.
If C has a boundary, then assumption (ii) ensures that all the strata

Int C � Int C ; .Int C � @C/ [ .@C � Int C/; @C � @C

of C � C are transversal to D.2/ by a similar proof as above, so by Proposition A.8 we
again conclude � t D.2/.

Remark 2.14. In particular, an embedded submonoid of a Lie monoid is its embedded
Lie submonoid, however, a direct proof of this is much easier.

3. Reversibility of morphisms

Reversible (synonymously, invertible) morphisms form an important subclass of mor-
phisms in any category C ; recall that g 2 C is said to be invertible, if there is a unique
morphism g�1 2 C such that g�1g D 1s.g/ and gg�1 D 1t.g/. We observe that the set

G .C/ D ¹g 2 C j g is invertibleº

is a groupoid over the same base as C . We call G .C/ the core of C , the study of which
begins with the following simple observation.
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Proposition 3.1. For any morphism g in a category C , the following are equivalent.

(i) g is invertible.

(ii) Left and right translations by g are bijections.

(iii) Left and right translations by g are surjections.

(iv) g has a left and a right inverse, i.e., there exist g0 2 C s.g/; g00 2 Ct.g/ with
gg0 D 1t.g/ and g00g D 1s.g/.

Proof. Implications (i)) (ii)) (iii) are clear, and (iii)) (iv) follows by observing that
(iv) means 1t.g/ 2 Im.Lg/, 1s.g/ 2 Im.Rg/. Lastly, implication (iv)) (i) follows from
elementary abstract algebra: g00 D g001t.g/ D g00gg0 D 1s.g/g0 D g0.

Remark 3.2. Note that injectivity of left and right translations corresponds to cancellative
properties. For example, injectivity of Lg is equivalent to stating that for any two h; k 2
C s.g/, gh D gk implies h D k.

The regular boundary assumption on a Lie category C has the important consequence
that the units dictate where invertible elements can be.

Lemma 3.3. Let C be a Lie category. For any invertible morphism g 2 G .C/, the mor-
phisms g; g�1; 1s.g/; 1t.g/ must either all be contained in the interior Int C , or in the
boundary @C .

Proof. If C has no boundary then the lemma holds trivially, so suppose @C ¤;. Invertibil-
ity of g meansLg WC s.g/!C t.g/ is a diffeomorphism, which maps 1s.g/ 7! g, so we must
have either 1s.g/ 2 @.C s.g// and g 2 @.C t.g//, or 1s.g/ 2 Int.C s.g// and g 2 Int.C t.g//.
Regularity of boundary implies @.Cx/D Cx \ @C for any x 2X, so we must have either
1s.g/ 2 @C and g 2 @C , or 1s.g/ 2 IntC and g 2 IntC . A similar result is obtained for 1t.g/
and g using the right translation Rg , and similarly for g�1 and the units using Lg�1 ; Rg�1
since s.g�1/ D t .g/.

The last lemma implies that any Lie groupoid (a Lie category with all morphisms
invertible) must have an empty boundary. We also obtain the following two immediate
corollaries.

Corollary 3.4. For any Lie category C � X, there holds

u.X/ � Int C implies G .C/ � Int C ;

u.X/ � @C implies G .C/ � @C :

Corollary 3.5. The invertible elements of any Lie monoid are either contained in its inte-
rior, or in its boundary.

An impending question is whether the core G .C/ of C is a Lie groupoid. Without
additional assumptions this is false.
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y

x

Figure 2. The Lie category from Example 3.6.

Example 3.6. A simple example of a Lie category C with a regular boundary, whose
core G .C/ is not a manifold, is the disjoint union of the order category on R and the pair
groupoid on R. More concretely, we define

C D .�1; 0/2 [ ¹.y; x/ 2 .0;1/2 j x � yº;

X D R n ¹0º;

with the categorical structure induced by the pair groupoid structure on R.
In this case, G .C/ D .�1; 0/2 [ ¹.x; x/ j x > 0º, which has two components of

different dimensions. We have depicted this in Figure 2, with invertible elements of C in
red, and non-invertible in blue; the units in Int C are depicted with a dashed line.

The culprit in the example above is that the units were allowed to be both in the interior
and in the boundary.

Definition 3.7. A Lie category C �X is said to have a normal boundary, if either of the
following holds:

(i) u.X/ � Int C ;

(ii) @C is a wide subcategory of C , i.e., @C is a subcategory of C and u.X/ � @C .

Remark 3.8. A Lie category without a boundary trivially has a normal boundary.

The following result was proved by Charles Ehresmann in his pioneering paper [4],
where he introduced Lie categories. Ehresmann proved it by implicitly assuming @C D ;,
and with a somewhat old-school method of local coordinates; the proof we present is
coordinate-free and uses the modern language of differentiable manifolds, is conceptually
clearer, and holds for categories with a normal boundary.

Theorem 3.9. If C is a Lie category with a normal boundary, then its core G .C/ is an
embedded Lie subcategory of C . More precisely, if u.X/ � Int C , then G .C/ is open in
Int C , and if u.X/ � @C , then G .C/ is open in @C .
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Proof. Consider first the case when u.X/� IntC . We need to show that any k 2 G .C/ has
an invertible neighborhood in C ; we will do so by showing that k admits a left-invertible
and a right-invertible neighborhood. With this motive, define the map

# WC .2/ ! C �t t C ; #.g; h/ D .g; gh/;

so # D .pr1; m/. We claim that this is a local diffeomorphism at the point .k; k�1/. Note
that by equation (2.3) and a similar result for @.C �t t C/, we have

.k; k�1/ 2 Int.C .2// and .k; 1t.k// D #.k; k
�1/ 2 Int.C �t t C/;

so that it is enough to show d#.k;k�1/ is an isomorphism, by virtue of the inverse map
theorem (for boundaryless manifolds). For dimensional reasons, it is enough to check #
is an immersion at .k; k�1/.

Suppose d#.k;k�1/.v;w/D0 for some .v;w/2T.k;k�1/.C .2//. The identity d#.v;w/D
.v; dm.v;w// implies v D 0, so we obtain

dm.k;k�1/.v; w/ D d.Lk/k�1.w/:

Since Lk is a diffeomorphism, we conclude w D 0, hence # is a local diffeomorphism at
.k; k�1/, i.e., there is a neighborhood U of .k; k�1/ which is mapped diffeomorphically
onto a neighborhood V of .g; 1t.g//.

Now note that C embeds into C �t t C , by the map �.g/ D .g; 1t.g//; so the set
#�1.V \ �.C// is diffeomorphic to V \ �.C/, and consists of pairs .g; g0/ 2 U such
that gg0 D 1t.g/. In other words, ��1.V / is a neighborhood of k, elements of which have
right inverses.

Similarly, we can show that the map z# WC .2/ ! C �s s C , .g; h/ 7! .gh; h/ is a local
diffeomorphism at .k�1; k/, and use the embedding z�WC ! C �s s C , z�.g/ D .1s.g/; g/
to obtain a neighborhood z��1. zV / of k, elements of which have left inverses. To conclude,
note that Proposition 3.1 guarantees ��1.V /\ z��1. zV / is an invertible neighborhood of k.

Finally, for the case u.X/ � @C , just note that normality of the boundary can be used
with Lemma 2.13 to conclude that @C is an embedded Lie subcategory of C without
boundary, so we can apply the previous case to @C .

Given a morphism F W C ! D between Lie categories with normal boundaries, we
have F.G .C// � G .D/ by functoriality, so we may define G .F / D F jG .C/. The map
G WLieCat@! LieGrpd defines a functor from the category of Lie categories with normal
boundary to the category of Lie groupoids without boundary, which is easily seen to be
right adjoint to the inclusion functor LieGrpd ,! LieCat@.

Using the last theorem we can also show that the universal property of the core extends
to the differentiable setting. We note that more consequences of Theorem 3.9 will be
explored in upcoming sections.

Corollary 3.10. Let C be a Lie category with a normal boundary, and let H � C be a
groupoid that is also a Lie subcategory of C . If any smooth morphism F WG ! C , defined
on a Lie groupoid G , factors uniquely through H , then H D G .C/.
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Proof. The inclusion H � G .C/ is an easy consequence of functoriality of H ,! C , since
functors map isomorphisms to isomorphisms. For the converse inclusion, we pick the
smooth map F WG .C/ ,! C and now the existence of xF WG .C/!H such that F D � ı xF
ensures that if g 2 G .C/, then g D xF .g/ 2 H .

4. Lie algebroids of a Lie category

The construction of a Lie algebroid using left-invariant (or right-invariant) vector fields
on a Lie groupoid readily generalizes to Lie categories; however, we no longer have a
canonical isomorphism between the two algebroids, previously given by the inversion
map. Below, we present the main idea of the construction (Definition 4.1 through Propo-
sition 4.4), mainly to fix notation; we omit some details which can be found in standard
Lie groupoid references.

Definition 4.1. A left-invariant vector field on a Lie category C � X is a vector field
X 2 X.C/, which is tangent to t -fibres, i.e., X 2 �1.ker dt /, and left-invariant, i.e.,
d.Lg/h.Xh/ D Xgh for all .g; h/ 2 C .2/. Denote by XL.C/ the vector space of left-
invariant vector fields on C .

Lemma 4.2. Let C be a Lie category. The vector space XL.C/ is closed under the Lie
bracket, and canonically isomorphic to the vector space �1.AL.C// of sections of the
vector bundle AL.C/ D u�.ker dt / over X.

Proof. Closedness under the Lie bracket is a consequence of the fact that if X; Y are
Lg -related to themselves when restricted to appropriate fibres, so is ŒX; Y �. The canon-
ical isomorphism evW XL.C/ ! �1.AL.C// is given by restriction to the units, and
its inverse ev�1 maps any section ˛ 2 �1.AL.C// to its left-invariant extension ˛L,
given as ˛L.g/ D d.Lg/1s.g/.˛s.g//, which is a smooth section C ! TC since it can be
realized as the composition ˛L D dm ı �˛ , where �˛W C ! T .C .2// is given by g 7!
.0g ; ˛1s.g//.

Definition 4.3. The left Lie algebroid of a Lie category C � X is the vector bundle
AL.C/!X, endowed with the Lie bracket Œ�; �� on its sections as induced by the isomor-
phism ev, together with the anchor map �LWAL.C/! TX, �L D dsjAL.C/.

Similarly, we define the right Lie algebroid of a Lie category C as the vector bundle
AR.C/ D u�.ker ds/, which as a vector space is isomorphic to the space XR.C/ of right-
invariant vector fields, and its anchor map is defined as �R D dt jAR.C/.

The proof of the next proposition is again the same as with the Lie groupoid case, so
we omit it. Again, an analogous result holds for the right Lie algebroid.
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Proposition 4.4. The left Lie algebroid AL.C/ of a Lie category C � X satisfies

(i) �L preserves the brackets, i.e., �LŒ˛; ˇ� D Œ�L˛; �Lˇ�TX ,

(ii) Leibniz rule: Œ˛; fˇ� D f Œ˛; ˇ�C �L.˛/.f /ˇ,

for all ˛; ˇ 2 �1.AL.C// and f 2 C1.X/.

Any morphism F W C ! D over idX of Lie categories over the same object man-
ifold X, induces morphisms between their left and right Lie algebroids (respectively),
denoted by

FL� WA
L.C/! AL.D/ and FR� WA

R.C/! AR.D/;

and defined on respective sections of AL.C/ and AR.C/ in the obvious way,

˛ 7! dF ı ˛:

In the case when the object manifolds of C and D are not equal and the morphism F does
not restrict to a diffeomorphism between the units, we encounter the same complications
as in the Lie groupoid case; this is resolved in the same manner as for Lie groupoids,
and since we will not be needing this more general result, we point the reader to [9,
Chapter 4.3] for details. The upshot is that AL and AR are functors from the category
LieCat of Lie categories to the category LieAlgd of Lie algebroids.

As mentioned, we do not have a canonical isomorphism between the left and right
Lie algebroid of a Lie category, which is given in a Lie groupoid by the inversion map.
However, we have the following result, and we will later encounter a related one when
studying extensions of categories to groupoids (see Section 6).

Proposition 4.5. Let C � X be a Lie category. If the units of C are contained in the
interior of C , i.e., u.X/� IntC , then the left and right Lie algebroids of C are isomorphic
to the Lie algebroid of its core G .C/.

Proof. By Theorem 3.9, G .C/ is open in C , so we get the following chain of isomor-
phisms of Lie algebroids:

AL.C/ Š AL.G .C// Š AR.G .C// Š AR.C/;

where the first and last isomorphism are induced by the inclusion G .C/ ,! C , and the
isomorphism in the middle is induced by inversion in the groupoid G .C/.

Remark 4.6. Note that if C has a normal boundary and u.X/ � @C , the Lie algebroid
A.G .C// of the core will always fail to be isomorphic to the two Lie algebroids of C , since
the rank of the vector bundle A.G .C// is one less than the rank of AL.C/ and AR.C/.
This is demonstrated by the following two examples:

(i) The two Lie algebras of the Lie monoid M D Hn are isomorphic (as vector
spaces) to AL.M/ Š Rn Š AR.M/, whereas A.G.M// Š Rn�1 since the core
of M is G.M/ D Rn�1.
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(ii) Consider the order category C D ¹.y;x/ 2R2 j x � yº�R from Example 2.11.
Notice that its core G .C/ is just the base groupoid over R, hence its Lie algebroid
is the zero bundle A.G .C// D R � ¹0º. On the other hand, the left and right Lie
algebroid of C are both isomorphic to TR.

5. Ranks of morphisms

What follows can be seen as a natural generalization of the usual notion of rank from
linear algebra (see Example 5.2 (iii)).

Definition 5.1. Let C �X be a Lie category and let g 2 C . The left rank and right rank
of g are defined as

rankL.g/ D rank d.Lg/1s.g/ ;

rankR.g/ D rank d.Rg/1t.g/ :

If the left and right rank of a morphism g are equal, we just write rank.g/ D rankL.g/ D
rankR.g/ and call this integer the rank of g. Moreover, we say g has full rank, if its left
and right ranks are full, that is, if

rank.g/ D codimC .X/ D dim C � dim X DW ı:

In this case, we will sometimes say that g is a regular morphism. If g is not regular, we
will call it singular.

Finally, we say that g has constant left rank, if rankL.g/ D rank d.Lg/h for all h 2
C s.g/, and similarly that g has constant right rank, if rankR.g/ D rank d.Rg/h for all
h 2 Ct.g/. To avoid ambiguity, we will sometimes write rankC instead of rank.

Example 5.2. (i) All invertible morphisms in any Lie category have full and con-
stant rank.

(ii) In a Lie monoid M , the ranks of an element g 2M are just the ranks of d.Lg/e
and d.Rg/e . If M is an abelian Lie monoid, then clearly any element of M has
equal left and right rank. The example M D Hn shows that regularity does not
imply invertibility.
We will later see that regularity and constancy of ranks of all morphisms in a Lie
category are ensured whenever dealing with a Lie subcategory of a Lie groupoid,
as is with the simple example Hn ,! Rn for addition.

(iii) If M D Rn�n, let us show how the above notion of rank relates with the usual
one. IfA 2Rn�n, then the usual notion reads rankAD dim ImA, whenA is seen
as the map Rn ! Rn. On the other hand, the left rank in Definition 5.1 equals

rankLM .A/ D dim Im d.LA/I D dim ImLA;
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where LAWRn�n ! Rn�n is the left translation by A, and the last equality fol-
lows by linearity. Similarly, rankRM .A/D dim ImRA. Denoting byEij the matrix
with 1 in place .i; j / and zero elsewhere, we have that AEij has the i -th column
of A in the j -th column and is zero elsewhere, and EijA has the j -th row of A
in the i -th row and is zero elsewhere, so

Im.LA/ D Lin.AEij /ni;jD1 D
°�
v1 : : : vn

�
j vi 2 Im.A/

±
;

Im.RA/ D Lin.EijA/ni;jD1 D
°�
v1 : : : vn

�T
j vi 2 Im.AT/

±
:

Since rankA D rankAT, it follows that

rankLM .A/ D rankRM .A/ D n rank.A/;

and we see that A is regular if and only if A is invertible.
The above result readily generalizes to arbitrary finite-dimensional vector spaces:
if V is a vector space, then rankEnd.V /.A/ D dim.V / rank.A/. Moreover, for any
vector bundle E, the above result clearly also generalizes to the endomorphism
bundle E� ˝E, so that for any AWEx ! Ex ,

rankE�˝E A D rank.E/ rank.A/:

(iv) Examples of Lie monoids that do not have coinciding left and right ranks may be
found in the context of finite-dimensional unital algebras. As a concrete example,
take the algebra A � R2�2 of upper-diagonal real 2 � 2 matrices, the canonical
basis of which is given by a D

�
1 0
0 0

�
, b D

�
0 0
0 1

�
, c D

�
0 1
0 0

�
. Identifying TeA

with A and noting that left and right translations are linear maps, we can identify
d.Lg/e D Lg for any g 2 A, and similarly for the right translations. It is easy to
see Im.Ra/ D Lin.a/ and Im.La/ D Lin.a; c/ by computing all the products of
a with the canonical basis, so we conclude that 2 D rankLA .a/ ¤ rankRA .a/ D 1.

Proposition 5.3 (Properties of ranks). In a Lie category C � X, the following holds.

(i) The ranks of a composition of composable morphisms g; h 2 C are bounded from
above,

rankL.gh/ � rankL.h/;

rankR.gh/ � rankR.g/:

(ii) The ranks of g 2C are bounded from below by the ranks of anchors �LWAL.C/!
TX and �RWAR.C/! TX of Lie algebroids of C ,

rankL.g/ � rank �Ls.g/;

rankR.g/ � rank �Rt.g/:
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Proof. Since Lgh D Lg ı Lh, we have

rankL.gh/ D rank.d.Lg/h ı d.Lh/1s.h// � rankL.h/;

and similarly for the right translation by usingRghDRh ıRg , so (i) follows. For property
(ii) note that the diagram

C s.g/ C t.g/

X

Lg

sj
Cs.g/

sj
Ct.g/

implies rankL.g/ � rank d.sjCs.g//1s.g/ D rank �L
s.g/

.

In the context of Lie groupoids, it is well known that the composition map is a sub-
mersion. This is no longer true for Lie categories in general; a counterexample is provided
by the Lie monoid Rn�n for matrix multiplication, where dm.0;0/ is easily seen to be the
zero map. However, the following results ensure that m is a submersion in the case where
all morphisms have full and constant rank; as mentioned, this is the case for Lie categories
extendable to Lie groupoids, as we will see later in Lemma 6.3.

Lemma 5.4. Let C � X be a Lie category and g 2 C . The map Lg has full rank at
h 2 C s.g/ if and only if the map # WC .2/ ! C �t t C , .g; h/ 7! .g; gh/ has full rank at
.g; h/. In particular, g has full left rank if and only if # has full rank at .g; 1s.g//.

Recall that we have already encountered the map # in the proof of Theorem 3.9. In a
Lie groupoid, this map is a bijection with inverse .g; h/ 7! .g; g�1h/, so the above lemma
guarantees it is a diffeomorphism, which can be used, e.g., to show that the inversion map
is automatically smooth, by realizing it as the composition

g 7! .g; 1t.g//
#�1

7��! .g; g�1/ 7! g�1:

An analogous result to Lemma 5.4 of course holds for ranks of right translations, using
the map z# WC .2/ ! C �s s C , given by .g; h/ 7! .gh; h/. For instance, the second part of
the above lemma would then read: g has full right rank if and only if z# has full rank at
.1t.g/; g/.

Proof. For the forward implication, note that d#.g;h/.v; w/ D .v; dm.g;h/.v; w// holds
for all .v; w/ 2 T.g;h/C .2/, hence d#.g;h/.v; w/ D .0; 0/ first implies v D 0, and since
dm.g;h/.0; w/ D d.Lg/h.w/, we get w D 0 since Lg has full rank at h. For the other
direction, note that d.Lg/h.w/D 0 implies d#.g;h/.0;w/D .0; 0/, so the assumption that
# has full rank at .g; h/ yields w D 0.

Corollary 5.5. Let C � X be a Lie category and g 2 C . If the map Lg has full rank at
h 2 C s.g/, then the composition map mWC .2/ ! C is a submersion at .g; h/. Hence if all
morphisms have full and constant rank, the composition is submersive.
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Proof. Differentiating the identity m D pr2 ı # yields dm.g;h/ D d.pr2/.g;gh/ ı d#.g;h/,
which is a composition of surjective maps by the previous lemma and the fact that pr2W
C �t t C ! C is a submersion.

We now direct our attention to the subsets of C of morphisms with full rank. Denote by

RL
r .C/ D ¹g 2 C j rankL.g/ D rº;

RR
r .C/ D ¹g 2 C j rankR.g/ D rº

the sets of morphisms with left and right rank equal to r , respectively, and furthermore by
Rr .C/ D RR

r .C/ \RL
r .C/ morphisms whose both ranks equal r .

Proposition 5.6. In any Lie category C � X, the subset Rı.C/ � C of regular mor-
phisms is open.

Proof. Let us first show that differentials of left translations define a certain morphism of
vector bundles. We consider the following vector bundle over C :

EL D
a
g2C

.ker dt1s.g//
�
˝ ker dtg D .s�u� ker dt /� ˝ ker dt:

Denote the projection map by pLWEL ! C , so the fibre p�1L .g/ D ELg of EL consists
of all linear maps ker dt1s.g/ ! ker dtg . Note that the map �LWC ! EL, given as g 7!
d.Lg/1s.g/ W ker dt1s.g/ ! ker dtg is a section of EL, which is smooth since

d.Lg/1s.g/ D dm.g;1s.g//.0g ;�/:

In other words, �L defines a morphism s�u� ker dt ! ker dt of vector bundles.
Now take an atlas of local trivializations  i W p�1L .Ui /! Ui � Rı�ı of EL. The set

Ui \RL
ı
.C/ D ��1L ı  

�1
i .Ui � GL.ı;R// is open in Ui , hence

RL
ı .C/ D

[
i

.Ui \RL
ı .C//

is open in C . A similar proof works for RR
ı
.C/, so the result for Rı.C/ follows.

Remark 5.7. The smooth map �L (respectively, �R) which was used in the last propo-
sition, can also easily be used to show that rankL (respectively, rankR) is a lower semi-
continuous function, i.e., that any morphism g 2 C admits a neighborhood on which the
left (respectively, right) rank is non-decreasing. Note that this should not be confused with
lower semi-continuity of the map C s.g/! R, given as h 7! rank d.Lg/h, where g 2 C is
a fixed morphism.

Properties of ranks of morphisms in a Lie category C reflect on its categorical struc-
ture, as illustrated by the following simple observation.

Corollary 5.8. Let C be a Lie category. If the regular morphisms have constant rank, then
Rı.C/ is an open Lie subcategory of C .
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Proof. We only have to check that the composition of two regular morphisms is a regular
morphism. To that end, just notice that d.Lgh/1s.h/ D d.Lg/h ı d.Lh/1s.h/ is a composition
of maps with full rank, and similar holds for right translations.

Remark 5.9. Notice that in this case, the left and right algebroids of Rı.C/ are isomor-
phic to those of C , respectively. This is in accord with the moral that the left and right
algebroids are, as vector bundles, determined by their fibres at regular morphisms.

Action of the core G .C / on a Lie category C

The natural left and right actions of the core G .C/ on a Lie category C can be used to find
properties of Lie categories.3 We will only focus on describing the left action of G .C/ on
t WC ! X; the right action of G .C/ on sWC ! X follows a similar construction.

Denote by G .C/ �s t C D ¹.g; c/ 2 G .C/ � C j s.g/ D t .c/º the fibred product of
the maps sjG .C/ and t . This set has a natural structure of a groupoid over C ; indeed, the
source and target maps are given as s.g; c/D c and t .g; c/D gc, the composition is given
as .g; hc/.h; c/ D .gh; c/, the unit map is u.c/ D .1t.c/; c/ and the inverses are given by
.g;c/�1D .g�1;gc/. We leave it to the reader to check that this defines a groupoid over C .
As regards to its smooth structure we have the following proposition.

Proposition 5.10. Let C � X be a Lie category without boundary. The left action of the
core G .C/ on the target map t WC ! X yields a Lie groupoid

G .C/ �s t C � C :

Proof. The core G .C/ is an open Lie subgroupoid of C by Theorem 3.9, and so the usual
transversality theorem for manifolds without boundary implies that

C D G .C/ �s t C D .sjG .C/ � t /
�1.�X/

is a smooth submanifold of G .C/ � C without boundary. Furthermore, s D pr2 is clearly
a submersion, and Corollary 5.5 tells us that the target map

t D mjG .C/ �s tC

is also a submersion, thus C .2/ � C � C is also a submanifold by transversality. The
smoothness of the composition map m and the unit map u then follows easily from the
smoothness of the respective maps in C .

Remark 5.11. Notice that in the case when C has a normal boundary, the maps s and t are
still submersions, but their restrictions to the boundary @C D G .C/ � @C are not, which
shows the need for amending the definition of a Lie category when the object manifold
has a boundary (or corners).

3A reference for actions of Lie groupoids on smooth maps is [9, Chapter 1.6].
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In this case, C � G .C/ � C is still a submanifold (by Proposition A.4) and the maps
s and t are topological submersions (see Definition A.1) that also satisfy s.@C/ � @C and
t .@C/ � @C , so [10, Proposition 4.2.1] implies that s-fibres and t -fibres are submanifolds
of C . This suggests a definition of a Lie category for the case when the object manifold
has corners, but we will not pursue this further here.

We can now use the action Lie groupoids above to prove that it does not matter at
which invertible morphism we measure the ranks of a given morphism g 2 C .

Corollary 5.12. Let C � X be a Lie category with a normal boundary. For any g 2 C ,
there holds

rankL.g/ D rank d.Lg/h for any h 2 G .C/s.g/;

rankR.g/ D rank d.Rg/h for any h 2 G .C/t.g/:

Proof. Consider first the case when @C D ;. The restriction of the target map to any
source fibre has constant rank, in any Lie groupoid.4 In our case, s�1.g/ D G .C/t.g/ for
any g 2 C , and the map

t js�1.g/ D Rg jG .C/t.g/

has constant rank which must thus be equal to rankR.g/. A similar proof works for left
translations, using the right action of G .C/ on sWC ! X.

Now suppose @C ¤ ;. We may consider the left action groupoids

G .C/ �s t Int C � Int C ; G .C/ �s t @C � @C

of G .C/ on t jInt C and t j@C , respectively; note that these are in fact actions of G .C/ since
Lg.IntC s.g//� IntC t.g/ andLg.@C s.g//� @C t.g/ for any g 2G .C/. The same technique
as above now shows the wanted conclusion.

Singular distributions associated to translations

A Lie category C � X (assume it is boundaryless for simplicity) comes equipped with
singular distributions determined by differentials of left and right translations. Focusing
only on left translations, define the singular distribution D � TC as

Dg D Im d.Lg/1s.g/ � ker dtg � TgC :

In what follows, we prove that D is integrable, i.e., there is a decomposition F .D/ of C

into maximally connected weakly embedded submanifolds,5 called the leaves of F .D/,
whose tangent spaces coincide with the fibres of D.

Denote the D-valued vector fields on C by

�1.D/ WD ¹X 2 X.C/ j Xg 2 Dg for all g 2 Cº:

4See the proof of Corollary 6.9 for a method of proving this.
5Recall that an injective immersion 'WM ! N is said to be a weak embedding, if any smooth map

f WP ! N with the property f .P / � '.M/, factors through '.
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It is not hard to see that D is locally of finite type, i.e., for any g 2 C there exist finitely
many Xi 2 �1.D/ such that

(i) Dg D Span.Xi jg/i ,

(ii) for any X 2 �1.D/ there exist a neighborhood U of g in C and functions fi j 2
C1.U /, such that ŒX;Xi �h D

P
j fi

j .h/Xj jh for all h 2 U .

Indeed, we may pick sections .˛i /i of AL.C/, such that they constitute a local frame on
some neighborhood V of s.g/ in X, and extend them to left-invariant vector fields .Xi /i .
The point (i) is clearly satisfied; to show (ii), denote U D s�1.V /, and note that the set of
left-invariant vector fields is closed under the Lie bracket by Lemma 4.2, so on U there
holds

ŒXi ; Xj � D
X
k

fij
kXk ;

for some functions fij k 2 C1.U /, and since any X 2 �1.DjU / can be written as a
C1.U /-linear combination of the tuple .Xi jU /i , the rest follows by using the Leibniz
rule for the Lie bracket.

Since D is locally of finite type, it is integrable by [11]. The following proposition
says that the leaves are precisely the connected components of the orbits®

s.t�1.g// j g 2 C
¯

of the groupoid C �s t G .C/� C corresponding to the right action of G .C/ on sWC!X.

Proposition 5.13. Let C�X be a Lie category without boundary. The integral manifold
of the singular distribution D � TC through g 2 C is Lg.G .C/s.g//.

Proof. Corollary 5.12 states Lg jG .C/s.g/ has constant rank, so the rank theorem can be
applied to deduce Lg.G .C/s.g// is an immersed submanifold of C t.g/, the tangent space
at gh of which is the image of differential d.Lg/h, for any h 2 G .C/s.g/.

Remark 5.14. In the case when C has a boundary, the last proposition is in general
not true, as is easily seen by considering the order category on R. In general, a natural
candidate for the integral manifold of D through g is Lg.U / for an appropriate open
neighborhood of 1s.g/ in C s.g/, but proving such a general result is harder since the rank
theorem is not true for manifolds with boundaries (without additional assumptions onLg ).

6. Extensions of Lie categories to Lie groupoids

We have witnessed interesting examples of Lie categories appear by restricting to an
embedded subcategory of a Lie groupoid, in spirit of Lemma 2.13. As we will see next,
in order to ascertain the main properties of such Lie categories, the assumption of being
embedded may be weakened to being immersed.
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Definition 6.1. An extension to a Lie groupoid of a Lie category C�X is a Lie groupoid
G � X, together with an injective, immersive functor F W C ! G over the identity. In
other words, G is a Lie groupoid such that C is its wide Lie subcategory. If such an
extension exists, we say that C is extendable to a Lie groupoid. Furthermore, we say that
an extension to a Lie groupoid is weakly étale, if dim G D dim C .

Remark 6.2. Note that if C does not have a boundary, then an extension is weakly étale
if and only if the map F is étale (i.e., a local diffeomorphism), by virtue of the inverse
map theorem. If dim G D dim C and @C ¤ ;, then F cannot be a local diffeomorphism at
points from @C since @G D ; (see, e.g., the order category from Example 2.11).

An obvious necessary condition for an arbitrary category C to admit an injective func-
tor F into a groupoid G , is cancellativity of all elements in C , i.e., all left and right
translations in C must be injective. For example, if gh D gk holds for some morphisms
in C , then F.g/F.h/D F.g/F.k/ holds in F.C/� G , implying F.h/D F.k/, and hence
h D k by injectivity of F , so Lg is injective.

In the differentiable setting, extensions to groupoids reflect on ranks and algebroids;
the following lemma yields necessary conditions on a Lie category C to be extendable to
a Lie groupoid.

Lemma 6.3. If a Lie category C is extendable to a Lie groupoid G , all its morphisms
have full and constant rank, and all left and right translations are injective. Moreover, if
the extension is weakly étale, then AL.C/ Š A.G / Š AR.C/.

Proof. Let F W C ! G be the groupoid extension, and let g; h 2 C be composable. To
prove that g has full and constant rank, denote the left translation in C by g as LC

g , and
the left translation in G by F.g/ as LG

F.g/
. By functoriality, the diagram

C s.g/ C t.g/

G s.g/ G t.g/

LC
g

LG
F.g/

F F

commutes, so if v 2 Th.C s.g// is such that d.LC
g /h.v/ D 0, it implies dFh.v/ D 0, and so

v D 0 since F is an immersion. This proves that d.LC
g /h has full rank, and a similar proof

shows an analogous result for the right translation. Hence g has full and constant rank.
To prove the second part, denote the source and target maps in C and G as sC , tC and

sG , tG , respectively. Commutativity of the diagram

C G

X

F

tC tG
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together with the assumption that our extension is weakly étale, implies that for any x 2X,
dF1x maps ker dtC1x isomorphically onto ker dtG1x , so F induces an isomorphism

FL� WA
L.C/! AL.G /

of vector bundles, and similarly between AR.C/ and AR.G /. Since F is a morphism of
Lie categories, these are in fact isomorphisms of Lie algebroids, so we yield the wanted
chain of isomorphisms.

Corollary 6.4. If a Lie category is extendable to a Lie groupoid, then the composition
map mWC .2/ ! C is a submersion.

Proof. Follows directly from Corollary 5.5 and Lemma 6.3.

Remark 6.5. To conclude AL.C/ Š AR.C/, it is enough to replace the assumption on
the extension F WC ! G being weakly étale with the following weaker condition:

d.inv/1x .dF1x .ker dtC1x // � dF1x .ker dsC
1x
/; (6.6)

but notice that if dim G ¤ dim C , then the left and right algebroids of C will not be
isomorphic to the algebroid A.G /, since their ranks will differ. For a simpler notation,
assume that C � G and F WC ,! G is an injective immersion.

To show that d.inv/1x .ker dtC1x / � ker dsC
1x

implies AL.C/ Š AR.C/, first observe
that the assumption (6.6) implies equality instead of just the inclusion. Hence the inversion
map induces a vector bundle isomorphism

inv�WAL.C/! AR.C/;

and now it is not difficult to see that for any ˛ 2 �1.AL.C//, its left-invariant exten-
sion ˛L to whole G is inv-related to the right-invariant extension .inv�˛/R. Hence if
ˇ 2 �1.AL.C// is another section, we obtain that for any g 2 G ,

d.inv/g.Œ˛L; ˇL�g/ D Œ.inv�˛/R; .inv�ˇ/R�g�1 :

Taking g D 1x , shows that inv� preserves the brackets of AL.C/ and AR.C/, so it is an
isomorphism of Lie algebroids.

Remark 6.7. The importance of Lemma 6.3 lies in the fact that it enables us to easily pro-
vide positive answers to the following questions, for the case of Lie categories extendable
to groupoids:

(i) Are Lie monoids parallelizable?

(ii) For fixed objects x;y 2X of a Lie category C�X, is the set C
y
x of morphisms

from x to y a submanifold of C? Equivalently, do Hom-functors map into the
category Diff instead of just Set?

We remark that these questions remain open for Lie categories which do not admit an
extension to a Lie groupoid.



Ž. Grad 234

Corollary 6.8. If a Lie monoid M is extendable to a Lie group, it is parallelizable.

Proof. Extending a basis of TeM to a tuple of left-invariant vector fields yields a global
frame for TM since all elements of M have full rank by Lemma 6.3.

The proof of the positive answer to (ii) is similar to the Lie groupoid case.

Corollary 6.9. If a Lie category C � X is extendable to a Lie groupoid, then for any
x; y 2 X the set C

y
x is a closed embedded submanifold of C . In particular, Cxx is a Lie

monoid for any x 2 X.

Proof. We realize C
y
x as an integral manifold of a certain distribution on Cx , namely

D D ker d.t jCx /, or more instructively, Dg D ker dtg \ ker dsg for all g 2 Cx . This is a
regular distribution on Cx , since Dg D d.Lg/1x .D1x / holds – the latter is a consequence
of the equality sjC t.g/ ı Lg D sjCx and g having full left rank by Lemma 6.3, which
moreover implies that D is a trivial vector subbundle of TCx .

As D is the kernel of a differential of a smooth map, it is involutive, so by Frobenius’
theorem integrable. The leaves of the corresponding foliation are the connected compo-
nents of subspaces ¹Cyx j y 2 Xº of Cx , so they are its initial submanifolds. Since the
subspaces C

y
x are also closed in Cx , they are embedded.

7. Completeness of invariant vector fields

It is well known that on any Lie group G, left-invariant vector fields are complete. In this
section, we generalize this result to Lie monoids with normal boundaries. Furthermore,
we generalize the characterization of completeness of left-invariant vector fields on Lie
groupoids to Lie categories with normal boundaries. At last, we will discuss the exponen-
tial map for Lie monoids.

Definition 7.1. LetX be a vector field on a smooth manifoldM with or without boundary,
and denote by JXg the maximal interval on which the integral path Xg of X , starting at
g 2 M , is defined. We say that X is half-complete if for any g 2 M there either holds
Œ0;1/ � JXg or .�1; 0� � JXg .

Remark 7.2. In what follows, we will assume the reader is familiar with the notion of
inward-pointing and outward-pointing tangent vectors on the boundary; we direct to [7,
p. 118] for a basic reference. A particularly useful observation is that a vector field X 2
X.M/ which is inward-pointing (or outward-pointing) at a certain point g 2 @M , must
remain inward-pointing (or outward-pointing) on a neighborhood of g in @M , from which
it follows that JXg cannot contain an open neighborhood of zero, but may only contain a
half-closed interval Œ0; "/, for some " > 0 (or .�"; 0� in the outward-pointing case).

Recall from Definition 3.7 that a Lie monoid M has a normal boundary, if either
e 2 IntM , or we have both that e 2 @M and @M is a submonoid of M .
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Theorem 7.3. Let M be a Lie monoid with a normal boundary and let X be a left-
invariant vector field on M . The following holds:

(i) Suppose either that e 2 IntM , or that e 2 @M and Xe is tangent to @M . Then
X j@M is tangent to @M , and X is complete.

(ii) Suppose e 2 @M and Xe is either inward-pointing or outward-pointing. Then
either JXe D Œ0;1/ or JXe D .�1; 0�, respectively, and X is half-complete.

Moreover, the flow of X is given for all t 2 JXe by �Xt D R�Xt .e/.

Proof. We first inspect the assumptions from (i): notice that if e 2 IntM , then JXe clearly
contains an open interval around zero; on the other hand, if e 2 @M and Xe is tangent
to @M , then X j@M must be everywhere tangent to @M by left-invariance of X and the
fact that @M is a Lie submonoid of M , so JXe must again contain an open interval
around zero. Furthermore, the assumption from (ii) that Xe is either inward-pointing or
outward-pointing implies that JXe contains a half-open interval of the form Œ0;"/ or .�";0�,
respectively.

We next observe that for any g 2 M , the composition Lg ı Xe is an integral path of
X starting at g, so maximality of JXg implies

JXe � J
X
g ; (7.4)

and also �Xt .g/ D g
X
e .t/ D RXe .t/.g/ for all t 2 JXe . Notice that (7.4) now implies that

in the case e 2 IntM , JXg contains an open interval around zero for all g 2 M , and in
particular, this holds for any g 2 @M , so we conclude that X j@M must be tangent to @M ,
by virtue of Remark 7.2.

Let � 2 JXe and consider the affinely translated path

�� W .JXe � �/!M; �� .t/ D Xe .t C �/:

Since the maximal domain of an affinely translated integral path is just the affinely trans-
lated maximal domain, we get JXe � � D J

X
�� .0/

.6 Together with (7.4), this implies

JXe C � � J
X
e ; for all � 2 JXe :

This implies that if JXe contains an open interval around zero, it must equal R, and if
Œ0; "/ � JXe for some " > 0, then Œ0;1/ � JXe ; similarly for the outward-pointing case.
Together with equation (7.4), this proves our claims regarding completeness and half-
completeness.

Corollary 7.5. IfM is a Lie monoid and e 2 IntM , then elements in @M do not have full
rank. Hence if also @M ¤ ;, then M is not extendable to a Lie group.

6We do not need the Lie monoid structure to prove this simple fact.
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Proof. For a proof by contradiction, assume that there is a g 2 @M with full rank, and pick
any inward-pointing vector v 2 TgM . Since g has full rank, the vector v is extendable to
a unique left-invariant vector field X on M , but now X j@M must be tangent to @M by
Theorem 7.3, contradicting our assumption that v is inward-pointing. The second part of
the corollary follows from Lemma 6.3.

An easy example of the last corollary in play is the Lie monoid Œ0;1/ for multi-
plication. This result may easily be generalized; in any Lie category C � X, a similar
inclusion as (7.4) holds,

JX1s.g/ � J
X
g ; (7.6)

for any g 2 C and any left-invariant vector field X 2 XL.C/. The same argument as
before shows that if u.X/ � Int C , then X j@C is tangent to @C , so we similarly obtain the
following.

Corollary 7.7. If C �X is a Lie category with u.X/ � Int C , then morphisms in @C do
not have full rank. Hence if u.X/ � Int C and @C ¤ ;, then C is not extendable to a Lie
groupoid.

Proof. As before, suppose there is a morphism g 2 @C with full rank. Regularity of the
boundary implies @.C t.g// D @C \ C t.g/, so we may pick an inward-pointing vector v 2
ker dtg . Since g has full rank, we can form the vector d.Lg/�11s.g/.v/ 2 ker dt1s.g/ , extend
it to a section of u� ker dt using partitions of unity, and finally extend it to a left-invariant
vector field X on C . Since Xg D v, we arrive to a contradiction to the fact that X j@C is
tangent to @C .

Remark 7.8. In the case when g is an invertible morphism of a Lie category, the inclusion
(7.6) is actually an equality, which follows from the fact that Lg�1 ı Xg is an integral path
of X starting at 1s.g/.

We now present the promised characterization of completeness of invariant vector
fields on a Lie category. The proof is a small adaptation of the one from the theory of Lie
groupoids.

Proposition 7.9. Let C � X be a Lie category with a normal boundary, and let ˛ 2
�1.AL.C// be a section of its left Lie algebroid. Suppose either u.X/ � Int C , or that
u.X/ � @C and ˛Lju.X/ is tangent to @C . Then ˛L 2 XL.C/ is complete if and only if
�L.˛/ 2 X.X/ is complete.

Proof. First note we have already argued that under given assumptions, the restriction
˛Lj@C is tangent to @C , implying that the maximal domain of any integral path of ˛L is
an open interval.
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For the forward implication, note that ˛L and �L.˛/ are s-related, so that if �˛
L

t is
defined for some t 2 R, then so is ��

L.˛/
t , by the fact that s is a surjective submersion:

C C

X X:

s

�˛
L

t

�
�L.˛/
t

s

Indeed, take an open cover .Ui /i of X by domains of local sections �i WUi ! C of s,
and define #i WR � Ui ! X as #i .t; x/ D .s ı �˛

L

t ı �/.x/. It is straightforward to check
that for any x 2 Ui , the map t 7! #i .t; x/ is the integral path of �L.˛/ starting at x, so
the maps #i collate to the global flow ��

L.˛/WR �X ! X of �L.˛/, by uniqueness of
integral paths.

For the converse implication, suppose �L.˛/ is complete, and let  W .a; b/! C be
an integral path of ˛L; then s ı  is an integral path of �L.˛/, thus s ı  admits a unique
extension to an integral path of �L.˛/ defined on whole R, which we again denote by s ı  ,
so the expression .s ı /.b/ is defined. There now exists a path ıW .b � "; b C "/! C ,
which is an integral path of ˛L, such that ı.b/ D 1.sı/.b/; importantly, we may assume
that " is small enough that ı maps into G .C/, since the latter is either open in Int C or in
@C by Theorem 3.9. We define our wanted extension x W .a; b C "/! C of  as

x.t/ D

´
.t/ if t 2 .a; b/;


�
b � "

2

�
ı
�
b � "

2

��1
ı.t/ if t 2 .b � "; b C "/:

Since both s ı  and s ı ı are integral paths of �L.˛/ valued .s ı /.b/ at b, they coincide
on their common domain, so that s..b � "

2
// D s.ı.b � "

2
//, and moreover, ı must lie in

C .sı/.b/ since ˛L is tangent to t -fibres, which altogether implies that the multiplication
in the definition of x is well defined. Finally, x is in fact an integral path of ˛L since for
any t 2 .b � "; b C "/ there holds

x 0.t/ D d
�
L.b� "2 /ı.b�

"
2 /
�1

�
ı.t/
.ı0.t// D ˛L

.b� "2 /ı.b�
"
2 /
�1ı.t/

D ˛L
x.t/:

By uniqueness of integral paths, the two partial definitions of x coincide on their common
domain, from which we conclude that x indeed extends  . A similar procedure can be done
for the other endpoint, showing that the integral path  can be extended to the whole R.

Let us now turn back to Lie monoids. As a corollary of Theorem 7.3, we can gener-
alize the exponential map from the theory of Lie groups to Lie monoids. First of all, the
following says that when e 2 IntM , the map TeM ! M , defined as v 7! �v

L

1 .e/ is just
the usual exponential map on G.M/.

Corollary 7.10. Let M be a Lie monoid with e 2 IntM . The image of the integral path
Xe of any left-invariant vector field X on M is contained in the core G.M/.
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Proof. By Theorem 7.3, there holds �X�t .e/�
X
t .e/ D �

X
t .�

X
�t .e// D e for any t 2 R, so

�X�t .e/ is the inverse of �Xt .e/.

On the other hand, Theorem 7.3 also enables us to define the exponential map for Lie
monoids with boundaries.

Definition 7.11. Let M be a Lie monoid such that @M is its submonoid, e 2 @M . Let
T Ce M � TeM denote the subset consisting of inward-pointing vectors in TeM and the
vectors in Te.@M/. The exponential map on M is then defined as

expWT Ce M !M; exp.v/ D �v
L

1 .e/:

Remark 7.12. In any boundary chart centered at e, T Ce M is identified with the closed
upper half-space HdimM . We observe that T Ce M possesses an algebraic structure of a
semimodule over a semiring Œ0;1/.7

As before, Corollary 7.10 ensures that the restriction of exp to the vectors tangent to
@M , is precisely the usual exponential map of the Lie group G.M/.

Similar results to those from the theory of Lie groups can be obtained for the expo-
nential map as defined above, by using an identical approach to the respective proofs, but
working with one-sided derivatives. We leave the following results for the reader as an
exercise:

(i) Let v 2 T Ce M and t � 0. By the rescaling lemma, �v
L

tr .e/ D �tv
L

r .e/ for all
r � 0, and setting r D 1 we obtain

exp.tv/ D �v
L

t .e/:

(ii) The map exp is smooth, and there holds d.exp/e D idTeM . Since exp maps
exp.Te.@M//� @M by Theorem 7.3 (i), one can apply the inverse map theorem
for maps between manifolds with boundaries to conclude that exp is a local
diffeomorphism at the point 0 2 T Ce M .

(iii) Considering the Lie monoid Œ0;1/ for addition, any smooth homomorphism
˛W Œ0;1/!M of Lie monoids is called a one-parametric submonoid ofM . For
any v 2 T Ce M , the map t 7! exp.tv/ is a one-parametric submonoid ofM ; con-
versely, any one-parametric submonoid ˛ can be written as ˛.t/ D exp.t P̨ .0//,
where P̨ .0/ denotes the one-sided derivative of ˛ at zero.

A consequence of point (iii) above is naturality of exp, i.e., if �WM!N is a morphism
between Lie monoids with normal boundaries, such that the units of M and N are con-
tained in the respective boundaries, then for any v 2 T Ce M , the map ˛.t/D �.expM .tv//

7A semiring R satisfies all the axioms of a ring, except the existence of additive inverses. Because of
this, we must additionally impose 0 � aD 0D a � 0 for all a 2R. We amend modules to obtain semimodules
in precisely the same way.
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defines a one-parametric submonoid of N with P̨ .0/ D d�.v/, so we obtain that the fol-
lowing diagram commutes:

M N

T Ce M T Ce N:

�

d�

expM expN

8. An application to physics: Statistical thermodynamics

The interpretation that morphisms correspond to physical processes, and objects to phys-
ical states, can be applied to yield a rigorous approach to statistical physics, which we
will now demonstrate. We will first focus purely on categorical aspects, and then consider
differentiability.

Suppose we are given an isolated physical system consisting of an unknown number
of particles, each of which can be in one of the nC 1 a-priori given microstates, which we
will index by

i 2 ¹0; : : : ; nº:

Since the number of particles in our system is unknown and often large, we need to work
with tuples of probabilities .p0; : : : ; pn/, where each pi is the probability that a particle,
chosen at random, is in the i -th microstate. Any tuple of probabilities .pi /niD0 is subjected
to the constraint X

i

pi D 1;

and we will refer to any such tuple pD .pi /i as a configuration of the system, which is just
a probability distribution on the finite set of microstates above. The set of all configurations
of our system is thus the standard n-simplex,

�n D
°
.p0; : : : ; pn/ 2 Œ0; 1�

nC1
j

X
i

pi D 1
±
:

We associate to any configuration .pi /i of our system its expected surprise,

S.pi /i D �
X
i

pi logpi ;

which is called the entropy of the configuration .pi /i . Letting f .x/ D x log x, we find
limx!0C f .x/ D 0, so f may be extended to Œ0;1/ by defining f .0/ D 0, implying that
S W�n ! R is defined on whole �n and continuous.

The construction of the space of morphisms between different configurations of our
system is now an application of the second law of thermodynamics:

A process in an isolated physical system is feasible if and only if the change of
entropy pertaining to the process is non-negative.
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In accord with the second law, we define

D D ¹.pi /i ! .qi /i j S.qi /i � S.pi /i � 0º:

In other words, D consists of pairs .q; p/ 2 �n � �n of configurations, such that the
entropy of the target configuration q is no less than that of the source p. That D � �n is
a category follows from the fact that the map

ıS W�n ��n ! R; ıS.q; p/ D S.q/ � S.p/;

is a functor8 from the pair groupoid of �n to the group R for addition. Notice that the
invertible morphisms in D are precisely ıS�1.0/, which are just the processes with zero
entropy change.

In the differentiable setting, we need to make certain adjustments to our category D�
�n, since it is not a Lie category. First, we note that �n is a manifold with corners, and S
is not smooth at its boundary @�n since limx!0C.x logx/0 D �1, which is why we first
restrict our attention to the interior Int�n. Secondly, we notice that the category D��n

has a terminal object, as shown by the following.

Claim. The only critical point of the entropy S jInt�n is given by the so-called micro-
canonical configuration, i.e., p�i D

1
nC1

for all i . This is a maximum of S .

Proof. The constraint
P
i pi D 1 implies

P
i dpi D 0 and dp0 D �

Pn
iD1 dpi , so we

have

dS.pi /i D �
X
i

.1C logpi / dpi D �
X
i

logpi dpi D �
nX
iD1

.logpi � logp0/ dpi ;

which vanishes if and only if pi D p0 for all i , i.e., pi D 1
nC1

. That this is a local maxi-
mum is left as an exercise, and it is not hard to see that the value of S at .p�i /i is greater
than the value of S on S j@�n .

The configuration p� has little physical importance – for example, we will see below
that it can be interpreted as the configuration that is attained at thermodynamical equilib-
rium at infinite temperature. We will thus remove it from the interior of our n-simplex of
objects, and define our space of objects to be

X D Int�n � ¹p�º;

which is a smooth manifold without boundary. Moreover, we define the space of mor-
phisms over X as the set

C D .ıS jX�X/
�1.Œ0;1// D ¹.q; p/ 2 X �X j S.q/ � S.p/ � 0º:

8This is aligned with the moral that entropy should be inherently perceived as a categorical concept,
which was first adopted by Baez et al.; ıS is in fact the only map (up to a multiplicative scalar) which is
functorial, convex-linear and continuous, see [1] for details.
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As before, C�X is a subcategory of the pair groupoid on X. By virtue of Example 2.12,
to prove that C � X is a Lie category, we first need to check ıS jX�X has a regular
value 0. By the above claim, the only critical point of the map ıS is the identity morphism
.p�; p�/ 2 D , which is not in C .

Secondly, we have to show that C � X has a regular boundary, i.e., that sj@C ; t j@C
are submersions. To this end, first note that for any .q; p/ 2 @C ,

T.q;p/@C

D ker d.ıS/.q;p/

D

°
.v; w/ 2 TqX ˚ TpX j

nX
iD1

.log qi � log q0/vi D
nX
iD1

.logpi � logp0/wi
±
:

Let v 2 TqX. Since pi ¤ p0 for some i , we define

wi D

Pn
iD1.log qi � log q0/vi

logpi � logp0
and now we let w D .w0; 0; : : : ; 0; wi ; 0; : : : ; 0/ where w0 D �wi is set to ensure w 2
TpX, thus we obtain the wanted pair .v; w/ 2 T.q;p/@C with dt .v; w/ D v; we similarly
show that sj@C is a submersion. Furthermore, C � X satisfies all the conclusions from
Lemma 6.3, since the pair groupoid X �X is its weakly étale extension; in particular, the
left and right Lie algebroids of C are isomorphic to TX � X �Rn.

The question interesting for physics is: what is the configuration p� 2 X at which the
system attains a thermodynamical equilibrium? It is well known that the answer to this
question is obtained using the so-called Gibbs algorithm, which we provide here for com-
pleteness. To this end, we need additional a-priori given data, namely each microstate i of
our system has an a-priori assigned quantityEi , called the energy of the i -th microstate. To
derive the desired configuration p� we utilize the so-called principle of maximum entropy:

A state is at thermodynamical equilibrium if and only if it maximizes the entropy
with respect to the systemic constraints.

That is, we must find the constrained extremum of S with respect to the constraintsP
i pi D 1 and

P
i piEi D E.pi /i . Here EWX ! R is a function on the object space,

determined by the first law of thermodynamics up to an additive constant, as we will see
below – this will impose thermodynamical considerations onto the statistical description
of our system.

To apply the method of Lagrange multipliers, define the function yS WX ! R,

yS.pi /i D S.pi /i � �1

�
E.p/ �

X
i

piEi

�
� �2

�
1 �

X
i

pi

�
:

Requiring @ yS
@pi
D 0 yields pi D 1

Z
e�1Ei , where we have defined Z D e�.1C�2/. The con-

straint
P
i pi D 1 then reads

Z D e�.1C�2/ D
X
i

e�1Ei :
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On the other hand, the first law of thermodynamics for systems where no work is exerted
reads

dE D kT dS

where T is the temperature (a macroscopic external constant) at which the system is held,
and k denotes the Boltzmann constant. Writing out the total differentials dE and dS gives
�1 D �

1
kT

, and so we finally obtain the equilibrium configuration

p�i D
1

Z
e�

Ei
kT ; Z D

X
i

e�
Ei
kT :

We observe that in this categorical framework, the configurations from which it is possible
to attain the equilibrium configuration p� , are now simply expressible as s.t�1.p�// D
¹p 2 X j S.p�/ � S.p/º.

Further research

Although we hope to have succeeded in portraying the richness of Lie categories and their
potential in physics, we admit that we have not exhausted all research options regard-
ing them. We state some of them here, and note that they provide possibilities for future
research.

(i) As stated in Remark 6.7, the question remains whether all Lie monoids are par-
allelizable, and whether C

y
x is a smooth manifold for given objects x; y 2 X of

a Lie category C � X.

(ii) Does there exist a class of Lie algebroids that cannot be integrated to a Lie
groupoid, but can be integrated to a Lie category?

(iii) Remark 5.11 shows the need for considering Lie categories whose object mani-
fold has a boundary, or more generally, corners. Another example of such a
Lie category should be the flow of a smooth vector field on a manifold with
boundary, generalizing the flow Lie groupoid of a vector field on a boundaryless
manifold.

(iv) Infinite-dimensional Lie categories. The exterior bundle ƒ.E/ of a vector bun-
dleE is an example of a bundle of Lie monoids, and it is moreover a subcategory
of the tensor bundle

L1
kD0˝

kE, which is a bundle of monoids that fails to have
finite-dimensional fibres. Moreover, in statistical mechanics, physicists often
work with an infinite number of microstates, and in quantum mechanics with
infinite-dimensional Hilbert spaces. These examples show the need for introduc-
ing infinite-dimensional Lie categories. Since the theory of infinite-dimensional
(Banach) manifolds with corners is already well developed in [10], a theory of
infinite-dimensional Lie categories with corners seems realizable.
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(v) Multiplicative differential forms on Lie categories. On Lie groupoids, such
structures can be used to describe integrated counterparts of Poisson struc-
tures [3], and more recently they have been used to provide a natural gener-
alization of connections on principle bundles in [8]. We suspect that interesting
geometric structures can be described with multiplicative differential forms on
Lie categories.

(vi) Haar systems on Lie categories. It is well known that Haar systems on Lie group-
oids provide a generalization of the notion of Haar measures on Lie groups, and
provide a connection of the theory of Lie groupoids to noncommutative geom-
etry. A possible further generalization to Lie categories should likewise provide
a means of equipping the space Cc.C/ of compactly supported functions on the
space of arrows of a given category with the convolution product. In this fashion,
one expects to generalize the construction of a groupoid C*-algebra, but due to
the lack of existence of inverses of arrows, there is a-priori no natural way of
obtaining the involution, hence the construction potentially generalizes only to
a category Banach algebra. We strongly suspect that a sensible notion of a Haar
system on a Lie category will rather be defined in terms of a measure � on
the space C .2/ of composable pairs of arrows, satisfying certain invariance and
continuity conditions, instead of defining it in terms of a left-invariant t -fibre
supported measure on C . Roughly speaking, the convolution on Cc.C/ would
then be defined by .f1 � f2/.g/ D

R
m�1.g/

f1.g1/f2.g2/ d�.g1; g2/, where the
integration is done over the setm�1.g/D ¹.g1; g2/ 2 C .2/ j g1g2 D gº of com-
posable arrows which compose to g 2 C . We note that for groupoids, m�1.g/
is diffeomorphic to the t -fibre over t .g/, so that Haar systems on groupoids can
indeed be equivalently described with a family of m-fibre supported measures.
An interesting question for mathematical physics might be whether the princi-
ple of least action in physics can be used within the theory of Lie categories,
possibly using such Haar systems, to describe existing or yield novel physical
theories.

(vii) Smooth sieves on Lie categories. In the context of Lie groupoids, the notion of a
sieve is vacuous since all morphisms are invertible – any sieve on an object must
equal the whole t -fibre over that object. However, a notion of a smooth sieve
seems possible for Lie categories, and their properties should be researched,
together with the properties of Grothendieck sites of such sieves.

(viii) Dynamical systems. The theory of Lie groupoids has successfully been applied
to describe dynamical systems, see, e.g., [2]; a natural question is to what extent
the theory of Lie categories presented in our paper can be used to generalize
these results, to describe non-invertible dynamics.

(ix) Generalization of Morita equivalence from the context of Lie groupoids to Lie
categories.
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A. Transversality on manifolds with corners

We state here some basic definitions and results regarding finite-dimensional manifolds
with corners that we need in the paper, mostly drawing from [10]; in what follows, X
is assumed to be a second-countable topological space. Let V be a real n-dimensional
Banach space9; denote by ƒ D .�i /i a (possibly empty) set of linearly independent co-
vectors �i 2 V � and let

Vƒ D ¹v 2 V j �.v/ � 0 for all � 2 ƒº:

Vacuously, there holds Vƒ D V when ƒ D ;. We will call ƒ a corner-defining system on
a vector space V , and also denote

V 0ƒ D ¹v 2 V j �.v/ D 0 for all � 2 ƒº D
\
�2ƒ

ker�:

Given such a corner-defining system, a chart with corners onX at p 2X is a map 'WU !
Vƒ where U � X is an open neighborhood of p, '.U / � Vƒ is an open neighborhood
of 0, and ' is a homeomorphism onto its image with '.p/ D 0. Such a chart is said
to be n-dimensional, and the point p is said to have index jƒj, for which we will write
indX .p/ D jƒj.

We say that X is an n-dimensional manifold with corners if there is an n-dimensional
chart with corners around every point, and any two such charts ' and '0 are compatible,
i.e., '.U \U 0/� Vƒ and '0.U \U 0/� Vƒ0 are open subsets, and '0 ı '�1W'.U \U 0/!
'0.U \ U 0/ is a diffeomorphism.10 Such a collection of charts with corners is called an
atlas with corners. On a manifold with corners, the map indX WX ! N0 is well defined by
the boundary invariance theorem found in [10, Theorem 1.2.12].

We will use the following notation regarding the elementary terms for manifolds with
corners: the k-boundary of X is denoted by @kX D ¹p 2 X j indX .p/ � kº, and we say
that X is a manifold with boundary if @X WD @1X ¤ ; and @2X D ;. The k-stratum of
X is its subspace Sk.X/ D ¹p 2 X j indX .p/ D kº. The set of connected components of
the k-stratum is denoted by �k.X/, and the set of k-faces of X is the family

F k.X/ D ¹ xS j S 2 �k.X/º

of topological closures in X of the components of the k-stratum. We note that the k-
stratum Sk.X/ can be given the following canonical differential structure induced by X :
if p 2 Sk.X/ and 'WU ! Vƒ is a corner chart at p, then the restriction

'jU\Sk.X/WU \ S
k.X/! V 0ƒ

is a corner chart at p on Sk.X/ since there holds '.U \ Sk.X// D '.U / \ V 0ƒ. With this
structure, Sk.X/ becomes a manifold without boundary of dimension n � k.

9Keep in mind that picking a basis of V gives a homeomorphism V ! Rn.
10Denote Rn

k
D Rn�k � Œ0;1/k . A map U ! V between open subsets of Rn

k
and Rm

l
is smooth at

p 2 U , if it admits a smooth extension to an open neighborhood of p in Rn.
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A subspace X 0 � X is said to be a submanifold of X , if for any p 2 X 0 there is a
chart with corners 'WU ! Vƒ at p onX , and a linear subspace V 0 together with a corner-
defining system ƒ0 on V 0, such that '.U \X 0/ D '.U / \ V 0ƒ0 and this is an open subset
of V 0ƒ0 . Such a chart is said to be adapted to X 00 by means of .V 0; ƒ0/, and gives us a way
of defining an intrinsic atlas with corners on X 0. If there holds @X 0 D @X \ X 0, we say
that X 0 � X is a neat submanifold.

In the context of manifolds with corners, it is more useful to use non-infinitesimal
notions of submersivity and transversality.

Definition A.1. A smooth map f WX ! X 0 between manifolds with corners is a topolog-
ical submersion at p 2X , if there is an open neighborhood U of f .p/ inX 0 and a smooth
map � WU ! X such that �.f .p// D p and f ı � D idU . If this holds for all p 2 X , we
just say that f WX ! X 0 is a topological submersion.

The notion of a topological submersion is stronger than the usual infinitesimal one
which can be seen by differentiating the equality f ı � D idU . Moreover, in the context
of boundaryless manifolds they are equivalent, which is an easy consequence of the usual
rank theorem.

Definition A.2. Suppose that f WX ! X 0 is a smooth map between manifolds with cor-
ners, and X 00 � X 0 is a submanifold. The map f is topologically transversal to X 00 at
p 2 X , written symbolically as

f tp X 00;

if either f .p/ … X 00, or there is a chart '0WU 0 ! V 0ƒ0 on X 0 at p adapted to X 00 by means
of .V 00; ƒ00/ and an open neighborhood U of p in X , such that f .U / � U 0 and

� WU
f jU
��! U 0

'0

��!
�

'0.U 0/
L�1

��! .V 00 ˚W 00/L�ƒ0
pr2
��! W 00

is a topological submersion at p, where W 00 is any complementary subspace to V 00 in V 0,
and LW V 00 ˚W 00 ! V 0 is the linear isomorphism given by L.v; w/ D v C w. If for all
p 2 X we have f tp X , we just write f t X 00 and say f is topologically transversal
to X 00.

Note that f tp X 00 implies the usual infinitesimal transversality condition

dfp.TpX/C Tf .p/X 00 D Tf .p/X 0: (A.3)

Indeed, if v0 2 Tf .p/X 0, there holds

v0 D dfx.v/C d.'0/�1p L
�
pr1L

�1 d.'0/p.v0 � dfx.v//; 0
�

where v 2 TpX with d�p.v/ D pr2L
�1 d.'0/p.v0/ exists since � is a submersion at p. We

will show in Proposition A.8 that (A.3) implies f tp X 00 in case X has no boundary.
We now state the main transversality theorem for manifolds with corners, which is a

generalization of the same result for boundaryless manifolds.
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Proposition A.4. Let f WX ! X 0 be a smooth map between manifolds with corners and
let X 00 � X 0 be a neat submanifold. If f t X 00, then f �1.X 00/ � X is a submanifold with
codimX f �1.X/ D codimX 0 X 00, whose tangent bundle is

T .f �1.X 00// D .df /�1.TX 00/:

Moreover, f �1.X 00/ � X is totally neat, i.e., Sk.f �1.X// D f �1.X 00/ \ Sk.X/ for any
k � 0. In particular, f �1.X/ is a neat submanifold of X .

Proof. [10, Proposition 7.1.14].

In the context of Lie categories with nonempty regular boundaries, this result enables
us to show that the set of composable morphisms has a structure of a smooth manifold.
Let us show how.

Lemma A.5. Let f WX ! X 0 be a smooth map from a manifold X with boundary to
a boundaryless manifold X 0, such that both f and @f are submersions. Then f is a
topological submersion.

Proof. We want to show f is a topological submersion at any p 2 X . If p 2 IntX this
follows from the usual rank theorem used on f jIntX , and if p 2 @X it follows from the
usual rank theorem used on f j@X .

Lemma A.6. If f WX ! X 0 is a smooth topological submersion between manifolds with
corners and @X 0 D ;, then f t X 00 holds for any submanifold X 00 � X 0.

Proof. Suppose f .p/ 2 X 00 and let '0WU 0 ! V 0 be a chart on X 0 at f .p/ adapted to X 00

by means of .V 00; ƒ00/. Let W 00 be any complementary subspace to V 00 in V ; continuity
of f ensures there is a neighborhood U � X of p such that f .U / � U 0, and now the
composition

U
f jU
��! U 0

'0

��!
�

'0.U 0/
L�1

��! V 00 ˚W 00
pr2
��! W 00

is a topological submersion as a composition of the topological submersions f jU and
pr2L

�1'0.

Corollary A.7. Let X and Y be manifolds with boundaries and Z a manifold without
boundary. If f WX ! Z and gWY ! Z are smooth maps such that f , f j@X and g, gj@Y
are submersions, thenX �

f g
Y D .f � g/�1.�Z/�X � Y is a submanifold with tangent

space at .p; q/ equal to

T.p;q/.X �f gY / D ¹.v; w/ 2 TpX ˚ TqY j df .v/ D dg.w/º;

and its boundary is @.X �
f g

Y / D .X �
f g

Y / \ .@X � Y [X � @Y /.

Proof. Lemma A.5 ensures f and g are topological submersions, and it is easy to check
that f � gWX � Y ! Z �Z is also a smooth topological submersion. Now Lemma A.6
implies .f � g/ t �Z since Z is boundaryless, and Proposition A.4 finishes the proof
since �Z � Z �Z is trivially a neat submanifold.
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The following proposition shows in particular that in the case of boundaryless mani-
folds, the usual infinitesimal notion of transversality is equivalent to the one above.

Proposition A.8. Let f WX ! X 0 be a smooth map between manifolds with corners and
X 00 � X 0 a submanifold. For any p 2 f �1.X 00/ with indX .p/ D k, the following state-
ments are equivalent.

(i) Im d.f jSk.X//p C Tf .p/X
00 D Tf .p/X

0.

(ii) f jSk.X/ tp X 00.
(iii) f tp X 00.

Proof. To show (i) ) (ii), take a chart '0WU 0 ! V 0ƒ0 on X 0 at f .p/ adapted to X 00 by
means of .V 00; ƒ00/, take a complementary subspace W 00 to V 00 of V 0, and consider the
map

�k WU
f jU
��! U 0

'0

��!
�

'0.U 0/
L�1

��! .V 00 ˚W 00/L�ƒ0
pr2
��! W 00

where U is the domain of a chart neighborhood 'WU ! V in Sk.X/ of p; by continuity
we may assume f .U / � U 0. Since @Sk.X/ is boundaryless, it is enough to show that �k

is a submersion. To that end, take any w 2 T0W 00 ŠW 00 and then u WD d.'0/�1p L.0;w/ 2

Tf .p/X
0, so by assumption there exist v 2 TpX and v00 2 Tf .p/X 00 such that uD dfp.v/C

v00. Since L�1 d.'0/p.v00/ 2 V 00, we get

dhp.v/ D pr2L
�1 d.'0/.u � v00/ D w:

Conversely, (ii)) (i) follows from the fact that topological transversality implies transver-
sality.

For the implication (ii)) (iii), note that if Z
g
�! Z0

h
�! Z00 are smooth maps such that

h ı g is a topological submersion at p 2 Z, then it is easy to see that h is a topologi-
cal submersion at g.p/. Use this result for the composition Sk.X/ ,! X

�
�! W 00 which

equals �k . The converse implication (iii)) (ii) is a consequence of the following lemma
used on the map � .

Lemma A.9. If f WX ! X 0 is a smooth map between manifolds with corners, which is a
topological submersion at p and there holds f .p/2 Int.X 0/, then f jSk.X/ is a submersion
at p, where k D indX .p/.

Proof. Let 'WU ! Vƒ be a chart on X at p and '0WX 0 ! V 0 on X 0 at f .p/. Note that
'.U \ Sk.X// D '.U / \ V 0ƒ.

Let v0 2 Tf .p/X 0 be arbitrary. By assumption, there is a neighborhood U 0 of f .p/
and a smooth map � WU 0 ! U � X such that �.f .p// D p and f ı � D idU 0 . Since
f .p/ 2 IntX 0, there is a smooth path  W .�"; "/! U 0 with P.0/ D v0, and now consider
the path ı D ' ı � ı  W .�"; "/! '.U / � Vƒ. Since ı.0/ D 0 and ı is defined on an
open interval, we must have that ı maps into V 0ƒ, so Pı.0/ 2 T0V 0ƒ Š V 0ƒ. Taking v D
d.'�1/0. Pı.0// hence yields v 2 Tp.Sk.X// with dfp.v/ D v0.
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