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Regularity for a geometrically nonlinear flat Cosserat
micropolar membrane shell with curvature

Andreas Gastel and Patrizio Neff

Abstract. We consider the rigorously derived thin shell membrane �-limit of a three-dimensional
isotropic geometrically nonlinear Cosserat micropolar model and deduce full interior regularity of
both the midsurface deformation mW! � R2 ! R3 and the orthogonal microrotation tensor field
RW! � R2 ! SO.3/. The only further structural assumption is that the curvature energy depends
solely on the uni-constant isotropic Dirichlet-type energy term jDRj2. We use Rivière’s regularity
techniques of harmonic-map-type systems for our system which couples harmonic maps to SO.3/
with a linear equation form. The additional coupling term in the harmonic map equation is of critical
integrability and can only be handled because of its special structure.

1. Introduction

1.1. Regularity background and setting of the problem

This paper contributes to the wide field of regularity theory of harmonic-map-type equa-
tions. Driven by the application to a geometrically nonlinear flat Cosserat shell model, we
extend known regularity results to a system that couples a harmonic map equation with
another uniformly elliptic equation. The system we consider is of the form

DivS.Dm;R/ D 0; (1.1)

�R ��R � DR � skew.Dm ıS.Dm;R//R D 0; (1.2)

where here

S.Dm;R/ WD �12
�
2RP2.R|.Dmj0/ � .12j0//

�
; (1.3)

�R WD �

�
skew.R@xR|/
skew.R@yR|/

�
; (1.4)

with some notation to be explained in Section 5. The unknown functions here are the
midsurface deformation m 2 W 1;2.!;R3/ and the microrotation R 2 W 1;2.!; SO.3//,
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while ! � R2 is a smooth domain. The so.3/-valued 1-form �R is the one that makes

�R ��R � DR D 0 (1.5)

the harmonic map equation for harmonic mappings to SO.3/ � R3�3. The theory of har-
monic map equations of two-dimensional domains (to any sufficiently smooth compact
target manifold, here SO.3/) has a long history. It was proven in 1948 by Morrey [44]
that minimizing weakly harmonic maps are smooth. In 1981, Grüter [29] generalized that
to conformal weakly harmonic maps, and then in 1984 Schoen [70] to stationary ones.
The regularity proof for general weakly harmonic maps was then found in 1990 by Hélein
[31, 32]. (Note that in our case, the target manifold SO.3/ is a Lie group, and in this case
the harmonic map problem has a lot of interesting extra structure, many aspects of which
are covered in Helein’s book [33].) Later, in 2007, Rivière [63] revisited harmonic-map-
type equations and asked for which �R all weak solutions of (1.5) on a two-dimensional
domain are smooth. It turned out that�R need not come from the harmonic map equation
(in which case it can be seen as the anti-symmetrized tensor derived from the second fun-
damental form of the target manifold), but for the regularity result only the skew-symmetry
of �R is needed. This gave deeper insight into the structures necessary to have regularity
results, and it is Rivière’s philosophy that we rely upon.

Before we comment on the structure of our equations, and hence on the regularity
theory methods required, we state our main result.

Theorem 1.1. Every weak solution .m; R/ 2 W 1;2.!;R3 � SO.3// of (1.1)–(1.2), with
S.Dm;R/ and �R given by (1.3)–(1.4), is smooth on the interior of !.

In order to understand the structure of (1.1)–(1.2), we first look at (1.5). With �R and
DR being in L2, the nonlinear term �R � DR in (1.5) is only in L1, and if it did not have
any further structure, it would be difficult to start with any regularity theory, due to the
lack of an Lp-theory working for p D 1. But it turns out that the product�R �DR, after a
suitable gauge transformation, is the sum of products of divergence-free vector fields and
gradients in L2, which is known to be in the Hardy space H1 rather than L1. This little
bit of extra regularity is enough to perform regularity theory.

Now let us have a look at our equation (1.2). Compared with (1.5), it has an extra term
skew.DmıS.Dm;R//R, and again, with DR 2L2, S.Dm;R/2L2, andR 2L1, this has
only L1-integrability. But once more, DR is a gradient, and S.Dm;R/ is divergence-free
due to equation (1.1). This time, we have the product of a gradient Dm, a divergence-
free vector field S.Dm; R/, and a bounded function R. Based on a crucial estimate by
Coifman, Lions, Meyer, and Semmes [14], Rivière and Struwe [64] were able to handle
such products in their work on partial regularity in dimensions � 3. They encountered
such products in the course of their proof for equation (1.5) without any extra terms, and
we can modify their arguments to handle our extra term from the coupling. The handling
of the first equation, which is linear inm with some right-hand side, is easier, in principle.
But we have to do the iteration procedure for both equations simultaneously in the proof
of Hölder continuity, resulting in some technicalities.
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Once we have that, we still only have Hölder continuity of m and R, as proven in
Section 6.1. Note that for Rivière’s equation (1.5), in general, one can only expect Hölder
regularity of the solutions. For the important special case of the harmonic map equation,
however, �R depends on DR only linearly, allowing one to bootstrap and achieve C1

regularity once Hölder regularity of the gradient has been proven as a start. The same
applies here, since our �R is that of the harmonic map equation. Due to the additional
nonlinearity in (1.2), however, deriving the Hölder continuity of gradients from that of
solutions requires one to modify arguments from Moser’s book [45] to make them fit for
our coupled system. Combining such methods with standard Schauder estimates for (1.1),
we succeed in proving C 1;˛ and then C1 regularity, which is the content of Section 6.2.

1.2. Engineering background and application

The Cosserat model is one of the best known generalized continuum models [13]. It
assumes that material points can undergo translation, described by the standard deforma-
tion map 'WU! R3 and independent microrotations described by the orthogonal tensor
field RWU! SO.3/, where U � R3 describes the smooth reference configuration of the
material. Therefore, the geometrically nonlinear Cosserat model immediately induces the
Lie-group structure on the configuration space R3 � SO.3/.

Both fields are coupled in the assumed elastic energy W D W.D'; R;DR/ and the
static Cosserat model appears as a two-field minimization problem which is automatically
geometrically nonlinear due to the presence of the nonabelian rotation group SO.3/. Mate-
rial frame indifference (objectivity) dictates left invariance of the LagrangianW under the
action of SO.3/ and material symmetry (here isotropy) implies right invariance under
action of SO.3/.

In the early 20th century the Cosserat brothers E. and F. Cosserat introduced this model
in its full geometrically nonlinear splendor [17] in a bold attempt to unify field theories
embracing mechanics, optics, and electrodynamics through a common principle of least
action. They used the invariance of the energy under Euclidean transformations [4, 16]
to deduce the correct form of the energy W D W.R|D'; R|@xR;R|@yR;R|@zR/ and
to derive the equations of balance of forces (variations with respect to the deformation
', the force–stress tensor may lose symmetry [57]) and balance of angular momentum
(variations with respect to rotations R). The Cosserat brothers, however, did not provide
any specific constitutive form of the energy since they were not interested in applications.

While the appearance of an additional rotational field R for describing the elastic
response of bulk material requires getting used to, such an appearance is most natural in
the case of shell theory. There, the Frenet–Darboux trièdre [15] (trièdre caché in the ter-
minology of the Cosserats, trihedron) naturally plays a role and it is no big step to assume
that this orthogonal field is supposed to be kinematically independent of the former (triè-
dre mobile). Hence the Cosserat approach [15]; the independent rotation field R describes
the rotations of the cross-sections of the shell (including in-plane drill rotations about the
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Figure 1. The mappingmW! � R2! R3 describes the deformation of the flat midsurface ! � R2.
The Frenet–Darboux frame (in blue, trièdre caché) is tangent to the midsurface. The independent
frame mapped by R 2 SO.3/ is the trièdre mobile (in red, not necessary tangent to the midsurface).
Both fields m and R are coupled in the variational problem.

normal nm to the midsurface m) and these cross-sections are all allowed to shear with
respect to the normal of the midsurface (Re3 ¤ nm). See Figure 1.

On this basis, very efficient ad hoc Cosserat shell models have been introduced; see
e.g. [2, 3]. A special case of these shell models is the family of Reissner–Mindlin shells
in which the in-plane rotations are discarded (no drill energy) [36] and one is left with
a one director theory [38].1 Upon identifying/constraining the trièdre mobile with the
trièdre caché (microrotation equals continuum rotation, Cosserat couple modulus �c !
1), canonical shell models of Kirchhoff–Love type emerge [43]. However, engineers
would often prefer the Cosserat shell models since these yield nonlinear balance equations
of second order [7, 34, 62, 68, 73, 74].

The precise derivation of Cosserat shell models may proceed in several different ways:
integration of equilibrium equations through the thickness [18, 62], direct modeling as a
two-dimensional directed surface [2, 3, 28], or the derivation approach, which starts from
a three-dimensional variational problem and introduces certain assumptions for the defor-
mation behavior through the thickness. The second author has introduced this derivation
procedure based on the geometrically nonlinear Cosserat model in his habilitation the-
sis [49, 51]. Lastly, there is the “ansatz-free” method of �-convergence [8, 11, 12] (while
letting the thickness h tend to zero) to perform the dimensional descent.

In this method, one needs to choose an energy scaling regime, and typically one
obtains either membrane or bending-like theories [22, 38–40] when starting from clas-

1One-director geometrically nonlinear, physically linear Reissner–Mindlin shells are typically not well
posed, since the membrane stretch energy part depends quadratically on Dm|Dm � 12, which is not rank-
one elliptic in the compression regime. For a more detailed exposition, see the appendix.
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sical finite strain elasticity [21–23]. However, the �-limit membrane model [38, 39] has
a serious shortcoming which is connected to the necessary relaxation step: it does not
predict any resistance against compression and averages out the expected fine-scale wrin-
kling response. The situation is strikingly different when starting from a three-dimensional
Cosserat model, as done in [52]. This is true since the bulk-Cosserat model already fea-
tures a curvature term (derivatives of R) which “survives” the membrane scaling.

The Cosserat membrane �-limit with remaining curvature effects can be used as an
effective surrogate model to describe ultra-thin graphene mono-layers. Graphene is the
name given to a single atomic layer of carbon atoms tightly packed into a two-dimensional
honeycomb lattice (see Figure 2). It can be wrapped up to form fullerenes, rolled into
nanotubes [75], or stacked into graphite. Its stiffness properties are extreme. Such a graph-
ene layer has resistance against in-plane stretch and curvature changes but its thickness is
so small that a classical membrane-bending model (where the bending terms scale with
h3 while the membrane terms scale with h) is clearly insufficient. It is simply impos-
sible to speak about the “thickness” of graphene in a classical continuum framework.
Researchers then usually resort to introducing an “effective bending rigidity” in order to
apply concepts from classical shell theory. This can be completely avoided in the Cosserat
membrane model.

In this paper we will consider, for the first time, the challenging regularity questions
for the flat shell Cosserat membrane �-limit. To the best of the authors’ knowledge, such
a regularity investigation for the flat Cosserat membrane shell has never been under-
taken. Two recent previous contributions consider the regularity issue for the geometri-
cally isotropic nonlinear Cosserat bulk equations [24, 41], both times restricting attention
to the uni-constant Dirichlet curvature energy jDRj2, leading to a �R-term in the Euler–
Lagrange equations and allowing the sophisticated techniques for harmonic-map-type
systems to be used.

This paper is structured as follows. After this introduction and the introduction of our
notation, in Section 3 we will introduce the three-dimensional isotropic Cosserat model,
together with a short discussion of suitable representations for the curvature term. Follow-
ing, in Section 4, we briefly describe the dimensional descent towards a membrane shell,
juxtaposing the result of the �-limit procedure and a formal engineering approach. In Sec-
tion 5 we introduce the final two-dimensional Cosserat membrane shell model, together
with some pertinent notation and simplifications. The remainder of the paper is devoted
to showing the interior Hölder regularity of these weak solutions. In the appendix we
gather further useful calculations, like the three-dimensional Euler–Lagrange equations in
dislocation tensor format. We present a more engineering-oriented derivation of the two-
dimensional Euler–Lagrange equations and give a glimpse of a related Reissner–Mindlin
model. Finally, we show some numerical experiments on the flat Cosserat membrane shell
model in compression.
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Figure 2. A deformed graphene mono-atomic layer resisting in-plane stretches (membrane effects)
and curvature. Classical continuum models are no longer suitable, since there is no tangible thick-
ness, cf. [75]. Graphene is thought to be the strongest among all known materials. Nevertheless, it
is soft in the sense that it can be easily bent due to its one-atom-thin nature.

2. Notation

Let a; b 2R3. We denote the scalar product on R3 with ha; biR3 and the associated vector
norm by jaj2

R3 D ha; aiR3 . The set of real-valued 3 � 3 second-order tensors is denoted
by R3�3.

The standard Euclidean scalar product on R3�3 is given by hX; Y iR3�3 D tr.XY |/,
and the associated norm is jX j2 D hX;XiR3�3 . If 13 denotes the identity matrix in R3�3,
we have tr.X/D hX; 13i. For an arbitrary matrix X 2 R3�3 we define sym.X/D 1

2
.X C

X|/ and skew.X/ D 1
2
.X � X|/ as the symmetric and skew-symmetric parts, respec-

tively and the trace-free deviatoric part is defined as dev X D X � 1
n

tr.X/1n for all
X 2 Rn�n. We let Sym.n/ and SymC.n/ denote the symmetric and positive definite
symmetric tensors, respectively. The Lie algebra of skew-symmetric matrices is denoted
by so.3/ WD ¹X 2 R3�3 j X| D Xº and the Lie algebra of traceless tensors is defined
by sl.3/ WD ¹X 2 R3�3 j tr.X/ D 0º. We consider the orthogonal decomposition X D
dev symX C skewX C 1

3
tr.X/ � 13 D symX C skewX . The canonical identifications

of so.3/ and R3 are given by axlWso.3/! R3 and its inverse AntiWR3! so.3/. We note
the following properties:

axl

0@ 0 ˛ ˇ

�˛ 0 


�ˇ �
 0

1A
„ ƒ‚ …

DA

WD

0@�
ˇ
�˛

1A ; jAj2R3�3 D 2jaxlAj2R3 ; Av D axl.A/ � v;
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and

Anti

0@v1v2
v3

1A WD 0@ 0 �v3 v2
v3 0 �v1
�v2 v1 0

1A 2 so.3/:

A matrix having the three column vectors R1, R2, R3 will be written sometimes as R D
.R1jR2jR3/ 2 R3�3. The matrix Curl and matrix Div are defined row-wise as

CurlR D

0@curl.R| � e1/
curl.R| � e2/
curl.R| � e3/

1A 2 R3�3; DivR D

0@div.R| � e1/
div.R| � e2/
div.R| � e3/

1A :
For ' 2 C 1.U;R3/ and for every vector .x; y; z/ 2 R3, we write

D' D

0@'1;x '1;y '1;z
'2;x '2;y '2;z
'3;x '3;y '3;z

1A D .@x'j@y'j@z'/:
The mapping mW! � R2 ! R3 will always denote the deformation of the midsurface !
and we write

Dm D

0@m1;x m1;y
m2;x m2;y
m3;x m3;y

1A D .@xmj@ym/; D?m D

0@�m1;y m1;x
�m2;y m2;x
�m3;y m3;x

1A D .�@ymj@xm/:
Moreover, we will use the notation

Div.A1jA2/ D @xA1 C @yA2; Div?.A1jA2/ D @xA2 � @yA1;

where A1, A2 may be number-, vector-, or matrix-valued functions on ! of the same type.
Note that it is also customary to write Curl instead of Div?, but the latter underscores
the symmetry of .D;Div/ with .D?;Div?/, hence we reserve Curl for three-dimensional
domains.

We assume that h > 0 with h� 1. The three-dimensional thin flat domain Uh � R3

is introduced as

Uh WD ! �
h
�
h

2
;
h

2

i
; ! � R2:

We also need to define the projection operator on the first two columns,

�12WR
3�3
! R3�2; �12.X/ D �12.X1jX2jX3/ D .X1jX2/ D

0@X11 X12
X21 X22
X31 X32

1A ;
and the operator

P�;�c ;� WR
3�3
!
®
.3/ \ Sym.3/

¯
˚ so.3/˚R � 13;

P�;�c ;�.X/ D P .X/ D
p
� dev symX C

p
�c skewX C

p
�

3
tr.X/ � 13;

P�P .X/ D P2.X/ D � dev symX C �c skewX C
p
�

3
tr.X/13; P� D P :
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3. Three-dimensional geometrically nonlinear isotropic
Cosserat model

The underlying three-dimensional isotropic Cosserat model can be described in terms
of the standard deformation mapping 'WU � R3 ! R3 and an additional orthogonal
microrotation tensor RWU � R3 ! SO.3/.

The goal is to find a minimizer of the following isotropic energy:

E3D.';R/

D

Z
U

�jdev sym.R|D' � 13/j
2
C �c jskew.R|D' � 13/j

2
C
�3D

2
tr.R|D' � 13/

2

C �
L2c
2

�
a1jdev symR| CurlRj2 C a2jskewR| CurlRj2 C

a3

3
tr.R| CurlR/2

�
dx

D

Z
U

�jsym.R|D' � 13/j
2
C �c jskew.R|D' � 13/j

2
C
�

2
tr.R|D' � 13/

2

C �
L2c
2

�
a1jdev symR| CurlRj2 C a2jskewR| CurlRj2 C

a3

3
tr.R| CurlR/2

�
dx

D

Z
U

Wmp.R
|D'/CW 3D

disloc.R
| CurlR/ dx! min w.r.t. .';R/: (3.1)

The problem will be supplemented by Dirichlet boundary conditions for the deformation
' but the microrotations R can be left free. Here, � > 0 is the standard elastic shear
modulus, �3D D

3�C2�
3

> 0 is the three-dimensional elastic bulk modulus (with � the
second elastic Lamé parameter), �c � 0 is the so-called Cosserat couple modulus, a1,
a2, a3 are nondimensional nonnegative weights, and Lc > 0 is a characteristic length.
The energy (3.1) is the most general isotropic quadratic representation for the Cosserat
model in terms of the nonsymmetric Biot-type stretch tensor xU D R|D' (first Cosserat
deformation tensor [17]) and the curvature measure R| CurlR (physically linear, small
strain, but geometrically nonlinear). We call

˛ WD R| CurlR;

the second-order dislocation density tensor [10]. Due to the orthogonality of dev sym,
skew, and tr.:/13, the curvature energy provides complete control of

j˛j2 D jR| CurlRj2 provided a1; a2; a3 > 0:

For example, we can express the uni-constant isotropic curvature term

jDRj2R3�3�3

D jR|DRj2R3�3�3 D jR
|@xRj

2
R3�3 C jR

|@yRj
2
R3�3 C jR

|@zRj
2
R3�3

D 1 � jdev symR| CurlRj2R3�3 C 1 � jskewR| CurlRj2R3�3 C
1

12
� tr.R| CurlR/2

D jP1;1; 112
.˛/j2;
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where we have used (4.3) and j� j2 D jaxl.R|@xR/j2C jaxl.R|@yR/j2C jaxl.R|@zR/j2,
together with 2jaxl.A/j2

R3 D jAj
2
R3�3 . Using the result in [60]

jCurlRj2R3�3 � c
C
jDRj2R3�3�3 ;

shows that (3.1) controls DR in L2.U;R3�3�3/.
In this setting, the minimization problem is strictly convex in the strain and curvature

measures . xU ;˛/ but highly nonconvex with respect to .';R/. Existence of minimizers for
(3.1) with �c > 0 was shown first in [50]; see also [10, 19, 37, 42, 50, 52, 54]. The partial
regularity of minimizers/stationary solutions is investigated in [24, 41] under additional
assumptions. Note also that in [24], the first author gives an example of a solution that
exhibits a point singularity.

The Cosserat couple modulus �c controls the deviation of the microrotation R from
the continuum rotation polar.D'/ in the polar decomposition of D' D polar.D'/ �
p

D'|D'; cf. [59].
For �c !1 the constraint R D polar.D'/ is generated and the model would turn

into a Toupin couple stress model.

3.1. Connections to the Oseen–Frank energy in nematic liquid crystals

In nematic liquid crystals one considers the unit-director field nWU�R3! S2, minimiz-
ing the three-parameter frame-indifferent “curvature energy” [72]Z

U

1

2
K1jdivnj2 C

1

2
K2jhn; curlnij2 C

1

2
K3jn � curlnj2 dx: (3.2)

The uni-constant approximation K1 D K2 D K3 leads to the Dirichlet-type integral2Z
U

1

2
K1jDnj2 dx: (3.3)

The corresponding Euler–Lagrange equations for the uni-constant case are (see e.g. [1])

�n D �jDnj2 � nI (3.4)

see equation (A.21) for a self-contained derivation. Since (3.3) and (3.4) are just the energy
and Euler–Lagrange equations for harmonic maps to spheres, all regularity theorems for
harmonic maps apply. In the three-dimensional case, minimizers are smooth up to a dis-
crete set of singularities. Stationary solutions have a co-dimension 1 singular set. In the
two-dimensional case, all weak solutions of (3.4) are smooth; see Section 1.1 for the lit-
erature on this.

For K1, K2, K3 positive and different, any minimizer to (3.2) is smooth except for
a closed set of Hausdorff dimension strictly less than 1; cf. [30]. Ball and Bedford [6]
consider the sublinear regime jDnjq , 1 < q < 2.

2For this, we note the identity (see [5, eq. (2.5)] and [1, eq. (2.6)])
tr.Dv/2 C hv; curl vi2 C jv � curl vj2 D jDvj2 C .jvj2 � 1/jcurl vj2;

valid for all sufficiently smooth vector fields vWU � R3 ! R3.
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4. Dimensional descent towards a membrane model

4.1. Membrane � -limit

We are interested in a situation where the reference configuration is flat with uniform shell
thickness h > 0, i.e. the reference configuration is taken to be of the form (see Figure 3)

Uh D ! �
h
�
h

2
;
h

2

i
; ! � R2:

The goal is to derive a limit two-dimensional problem, posed over the referential midsur-

(ϕ
,R

)

e3

Uh = ω × (−h
2 ,

h
2 )

Figure 3. Process of dimensional reduction. Flat reference configuration with height h and deformed
configuration.

face ! �R2, as h! 0. This has been achieved in [58] based on �-convergence arguments
and using the nonlinear membrane scaling. We say that the dimensionally reduced model
is a membrane, since no dedicated bending terms appear in the problem.

However, since the Cosserat model already includes curvature terms (those depend-
ing on space derivatives DR), these curvature terms “survive” in the �-limit procedure
and scale with h, while canonical bending terms scale with h3. This sets the Cosserat
membrane model apart from more canonical membrane models [55].

For the �-limit procedure it is useful to re-express the curvature energy from (3.1),

�
L2c
2

�
a1jdev sym.R| CurlR/j2 C a2jskew.R| CurlR/j2 C

a3

3
tr.R| CurlR/2

�
D �

L2c
2

�
a1jdev sym˛j2 C a2jskew˛j2 C

a3

3
tr.˛/2

�
D �

L2c
2
jPa1;a2;a3.˛/j

2

DW W 3D
disloc.˛/; (4.1)

in terms of the so-called second-order wryness tensor [18, 60] (second Cosserat deforma-
tion tensor [17])

� WD .axl.R|@xR„ ƒ‚ …
2so.3/

/jaxl.R|@yR/jaxl.R|@zR// D .�1j�2j�3/ 2 R3�3: (4.2)
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Since R|@xiR 2 so.3/, i D 1; 2; 3 is skew-symmetric, we have the following relations
[25, 26, 61]:

� D �˛| C
1

2
tr.˛/13; ˛ D ��| C tr.�/13: (4.3)

By using these formulas we note

dev sym˛ D � dev sym� ; skew˛ D skew� ; tr.˛/ D 2 tr.�/:

Now using (4.1), we obtain

W 3D
disloc.˛/ D �

L2c
2

�
a1jdev sym˛j2 C a2jskew˛j2 C

a3

3
tr.˛/2

�
D �

L2c
2

�
a1jdev sym� j2 C a2jskew� j2 C 4a3 tr.�/2

�
D �

L2c
2
. Qa1jdev sym� j2 C Qa2jskew� j2 C Qa3 tr.�/2/

DW W 3D
curv.�/;

where Qa1 D a1, Qa2 D a2, and Qa3 D 4a3. Altogether we get

W 3D
disloc.˛/ D W

3D
curv.�/ D �

L2c
2
. Qa1jdev sym� j2 C Qa2jskew� j2 C Qa3 tr.�/2/

D �
L2c
2
. Qb1jsym� j C Qb2jskew� j2 C Qb3 tr.�/2/;

with Qa1 D Qb1 > 0, Qa2 D Qb2 > 0, and Qb3 D Qa1
3
C Qa3 > 0. Thus, the variational problem

(3.1) can be equivalently expressed as

E3D.';R/ D

Z
Uh

Wmp.R
|D'/CW 3D

curv.�/ dx! min w.r.t. .';R/:

Applying the nonlinear scaling [20], allows one to rewrite the problem on a domain
U1 D ! � Œ�1

2
; 1
2
� with unit thickness in terms of properly scaled variables '\, R\ in

the (thickness) z-direction

E3D
h .'

\; R\/ D

Z
U1

Wmp.R
\;TD'\/CW 3D

curv.�
\/ dx:

The descaled �-limit of E3D
h

as h! 0 is then given by [52]

E2D.m;R/ D

Z
!

h
�
W hom

mp .R|.DmjR3//CW hom
curv .
y�/
�

dx! min w.r.t. .m;R/;
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where mW ! � R2 ! R3 describes the deformation of the midsurface, RW ! � R2 !
SO.3/, and

W hom
mp .R|.DmjR3// WD inf

d2R3
Wmp.R

|.Dmjd//

D �jsym..R1jR2/|Dm � 12/j
2
C �c jskew..R1jR2/|Dm � 12/j

2

C
2��c

�C �c
.hR3; @xmi

2
C hR3; @ymi

2/

C
��

2�C �
tr..R1jR2/|Dm � 12/

2;

W hom
curv .
y�/ WD inf

A2so.3/
W 3D

curv.axl.R|@xR/; axl.R|@yR/; axl.A//

D �
L2c
2

 
Qb1

ˇ̌̌̌
ˇsym

 
y�11 y�12

y�21 y�22

!ˇ̌̌̌
ˇ
2

C Qb2

ˇ̌̌̌
ˇskew

 
y�11 y�12
y�21 y�22

!ˇ̌̌̌
ˇ
2

C

Qb1 Qb3
Qb1 C Qb3

tr

 
y�11 y�12
y�21 y�22

!2
C 2

Qb1 Qb2
Qb1 C Qb2

ˇ̌̌̌
ˇ
 
y�31
y�32

!ˇ̌̌̌
ˇ
2!
;

where the matrix y� D .axl.R|@xR/jaxl.R|@yR// D �12.�/ is in the form (see [43])

y� D .axl.R|@xR/jaxl.R|@yR// D

0B@y�11 y�12
y�21 y�22
y�31 y�32

1CA 2 R3�2:

We set �� D
�
y�11 y�12
y�21 y�22

�
and �? D

�
y�31
y�32

�
. Thus we can write the �-limit minimization

problem as3

E2D
� -lim.m;R/ D

Z
!

h

²
�jsym..R1jR2/|Dm � 12/j

2
C �c jskew..R1jR2/|Dm � 12/j

2

C
2��c

�C �c
.hR3; @xmi

2
C hR3; @ymi

2/

C
��

2�C �
tr..R1jR2/|Dm � 12/

2

C �
L2c
2

�
Qb1jsym y��j2 C Qb2jskew y��j2 C

Qb1 Qb3
Qb1 C Qb3

tr.y��/2

C 2
Qb1 Qb2
Qb1 C Qb2

jy�?j
2

�³
dx: (4.4)

3Note the fourfold appearance of the harmonic mean H , i.e.

2��c

�C �c
DH .�; �c/;

��

2�C �
D
1

2
H
�
�;
�

2

�
;

Qb1 Qb3
Qb1 C Qb3

D
1

2
H . Qb1; Qb3/;

2 Qb1 Qb2
Qb1 C Qb2

DH . Qb1; Qb2/:
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If we assume that in the underlying Cosserat bulk curvature energy we have the uni-
constant expression

W 3D
curv.R

|DR/ D
�L2c
2
jR|DRj2 D

�L2c
2
jDRj2

D �L2c.jaxl.R|@xR/j2 C jaxl.R|@yR/j2 C jaxl.R|@zR/j2/

D
�L2c
2
.j.R|@xR/j

2
C j.R|@yR/j

2
C j.R|@zR/j

2/;

then the homogenized curvature energy is given by [10, 20, 65]

W hom
curv .R

|DR/ D inf
A2so.3/

W 3D
curv.axl.R|@xR/; axl.R|@yR/; axl.A//

D �
L2c
2
.jR|@xRj

2
C jR|@yRj

2/ D �
L2c
2
jR|DRj2

D �L2c j
y� j2R3�2 D �L

2
c j�12.�/j

2
R3�2 :

4.2. Alternative engineering ad hoc dimensional descent

In [49] the three-dimensional Cosserat model has been reduced to a flat shell problem by
proposing an engineering ansatz for the deformation ' and the microrotation R over the
shell thickness. Again we let mW! � R2! R3 denote the midsurface deformation, xU WD
R|.DmjR3/ the nonsymmetric membrane stretch tensor, and RWUh � R2 ! SO.3/ the
microrotation tensor field with R|DR Š .R|@xR;R|@yR/. Since we are only interested
in the membrane-like response, we will neglect terms related to bending effects right away
while keeping the curvature change4 scaling with h.

The dimensionally reduced energy then reads [49, (4.5)]

E2D
eng D

Z
!

h

²
�jsym. xU � 13/j

2
C �c jskew. xU � 13/j

2

C
��

2�C �
tr. xU � 13/

2
C �

L2c
2
jR|DRj2

³
dx

D

Z
!

h

²
�jdev sym. xU � 13/j

2
C �c jskew. xU � 13/j

2

C

� ��

2�C 3�
C
�

3
�„ ƒ‚ …

DW �
hom
2

�
tr. xU � 13/

2
C �

L2c
2
jR|DRj2

³
dx

4The missing Cosserat bending terms scaling with h3 are of the type [49, (4.5)]

h3

12

°
�jsym.R|.DR3j0//j2 C �c jskew.R|.DR3j0//j2 C

��

2�C �
tr
�
sym.R|.DR3j0//

�2±
;

and the uni-constant case would appear for � D �c , � D 0.
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D

Z
!

h

²
�jdev sym.R|.DmjR3/ � 13/j

2
C �c jskew.R|.DmjR3/ � 13/j

2

C
�hom

2
tr.R|.DmjR3/ � 13/

2
C �

L2c
2
jDRj2

³
dx

D

Z
!

h

²
�jsym..R1jR2/|Dm � 12/„ ƒ‚ …

shear-stretch energy

j
2
C �c jskew..R1jR2/|Dm � 12/„ ƒ‚ …

drill energy

j
2

C
�C �c

2
.hR3; @xmi

2
C hR3; @ymi

2/„ ƒ‚ …
transverse shear energy

C
��

2�C �
tr..R1jR2/|Dm � 12/

2„ ƒ‚ …
elongational stretch energy

C �
L2c
2
jR|DR2j„ ƒ‚ …

curvature energy

³
dx: (4.5)

Letting �c !1 in the reduced membrane model implies that R3 D nm is normal to
the midsurfacem. Moreover, skew.R|.Dmjnm//D 0 impliesRD polar.Dmjnm/ (trièdre
caché).

In contrast to the representation of the energy in (4.5), the rigorously derived �-limit
membrane model [55] has the energy (see equation (4.4))

E2D
� -lim.m;R/ D

Z
!

h

²
�jsym..R1jR2/|Dm � 12/j

2
C �c jskew..R1jR2/|Dm � 12/j

2

C
2��c

�C �c
.hR3; @xmi

2
C hR3; @ymi

2/

C
��

2�C �
tr..R1jR2/|Dm � 12/

2
CW hom

curv .
y�/

³
dx; (4.6)

where y� D .axl.R|@xR/jaxl.R|@yR//. Thus, the engineering formulation in (4.5) coin-
cides with the membrane �-limit if and only if

A.�; �c/ D
�C �c

2
D

2��c

�C �c
D H .�; �c/ ” � D �c ; (4.7)

and
jR|DRj2 D W hom

curv .
y�/ ” Qb1 D Qb2 D 1; Qb3 D 0:

In (4.5)2, we are also led to define the appropriate modified bulk modulus �hom via5

�hom

2
WD

��

2�C �
C
�

3
D
2�

3

2�C �

2�C �
.effective two-dimensional bulk modulus/:

5In linear elasticity theory for the displacement uWU�R3!R3, the common bulk modulus � appears
in the form �jdev sym Duj2 C �

2
tr.Du/2 and not as �jdev sym Duj2 C �

3
tr.Du/2, which would be more

natural from the perspective of orthogonality of dev sym Du and tr.Du/ � 13.
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Since we will need �hom > 0 for our subsequent regularity analysis, (4.7)2 implies 2�C
� > 0 and 2�C � > 0. One can show that the latter implies for the engineering Poisson
number � WD �

2.�C�/
the bound � > �1

2
(instead of � > �1 for three-dimensional linear

elasticity).6

5. The two-dimensional Euler–Lagrange equations

Henceforth, we skip all unnecessary material parameters in (4.5) in order to arrive at a
compact representation. Again, we consider the midsurface deformationmW! �R2!R3

and the orthogonal microrotation tensor RW! � R2 ! SO.3/. We set h D 1 and assume
the normalization �L

2
c

2
D 1. Moreover, we set � D 3�hom

2
. Thus, the corresponding energy

function describing the two-dimensional membrane shell problem is

E.m;R/ WD

Z
!

�jdev sym.R|.DmjR3/ � 13/j
2
C �c jskew.R|.DmjR3/ � 13/j

2

C
�

3
tr.R|.DmjR3/ � 13/

2
C jDRj2 dx: (5.1)

We assume �, �c , � to be positive. Remember that we have defined a linear operator
P WR3�3 ! R3�3 by

P�;�c ;�.X/ D P .X/ D
p
� dev symX C

p
�c skewX C

p
�

3
.trX/13:

Using the mutual orthogonality of dev symX , skewX , and .trX/13, we can write down
the functional in a simplified form: it reads

E.m;R/ D

Z
!

jP .R|.DmjR3/ � 13/j
2
C jDRj2 dx:

Now we are going to calculate the Euler–Lagrange equations for the dimensionally
reduced problem based on E. The first variation of E in the direction of .#; 0/WU !
R3 �R3�3 is

ıE.m;RI#; 0/ D 2

Z
!

hP .R|.DmjR3/ � 13/;P .R
|.D#j0//i dx

D 2

Z
!

hP .R|.Dmj0/ � .12j0//;P .R|.D#j0//i dx;

and the first variation in the direction of .0;Q/WU! R3 �R3�3 with Q.x/ 2 TR SO.3/
for almost all x 2 U is

ıE.m;RI 0;Q/ D 2

Z
!

ŒhP .R|.DmjR3/ � 13/;P .Q
|.Dmj0//i C hDR;DQi� dx

D 2

Z
!

ŒhP .R|.Dmj0/ � .12j0//;P .Q|.Dmj0//i C hDR;DQi� dx:

62�C � > 0 and � > 0 imply 2�C 2� D 2.�C �/ > 0. Therefore, � D �
2.�C�/

> � 1
2
,

�
�C�

>

�1, � > �.�C �/, 2�C � > 0.
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Now using P� D P and P .X|/ D P .X/| such that P�P D P2, and observing that
�12.v1jv2jv3/ D .v1jv2/, we rewrite these as

ıE.m;RI#; 0/ D 2

Z
!

hRP2.R|.Dmj0/ � .12j0//; .D#j0/iR3�3 dx

D 2

Z
!

˝
�12

�
RP2.R|.Dmj0/ � .12j0//

�
;D#

˛
R3�2 dx;

ıE.m;RI 0;Q/ D 2

Z
!

ŒhP ..Dmj0/|R � .12j0//;P ..Dmj0/|Q/iR3�3 C hDR;DQi� dx

D 2

Z
!

Œh.Dmj0/P2..Dmj0/|R � .12j0//;Qi C hDR;DQi� dx:

The pair of Euler–Lagrange equations then consists of

Div
�
�12

�
2RP2.R|.Dmj0/ � .12j0//

��
D 0; (5.2)

and
�R � .Dmj0/P2..Dmj0/|R � .12j0// ? TR SO.3/: (5.3)

Note that it is not true thatX|P2.X/D X|P�PX is symmetric for all matricesX ; this is
because P is not a matrix. Therefore, .Dmj0/P2.Dmj0/|R is not automatically orthogo-
nal to TR SO.3/. And this term, being formally only in L1 due to Dm being in L2, makes
the structure of the equation interesting, as explained in Section 1.1.

For readability, we introduce a product which shares aspects of scalar products and
matrix multiplication. We define ıWR3�2 �R3�2 ! R3�3 by

B ıC WD
1

2
BC | D

1

2
.Bj0/

�
C |

0

�
: (5.4)

Defining
S.Dm;R/ WD �12

�
2RP2.R|.Dmj0/ � .12j0//

�
;

we rewrite the second term of (5.3) as

.Dmj0/P2..Dmj0/|R � .12j0// D Dm ı�12
�
2P2.R|.Dmj0/ � .12j0//

�
D Dm ıR|�12

�
2RP2.R|.Dmj0/ � .12j0//

�
D Dm ıR|S.Dm;R/ D .Dm ıS.Dm;R//R:

Noting that the projection of any matrix X 2 R3�3 to TR SO.3/ is R skew.R|X/, we
find that the projection of .Dm ı S.Dm; R//R is R skew.R|.Dm ı S.Dm; R//R/ D
skew.Dm ı S.Dm; R//R. This means that the pair of Euler–Lagrange equations (5.2)–
(5.3) can be rewritten as

DivS.Dm;R/ D 0; (5.5)

�R � skew.Dm ıS.Dm;R//R ? TR SO.3/: (5.6)
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The latter is a relation rather than an equation, but we can rewrite it as an equation. In
geometric analysis, this is usually done using the second fundamental form of SO.3/, but
we present the calculation in a more elementary way. Our aim is to calculate the tangential
part .�R/> of �R.

Differentiating RR| � 13 gives

0 D @i .RR
|/ D .@iR/R

|
CR@iR

|
D 2 sym.R@iR|/: (5.7)

Differentiating R|R � 13 twice and summing over i , we find

0 D .�R|/RCR|�RC 2
X
i

@iR
|@iR D .�R/

|RCR|�RC 2
X
i

@iR
|@iR

D 2 sym.R|�R/C 2
X
i

@iR
|@iR;

implying
sym.R|�R/ D �

X
i

@iR
|@iR: (5.8)

For any fixed matrix R 2 SO.3/, we have TR SO.3/ D R so.3/, where so.3/ is the space
of skew-symmetric matrices in R3�3. The projections of any X 2 R3�3 to TR SO.3/ or
its orthogonal complement ŒTR SO.3/�| therefore are

X> D R skew.R|X/; X? D R sym.R|X/:

Therefore, we can calculate the orthogonal component of �R as

.�R/? D R sym.R|�R/ D �
X
i

R@iR
|@iR D �

X
i

skew.R@iR|/@iR:

We have used (5.8) in the second “D”, and (5.7) in the third. We now abbreviate

�R WD

�
.�R/1
.�R/2

�
D �

�
R@xR

|

R@yR
|

�
D �

�
skew.R@xR|/
skew.R@yR|/

�
;

�R � DR WD
2X
iD1

.�R/i@iR 2 R3�3;

and hence have
.�R/> D �R � .�R/? D �R ��R � DR:

Combining with the result of (5.6), we have calculated the tangential part of the left-hand
side of (5.3) as

�R ��R � DR � skew.Dm ıS.Dm;R//R;

and thus have derived the Euler–Lagrange equations in their final form. We summarize:
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DivS.Dm;R/ D 0; (5.9)

�R ��R � DR � skew.Dm ıS.Dm;R//R D 0; (5.10)

where here

S.Dm;R/ WD �12
�
2RP2.R|.Dmj0/ � .12j0//

�
; �R WD �

�
skew.R@xR|/
skew.R@yR|/

�
:

Remark 5.1. In engineering language, (5.9) is the balance of forces, while (5.10) is the
balance of angular momentum equation. The tensor

T .Dm;R/ WD 2P2.R|.Dmj0/ � .12j0//

is the nonsymmetric Biot-type stress tensor (symmetric if �c D 0), while

S.Dm;R/ D �12.RT .Dm;R//

is the first Piola–Kirchhoff-type force–stress tensor. Note the analogy with the correspond-
ing tensors in the three-dimensional Cosserat model presented in (A.4) and (A.5).

6. Regularity

The objective of this section is to prove our main theorem.

Theorem 6.1 (Interior regularity). Every weak solution .m; R/ 2 W 1;2.!;R3 � SO.3//
of (5.9)–(5.10) is smooth on the interior of !.

Remark 6.2. Due to the results in [49,53,55], we know that energy minimizers to problem
(5.1) exist and these are weak solutions .m; R/ 2 W 1;2.!;R3 � SO.3// of (5.9)–(5.10).
Since the problem is highly nonlinear, uniqueness cannot be shown, nor is it expected.

6.1. Hölder regularity

We observe that the last term in (5.10) is, up to “skew” and the harmless factor R, the
product of a “gradient” Dm with a divergence-free quantity S.Dm;R/, with both factors
in L2. As we know from [14], such a product is in the Hardy space H1 rather than just
in L1, and we will use arguments from [64] that tell us how to handle the additional R
factor. A standard source for the Hardy space H1 is Stein’s book [71, Chapter III]. Note
that [64] (see also [24]) is about harmonic maps in � 3 dimensions, and it is Rivière’s
paper [63] about two-dimensional harmonic maps that is mostly the basis of what we
are doing here. Schikorra [69] found some simplification to the arguments of [63] and
[64], and the most accessible account of all these arguments to date is the textbook [27]
which allows us to handle the Euler–Lagrange equation (5.10) quite flexibly. Note that our
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equation (5.10) is more general than the equations of the form �R �� �DR D 0 studied
in those papers and the book [27], since we have the extra term�R skew.DmıS.Dm;R//
of order 0 inR. We are lucky that we have the additional structure coming from S.Dm;R/
being divergence-free, again implying that up to a bounded factor the extra term is in H1.
Without that additional information, we would not know how to incorporate that into the
existing regularity theory.

It will be crucial to use Morrey norms, at least locally. We say that u 2 Lp.U / is in
the Morrey space Mp;s.U / if

Œu�
p

Mp;s.U /
WD sup

®
r�s

R
Br .x0/\U

jujp dx
ˇ̌
x0 2 U; r 2 .0; 1/

¯
<1:

Having this, we define the Morrey norm by kukMp;s.U / WD Œu�Mp;s.U / C kukLp.U /.
We need the following lemmas. The first one is a special case of [69, Lemma A.1], in

the spirit of similar estimates from [14]. This is where Hardy-BMO duality comes in as a
hidden ingredient in our proof.

Lemma 6.3. There is a constant C such that for all choices of x0 2 R2, r > 0, and
functions a 2 W 1;2.B2r .x0//, � 2 L2.Br .x0/; .R2/�/, b 2 W

1;2
0 \ L1.Br .x0// with

Div� D 0 in the weak sense on Br .x0/, we haveˇ̌̌̌Z
Br .x0/

hDa; �ib dx
ˇ̌̌̌
� Ck�kL2.Br .x0//kDbkL2.Br .x0//kDakM 3=2;1=2.B2r .x0//

:

The following is a result due to Rivière [63] and Schikorra [69], and can be found as a
special case of [27, Theorem 10.57].

Lemma 6.4. For every � 2 L2.B2; .R2/� ˝ so.3//, there exists G 2 W 1;2.B2; SO.3//
such that

Div.G�1�G �G�1DG/ D 0 in B2

and7

kDGkL2.B2/ C kG
�1�G �G�1DGkL2.B2/ � 3k�kL2.B2/:

We also need a version of the Hodge decomposition theorem. This one is a special case
of [35, Corollary 10.5.1], adapted from the differential forms version to two-dimensional
vector calculus as in [27, Corollary 10.70].

Lemma 6.5. Let p 2 .1;1/. OnBr .x0/�R2, every 1-form V 2Lp.Br .x0/; .R2/�/ can
be decomposed uniquely as

V D D˛ C D?ˇ C h;

where ˛ 2W 1;p.Br .x0//, ˇ 2W
1;p
0 .Br .x0//, and h 2 C1.Br .x0/; .R2/�/ is harmonic.

Moreover, there is a constant C depending only on p, such that

k˛kW 1;p.Br .x0// C kˇkW 1;p.Br .x0// C khkLp.Br .x0// � CkV kLp.Br .x0//:

7.R2/� ˝ so.3/ is isomorphic to so.3/ � so.3/.



A. Gastel and P. Neff 182

We now start our regularity proof. Our first step is local Hölder continuity.

Proposition 6.6. Assume that .m;R/2W 1;2.!;R3 � SO.3// is a weak solution of (5.9)–
(5.10). Then there is ˇ > 0 such that m and R are C 0;ˇ -Hölder continuous locally on !.

Proof. We write B� for any ball B�.x0/ � !. We assume r to be small enough such that
B2r .x0/ � !. We will collect more smallness conditions on r during the proof.

We choose G according to Lemma 6.4 and find, abbreviating �G WD G�1�RG �

G�1DG,

Div.G�1DR/ D D.G�1/ � DRCG�1�R

D �G�1.DG/G�1 � DRCG�1� � DRCG�1 skew.Dm ıS.Dm;R//R

D �G �G�1DRCG�1 skew.Dm ıS.Dm;R//R:

Now we Hodge-decompose G�1DR according to Lemma 6.5. We find f 2 W 1;2.Br ;

R3�3/, g 2 W 1;2
0 .Br ;R3�3/ with dg D 0, and a component-wise harmonic 1-form h 2

C1.Br ; L.R2;R3�3// such that

G�1DR D Df C D?g C h (6.1)

almost everywhere in Br . Using the well-known relations Div D D Div? D? D � and
Div D? D Div? D D 0, we calculate

�f DDiv Df DDiv.G�1DR/D�G �G�1DRCG�1 skew.DmıS.Dm;R//R; (6.2)

and

�g D Div?D?g D Div?.G�1DR/D D?G�1 �DR D Div..D?G�1/.R �R0//; (6.3)

for any constantR0 2R3�3 (not necessarily a rotation). Both terms on the right-hand side,
multiplied by some ' 2 W 1;3

0 .Br ;R3�3/, can be estimated using Lemma 6.3. Choosing
a WD Rk`, b WD .G�1/jk'i`, �s WD .�G/ijs , we findZ

Br

h�G �G�1DR; 'i dx

� Ck�GkL2.B2/.kDGkL2.Br /k'kL1.Br / C kD'kL2.Br //kDRkM 3=2;1=2.Br /
; (6.4)

and choosing a WD mj , b WD .G�1ij /R
k`'i`, �s WD S.Dm;R/ks , we haveZ

Br

˝�
G�1 skew.Dm ıS.Dm;R//R

�
; '
˛
dx

� CkS.Dm;R/kL2.Br /.kDGkL2.Br /k'kL1.Br /kDRkL2.Br /k'kL1.Br /CkD'kL2.Br //

� kDmkM 3=2;1=2.Br /
: (6.5)

We assume " 2 .0; "0/ with some "0 > 0 to be determined. Choosing r > 0 small enough,
we may assume k�RkL2.Br / � " and kDmkL2.Br / � ".
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We let T WD ¹' 2 C10 .Br ;R
3�3/ j kD'kL3.Br / � 1º. Combining the duality of L3=2

and L3 and (6.2) with (6.4) and (6.5), we find, using ' D 0 on @Br ,

kDf kL3=2.Br /

� C sup
'2T

Z
Br

hDf;D'i dx

D C sup
'2T

Z
Br

h�G �G�1DRCG�1 skew.Dm ıS.Dm;R//R; 'i dx

� C sup
'2T

k�GkL2.Br /.kDGkL2k'kL1.Br /CkD'kL2.Br //kDRkM 3=2;1=2.B2r /

C C sup
'2T

kS.Dm;R/kL2.Br /
�
kDGkL2.Br /k'kL1.Br / C kDRkL2.Br /k'kL1.Br /
C kD'kL2.Br /

�
kDmkM 3=2;1=2.B2r /

� C sup
'2T

k�RkL2.Br /.k�RkL2.Br /k'kL1.Br / C kD'kL2.Br //kDRkM 3=2;1=2.B2r /

C C sup
'2T

.kDmkL2.Br / C r/
�
k�RkL2.Br /k'kL1.Br / C kDRkL2.Br /k'kL1.Br /
C kD'kL2.Br /

�
kDmkM 3=2;1=2.B2r /

� C."C r/r1=3.kDRkM 3=2;1=2.B2r /
C kDmkM 3=2;1=2.B2r /

/: (6.6)

Here, in the second “�”, we have used Lemma 6.3, and in the fourth “�”, we have used
k'kL1.Br / � Cr

1=3kD'kL3.Br / � Cr
1=3, kD'kL2.Br / � Cr

1=3kD'kL3.Br / � Cr
1=3,

k�RkL2.Br / � ", and kDmkL2.Br / � ".
Using (6.3), we can also estimate the L3=2-norm of D?g. We find

kD?gkL3=2.Br / � C sup
'2T

Z
Br

hD?g;D?'i dx

D C sup
'2T

Z
Br

h�g; 'i dx

D C sup
'2T

Z
Br

hDiv..D?G�1/.R �RBr //; 'i dx

D C sup
'2T

Z
Br

h.D?G�1/.R �RBr /;D'i dx

� C sup
'2T

kD'kL3.Br /kDGkL2.Br /kR �RBr kL6.Br /

� C"r1=3kDRkM 3=2;1=2.B2r /
: (6.7)

This time, we have used kDGkL2.Br / � 3k�RkL2.Br / � 3", and the Sobolev embedding
W 1;2=3 ,! L6 for R.

For h, being harmonic, we have the standard estimateZ
B�

jhj3=2 dx � C
��
r

�2 Z
Br

jhj3=2 dx;



A. Gastel and P. Neff 184

for any 0 < � < r . From (6.1), and then (6.6) and (6.7), we hence infer

kDRkL3=2.B�/ D kG
�1DRkL3=2.B�/

� khkL3=2.B�/ C kDf kL3=2.B�/ C kD
?gkL3=2.B�/

� C
��
r

�4=3
khkL3=2.Br / C kDf kL3=2.B�/ C kD

?gkL3=2.B�/

� C
��
r

�4=3
kDRkL3=2.Br / C C.kDf kL3=2.Br / C kD

?gkL3=2.Br //

� C
��
r

�4=3
kDRkL3=2.Br /

C C."C r/r1=3.kDRkM 3=2;1=2.B2r /
C kDmkM 3=2;1=2.B2r /

/: (6.8)

Now we are going to derive a similar estimate for kDmkL3=2 . Hodge-decompose
S.Dm;R/, i.e.

�12
�
2RP2.R|.Dmj0/ � .12j0//

�
D D?˛ C �;

with ˛ 2 W 1;2
0 .Br ;R3�2/, and � 2 W 1;2.Br ; L.R2;R3�2// harmonic. This time, there

is no term of the form D�, since Div of the left-hand side is 0. This would imply that � is
harmonic, and so would D� be, which hence can be absorbed into �. We have, abbreviating
PR for the linear mapping � 7! 2RP2.R|.�//,

�˛ D Div? D?˛

D Div?
�
�12

�
2RP2.R|.Dmj0/ � .12j0//

��
D Div?Œ�12.PR.Dmj0/ � 2RP2.12j0//�

D .D?j0/ � ŒPR.Dmj0/� � Div?Œ�12.2RP2.12j0//�

D D?PR � Dm � Div?Œ�12.2RP2.12j0//�

D DivŒ.D?PR/.m �mBr /� � Div?Œ�12.2.R �RBr /P
2.12j0//�: (6.9)

Using the same ideas as before, and defining U WD ¹ 2 C10 .Br ;R
3�2/ j kD? kL3.Br / �

1º, we estimate

kD?˛kL3=2.Br / � C sup
 2U

Z
Br

hD?˛;D? i dx

D C sup
 2U

Z
Br

�
h.D?PR/.m �mBr /;D i � h�12.2.R �RBr /P

2.12j0//;D? i
�

dx

� C sup
 2U

.kD kL3.Br /kDPRkL2.Br /km �mBr kL6.Br /

C kD kL3.Br /kR �RBr kL3=2.Br //

� C sup
 2U

.kD kL3.Br /kDRkL2.Br /kDmkL3=2.Br / C rkD kL3.Br /kDRkL3=2.Br //

� C."C r/r1=3.kDRkM 3=2;1=2.B2r /
C kDmkM 3=2;1=2.B2r /

/: (6.10)
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Proceeding exactly as above, we find

kDmkL3=2.B�/ � C.k�kL3=2.B�/ C kD
?˛kL3=2.B�/ C �

4=3/

� C
��
r

�4=3
k�kL3=2.Br / C C.kD

?˛kL3=2.B�/ C �
4=3/

� C
��
r

�4=3
kDmkL3=2.Br / C C.kD

?˛kL3=2.Br / C �
4=3/

� C
��
r

�4=3
kDmkL3=2.Br / C C�

4=3

C C."C r/r1=3.kDRkM 3=2;1=2.B2r /
C kDmkM 3=2;1=2.B2r /

/: (6.11)

In order to do so, we have used

C�1kDmkL3=2.Bs/ � Cs
4=3
�


�12�2RP2.R|.Dmj0/ � .12j0//

�


L3=2.Bs/

� C.kDmkL3=2.Bs/ C s
4=3/: (6.12)

We divide (6.8) and (6.11) by �1=3 and combine them into

��1=3.kDRkL3=2.B�/ C kDmkL3=2.B�//

� C
�

r4=3
.kDRkL3=2.Br / C kDmkL3=2.Br //

C C."C r/
� r
�

�1=3
.kDRkM 3=2;1=2.B2r /

C kDmkM 3=2;1=2.B2r /
/C C�

� C
��
r
C ."C r/

� r
�

�1=3�
.kDRkM 3=2;1=2.B2r /

C kDmkM 3=2;1=2.B2r /
/C C�:

We now assume r � ", where " > 0 is yet to be determined. For formal reasons, we also
add � on both sides, which gives

��1=3.kDRkL3=2.B�/ C kDmkL3=2.B�//C �

� C0

��
r
C ."C r/

� r
�

�1=3�
.kDRkM 3=2;1=2.B2r /

C kDmkM 3=2;1=2.B2r /
C 2r/

for some suitable constant C0. Now we fix � WD r
12C0

and " WD .12C0/
�4=3, making

C0.
�
r
C ."C r/. r

�
/1=3/ D 1

6
. Abbreviating � WD 1

12C0
, we thus have

.� r/�1=3.kDRkL3=2.B�r / C kDmkL3=2.B�r //C � r

�
1

6
.kDRkM 3=2;1=2.B2r /

C kDmkM 3=2;1=2.B2r /
C 2r/:

This holds for all B�r .x0/ and B2r .x0/ � ! which share the same center x0. But clearly,
we can replace B2r .x0/ with any ball Bs.y0/ � B2r .x0/ which is still in !. All small-
ness assumptions made so far for Br .X0/ will now also be assumed for s, that is s � ",
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k�RkL2.Bs.y0// � ", and kDmkL2.Bs.y0// � ". We then have

.� r/�1=3.kDRkL3=2.B�r .x0// C kDmkL3=2.B�r .x0///C � r

�
1

6
.kDRkM 3=2;1=2.Bs.y0//

C kDmkM 3=2;1=2.Bs.y0//
C s/;

which is valid for all r , s, x0, y0 such thatB2r .x0/�Bs.y0/�!. Then theB��.x0/ cover
all of B�s=2.y0/. Hence, on the left-hand-side, we can take the infimum over all feasible
r and x0, and find

kDRkM 3=2;1=2.B�s=2.y0//
C kDmkM 3=2;1=2.B�s=2.y0//

C
�s

2

�
1

2
.kDRkM 3=2;1=2.Bs.y0//

C kDmkM 3=2;1=2.Bs.y0//
C s/:

We may replace s by �
2
s and iterate this, finding

kDRkM 3=2;1=2.B
.�=2/ks

.y0//
C kDmkM 3=2;1=2.B

.�=2/ks
.y0//

� 2�k.kDRkM 3=2;1=2.Bs.y0//
C kDmkM 3=2;1=2.Bs.y0//

C s/

for all k 2N. Now, for r � .�=2/ks, we have k� log r=s
log.�=2/ , and therefore 2�k � .r=s/

log2
log.2=�/

DW .r=s/ˇ . Hence we have proven that, for all r � s, the estimate

kDRkM 3=2;1=2.Br .y0//
C kDmkM 3=2;1=2.Br .y0//

� Crˇ .kDRkM 3=2;1=2.Bs.y0//
C kDmkM 3=2;1=2.Bs.y0//

C s/

holds. For x0 2 Bs=2.y0/ and r � s=2, we can apply the same with Bs.y0/ replaced by
B2r .y0/ � Bs.y0/, and hence find

kDRkM 3=2;1=2.Br .x0//
C kDmkM 3=2;1=2.Br .x0//

� Crˇ .kDRkM 3=2;1=2.Bs.y0//
C kDmkM 3=2;1=2.Bs.y0//

C s/;

which implies

kDRkM 3=2;1=2C3ˇ=2.Bs=2.y0//
C kDmkM 3=2;1=2C3ˇ=2.Bs=2.y0//

� C.kDRkM 3=2;1=2.Bs.y0//
C kDmkM 3=2;1=2.Bs.y0//

C s/:

This means
DR; Dm 2M 3=2;1=2C3ˇ=2

loc .!/: (6.13)

We now use the following well-known fact, which can be found in [27, Theorem 5.7], for
example.

Lemma 6.7 (Morrey’ Dirichlet growth criterion). Assume U � Rn to be open, u 2
W
1;p

loc .U /, Du 2M
p;n�pC"
loc .U / for some " > 0. Then u 2 C 0;"=p .
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With p D 3
2

, n D 2, the last estimate (6.13) and Lemma 6.7 imply R;m 2 C 0;ˇloc .!/,
which is the Hölder regularity asserted in Proposition 6.6.

Remark 6.8. It is essential that we are working in the critical dimension nD 2 here, even
though this may not be too obvious in the preceding proof which uses methods developed
for supercritical dimensions. But the arithmetic of the exponents crucially uses n D 2. In
particular, Lemma 6.3 for n > 2 is only available with exponents adding up to n instead of
.3
2
; 1
2
/. But we would not succeed in finding similarly good estimates in the corresponding

Morrey spaces.

6.2. Higher regularity

In this subsection, we are going to complete the proof of Theorem 6.1.

Proof. Remember we have the equations

DivS.Dm;R/ D 0; (6.14)

�R ��R � DR � skew.Dm ıS.Dm;R//R D 0;

where for � 2 R3�2 we have defined

S.�;R/ D �12
�
2RP2.R|.�; 0/ � .12j0//

�
D �12

�
2RP|P .R|.�jR3/ � 13/

�
;

and
j�Rj � C jDRj:

Abbreviating LR.�/ WD �12.2RP2.R|.�; 0///, we rewrite the first equation (6.14) as

DivLR.Dm/ D Div
�
�12

�
2RP2.R|.12j0//

��
: (6.15)

For every R 2 SO.3/, LRWR3�2 ! R3�2 is a linear mapping satisfying the Legendre
condition (uniform positivity) because of

hLR.�/; �i D
˝
�12

�
2RP2.R|.�; 0//

�
; �
˛
D h2RP2.R|.�; 0//; .�; 0/i

D h2P .R|.�; 0//;P .R|.�; 0//i � 2 O�jR|.�; 0/j2 D 2 O�j�j2;

where here O� WD min¹�; �c ; �º is independent of R, hence we have a uniformly elliptic
operator m 7! DivLR.Dm/. For this operator, classical Schauder theory applies once it
depends Hölder continuously on x through R.x/. And it does, because we already know
R 2 C

0;ˇ
loc for some ˇ > 0.

We use the following version of Schauder theory. The proof is well known, a good
reference is [27, Theorem 5.19] which reads as follows.

Lemma 6.9. Let u 2 W 1;2
loc .U;R

m/ be a solution to

Div.A.x/ � Du/ D �Div F ;

with A satisfying the Legendre–Hadamard condition and having its components A˛ˇij in

C
0;�
loc .U/ for some � 2 .0; 1/. If F ˛

i 2 C
0;�
loc .U/, then also Du is of class C 0;�loc .U/.
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From what was proven in the last section, we know that both LR and the right-hand
side of (6.15) are in C 0;ˇloc locally, hence Lemma 6.9 implies thatm 2C 1;ˇloc for some ˇ > 0.

This simplifies the discussion of the regularity of R, because the Dm-terms in the
equation for �R are now locally bounded. We can therefore rewrite it as

�RC a.x;DR/ D 0; (6.16)

where the function a depends on R and Dm additionally, but those are locally bounded.
The function satisfies

ja.x;DR/j � C.jDRj2 C 1/: (6.17)

Since DR 2 L2, this means that �R is in L1, but L1 is just not enough to perform regu-
larity theory for R. However, the structure of the equation almost allows one to apply the
higher regularity theory for harmonic maps, where we could deal with C jDRj2 instead of
C.jDRj2 C 1/ on the right-hand side. A simple formal trick will take care of that condi-
tion. Let

u.x/ D .u0.x/; u1.x// WD .R.x/; x1/

with values in SO.3/ �R. Then, letting Qa.x;Du/ WD .a.x;Du0/; 0/, we have

�uC Qa.x;Du/ D 0;

where here

j Qa.x;Du/j D ja.x;DR/j � C.jDRj2 C 1/ D C.jDu0j2 C jDu1j2/ D C jDuj2:

Now we can follow the regularity theory for harmonic maps for a while. Note that [45,
Lemma 3.7 and Proposition 3.2] assume u to be a harmonic map, but the proof uses
only j�uj � C jDuj2 instead of the full harmonic map equation. We therefore can apply
[45, Lemmas 3.6 and 3.7, Proposition 3.2] to our u and find that Du 2 L1loc. This means
that the second term in (6.16) is in Lploc for all p > 1, and standard Lp-theory gives us
u 2W

2;p
loc for all p > 1. The Sobolev embeddingW 1;p ,! C 0;1�2=p for p > 2 then gives

us Du 2 C 0;ˇloc with ˇ > 0. Together with the result for m, we now have

.m;R/ 2 C
1;ˇ
loc for some ˇ > 0:

Once we have this, we can iterate the Schauder estimates, i.e. differentiate the equations
and apply Lemma 6.9 to partial derivatives of m, R instead of m and R alone. Thus we
find that .m; R/ 2 C k;ˇloc for our ˇ > 0 and all k 2 N, which means we have proven that
m and R are smooth on the interior of the domain.

6.3. Body forces

It is physically reasonable to consider the equations with an additional external body force
term in the first equation of balance of forces,

DivS.Dm;R/ D f;

�R ��R � DR � skew.Dm ıS.Dm;R//R D 0
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with f 2 W 1;2.!;R3/. By integrating in one direction and setting

F .x1; x2/ WD

�Z x1

.x0/1

f .t; x2/ dt j 0R3

�
2 R3�2;

we can always assume f D Div F . Note that F depends on the first component .x0/1
of the center of the ball Br .x0/ on which we are momentarily working. We have F 2

W 1;2.!;R3�2/, implying F 2 Lp.!;R3�2/ for all p 2 Œ1;1/. Now we may rewrite the
first equation as

Div.S.Dm;R/ � F / D 0:

We will need to estimate DF , which we calculate via @1F D .f; 0/ and @2F D

.
R x1
.x0/1

@2f .t; x2/ dt; 0/. The latter givesZ
Br

j@2F j
3=2 dx D

Z
Br

ˇ̌̌̌Z x1

.x0/1

@2f .t; x2/ dt
ˇ̌̌̌3=2

dx

�

Z
Br

�Z .x0/1C
p
r2�x22

.x0/1�
p
r2�x22

j@2f .t; x2/j dt
�3=2

dx

� Cr1=3
Z
Br

Z .x0/1C
p
r2�x22

.x0/1�
p
r2�x22

j@2f .t; x2/j
3=2 dt dx

� Cr4=3
Z
Br

j@2f j
3=2 dx:

Since we can always assume r � 1, we have proven

kDF kL3=2 � Ckf kW 1;3=2 : (6.18)

The regularity theory for the more general equation including forces goes pretty much
along the lines of the F D 0 case presented in Section 6.1. We only indicate the necessary
modifications. We rewrite (6.2) as

�f D �G �G�1DRCG�1 skew
�
Dm ı.S.Dm;R/ � F /

�
RCG�1 skew.Dm ıF /R:

In (6.6), we replace kS.Dm;R/kL2.Br / by kS.Dm;R/ � F kL2.Br /. Choosing the radius
of Br sufficiently small, we can also assume that kF kL2.Br / � ", hence we can estimate
kS.Dm;R/�F kL2.Br / by C."C r/ just as we did for kS.Dm;R/kL2.Br / in (6.6). But we
also have an additional term on the right-hand side of that estimate. Using the boundedness
of G�1 and R, it is estimated as follows, also assuming kF kL3.Br / � ". We have

sup
'2T

Z
Br

hG�1 skew.Dm ıF /R; 'i dx

� C sup
'2T

r�1=3kDmkL3=2.Br /kF kL3.Br /r
1=3
k'kL1.Br /

� C sup
'2T

kDmkM 3=2;1=2kF kL3.Br /r
2=3
kD'kL3.Br /

� C"r1=3kDmkM 3=2;1=2 ;
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which can be absorbed into the right-hand side of (6.6). Hence the conclusion of (6.6)
continues to hold in the F ¤ 0 case also.

The second modification we have to make is that we now Hodge-decompose S.Dm;
R/ � F , which means

�12
�
2RP2.R|.Dmj0/ � .12j0//

�
� F D D?˛ C �:

The additional term involving F on the right-hand side of (6.9) would be �Div? F ,
which can be rewritten as � Div?.F � FBr /. In (6.10), .F � FBr / can be processed
exactly like .R � RBR/, resulting in an additional CrkD kL3.Br /kDF kL3=2.Br /, which
can be estimated using (6.18) and  2 U as follows, making the additional smallness
assumption kf kW 1;2.Br / � " for r :

CrkD kL3.Br /kDF kL3=2.Br / � Crkf kW 1;3=2.Br /
� Cr4=3kf kW 1;2.Br / � "r

4=3:

This additional term in (6.10) now contributes to the right-hand side of (6.11), but here
enlarges only the r4=3 and �4=3 terms that are there anyway. By the same argument, taking
F into account also contributes only to more s4=3 terms in

C�1kDmkL3=2.Bs/ � Cs
4=3
�


�12�2RP2.R|.Dmj0/ � .12j0//

�
� F




L3=2.Bs/

� C.kDmkL3=2.Bs/ C s
4=3/;

which updates (6.12). Hence the contributions of the modified versions of both (6.10) and
(6.12) do not change the conclusion of (6.11).

Now that we have adapted (6.6) and (6.11) to nonvanishing body forces, we can con-
clude Hölder continuity just as at the end of Section 6.1, under the weak assumption of f
being inW 1;2. If we assume f 2 C1 instead, both f and F are bounded, and the higher
regularity proof from Section 6.2 goes through with hardly any modification. Note, for
example, that (6.17) continues to hold.

6.4. Remarks on a special case

Our system simplifies considerably when �D �c D �, which makes P the identity.8 Even
though this assumption is not too natural from the viewpoint of applications, we would
like to comment briefly on that case.

The simplified variational functional now reads

E.m;R/ WD

Z
!

�jR|.DmjR3/ � 13j
2
C jDRj2 dx

D

Z
!

�jR|.DmjR3/ �R|Rj2 C jDRj2 dx

D

Z
!

�j.Dmj0/ � .R1jR2j0/j2 C jDRj2 dx;

8This case corresponds to�D �D�c in the Cosserat bulk model and Poisson number �D �
2.�C�/

D
1
4

(nearly satisfied for magnesium).
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which has the Euler–Lagrange equations (cf. (5.2))

�m � Div.R1jR2j0/ D 0 (6.19)

and

�R ��R � DRC �R skew.R|.Dmj0// D �R ��R � DRC � skew..Dmj0/R|/ �R

D 0: (6.20)

The point here is that the last term in the second equation now depends on Dm only lin-
early, making it an L2-term instead of L1 (the L1-part is cancelled by the skew-operator).
But harmonic-map-type equations with a right-hand side in L2 have been studied by
Moser in quite some generality; see the book [45] for an excellent exposition of the meth-
ods.

In particular, Moser has two theorems that help us. Here, N � Rn is a compact man-
ifold, U � Rd a domain, and II is the second fundamental form of the target manifold,
which corresponds to our term quadratic in DR, i.e.

P
i II.u/.@iu; @iu/ D �u �Du in our

case.

Theorem 6.10 ([45, Theorem 4.1]). Suppose u 2 W 1;2.U; N / is a stationary solution of

�u �
X
i

II.u/.@iu; @iu/ D f;

in U, for a function f 2Lp.U;Rn/, where p > d
2

and p� 2. Then there exists a relatively
closed set † � U of vanishing .d�2/-dimensional Hausdorff measure, such that u 2
C
0;˛
loc .U n†;N/ for a number ˛ > 0 that depends only on m, N , and p.

Theorem 6.11 ([45, Theorem 4.2]). Under the assumptions of the previous theorem, if
n � 4 and p D 2, we also have u 2 W 2;2

loc \W
1;4

loc .U n†;N/.

While those theorems are highly nontrivial, it is standard to deduce regularity of the
solutions to our model in the special case considered here.

Theorem 6.12 (Interior regularity for �D�c D �). Any solution .m;R/ 2W 1;2.!;R3 �
SO.3// of the simplified problem (6.19)–(6.20) is smooth on the interior of the domain !.

Proof. We first consider equation (6.20). Since �R skew.R|.Dmj0// 2 L2, we can apply
Theorems 6.10 and 6.11 to find R 2 C 0;˛loc \W

2;2
loc .!;SO.3//. Note that†D ; here, since

its zero-dimensional Hausdorff measure vanishes. Similarly, by L2-theory for (6.19), we
havem 2W 2;2

loc .!;R
3/. By the embeddingW 2;2 ,!W 1;q for all q 2 Œ2;1/, we find that

�m and �R are in Lqloc for every q <1, hence .m; R/ 2 W 2;q
loc .!;R

3 � SO.3// for all
q <1. This, in turn, embeds into C 1;˛loc for all ˛ 2 .0; 1/, and hence the right-hand sides
are Hölder continuous. From here, we can use Schauder estimates to show that .m;R/ is
C1loc on !.
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7. Conclusion and open problems

We have deduced interior Hölder regularity for a Dirichlet-type geometrically nonlinear
Cosserat flat membrane shell. The model is objective and isotropic but highly nonconvex.
Therefore, our regularity result is astonishing and shows again the great versatility of the
Cosserat approach compared to other more classical models. At present, we are limited to
treating the uni-constant curvature case jDRj2, since only then can sophisticated methods
for harmonic functions with values in SO.3/ be employed. This calls for more effort from
researchers to generalize the foregoing. Progress in this direction would also allow one to
consider the full Cosserat membrane-bending flat shell [9, 49–51]. Another case warrants
further attention: taking the Cosserat couple modulus �c D 0 in the model (in-plane drill
allowed, but no energy connected to it) may still allow for regular minimizers. However,
even the existence of minimizers remains unclear at present since it hinges on some sort
of a priori regularity for the rotation field R (the nonquadratic curvature term jDRj2C",
" > 0, together with zero Cosserat couple modulus �c D 0 allows for minimizers [48,53]).
Finally, it is interesting to understand regularity properties of Cosserat shell models with
curved initial geometry [25, 26].

We expect some boundary regularity to hold too. On the geometric analysis side, an
adaptation of Rivière’s boundary methods to problems with continuous Dirichlet boundary
data has been performed in [46], which one could try to use. But with a view towards
applications, partially free boundary problems would probably be more interesting.

Appendix

A.1. Three-dimensional Euler–Lagrange equations in dislocation tensor format

Here, for the convenience of the reader we derive the three-dimensional Euler–Lagrange
equations based on the curvature expressed in the dislocation tensor ˛ D R| CurlR. We
can write the bulk elastic energy as

E3D.';R/ D

Z
U

Wmp. xU/CWdisloc.˛/ dx; xU D R|D'; ˛ D R| CurlR: (A.1)

Taking variations of (A.1) with respect to the deformation ' 2 C10 .U;R
3/ leads to

ıE3D.';R/ � ı' D

Z
U

hDWmp. xU/;R
|Dı'iR3�3 dx D 0

”

Z
U

hRDWmp. xU/;Dı'iR3�3 dx D
Z

U

hDivŒR � DWmp. xU/�; ı'iR3 dx D 0:

Taking variation with respect to R 2 SO.3/ results in (abbreviate F WD D')

ıE3D.';R/ � ıR D

Z
U

hDWmp. xU/; ıR
|F i

C hDWdisloc.˛/; ıR
| CurlRCR| Curl ıRi dx
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D

Z
U

hDWmp. xU/; ıR
|R �R|F i

C hDWdisloc.˛/; ıR
|R �R| CurlRCR| Curl ıRi dx

D

Z
U

hDWmp. xU/ � xU
|; ıR|Ri

C hDWdisloc.˛/; ıR
|R � ˛CR| Curl ıRi dx D 0: (A.2)

Since R|R D 13, it follows that ıR|RCR|ıR D 0 and ıR|R D A 2 so.3/ is arbitrary.
Therefore, (A.2) can be written as

0 D

Z
U

hDWmp. xU/ � xU
|; Ai C hDWdisloc.˛/ � ˛

|; Ai C hDWdisloc.˛/; R
| Curl.RA|/i dx

for all A 2 C10 .U; so.3//. Using that Curl is a self-adjoint operator, this means

0 D

Z
U

hDWmp. xU/ � xU
|
C DWdisloc.˛/˛

|; Ai C hCurl.RDWdisloc.˛//; RA
|
i dx

D

Z
U

hDWmp. xU/ � xU
|
C DWdisloc.˛/˛

|
�R| Curl.RDWdisloc.˛//; Ai dx:

Thus, the strong form of the Euler–Lagrange equations reads

DivŒRDWmp. xU/� D 0; “balance of forces”;

skewŒR| Curl.RDWdisloc.˛//� D skew.DWmp. xU/ � xU
|
C DWdisloc.˛/ � ˛

|/;

“balance of angular momentum”:

(A.3)

Defining the first Piola–Kirchhoff stress tensor

S1.D';R/ WD DF ŒWmp. xU/� D RDWmp. xU/ D R � TBiot. xU/; (A.4)

where the nonsymmetric Biot-type stress tensor is given by

TBiot WD DWmp. xU/; (A.5)

allows one to rewrite system (A.3) as

DivS1.D';R/ D 0;

skewŒR| Curl.RDWdisloc.˛//� D skew.TBiot. xU/ � xU
|
C DWdisloc.˛/ � ˛

|/:
(A.6)

Observe that (A.6)1 is a uniformly elliptic linear system for ' at given R. It is clear that
global minimizers ' 2 W 1;2.U;R3/ and R 2 W 1;2.U; SO.3// are weak solutions of the
Euler–Lagrange equations.

If DWdisloc.˛/ � 0 (no moment stresses) then the balance of angular momentum turns
into the symmetry constraint

DWmp. xU/ � xU
|
2 Sym.3/:

A complete discussion of the solutions to this constraint can be found in [56, 57].
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A.2. Two-dimensional Euler–Lagrange equations: Alternative derivation

Our energy functional is

E2D.m;R/ D

Z
!

�
�jdev sym.R|.DmjR3/ � 13/j

2
C �c jskew.R|.DmjR3/ � 13/j

2

C
�

3
tr.R|.DmjR3/ � 13/

2
C jDRj2

�
dx

D

Z
!

�
jP .R|.DmjR3/ � 13/j

2
C jDRj2

�
dx

D

Z
!

�
jP .R|.DmjR3/ � 13/j

2
C j@xRj

2
C j@yRj

2
�

dx: (A.7)

Taking free variations with respect to the midsurface deformation m in the direction of
# 2 C10 .!;R

3/ leads to

ıE2D.m;R/ � ı# D

Z
!

2hP .R|.DmjR3/ � 13/;P .R
|.D#j0//iR3�3 dx

D

Z
!

2hP|P .R|.DmjR3/ � 13/; .R
|.D#j0//iR3�3 dx

D

Z
!

h2RP|P .R|.DmjR3/ � 13/; .D#j0/iR3�3 dx

D

Z
!

˝
�12

�
2RP|P .R|.DmjR3/ � 13/

�
;D#

˛
R3�2 dx

D

Z
!

˝
Div�12

�
2RP|P .R|.DmjR3/ � 13/

�
; #
˛
R3 dx D 0:

Thus the strong form of balance of forces can be expressed as

DivS.Dm;R/ D 0;

where

S.Dm;R/ D �12
�
2RP|P .R|.DmjR3// � 13

�
D �12

�
2RP|P .R|.Dmj0/ � .12j0//

�
is the first Piola–Kirchhoff-type force–stress tensor and, abbreviating xU WD R|.DmjR3/,

T .Dm;R/ D 2P|P .R|.Dmj0/ � .12j0// D 2P|P .R|.DmjR3/ � 13/

D 2� dev sym. xU � 13/C 2�c skew. xU � 13/C
2�

3
tr. xU � 13/ � 13 (A.8)

is the nonsymmetric Biot-type stress tensor (symmetric if �c D 0). We note the relation

S.Dm;R/ D �12.R � T .Dm;R//;

resembling relation (A.4).
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For balance of angular momentum we proceed similarly, but need some preparation.
It is clear that

.RC ıR/|.Dmj.RC ıR/e3/ � 13

D R|.DmjR3/ � 13 CR
|.0j0jıR3/C .ıR

|.DmjR3//„ ƒ‚ …
linear increment

CıR|.0j0jıR3/:

Therefore, taking variations of the energy with respect to R leads to

ıE2D.m;R/ � ıR D

Z
!

�
2hP .R|.DmjR3/ � 13/;P .R

|.0j0jıR3/C ıR
|.DmjR3//i

C 2h@xR; @xıRi C 2h@yR; @yıRi
�

dx D 0:

Since R|R D 13, we have ıR|RC R|ıR D 0, hence ıR D RA for A 2 so.3/ arbitrary.
Therefore the latter turns intoZ

!

�
2hP|P .R|.DmjR3/ � 13/; R

|.0j0j.RA/e3/C .RA/
|.DmjR3/i

� 2h@2xR;RAi � 2h@
2
yR;RAi

�
dx

D

Z
!

2
�
hP|P .R|.DmjR3/ � 13/; A.0j0je3/ � AR

|.DmjR3/i � h2�R;RAi
�

dx

D

Z
!

�
2hP|P .R|.DmjR3/ � 13/;�A.R

|.DmjR3/ � .0j0je3//i

� h2R|�R;Ai
�

dx

D �

Z
!

�
2hP|P .R|.DmjR3/ � 13/; AR

|.Dmj0/i C h2R|�R;Ai
�

dx

D �

Z
!

�
h2P|P .R|.DmjR3/ � 13/.Dmj0/|R;Ai C h2R|�R;Ai

�
dx D 0 (A.9)

for all A 2 C10 .!; so.3//. This implies the stationary condition in strong form

skew.2R|�R/ D � skew
�
2P|P .R|.DmjR3/ � 13/ � .Dmj0/|R

�
D � skew

�
2P|P .R|.Dmj0/ � .12j0// � .Dmj0/|R

�
D � skew.T .DmjR/ � .Dmj0/|R/; (A.10)

where T is defined in (A.8)1.
For P|P D � � 1 the last equation simplifies to

skew.2R|�R/ D �� skew.2R|.Dmj0/.Dmj0/|R � .12j0/.Dmj0/|R/

D 2� skew..12j0/.Dmj0/|R/

D 2� skew..Dmj0/|R/ D �2� skew.R|.Dmj0//:
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We can also rewrite (A.9)5 as

0 D

Z
!

�
2hP|P .R|.DmjR3/ � 13/.Dmj0/|; AR|i C 2h�R;RAi

�
dx

D

Z
!

�
2
˝�

P|P .R|.DmjR3/ � 13/.Dmj0/|
�|
; RA|

˛
C 2h�R;RAi

�
dx

D

Z
!

�
2
˝
.Dmj0/

�
P|P .R|.DmjR3/ � 13/

�|
; RA

˛
C 2h�R;RAi

�
dx

for all A 2 C10 .!; so.3//, which is equivalent to

�R � .Dmj0/
�
P|P .R|.DmjR3/ � 13/

�|
? TR SO.3/: (A.11)

Since �
P|P .R|.DmjR3/ � 13/

�|
D
�
P|P .R|.Dmj0/ � .12j0//

�|
D P|P

�
.R|.Dmj0/.12j0//|

�
;

we may express (A.11) also as

�R � .Dmj0/P|P ..Dmj0/|R � .12j0// ? TR SO.3/: (A.12)

This is the form for balance of angular momentum given in equation (5.3).

A.3. Lifting to the�-operator

This last equation (A.12) is not, however, the final form of the balance of angular momen-
tum equation that we will consider. Indeed, since R|R D 13, we can differentiate once to
obtain

.@xR/
|RCR|@xR D 0; .@yR/

|RCR|@yR D 0:

Taking second partial derivatives, we get

.@2xR/
|RC .@xR/

|@xRC .@xR/
|@xRCR

|@2xR D 0;

.@2yR/
|RC .@yR/

|@yRC .@yR/
|@yRCR

|@2yR D 0:

Summing shows

.�R/|RCR|�RC 2..@xR/
|@xRC .@yR/

|@yR/ D 0

” 2 sym.R|�R/C 2Œ.@xR/|@xRC .@yR/|@R� D 0;

sym.R|�R/ D �Œ.@xR/|@xRC .@yR/|@yR�: (A.13)

From (A.10) we have

skew.2R|�R/ D � skew.T .Dm;R/.Dmj0/|R/: (A.14)

Adding (A.13)2 and (A.14) yields, due to the orthogonality of sym and skew,

2R|�R D sym.2R|�R/C skew.2R|�R/

D �2Œ.@xR/
|@xRC .@yR/

|@yR� � skew.T .Dm;R/.Dmj0/|R/:
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Hence, using the isotropy of the skew-operator, we obtain

2�R D �2RŒ.@xR/
|@xRC .@yR/

|@yR� �R skew.T .Dm;R/.Dmj0/|R/

D �2RŒ.@xR/
|@xRC .@yR/

|@yR� �R skew.R|RT.Dm;R/.Dmj0/|R/

D �2RŒ.@xR/
|@xRC .@yR/

|@yR� �RR
| skew.RT .Dm;R/.Dmj0/|/ �R

D �2RŒ.@xR/
|@xRC .@yR/

|@yR�C skew
�
.Dmj0/.RT .Dm;R//|

�
�R

D �2RŒ.@xR/
|@xRC .@yR/

|@yR�C skew
�
.Dmj0/

��
�12.RT .Dm;R//

��|�
�R

D �2RŒ.@xR/
|@xRC .@yR/

|@yR�C skew.Dm � S.Dm;R/|/ �R; (A.15)

giving

�R D �RŒ.@xR/
|@xRC .@yR/

|@yR�C
1

2
skew.Dm � S.Dm;R/|/ �R

D �RŒ.@xR/
|@xRC .@yR/

|@yR�C skew.Dm ıS.Dm;R// �R;

where we used the definition of ı given in equation (5.4).
We set

�RŒ.@xR/
|@xRC .@yR/

|@yR� D �R@xR
|
� @xR �R@yR

|@yR DW �R � DR;

.�R/1 WD �R@xR
|
2 so.3/; .�R/2 WD �R@yR

|
2 so.3/:

With this definition, (A.15) can be written as

�R D �R � DR„ ƒ‚ …
2L1.!/

�R skew.T .Dm;R/.Dmj0/|R/„ ƒ‚ …
2L1.!/

: (A.16)

Considering the special case P|P D � � 1, equation (A.16) turns into

�R D �R � DRC �R skew..Dmj0/|R/ D �R � DR � �R skew.R|.Dmj0//„ ƒ‚ …
2L2.!/

:

We finally observe that

R|.�R/iR D �.@iR/
|R D R|@iR; i D 1; 2;

which implies for �i D axl.R|@iR/,

R|.�R/iR D Anti.�i /; axl.R|.�R/iR/ D �i ;

where � is the wryness tensor from equation (4.2).

A.4. A glimpse of a Reissner–Mindlin type flat membrane shell model

It is interesting to compare our Cosserat flat membrane shell model (allowing for existence
of minimizers and their full regularity) with one that would appear closer to classical
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approaches. For this sake we consider a Reissner–Mindlin flat membrane shell model
next.

In the case of the one-director geometrically nonlinear, physically linear Reissner–
Mindlin flat membrane shell model without independent drilling rotations, the problem
can be described as a two-field minimization for the midsurfacemW! � R2! R3 and the
unit-director field d W! � R2 ! S2 of the elastic energy9

E2D
Reissner.m; d/ D

Z
!

h

²
�

4
jDm|Dm � 12j

2„ ƒ‚ …
in-plane stretch

C
1

8

2��

2�C �
tr.Dm|Dm � 12/

2„ ƒ‚ …
elongational stretch„ ƒ‚ …

nonelliptic

C �.hd; @xmi
2
C hd; @ymi

2„ ƒ‚ …
transverse shear

/C �
L2c
2
jrd j2„ ƒ‚ …

curvature

³
dx:

Here, the membrane energy part is not rank-one elliptic due to the presence of the mem-
brane strain Dm|Dm� 12. The uni-constant curvature energy could be generalized to the
Oseen–Frank form; cf. Section 3.1. We note that hd; @xmi2 C hd; @ymi2 D jDm|d j2R2 ,
and, for simplicity, consider the energyZ

!

�1
2
jDm|Dm � 12j

2
R2�2 C

1

2
jDm|d j2R2 C

1

2
jrd j2

�
dx

D

Z
!

�1
2
j.Dmjnm/|.Dmjnm/ � 13j

2
C
1

2
jDm|d j2 C

1

2
jrd j2

�
dx:

The Euler–Lagrange equations are then given by

ıE2D
Reissner.m; d/ � ım

D

Z
!

�
2h.Dmjnm/|.Dmjnm/ � 13; .Dmjnm/|.Dımj0/iR3�3

C hDm|d; .Dım/|d iR2

�
dx

D

Z
!

�
h.Dmjnm/ � 2..Dmjnm/|.Dmjnm/ � 13/; .Dımj0/iR3�3

C hDm|d ˝ Dım|d; 12iR2�2

�
dx

D

Z
!

�
h.Dmjnm/ � 2..Dmjnm/|.Dmjnm/ � 13/; .Dımj0/iR3�3

C h.Dm|d ˝ d/Dım; 12iR2�2

�
dx

D

Z
!

˝
�12

�
.Dmjnm/ � 2..Dmjnm/|.Dmjnm/ � 13/

�
C d ˝ Dm|d;Dım

˛
R3�2 dx

9The missing Reissner–Mindlin bending contribution scaling with h3 would be of the form [49, (7.25)]

h3

12

°
�jsym..Dmjd/|.Dd j0//j2 C

��

2�C �
tr
�
sym..Dmjd/|.Dd j0//

�2±
:

Here, no choice of constitutive parameters reduces the bending energy to the uni-constant case.
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D �

Z
!

˝
Div

�
�12

�
.Dmjnm/ � 2..Dmjnm/|.Dmjnm/ � 13/

�
C d ˝ Dm|d

�
; ım

˛
R3 dx

D 0

for all ım 2 C10 .!;R
3/. Here, we can define the first Piola–Kirchhoff-type stress tensor

S.Dm; d/ D �12
�
.Dmjnm/ � 2..Dmjnm/|.Dmjnm/ � 13/

�
C d ˝ Dm|d:

For variations with respect to d 2 S2 we note that

jd C ıd j2 D 1 ” jd j2 C 2hd; ıd i C jıd j2 D 1:

Hence, the variation ıd is orthogonal to d , i.e. hd; ıd i D 0. Without loss of generality,
we express ıd as ıd D d � ıv for some ıv 2 C10 .!;R

3/. Therefore, taking variations
with respect to d gives

ıE2D
Reissner.m; d/ � ıd D

Z
!

hrd;rıd i C hDm|d;Dm|ıd i dx D 0

”�

Z
!

h�d; d � ıvi C hDmDm|d; d � ıvi dx D 0

”

Z
!

�h�d;Anti.d/ıvi C hDmDm|d;Anti.d/ıvi dx D 0

”

Z
!

hAnti.d/�d; ıviR3 � hAnti.d/DmDm|d; ıvi dx D 0

for all ıv 2 C10 .!;R
3/. The latter leads to the strong form

Anti.d/.�d � DmDm|d/ D 0 ” d � .�d � DmDm|d/ D 0: (A.17)

However, since d 2 S2, we know jd j2 D 1. Therefore, in addition, taking partial deriva-
tives, we obtain

h@xd; d i D 0; h@yd; d i D 0:

Taking second partial derivatives yields

h@2xd; d i C h@xd; @yd i D 0; h@
2
yd; d i C h@yd; @yd i D 0:

Summing shows

h�d; d i C j@xd j
2
C j@yd j

2
D h�d; d i C jDd j2 D 0: (A.18)

Adding (A.17) and (A.18) shows

d ��d WD d ��d C hd;�d i„ ƒ‚ …
geometric product, Clifford product

D d � .DmDm|d/„ ƒ‚ …
2R3

� jDd j2„ƒ‚…
2R

:
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Formally, this implies

�d D
d

jd j2
� Œd � .DmDm|d/ � jDd j2�:

In terms of equations, we have altogether from (A.17)1 and (A.18), respectively

Anti.d/�d D DmDm|d; hd;�d i D �jDd j2;

equivalently �
Anti.d/

d1 d2 d3

�
„ ƒ‚ …
DW OA2R4�3

�
�d

j

�
D

�
DmDm|d
�jDd j2

�
R4

: (A.19)

We multiply (A.19) by OA| to get

OA| OA�d D OA|
�

DmDm|d
�jDd j2

�
2 R3; jd j D 1:

Since in fact
OA| OA D jd j2 � 13 D 13;

we obtain the system of Euler–Lagrange equations

DivS.Dm; d/ D 0; “balance of forces” (A.20)

with the first Piola–Kirchhoff-type stress tensor

S.Dm; d/ D �12
�
.Dmjnm/ � 2..Dmjnm/|.Dmjnm/ � 13/

�
C d ˝ Dm|d;

and

�d D .�Anti.d/jd/R3�4

�
DmDm|d
�jDd j2

�
D �Anti.d/.DmDm|d/ � jDd j2 � d “balance of director equilibrium”

D � d � .DmDm|d/„ ƒ‚ …
2L2.!;R3/

�jDd j2 � d: (A.21)

We observe that (A.20) constitutes a nonlinear, nonconvex problem for the midsurface m
once the unit director d is determined. Therefore, existence for (A.20), (A.21) is not yet
known and likely not true. We note that the right-hand side in (A.21) contains an L2.!/-
term, since Dm 2 L4.!/ instead of our L1.!/-term in equation (A.16). For Dm � 0 we
recover from (A.21) the director equilibrium for the uni-constant liquid crystal problem
equation (3.4).
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A.5. Numerical experiments

We present a sequence of numerical experiments for problem (A.7). In these experiments
we compare the dimensionally reduced energy (4.5) (where the transverse shear energy
is multiplied by the arithmetic mean of � and �c) to the energy (4.6) of the rigorously
derived �-limit membrane model (where the transverse shear energy is multiplied by the
harmonic mean of � and �c). We set the Lamé parameters to � D 2:7191 � 104, � D
4:4364 � 104, and vary �c and Lc .

For the domain we choose the unit disk, which we discretized by 6 � 46 D 24;576

triangular elements. We used Lagrange finite elements of second order for the midsurface
deformation m and geodesic finite elements of second order for the microrotation field R
[47, 66, 68].

To trigger the deformation process, we radially compressed the membrane to a new
radius r < 1 by Dirichlet boundary conditions for the deformation on the entire domain
boundary. The microrotation field was not subject to Dirichlet boundary conditions at all.
We minimized the discrete energy using a trust-region method [68] starting from the cap
function m0.x; y/ D .x; y; 0:1 � 0:1

p
x2 C y2/ for all .x; y/ in the interior of the unit

disk and m0.x; y/ D .rx; ry; 0/ on the boundary. The initial microrotation was R D 1.
We conducted several simulations resulting in different wrinkle patterns depending on
the Cosserat couple modulus �c and the characteristic length Lc as shown in Tables 1,
2, and 3. The numerical algorithms were implemented in C++ using the DUNE libraries
(www.dune-project.org) [67].

From the figures one can see that wrinkling only happens if the characteristic lengthLc
is small enough. Indeed, if Lc D 10�3 then the deformation is largely bending dominated,
with small wrinkles only appearing next to the boundary, if �c is large enough. With
smaller values of Lc one can see wrinkling in larger parts of the domain, even if the radial
compression factor r is much smaller. Note that the choice �c D 0 does not lead to a
well-posed problem when used in the energy (4.6), because there it makes the transverse
shear energy term disappear.
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Arithmetic mean (4.5) Harmonic mean (4.6)

�c D 0

r D 0:9

Not well posed

�c D 10
�5�

r D 0:9 r D 0:9

�c D 10
�2�

r D 0:9 r D 0:9

�c D �

r D 0:9

Table 1. Deformation of a radially compressed shell with Lc D 10�3. Simulations by Lisa Julia
Nebel and Oliver Sander (TU Dresden).

Arithmetic mean (4.5) Harmonic mean (4.6)

�c D 0

r D 0:98

Not well posed

�c D 10
�2�

r D 0:91 r D 0:94

�c D �

r D 0:9

Table 2. Deformation of a radially compressed shell with Lc D 10�5. Simulations by Lisa Julia
Nebel and Oliver Sander (TU Dresden).
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Arithmetic mean (4.5) Harmonic mean (4.6)

�c D 0

r D 0:99

Not well posed

�c D 10
�2�

r D 0:99 r D 0:99

�c D �

r D 0:99

Table 3. Deformation of a radially compressed shell with Lc D 10�8. Simulations by Lisa Julia
Nebel and Oliver Sander (TU Dresden).
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