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Heteroclinic traveling waves of two-dimensional parabolic
Allen–Cahn systems

Ramon Oliver-Bonafoux

Abstract. In this paper we show the existence of traveling waves wW Œ0;C1/ �R2 ! Rk (k � 2)
for the parabolic Allen–Cahn system @tw � �w D �ruV.w/ in Œ0;C1/ � R2, satisfying some
heteroclinic conditions at infinity. The potential V is a nonnegative and smooth multi-well potential,
which means that its null set is finite and contains at least two elements. The traveling wave w
propagates along the horizontal axis according to a speed c? > 0 and a profile U. The profile U joins
as x1!˙1 (in a suitable sense) two locally minimizing one-dimensional heteroclinics which have
different energies, and the speed c? satisfies certain uniqueness properties. The proof is variational
and, in particular, it requires the assumption of an upper bound, depending on V , on the difference
between the energies of the one-dimensional heteroclinics.
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1. Introduction

Consider the parabolic system of equations

@tw ��w D �ruV.w/ in Œ0;C1/ �R2; (1.1)

where V WRk ! R is a smooth, nonnegative, multi-well potential (see assumptions (H1),
(H2), (H3) later) and wW Œ0;C1/ � R2 ! Rk , with k � 2. We seek a traveling wave
solution to (1.1). That is, we impose on w,

8.t; x1; x2/ 2 Œ0;C1/ �R2; w.t; x1; x2/ D U.x1 � c
?t; x2/;
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where UWR2 ! Rk is the profile of the wave and c? > 0 is the speed of propagation of
the wave, which occurs in the x1-direction. The profile and the speed are the unknowns of
the problem. Replacing in (1.1), we find that the profile U and c? must satisfy the elliptic
system

�c?@x1U ��U D �ruV.U/ in R2: (1.2)

The system (1.1) can be seen as a reaction–diffusion system. The early works, motiv-
ated by questions from population dynamics, of Fisher [23] and Kolmogorov, Petrovsky
and Piskunov [28], were devoted to a scalar reaction–diffusion equation in one space
dimension known today as the Fisher–KPP equation. Traveling and stationary waves are
now known to play a major role in the dynamics of reaction–diffusion problems: for
instance, Fife and McLeod [21,22] proved stability results for the equations considered in
[23,28]. Regarding higher-dimensional problems (but always in the scalar case), existence
results for traveling waves were obtained by Aronson and Weinberger [8] for equations
with RN as space domain and by Berestycki, Larrouturou and Lions [9], Berestycki and
Nirenberg [10] for unbounded cylinders of the type R � !, with ! � RN�1 a bounded
domain. We also mention that asymptotic stability results (for a suitable class of perturb-
ations) for traveling waves in the scalar Allen–Cahn equation in RN were obtained by
Matano, Nara and Taniguchi [31].

All the papers mentioned above are devoted to scalar equations and they rely on the
application of the maximum principle and its related tools. As is well known, the max-
imum principle does not apply in general to systems of equations, meaning that other
techniques are needed in order to study the existence of traveling waves (and their prop-
erties in case they exist) for systems. Different, more general, approaches had been taken
in order to circumvent the lack of the maximum principle when dealing with parabolic
systems. We refer to the books by Smoller [47] and Volpert, Volpert and Volpert [49].
One of these approaches consists of the use of variational methods. In the context of
reaction–diffusion equations, this approach seems to appear for the first time in Heinze’s
Ph.D. thesis [26] (even though the existence of a variational framework for some classes
of reaction diffusion problems has been known since [21, 22]) and subsequently carried
on by Muratov [35], Lucia, Muratov and Novaga [30], Alikakos and Katzourakis [6] (see
also Alikakos, Fusco and Smyrnelis [5]), Risler [42–44] and, more recently, by Chen,
Chien and Huang [20]. In the latter, the authors consider a parabolic Allen–Cahn system
in a two-dimensional strip R � .�l; l/ and find traveling waves which join a well and
an approximation of a heteroclinic orbit in .�l; l/, for a class of symmetric triple-well
potentials. In a spirit which is related to this paper, traveling waves which connect lower-
dimensional equilibria have been found (also by variational methods) by Bertsch, Muratov
and Primi [12–14] in the context of the three-dimensional harmonic heat flow on an infin-
ite cylinder, as well as Muratov and Shvartsman [36] in another setting connected with
the modeling of cellular dynamics. Lastly, we mention that variational methods have also
been applied to scalar reaction–diffusion equations; see for instance Bouhours and Nadin
[18] for the case of heterogeneous equations, as well as Lucia, Muratov and Novaga [29],
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Muratov and Shvartsman [36]. These methods have also been applied to the damped wave
equation (a type of hyperbolic equation) by Gallay and Joly [25], Luo [19] and Risler
[45]. In this paper we will also take a variational approach for dealing with the following
question:

Question: Assuming that there exist two heteroclinic orbits, joining two fixed
wells, with different energy (defined in (2.1)) levels, does there exist a solution
.c;U/ to (1.2) such that U joins the two heteroclinic orbits at infinity, in the x1-
direction and uniformly in x2?

Heteroclinic orbits are curves qWR! Rk which solve the equation

q00 D ruV.q/ in R;

and join two different wells of † at ˙1. Moreover, one asks that the one-dimensional
energy (i.e. the functional associated with the previous equation; see (2.1)) is finite. We
show that, under suitable assumptions, the question we posed has an affirmative answer.
Our motivation comes from two different sides:

(1) Stationary heteroclinic-type solutions of (1.1) have been known to exist in sev-
eral situations for a long time. Indeed, for a class of symmetric potentials, Alama,
Bronsard and Gui [2] showed the existence of a stationary wave (that is, a solution
to (1.2) with c D 0) in the situation such that two heteroclinics with equal energy
levels exist and are global minimizers of the one-dimensional energy. Their ana-
lysis was later extended to potentials without symmetry in several papers, which
in some cases obtained similar results by means of different techniques. See Fusco
[24], Monteil and Santambrogio [34] (an extension of the previous work by the
same authors [33] for the finite-dimensional problem), Schatzman [46], Smyr-
nelis [48]. A key observation is that this problem can be seen as a heteroclinic
orbit problem for a potential (the one-dimensional energy, see (2.1)) defined in
the infinite-dimensional space L2.R;Rk/. Therefore, it is natural to aim at solv-
ing a connecting orbit problem for potentials defined in, say, Hilbert spaces and
then deduce the original problem as a particular case. This is the approach taken
in [34] (in the metric space setting) and in [48] (in the Hilbert space setting).

(2) Alikakos and Katzourakis [6] showed the existence of traveling waves for a class
of one-dimensional parabolic systems of gradient type. Essentially, they assume
that the potential possesses two local minima (one of them global) at different
levels. Hence, their potential is not of multi-well type in general. The profile of
the traveling waves connects the two local minima at infinity and the determination
of the speed becomes part of the problem.

The results of this paper follow by suitably merging the ideas of the previous items. More
precisely, we formulate and provide solutions for a heteroclinic traveling problem as that
in [6] for potentials defined in an abstract Hilbert space. Then, as a particular case, we
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recover the existence of a traveling wave solution for (1.1) with heteroclinic behavior at
infinity.

2. The main results: Statements and discussions

We now state the results of this paper. In Theorem 1, which is the main result, existence
of a traveling wave solution with speed c? and profile U is established, as well as the
uniqueness (in some sense) of c? and the L2 exponential convergence of U at the limits
x1 ! ˙1. To prove such a result, the key assumption is (H6). With the assumptions we
make in Theorem 1 we are not able to prove that the analogous exponential convergence
for U holds as x1 ! �1. In Theorem 2, we show that under the previous assumptions
we also have uniform convergence of the solution in the x1- and the x2-directions. In
Theorem 3 we give some properties regarding the speed parameter c?. We conclude this
section by describing the outline and main ideas of our proofs (Section 2.6), which are
located in Sections 4 and 5.

2.1. Basic assumptions and definitions

Before stating the results, we recall some standard assumptions, definitions and results and
we introduce some notation. The multi-well potentials V considered in this paper satisfy
the following:

(H1) Let V 2 C2loc.R
k/ and V � 0 in Rk . Moreover, V.u/D 0 if and only if u 2†, where,

for some l � 2,
† WD ¹�1; : : : ; �lº:

(H2) There exist ˛0; R0 > 0 such that for all u 2 Rk with juj � R0 it holds that
hruV.u/; ui � ˛0juj

2 and, as a consequence, there exists ˇ0 > 0 such that V.u/ � ˇ0
for all such u.

(H3) For all � 2 †, the matrix D2V.�/ is positive definite.

One considers the one-dimensional energy functional

E.q/ WD

Z
R
e.q/.t/ dt WD

Z
R

h1
2
jq0.t/j2 C V.q.t//

i
dt; q 2 H 1

loc.R;R
k/: (2.1)

Given a pair of wells .��; �C/ 2 †2, as done for instance in Rabinowitz [41], we define

X.��; �C/ WD
®
q 2 H 1

loc.R;R
k/ W E.q/ < C1 and limt!˙1 q.t/ D �

˙
¯
;

the set of curves in Rk connecting �� and �C. The space X.��; �C/ is a metric space
when it is endowed with the L2 and the H 1 distances. Indeed, by assumption (H3) it
readily follows that if q belongs to X.��; �C/ then q � �C belongs to L2.Œ0;C1/;Rk/
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and q � �� belongs toL2..�1; 0�;Rk/. As a consequence, q � Qq 2H 1.R;Rk/whenever
q and Qq belong toX.��; �C/. If q is a critical point of the energyE inX.��; �C/, we say
that q is a homoclinic orbit when � D � 0 and that q is a heteroclinic orbit when �� 6D �C.
Define as well the corresponding infimum value

m���C WD inf
®
E.q/ W q 2 X.��; �C/

¯
:

If �� and �C are two distinct wells in†, it turns out that m���C is not attained in general.
We need to add the following assumption:

(H4) We have

8� 2 † n ¹��; �Cº; m���C < m��� Cm��C :

Notice that one can always find a pair .��; �C/ 2 †2 such that (H4) holds. Assuming
that (H1), (H2), (H3) and (H4) hold, it is well known that there exists a minimizer of E
in X.��; �C/. Moreover, we have the compactness of minimizing sequences as follows:
for any .qn/n2N in X.��; �C/ such that E.qn/! m���C , there exists .�n/n2N in R and
q 2 X.��; �C/ such that E.q/ D m���C and, up to subsequences,

kqn.� C �n/ � qkH1.R;Rk/ ! 0 as n!C1: (2.2)

This result is well known. The earlier references are Bolotin [16], Bolotin and Kozlov [17],
Bertotti and Montecchiari [11] and Rabinowitz [39, 40], sometimes in a slightly different
setting. Proofs and applications of the compactness property (2.2) are also given in Alama,
Bronsard and Gui [2], Alama et al. [1] and Schatzman [46].

We fix the two wells �� and �C for the rest of the paper, as well as m WD m���C .
According to the previous discussion, we have that the set

F WD
®
q W q 2 X.��; �C/ and E.q/ D m

¯
; (2.3)

is not empty. We term the elements of F as globally minimizing heteroclinics between
�� and �C. The term heteroclinics comes from the fact that �� and �C are different. An
important fact is that, due to the translation invariance of E and X.��; �C/, we have that
if q 2 F , then for all � 2 R it holds that q.� C �/ 2 F .

2.2. Existence

Assumptions (H1), (H2), (H3) and (H4) stated before are classical. In order to obtain our
results, we will supplement them with the following one, which is more specific to the
setting of this paper:

(H5) Assume that (H1), (H2), (H3) and (H4) hold for the potential V . We keep the previ-
ous notation. We assume the following:

(1) It holds that F D ¹q�.� C �/ W � 2 Rº for some q� 2 X.��; �C/, where F was
defined in (2.3). We set F � WD F and m� WD m.
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(2) There exist mC > m� and qC 2 X.��; �C/ such that E.qC/ D mC and qC is a
local minimizer ofE with respect to theH 1-norm. We denote F C WD ¹qC.� C �/ W

� 2 Rº.

(3) We have the spectral nondegeneracy assumption as introduced in [46]: For all
q 2 X.��; �C/, let A.q/ be the unbounded linear operator in L2.R;Rk/ with
domain H 2.R;Rk/ defined as

A.q/W v ! �v00 CD2V.q/v:

Then it holds that for any q 2 F � [ F C we have Ker.A.q// is generated by q0.
The fact that q0 2 H 2.R;Rk/ follows from the identity q000 D D2V.q/q0.

Notice that if we had mC D m� we would be in the framework of Alama, Bronsard
and Gui [2], for which the two-dimensional solution connecting q� and qC is station-
ary. Essentially, conditions (1) and (2) in (H5) imply that q� is a globally minimizing
heteroclinic and qC is a locally (but not globally) minimizing heteroclinic.

Regarding assumption (3), notice that if q 2 X.��; �C/ is a critical point of E, then
we have for all h 2 R and v 2 H 1.R;Rk/,

E.q C hv/ D E.q/C
h2

2
D2E.q/.v; v/C oh!0.h

2/;

where

D2E.q/.v; v/ WD

Z
R

h
jv0.t/j2

2
C hD2V.q.t//v.t/; v.t/i

i
dt D

Z
R
hA.q/v.t/; v.t/i dt:

Hence, A.q/ is the self-adjoint operator associated to the second variation of E at q.
Moreover, if q is a local minimizer of E (as q� and qC are), then A.q/ is also non-
negative. One readily checks that q0 always belongs to Ker.A.q//. This is an intrinsic
degeneracy due to the invariance by translations of the functional E. Assumption (3) is
made so that this is the only source of degeneracy or, in order words, so that q� and qC

are nondegenerate critical points of E up to translations. In [46, Theorem 4.3] it is shown
that it is a generic assumption in the following sense: given a potential satisfying (H1),
(H2), (H3), (H4) and (1) and (2) in (H5), it is possible to find an arbitrarily small perturb-
ation of it so that (3) also holds, and that without modifying the data †, ��, �C, q� and
qC. Actually, [46, Theorem 4.3] is stated only for global minimizers of the energy, but an
inspection of the proof reveals that only the fact that A.q˙/ is nonnegative is used.

The most important consequence of (H5), as proven in [46], is the existence of two
constants �C0 > 0 and ��0 > 0 such that for all q 2 L2loc.R;R

k/,

distL2.R;Rk/.q;F
˙/ � �˙0

) 9Š�˙.q/ 2 RW kq � q˙.� C �˙.q//kL2.R;Rk/ D distL2.R;Rk/.q;F
˙/; (2.4)

and for some constant ˇ˙ we have, for all q 2 X.��; �C/,

distL2.R;Rk/.q;F
˙/ � �˙0 ) distH1.R;Rk/.q;F

˙/2 � ˇ˙.E.q/ �m˙/: (2.5)
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��

�C

qC

q�

F C
�C0

F ���0

Figure 1. The situation described by (H5). The curves correspond to the traces of q� and qC as
indicated. The shadowed regions correspond to the traces of the functions in F ���0

and F C
�C0

, which
are a neighborhood of F � and F C respectively.

Notice that (2.4) and (2.5) state that the energy is quadratic around F � and F C, up to
the degeneracy associated to the invariance by translations. For the global minimizer q�,
the identities (2.4) and 2.5 are proven in [46]; more precisely (2.4) is a particular case of
[46, Lemma 2.1] and (2.5) is a consequence of [46, Lemma 4.5] (which uses the spectral
assumption (3) in (H5)), which states that, for all q 2 X.��; �C/,

distH1.R;Rk/.q;F
�/ � Q��0 ) distH1.R;Rk/.q;F

�/2 � Q̌�.E.q/ �m˙/ (2.6)

for some Q̌� >0 and Q��0 >0. By a contradiction argument, one proves that (2.5) follows by
(2.6), also using compactness of minimizing sequences. Actually, property (2.4), proven
in [46, Lemma 2.1], does not require the curve to be a global minimizer and it works for
any curve q0 with second derivative inL2.R;Rk/, as this allows us to compute the second
variation of

� 2 R! kq � q0.� C �/k
2
L2.R;Rk/

2 R:

This shows that one can find �C0 > 0 so that (2.4) holds for qC. Moreover, one can
obtain an analogous property for the H 1.R;Rk/, as done in [46, Lemma 2.1], using
that .qC/000 D D2V.qC/Œ.qC/0� 2 L2.R;Rk/, and then deduce suitable upper bounds
in the optimal parameter. Lemma 4.5 in [46] combines the previous fact with the spectral
assumption (H5) (3), and the fact that the curve is a global minimizer is not used. Hence,
up to decreasing the parameter �C0 , one obtains (2.5) for qC.

We will define for r > 0 the sets

F ˙r WD
®
q 2 L2loc.R;R

k/ W distL2.R;Rk/.q;F
˙/ � r

¯
: (2.7)

Notice that F � and F C are at positive L2 distance. Indeed, we have that kq�.� C �/ �
qCkL2.R;Rk/ tends to C1 as j� j ! C1, which by continuity means that the infimum is
attained, which is hence positive as qC and q� are different up to translations. Therefore,
up to decreasing �C0 and ��0 we can (and will) assume that

F C
�C0
\ F ���0

D ;:
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See Figure 1 for an explanatory drawing of (H5). Let us now assume that mC �m� is
bounded above as follows:

(H6) Assume that (H5) holds and, moreover, for the constants �0˙ satisfying (2.4) and
(2.5) it holds that

0 < mC �m� < Emax;

where Emax will be defined later in (2.21). Moreover, assume that®
q 2 X.��; �C/ W E.q/ < mC

¯
� F ���0 =2

; (2.8)

with F �
��0 =2

as in (2.7). Furthermore,

mC �m� <
.��d0/

2

2
;

where the constants d0 and �� are defined later in (2.19) and (2.20) respectively.

��

�C

qC

q�

F �
��0 =2

¹q 2 X.��; �C/ W E.q/<mCº

Figure 2. Representation of (H6). While the larger shadowed region corresponds to F �
��0 =2

, the
smaller one that is contained inside represents the set ¹q 2 X.��; �C/ W E.q/ < mCº. Moreover,
the value mC �m� must be smaller than Emax, defined in (2.21).

See also Figure 2. Essentially, (H6) requires that m� �mC is not too large and the
bound is given by a constant Emax that can be computed through the constants produced
in (2.4) and (2.5) as a consequence of (H5). Moreover, it also requires that whenever q 2
X.��; �C/ is such that E.q/ < mC, then q is close to q� (more precisely, q� 2 F �

��=2
).

One should notice that while the constants �˙0 could be taken arbitrarily small in order
to fulfill (2.4) and (2.5), assumption (H6) imposes an upper bound on these values as the
inclusion (2.8) must hold. Therefore, the assumption can be not so obvious to check in
applications, but it is possible to obtain examples by performing suitable perturbations
on multi-well potentials with several globally minimizing heteroclinics; see Section 6 for
more details. If (H6) holds, then we are able to answer the question that we posed at the
beginning of the paper in a positive way. More precisely, recall the equation of the profile,

�c@x1U ��U D �ruV.U/ in R2; (2.9)
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and consider the conditions at infinity,

9L� 2 R; 8x1 � L
�; U.x1; �/ 2 F ���0 =2

; (2.10)

9LC 2 R; 8x1 � L
C; U.x1; �/ 2 F C

�C0 =2
: (2.11)

Our proof is variational, which implies that the profile U can be characterized as a critical
point of a functional. The variational framework is as follows: assume that (H6) holds and
set

S WD ¹U 2 H 1
loc.R; L

2.R;Rk// W 9L � 1; 8x1 � L; U.x1; �/ 2 F C
�C0 =2

8x1 � �L; U.x1; �/ 2 F ���0 =2
º:

For U 2 S and c > 0 we define the energy

E2;c.U / WD

Z
R

�Z
R

j@x1U.x1; x2/j
2

2
dx2 C

�
E.U.x1; �// �mC

��
ecx1 dx1:

Formally, critical points of E2;c give rise to solutions of (2.9). If U 2 S , we can define the
translated function U � WD U.� C �; �/ for � 2 R. Then, for all c > 0, we have

E2;c.U
� / D e�c�E2;c.U /;

which implies that
8c > 0; inf

U2S
E2;c.U / 2 ¹�1; 0º:

We have now introduced the notation which allows us to state the main result of this paper:

Theorem 1 (Main theorem). Assume that (H1), (H2), (H3) (H4), (H5) and (H6) hold.
Then we have the following properties:

(1) Existence. There exist c? > 0 and U 2 C2;˛.R2;Rk/\ S , ˛ 2 .0; 1/, which fulfill
(2.9). The profile U satisfies the conditions at infinity (2.10) and (2.11) as well as
the variational characterization

E2;c?.U/ D 0 D inf
U2S

E2;c?.U /: (2.12)

(2) Uniqueness of the speed. The speed c? is unique in the following sense: Assume
that c? > 0 is such that

inf
U2S

E2;c?.U / D 0

and that xU 2 S is such that .c?; xU/ solves (2.9) and E2;c?.xU/ < C1. Then c? D
c?.

(3) Exponential convergence. The convergence of U at C1 is exponential with
respect to the L2-norm. More precisely, there exist MC > 0 and �C 2 R such
that for all x1 2 R,

kU.x1; �/ � qC.� C �C/kL2.R;Rk/ �MCe�c
?x1 : (2.13)
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Moreover, it holds that c? < ��, �� to be defined later in (2.20), and there exists
M� > 0 such that for all x1 2 R,

kU.x1; �/ � q�.� C ��/kL2.R;Rk/ �M�e.�
��c?/x1 : (2.14)

Remark 2.1. The existence part of Theorem 1 states that there exists a solution .c?;U/
such that U is a global minimizer of Ec? in S . We also have that the speed c? is unique
for some class of solutions, namely for finite energy solutions and speeds for which the
corresponding energy is bounded below in S . In particular, c? is unique among the class of
globally minimizing profiles. In other words, if c > 0 is such that the infimum of Ec in S
is attained, then c D c?. This is analogous to what was shown in Alikakos and Katzourakis
[6]. As explained in the introduction, the main drawback of our approach is the existence
assumption (H6). In particular, the definition of the upper bound Emax is technical and it
is possible that in several situations it could be small. Nevertheless, in Section 6 we show
that there exist examples of potentials for which (H6) holds.

2.3. Improving the convergence at infinity

The natural question is whether the convergence properties (2.13) and (2.14) in Theorem
1 can be improved, and in particular, whether the L2-norm can be replaced by the H 1-
norm. We believe that the answer to this question is positive, but we do not have a proof of
this fact. However, as one can check in Smyrnelis [48] and Fusco [24], such a fact holds
for the balanced two-dimensional heteroclinic solution. They obtain these properties by
combining standard elliptic estimates with some properties which are intrinsic to minimal
solutions of the elliptic system (1.2) with c? D 0. See the results in Alikakos, Fusco and
Smyrnelis [5, Section 4], mainly based on Alikakos and Fusco [4]. The main obstacle is
that even if one was able to extend their analysis to the case c? > 0, a crucial hypothesis
of their results is that solutions are minimal with respect to compactly supported perturb-
ations, a property which (at least when one does not limit the size of these perturbations)
does not hold for solutions given by Theorem 1 due to the fact that qC is not a global
minimizer of E. Therefore, we leave this question open. Nevertheless, besides the L2-
convergence rates (2.13) and (2.14), we can prove uniform convergence in both the x1-
and the x2-directions:

Theorem 2. Assume that (H1), (H2), (H3) (H4), (H5) and (H6) hold. Let .c?;U/ be a
solution given by Theorem 1. Then we have

lim
x1!˙1

kU.x1; �/ � q˙.� C �˙/kL1.R;Rk/ D 0 (2.15)

and
lim

x2!˙1
kU.�; x2/ � �

˙
kL1.R;Rk/ D 0: (2.16)
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2.4. Min-max characterization of the speed

We provide here a min-max characterization of the speed c? and other related properties
which are summarized in Theorem 3. The idea of providing a variational characterization
for the speed of traveling waves in reaction–diffusion systems can be traced back to Heinze
[26] and Heinze, Papanicolau and Stevens [27], and it was used later in several other
papers [6, 18, 29, 30, 35].

Theorem 3. Assume that (H1), (H2), (H3) (H4), (H5) and (H6) hold. Let .c?;U/ be a
solution given by Theorem 1. Then for any zU 2 S such that

E2;c?.zU/ D 0;

we have that .c?; zU/ solves (2.9) and

c? D
mC �m�R

R2 j@x1
zU.x1; x2/j2 dx2 dx1

: (2.17)

In particular, the quantity
R

R2 j@x1
zU.x1; x2/j

2 dx2 dx1 is well defined and constant among
the set of minimizers of E2;c in S . Moreover, it holds that

c? D sup
®
c > 0 W infU2S E2;c.U / D �1

¯
D inf

®
c > 0 W infU2S E2;c.U / D 0

¯
(2.18)

and we have the bound

c? �

p
2.mC �m�/

d0
< min

²p
2Emax

d0
; ��

³
;

where d0, �� and Emax will be defined later in (2.19), (2.20) and (2.21) respectively, and
the second inequality follows from the bound on mC �m� given by (H6).

Remark 2.2. Notice that the conditions at infinity imply that any U 2 S is such thatZ
R2

j@x1U.x1; x2/j
2

2
dx2 dx1 > 0:

As can be seen, Theorem 3 shows that the speed c? is characterized by the explicit
formula (2.17), which nevertheless requires knowledge about a profile zU. However, one
also has the variational characterization (2.18), which does not involve any information
on the profiles. Indeed, one only needs to be able to compute the infimum of the energies
with c > 0 as a parameter. Moreover, notice that combining (2.18) with the uniqueness
part of Theorem 1, we obtain a stronger assertion: if Nc > c? and . Nc; xU/, with xU 2 S , solves
(2.9), then E2; Nc.xU/ D C1. Hence, variational solutions can only exist for Nc � c? and
these cannot be global minimizers when Nc < c?.
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2.5. Definition of the upper bounds

We will now define some important numerical constants which are necessary in order to
formulate assumption (H6). Assume first that (H5) holds. Let �˙0 be as in (2.4) and (2.5).
Recall that we chose �C0 and ��0 such that

F C
�C0
\ F ���0

D ;;

which implies that the quantity

d0 WD distL2.R;Rk/.F
C

�C0 =2
;F ���0 =2

/ (2.19)

is positive. Therefore, as we argued before, one can see that the constant d0 depends only
on the distance between the two families of minimizing heteroclinics. Next, under (H5),
recall the constants ˇ˙ from (2.5). Set

ˇ˙ WD
1

2
.ˇ˙/2..ˇ˙/2 C .ˇ˙ C 1/2/ > 0

and, subsequently,

�� WD
1

ˇ� C ˇ�
> 0; (2.20)

which is the constant appearing in (H6). Of course, the nature of the definition given in
(2.20) obeys technical considerations. But �� should be thought of as a constant depend-
ing only on the local behavior of the energy around F � and, in particular, independent of
the behavior of the energy near F C. Now, for r 2 .0; �˙0 �, let

e˙r WD inf
®
E.q/ W q 2 X.��; �C/; distL2.R;Rk/.q;F

˙/ 2 Œr; �˙0 �
¯
:

Inequality (2.5) implies that e˙r > m˙. Moreover, we also have that for r 2 .0; �˙0 � there
exists �˙.r/ > 0 such that

8q 2 F ˙
�˙0 =2

; E.q/ �m˙ � �˙.r/) distH1.R;Rk/.q;F
˙/ � r:

This leads us to define the constants

ı�0 WD min
²r

e�1
��0
4

q
2.e�

��0 =4
�m�/;

��0
4

³
> 0;

r� WD
��0

ˇ� C 1
> 0

and

Emax WD
1

.ˇ�/2.ˇ� C 1/
min

²
.ı�0 /

2

4
; e�ı�0
�m�; ��.r�/; ��.ı�0 /

³
> 0; (2.21)

which is the constant appearing in (H6). Again, the definition of Emax is essentially due
to technical reasons, but it must be thought of as a constant which only depends on local
information around F �.
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2.6. Methods and ideas of the proofs

The main result of this paper is Theorem 1, which establishes the existence of a solution
.c?;U/, with the profile U satisfying the heteroclinic asymptotic conditions (2.10), (2.11).
We also prove an exponential rate of convergence for the profile at ˙1 (with respect to
the L2-norm). We finally show that the speed c? has some uniqueness properties. Import-
ant properties of the profile and the speed, as well as improvements to the results under
additional assumptions, are also established in Theorems 2 and 3.

The proof of our results follows by bringing together two different lines of research;
see items (1) and (2) in the introduction. More precisely, in the spirit of [34, 46], we
adapt the result of Alikakos and Katzourakis [6] (based on the previous work by Alikakos
and Fusco [3] for the equal-depth case) to potentials defined in an abstract, possibly
infinite-dimensional, Hilbert space and possessing two local minima at different levels.
This abstract setting is established in Section 3 and the main abstract results are Theorems
4, 5 and 6. The proofs of these results are found in Section 4. Assumption (H5) guarantees
that our main results (Theorems 1–3) are a particular case of the abstract results. Naturally,
the advantage of proving the results in an abstract framework is that one can apply them
to several problems other than the original one. In our case, the results in this paper apply
to the system

@tw � @
2
xw D �ruW.w/ in Œ0;C1/ �R;

where W is a smooth potential bounded below, possessing two local and nondegenerate
minima at different levels. This system, which is one-dimensional in space, is the one con-
sidered in [6], but the results of this paper allow us to somewhat relax the nondegeneracy
assumption used in [6] and treat the case of nonisolated minima.

Generalizing the result from [6] to curves taking values in a more general, possibly
infinite-dimensional, Hilbert space raises several additional difficulties. A detailed outline
of our proof as well as the difficulties is given in Section 4.1. Essentially, the approach
in [6] requires the potential W to be quadratic in W �1..�1; ˛�/ for some ˛ > 0. It is
not hard to find potentials defined on RN which satisfy such a property. However, in our
setting, the role of the potential is played by the one-dimensional energy E, defined in
the infinite-dimensional space of curves X.��; �C/. Moreover, one can only modify the
energy E by modifying the potential V , which has to be of Allen–Cahn type. Therefore,
it seems that the only natural way of obtaining a functional E satisfying an assumption
analogous to that in [6] is to impose (H6). As a consequence, E has quadratic behavior
in its “negative region” because it is included in a suitable neighborhood of q�, which is
selected to be nondegenerate up to translations. This enables us to apply the scheme of [6]
in the present setting.

In order to conclude this section, it is worth mentioning that, following our approach,
one should be able to obtain a generalization of the result in [3] to curves taking values in
a Hilbert space. This would yield yet a new proof for the existence result in the stationary
case. Nevertheless, such a result is not a special case of ours, as the fact that the minima
are at different levels (or, equivalently, that the speed parameter is nonzero) is used at



R. Oliver-Bonafoux 222

several points during the proof. Hence, one would need to perform some adjustments in
the proofs, which goes beyond the scope of this paper.

3. The abstract setting

Instead of proving Theorems 1 and 3 directly, we introduce an abstract setting similar to
those considered in [34] and especially [48], which will allow us to deduce the original
ones as particular cases. The proofs of the main abstract results, Theorems 4, 5 and 6
below, are thus the core of the paper. The passage between the abstract and the original
setting is established in Section 5, which in turn proves Theorems 1 and 3.

3.1. Main definitions and notation

Our approach will consist of establishing the existence of a pair .c;U/ in .0;C1/ � X
(where X is a suitable space of curves; see (3.30) below) which fulfills

U00 �B.U/ D �cU0 in R; (3.1)

where B is (at the least formally) the gradient of a potential. Moreover, at infinity, U
satisfies the conditions

9T � 2 R; 8t � T �; U.t/ 2 F�r�0 =2
; (3.2)

9TC 2 R; 8t � TC; U.t/ 2 FC
rC0 =2

: (3.3)

Notice that this problem can also be thought of as a heteroclinic connection problem on
Hilbert spaces for a second-order potential system with friction term. Such a problem
could have its own interest besides the main application to the existence of traveling waves
that we give here. Of course, analogous considerations can also be applied to the results
in [6], as well as our companion paper [38].

The nature of the objects introduced above will be made precise through this para-
graph. Let L be a Hilbert space with inner product h�; �iL and induced norm k�kL. Let
H�L be a Hilbert space with inner product h�; �iH. In the original setting, L isL2.R;Rk/
and H is H 1.R; Rk/, both endowed with their natural inner products. We will take
EWL! .�1;C1�, a potential bounded below and possessing a local minimum which is
not a global one. In the setting of Theorem 1, E will essentially coincide with E �mC in
H 1.R;Rk/ and with C1 elsewhere.1 Here we just impose a set of abstract assumptions

1This statement is not exact, as the energyE is not defined inH 1.R;Rk/, but on an affine space based
on H 1.R;Rk/. However, we can trivially obtain a functional defined on H 1.R;Rk/ from E. See Section
5.1.
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on E . Most of those assumptions follow by combining ideas in [6] with ideas in Schatz-
man [46] and Smyrnelis [48]. We will begin by fixing two sets F� and FC in L. For r > 0,
we define

F˙r WD
®
v 2 L W infv2F˙kv � vkL � r

¯
(3.4)

and

F˙H;r WD
®
v 2 H W infv2F˙kv � vkH � r

¯
; (3.5)

that is, the closed balls in L and H respectively, with radius r > 0 and center F˙. The
main assumption reads as follows:

(H10) The potential E is weakly lower semicontinuous in L. The sets F� and FC are
closed in L. There exists a constant a > 0 such that

8v 2 L; 8v� 2 F�; E.v/ � E.v�/ D �a

and each vC 2 FC is a local minimizer (see (3.6) below) satisfying E.vC/D 0. Moreover,
there exist two positive constants r�0 , rC0 such that FCr�0 \ F�

rC0
D ; (see (3.4)). There also

exist C˙ > 1 such that8<:8v 2 FC
rC0
; .CC/�1distL.v;FC/2 � E.v/;

8v 2 F�r�0
; .C�/�1distL.v;F�/2 � E.v/C a:

(3.6)

Moreover, for any v 2 F˙
r˙0

, there exists a unique v˙.v/ 2 F˙ such that

kv � v˙.v/kL D inf
v˙2F˙

kv � v˙kL:

Moreover, the projection maps

P˙W v 2 F˙
r˙0
! v˙.v/ 2 F˙

are C 2 with respect to the L-norm.

Hypothesis (H10) defines E as an unbalanced double-well potential with respect to F�

and FC and gives local information on the minimizing sets. Compare with (H5) and the
remarks that follow. In the concrete setting, F� and FC are essentially the sets F � and
F C respectively, but perturbed so that they are contained in H 1.R;Rk/. We have the
following immediate consequence, which will be useful in the sequel:

Lemma 3.1. Assume that (H10) holds. For r 2 .0; r˙0 � we define

�˙r WD inf
®
E.v/ W distL.v;F˙/ 2 Œr; r˙0 �

¯
I (3.7)

then we have �Cr > 0 and ��r > �a. Moreover,

8v 2 FC
rC0 =2

; E.v/ � 0: (3.8)

Proof. It follows directly from (3.6) in (H10).
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We now impose the following regarding the relationship between L and H:

(H20) We have H D ¹v 2 L W E.v/ < C1º and k�kL � k�kH. In particular, F˙ � H.
Moreover, E is aC 1 functional on .H;k�kH/with differentialDEWv 2H!DE.v/2H0,
where H0 is the dual of H. Furthermore, there exists an even smaller space zH with an inner
product h�; �i zH and associated norm k�k zH � k�kH such that there exists a bounded linear
operator B in L with domain zH such that

8v 2 zH; 8w 2 H; B.v/.w/ D DE.v/.w/: (3.9)

Notice that in the context of Theorem 1, assumption (H20) is easily verified. The space
zH will be chosen as H 2.R;Rk/, and (3.9) is nothing other that integration by parts. We
now continue by imposing a compactness assumption on F˙:

(H30) We have that F˙ � H and L-bounded subsets of F˙ are relatively compact with
respect to H-convergence.2

Assumption (H30) readily implies the following:

Lemma 3.2. Assume that (H10) and (H30) hold. Then the sets F˙
r˙0 =2

defined in (3.4) are
closed in L.

Assumption (H30) is necessary in order to establish the conditions at infinity. In the
main context, it follows from the straightforward fact that a bounded sequence of trans-
lations (which are real numbers) is relatively compact. Subsequently, we impose the fol-
lowing:

(H40) Assume that (H10) holds. For F˙, one of the two following alternatives holds:

(1) F˙ is L-bounded.

(2) For all .v; v˙/ 2 F˙
r˙0
� F˙, there exists an associated map yP˙

.v;v˙/WL! L such
that

P˙. yP˙
.v;v˙/.v// D v˙ (3.10)

and
distL. yP˙.v;v˙/.v/;F

˙/ D distL.v;F˙/: (3.11)

Moreover, yP˙
.v;v˙/WL! L is differentiable and

8.w1; w2/ 2 L2; kD. yP˙
.v;v˙//.w1; w2/kL D kw2kL (3.12)

and
E. yP.v;v˙/. Qv// D E. Qv/ (3.13)

for all Qv 2 L.

2Hence, they are in particular relatively compact with respect to L-convergence.
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Essentially, in (2) we impose that the projections P˙ from (H10) can be transported
in a direction parallel to the sets F˙. Again, this is straightforward in the concrete setting,
as the projections P˙ consist of performing a translation. We now impose an assumption
for the sets F˙H;r0 :

(H50) For any v 2 F˙
H;r˙0

, as defined in (3.5), there exists a unique v˙H.v/ 2 F
˙ such that

kv � v˙H.v/kL D inf
v˙2F˙

kv � v˙kL:

Moreover, the projection maps

P˙H W v 2 F˙
H;r˙0

! v˙H.v/ 2 F˙

are C 1 with respect to the H-norm. Moreover, if C˙ > 1 is the constant from (H10), we
have

8v 2 F˙
H;r˙0

; kP˙.v/ � P˙H.v/kH � C
˙
kv � P˙H.v/kH: (3.14)

Furthermore, for each r˙ 2 .0; r˙0 � there exist constants ˇ˙.r˙/ > 0 such that in the case
that v 2 F˙

r˙0
satisfies

E.v/ � min¹˙a; 0º C ˇ˙.r˙/; (3.15)

then v 2 F˙H;r . Finally, we have

8v 2 F˙
H;r˙0

; .C˙/�2kv � P˙H.v/k
2
H � E.v/ �min¹˙a; 0º

� .C˙/2kv � P˙H.v/k
2
H: (3.16)

Assumption (H50) is made in order to ensure suitable local properties around F˙ in
H. In the main setting, those are known results which follow essentially from the spectral
assumption by Schatzman [46]. Before introducing the last assumptions, we need some
additional notation. For U 2 H 1

loc.R;L/ and c > 0, we (formally) define

Ec.U / WD
Z

R
ec.U /.t/ dt WD

Z
R

h
kU 0.t/k2L

2
C E.U.t//

i
ect dt: (3.17)

More generally, for I � R a nonempty interval and U 2 H 1
loc.I;L/, put

Ec.U I I / WD
Z
I

ec.U /.t/ dt: (3.18)

Notice that the integrals defined in (3.17) and (3.18) might not even make sense in general
due to the fact that E has a sign. Nevertheless, we can define the notion of a local minimizer
of Ec.�I I / as follows:
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Definition 3.1. Assume that (H10) and (H20) hold. Let I � R be a bounded, nonempty
interval. Assume that U 2 H 1

loc.I;L/ is such that Ec.U I I / is well defined and finite.
Assume also that there exists C > 0 such that for any � 2 C1c .int.I /; .H;k�kH// such that

max
t2I
k�.t/kH < C;

the quantity Ec.U C �I I / is well defined and larger than Ec.U I I /. Then we say that U
is a local minimizer of Ec.�I I /.

We assume the following property for local minimizers:

(H60) Assume that (H10) and (H20) hold. There exists a map PWL! L such that

8v 2 L; E.P.v// � E.v/ and E.P.v// D E.v/, P.v/ D v; (3.19)

8.v1; v2/ 2 L2; kP.v1/ �P.v2/kL � kv1 � v2kL; (3.20)

and
PjF˙ D IdjF˙ : (3.21)

In the main setting, P is the projection on a fixed ball of Rk , which, when applied
to curves, can be shown to reduce their energy while keeping a uniform bound in the
L1-norm. We also assume the following:

(H70) Let I � R, possibly unbounded and nonempty. Let c > 0. If W 2 H 1
loc.I;L/ is a

local minimizer of Ec.�I I / in the sense of Definition 3.1, which, additionally, is such that
for all t 2 I , W.t/ D P.W.t//, then W 2 A.I / where for any open set O � R, A.O/ is
defined as

A.O/ WD C2loc.O;L/ \ C1loc.O; .H; k�kH// \ C0loc.O; .
zH; k�k zH// (3.22)

and W solves
W00 �B.W/ D �cW0 in I ;

where B was introduced in (H20).

In the context of Theorem 1, (H70) is a consequence of classical elliptic regularity
results as well as properties of the energy functional. Before stating the abstract result, we
introduce the following constants (assuming that all the previous assumptions hold) which
are obviously analogous to those introduced in Section 2.5:

��0 WD min
²r

e�1
r�0
4

q
2.��

r�0 =4
C a/;

r�0
4

³
> 0; (3.23)

Or� WD
r�0

C� C 1
> 0; (3.24)

E�max WD
1

.C�/2.C� C 1/
min

° .��0 /2
4

; ����0
C a; ˇ�. Or�/; ˇ�.��0 /

±
> 0; (3.25)
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C˙ WD
1

2
.C˙/2..C˙/2 C .C˙ C 1/2/ > 0; (3.26)


� WD
1

C� C C�
> 0 (3.27)

and

d0 WD distL.FC
rC0 =2

;F�r�0 =2
/ > 0; (3.28)

where the constants C�, ˇ�. Or�/, ˇ�.��0 / are those from (H50) and �˙r for r > 0 are
defined in (3.7). The fact that d0 > 0 follows from Lemma 3.2 and (H10). We can finally
state the following assumption:

(H80) Assume that (H10) and (H20) hold. Moreover, assume that

a < E�max

and ®
v 2 H W E.v/ < 0

¯
� F�r�0 =2

: (3.29)

Assumption (H80) is essentially the abstract version of (H6).

3.2. Statement of the abstract results

Let us define the space

X WD
®
U 2 H 1

loc.R;L/ W 9T � 1; 8t � T; distL.U.t/;FC/ �
rC0
2
;

8t � �T; distL.U.t/;F�/ �
r�0
2

¯
: (3.30)

The statement of the main abstract result is as follows:

Theorem 4 (Main abstract result). Assume that (H10), (H20), (H30), (H40), (H50), (H60),
(H70) and (H80) hold. Then the following holds:

(1) Existence. There exist c? > 0 and U 2 A.R/ \ X , A.R/ as in (3.22) and X as
in (3.30), such that .c?;U/ solves (3.1) with conditions at infinity (3.2), (3.3) and
U is a global minimizer of Ec in X , that is, Ec.U/ D 0. Moreover, for all t 2 R,
U.t/ D P.U.t//, where P is as in (H60).

(2) Uniqueness of the speed. The speed c? is unique in the following sense: if c? > 0
is such that

inf
U2X

Ec?.U / D 0

and there exists xU 2A.R/\X such that .c?; xU/ solves (3.1) and Ec?.xU/ <C1,
then c? D c?.

(3) Exponential convergence. There exists a constant MC > 0 such that for all t 2 R
we have

kU.t/ � vC.U/kL �MCe�ct ; (3.31)

for some vC.U/ 2 FC.
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Remark 3.1. Given the definition of X in (3.30), we have that for any U 2 X and � 2 R
it holds that U.� C �/ 2 X and for any c > 0 it holds that Ec.U.� C �// D e�c�Ec.U /.
Such statements imply

8c > 0; inf
U2X

Ec.U / 2 ¹�1; 0º:

Moreover, we see that in the case that c > 0 is such that infU2X Ec.U / D 0, one can find
plenty of examples of minimizing sequences in X which cannot ever reasonably produce
a global minimizer. Indeed, consider any function zU 2 X such that Ec. zU/ > 0 and then
take the minimizing sequence . zU.� C n//n2N .

Remark 3.2. A more general statement can be given about the uniqueness of the speed,
which in particular works for eventual nonminimizing solutions. See Proposition 4.3.

Theorem 4 will be shown to contain Theorem 1 in Section 5. Notice that, as before,
the conditions at infinity (3.2) are rather weak (and not really of heteroclinic type), since
we do not have convergence to an element of F� as t ! �1. It is however clear that the
conditions at infinity (3.2), (3.3) are enough to ensure that the solution given by Theorem
4 is not constant. In any case, we can impose an additional assumption in order to obtain
stronger conditions at �1 on the solution:

(H90) Hypothesis (H80) is fulfilled and, additionally,

a <
.d0


�/2

2
; (3.32)

where d0 and 
� were defined in (3.28) and (3.27) respectively.

Then we can show the following exponential convergence result:

Theorem 5. Assume that (H10), (H20), (H30), (H40), (H50), (H60), (H70), (H80) and (H90)
hold. Then, if .c?;U/ is the solution given by Theorem 4, it holds that 
� > c? (
� as in
(3.27)) and there exists M� > 0 such that for all t 2 R,

kU.t/ � v�.U/kL �M�e.

��c?/t (3.33)

for some v�.U / 2 F�.

Theorem 5 corresponds to the second part of Theorem 1. Finally, we will prove the
following result:

Theorem 6. Assume that (H10), (H20), (H30), (H40), (H50), (H60), (H70), (H80) and (H90)
hold. Let .c?;U/ be the solution given by Theorem 4. Then, if zU 2A.R/\X is such that

Ec?.zU/ D 0;

we have that .c?; zU/ solves (3.1) and

c? D
aR

Rk
zU0.t/k2L dt

: (3.34)
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In particular, the quantity
R

Rk
zU0.t/k2L dt is finite. Moreover, we have

c? D sup
®
c > 0 W infU2X Ec.U / D �1

¯
D inf

®
c > 0 W infU2X Ec.U / D 0

¯
; (3.35)

as well as the bound

c? �

p
2a

d0
< min

²p
2E�max

d0
; 
�

³
; (3.36)

with E�max as in (3.25), d0 as in (3.28) and 
� as in (3.27). The second inequality follows
from the bounds on a given by (H80) and (H90).

Theorem 6 corresponds to Theorem 3.

4. Proofs of the abstract results

4.1. Scheme of the proofs

As pointed out several times, the structure of the proofs of our abstract results, Theorems
4, 5 and 6, is analogous to that in Alikakos and Katzourakis [6], which has its roots in
Alikakos and Fusco [3]. In fact, most of their results also carry into the abstract setting
with the suitable modifications. In fact, the structure of our proofs should rather be com-
pared with Alikakos, Fusco and Smyrnelis [5, Section 2.6], which slightly modifies and
simplifies the argument in [6]. We will also rely on some arguments provided in Smyrnelis
[48], when an analogous abstract approach is taken for the stationary problem. As usual,
most of the intermediate results we prove hold under smaller subsets of assumptions (with
respect to the set of all assumptions that we dropped in the previous section). Therefore,
for the sake of clarity and generality, the necessary assumptions (and only these) that we
use to prove a result are specified in its statement.

Despite the previous facts, and as pointed before, several important difficulties not
present in [6] arise when one tries to tackle the same problem in the abstract setting we
introduced in the previous section. One of those extra difficulties is due to the fact that,
in our setting, we need deal with two different norms in the configuration space of the
curves, L and H (to be thought of as L2 and H 1 respectively, for simplification) and that
the potential E is only lower semicontinuous with respect to L-convergence. An addi-
tional difficulty comes from the fact that, due to the requirements of our original problem,
we are not looking at curves that join two isolated minimum points, but rather two isol-
ated minimum sets. This turns out to be an obstacle when one tries to adapt arguments
in [6], even if one were to restrict to finite-dimensional configuration spaces. However,
this difficulty is successfully dealt with using the precise knowledge about the projection
mappings (namely assumptions (H10), (H40) and (H50)) that is available. That is, one uses
that, for a suitable neighborhood of the minimum sets, the projection onto the sets (with
both the L- and H-norms) is well defined and enjoys some type of continuity and differ-
entiability properties. This idea, in the Allen–Cahn systems setting, has to be traced back
to Schatzman [46].
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F�

FC

�T

T

U 2 XT

r�0 =2

rC0 =2

Figure 3. One-dimensional representation of XT . The blue line represents a function U belonging
to XT . The red lines contain the points which are at L-distance smaller than r˙0 =2 from F˙.

We will now briefly sketch the scheme of the proof of Theorem 4. Recall that, accord-
ing to Remark 3.1, direct minimization of Ec in X cannot yield solutions to the problem,
the reason being the action of the group of translations. The spaces XT , which were intro-
duced in [6] (also in [3] for the equal-depth case) and will be precisely presented in (4.1),
are defined in order to overcome this source of degeneracy, as they are no longer invariant
by the action of the group of translations. See the design in Figure 3. As a consequence,
compactness is restored and the corresponding minimization problem has a solution for
all c > 0 and T � 1. See Lemma 4.7 later on. In general, minimizers in XT solve the pro-
file equation on a (possibly proper) subset of R (see Lemma 4.8), meaning that they are
in general not solutions of (3.1). However, such constrained minimizers are in fact solu-
tions of (3.1) in the case they do not saturate the constraints. Therefore, the goal will be to
show the existence of the speed c? such that, for some T � 1, there exists a constrained
minimizer in XT which does not saturate the constraints. For that purpose, a careful ana-
lysis of the behavior of the constrained minimizers is needed. Indeed, one needs a uniform
bound (independent of T and continuous on c) on the distance between the entry times,
i.e. the times in which the constrained minimizers enter F˙

r˙0 =2
. In the balanced case this

follows from the fact that the energy density is bounded below by a positive constant out-
side F�

r�0 =2
[ FC

rC0 =2
(see for instance Smyrnelis [48]). However, this is no longer true for

our unbalanced problem, which makes it more involved: if one does not have the pos-
itivity of the energy density, the constrained solutions can oscillate between the regions
F˙
r˙0 =2

(producing energy compensations) in larger and larger intervals as T !1, so that
no T -independent bound can be found. This is the main new difficulty with respect to
the balanced setting, as one needs new ideas in order to obtain a uniform bound on the
distance between the entry times. Our assumption (H80) provides this control because the
energy density of the constrained minimizers is bounded below by a positive constant in
the interval given by the two entry times mentioned before, meaning that we can argue as
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in the balanced case. The precise result is Corollary 4.1. This is the main step in which
our proof differs with that in [6].

The natural question is what happens if we remove (H80). A natural approach is to
replace (H80) by an assumption more closely related to the one used in [6] and [5]. This
would lead us to introduce a convexity assumption on the level sets of E , as well as some
sort of strict monotonicity on well-chosen segments. While this assumption can be worked
out in the abstract setting and is applicable for the finite-dimensional situation considered
in [6] (as we show in the companion paper [38]), we believe it to be too restrictive to be
applied to our original problem.

In any case, after the uniform bound on the entry times of constrained minimizers is
obtained, one needs to find the speed c? as, until this point, the speed c > 0 has only been
considered as a parameter of the problem without any special role. Our argument adapts
without major difficulty from [5] and it goes as follows: One introduces a set which clas-
sifies the speeds according to the value of the infimum of the corresponding energy on X
(which, due to the weight and the invariance by translations, is either �1 or 0). Such a set
is C , defined in (4.87). Subsequently, one shows (Lemma 4.11) that C is open, bounded,
nonempty and that its positive limit points give rise to entire minimizing solutions of
the equations (since for those points one can find corresponding constrained minimizers
which do not saturate the constraints). The speed c? is then defined as the supremum of
C , which is in fact the unique positive limit point of the set, as shown in Corollary 4.3.
At this point, the process of the proof of Theorem 4 is completed. Later on, we show that
the asymptotic behavior of the constrained solutions can be improved under an additional
assumption, namely an upper bound on the speed. This is Proposition 4.4. Theorems 5
and 6 can then be proven.

4.2. Preliminaries

Let r�0 and rC0 be the constants introduced in Section 3 and F˙
r˙0 =2

be the corresponding
closed balls as in (3.4). Assume that (H10) holds. For T � 1, we define the sets

X�T WD
®
U 2 H 1

loc.R;L/ W 8t � �T; U.t/ 2 F�r�0 =2
¯
;

XCT WD
®
U 2 H 1

loc.R;L/ W 8t � T; U.t/ 2 FC
rC0 =2

¯
:

Subsequently, we set
XT WD X

�
T \X

C

T : (4.1)

Recall the space X introduced in (3.30). Notice that

X D
[
T�1

XT :

We have the following preliminary properties on the spaces XT :
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Lemma 4.1. Assume that (H10) holds. Let c > 0 and T � 1. For any U 2 XT , we have

8t � T; E.U.t// � 0: (4.2)

Moreover, the quantity Ec.U / as introduced in (3.17) belongs to .�1;C1�.

Proof. Let U 2XT . Notice that for t � T , we have U.t/ 2 FC
r0=2

. Therefore, (4.2) follows
directly from (3.8) in Lemma 3.1.

Now let EC.U / � 0 and E�.U / � 0 be, respectively, the nonnegative and the non-
positive parts of E.U /, so that E.U / D EC.U /� E�.U /. We have that E�.U / is null on
ŒT;C1/, that is,Z C1

�1

E�.U.t//ect dt D

Z T

�1

E�.U.t//ect dt �
a

c
ecT < C1;

where a is the minimum value from (H10). Therefore, the negative part of the energy
density ec.U / (see (3.17)) belongs to L1.R/, which establishes the result.

Lemma 4.1 shows that for any T � 1 and c > 0, Ec is well defined as an extended func-
tional on XT , at least if sufficient hypotheses are made. Moreover, it gives the following
useful inequalities:

Lemma 4.2. Assume that (H10) holds. Let c > 0 and T � 1. For any U 2 XT , we haveZ
R

kU 0.t/k2L
2

ect dt � Ec.U /C
a

c
ecT (4.3)

and Z
R
jE.U.t//ject dt � Ec.U /C

a

c
ecT : (4.4)

Finally, we have that for all t 2 R,Z C1
t

kU 0.s/kL ds �
��

Ec.U /C
a

c
ecT

�e�ct
c

� 1
2
: (4.5)

Proof. Using (4.2) in Lemma 4.1, we getZ
R

kU 0.t/k2L
2

ect dt � Ec.U / �
Z T

�1

E.U.t//ect ;

which, by (H10), implies that (4.3) holds. Inequality (4.4) is obtained in the same fashion.
Finally, we have that (4.5) follows by combining (4.3) with the Cauchy–Schwarz inequal-
ity.

The previous results allow us to prove the following convergence properties at C1
for finite energy functions in XT :
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Lemma 4.3. Assume that (H10) and (H50) hold. Let c > 0 and T � 1. Take U 2 XT such
that Ec.U / < C1. Then we have that there exists a subsequence .tn/n2N in R such that
tn !C1 as n!1 and

lim
n!1

E.U.tn//e
ctn D 0: (4.6)

Moreover, there exists vC.U / 2 FC such that for all t 2 R it holds that

kU.t/ � vC.U /k2L �
�Ec.U /C a

c
ecT

c

�
e�ct : (4.7)

That is, U tends to vC.U / at C1 with an exponential rate of convergence and with
respect to the L-norm.

Proof. We have by (4.4) in Lemma 4.2 that t 2 R! E.U.t//ect 2 R belongs to L1.R/
because Ec.U / < C1. Therefore, combining with (4.2) in Lemma 3.1, we obtain (4.6).

Subsequently, notice that (4.5) in Lemma 4.2 and the fact that Ec.U / < C1 give the
existence of vC.U / 2 FC such that limt!C1kU.t/� vC.U /kL D 0. Therefore, fix t 2R
and notice that for any Qt > t we have

kU.Qt / � U.t/kL �

Z Qt
t

kU 0.s/kL ds �

Z C1
t

kU 0.s/kL;

which by (4.5) in Lemma 4.2 means that

kU.Qt / � U.t/k2L �
�Ec.U /C a

c
ecT

c

�
e�ct :

Therefore, passing to the limit Qt ! C1 we obtain (4.7), also due to the fact that U is
continuous with respect to the L-norm.

Remark 4.1. Notice that (4.7) in Lemma 4.3 does not imply convergence of E.U /

towards 0 atC1, due to the fact that E is not continuous with respect to the L-norm.

Remark 4.2. Regarding the behavior at �1, notice that we can only say that if U 2 XT
is such that Ec.U / < C1, then E.U / does not go to C1 faster than ect at the limit
t !�1. That is, almost nothing can be said for generic finite energy solutions regarding
their behavior at �1.

4.3. The infima of Ec in XT are well defined

Once we have defined the spaces XT , we show that the corresponding infimum of Ec is
well defined as a real number for all c > 0. Set

mc;T WD inf
U2XT

Ec.U / 2 Œ�1;C1�: (4.8)

We have the following:
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Lemma 4.4. Assume that (H10) and (H20) hold. Fix Ov˙ 2 F˙. Let c > 0 and T � 1. For
all T � 1, the function

‰.t/ WD

8̂̂̂<̂
ˆ̂:
Ov� if t � �1;
1 � t

2
Ov� C

t C 1

2
OvC if �1 � t � 1;

OvC if t � 1;

(4.9)

belongs to XT . Moreover, for all c > 0,

Ec.‰/ < C1: (4.10)

Furthermore, we have
�1 < mc;T < C1: (4.11)

Proof. It is clear that ‰ 2 XT . We now show that (4.10) holds. Notice first thatZ 1

�1

ec.‰/ D
Z 1

�1

�aect dt D �
a

c
ec ;

where �a is the minimum value from (H10). Subsequently, we haveZ C1
1

ec.‰/ D 0

and Z 1

�1

ec.‰/ D
Z 1

�1

h
kOvC � Ov�k2L

8
C E

�1 � t
2
Ov� C

t C 1

2
OvC
�i
ect dt

�

h
kOvC � Ov�k2L

4
C 2 max

t2Œ�1;1�
E
�1 � t

2
Ov� C

t C 1

2
OvC
�iec � e�c

c
;

and we have
max
t2Œ�1;1�

E
�1 � t

2
Ov� C

t C 1

2
OvC
�
< C1;

by (H20). Therefore, we have obtained Ec.‰/ < C1, which readily implies that mc;T <

C1. In order to establish (4.11), we still need to show that mc;T >�1. For that purpose,
let U 2 XT . By (4.2) in Lemma 4.1, we haveZ C1

T

ec.U / � 0:

We also have Z T

�1

ec.U / �
Z T

�1

�aect dt D �
a

c
ecT :

That is,
8U 2 XT ; Ec.U / � �

a

c
ecT > �1;

which means that mc;T > �1.
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The next goal will be to show that, under the proper assumptions, we have that for any
c > 0 and T � 1, the infimum values defined in (4.8) are attained. Such a fact is not hard
to prove since the constraints that define the spaces XT allow us to restore compactness.
It relies on some properties that will be proven in the next section.

4.4. General continuity and semicontinuity results

We now provide some results which address continuity and semicontinuity properties of
the energies Ec in the spaces XT . Such properties will allow us to show that the infimum
values defined in (4.8) are attained under the proper assumptions. They will also be useful
in a more advanced stage of the proof, when the constraints will be removed. For now, we
essentially adapt some results from [6] to our setting.

Our first result resembles [6, Lemma 26]:

Lemma 4.5. Assume that (H10) holds. Fix T � 1 and U 2 XT . Consider the set

AT;U WD
®
c > 0 W Ec.U / < C1

¯
:

Then the correspondence
c 2 AT;U ! Ec.U / 2 R

is continuous.

Proof. Consider a sequence .cn/n2N inAT;U such that cn! c1 2AT;U . One checks that
for all n 2 N,

jecn.U.�//j � jecmax.U.�//j in Œ0;C1/ (4.12)

and

jecn.U.�//j � jecmin.U.�//j in .�1; 0�; (4.13)

where cmax WD supn2N cn 2 AT;U and cmin WD infn2N cn 2 AT;U . By Lemma 4.2, the right-
hand side in both (4.12) and (4.13) is integrable, which allows us to conclude by the
dominated convergence theorem.

We now show a lower semicontinuity result, which in particular will imply the exist-
ence of the constrained solutions:

Lemma 4.6. Assume that (H10), (H30) and (H40) hold. Let T � 1 be fixed. Let .U in/n2N

be a sequence in XT and .cn/n2N a convergent sequence of positive real numbers such
that

sup
n2N

Ecn.U
i
n/ < C1: (4.14)

Then there exist a sequence .Un/n2N in XT and U1 2 XT such that up to extracting a
subsequence in .Un; cn/n2N it holds that

8n 2 N; Ecn.Un/ D Ecn.U
i
n/; (4.15)

8t 2 R; Un.t/ * U1.t/ weakly in L (4.16)
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and
U 0nhcn * U 01hc1 weakly in L2.R;L/; (4.17)

where, for k 2 R, hk W t 2 R! ekt=2 2 R and c1 WD limn!1 cn. Moreover,

Ec1.U1/ � lim inf
n!1

Ecn.Un/: (4.18)

Proof. Denote M WD supn2N Ecn.U
i
n/, which is finite by (4.14). We will now use (H40).

We assume that (2) holds, the argument when (1) holds being similar and easier. Fix any
vC 2 F˙ and for all n 2 N, set vn WD U in.T / 2 FC. Define

UnW t 2 R! yP.vn;vC/.U
i
n.t//;

where yPvC is the differentiable operator introduced in (H40). We apply the properties sum-
marized in (2) of (H40). Notice that for all n 2 N we have Un 2 XT due to (3.11). The
energy equality (4.15) follows from (3.12) and (3.13). Moreover, (3.10) implies that for
all n 2 N,

PC.Un.T // D P
C
�
yP.vn;vC/.U

i
n.T //

�
D PC. yP.vn;vC/.vn// D vC;

which in particular means

kUn.T / � vCkL �
rC0
2
: (4.19)

Notice now that E.U.�// is nonnegative in ŒT;C1/ as U 2 XT by (4.2) in Lemma 4.1;
therefore

8n 2 N;
1

2

Z
R
kU 0n.t/k

2
Le

cnt dt �M �

Z
R

E.Un.t//e
cnt dt

�M �

Z T

�1

E.Un.t//e
cnt dt

� sup
n2N

°
M C

a

cn
ecnT

±
< C1: (4.20)

That is, we have that .U 0nhcn/n2N is uniformly bounded in L2.R;L/. Therefore, there
exists zU 2 L2.R;L/ such that

U 0nhcn *
zU weakly in L2.R;L/ (4.21)

up to subsequences. Such a condition impliesZ
R
k zU.t/k2L dt � lim inf

n!1

Z
R
kU 0n.t/k

2
Le

cnt dt: (4.22)

Now, notice that by (4.19) we have that .Un.T //n2N is bounded in L. Therefore, up to an
extraction there exists v1 2 L such that

Un.T / * v1 in L: (4.23)
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As in [48], we point out that

8t 2 R; 8n 2 N; Un.t/ D Un.T /C

Z t

T

U 0n.s/ ds:

Now, notice that for all t 2 R we have 1.0;t/h�cn ! 1.0;t/h�c1 in L1.R/, where 1 stands
for the indicator function of a set. Therefore, we obtain by (4.21) and (4.23),

8t 2 R; Un.t/ * U1.t/ WD v1 C

Z t

T

zU.s/e�c1s=2 ds;

which gives (4.16). Moreover, we have U1 2H 1
loc.R;L/ and U 01 D zUh�c1 , meaning by

(4.21) that (4.17) also holds.
Recall now that E is lower semicontinuous on L by (H10), so that (4.16) gives

8t 2 R; E.U1.t// � lim inf
n!1

E.Un.t//: (4.24)

We need to show that U1 2 XT and to establish the inequality (4.18).

• We begin by showing thatU1 2XT . We need to show that for all t 2 ŒT;C1/, it holds
that U1.t/ 2 FC

rC0 =2
and similarly for .�1;�T �. Fix t 2 ŒT;C1/. We have Un.t/ 2

FC
rC0 =2

, so we can define the sequence .vCn .t//n2N in FC as vCn .t/ WD PC.Un.t//. We
show that such a sequence is bounded. Indeed, we have

8n 2 N; kvCn .t/kL �
rC0
2
C kUn.t/kL

and .Un.t//L converges weakly in L, so in particular it is bounded. Therefore, up to an
extraction we can assume that vCn .t/ * vC1.t/ 2 L and by (H30) we have vC1.t/ 2 F˙.
Now using the convergence properties we get the inequality

kU1.t/ � vC1.t/kL � lim inf
n!1

kUn.t/ � vCn .t/kL �
rC0
2
;

so that Un.t/ 2 FC
rC0 =2

. An identical argument shows that for all t 2 .�1;�T � we
have Un.t/ 2 F�

r�0 =2
. Therefore, we have shown that U1 2 XT .

• Next we prove (4.18). We have

sup
n2N

Z
R

E.Un.t//e
cnt dt �M � sup

n2N

Z
R

kU 0n.t/k
2
L

2
ect dt < C1;

by (4.20). Hence, we can apply Fatou’s lemma to .t 2 R ! E.Un.t//e
cnt /n2N (a

sequence of functions uniformly bounded below by �a) to showZ
R

lim inf
n!C1

E.Un.t//e
cnt dt � lim inf

n!1

Z
R

E.Un.t//e
cnt dt;
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which, combined with (4.24) impliesZ
R

E.U1.t//e
ct dt � lim inf

n!1

Z
R

E.Un.t//e
cnt dt: (4.25)

Combining (4.22) and (4.25) we get

Ec.U1/ � lim inf
n!1

Z
R

kU 0n.t/k
2
L

2
ecnt dt C lim inf

n!1

Z
R

E.Un.t//e
cnt dt;

which, by superadditivity of the limit inferior gives (4.18).

4.5. Existence of an infimum for Ec in XT

The goal now is to show that, for T � 1 and c > 0 fixed, the infimum mc;T as defined in
(4.8) is attained by a function in XT . This will actually follow easily from Lemma 4.6.

Lemma 4.7. Assume that (H10), (H20), (H30) and (H40) hold. Let c > 0, T � 1 and mc;T

be as in (4.8). Then mc;T is attained for some Uc;T 2 XT .

Proof. By (4.11) in Lemma 4.4, we have that there exists a minimizing sequence .Un/n2N

for Ec in XT . We apply Lemma 4.6 to .Un/n2N and the sequence of speeds constantly
equal to c. We obtain a function Uc;T 2 XT such that

Ec.Uc;T / � lim inf
n!1

Ec.Un/ D mc;T ;

due to (4.18). Therefore, mc;T is attained by Uc;T in XT .

Subsequently, we show that assumption (H70) implies that the constrained minimizers
are solutions of the equation in a certain set containing .�T;T /, with the proper regularity.

Lemma 4.8. Assume that (H60) and (H70) hold. Let c > 0, T � 1 and mc;T be as in (4.8).
Let Uc;T 2 XT be such that Ec.Uc;T /Dmc;T . Then Uc;T 2A..�T; T //, A..�T; T // as
in (3.22) and

U00c;T �B.Uc;T / D �cU0c;T in .�T; T /: (4.26)

Moreover, if t � T is such that

distL.Uc;T .t/;FC/ <
rC0
2
; (4.27)

then there exists ıC.t/ > 0 such that Uc;T 2 A..t � ıC.t/; t C ıC.t/// and

U00c;T �B.Uc;T / D �cU0c;T in .t � ıC.t/; t C ıC.t//: (4.28)

Similarly, if t � �T is such that

distL.Uc;T .t/;F�/ <
r�0
2
; (4.29)

then there exists ı�.t/ > 0 such that Uc;T 2 A..t � ı�.t/; t C ı�.t/// and

U00c;T �B.Uc;T / D �cU0c;T in .t � ı�.t/; t C ı�.t//:
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Proof. We first show that

8t 2 R; P.Uc;T .t// D Uc;T .t/; (4.30)

where P is the map from (H60). We claim that the function

UP
c;T W t 2 R! P.Uc;T .t//

belongs to XT . Indeed, this follows from (3.20) and (3.21). Property (3.19) implies that

8t 2 R; E.UP
c;T .t// � E.Uc;T .t//: (4.31)

Now take t 2 R and s 2 R n ¹tº. Property (3.20) implies that



UP
c;T .t/ � UP

c;T .s/

t � s






L

�





Uc;T .t/ � Uc;T .s/
t � s






L

;

which implies that

for a.e. t 2 R; k.UP
c;T /

0.t/kL � kU0c;T .t/kL; (4.32)

as the metric derivative coincides with the distributional derivative. By contradiction,
assume now that there exists t 2 R such that Uc;T .t/ 6D P.Uc;T .t// D UP

c;T .t/. Prop-
erty (3.20) implies that P is continuous into L. Therefore, since Uc;T is continuous into
L, we must have that for some nonempty interval It 3 t , it holds that

8s 2 It ; Uc;T .s/ 6D P.Uc;T .s// D UP
c;T .s/;

so that, using (3.19) we get

8s 2 It ; E.UP
c;T .s// < E.Uc;T .s//;

so that, combining with (4.31) and (4.32) we obtain

Ec.UP
c;T / < Ec.Uc;T / D mc;T ;

which contradicts the definition of mc;T (4.8) since UP
c;T 2XT . Therefore, we have shown

that (4.30) holds. Next, notice that

Ec.Uc;T I Œ�T; T �/ � mc;T C
a

c
e�cT < C1;

and for any � 2 C1c ..�T; T /; .H; k�kH// we have Uc;T C � 2 XT , so that

Ec.Uc;T / � Ec.Uc;T C �/:

Therefore, the restriction of Uc;T in .�T; T / is a local minimizer of Ec.�; Œ�T; T �/ in
the sense of Definition 3.1. Since Uc;T also verifies (4.30), we can apply the regularity
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assumption (H70). Therefore, Uc;T 2A..�T;T // and (4.26) holds. Assume now that there
exists t � T such that (4.27) holds. Then there exists vC.t/ 2 FC such that

kUc;T .t/ � vC.t/kL <
rC0
2

which, since Uc;T is continuous into L, implies that there exists ıC.t/ > 0 such that

8s 2 .t � ıC.t/; t C ıC.t//; kUc;T .s/ � vC.t/kL <
rC0
2
� dC.t/;

where

dC.t/ WD
1

2

�rC0
2
� kUc;T .t/ � vC.t/kL

�
> 0:

Therefore, if � 2 C1c ..t � ı
C.t/; t C ıC.t//; .H; k�kH// is such that

max
t2Œt�ıC.t/;tCıC.t/�

k�.t/kH �
dC.t/

2
;

we have

8s 2 .t � ıC.t/; t C ıC.t//; kUc;T .s/C �.s/ � vC.t/kL <
rC0
2
�
dC.t/

2
;

so that Uc;T C � 2 XT . Therefore,

Ec;T .Uc;T / � Ec;T .Uc;T C �/:

Since � is supported on Œt � ıC.t/; t C ıC.t/�, the previous argument implies that

Ec;T .Uc;T I Œt � ıC.t/; t C ıC.t/�/ � Ec;T .Uc;T C �I Œt � ıC.t/; t C ıC.t/�/;

so that Uc;T is a local minimizer of Ec.�I Œt � ıC.t/; t C ıC.t/�/ in the sense of Definition
3.1. Since (4.30) also holds, we can apply (H70) and obtain that Uc;T 2 A..t � ıC.t/;

t C ıC.t/// and equation (4.28) holds. If t � �T is such that (4.29) holds, the same
reasoning shows that for some ı�.t/ > 0, Uc;T 2 A..t � ı�.t/; t C ı�.t/// and (4.27)
holds, which concludes the proof of the result.

4.6. The comparison result

The goal of this section is to obtain relevant information on the behavior of the con-
strained minimizers. Such information is contained in Corollary 4.1 and it will allow us
to remove the constraints later on. In order to carry on these arguments, assumption (H80)
will become necessary since it will show that our problem can be somehow dealt with
as in the balanced one, which will allow us to argue in a fashion similar to Smyrnelis
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[48]. We begin by introducing some constants. For 0 < r � r˙0 , recall the definition of �˙r
introduced in (3.7), Lemma 3.1. We define

�C0 WD min
²s

e�1
rC0
4

r
2�C
rC0 =4

;
rC0
4

³
> 0; (4.33)

OrC WD
rC0

CC C 1
> 0; (4.34)

ECmax WD
1

.CC/2.CC C 1/
min

° .�C0 /2
4

; �C
�C0
; ˇC. OrC/; ˇC.�C0 /

±
> 0; (4.35)

where the constants C˙, ˇ˙. Or˙/; ˇ.�˙0 / were introduced in (H50). Recall that in (3.23),
(3.24), (3.25) we introduced the analogous constants

��0 WD min
²r

e�1
r�0
4

q
2.��

r�0 =4
C a/;

r�0
4

³
> 0; (4.36)

Or� WD
r�0

C� C 1
> 0 (4.37)

and

E�max WD
1

.C�/2.C� C 1/
min

° .��0 /2
4

; ����0
C a; ˇ�. Or�/; ˇ�.��0 /

±
> 0: (4.38)

For any U 2 XT , define

t�.U;E�max/ WD sup
®
t 2 R W E.U.t// � �aC E�max and distL.U.t/;F�/ �

r�0
2

¯
(4.39)

and

tC.U;ECmax/ WD inf
®
t 2 R W E.U.t// � ECmax and distL.U.t/;FC/ �

rC0
2

¯
: (4.40)

We have the following technical property:

Lemma 4.9. Assume that (H10) and (H50) hold. Let Or˙ > 0 be as in (4.34), (4.37) and
E˙max be as in (4.35), (4.38). Then, if v 2 F˙

r˙0
is such that

E.v/ � min¹˙a; 0º C ˇ˙. Or˙/; (4.41)

then

8� 2 Œ0; 1�; E.�vC .1� �/P˙.v//�min¹˙a;0º C C˙.E.v/�min¹˙a;0º/: (4.42)

In particular, if
E.v/ � min¹˙a; 0º C E˙max; (4.43)

then

8� 2 Œ0; 1�; E.�v C .1 � �/P˙.v// � min¹˙a; 0º C C˙E˙max: (4.44)

The constants E˙max, C˙ were defined in (4.38), (4.35) and (3.26) respectively, and P˙.u/
is the projection introduced in (H10).



R. Oliver-Bonafoux 242

Proof. Assume that (4.41) holds for v 2 F˙
r˙0

. Then, invoking (H50), we have v 2 FH; Or˙ ,
so in particular the projection P˙H.u/ is well defined. Fix � 2 Œ0; 1�. Since v 2 F˙

r˙0
, the

projection P˙.v/ is well defined by (H10). Using (3.14) we obtain

k�v C .1 � �/P˙.v/ � P˙.v/kH D �kv � P
˙.v/kH

� .C˙ C 1/kv � P˙H.v/kH � .C
˙
C 1/ Or˙ (4.45)

so that �v C .1 � �/P˙.v/ 2 F˙
H;r˙0

by the definition of Or˙ in (4.34), (4.37). Now using
(3.14) again, along with the estimate (3.16) in (H50), we get

kP˙.v/ � P˙H.v/k
2
H � .C

˙/2.E.v/ �min¹˙a; 0º/

which, plugging into (4.45), gives

k�v C .1 � �/P˙.v/ � P˙H.v/k
2
H �

1

2
..C˙/2 C .C˙ C 1/2/.E.v/ �min¹˙a; 0º/;

that, using (3.16) again, implies exactly (4.42). Assuming now that (4.43) holds, we have
by (4.38), (4.35) that in particular (4.41) holds. Therefore, (4.44) follows from (4.42).

Next we have the following property:

Lemma 4.10. Assume that (H50) and (H80) hold. Let c > 0 and T � 1. Assume that
U 2 XT is such that Ec.U / � 0. Then the quantities t�.U;E�max/ and tC.U;ECmax/ defined
in (4.39) and (4.40), respectively, are well defined as real numbers. Moreover, it holds that

E
�
U.t�.U;E�max//

�
� �aC E�max; distL.U.t�.U;E�max//;F

�/ �
r�0
2

(4.46)

and

E
�
U.tC.U;ECmax//

�
� ECmax; distL.U.tC.U;ECmax//;F

C/ �
rC0
2
: (4.47)

Proof. Using that Ec.U / � 0 and the fact that ¹t 2 R W E.U.t// > 0º is nonempty since
U 2 XT , we must have

¹t 2 R W E.U.t// < 0º 6D ;;

and if v 2 L is such that E.v/ < 0, then we have distL.v;F�/ � r�0 =2 by (3.29) in (H80)
and E.v/ < �aC E�max since we assume �aC E�max > 0. Therefore, t�.U;E�max/ is well
defined, as we have shown that®

t 2 R W E.U.t// � �aC E�max and distL.U.t/;F�/ �
r�0
2

¯
6D ;

and such a set is bounded above by T , because F�
r�0 =2
\ FC

rC0 =2
D ;. Using Lemma 4.3,

we have that tC.U; ECmax/ is well defined. Finally, inequalities (4.46) and (4.47) follow
because t 2R! E.U.t// 2R is lower semicontinuous by (H10) and t! distL.U.t/;F˙/
is continuous wheneverU.t/2F˙

r˙0 =2
by (H10) (recall that t 2R!U.t/2L is continuous

because U 2 H 1
loc.R;L/).
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The main work is done by the following result:

Proposition 4.1. Assume that (H50) and (H80) hold. Let c > 0 and T � 1. Consider U 2
XT with Ec.U / � 0. Let t˙ WD t˙.U;E˙max; �

˙
0 / be as in (4.39) and (4.40). Then t˙ are

well defined by Lemma 4.10. Moreover, if there exists Qt� < t� such that

r�0 � distL.U.Qt�/;F�/ �
r�0
2
; (4.48)

then we can find zU� 2 XT such that

8t � t�; distL. zU�.t/;F�/ <
r�0
2

(4.49)

and
Ec. zU�/ < Ec.U /: (4.50)

Analogously, if there exists QtC > tC such that

rC0 � distL.U.QtC/;FC/ �
rC0
2
; (4.51)

then we can find zUC 2 XT such that

8t � tC; distL. zUC.t/;FC/ <
rC0
2

(4.52)

and
Ec. zUC/ < Ec.U /: (4.53)

Furthermore, we have
0 < tC � t� � T?.c/; (4.54)

where
T?.c/ WD

1

c
ln
� a
˛?
C 1

�
; (4.55)

with ˛? > 0 a constant which is independent from c, T and U .

The idea of the proof of Proposition 4.1 is pictured in Figure 4.

Proof of Proposition 4.1. We begin by proving the first part of the result for F�. Recall
that Lemma 4.10 gives

E.U.t�// � �aC E�max; (4.56)

and U.t�/ 2 F�
r�0 =2

. Since E�max �
.��0 /

2

4.C�/2
by the definition of E�max, (4.38), we have by

(3.6) in (H10) and (H80) that

distL.U.t�/;F�/ � ��0 : (4.57)
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U

zUC

vC

rC0 =2

tC tCC1 QtC

U

zU�v�

r�0 =2

t�0 �1 Qt� t�0

U

zU�
U.t�0 /v� Qt� Qt�C1 t�0 � 1 t�0

Figure 4. As has been shown, the proof of Proposition 4.1 consists of showing that if the function
U gets too far from F˙ after getting too close, then we can find a suitable competitor with strictly
less energy. In the figure, we see a design for the positive case (the competitor zUC is represented in
blue). The second and third pictures correspond to the two possible scenarios for the negative case
(the competitor zU� is represented in blue).

Assume that there exists Qt� < t� such that (4.48) is satisfied. Moreover, we assume,
as we can, that

Qt� WD max
®
t � t� W distL.U.t/;F�/ �

r�0
2

¯
(4.58)

(the sup can be replaced by a max by continuity). Define

t�0 WD inf¹t 2 ŒQt�; t�� W E.U.t// � �aC E�max and distL.U.t// � ��0 º: (4.59)

Let v� WD P�.U.t�0 // 2 F�, with P� as in (H10). Notice that due to (4.58), we have

8t 2 Œt�0 ; t
��; dist.U.t/;F�/ <

r�0
2
: (4.60)

The proof now bifurcates according to two possible cases:

Case 1: t�0 � Qt
� C 1. In this case, set

zU�.t/ WD

8̂̂<̂
:̂

v� if t � t�0 � 1;

.t�0 � t /v
� C .t � t�0 C 1/U.t

�
0 / if t�0 � 1 � t � t

�
0 ;

U.t/ if t � t�0 ;
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which belongs to XT . Due to the definition of zU� and (4.60), we have that zU� satisfies
(4.49). It remains to check (4.50). We haveZ t�0

t�0 �1

ec. zU�.t// dt �
Z t�0

t�0 �1

h
kU.t�0 / � v�k2L

2
C E. zU�.t//

i
ect dt: (4.61)

Fix t 2 Œt�0 � 1; t
�
0 �. Choosing � D t � t�0 C 1 2 Œ0; 1� and applying (4.44) in Lemma 4.9

and (4.56), we have
E. zU�.t// � �aC C�E�max:

The previous fact combined with (4.57), (4.56) and (4.61) givesZ t�0

t�0 �1

ec. zU�.t// dt �
� .��0 /2

2
C C�E�max

�
ect
�
0 C
�a.ect

�
0 � ec.t

�
0 �1//

c
: (4.62)

The continuity of U and (4.48) implies that there exists Qt�2 2 .Qt
�; t�0 / such that

dist.U.Qt�2 /;F
�/ D

r�0
4

and 8t 2 ŒQt�; Qt�2 �; distL.U.t/;F�/ �
r�0
4
: (4.63)

Using (4.63), we get Z Qt�2
Qt�
kU 0.t/kLe

ct dt �
r�0 e

cQt�

4
(4.64)

and (4.63) also implies

8t 2 ŒQt�; Qt�2 �; E.U.t// � ��r�0 =4
: (4.65)

Inequalities (4.64) and (4.65) along with the definition of ��0 in (4.36) and Young’s
inequality giveZ Qt�2

Qt�
ec.U.t// dt �

r�0 e
cQt�0

4

q
2.��

r�0 =4
C a/ � a

ecQt
�
2 � ecQt

�

c

D e.��0 /
2ec
Qt�
� a

ecQt
�
2 � ecQt

�

c
;

which, also using that Qt� � t�0 � 1, gets toZ t�0

�1

ec.U.t// dt D
Z
.�1;t�0 �nŒQt

�;Qt�2 �

ec.U.t// dt C
Z Qt�2
Qt�

ec.U.t// dt

� e.��0 /
2ec
Qt�
� a

ect
�
0

c
� .��0 /

2ect
�
0 � a

ect
�
0

c
: (4.66)

Now using (4.62) we getZ t�0

�1

ec. zU�.t// dt D
Z t�0 �1

�1

ec. zU�.t// dt C
Z t�0

t�0 �1

ec. zU�.t// dt

�

� .��0 /2
2
C C�E�max

�
ect
�
0 �

aect
�
0

c
: (4.67)
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Therefore, subtracting (4.67) from (4.66), we getZ t�0

�1

ec.U.t// dt �
Z t�0

�1

ec. zU�.t// dt �
� .��0 /2

2
C C�E�max

�
ect
�
0 ;

which is positive because (4.38) implies

C�E�max �
.��0 /

2

4
:

Since zU� and U coincide in Œt�0 ;C1/, the proof of the first case is concluded.

Case 2: t�0 > Qt C 1. In such a case, set

zU�.t/ WD

8̂̂̂̂
<̂
ˆ̂̂:

v� if t � Qt�;

.t � Qt�/U.t�0 /C .Qt
� C 1 � t /v� if Qt� � t � Qt� C 1;

U.t�0 / if Qt� C 1 � t � t�0 ;

U.t/ if t�0 � t ;

which clearly belongs to XT and for all t � t�, U.t/ 2 F�
r�0 =2

by (4.60). We have that zU�

is constant in ŒQt� C 1; t�0 �, and thereforeZ t�0

Qt�C1

ec. zU�.t// dt � .�aC E�max/
ect
�
0 � ecQt

�C1

c

and, due to the definitions of E�max in (4.38) and t�0 in (4.59),Z t�0

Qt�C1

ec.U.t// dt � min¹�aC E�max; ���0 º
ect
�
0 � ecQt

�C1

c
�

Z t�0

Qt�C1

ec. zU�.t// dt;

because E�max C a > 0 by (H80) and t0 � Qt� C 1 by assumption. HenceZ C1
Qt�C1

ec. zU.t// dt �
Z 1
Qt�C1

ec.U.t// dt:

Arguing as in the first case scenario, we can prove thatZ Qt�C1
�1

ec. zU.t// dt <
Z Qt�C1
�1

ec.U.t// dt;

which concludes the proof of the second case.
To sum up, we have shown that if (4.48) is satisfied, then there exists zU� such that

(4.49) and (4.50) hold, as we wanted.
Assume now that there exists QtC > tC such that (4.51) holds. As before, Lemma 4.10

and the definition of ECmax, (4.35), imply that tC WD tC.U;ECmax/ is such that

distL.U.tC/;FC/ � �C0 (4.68)
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and
E.U.tC// � ECmax: (4.69)

We claim that we can assume without loss of generality that

8t 2 ŒtC;C1/; E.U.t// � 0: (4.70)

Indeed, if we can find t0 2 .tC;C1/ such that E.U.t// < 0, then by (H80) we have
E.U.t0// � �a C E�max and by (3.29) in (H80) we also have distL.U.t0/; F�/ � r�0 =2.
Therefore, we have by the definitions (4.39) and (4.40) that t� � t0 and tC > t�, a con-
tradiction since we assume t0 > tC.

For the positive case, the proof is simpler as it suffices to define vC WD PC.U.tC//
and

zUC.t/ WD

8̂̂<̂
:̂

vC if t � tC C 1;

.t � tC/vC C .tC C 1 � t /U.tC/ if tC C 1 � t � tC;

U.t/ if tC � t ;

which is such that U 2XT . Moreover, it holds that for all t � tC, we have zUC.t/ 2 FC
rC0 =2

.

Therefore, the requirements (4.52) and (4.53) hold for zUC. It remains to check that
(4.53) is also fulfilled. We haveZ tCC1

tC
ec. zUC.t// dt D

Z tCC1

tC

h
kU.tC/ � vCk2L

2
C E. zUC.t//

i
ect dt: (4.71)

Using (4.44) in Lemma 4.9 and (4.69), we getZ tCC1

tC
E. zUC.t//ect dt � CCECmaxe

c.tCC1/: (4.72)

Now using (4.68), we getZ tCC1

tC

kU.tC/ � vCk2L
2

ect dt �
.�C0 /

2

2
ec.t

CC1/: (4.73)

Plugging (4.72) and (4.73) into (4.71), we getZ tCC1

tC
ec. zUC.t// dt �

� .�C0 /2
2
C CCECmax

�
ect
CC1: (4.74)

Since for all t � tC C 1 we have zUC.t/ D vC, we obtain from (4.74),Z C1
tC

ec. zUC.t// dt �
� .�C0 /2

2
C CCECmax

�
ect
CC1: (4.75)

Next, notice that by continuity we can find QtC2 2 .t
C; QtC/ such that

dist.U.QtC2 /;F
C/ D

rC0
4

and 8t 2 ŒQtC; QtC2 �;
rC0
2
� distL.U.t/;FC/ �

rC0
4
: (4.76)
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Therefore, using (4.51) and (4.76), we obtainZ QtC
QtC2

kU 0.t/kLe
ct dt �

rC0
4
ect
CC1e�1 (4.77)

and (4.76), (3.6) in (H10) imply

8t 2 ŒQtC; QtC2 �; E.U.t// � �C
rC0 =4

: (4.78)

Inequalities (4.77), (4.78) yield, by Young’s inequality,Z QtC
QtC2

ec.U.t// dt �
rC0
4
ect
CC1e�1

r
2�C
rC0 =4
D .�C0 /

2et
CC1;

where the last equality is due to the definition of �C0 in (4.33). Combining with (4.70), we
get Z C1

tC
ec.U.t// dt � .�C0 /

2et
CC1:

The definition of ECmax in (4.35) together with (4.75) implies then thatZ C1
tC

ec.U.t// dt >
Z C1
tC

ec. zU�.t// dt;

which establishes (4.53).
We now show the last part of the proof: we show that (4.54) holds with the constant

T?.c/ defined in (4.55). The argument is the same as in [5, Lemma 2.10]. Assume by
contradiction that there exists t 2 .t�;C1/ such that E.U.t// < 0. Then, arguing as
above, we must have t < t� by the definition of t� in (4.39), a contradiction. Therefore,
we can write

Ec.U / D
1

2

Z
R
kU 0.t/k2Le

ct dt �

Z t�

�1

E�.U.t//ect dt C

Z
R

EC.U.t//ect dt; (4.79)

where E� and EC stand for the positive and the negative parts of E , respectively. We haveZ t�

�1

E�.U.t//ect dt �
a

c
ect
�

: (4.80)

Set ˛? WD min¹ECmax;E
�
max � aº > 0, which is independent of U , c and T . Notice that for

all t 2 .t�; tC/ we have E.U.t// � ˛?. Indeed, if E.U.t// < ˛?, then by the definition of
t� and tC in (4.39) and (4.40) we get

distL.U.t/;F˙/ �
r˙0
2
;

which implies that
E.U.t// � min¹�C

rC0 =2
; ��r�0 =2

� aº � ˛?;
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by (4.38) and (4.35), a contradiction. Therefore,Z
R

EC.U.t//ect dt �

Z tC

t�
EC.U.t//ect dt �

˛?

c
.ect

C

� ect
�

/: (4.81)

Plugging (4.80) and (4.81) into (4.79) and using that Ec.U / � 0, we obtain

0 � �
a

c
ect
�

C
˛?

c
.ect

C

� ect
�

/ �
�
�
a

c
C
˛?

c
.ec.t

C�t�/
� 1/

�
ect
�

;

that is,
0 � �

� a
˛?
C 1

�
C ec.t

C�t�/;

which implies

0 < tC � t� �
1

c
ln
� a
˛?
C 1

�
D T?.c/;

which is exactly (4.54) according to the definition (4.55).

The importance of Proposition 4.1 is summarized by the following result, which gives
important information on the behavior of the constrained minimizers:

Corollary 4.1. Assume that (H30), (H40), (H50) and (H80) hold. Let c > 0 and T � 1.
Let Uc;T be an associated minimizer of Ec in XT given by Lemma 4.7. Then, if t˙ WD
t˙.Uc;T ;E˙max/ are as in (4.39), (4.40), it holds that

8t � t�; distL.Uc;T .t/;F�/ <
r�0
2

(4.82)

and

8t � tC; distL.Uc;T .t/;FC/ <
rC0
2
: (4.83)

Moreover, we have
8t � t�; E.Uc;T .t// � 0: (4.84)

Finally, we have that if Ec.Uc;T / � 0, then

0 < tC � t� � T?.c/; (4.85)

where T?.c/ is as in (4.55). In particular, the function

c 2 .0;C1/! T?.c/

is continuous.

Proof. If we assume by contradiction that (4.83) does not hold, then we necessarily have
that there exists Qt� < t� such that (4.48) holds. Proposition 4.1 implies then the existence
of zU 2XT such that Ec. zU/ < Ec.Uc;T /Dmc;T , a contradiction. Therefore, (4.83) holds.
Similarly, we can show that (4.82) also holds. Finally, in order to establish (4.84), we argue
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as in the proof Proposition 4.1. Indeed, due to the definition of t�, we have that for t � t�

it holds that either
E.Uc;T .t// � �aC E�max > 0

(which is (H80)) or

distL.Uc;T .t/;F�/ �
r�0
2

which by (3.29) in (H80) implies that E.Uc;T .t// � 0. Therefore, (4.84) holds and the
proof is concluded.

Moreover, Lemma 4.8 applies to Vc;T as follows:

Corollary 4.2. Assume that (H30), (H40), (H50) and (H80) hold. Let c > 0 and T � 1.
Let Uc;T be an associated minimizer of Ec in XT given by Lemma 4.7. Then, if t˙ WD
t˙.Uc;T ;E˙max/ are as in (4.39), (4.40), it holds that there exists ıc;T > 0 such that the set

Sc;T WD .�1; t
�
C ıc;T / [ .�T; T / [ .t

C
� ıc;T ;C1/

is such that Uc;T 2 A.Sc;T / (see (3.22)) and

U00c;T �B.Uc;T / D �cU0c;T in Sc;T : (4.86)

The proof of 4.2 is obtained in a straightforward manner by combining Lemma 4.8
with the information given by Corollary 4.1. Notice that Corollary 4.2 implies that con-
strained solutions are piecewise solutions and, in particular, they solve the equation for
times with large absolute value.

4.7. Existence of the unconstrained solutions

We now establish the existence of the unconstrained solutions making use of the previous
comparison results. As in [5, 6], we define the set

C WD
®
c > 0 W 9T � 1 and U 2 XT such that Ec.U / < 0

¯
: (4.87)

We first prove some important properties for C which are the same as [5, Lemma 2.12]
and [6, Lemma 27]:

Lemma 4.11. Assume that (H30), (H40) and (H50) hold. Let C be the set defined in (4.87).
Then C is open and nonempty. Moreover, if we assume that (H80) holds, then C is also
bounded with

sup C �

p
2a

d0
; (4.88)

where d0 was defined in (3.28).

Proof. First, we show that C 6D ;. For that purpose, consider the function ‰ introduced
in (4.9). Consider the function

f W c 2 .0;C1/! e�c
�
�
a

c
C e2c

Z 1

�1

�
k‰0.t/k2L

2
C E.‰.t//

�
dt

�
2 R;
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which is well defined by Lemma 4.4. We have that for all c > 0,

Ec.‰/ D
a

c
e�c C

Z 1

�1

�
k‰0.t/k2L

2
C E.‰.t//

�
ect dt � f .c/ (4.89)

and f is a continuous function such that limc!0 f .c/ D �1 because a < 0. Moreover,
we have that for all c > 0,

f 0.c/ D e�caC ce2c
Z 1

�1

�
k‰0.t/k2L

2
C E.‰.t//

�
dt > 0

and limc!C1 f .c/ D C1. Therefore, there exists a unique c‰ > 0 such that f .c‰/ D 0
and for all c < c‰ we have Ec.‰/ < 0 by (4.89). Therefore, .0; c‰/ � C , meaning that
C 6D ; as we wanted to show.

We next prove that C is open. Let c 2 C ; we have Ec.Uc;T / < 0, where Uc;T is
a minimizer of Ec in XT given by Lemma 4.7. By (4.6) in Lemma 4.3, there exists a
sequence .tn/n2N in ŒT;C1/ such that tn !C1 and

lim
n!1

E.Uc;T .tn//ectn D 0: (4.90)

Up to subsequences, we have that for all n 2 N, Uc;T .tn/ 2 FC
rC0

. Hence, we can define

Unc;T .s/ WD

8̂̂<̂
:̂

Uc;T .s/ if s � t ;

.1C tn � s/Uc;T .tn/C .s � tn/PC.Uc;T .tn// if tn � s � tn C 1;

PC.Uc;T .tn// if tn C 1 � s:

We have that for all n 2 N,

Ec.Unc;T .s// D
Z tn

�1

ec.Uc;T .s// ds C
kUc;T .tn/ � PC.Uc;T .tn//k2L

2
ectn

C

Z tnC1

tn

E.Unc;T .s//e
cs ds

� Ec.Uc;T /C
kUc;T .tn/ � PC.Uc;T .tn//k2L

2
ectn

C

Z tnC1

tn

E..1C tn�s/Uc;T .tn/C.s� tn/PC.Uc;T .tn///ectn ds; (4.91)

where we have used that tn � T in order to obtain the inequality. Let ˇC. OrC/ be as in
Lemma 4.9. Up to a subsequence, we have that for all n 2 N it holds that E.Uc;T .tn// �
ˇC. OrC/. Therefore, by Lemma 4.9 we have that for all � 2 Œ0; 1� and n 2 N it holds that

E
�
�Uc;T .tn/C .1 � �/PC.Uc;T .tn//

�
� CCE.Uc;T .tn//;
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where CC > 0 is independent of n (see (3.26)). Plugging into (4.91), we obtain that for all
n 2 N it holds that

Ec.Unc;T .s// � Ec.Uc;T /C
kUc;T .tn/ � PC.Uc;T .tn//k2L

2
ectn

C CCE.Uc;T .tn//ectn : (4.92)

Notice also that (4.90) implies in particular that

lim
n!C1

kUc;T .tn/ � PC.Uc;T .tn//k2Le
ctn D 0;

which, in combination with inequalities (4.90) and (4.92), together with the fact that

Ec.Uc;T / < 0;

gives that there exists N 2 N such that Ec.UNc;T / < 0. Since UNc;T is constant in ŒtN C 1;
C1/, we have that for all Qc > 0, EQc.UNc;T / < C1. Therefore, by Lemma 4.5 we have
that

Qc 2 .0;C1/! EQc.UNc;T / 2 R

is well defined and continuous. Therefore, we can find some ı > 0 such that for all Qc 2
.c � ı; cC ı/, EQc.UNc;T / < 0. As a consequence, we have .c � ı; cC ı/� C , which shows
that C is open.

We now assume that (H80) holds and we use it to establish the bound (4.88). In par-
ticular, we can apply Proposition 4.1. Let c > 0 and T � 1 be such that Ec.Uc;T / < 0

with Uc;T 2 XT a minimizing solution given by Lemma 4.7. Let t˙ WD t˙.Uc;T ;E˙max/ be
as in (4.39), (4.40). Inequality (4.85) in Proposition 4.1 implies that t� < tC. Recall the
definition of d0 in (3.28) and the fact that Uc;T .t˙/ 2 F˙

r˙0 =2
. These facts imply

d0 � kUc;T .tC/ � Uc;T .t�/kL: (4.93)

Since (H80) holds, we can use (4.84) in Corollary 4.1 to obtain

kUc;T .tC/ � Uc;T .t�/k2L � 2
Z

R

kU0c;T .t/k
2

2
ect dt

�e�ct� � e�ctC
c

�
� 2

�
Ec.Uc;T /C

a

c
ect
�
��e�ct� � e�ctC

c

�
:

Now using that Ec.Uc;T / � 0, the fact that t� < tC and (4.93), the inequality above
becomes

d20 � 2a
1 � ec.t

��tC/

c2
�
2a

c2
;

so that (4.88) follows.

We now have all the ingredients for establishing the existence of the unconstrained
solutions:
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Proposition 4.2. Assume that (H30), (H40), (H50), (H60), (H70) and (H80) hold. Let Nc 2
@.C/ \ .0;C1/, where @.C/ stands for the boundary of the set C defined in (4.87).
Then there exist xT � 1 such that m

Nc; xT D 0 (m
Nc; xT as in (4.8)) and xU 2 X xT an associated

minimizer of E Nc in X xT which does not saturate the constraints, i.e.

8t � xT ; distL.xU.t/;FC/ <
rC0
2

(4.94)

and
8t � �xT ; distL.xU.t/;F�/ <

r�0
2
: (4.95)

Moreover, xU 2 A.R/ and the pair . Nc; xU/ solves (3.1).

Remark 4.3. Notice that Lemma 4.11 implies that (under the necessary assumptions) the
set C is bounded, meaning that @.C/ \ .0;C1/ 6D ;. Such a fact, in combination with
Proposition 4.2, shows the existence of the unconstrained solutions.

Proof of Proposition 4.2. By Lemma 4.11, we have that C 6D ; is open, which implies
that @.C/ � R n C . Therefore, we have Nc 62 C . Recall that due to the definition of C in
(4.87), we have

8T � 1; m Nc;T � 0: (4.96)

The definition of the boundary allows us to consider a sequence .cn/n2N contained in C

such that cn ! Nc. Then, for each n 2 N, there exists Tn � 1 such that Ecn.Ucn;Tn/ < 0,
where, for each n 2 N, Ucn;Tn is a minimizer of Ecn in XTn . For each n 2 N, set t˙n WD
tC.Ucn;Tn ;E˙max/ as in (4.39), (4.40). Using (4.85) in Corollary 4.1 we have

8n 2 N; 0 < tCn � t
�
n � T?.cn/;

and the function
c 2 .0;C1/! T?.c/ 2 .0;C1/

is continuous. Since the sequence .cn/n2N is bounded, we have

T? WD max
®
1; supn2N T?.cn/

¯
< C1

and
8n 2 N; 0 < tCn � t

�
n � T?; (4.97)

so that we have a bound on .tCn � t
�
n /n2N . Moreover, (4.82) and (4.83) in Corollary 4.1

imply

8n 2 N; 8t � tCn ; distL.Ucn;Tn.t/;F
C/ <

rC0
2

(4.98)

and

8n 2 N; 8t � t�n ; distL.Ucn;Tn.t/;F
�/ <

r�0
2
: (4.99)
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For each n 2 N, define the function Ut
C
n

cn;Tn
WD Ucn;Tn.� C tCn /. Then (4.97) implies that

(4.98) and (4.99) can be written as

8n 2 N; 8t � 0; distL.U
tCn
cn;Tn

.t/;F�/ <
r�0
2

and

8n 2 N; 8t � �T?; distL.Ucn;Tn.t/;F
�/ <

r�0
2
;

so that for all n 2 N we have Ut
C
n

cn;Tn
2 XT? . Moreover, a computation shows

8n 2 N; Ecn.U
tCn
cn;Tn

/ D e�cnt
C
n Ecn.Ucn;Tn/ < 0:

Therefore, if we apply Lemma 4.6 with sequence of speeds .cn/n2N and the sequence
.Ut

C
n

cn;Tn
/n2N in XT? , we obtain xU 2 XT? such that

E Nc.xU/ � lim inf
n!1

Ecn.U
tCn
cn;Tn

/ � 0;

which in combination with (4.96) implies that m Nc;T? D 0. Therefore, we have E Nc.xU/ D 0,
so that xU is a minimizer of E Nc in XT? . Set t˙? WD t

˙.xU;E˙max/ as in (4.39), (4.40). Invoking
(4.96) and Corollary 4.2, we obtain that for all T � 1 such that m Nc;T D 0 and xU 2 XT ,
we have xU 2 A.S Nc;T / with

S Nc;T WD .�1; t
�
? C ı?.T // [ .�T; T / [ .t

C
? � ı?.T /;C1/ (4.100)

for some ı?.T / > 0 and

xU00 �B.xU/ D �NcxU0 in S Nc;T :

Moreover, using (4.82) and (4.83) in Corollary 4.1, we obtain as before that

8t � tC? ; distL.xU.t/;FC/ <
rC0
2

(4.101)

and

8t � t�? ; distL.xU.t/;F�/ <
r�0
2
: (4.102)

Therefore, if we set xT D max¹1; tC? ;�t
�
? º, then (4.101) and (4.102) imply that xU 2 X xT

and that (4.94), (4.95) hold. Moreover, we have E Nc.xU/ D 0, so that xU is a minimizer of
E Nc in X xT by (4.96). Therefore, we obtain that xU 2 A.S

Nc; xT / and

xU00 �B.xU/ D �NcxU0 in S
Nc; xT ;

with S
Nc; xT as in (4.100). The choice of xT implies that S

Nc; xT DR. Therefore, xU 2A.R/ and
. Nc; xU/ solves (3.1), which finishes the proof.

Notice that our Proposition 4.2 follows very similar lines to the analogous results in
[5, 6].
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4.8. Uniqueness of the speed

The precise statement of the uniqueness result is as follows:

Proposition 4.3. Assume that (H60) and (H70) hold. LetX be the set defined in (3.30). Let
.c1; c2/ 2 .0;C1/

2 be such that there exist U1 and U2 in X \A.R/ such that .c1;U1/
and .c2;U2/ solve (3.1) and for each i 2 ¹1; 2º, Eci .Ui / < C1. Assume moreover that

8i 2 ¹1; 2º; 8j 2 ¹1; 2º n ¹iº; Eci .Uj / � 0: (4.103)

Then we have c1 D c2.

Proof. We prove the result by contradiction. Hence, we can assume without loss of gen-
erality that c1 < c2. A direct computation shows that for every .c; U / 2 .0;C1/ � .X \
A.R// a solution to (3.1), we have

8t 2 R;
kU 0.t/k2L

2
C E.U.t// D e�ct

�ect
c

�
E.U.t// �

kU 0.t/k2L
2

��0
: (4.104)

Replacing .c2; U2/ in (4.104) and multiplying for each t 2 R by ec1t , computations show
that

8t1 < t2; c1Ec1.U2I .t1; t2// D .c1 � c2/
Z t2

t1

kU02.t/k
2
Le

c1t dt

C

h
ec1t

�
E.U2.t// �

kU02.t/k
2
L

2

�it2
t1
: (4.105)

Notice now that the definition of X in (3.30) implies that

X D
[
T�1

XT ;

which means that there exists T � 1 such that U2 2 XT . Then, combining Lemma 4.1 and
the fact that Ec2.U2/ < C1, we get that ec2.U2.�// 2 L1.R/. Therefore, we can find two
sequences .tCn /n2N and .t�n /n2N such that t˙n !˙1 and

lim
n!1

ec2.U2.t
˙
n // D 0: (4.106)

Since we have c1 < c2, it holds that

8t 2 R; ec1t
ˇ̌̌
E.U2.t// �

kU02.t/k
2
L

2

ˇ̌̌
� jec2.U2.t//j;

which in combination with (4.106) implies

lim
n!1

ec1t
˙
n

�
E.U2.t˙n // �

kU02.t
˙
n /k

2
L

2

�
D 0: (4.107)
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Therefore, if we take t1 D t�n and t2 D tCn in (4.105) and then pass to the limit n!1,
then by (4.107) it follows that

c1Ec1.U2/ D .c1 � c2/
Z

R
kU02.t/k

2
Le

c1t dt < 0;

because we assume c1 < c2. However, by (4.103) we have Ec1.U2/ � 0, which is a con-
tradiction.

Remark 4.4. Again, the proof of Proposition 4.3 is essentially a direct adaptation of that
given in [5,6]. Our hypotheses are slightly weaker, since we only assume that the solutions
have finite energies and (4.103), while in [5, 6] it is assumed that the solutions are global
minimizers of the corresponding energy functionals. Notice also that (H80) is not needed
for proving Proposition 4.3, which holds in a more general setting.

Proposition 4.3 along with Proposition 4.2 allows us to show that the set C defined in
(4.87) is in fact an open interval:

Corollary 4.3. Assume that (H30), (H40), (H50), (H60), (H70) and (H80) hold. Let

c.C/ WD sup C :

Then we have C D .0; c.C//.

Proof. The statement of the result is equivalent to showing that

@.C/ \ .0;C1/ D ¹c.C/º:

The quantity c.C/ belongs to .0;C1/ because C is nonempty and bounded by Lemma
4.11. Therefore, we have c.C/ 2 @.C/ \ .0;C1/ because C is open, so it does not con-
tain its limit points. By Proposition 4.2, we find UC 2 X such that .c.C/;UC / solves
(3.1). Now let Nc 2 @.C/\ .0;C1/. If we show that Nc D c.C/, the proof will be finished.
Applying Proposition 4.2 with Nc, we find xU 2 X such that . Nc; xU/ solves (3.1). Proposition
4.2, along with the fact that Nc and c.C/ do not belong to C , also implies that

inf
U2X

E Nc.U / D E Nc.xU/ D 0 D Ec.C/.UC / D inf
U2X

Ec.C/.U /;

so that
Ec.C/.xU/ � 0 and E Nc.UC / � 0;

meaning that we can apply Proposition 4.3 to .c.C/;UC /, . Nc; xU/. As a consequence, we
have Nc D c.C/, which concludes the proof.

4.9. Proof of Theorem 4 completed

All the elements of the proof of Theorem 4 are already present in the previous res-
ult. Indeed, Proposition 4.2 along with Corollary 4.3 implies the existence of .c?;U/ 2
.0;C1/ � XT ? , a solution to (3.1) with c? D c.C/. Conditions (3.2) and (3.3) are satis-
fied due to the fact that U 2 XT ? . The statement regarding the uniqueness of the speed c?

follows from Proposition 4.3. Finally, we have that (4.7) is exactly the exponential rate of
convergence (3.31), which completes the proof.
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4.10. Asymptotic behavior of the constrained solutions at �1

As has been pointed out before, almost nothing can be said about the behavior of an arbit-
rary function in XT at �1. However, it turns out that constrained minimizers converge
exponentially at �1 with respect to the L-norm, provided that the speed fulfills an expli-
cit upper bound; see Proposition 4.4. Such an upper bound also allows us to establish some
other properties. Once Proposition 4.4 has been established, we will be able to complete
the proofs of Theorems 5 and 6. The results of this section are obtained by combining
ideas from Smyrnelis [48], Alikakos and Katzourakis [6] and Alikakos, Fusco and Smyr-
nelis [5]. It is worth pointing out that the arguments we present here strongly rely on the
fact that the solutions considered are minimizers and that we do not expect them to hold
for more general critical points.

We begin by showing a preliminary result, which follows by a direct computation:

Lemma 4.12. Assume that (H60) and (H70) hold. Let c > 0, t1 < t2 and U 2 A..t1; t2//

be such that
U 00 �B.U / D �cU 0 in .t1; t2/:

Then we have the formula

8t 2 .t1; t2/;
d

dt

�
E.U.t// �

kU 0.t/k2L
2

�
D ckU 0.t/k2L: (4.108)

Lemma 4.12 gives the following pointwise bounds for constrained solutions:

Lemma 4.13. Assume that (H30), (H40), (H50), (H60), (H70) and (H80) hold. Let Uc;T be a
constrained solution given by Lemma 4.7 and t� WD t�.Uc;T ;E�max/ be as in (4.39). Then
for all t < t� we have the inequality

kU0c;T .t/k
2
L

2
� E.Uc;T .t//C a: (4.109)

Similarly, it holds that for all t > tC,

E.Uc;T .t// �
kU0c;T .t/k

2
L

2
; (4.110)

where tC WD tC.Uc;T ;ECmax/ is as in (4.40).

Proof. Notice that (4.86) in Corollary 4.2 implies that Uc;T solves

U00c;T �B.Uc;T / D �cU0c;T in .�1; t�/:

Therefore, the function

fc;T W t 2 .�1; t
��! ect

�
E.Uc;T .t//C a �

kU0c;T .t/k
2
L

2

�
;
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is C 1 and we clearly have fc;T 2 L1..�1; t��/. By (4.108) in Lemma 4.12, we have

8t 2 .�1; t�/; f 0c;T .t/ D cfc;T .t/C ce
ct
kU0c;T .t/k

2
L � 0; (4.111)

and we also have f 0c;T 2 L
1..�1; t�//. Therefore, it holds that

lim
t!�1

fc;T .t/ D 0: (4.112)

Fix t1 < t2 � t�. Integrating (4.111) in Œt1; t2� we get

fc;T .t2/ � fc;T .t1/;

which in combination with (4.112) gives

8t < t�; fc;T .t/ � 0;

which is (4.109). Inequality (4.110) is obtained in an identical fashion.

We conclude this section by proving the exponential convergence result, which is
inspired by the ideas in Smyrnelis [48, Proof of (28)].

Proposition 4.4. Assume that (H30), (H40), (H50), (H60), (H70) and (H80) hold. Let c > 0
and T � 1. Assume moreover that c < 
�, where 
� is defined in (3.27). Let Uc;T be
a constrained solution given by Lemma 4.7. Then there exists xM� > 0 such that for all
" 2 .0; 
� � c/ and t 2 R it holds thatZ t

�1

�
E.Uc;T .s//C a

�
e�"s ds � xM�e.


��c�"/t : (4.113)

Furthermore, there exist M� > 0 and v�c;T 2 F� such that for all t 2 R,

kUc;T .t/ � v�c;T k
2
L �M

�e.

��c/t : (4.114)

Proof. Let t� WD t�.Uc;T ;E�max/ be as in (4.39). By applying (4.82) in Corollary 4.1, we
obtain that for all t � t�, Uc;T .t/ 2 F�

r�0 =2
. For all t � t�, define v�.t/ WD P�.Uc;T .t//.

Consider the function

zU�t .s/ WD

8̂̂̂<̂
ˆ̂:

v�.t/ if s � t � 1;

.t � s/v�.t/C .s � t C 1/Uc;T .t/ if t � 1 � s � t ;

Uc;T .s/ if t � s;

which belongs to XT . Therefore,

Ec.Uc;T / � Ec. zU�t /
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and, equivalently,Z t

�1

ec.Uc;T .s// ds

� �
a

c
ect C

Z t

t�1

�
kUc;T .t/ � v�.t/k2L

2
C
�
E. zU�t .s//C a

��
ecs ds: (4.115)

Using Lemma 4.9 and (3.6) in (H10), (4.115) becomesZ t

�1

ec.Uc;T .s// ds � �
a

c
ect C .C� C C�/

�
E.Uc;T .t//C a

�
ect ;

which gives Z t

�1

�
E.Uc;T .s// � a

�
ecs ds �

1


�

�
E.Uc;T .t//C a

�
ect ; (4.116)

where 
� was defined in (3.27). Define the function

��c;T W t 2 .�1; t
��!

Z t

�1

�
E.Uc;T .s//C a

�
ecs ds 2 R: (4.117)

By (H70), the function ��c;T defined in (4.117) verifies that for all t 2 .�1; t�/,

.��c;T /
0.t/ D

�
E.Uc;T .t//C a

�
ect

which, by (4.116), implies

8t � t�; 
���c;T .t/ � .�
�
c;T /

0.t/:

Now fix t 2 .�1; t�/ and assume that ��c;T .t/ > 0. The previous inequality is equivalent
to


� �
�
ln.��c;T .t//

�0
:

which, by integrating in Œt; t��, becomes


�.t� � t / � ln.��c;T .t
�// � ln.��c;T .t//;

hence

e

�.t��t/

�
��c;T .t

�/

��c;T .t/
;

that is,
��c;T .t/e


�.t��t/
� ��c;T .t

�/;

which clearly also holds if we drop the assumption ��c;T .t/ > 0, as ��c;T is a nonnegative
function. Thus, we have shown that

8t � t�; ��c;T .t/ � �
�
c;T .t

�/e�

�.t��t/: (4.118)
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Now we have that using (4.118) we get for any fixed t � t� � 1, " > 0 and i 2 N,Z t�i

t�i�1

�
E.Uc;T .s//C a

�
e�"s ds

� e�.cC"/.t�i�1/
Z t�i

t�i�1

�
E.Uc;T .s//C a

�
ecs ds

� e�.cC"/.t�i�1/��c;T .t
�/e�


�.t��tCi/

D e.cC"/.1�t
�/��c;T .t

�/e.

��c�"/.t�t�/e.cC"�


�/i : (4.119)

Since we assume that c < 
�, by choosing any " 2 .0; 
� � c/ it holds thatX
i2N

e.cC"�

�/i
D

1

1 � e.cC"�

�/
;

which, in combination with (4.119), gives (4.113) (notice that the case t > t� � 1 presents
no problem, as e.


��c�"/t is then large). Therefore, by (4.109) in Lemma 4.13 we have
that for all " 2 .0; 
� � c/ and t 2 R,Z t

�1

kU 0.s/k2L
2

e�"s ds � xM�e.

��c�"/t ;

which, by the Cauchy–Schwarz inequality, means thatZ t

�1

kU0c;T .s/kL ds �
�
e"t

"

Z t

�1

kU0c;T .s/k
2
Le
�"s ds

� 1
2

�
2 xM�

"
e.

��c/t ; (4.120)

where we have used that lims!�1 e
"s D 0, because " > 0. Since c < 
�, in particular,

inequality (4.120) implies the existence of some Qv� 2 L such that

lim
t!�1

kUc;T .t/ � Qv�kL D 0: (4.121)

Inequality (4.120) also implies that for all Qt < t 2 R we have

kUc;T .t/ � Uc;T .Qt�/kL �
2 xM�

"
e.

��c/t ;

which by taking the limit Qt ! �1 and using (4.121) gives (4.114), by choosing for
instance " D .
� � c/=2 2 .0; 
� � c/ and M� D 2 xM�

"
> 0.

Remark 4.5. Notice that combining (4.113) in Proposition 4.4 with (4.109) in Lemma
4.13, we obtain in particular that U0c;T 2L

2.R;L/ provided that c < 
� (see the statements
of the results for the notation).
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4.11. Proof of Theorem 5 completed

Assume first that (H80) holds. Let .c?;U/ be the solution to (3.1) with conditions at infinity
(3.2) and (3.31) given by Proposition 4.2 and Lemma 4.3. Since we took c? D sup C with
C as in (4.87), inequality (4.88) in Lemma 4.11 implies that

c? �

p
2a

d0
;

which by (3.32) in (H90) implies that

c? < 
�;

so that we can apply (4.114) in Proposition 4.4 to U, as it is a minimizer of Ec? in XT ?
for some T ? � 1. Therefore, (3.33) holds for U, which completes the proof.

4.12. Proof of Theorem 6 completed

Since we assume that (H90) holds and zU is such that zU2XT for some T � 1 and Ec?.zU/D
0, then by Proposition 4.2, we can apply Proposition 4.4 to U. We recall that by Remark 4.5
we have U0 2 L2.R;L/ and by (4.113) in Proposition 4.4 we have E ı U 2 L1..�1; t �/
for all t 2 R. Therefore, we can find a sequence .t�n /n2N in R such that

lim
n!1

t�n D �1 (4.122)

and

lim
n!1

�
E.U.t�n // � a �

kU0.t�n /k2L
2

�
D 0: (4.123)

Similarly, since Ec.U/ D 0 < C1, we have E ı U 2 L1.Œt;C1// for all t 2 R, which
means that we can find .tCn /n2N , a sequence of real numbers such that

lim
n!1

tCn D C1 (4.124)

and

lim
n!1

�
kU0.tCn /k2L

2
� E.U.tCn //

�
D 0: (4.125)

Taking the scalar product in L between equation (3.1) and U0, we obtain

8t 2 R; hU00.t/;U0.t/iL � hB.U.t//;U0.t/iL D �ckU0.t/k2L

so that
8t 2 R; hU00.t/;U0.t/iL �

�
E.U.t//

�0
D �c?kU0.t/k2L:

Fix n 2 N. Integrating the equality above in Œt�n ; t
C
n � (which is nonempty up to an extrac-

tion) we obtainZ tCn

t�n

hU00.t/;U0.t/iL dt � E.U.tCn //C E.U.t�n // D �c
?

Z tCn

t�n

kU0.t/k2L dt: (4.126)
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Integrating by parts we obtainZ tCn

t�n

hU00.t/;U0.t/iL dt D kU0.tCn /k
2
L � kU

0.t�n /k
2
L �

Z tCn

t�n

hU0.t/;U00.t/iL dt;

which means Z tCn

t�n

hU00.t/;U0.t/iL dt D
1

2
.kU0.tCn /k

2
L � kU

0.t�n /k
2
L/:

Plugging into (4.126) we obtain

� aC
�
E.U.t�n //C a �

kU0.t�n /k2L
2

�
C

�
kU0.tCn /k2L

2
� E.U.tCn //

�
D �c?

Z tCn

t�n

kU0.t/k2L dt:

Using (4.122), (4.123), (4.124) and (4.125), along with the fact that U0 2 L2.R;L/, we
can pass to the limit n!1 and we get that

�a D �c?
Z

R
kU0.t/k2L dt;

which shows (3.34). We now show that (3.35) holds. Inspecting the proof of Theorem 4
again, we have that c? is equal to c.C/ as in Corollary 4.3. Take c < c?; then by Corollary
4.3 we have c 2 C . The definition of C in (4.87) implies then that

9T � 1; inf
U2XT

Ec.U / < 0

which, by considering zU 2XT such that Ec. zU/ < 0 and then the sequence . zU.� C n//n2N

which is contained in X , implies that infU2X Ec.U / D �1. If we now take c > c?, we
have again by Corollary 4.3 that

8T � 1; inf
U2XT

Ec.U / � 0

which means
inf
U2X

Ec.U / D 0:

Therefore, (3.35) follows. Finally, we have that (3.36) is exactly (4.88) in Lemma 4.11.

5. Proofs of the main results completed

Once we have proven the abstract results, we are ready to prove the main ones. In order
to do this, we need to show that the main problem can be put into the abstract framework.
This is shown in Lemma 5.1 which is in Section 5.1. The next sections are then devoted
to the conclusion of the proofs of the main results, which are Theorems 1 and 3. However,
as pointed out before, we do not have a counterpart of Theorem 2 in the abstract setting,
which means that we prove it using arguments relative to the main setting.
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5.1. Proving the link between the main setting and the abstract setting

The following result establishes the link between the main assumptions and the abstract
ones. As a consequence, the main results can be deduced from the abstract framework,
which we have already established.

Lemma 5.1. Assume that (H5) holds. Set

L WD L2.R;Rk/; H WD H 1.R;Rk/; zH WD H 2.R;Rk/; (5.1)

r˙0 WD �
˙
0 (5.2)

and

8v 2 L; E.v/ WD

´
E. C v/ �mC if v 2 H;

C1 otherwise;

where mC was introduced in (H5). The constants �˙0 are those from (2.4) and the func-
tion  is any smooth function in X.��; �C/ converging to �˙ at ˙1 at an exponential
rate and such that  0 2 H 2.R;Rk/. Finally, we set F˙ D F ˙ �  . Under this choice,
assumptions (H10), (H20), (H30), (H40), (H50), (H60) and (H70) hold. Moreover, we have
that

• if (H6) holds, then (H80) and (H90) hold.

Proof. The fact that the functional

v 2 H! E. C v/

is well defined and, moreover, is a C 1 functional on .H; k�kH/ is proven by classical
arguments. See, for instance, Bisgard [15], Montecchiari and Rabinowitz [32]. See also
[37] for the precise statement in this setting. We now pass to proving that the assumptions
are satisfied.

Assumption (H10) is satisfied: The fact that E is weakly lower semicontinuous in L is
standard; see [48, Lemma 3.1]. We have already invoked Schatzman [46, Lemma 2.1], so
that (2.4) and (2.5) hold. That is, due to (5.2) we have that if

inf
�2R
kv C  � q˙.� C �/kL � r

˙
0 ; (5.3)

there is a unique �.v/ 2 R which attains the infimum in (5.3). Moreover, the correspond-
ence v ! �.v/ defined on the subset of L composed of functions that verify (5.3) is of
class C 2. Therefore, the applications

P˙W v 2 F�
r˙0 =2
! q˙.� C �.v// �  2 F˙ (5.4)

satisfy the properties required. Finally, we have that estimate (3.6) follows by [34, Lemma
3.2], up to modifying the choice of the constants �˙0 , ˇ˙0 .
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Assumption (H20) is satisfied: By (5.1), we have zH � H � L and the associated norms
verify

k�kL � k�kH � k�k zH:

As we pointed out before, E restricted to .H; k�kH/ is a C 1 functional. Moreover, as
shown in [15, 32], we have that the differential is given by

8v 2 H; DE.v/Ww 2 H!

Z
R
.h 0 C v0; w0i C hrV. C v/; wi/ 2 R: (5.5)

Now let v 2 zH; since  is smooth with good behavior at infinity we can integrate by parts
to get

8w 2 H; DE.v/.w/ D

Z
R
h�. 00 C v00/CrV. C v/; wi

D hB.v/; wiL; (5.6)

where we have set

BW v 2 . zH; k�k zH/! �. 
00
C v00/CrV. C v/ 2 .L; k�kL/;

which, by standard arguments, can be shown to be continuous. Notice that (3.9) in (H20)
is exactly (5.6) above, which concludes this part of the proof.

Assumption (H30) is satisfied: Let .v�n /n2N be an L-bounded sequence in F�. We want
to show the existence of a subsequence of .v�n /n2N strongly convergent in H. Since

F� D F � �  D
®
q�.� C �/ �  W � 2 R

¯
;

we have .v�n /n2N D .q
�.� C �n/� /n2N with .�n/n2N a bounded sequence of real num-

bers. Since such a sequence is bounded in L, we know that, up to an extraction, there exists
Qv 2 L such that q�.� C �n/�  * Qv weakly in L. Due to the weak lower semicontinuity
of E , we have

E. Qv/ � lim inf
n!C1

E.q�.� C �n/ �  / D a;

which, by minimality, implies that E.v/ D 0, that is, Qv 2 F�. We can then write Qv D
q�.� C �/ �  for some � 2 R. Now, notice that, by the compactness of minimizing
sequences (2.2), there exists a sequence .� 0n/n2N of real numbers such that, up to an extrac-
tion,

q�.� C �n C �
0
n/ � q� ! 0 strongly in H (5.7)

which necessarily implies that
�n C �

0
n ! 0

and, since .�n/n2N is bounded, we have that .� 0n/n2N is a bounded sequence as well.
Therefore, we can assume, up to an extraction, that � 0n ! � . Combining this information
with (5.7), we obtain

q�.� C �n/ � q�.� � ��/! 0 strongly in H;

which establishes the claim.
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We need to show the same for FC. The argument is identical to the one above, except
for the fact that the compactness of minimizing sequences is replaced by (3) in assumption
(H5), which is in fact stronger, and we use that the elements in FC are local minimizers
(instead of global ones), which does not require any modification of the reasoning.

Assumption (H40) is satisfied: More precisely, we show that (2) in (H40) holds. Notice that
since the results are local in nature and (H10) implies that locally the situation does not
change between F� and FC, we can treat both cases together. Let .v; v˙/ 2 F˙

r˙0
� F˙.

Let �.v/ be given by the projection map defined in (5.4). We have v˙ D q˙.� C �/ �  

for some � 2 R. Define

yP˙
.v;v˙/Ww 2 L! w.� � �.v/C �/ �  C  .� � �.v/C �/ 2 L:

Clearly, using the definition of the projection in (5.4) and �.v/,

k yP˙
.v;v˙/.v/ � v˙kL D



v.� � �.v/C �/ � �q˙.� C �/ �  .� � �.v/C �/�


L

D


v � �q˙.� C �.v// �  �



L
D inf
Q�2R
kv � .q˙.� C Q�/ �  /kL;

meaning that
P˙. yP˙

.v;v˙/.v// D v˙

and
distL. yP˙.v;v˙/.v/;F

˙/ D distL.v;F˙/;

which are (3.10) and (3.11) respectively. Next, notice that for .w1; w2/ 2 L2 and h 2 R
we have

yP˙
.v;v˙/.w1 C hw2/ D

yP˙
.v;v˙/.w1/C hw2.� � �.v/C �/

so that yP˙
.v;v˙/ is differentiable and

8.w1; w2/ 2 L2; D. yP˙
.v;v˙//.w1; w2/ D w2.� � �.v/C �/;

so that
8.w1; w2/ 2 L2; kD. yP˙

.v;v˙//.w1; w2/kL D kw2kL;

which is (3.12). Finally, notice that Qv 2 H if and only if yP˙
.v;v˙/. Qv/ 2 H. Assuming that

Qv 2 H we have

E. yP˙
.v;v˙/. Qv// D E

�
Qv.� � �.v/C �/ �  C  .� � �.v/C �/

�
D E

�
Qv.� � �.v/C �/C  .� � �.v/C �/

�
D E. C Qv/ D E. Qv/

and if Qv 2 L nH, we have E. yP˙
.v;v˙/. Qv// D C1 D E. Qv/. Therefore, (3.13) holds. We

have then showed that (H40) holds.
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Assumption (H50) is satisfied: Schatzman [46, Lemma 2.1] states that for v 2 F˙
H;r˙0

the
problem

inf
�2R
kv C  � q˙.� C �/kH

has a unique solution �H.v/ 2 R and the projection map

P˙H W v 2 F˙
H;r˙0

! q˙.� C �H.v// 2 F˙

is C 1 with respect to the H-norm. Next we have that (3.14) is [46, Corollary 2.3]. Finally,
the fact that (3.15) implies (3.16) for the constants C˙ (up to possibly increasing) is
a consequence of the compactness of the minimizing sequences. See, for example, [46,
Corollary 3.2].

Assumption (H60) is satisfied: We show the existence of the map P. We follow [46,
Lemma 3.3]. Let R0 > 0 be the constant from (H2). For R � R0, define in Rk ,

fR.u/ WD

8<:u if juj � R;

R
u

juj
otherwise;

where R0 is the constant from (H2). For u 2 Rk such that juj � R, we have fR.u/ D u.
Assume that u 2 Rk is such that juj > R. In that case, there exists � 2 . R

juj
; 1/ such that

V.u/ D V.fR.u//C hruV.�u/; u � fR.u/i

D V.fR.u//C
1

�

�
1 �

R

juj

�
hruV.�u/; �ui

which, by (H2), implies

8R � R0; 8u 2 Rk W juj > R; V.u/ � V.fR.u//C
1

�

�
1 �

R

juj

�
�0j�uj

2

> V.fR.u//: (5.8)

In particular, we have shown

8R � R0; 8u 2 Rk ; V .u/ � V.fR.u//: (5.9)

Next, let J � R be a compact interval and v 2 H 1.J;Rk/. For R � R0, consider the
function vR WD fR ı v. Since we clearly have that for all u 2 Rk , jfR.u/j � juj, it holds
that vR 2L2.J;Rk/. Next we have that fR is the projection onto the closed ball of center 0
and radius R, so that it is nonexpansive. As a consequence, we have

8R � R0; 8u 2 Rk ; jDfR.u/j � 1: (5.10)

Therefore, applying the chain rule we obtain

for a.e. t 2 J ; jv0R.t/j � jv
0.t/j;



Heteroclinic traveling waves of two-dimensional parabolic Allen–Cahn systems 267

which means that vR 2 H 1.J;Rk/ and, combining with (5.9), we obtain

E.vRIJ / � E.vIJ /; (5.11)

and, by (5.8), the equality above holds if and only if vR D v. Now let

Rmax WD 2max
®
R0; kq

�
kL1.R;Rk/; kq

C
kL1.R;Rk/

¯
:

Now consider the application

PW v 2 L! fRmax ı .v C  / �  2 L; (5.12)

which is well defined due to the previous considerations. Moreover, the choice of Rmax

implies that P equals the identity on ¹q�.� C �/� W � 2Rº and ¹qC.� C �/� W � 2Rº,
which is exactly (3.21). Inequality (5.11) gives (3.19). Finally, using (5.10) we have

8.v1; v2/ 2 L2; kP.v1/ �P.v2/k
2
L D

Z
R
jfRmax ı .v1 C  / � fRmax ı .v2 C  /j

2

�

Z
R

sup
u2Rk

jDfRmax.u/j
2
jv1 � v2j

2

�

Z
R
jv1 � v2j

2
D kv1 � v2k

2
L;

which is (3.20). Therefore, our map P satisfies the required properties.

Assumption (H70) is satisfied: Let W be a local minimizer of Ec . We show that W satisfies
the desired regularity properties, that is, W 2 A.I / with A.I / as in (3.22). Write SW WD
WC . We assume that for all t 2 I , W.t/DP.W/. The definition of P in (5.12) implies
that

8.x1; x2/ 2 I �R; SW.x1; x2/ D fRmax.
SW.x1; x2//

so that
kSWkL1.I�R;Rk/ � Rmax:

Therefore, by classical elliptic regularity arguments, we have that, with the obvious iden-
tifications, SW solves

�c@x1
SW ��SW D �ruV.SW/ in I �R;

and for all ˛ 2 .0; 1/ we have SW 2 C3;˛.IC �R;Rk/ for any compact IC � I . It is then
clear that

W 2 C2.IC ; L
2.R;Rk// \ C1.IC ;H

1.R;Rk// \ C0.IC ;H
2.R;Rk//

for any IC � I compact, which means that W 2 A.I /.

Assumption (H6) implies (H80) and (H90): Immediate.

Once Lemma 5.1 has been established, the main results are easily obtained by reph-
rasing the abstract ones.
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5.2. Proof of Theorem 1 completed

Assume that (H6) holds. Notice that (H6) implies that (H1), (H2), (H3), (H4) and (H5)
hold. Therefore, applying Lemma 5.1 we have that, choosing the objects as in its state-
ment, we get that (H30), (H40), (H50), (H60), (H70) and (H80) hold. Those are exactly the
assumptions which are needed for Theorem 4 to hold, meaning that we obtain .c?;U/with
c? > 0 and U 2 A.R/ \X , with A.R/ as in (3.22) and X as in (3.30), which solves

U00 �B.U/ D �cU0 in R (5.13)

and satisfies the conditions at infinity

9T � � 0W 8t � T �; U.t/ 2 F�r�0 =2
and

9vC.U/ 2 FCW lim
t!C1

kU.t/ � vC.U/kH D 0: (5.14)

We now pass to proving each of the three statements of Theorem 1 separately:

(1) Existence. Recall that for all t 2 R we have U.t/ 2 L D L2.R;Rk/. Let us then
define

UW .x1; x2/ 2 R2 ! U.x1/.x2/ 2 Rk : (5.15)

It is clear then that since U 2 A.R/ we have U 2 C2loc.R;R
k/ and, moreover, for

all .x1; x2/ and any pair of indexes .i; j / 2 ¹0; 1; 2º2 such that i C j � 2, we have

@ix1@
j
x2

U.x1; x2/ D .U.i/.x1//.j /.x2/; (5.16)

where for a curve f taking values in a Hilbert space we denote by f .i/ its i th
derivative, i 2 N. As a consequence of (5.13), (5.16) and the formula for DE ,
when we make E D E �mC (see (5.5)) we obtain that

�c@x1U ��U D �ruV.U/ in R2;

and by (5.14) we obtain that for some L 2 R we have for some x1 � L that
U.x1; �/ 2 F �

��=2
, since we choose r˙0 D �

˙, so that F ˙
�˙=2

D F˙
r˙0 =2

. The vari-
ational characterization (2.12) follows directly from Theorem 1, using the fact that
we have X D S and Ec D E2;c for all c > 0 (again we implicitly identify U with
U via (5.15)). Finally, we have that for all t 2 R, U.t/ D P.U.t//. According to
the choice of P made in Lemma 5.1, this implies that kUkL1.R;Rk/ <C1, which
by classical Schauder theory and the smoothness properties of V , implies that for
all ˛ 2 .0; 1/, U 2 C2;˛.R2;Rk/. The proof of the existence part of Theorem 1 is
hence completed.

(2) Uniqueness of the speed. Again, we have X D S and Ec D E2;c for all c > 0,
meaning that the proof of this statement follows from the analogous one in The-
orem 4.
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(3) Exponential convergence. Using the exponential rate of convergence of U given
by Theorem 4, which is (3.31), we obtain that for some b > c?=2 it holds that

lim
x1!C1

kU.x1; �/ � qC.� C �C/kH1.R;Rk/e
bx1 D 0

for some �C 2 R. Applying Theorem 5, we obtain the exponential convergence at
�1. This concludes the proof of the statement.

The proof of Theorem 1 is concluded.

5.3. Proof of Theorem 2

We now provide the proof of Theorem 2, which is a consequence of the following results,
which are more general than required by Theorem 2 and might be of independent interest:

Lemma 5.2. Assume that (H1), (H2) and (H3) hold. Let . O��; O�C/ 2 †2 (possibly equal)
and q 2X. O��; O�C/. Assume moreover that there existLC 2R and U 2H 1

loc.ŒL
C;C1/�

R;Rk/ uniformly continuous and such thatZ C1
LC
jE.U.x1; �// �E.q/j dx1 < C1; (5.17)

lim
x1!C1

kU.x1; �/ � qkL2.R;Rk/ D 0: (5.18)

Then it holds that

lim
x1!C1

kU.x1; �/ � qkL1.R;Rk/ D 0 (5.19)

and

lim
x2!˙1

kU.�; x2/ � O�˙kL1.ŒLC;C1/;Rk/ D 0: (5.20)

Similarly, we have the following:

Lemma 5.3. Assume that (H1), (H2) and (H3) hold. Let . O��; O�C/ 2 †2 (possibly equal)
and q 2 X. O��; O�C/. Assume moreover that there exist L� 2R and U 2H 1

loc..�1;L
���

R;Rk/ uniformly continuous and such thatZ L�

�1

jE.U.x1; �// �E.q/j dx1 < C1;

lim
x1!�1

kU.x1; �/ � qkL2.R;Rk/ D 0: (5.21)

Then it holds that

lim
x1!�1

kU.x1; �/ � qkL1.R;Rk/ D 0 (5.22)

and

lim
x2!˙1

kU.�; x2/ � O�˙kL1..�1;L��;Rk/ D 0: (5.23)
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In the proofs of Lemmas 5.2 and 5.3, we will need to use the following fact:

Lemma 5.4. Assume that (H1), (H2) and (H3) hold. Let . O��; O�C/ 2 †2 (possibly equal)
and q 2 X. O��; O�C/. Assume that .qn/n2N is a sequence in X. O��; O�C/ such that

lim
n!1
kqn � qkL2.R;Rk/ D 0 (5.24)

and

lim
n!1

E.qn/ D E.q/: (5.25)

Then it holds that

lim
n!1
kqn � qkH1.R;Rk/ D 0: (5.26)

Proof. First, notice that
sup
n2N
kqnkL1.R;Rk/ < C1: (5.27)

Indeed, (5.25) implies that .q0n/n2N is bounded in L2.R;Rk/ which, in combination with
(5.24) means that .qn/n2N is bounded in H 1.R;Rk/, hence in L1.R;Rk/. We also have

rV.q/ 2 L2.R;Rk/; (5.28)

which follows easily from the fact that V is smooth and quadratic near the wells. For all
n 2 N, we write the expansion

V.qn/ D V.q/C hrV.q/; qn � qi C

Z 1

0

D2V.q C �.qn � q//.qn � q/.qn � q/ d�;

which holds pointwise in R. Therefore, the Cauchy–Schwarz inequality implies�Z
R
jV.qn/ � V.q/j

�2
�

�Z
R
jrV.q/j2 C sup

u2Rk

juj�kqn�qkL1

jD2V.u/j

�
kqn � qk

2
L2.R;Rk/

;

hence, by (5.27) and (5.28) we find a constant C > 0 such that for all n 2 N,Z
R
jV.qn/ � V.q/j � Ckqn � qkL2.R;Rk/;

which by (5.24) means that V.qn/ � V.q/! 0 in L1.R;Rk/. As a consequence, (5.25)
implies that

lim
n!1
kq0nkL2.R;Rk/ D kq

0
kL2.R;Rk/: (5.29)

Now suppose, by contradiction, that (5.26) does not hold. Then we can find a subsequence
.qnm/m2N and Oı > 0 such that for all m 2 N,

kqnm � qkH1.R;Rk/ �
Oı: (5.30)
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Since .q0nm/m2N is bounded in L2.R;Rk/, it converges weakly in L2 up to an extraction,
and the limit is q0 by uniqueness of the limit in the sense of distributions. By (5.29), we
have that such a subsequence also converges strongly in L2.R;Rk/, which combining
with (5.24) contradicts (5.30).

We now prove Lemma 5.2. The proof of Lemma 5.3 being analogous, we skip it.

Proof of Lemma 5.2. Assume by contradiction that (5.19) does not hold. Then we can find
a sequence .x1;n/n2N in ŒLC;C1/�R such that x1;n!C1 as n!1 as well as Oı > 0
such that for all n 2 N,

kU.x1;n; �/ � qkL1.R;Rk/ �
Oı:

By uniform continuity, there exists � > 0 such that for all n 2 N we have

max
x12Œx1;n��;x1;nC��

kU.x1; �/ � qkL1.R;Rk/ �

Oı

2
: (5.31)

Let A WD
S
n2N Œx1;n � �; x1;n C ��. By (5.17) we haveZ

A

�
E.U.x1; �// �E.q/

�
dx1 < C1;

and sinceA has positive measure and it is unbounded above, we find a sequence .y1;n/n2N

inA such that y1;n!C1 as n!1 and limn!1E.U.y1;n; �//DE.q/. Combining this
fact with (5.18), we have that assumptions (5.24) and (5.25) in Lemma 5.4 hold, which
means that

lim
n!1
kU.y1;n; �/ � qkH1.R;Rk/ D 0;

which contradicts (5.31). Therefore, we have shown that (5.19) holds. In order to prove
(5.20), we first show that there exists LC � LC such that

lim
x2!˙1

kU.�; x2/ � O�˙kL1.ŒLC;C1/;Rk/ D 0: (5.32)

We prove (5.32) by contradiction. The other case being handled in an analogous fashion,
assume that there exists a sequence .x2;n/n2N in R such that x2;n ! C1 as n!1, a
sequence .x1;n/n2N in ŒLC;C1/ tending toC1 and Oı > 0 such that for all n 2 N,

jU.x1;n; x2;n/ � O�Cj � Oı: (5.33)

Since we have already proven that (5.19) holds, there existsN1 2N such that for all n�N
we have

kU.x1;n; �/ � qkL1.R;Rk/ �

Oı

4
(5.34)

and, since q 2 X. O��; O�C/, there exists Ot 2 R such that for all t � Ot we have

jq.t/ � O�Cj �
Oı

4
: (5.35)
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Let N2 2 N be such that for all n 2 N, x2;n � Ot . Taking any n � max¹N1;N2º, we obtain
by (5.34) and (5.35) that

jU.x1;n; x2;n/ � O�Cj �
ı

2
;

which contradicts (5.33) and establishes (5.32). In order to establish (5.20), we handle the
limit x2!C1, as the other one is treated identically. Let �C† WD dist.�C;† n ¹�Cº/ > 0.
We claim that for every QL � LC we have that if

lim
x2!˙1

kU.�; x2/ � O�˙kL1.Œ QL;C1/;Rk/ D 0; (5.36)

then
lim

x2!˙1
kU.�; x2/ � O�˙kL1.Œ QL��C† ;C1/;Rk/ D 0; (5.37)

where
�C† WD min

°
QL � LC;

�†

4kDUkL1.R2;Rk/

±
: (5.38)

Such a claim allows us to easily complete the proof of (5.20) by a finite induction process,
due to the fact that (5.32) holds.

It remains to establish one claim in the proof of Lemma 5.2.

Proof that (5.36) implies (5.37). Assume that (5.36) holds. We show that for every " 2
.0; �C†/ we have

lim
x2!˙1

kU.�; x2/ � O�˙kL1.Œ QL��C†C";C1/;Rk/ D 0; (5.39)

which clearly implies (5.37) by uniform continuity. Then fix " 2 .0; �C†/. By assumption,
there exists NxC2 2 R such that for all x2 � NxC2 we have

jU. QL; x2/ � �
C
j �

�C†
4
;

which, by (5.38), implies that for all .x1; x2/ 2 Œ QL� �C† C "; QL� � Œ Nx2;C1/, it holds that

jU.x1; x2/ � �
C
j �

�C†
2

(5.40)

and the definition of �C† gives, in turn, that for all such .x1; x2/ and � 2† n ¹�Cº we have

jU.x1; x2/ � � j �
�C†
2
: (5.41)

Assume now that (5.39) does not hold. Then inequalities (5.40) and (5.41) imply that we
can find a sequence .x1;n; x2;n/n2N contained in Œ QL � �C† C "; QL� � Œ Nx2;C1/, such that
x2;n !C1 as n!1 and Oı > 0 such that for all n 2 N and � 2 †,

jU.x1;n; x2;n/ � � j � Oı:
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By uniform continuity, we can find � 2 .0; "/ such that for all n 2 N and

.x1; x2/ 2 B..x1;n; x2;n/; �/ � Œ QL � �
C

† ;
QL� � Œ Nx2;C1/;

we have for all � 2 †,

jU.x1; x2/ � � j �
Oı

2

or, equivalently,

V.U.x1; x2// � V Oı=2 WD min
®
V.u/ W u 2 Rk ; dist.u;†/ � Oı

2

¯
; (5.42)

which is positive by (H1) and (H3). Up to an extraction and since x2;n!C1 as n!1,
we can assume that whenever n 6D m we have

B..x1;n; x2;n/; �/ \ B..x1;m; x2;m/; �/ D ;;

which, due to the definition of �C† in (5.38) and (5.42), implies thatZ C1
LC
jE.U.x1// �E.q/j dx1 �

Z QL
QL��C†

E.U.x1// dx1 � �
C

†E.q/

�

X
n2N

�Z
B..x1;n;x2;n/;�/

V.U.x1; x2// dx1 dx2

�
� �C†E.q/

�

X
n2N

.��2V Oı=2/ � �
C

†E.q/ D C1;

which is in contradiction with (5.17). Therefore, the claim has been proven.

We now have all the necessary ingredients for completing the proof of Theorem 2:

Proof of Theorem 2 completed. Let .c?;U/ be the solution given by Theorem 1, inter-
preted via the choices made in Lemma 5.1. We will invoke Lemma 5.2. The L2 exponen-
tial convergence (2.13) given by Theorem 1 implies in particular that assumption (5.18) in
Lemma 5.2 holds with U D U, q D qC.� C �C/. Moreover, since E2;c?.U/ D 0 < C1,
assumption (5.17) in Lemma 5.2 holds for all L 2 R in view of the definition of E2;c?
(recall that c? > 0). Finally, we have by Theorem 1 that U 2 C2;˛.R2;Rk/, ˛ 2 .0; 1/, so
that U is uniformly continuous. As a consequence, Lemma 5.2 applies and we have (5.19)
and (5.20) for all L 2 R, and this is exactly

lim
x1!C1

kU.x1; �/ � qC.� C �C/kL1.R;Rk/ (5.43)

and
lim

x2!˙1
kU.�; x2/ � �

˙
kL1 (5.44)

for all L 2 R. We now show that we can invoke Lemma 5.3. We have that (2.14) in
Theorem 1 implies that (5.21) in Lemma 5.3 holds with U D U and q D q�.� C ��/.
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Moreover, the abstract result Proposition 4.4 in combination with Lemma 5.1 implies in
particular that for all L 2 R, (5.21) in Lemma 5.3 holds. Since U is uniformly continuous,
Lemma 5.3 applies, which means that (5.22) holds, so that we have proven

lim
x1!�1

kU.x1; �/ � qC.� C ��/kL1.R;Rk/ D 0;

which in combination with (5.43) gives (2.15). Moreover, for all L 2 R we have that
(5.23) holds, which combined with (5.44) (which also holds for all L 2 R) gives (2.16)
and completes the proof.

5.4. Proof of Theorem 3 completed

Assume that (H6) holds. Arguing as in the proof of Theorem 1, we have that the assump-
tions of Theorem 6 are fulfilled if we choose as in Lemma 5.1. Notice that Theorem 3 is
exactly Theorem 6 if we choose the abstract objects as in Lemma 5.1. Therefore, Theorem
3 is established.

6. Examples of potentials verifying the assumptions

The purpose of this section is to exhibit a rather general and elementary method in order to
produce examples of potentials for which the assumptions we make in this paper are satis-
fied. The idea is to modify a given multi-well potential V0WRk ! R satisfying (H1), (H2),
(H3) and (H4) such that the associated energy possesses two minimizing heteroclinics (up
to translations) in X.��; �C/. Recall that �� and �C are two wells of V0 such that the
strict triangle inequality for the infimums holds. Furthermore, we assume that the generic
Schatzman spectral assumption [46] is satisfied for these heteroclinics, meaning that the
constants defined in Section 2.5 (with the obvious modifications) also make sense here.
That is, one can think of any potential V0 satisfying the assumptions (H1), (H2), (H3) and
(H4), as well as a modification of (H5) in which mC Dm�. For the reader’s convenience,
we will recall here some explicit examples of such potentials which are available in the
existing literature.

The first of the examples is due to Antonopoulos and Smyrnelis; see [7, Remark 3.6].
Their idea is to find a symmetric potential and exploit such symmetries in order to obtain
multiplicity of globally minimizing heteroclinics. Let us sketch some details. First con-
sider VGL, which is the Ginzburg–Landau potential

VGLWu D .u1; u2/ 2 R2 !
.1 � juj2/2

4
2 R:

The idea is to perturb VGL in order to obtain a double-well potential with zero set

¹.�1; 0/; .1; 0/º

and symmetric with respect to the axis ¹u2 D 0º. The perturbed potential has a globally
minimizing heteroclinic qD .q1;q2/ between .�1; 0/ and .1; 0/. By symmetry, the curve
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Oq D .q1;�q2/ is also a globally minimizing heteroclinic, which is not a translate of q if
and only if q2 does not vanish identically on R. In order to ensure this, one shows that
the Lagrangian functional with Ginzburg–Landau potential VGL has curves connecting
.�1; 0/ and .1; 0/ with arbitrarily small energy. These curves are then used in order to
define the perturbed potential, zV0 and they have smaller Lagrangian energy (with respect
to zV0) than the infimum of the energy among curves of the type .q1; 0/. We refer to [7] for
more details. In a subsequent step, one performs an arbitrarily small perturbation on zV0 so
that q1 and q2 are nondegenerate, which is possible due to the fact that nondegeneracy is
generic; see, for example, Schatzman [46].

Another example, this time in dimension k D 3, is provided by Zuñiga and Sternberg
[50]. They consider the potential

zV0WuD .u1; u2; u3/! u21.1� u
2
1/
2
C

�
u22 �

1

2
.1� u21/

2
�2
C

�
u23 �

1

2
.1� u21/

2
�2
2R;

which vanishes exactly at the points

.�1; 0; 0/; .1; 0; 0/;�
0;

1
p
2
;
1
p
2

�
;
�
0;�

1
p
2
;
1
p
2

�
;
�
0;

1
p
2
;�

1
p
2

�
;
�
0;�

1
p
2
;�

1
p
2

�
:

By explicit computations, they show that the potential zV0 satisfies (H1), (H2), (H3) and
(H4) with �˙ WD .˙1; 0; 0/ and, moreover, that the infimum of the corresponding energy
zE0 in X.��; �C/ is not attained by a curve with trace contained in ¹u2 D u3 D 0º. Using

the reflections .0; u2; 0/! .0;�u2; 0/ and .0; 0; u3/! .0; 0;�u3/, one deduces the mul-
tiplicity up to translations of the globally minimizing heteroclinics for zE0 in X.��; �C/.
As above, one can obtain V0 arbitrarily close to zV0 such that the globally minimizing
heteroclinics satisfy the spectral assumption.

The core of this section is the following result:

Proposition 6.1. Let V0 be a multi-well potential as above. For each " > 0, there exists
V" which satisfies the assumptions (H1), (H2), (H3), (H4), (H5) and (H6) and such that
kV" � V0kC2.Rk/ � ".

In order to obtain Proposition 6.1, one performs an arbitrarily small smooth perturba-
tion of V0 around the trace of one of the heteroclinics (see Figure 5), in such a way that its
energy increases but a locally minimizing heteroclinic still exists (at least for small per-
turbations), which must necessarily have larger energy. One then chooses a perturbation
which is not too large so that the upper bound on the difference of the energies is met.

Proof of Proposition 6.1. Let q� and qC in X.��; �C/ be different up to translations and
such that

E0.q
�/ D E0.q

C/ D m0 WD inf
q2X.��;�C/

E0.q/;
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��

�C

q�

qC
qC
ı

supp.�/

Figure 5. Representation of the cutoff function � used in order to produce the family of perturbed
functionals Vı . We also draw the corresponding local minimizer qC

ı
(discontinuous curve).

where, for q 2 H 1
loc.R;R

k/,

E0.q/ WD

Z
R

h
jq0.t/j2

2
C V0.q.t//

i
dt:

Recall that there exist �˙0 such that

8q 2 X.��; �C/; distH1.R;Rk/.q;F
˙/ � �˙0

) distH1.R;Rk/.q;F
˙/2 � ˇ˙.E0.q/ �m0/;

where
F ˙ WD

®
q˙.� C �/ W � 2 R

¯
:

Let t0 2R be such that dist.qC.t0/;†/Dmaxt2R dist.qC.t/;†/ for some qC 2 F C, and
set u0 WD qC.t0/. Let

r WD min
®
�C0 =2; dist.qC.t0/; †/=2

¯
> 0:

Define � 2 C1c .R
k/ as such that 0 � � � 1, �D 1 on B.u0; r/ and supp.�/� B.u0; 2r/.

For each ı > 0, consider the potential Vı WD V0 C ı� � 0. Define

Eı.q/ WD

Z
R

h
jq0.t/j2

2
C Vı.q.t//

i
dt:

Notice that, by the choice of �, Vı vanishes exactly in V �10 .¹0º/. Now let q 2
X.��; �C/ be such that distH1.R;Rk/.q;F

C/ � �C0 =2. We have

m0 C
1

ˇC
distH1.R;Rk/.q;F

C/2 � E0.q/ < E0.q/C ı

Z
R
�.q/ D Eı.q/; (6.1)

and notice that for q 2 F C we have Eı.q/ D m0 C ıA
C
� with

AC� WD

Z
R
�.qC.t// dt > 0:
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A contradiction argument shows that

mC
ı
WD inf

®
Eı.q/ W q 2 X.�

�; �C/; distH1.R;Rk/.q;F
C/ � �C0 =2

¯
> m0;

and we have mC
ı
� Eı.q

C/ D m0 C ıA
C
� . Since the cutoff function is supported away

from †, we can show by the usual concentration-compactness arguments that there exists
qC
ı
2X.��;�C/ such that distH1.R;Rk/.q

C

ı
;F C/� �C0 =2 andEı.qCı /DmC

ı
. If we show

that distH1.R;Rk/.q
C

ı
;F C/ < �C0 =2, then the constraints of the minimization problem are

not saturated and qC
ı

is an actual critical point. Notice that if q 2 X.��; �C/ is such that
distH1.R;Rk/.q;F

C/D �C0 =2, then by (6.1) we obtainE0.q/�m0C .�
C
0 /
2=.4ˇC/>m0.

Then, if we take ı < ı1 with

ı1 WD
.�C0 /

2

4ˇCAC�
> 0;

it holds that Eı.q/ > E0.q/ �m0 C ıA
C
� �mC

ı
, so that q cannot be a minimum. There-

fore, for such a ı, items (1) and (2) in (H5) are satisfied for Eı with minimizing hetero-
clinics q� and qC

ı
, with the obvious modifications to the notation. Regarding item (3),

which is the spectral assumption of Schatzman [46], it is a generic assumption, meaning
that, arguing as in [46, Theorem 4.3], we find that Vı can be modified with an arbitrarily
small perturbation away from the traces of qC

ı
and q� so that (3) holds. As a consequence,

we can assume that (H5) holds for all ı 2 .0; ı1/. Regarding (H6), compute the constant
Emax as in (2.21), which by the choice of r and � does not depend on ı, and set

ı2 WD
Emax

AC�
> 0;

so that for all ı 2 .0; ı2/we have mC
ı
�m0 <Emax. Now define F �

��0 =2;ı
as in (2.7) for the

potential Vı for ı � 0. The choice of r and � implies that F �
��0 =2;ı

does not depend on ı,
so that we rename it F��0 =2. As a consequence, we can find ı3 such that for all ı 2 .0; ı3/
it holds that ®

q 2 X.��; �C/ W Eı.q/ < mC
ı

¯
� F ���0 =2

;

meaning that (H6) holds for Eı provided that ı 2 .0; ımax/ with

ımax WD min¹ı1; ı2; ı3; ı4º > 0

and ı4 such that mC
ı
�m0 < .�

�d0/=2, which completes the proof.
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