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Asymptotics of multivariate sequences in the presence
of a lacuna

Yuliy Baryshnikov, Stephen Melczer, and Robin Pemantle

Abstract. We explain a discontinuous drop in the exponential growth rate for certain multi-
variate generating functions at a critical parameter value in even dimensions d � 4. This result
depends on computations in the homology of the algebraic variety where the generating function
has a pole. These computations are similar to, and inspired by, a thread of research in appli-
cations of complex algebraic geometry to hyperbolic PDEs, going back to Leray, Petrowski,
Atiyah, Bott and Gårding. As a consequence, we give a topological explanation for certain
asymptotic phenomena appearing in the combinatorics and number theory literature. Further-
more, we show how to combine topological methods with symbolic algebraic computation to
determine explicitly the dominant asymptotics for such multivariate generating functions, giving
a significant new tool to attack the so-called connection problem for asymptotics of P-recursive
sequences. This in turn enables the rigorous determination of integer coefficients in the Morse–
Smale complex, which are difficult to determine using direct geometric methods.

1. Introduction

Let k � 1 be an integer, and for P and Q coprime polynomials over the complex
numbers, let

F.z/ D
P.z/
Q.z/k

D

X
r2Zd

arzr
D

X
r2Zd

arz
r1
1 � � � z

rd
d

(1.1)

be a rational Laurent series converging in some open domain D � Cd . The field of
analytic combinatorics in several variables (ACSV) describes the asymptotic deter-
mination of the coefficients ar via complex analytic methods. Let V D VQ denote
the algebraic set ¹z W Q.z/ D 0º containing the singularities of F.z/. The methods of
ACSV, summarized below, vary in complexity depending on the nature of V . When V

is a smooth manifold, for instance when Q and rQ do not vanish simultaneously,
explicit formulae may be obtained that are universal outside of cases when the curva-
ture of V vanishes [30, 32]. When V is the union of transversely intersecting smooth
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surfaces, similar residue formulae hold [4, 31, 32]. The next most difficult case is
when V has an isolated singularity whose tangent cone is quadratic, locally of the
form x21 �

Pd
jD2 x

2
j . These points, satisfying the cone point hypotheses [6, Hypothe-

ses 3.1], are called cone points; the necessary complex analysis in the neighborhood
of a cone point singularity, based on the work in [3], was carried out in [6].

Let jrj D jr1j C � � � C jrd j. In each of these cases, asymptotics may be found of
the form

ar � C.yr/jrjˇz�.yr/�r; (1.2)

where C and z� depend continuously on the direction yr WD r=jrj. A very brief sum-
mary of the methodology is as follows. The multivariate Cauchy integral formula
gives

ar D
� 1

2�i

�d Z
T

z�rF.z/
dz
z
; (1.3)

where T � D is a torus in the domain of convergence, and dz=z is the logarithmic
holomorphic volume form z�11 � � � z

�1
d

dz1 ^ � � � ^ dzd . Expand the chain of integra-
tion T so that it passes through the variety V , touching it for the first time at a point z�
where the logarithmic gradient of Q is normal to V , and continuing to at least a mul-
tiple .1C "/ times this polyradius. Let 	 be the intersection with V swept out by the
homotopy of the expanding torus. The residue theorem, described in Definition 3.5
below, says that integral (1.3) is equal to the integral over the expanded torus plus the
integral of a certain residue form over 	. Typically, z�r is maximized over 	 at z�,
and integrating over 	 yields asymptotics of the form (1.2).

In the case of an isolated singularity with quadratic tangent cone, [6, Theorem 3.7]
gives such a formula but excludes the case where d D 2m > 2kC 1 is an even integer
and d � 1 is greater than twice the power k in the denominator of (1.1). In that paper,
the asymptotic estimate obtained is only ar D o.jrj�mz�r

� / for all m, due to the fact
that the generalized Fourier transform of .x21 �

Pd
jD2 x

2
j /
�k is supported on a conical

hypersurface in Rd . In many cases, when the support of the Fourier transform has
nonempty interior, the asymptotics of ar are nothing other than the Fourier transform;
see [6, Lemma 6.3]. However, when the Fourier transform has lower-dimensional
support, one can say only that on directions within the support, the constant factor
in the leading asymptotic term C jrj˛z�r

� blows up, with superpolynomial decay in
directions interior to where the Fourier transform vanishes, being less than jrj�mz�r

�

for any m. This leaves open the question of what the correct asymptotics are, and
whether they are smaller by an exponential factor.

In [5], it is shown via diagonal extraction that, for k D 1 and a class of poly-
nomials Q with an isolated real hyperbolic quadratic singularity, in fact an;:::;n has
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strictly smaller exponential order than expected. Diagonal extraction applies only to
coefficients of monomials precisely on the diagonal – i.e., where every variable has
the same power – leaving open the question of behavior in a neighborhood of the
diagonal,1 and leaving open the question of whether this behavior holds beyond the
particular class, for all polynomials with cone point singularities. The purpose of the
present paper is to use ACSV methods to show that indeed the behavior is universal
for cone points, to prove that it holds in a neighborhood of the diagonal, and to give
a topological explanation.

2. Main results and outline

Let F , P ,Q and ¹arº be as in (1.1), choosing signs so thatQ.0/ > 0. Throughout the
paper, we denote by LWCd

� ! Rd the coordinatewise log-modulus map

L.z/ WD log jzj D .log jz1j; : : : ; log jzd j/:

Let C� WD C n ¹0º, and let M WD Cd
� n V be the domain of holomorphy of z�rF.z/

for sufficiently large r. Let amoeba.Q/ denote the amoeba of polynomial Q defined
by amoeba.Q/ WD ¹L.z/ W z 2 Vº. It is known [13] that the components of the com-
plement of the amoeba are convex and correspond to Laurent series expansions for F ,
each component being a logarithmic domain of convergence for one series expansion.
Let B denote the component of the amoeba complement amoeba.Q/c such that the
given series

P
r arzr converges whenever z D exp.xC iy/ with x 2 B .

We refer to the torus T .x/ WD L�1.x/ as the torus over x. For any r 2 Rd , we
denote yr WD r=jrj and

hyr.z/ WD �
dX
jD1

yrj log jzj j:

For a subset A � Cd , when yr and z� are understood, we use the shorthand

A.�"/ WD A \ ¹z W hyr.z/ < hyr.z�/ � "º: (2.1)

Assume that V intersects the torus ¹exp.x� C iy/ W y 2 .R=.2�//d º at the unique
point z� D exp.x�/. We will be dealing with the situation where V has a quadratic
singularity at z�. More specifically, we will assume that Q has a real hyperbolic sin-
gularity at z�.

1To see why this distinction could matter, consider the function .x � y/=.1C x C y/ that
generates differences of binomial coefficients

�
iCjC1

i

�
�
�
iCjC1

j

�
. The diagonal coefficients

where i D j D n are zero but the growth of those nearby approaches a constant times n�1=24n.
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Definition 2.1 (Quadratic singularity). We say thatQ has a real hyperbolic quadratic
singularity at z� if Q.z�/ D 0, the gradient rQ.z�/ D 0, and the quadratic part q2
of Q.z/ D q2.z/C q3.z/C � � � at z� is a real quadratic form of signature .1; d � 1/;
in other words, there exists a real linear coordinate change so that q2.u/ D u2

d
�Pd�1

jD1 u
2
j CO.juj

3/ for u a local coordinate centered at z�.

Example 2.2 (Computing a quadratic singularity: the GRZ (Gillis–Reznick–Zeil-
berger) function). Let ej denote the elementary symmetric function of degree j in
any number d � j of arguments. Let z D .z1; z2; z3; z4/ and define

Q4;27.z/ WD 1 � e1.z/C 27e4.z/:

We will use the polynomialQ4;27 and the generating functionF4;27.z/WD1=Q4;27.z/,
which appeared as studies of [14] as discussed further below, as a running example.
The function Q4;27 has a zero at the point z� WD .1=3; 1=3; 1=3; 1=3/ where all coor-
dinates are equal. Recentering at this point via the substitution z D z� C u yields the
polynomial zQ4;27 D 3e2.u/C 9e3.u/C 27e4.u/, with leading term at the origin the
quadratic 3e2.u/. Writing this quadratic form as .1=2/uTMu, where M is the matrix
with zeros on the diagonal and ones everywhere else, the eigenvalues ofM are 3, �1,
�1, �1. This quadratic form thus has signature .1; 3/, andQ4;27 has a real hyperbolic
singularity at z�.

Returning to a general polynomials Q with a real hyperbolic singularity, denote
by Tx�.B/ the open tangent cone in Rd to the component B of the amoeba comple-
ment amoeba.Q/c , consisting of all vectors v at x� WD L.z�/ such that x� C "v 2 B
for sufficiently small ". The inequality defining Tx�.B/ is the same as the inequal-
ity zQ.v/ > 0, where zQ is the leading (homogeneous quadratic) term of Q.exp.x� C
vC iy�//, along with an inequality specifying Tx�.B/ rather than �Tx�.B/.

Definition 2.3 (Tangent cone; supporting vector). The vector r is said to be sup-
porting at z� if hr attains its maximum on the closure of B at x� and if ¹dhr D 0º

intersects the tangent cone Tx�.B/ only at the origin. The set of supporting vectors is
a cone over an open setbE of unit vectors, defined by the interior of a dual cone related
to the amoeba (see [33, Definition 6.26] for further details).

Example 2.4 (GRZ function, continued). When Q D Q4;27, the singularity z� D
.1=3; 1=3; 1=3; 1=3/ corresponds to the point x� D .� log 3;� log 3;� log 3;� log 3/
on the boundary of the amoeba. The tangent cone Tx.B/ is one of the two cones
where zQ4;27.x/ D e2.x/ > 0. For an ordinary power series, B and Tx�.B/ point in
the negative direction (more precisely, they contain a translate of the negative orthant).
The dual cone points into the positive orthant and is always bounded by a com-
ponent of the algebraic dual to zQ4;27, which for homogeneous quadratics is also
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a quadratic form whose matrix is the inverse matrix to the one representing zQ4;27.
Up to a constant multiple, this is the matrix L with �2 on the diagonal and 1 every-
where else. The cone of supporting vectors is therefore the positive component of the
set of vectors v such that vTLv > 0. Equivalently, r is supporting at z� if and only if
.r1 C r2 C r3 C r4/

2 � 3
P4
jD1 r

2
j > 0, comprising the circular cone of vectors mak-

ing an angle of less than �=6 with the positive diagonal. The set bE is corresponding
open disk in the unit simplex.

Theorem 2.5 (Main theorem). Let P be holomorphic in Cd , Q a Laurent polyno-
mial, k a nonnegative integer, B a component in the complement of the amoeba ofQ,
and

P
r2E arzr the corresponding Laurent series expansion of F D P=Qk .

Suppose that Q has real hyperbolic quadratic singularity at z� D exp.x�/ such
that x� belongs to the boundary of B , and z� is the unique intersection of the torus
T.x�/ with V .

Let K � bE be a compact set, and suppose that d is even and 2k < d .

(i) If " > 0 is small enough, then for any yr 2K, there exists a compact cycle �.yr/,
whose volume is bounded as yr varies over K, such that the cycle �.yr/ is sup-
ported on M.�"/ and

ar D

Z
�.yr/

z�r P

Qk

dz
z
: (2.2)

(ii) If P is a polynomial, then

ar D

Z

.yr/

ResV z�r P

Qk

dz
z

(2.3)

for all but finitely many r2E, where 
.yr/ is a compact .d� 1/ cycle in V.�"/,
whose volume is bounded as yr varies overK, where ResV is the residue oper-
ator defined below in Section 3.

The heuristic meaning of this result is that, for purposes of computing the Cauchy
integral, the chain of integration in (1.3) can be slipped below the height hr.z�/ of the
singular point z�.

Motivation and examples

Positivity conjectures for the coefficients of families of generating functions go back
at least 90 years. An analysis of a discretized wave equation in two spatial dimen-
sions [12] required nonnegativity of the coefficients of 1=e2.1 � x; 1 � y; 1 � z/.
A proof was given by Szegő [37], showing that in fact the coefficients of e2.1 � x;
1 � y; 1 � z/�ˇ are nonnegative for all ˇ � 1=2. Nonnegativity conjectures have
been made for coefficients of many other rational symmetric functions, including
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the Askey–Gasper function [2] 1=.1 � e1.x; y; z/C 4e3.x; y; z//, another function
1=e3.1 � x; 1 � y; 1 � z; 1 � w/ proposed by Szegő, and the Lewy–Askey func-
tion 1=e2.1 � x; 1 � y; 1 � z; 1 � w/. Several of these cases were solved by Scott
and Sokal [36], who established coefficient positivity for functions of the form
1=Q.1 � x1; : : : ; 1 � xn/, where Q is the spanning tree polynomial of any series-
parallel graph; see also [21] for related work on positivity.

A necessary condition for nonnegativity of coefficients is asymptotic nonnegativ-
ity. Broad theorems that give the asymptotic behavior of coefficients in cases such
as these are therefore quite useful. In addition to establishing asymptotic nonnegativ-
ity, understanding more precisely the exponential drop in coefficient behavior in the
presence of a lacuna allows one to understand what precision and how many initial
cases are needed for a brute force proof of coefficient nonnegativity. Another motiva-
tion is to push the boundaries of ACSV: behaviors that arise only in sufficiently high
dimension may be useful to understand, and may even be common or generic there.
For instance, the first case of “nontrivial multiplicity” in the analysis of multivariate
generating functions came from positivity studies (see below).

As a running example to accompany definitions and results, we draw on the Gillis–
Reznick–Zeilberger (GRZ) family of generating functions [14], which has origins in
the work of Askey and Gasper [2]. It is further discussed in [5, Theorems 9–12].

Example 2.6 (GRZ function at criticality). In four variables, letQ.z/ D 1� e1.z/C
27e4.z/ as in Example 2.2 and let F�.z/ WD 1=Q.z/. It is shown in [5] via ACSV
results for smooth functions that the diagonal exponential growth rate jan;n;n;nj1=n of
the power series coefficients of F� is a function of � that approaches 81 as �! 27.
At the critical value 27, however, the denominator Q of F has a real hyperbolic
quadratic singularity at z� WD .1=3; 1=3; 1=3; 1=3/. Recalling the computation of bE
in Example 2.4, Theorem 2.5 has the immediate consequence that the exponential
growth of ar for yr making an angle of less than �=6 with the diagonal y1 is strictly
less than that of z�r

� D 81jrj. In particular, there is a drop in the exponential rate at
criticality.

Example 2.7 (KZ function). Another motivating example comes from [19], where it
was shown that nonnegativity of the coefficients of the Lewy–Askey function would
follow from nonnegativity of the coefficients of a different 4-variable function
FKZ.z/D 1=QKZ.z/D 1=.1� e1.z/C 2e3.z/C 4e4.z//, which we will call the Kau-
ers–Zeilberger (KZ) function. Computing the first and second partial derivatives
ofQKZ at a generic point .u;u;u;u/, we find thatQKZ has a real hyperbolic quadratic
singularity when every coordinate equals .˙

p
3� 1/=2, where the point z� with coor-

dinates .
p
3 � 1/=2 lies on the exponentiated boundary of the amoeba. Computing

the matrix of second partial derivatives, we find zeros on the diagonal and a common
value off the diagonal. We conclude that the tangent cone and supporting vectors are
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the same as for the GRZ function. Again, because d D 4 and k D 1, the hypotheses
of Theorem 2.5 are satisfied and there is a lacuna, meaning an exponential drop in
coefficients of FKZ , uniformly as yr varies over in any compact neighborhood of the
diagonal of vectors making an angle less than �=6 with the diagonal.

With a little further work, understanding of the exponential drop in the case of
quadratic singularities in the lacuna regime can be sharpened considerably. In Sec-
tion 8, we state a result for general functions satisfying the conditions of Theorem 2.5.
The result, Theorem 8.1, sharpens Theorem 2.5 by quantifying the exponential drop
by pushing the contour � down all the way to the next critical value. It is a direct
consequence of Theorem 2.5 together with a deformation result of [4]. In the case of
the GRZ function F4;27 at criticality, the following explicit asymptotics result.

Theorem 2.8. The diagonal coefficients an;n;n;n in the power series expansion of
F4;27.z/ from Example 2.6 have an asymptotic expansion in decreasing powers of n
of the form

an;n;n;n D 3 �
� .4ip2 � 7/n

n3=2
.5i �

p
2/
p
�2i
p
2 � 8

24�3=2

C
.�4i
p
2 � 7/n

n3=2
.�5i �

p
2/
p
2i
p
2 � 8

24�3=2

�
CO.9nn�5=2/: (2.4)

More generally, as r!1 and yr varies over any compact neighborhood of the diago-
nal on which the angle to the diagonal is less than �=6, there is a uniform estimate

ar D p
n
yr n
�3=2
� Cyr cos.n˛yr C ˇyr/CO.p

n
yr n
�5=3/;

where pyr, Cyr, ˛yr, and ˇyr vary continuously with yr and specialize to produce (2.4)
when yr is on the diagonal.

Example 2.9 (Critical GRZ function in higher dimensions). Define a d -variable sym-
metric rational function generalizing the four-variable GRZ function by

F�;d .z1; : : : ; zd / D
1

1 � e1 C �ed
:

It is conjectured that the coefficients are nonnegative when � � dŠ; if so, this would
be sharp because the .1; : : : ; 1/-coefficient is negative when � > dŠ. This conjecture
has been verified [35] up to d D 17.

The critical value for �, however, is at the greater value �d WD .d � 1/d�1. Al-
though F�d ;d cannot have nonnegative coefficients, it is possible that the coefficients
are asymptotically nonnegative within the cone of exponential growth. At the crit-
ical value, asymptotics are controlled by the analytic behavior of F near the point
.1=.d � 1/; : : : ; 1=.d � 1//, where the cone point hypotheses of [6] are satisfied. For
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even values of d � 4, one is in the lacuna regime. Numeric evidence from testing
d D 4; 6; 8, and 10 suggests that formula (2.4) generalizes to

an;:::;n D .d � 1/
˛�n C x̨x�n

n.d�1/=2
CO.j�jnn�.dC1/=2/; (2.5)

where �.d�1/=2˛ and � are algebraic numbers whose minimal polynomials are easy
to derive using computer algebra.

Section 8 explains these formulae. Once Theorem 2.5 has guaranteed that the
contour of integration can be expanded past the real hyperbolic quadratic singular-
ity, some further hypotheses, which are not hard to satisfy, guarantee that the contour
can be expanded further to one or more critical points where ACSV gives asymp-
totic approximations. For the GRZ function, one always obtains a pair of complex
conjugate smooth points, meaning zeros of the denominator where the gradient of the
denominator is nonvanishing. In the case of the four-variable GRZ function, these
computations are explicitly carried out in Proposition 8.4. The integral may be re-
duced to an integer combination of saddle-point integrals near these critical points.
Indeed, (2.4) and (2.5) are precisely the leading terms of the sum of expansions at two
complex conjugate saddle points, multiplied by d � 1.

Example 2.10 (KZ function, continued). Asymptotics for the KZ function in direc-
tions within the support cone follow a similar but not identical pattern. Contrast the
KZ asymptotics to the GRZ asymptotics where the factor of .d � 1/ in (2.5) proved
for d D 4 and conjectured for even d � 6 comes from the fact that the original torus of
integration in the Cauchy integral formula is homologous to .d � 1/.
 C x
/, where 

and x
 are homology generators near the critical points. In the case of the KZ func-
tion, there are two real hyperbolic critical points and eight smooth critical points: four
points given by all permutations of .3=

p
2 � 2; 1=

p
2; 1=
p
2; 1=
p
2/ and four points

given by all permutations of .�3=
p
2 � 2;�1=

p
2;�1=

p
2;�1=

p
2/. Only the first

set of smooth points, whose coordinates are positive, affects dominant asymptotics.
The local homology coefficients at these points are shown in Example 8.5 all to be 1.

Studying the real hyperbolic quadratic singularities in the lacuna regime d >
2kC 1 gives the first ACSV applications where the Cauchy torus of integration is rep-
resented by a sum of local homology generators with “multiplicities” not in ¹˙1; 0º.
We derive these multiplicities using a synthesis of algebraic topology and rigorous
numerics; for explanation of the numeric portion of the method beyond what can be
found in Section 8, see [24]. Finally, this work starts an inquiry into how one might
distinguish Q4;27 from QKZ geometrically. Ideally, we would like to understand why
homology coefficients greater than 1 appear and find effective means of determining
when this happens.
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Heuristic argument

Our plan is to expand a torus T of integration representing series coefficients via the
Cauchy integral theorem using a homotopy H that takes it through the point z� and
beyond. Let V� D V \ Cd

� denote the points of V with no coordinate vanishing.
A classical construction when V� is smooth, due to Leray, Thom and others, shows
that T is homologous inHd .M/ to a cycle � 0 which coincides above height h.z�/� "
with a tube around a cycle � ; the height hr is maximized on � at the point z�, and the
chain � is the intersection of H with V�. We would like to see that � is homologous
to a class supported on V.�"/.

To do this, we compute the intersection � directly in coordinates suggested by
the hypotheses of the theorem. In particular, we use local coordinates where, after
taking logarithms, V is the cone ¹z21 �

Pd
jD2 z

2
j D 0º, and select a homotopy H from

x C iRd to x0 C iRd with x 2 B so that the line segment xx0 is perpendicularly
bisected by the support hyperplane to B at x�. In these coordinates, the intersection
class 	 is the cone ¹iy W y 2 Rd and y21 D

Pd
jD2 y

2
j º. The residue is singular at the

origin (in new coordinates) but converges when d > 2k C 1. Inside the variety V , the
cone 	 may be folded down so as to double cover the cone ¹x C iy W y 2 Rd ; x > 0;

y1 D 0 and x2 D jyj2º, as shown in Figure 1.

Figure 1. The figure depicts wrapping the one-sheeted hyperboloid around one of the sheets of
the two-sheeted hyperboloid. The mapping is rotationally symmetric.

The two covering maps have opposite orientations when d is even. The critical
points of hr restricted to V are obstructions for deforming the contour of integration
downwards, and in this case, the residue integral vanishes and the contour may be
further deformed until it encounters the next highest critical point.

Outline of actual proof

The proof cannot precisely follow the heuristic argument because the intersection
cycle construction and the residue integral theorem work only where V� is smooth.
In the case of an isolated quadratic singularity, the intersection cycle � representing 	
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can be defined by a homotopy that avoids the singularity, but the intersection class 	

may not be folded down as described without passing through the singularity. The
effect of this is described in more detail in remarks following the statement of Theo-
rem 5.3. We remark that the same trouble arose in the setting of [6]. There, the authors
adopt the method of [3] to reduce the local integration cycle to its projectivized,
compact counterpart, the so-called Petrowski or Leray cycles. That path required sig-
nificant investment into analytic auxiliary results and, more importantly, would not
immediately prove that the integration cycle in the presence of lacuna (i.e., when d is
even and the denominator degree not too high) allows one to “slide” the integration
cycle below the height of the cone point.

Thus we use a different strategy, first perturbing the denominator so that the per-
turbed varieties on whichQ.z/ D c for small c become smooth. This kind of regular-
ization also has the advantage, compared to what was used in [6], that we obtain infor-
mation about the behavior of coefficients of the generating functions P=.Q � c/k .
Next, we study the behavior of the coefficients of the resulting generating functions
as c ! 0. We denote the zero set of Q.z/� c by Vc , write .Vc/� for the points of Vc

with nonzero coordinates, and denote the restriction of Vc to its points of height at
most h.z�/ � " by Vc.� �"/. It is easiest to work in the lower-dimensional setting,
with �c on .Vc/� rather than �c on Mc , and to work in relative homology of .Vc/�
with respect to Vc.� �"/.

Section 4 lays the theoretical groundwork by computing the explicit intersection
cycle in a limiting case of the perturbed variety as c # 0; this is a rescaled limit,
and is smooth, in contrast to the variety at c D 0. Although the results of Section 4
are subsumed by later arguments, its focus on explicit computation allows for valu-
able intuition and visualization. Properties of our family of perturbations are given
in Section 5. Section 6 uses this approach to complete a relative homology compu-
tation in Hd�1..Vc/�;Vc.� �"// for sufficiently small c. This homology group is
generated by two cycles, represented by the chain which is an integer combination of
a sphere Sc and a hyperboloid. The cycle �c is not null-homologous in this relative
homology group, but it turns out that in even dimensions, the coefficient of the hyper-
boloid in �c vanishes. The coefficient of Sc does not vanish, but Sc may be shrunk
arbitrarily near to z� as c ! 0. Applying the tube operator shows that the original d -
torus of integration T is homologous to �c C �.yr/ inHd .Mc ;Mc.� �"//, where �c
is the tube around Sc and �yr is independent of c. Furthermore, �yr is null-homologous
in the relative homology group at z� and therefore represented by a cycle lying in
.Vc/.� �"/. The fact that the chain representing �c appears to vanish geometrically
modulo Vc.� �"/, in the limit c ! 0 as the sphere Sc shrinks to a point, does not
indicate that the relative cycle �c vanishes as well: the isomorphism of de Rham and
singular cohomology breaks down on singular spaces, and a principled analysis would
require introduction of intersection homologies or mixed Hodge structure. We avoid
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this by desingularization and passing to the limit. For the record, we note that the
chain �c remains non-null-homologous as c ! 0, although the rank of the homology
group Hd .Mc ;Mc.� �"// drops from 2 to 1.

The outline of the proof as it appears in the paper is as follows:

(1) Show that �c Š Sc in Hd�1..Vc/�;Vc.� �"//, provided that d is even. This
is accomplished in Section 6.

(2) Pass to a tubular neighborhood to see that T in (1.3) may be replaced by the
sum of tubular neighborhoods of Sc and a second chain 
 , not depending
on c, whose maximum height is at most h.z�/ � ". This is accomplished in
Section 7.

(3) Dimensional analysis shows that the integral over the tubular neighborhood
of Sc goes to zero as c # 0, provided that 2k < d . This is accomplished in
Section 7, proving Theorem 2.5.

(4) Further Morse theoretic analysis shows that the contour 
 is an integer times
the sum of two standard saddle-point contours. In Section 8, we show that for
our motivating example, this integer is in fact 3, proving Theorem 2.8.

3. Preliminaries: Tubes, intersection class, residue form

We recall some topological facts from various sources, most of which are summarized
for application to ACSV in [32, pp. 334–338]. Let K be any compact subset of V�

on which the gradient of the square-free part of Q (the product of its distinct irre-
ducible factors) does not vanish. The well-known tubular neighborhood theorem (for
example, [29, Theorem 11.1]) states the following.

Proposition 3.1 (Tubular neighborhood theorem). The normal bundle overK is triv-
ial, and there is a global product structure of a tubular neighborhood of V� in Cd

� .

This implies the existence of operators � and o, the product with a small disk and
with its boundary, respectively, mapping k-chains in V� to .k C 2/-chains in M and
.k C 1/-chains in M, respectively, well-defined up to a natural homeomorphism as
long as the radius of the disk is sufficiently small. We refer to o
 as the tube around 

and �
 as the tubular neighborhood of 
 . Elementary rules for boundaries of products
imply

@.o
/ D o.@
/; @.�
/ D o
 [ �.@
/:

Because o commutes with @, then cycles map to cycles, boundaries map to boundaries,
and the map o on the singular chain complex of V� induces a map on homology
oWH�.V�/ ! H�.Cd

� n V/. This allows one to construct the intersection class as
in [4, Proposition 2.9].



Y. Baryshnikov, S. Melczer, and R. Pemantle 154

Definition 3.2 (Intersection class). Suppose Q vanishes on a smooth variety V , and
let T and T0 be two d -cycles in M that are homologous in Cd

� . Then there exists
a unique class 	 D 	.T;T0/ 2 Hd�1.V�/ such that

ŒT� � ŒT0� D o	 in Hd .M/:

The class 	 can be represented by the manifold H \ V for any manifold H with
boundary T � T0 in Cd

� that intersects V transversely, with appropriate orientation
(or, alternatively, by the image of the fundamental class of H \ V under the natural
embedding).

We remark that if V is not smooth but its singularities (where Q and the gradient
of its square-free part vanish) have real dimension less than d � 2, then H generically
avoids the singularities of V , so 	.T;T0/ is well defined. Although the singular set
does not always satisfy this dimensional condition, it does so in our applications,
where the singular set is zero-dimensional.

For our purposes, the natural cycles to consider are the tori T.x/ for x in the com-
plement of the amoeba of Q. In this case, there is an especially convenient choice of
cobordism between T.x/ and T.x0/, namely the L-preimage of the straight segment `
connecting x and x0 (or its small perturbation). We will be referring to this cobordism
as the standard one.

Example 3.3. SupposeQ is the linear functionQ.x;y/D 2� x � y, whose amoeba
is shown in Figure 2. Let T be the torus L.x; y/ for some .x; y/ in the component B1
of the amoeba complement (shown in Figure 2), and let T0 be the torus L�1.x0; y0/
for some .x0; y0/ 2 B2.

Let T0 denote the standard torus S1 � S1, and let HW T0 � Œ0; 1� ! C2
� be the

log-linear homotopy defined by

H..˛; ˇ/; t/ D .exp.I˛ C .1 � t /x C tx0/; exp.Iˇ C .1 � t /y C ty0//:

The Cauchy integrand T in (1.3) satisfies ŒT� D ŒT �. The image of H under L is the
line segment ` between .x; y/ and .x0; y0/. The endpoints have unique L preimages
in V while each interior point has two preimages in V . Thus, 	 WD H \ V D L�1.`/
is a topological circle in C2

�, and Œ	� is the class inH1.V�/ corresponding to a circle 

which, projected to the first coordinate, circles once around the point .2; 0/. Taking
logarithms, this corresponds to the point .log 2;�1/ which is the vertical asymptote
at the bottom of the figure. The class ŒT� � ŒT0� D o	 2 H2.M/ is the tube around
this circle, which may be written as the set ¹z C z0 W z 2 
; z0 2 
 0º, where 
 0 is the
image of the unit circle in C under the diagonal map z 7! .z; z/. For instance, o	 can
be taken as the topological torus which is the direct sum of geometric circles

¹.2 � ei� ; ei� /C .ei� ; ei�/ W 0 � �; � < 2�º:
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.x; y/

.x0; y0/

B2B1

`

Figure 2. The amoeba of 2 � x � y.

What are the good choices of x0? We would like to make F.z/z�rdz=z, the inte-
grand, exponentially small in jrjwhen L.z/D x0, which happens if we can take�r � x0

to have arbitrarily small modulus. When Q is a Laurent polynomial, the feasibility of
this follows from known facts about cones of hyperbolicity, as we now demonstrate.

First, recall that the Newton polytope of Q is the convex hull of the exponents m
of the monomials of Q,

N.Q/ D conv
�°

m W qm ¤ 0;Q.z/ D
X

m

qmzm
±�
� Rd :

The Newton polytope has vertices in the integer lattice, and the convex open compo-
nents of the amoeba complement amoeba.Q/c map injectively into the integer points
in N.Q/ (see [11]). Moreover, any vertex of N.Q/ has a preimage under this map-
ping, which is an unbounded component of amoeba.Q/c . The recession cone of the
componentBm corresponding to a vertex m is the interior of the normal cone toN.Q/
at m (i.e., the collection of vectors d such that maxr2N.Q/.d; r/ is uniquely attained
at m). Notice that this normal cone is dual to the coneN.Q/m spanned byN.Q/�m.

Now, letB be the component of amoeba.Q/c corresponding to the Laurent expan-
sion of F under consideration, and let m be the corresponding integer vector inN.Q/.
The vectors v with x�C v 2 B form an open cone contained inN.Q/m. Pick a gener-
ic d in the recession cone of B; then when t > 0 is large enough, x� � td is con-
tained in an unbounded component B 0 of the complement to amoeba (this follows
from the fact that the union of the recession cones of the unbounded components
of amoeba.Q/c are the complement to the set of functionals attaining their maxima
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on N.Q/ at multiple points, a positive codimension fan in Rd ). Hence, choosing x0

in this component B 0 allows one to deform T0 D T.x0/ while avoiding V so that hr

becomes arbitrarily close to �1.

Definition 3.4. We call a component B 0 whose recession cone contains a vector �d
with d in the recession cone of B descending with respect to the component B . Com-
ponents B 0 with this property are in general not unique, but any choice of B 0 works
for our argument.

The following result is well known; see, e.g., [4, Proposition 2.14].

Definition 3.5 (Residue form). There is a homomorphism

ResW Hd .M/! Hd�1.V�/

in de Rham cohomologies such that for any class 
 2 Hd .V/,Z
o


! D

Z



Res.!/: (3.1)

In general, Res.!/ can be derived locally from a form representing ! (we also use the
notation Res for the corresponding operator on differential forms). When F D P=Q
is rational withQ square-free, Res commutes with multiplication by any locally holo-
morphic function and satisfies

Q ^ Res.F dz/ D P dz:

More generally, if F D P=Qk , then (see, e.g., [34]) the residue can be expressed in
coordinates as

Res
h
z�rF.z/

dz
z

i
WD

1

.k � 1/Š

dk�1

dck�1

hP z�r

z

i
d�;

where � is the natural area form on V (characterized by dQ ^ � D dz), and the par-
tial derivatives with respect to c are taken in the coordinates where c is one of the
variables.

Putting this together with the definition and construction of the intersection class
and Cauchy’s integral formula yields the following representation of the coeffi-
cients ar.

Proposition 3.6. Suppose F DG=Qk D
P

r2E arzr withG holomorphic andQ a po-
lynomial, the series converging when log jzj is in the component B of amoeba.Q/c .
Let x 2 B and T.x/ WD L�1.x/ be the torus with log-polyradius x. Let x0 be any other
point in amoeba.Q/c . Then

ar D
1

.2�i/d

Z
	.T.x/;T.x0//

Res
h
z�rF.z/

dz
z

i
C

1

.2�i/d

Z
T.x0/

z�rF.z/
dz
z
: (3.2)
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Moreover, if x0 is a descending component B 0 with respect to B , and G is a polyno-
mial, then for all but finitely many r 2 E,

ar D
1

.2�i/d

Z
	.T.x/;T.x0//

z�rRes
�
F.z/

dz
z

�
:

Proof. The first identity is Cauchy’s integral formula, the definition of the intersection
class, and (3.1). The second identity follows from the fact that supT.x0/ jG=Q

kj and the
volume of T.x0/ grow at most polynomially in jx0j on the torus over x0. For r2N.Q/m
large enough in size, the degree of the decay of jz�rj overtakes that polynomial
growth, so that the last term in (3.2) can be made arbitrarily small. As it is independent
of x0 as long as x0 varies in the same component B 0, it vanishes identically.

4. The limiting quadric

In this section, we focus on the properties of the particular smooth quadratic function

q.z/ WD �1C z21 �
dX
jD2

z2j : (4.1)

This section is purely for intuition, in the sense that the work on perturbed varieties in
Sections 5–7 draws on the constructions of this section but does not use the results of
this section other than recalling the setup of Lemma 4.1 in the proof of Proposition 6.8.
We think of this section as “taking place in the log-space” as the linear constructions
here correspond to log-linear constructions in Cd

� in subsequent sections; however,
this is a standalone section so this correspondence is also only intuitive. Throughout
the section, we work in Cd with coordinates zj D xj C iyj . Note that unlike the local
behavior of a function Q near a real hyperbolic quadratic singularity, the quadric q
has a nonzero constant term, q.0/ D �1. The zero set zV of q can be viewed as the
solution set Vc to the equationQ.z/D c near the quadratic singularity ofQ, after the
variables are scaled by c1=2. Our first statement deals with the gradient-like flow on zV
with respect to the function h WD x1.

Lemma 4.1. The function h has two critical points z˙ D .˙1; 0; : : : ; 0/ on zV , both
of index d � 1. The stable manifold for zC is the unit sphere

S WD
²

xC iy W x21 C
dX
kD2

y2k D 0; y1 D x2 D � � � D xd D 0

³
;

and its unstable manifold is the upper lobe of the two-sheeted real hyperboloid

HC WD zV \Rd D

²
xC iy W x21 �

dX
kD2

x2k D 0; x1 > 0; y D 0
³
:
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The stable manifold for z� is the lower lobe H� of this hyperboloid, while the unstable
manifold of z� is still the sphere S.

Proof. The critical points can be found by a direct computation. Their indices are
necessarily d � 1, as h is the real part of a holomorphic function on a complex mani-
fold [16]. Similarly, direct computation shows that the tangent spaces to S, H˙ are the
stable/unstable eigenspaces for the Hessian matrices of h restricted to zV at the criti-
cal points. Lastly, as the gradient vector field is invariant with respect to symmetries
y 7! �y and .x1; x2; : : : ; xd / 7! .x1;�x2; : : : ;�xd /, leaving H˙ and S invariant, they
are the invariant manifolds for the gradient flow.

Let ˆWRd � Œ�1; 1� ! Cd be the homotopy defined by ˆ.y; t / WD te1 C iy
(we use a new symbol because H is in principle only a cobordism). Let zh denote
the height function zh.z/ D �<¹z1º.

Theorem 4.2. The intersection cycle of the homotopy ˆ with the variety zV is the
union of a hyperboloid H and a .d � 1/-sphere S that intersect in a .d � 2/-sphere � 0.
These are given by equations (4.6)–(4.8). The orientation of the intersection cycle
is continuous on each of the four smooth pieces, namely the upper and lower half
of H n � 0 and the northern and southern hemispheres of S n � 0, but change signs when
crossing � 0.

Proof. Writing zj WD xj C iyj , the equations for z such that z is in the range of ˆ and
q.z/ D 0 become

jx1j � 1; (4.2)
xj D 0; 2 � j � d; (4.3)

x21 � y
2
1 D 1 �

dX
jD2

y2j ; (4.4)

x1y1 D 0: (4.5)

The solutions to (4.2)–(4.5) form the union of two sets, one obtained by solving (4.2)–
(4.4) when x1 D 0 and the other by solving (4.2)–(4.4) when y1 D 0; these intersect
along the solutions to (4.2)–(4.4) when x1 D y1 D 0. The first of these is the one-
sheeted hyperboloid H � iRd given by

�y21 D 1 �

dX
jD2

y2j : (4.6)

The second is the sphere S � R � i.Rd�1/ given by

x21 C

dX
jD2

y2j D 1: (4.7)
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These intersect at the equator of the sphere S, which is the neck of the hyperboloid H.
The intersection set is the sphere � 0 in ¹0º � iRd�1 given by

dX
jD2

y2j D 1: (4.8)

The intersection class is given by the intersection of zV with any homotopy inter-
secting it transversely. While ˆ does not intersect zV transversely, it is the limit of
the intersections of zV with arbitrarily small perturbations of ˆ that do intersect zV
transversely. Let 
n be a sequence of such transverse intersection cycles converging
to 
 WD H [ S. Because zV is smooth, the global product structure on a neighborhood
of zV from the Thom lemma implies that as d -chains,

ˆ.�;�1/ �ˆ.�; 1/ D 
n � S1 ! 
 � S1;

and hence that 
 represents the intersection class.
Finally, we determine the orientation via a different perturbation argument. Let us

choose a point p 2 � 0, say for specificity p D .0; : : : ; 0; i/. The tangent space Tp.� 0/
is the span of the vectors iek for 2 � k � d � 1. The tangent space Tp.S/ is obtained
by adding the basis vector e1, while the span of the tangent space Tp.H/ is obtained
by adding instead the basis vector ie1. We see that near � 0, 
 has a product structure
� 0 �W, where W is diffeomorphic to two crossing lines, with tangent cone xy D 0
in the plane he1; ie1i, as in the black lines in Figure 3.

Now perturb the homotopy as follows. Let uW Œ�1; 1� ! R be a smooth func-
tion that is equal to 1 on Œ�1=4; 1=4� and vanishes outside of .�1=2; 1=2/. Define
ˆ".y; t / WD te1 C "u.t/ed C iy, where " is a real number whose magnitude will

Figure 3. Left: The black line shows W; the blue line shows the projections to the x1y1 plane
of W" when yd > 0 and " is small and positive; the red line shows the projections when " is
small and negative. Right: Orientations of W consistent with the blue hyperbola.
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be chosen sufficiently small and whose sign could be either positive or negative.
Because S and H intersect only on the subset of ˆ where t D 0, their Hausdorff dis-
tance on the set t … .�1=4;1=4/ is positive; it follows that for sufficiently small j"j, the
intersection of ˆ" with zV is in the subset of ˆ" where �1=4 � t � 1=4. There u D 1
and the equations for the intersection 
" are modified from (4.2)–(4.5) as follows:

jx1j � 1; (4.20)

xj D 0 for 2 � j � d � 1 and xd D "; (4.30)

x21 � y
2
1 D 1 � "

2
�

dX
jD2

y2j ; (4.40)

x1y1 D �"yd : (4.50)

Although ˆ" and zV still do not intersect transversely, the intersection set 
" WD
ˆ" \

zV is now a manifold. We now fix y2; : : : ; yd�1 at a value y inside the unit ball,
setting x2 D " and solving (4.40) and (4.50) for y1 and yd as a function of x1. For
x21 < 1 � jyj

2, as " # 0, there are two components of the solution, with

yd !˙

q
1 � x21 � jyj2;

respectively. These correspond to different points on the sphere. Fixing one, say with
yd > 0, locally 
" has a product structure � 0 �W", where W" is a hyperbola in quad-
rants II and IV; see the blue curve in Figure 3. The (oriented) chains W" converge
to W as " # 0, therefore the possible orientations for W are one of the four shown on
the right of Figure 3. The (oriented) chains W" also converge to W as " " 0, narrow-
ing the choices to the second and third choices in Figure 3, and proving the desired
result.

Theorem 4.3. Let n be the chain given by S with orientation reversed in the southern
hemisphere; in other words, n is a sphere, oriented the same as the northern hemi-
sphere of S. When d is even, the chain 
 is homotopic to n in Hd�1. zV/.

Proof. Let X1 WD R � � 0, and let �1W � 0 ! X1 be the embedding y 7! .0; y/. Let
X2 D Œ��=2; �=2� � � 0, and let �2W � 0 ! X2 be the embedding y 7! .0; y/. Let X
denote the space obtained by gluing X1 to X2 modulo the identification of �1 and �2
(which conveniently identifies identically named points .0; y/ in X1 and X2). If for
j 2 ¹1; 2º, there are homotopies Tj WXj � Œ0; 1�! zV making the maps in Figure 4
commute, then their union modulo the identification is a homotopy T WX � Œ0;1�! zV .

To prove the lemma, it suffices to construct these in such a way that T2 is a homo-
topy from S to n and T1 is a homotopy from H to a null homologous chain. OnX1, let �
denote the R coordinate on X1 and � denote the � 0 coordinate. Let z D .z2; : : : ; zd /,
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� 0 � Œ0; 1�

�
��

X1 � Œ0; 1�

@
@@R

�1 � Œ0; 1�

@
@R
X2 � Œ0; 1�

T1

�2 � Œ0; 1� �
���

T2

zV

Figure 4. Commuting homotopies define a homotopy on the identification space X .

and let x and y denote the real and imaginary parts of z, respectively. Let t denote the
Œ0;1�-coordinate ofX1 � Œ0;1�. We may then define the homotopy T1 via the equations

x0 D sin
��
2
t
�

cosh.�/; y0 D cos
��
2
t
�

sinh.�/;

x D sin
��
2
t
�
� sinh �; y D cos

��
2
t
�
� cosh �;

and check that T1..�; �/; 0/ parametrizes H via

y1 D sinh.�/; y D cosh.�/�:

Next we define the map � W Œ��=2; �=2� � Œ0; 1� ! Œ��=2; �=2� by �.�; t/ D
.1 � t /� C t .min.2�; 0/ � �=2/. This is a linear homotopy from the identity to the
map � 7! min.2�; 0/ � �=2, pictured in Figure 5. Define T2 by the equations

x0 D sin.�.�; t//; y D cos.�.�; t//�:

Again, we verify that T2..�; �/; 0/ parametrizes the chain S via the parametrization
x0 D sin.�/ and yD cos.�/� . The parametrization is not one-to-one, mapping the set
¹��=2º � � 0 to the south pole and the set ¹�=2º � � 0 to the north pole, however it
defines a singular chain homotopy equivalent to a standard parametrization of � 0.

Next, we check that the diagram in Figure 4 commutes, mapping .y; t / in both
cases to the point .sin.t�=2/; i cos.t�=2/y2; : : : ; i cos.t�=2/yd /. After this, we check
that T2 is a homotopy from S to n. This is clear because the homotopy T2 leaves the
(generalized) longitude component alone while pushing all the southern latitudes to
the south pole and stretching the northern latitudes to cover all the latitudes.

Finally, we check that T1 is a homotopy from H to a null-homologous chain.
The map T1.�; 1/ maps the imaginary hyperboloid H parametrized by .�; �/ into
the ¹x1 > 0º branch of the real two-sheeted hyperboloid H 0 defined by x21 D 1 CPd
jD2 x

2
j and parametrized by cylindrical coordinates .r; � 0/. The parametrization is

a double covering, with .�; �/ and .��; �/ getting mapped to the same point. We
need to check that the orientations at .�; �/ and .��; ��/ are opposite. We may
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�
2

�
�
2

�
2

�
�
2

Figure 5. The linear homotopy � .

parametrize H by its projection x onto the last d � 1 coordinates, then, still preserving
orientation, by polar coordinates .r;� 0/, where r > 0 is the magnitude and � 0.x/D x=r
when r > 0 (� 0 can be anything when r D 0). In these coordinates, the point .�;�/ 2 H
gets mapped to the point

.r; � 0/ D

´
.sinh.�/; �/; � > 0;

.� sinh.�/;��/; � < 0:

Recalling that the orientation form on H is given by sgn.�/ d� ^ d� , the Jacobian is
therefore given by

D.� 0; r/

D.�; �/
D

8<: d�^cosh.�/ d�
d�^d� ; � > 0;

d.��/^.� cosh.�// d�
�d�^d� ; � < 0:

(4.9)

The central symmetry flips the orientation exactly on even-dimensional spheres,
so that (4.9) changes signs with the sign of � exactly when d � 2 is even. This implies
that for d even, the two branches locally covering the sheet ¹x20 D jxj

2 C 1; x0 > 0º

receive opposite signs and the chain T1.�; 1/ is homologous to zero.

In the next section, we prove perturbed versions of these results leading to iden-
tification of certain homology and cohomology classes. To pave the way, we record
some further facts about the intersection of the explicit homotopy ˆ with the quadric.

Proposition 4.4. There are precisely two critical points for zh.z/ WD �<¹z1º on zV ,
namely˙e1. At the higher critical point �e1, the unstable manifold for the downward
gradient flow on zV is the sphere S, which happens to be a subset of ˆ, with flow lines
going longitudinally from the “north pole” �e1 to the “south pole” e1. The stable
manifold for the downward gradient flow at the north pole is not a subset of ˆ; it is
the upper sheet HC of the two-sheeted hyperboloid forming the real part of V , namely
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Figure 6. Stable and unstable manifolds at the critical points. A few trajectories of a gradient-
like vector field tangent to those manifolds are shown. Note that the vector field is far from
Morse–Smale: the stable 3-manifold for one critical point coincides with the unstable 3-mani-
fold of the other, even though both have codimension 3.

the set ¹z 2 Rd W z1 > 0 and z21 D 1C
Pd
jD2 z

2
j º. At the south pole �e1, these are

reversed, with the stable manifold for downward gradient flow equal to S and the
unstable manifold being the real surface H� WD zV \Rd ; see Figure 6.

Proof. Once we check that S, HC and H� are invariant manifolds for the gradient flow
on zV , the proposition follows from the dimensions and the fact the ranges of zh on HC,
S and H� are Œ1;1/, Œ�1; 1� and .�1;�1�, respectively. Invariance of H˙ follows
from the fact that the gradient is a real map (the gradient at real points is real), and
therefore the real subspace, of which H˙ are connected components, is preserved by
gradient flow. Invariance of S follows from the same argument after reparametrizing
via .x1; : : : ; xd / D .s1; is2; : : : ; isd /.

5. Perturbation of the variety

Instead of working directly with Q, we consider the small perturbations Qc.z/ WD
Q.z/ � c. As above, let Vc denote the zero set of Qc , let !c D .P=Qk

c / dz=z denote
the corresponding Cauchy d-form, and let Mc DCd

� �Vc denote the points where !c
is analytic. Below we collect several results on the behavior of this deformation.

Proposition 5.1 (Stable behavior). Under the setup of the previous paragraph,

(i) For sufficiently small jcj > 0, the variety Vc is smooth.

(ii) For any index r, the coefficient of the power series expansion for Fc D P=Qk
c

given by (1.3),

ar.c/ WD
� 1

2�i

�d Z
T

z�rP.z/
Qk
c

dz
z
;

is holomorphic in the disk jcj < jQ.0/j. In particular, any given coefficient is
continuous at c D 0 as a function of c.
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Proof. The first statement follows from the Bertini–Sard theorem (the values of c that
make Vc singular is a finite algebraic set). The second follows from the fact that each
term in the (converging, under our assumptions) expansion of

P

.Q � c/k
D

X
l�0

�
�k

l

�
P

QkCl
cl

is holomorphic and thus integrable over any torus in the domain of holomorphy of F ,
and the modulus of each term is bounded.

We will need to understand the local behavior of hr on the smooth varieties Vc

near z�. The following proposition shows that the perturbed varieties have the same
geometry as the limiting quadric described in Section 4.

Proposition 5.2 (Local behavior). Assume that the direction yr strictly supports the
tangent cone Tx�.B/. Then

(i) There is a ı > 0 such that for sufficiently small jcj ¤ 0, there are precisely two
critical points of hyr on the variety Vc in the ball Bı.z�/. These points tend
to z� as c ! 0.

(ii) If c is positive and real, these critical points z˙c are real and can be chosen
such that

hyr.zCc / > hyr.z�/ > hyr.z
�
c /:

Proof. By part (i) of Proposition 5.1, Vc is smooth. The function hyr is the real part
of the logarithm of the locally holomorphic function zyr near z�, hence it has a critical
point on the smooth complex manifold Vc if and only if zr does, i.e., if dzr is collinear
with dQ. This latter condition defines the so-called log-polar variety. A local com-
putation implies that under our conditions this is a smooth curve, intersecting V with
multiplicity 2 at z� as long as r is not tangent to the tangent cone TL.z�/.log V/.

Indeed, one can find a real affine-linear coordinate change such that in the new
coordinates, centered at z�,

Q D z21 �
X
k�2

z2k CO.jzj
3/ and h D z1 C

X
k�2

akzk CO.jzj2/;

where our conditions on r imply
P
k a

2
k
< 1. In these coordinates, the log-polar

variety is given by the equation zk D �akz0 C O.jzj2/. Thus, the log-polar curve
intersects Vc transversely for jcj ¤ 0 small and consists of 2 geometrically distinct
points. A similar computation implies the second statement for real c.

The main work in proving Theorem 2.5 will be to prove the following result.
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Theorem 5.3. Assume the hypotheses of Theorem 2.5. For any compact subsetK�bE ,
one can choose positive numbers " and c� as well as a cycle �.yr/ for every yr 2 K,
such that the following hold for every jcj < c�:

(i) The cycle �.yr/ lies in the set Mc.�"/; in other words, the cycle �.yr/ lies
below the height level hyr.z�/� " and it avoids Vc for all c such that jcj<c�.

(ii) There is a chain �c �Mc such that ŒT� ' Œ�c�C Œ�.yr/� in Hd .Mc/.

(iii) The cycle �.yr/ can be chosen to be Œo
.yr/�C ŒT.y/�, where 
.yr/ is a .d � 1/
cycle in V.�"/, and y is in a descending component B 0 of the complement
of amoeba.Q/ with respect to B (see Definition 3.4).

(iv) For fixed r as c ! 0, Z
�

z�r!c !

Z
�

z�r!; (5.1)Z
�c

z�r!c ! 0 if d > 2k: (5.2)

Theorem 5.3 is proven in Section 7. The significance of Theorem 5.3 is that it
allows one to deduce the coefficient behavior of generating functions such as the GRZ
and KZ functions. Prior to this, it was known how to compute the inverse Fourier
transform of 1= zQ, where zQ is a Lorentzian quadratic, and how to approximate the
Fourier transform of 1=Q by that of 1= zQ when Q is a polynomial whose leading
homogeneous part at its singularity of minimal modulus is equal to zQ. What is new in
Theorem 5.3 is the topological decomposition of the Cauchy torus in a basis of local
homology generators. Showing that ŒT� can be decomposed into a cycle indepen-
dent of the perturbation parameter and supported below the cone point, together with
a class whose contribution goes to zero as the perturbation shrinks to zero, explains
phenomena for which computations were not carried out at the chain level in [3].
Together with Proposition 8.4 and the rigorous numerics at the end of Section 8, the
local homology decomposition allows us to deduce the full decomposition of ŒT� in
local homology generators over which integrals can be computed. The quantitative
results in Theorem 2.8 depend on this decomposition and provide the first example
of a coefficient greater than 1 in the local homology decomposition of the Cauchy
torus.

Proof of Theorem 2.5. The first statement of Theorem 2.5 follows immediately from
Theorem 5.3, as

ar D lim
c#0

ar;c D lim
c#0

Z
T

z�r!c D lim
c#0

h Z
�.yr/

z�r!c C

Z
�c

z�r!c

i
D

Z
�.yr/

z�r!
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by (5.1), (5.2) and (2.2). The uniform bound in yr follows from compactness of K.
Indeed, any cycle �.yr/ satisfies the conclusions for all yr0 in a small enough open
neighborhood of yr; choosing a finite cover of K by such open vicinities, we prove
the claim. To obtain the second statement of Theorem 2.5, we use Proposition 3.6 to
see that Z

T.x0/
z�r!c

vanishes for all but finitely many r. Together with (iii) of Theorem 5.3, this implies
the conclusion of Theorem 2.5 for polynomial numerators.

6. Local homology near a quadratic point

Recall our sign choice for Q, which implies that Q is positive on the real part of
the domain of holomorphy for the Laurent expansion under consideration. We are
interested in the local topology of the intersections of the singular set Vc with the
height function h D jzrj. We start with a result proved in [1, Lemma 1.3], though it
dates back at least to [28].

Proposition 6.1. There exist ı; ı0 > 0 such that if B D B.z�; ı/ denotes the ball
of radius ı about z�, then Vc \ B is diffeomorphic to the total space of the tangent
bundle to the .d � 1/-dimensional sphere for all c 2C with 0 < jcj< ı0. In particular,
the (absolute) homology groups of Vc \B are trivial in dimensions not equal to d � 1,
and Hd�1.Vc \ B/ Š Z.

Let h� WD h.z�/. What we require for our results is a description of the relative
homology group Hd�1..Vc/� \B;Vc \B.h � h� � "//, together with explicit gen-
erators. To compute these, we start with the homogeneous situation and then perturb.
Denote by q the quadratic part ofQ at z�. This is a real quadratic form, invariant with
respect to conjugation, with signature .1; d � 1/ on the real part of the tangent space
at z�. We denote the two convex cones where q � 0 by C˙ and extend Definition 2.3
by considering supporting vectors to CC as well as C�.

Consider the following three surfaces in Cd of respective codimensions 1, 1 and 2:

(i) the boundary S of the unit ball;

(ii) the hyperplane H WD ¹xC iy W x � yr D 0º orthogonal to the real vector yr;

(iii) the complex hypersurface v WD ¹q D 0º defined by the quadric.

The transverse intersection of S and H is the equator of S .

Lemma 6.2. If r is supporting, then v intersects S \H transversely.
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Proof. By the hypothesis that r is supporting, one can choose h as one local coordi-
nate, changing the rest of the coordinates so that the quadratic form q preserves its
Lorentzian form. In these new coordinates, it remains to prove that the functions

x1 D 0; x21 C

dX
2

y2k � y
2
1 C

dX
2

x2k D 0; x1y1 �

dX
2

xkyk D 0

have independent differentials at their common zeros outside of the origin. This can
be checked directly.

Corollary 6.3. For � > 0 small enough, there are positive numbers "� and c� such
that the manifolds ¹z W jz � z�j D rº, ¹z W h.z/ D h�.z/ C "º and ¹z W Q.z/ D cº

intersect transversely, provided that �=2 < r < � while " < "� and jcj < c�.

Proof. For a given � > 0, introduce new coordinates in which z� is the origin and
the �-ball around z� becomes the unit ball in Cd , while rescaling Q by ��2 and h
by ��1. The resulting functions become small perturbations (decreasing with �) of
the quadratic and linear functions in Lemma 6.2, and their zero sets become small
deformations Q� and H � of the corresponding varieties.

In particular, the determinants whose nonvanishing witnesses the transversality of
the varieties of Q�, H � and S are small deformations of the determinants witnessing
the transversality in Lemma 6.2, and therefore are nonvanishing on some open neigh-
borhood U of the set of solutions toH � DQ� D 0 intersected with the spherical shell
where the distance to the origin is between, say, 1 and 1=2 for small enough �.

For small enough "�; c�>0, the sets ¹jQ�j � c�º\ ¹jh
�j � "�º\B1 are contained

in U . Therefore, the varieties ¹Q� D cº, ¹H � D "º and ¹jzj D rº are transverse when
jcj � c�, j"j � "� and 1=2 � r � 1.

We will need one more result on the local geometry of V and ¹h D constº.

Lemma 6.4. For " ¤ 0, the intersection of the real hyperplane x1 D �" with the
quadric

z21 � z
2
2 � � � � � z

2
d D c

is homotopy equivalent to a .d � 2/-dimensional sphere for jcj small enough.

Proof. Rescaling, we can assume that " D �1. Parametrizing .x2; : : : ; xd / D s� and
.y2; : : : ; yd / D t�, where s; t � 0 and � , � are unit vectors in Rd�1, we obtain the
equations

x1 D 1; 1 � y21 C t
2
j�j2 � s2j�j2 D c; y1 D st.� � �/: (6.1)

Suppose c D 0. Then the manifold in question is given by

1C t2 D s2t2j� � �j2 C s2:
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Since s2t2j� � �j2 C s2 � s2.1C t2/, one can keep � , � fixed and retract .s; t/ satis-
fying this equation to .1; 0/. This retracts the manifold onto the unit .d � 2/-sphere.

For nonzero c, it can be verified that the manifolds given by (6.1) are transverse,
and therefore remain transverse for small c, meaning the intersections are homeo-
morphic.

Corollary 6.5. Assume that yr is supporting. Then, for � > 0 small enough, there are
"; c� > 0 such that

Vc \ ¹hyr D �"º \ B�.z�/

is homotopy equivalent to S .d�2/ for jcj < c�.

Proof. We can choose coordinates in which the quadratic part of Q and hyr are given
by z21 � z

2
2 � � � � � z

2
d

and x1, respectively. Then, repeating the argument of Corol-
lary 6.3, we can view rescaled Q and h as small perturbations of the quadratic and
linear functions in Lemma 6.4, and apply transversality.

We will be referring to the intersection

slab WD slab�;" WD B� \ ¹jh � h�j � "º;

for �, " satisfying the conditions of Corollary 6.3, as the .�; "/-slab (see Figure 7). We
call the intersection of the slab with the boundary @B� its vertical boundary, and the
intersection with h D h� � " its bottom.

Figure 7. A slab.

Corollary 6.6. For �, "�, c� satisfying the conditions of Corollary 6.3, whenever
jcj < c�, there exists a vector field v on the intersection Vc;slab WD Vc \ slab�;"�
such that the following hold:

(1) dh � v < 0 everywhere outside of the critical points of h on Vc;slab.

(2) For points on Vc;slab within �=3 from z�, the vector field is the gradient vector
field for �h on Vc with respect to the standard Hermitian form on Cd .
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(3) For points at distance between �=2 and � from z�, the vector field is tangent
to the spheres ¹jz � z�j D constº and dh � v D �1.

(4) If c is real, the vector field is invariant under conjugation v.xz/ D v.z/.

Proof. Let v.z�/ denote the gradient vector field for �h on Vc as in statement (2).
For any point z at distance between � and �=2 from z�, the transversality conclusions
of Corollary 6.3 imply that near z one can choose coordinates that include the four
functions h, jz � z�j, <¹Qº and =¹Qº. In such coordinates, define v.z/ WD @=@h.
Since h, Q, distance and the standard Hermitian form are invariant with respect to
complex conjugation, we may choose the family ¹v.z/º to be invariant, in the sense
that v.xz/.xw/ is the conjugate of v.z/.w/.

Use a partition of unity to glue together the vector fields v.z/, ensuring that the par-
tition gives weight 1 to points in a �=3 neighborhood of z� and zero weight outside
the �=2 neighborhood. This ensures conclusions (1), (2) and (3). If the partition is cho-
sen invariant with respect to conjugation, the last conclusion will be true as well.

Proposition 6.7. Assume again that r is supporting at z�, where z� is a quadratic
singularity of Q with signature .1; d � 1/. Fix � and " satisfying conditions of Corol-
lary 6.3 and the corresponding .�; "/-slab. Letting bottom denote Vc \ slab \
¹h � h� D �"º, the relative homology group

H� WD Hd�1.Vc \ slab; bottom/

is free of rank 2 for small enough jcj ¤ 0. For small real c > 0, its generators are
given by

• an absolute cycle, the image of the generator ofHd�1.Vc \Br/ under the natural
homomorphism into H�, and

• the relative cycle corresponding to the lobe of the real part of Vc located in
¹h � h�º.

Proof. The trajectories of the flow along the vector field v.�/ constructed in Corol-
lary 6.6 starting on Vc;slab either converge to the critical points of h on Vc;slab, or
reach bottom. Indeed, the value of h is strictly decreasing outside of the critical points
and cannot leave the slab through its side due to conclusion (3) of Corollary 6.6. All
trajectories therefore remain in the slab or reach the bottom.

The homology of the pair .Vc \ slab; bottom/ is generated by classes rep-
resented by the unstable manifolds of the Morse function h at critical points on
Vc \ slab; this is the fundamental theorem of stratified Morse theory, for exam-
ple, [15, Theorem B]. In our situation, there are exactly two such critical points,
z� and zC, both in the real part of Vc and both of index d � 1. This proves the
statement about the rank of the group.
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The long exact sequence of the inclusion of the bottom into Vc \ slab gives an
exact sequence containing the maps

Hd�1.bottom/! Hd�1.Vc \ slab/! Hd�1.Vc \ slab; bottom/:

In accordance with Corollary 6.5, the first of these groups vanishes because Vc \

bottom is homotopy equivalent to Sd�2. It follows that the absolute cycle generat-
ing Hd�1.Vc \ B�/ is nonvanishing in Hd�1.Vc \ slab; bottom/ and is therefore
a generator of H�.

For c > 0, the real part of Vc located within the lower half of the slab, ¹h < h�º,
contains the critical point z� (by Proposition 5.2), and the vector field v is tangent to it
(thanks to the reality property mentioned above). Hence it coincides with the unstable
manifold of z�.

Of course, the same argument applies to the Morse function �h on Vc , implying
that the group

HC WD Hd�1.Vc \ slab; .Vc \ slab/ \ ¹h D h� C "º/

also has rank 2 and, for positive real c, is generated by the same absolute cycle
together with the analogous relative cycle (the lobe of the real part of Vc located
in ¹h � h�º). For small positive c (the situation we will restrict ourselves to from now
on), we will denote the generators in H� by S� and H�, where S� is the absolute
class represented by the small sphere in Vc and H� is the relative class represented
by the corresponding component of the real part of Qc . In the same way, we define
classes SC and HC generating HC.

A general duality result implies that the relative groups H� and HC are dual to
each other, with the coupling given by the intersection index. Briefly, the reason is that
the vector field in Corollary 6.3 may be used to deform slab until the boundary of the
top flows down to the boundary of the bottom; this makes the space into a manifold
with boundary satisfying the hypotheses of [17, Theorem 3.43]. The conclusion of
that theorem is an isomorphism between a homology group and a cohomology group,
which, combined with Poincaré duality, proves the claim. In fact, we will not use this
argument, because we need to compute this coupling explicitly, as follows.

Proposition 6.8. The intersection pairing between H� and HC is given by

hHC; H�i D 0;

hHC; S�i D .�1/d.d�1/=2;

hSC; H�i D .�1/d.d�1/=2;

hSC; S�i D .�1/d.d�1/=2�.Sd�1/ D .�1/d.d�1/=2.1C .�1/d�1/:
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Remark. We pedantically distinguish between SC and S�, although they are the
image of the same absolute class, or even chain, in Vc . Also, we note that our ori-
entations of the spheres and their tangent spaces can be in disagreement with the
standard orientations induced by the complex structure. By changing the orientation
of the chain S, one can suppress the annoying sign factor in the second and third
equalities, but not in the last one.

Proof. We can work (after rescaling) in the setup of Lemma 4.1. The cycles repre-
senting H˙c are disjoint, explaining the first line. Each intersect S in precisely one
point. Denoting @=@xk by �k and @=@yk by �k , the tangent spaces to SD S˙ at z˙ are
spanned by the vectors

˙�2; : : : ;˙�d ;

and the tangent spaces to H˙ at z˙ are spanned by

˙�2; : : : ;˙�d ;

respectively.
In the standard orientation of the complex hypersurface zV , the frame .�2; �2; : : : ;

�d ; �d / is positive. Hence, the intersection index of HC and S is the parity of the
permutation shuffling

.�2; : : : ; �d ; �2; : : : ; �d /

into that standard order, giving the second line. The third line is obtained similarly,
taking the signs into account.

The last pairing can be observed by noting that the self-intersection index of
a class represented by a manifold of middle dimension in a complex manifold is equal
to the Euler characteristics of the conormal bundle of the manifold, under the identifi-
cation of the collar neighborhood of the manifold with its conormal bundle. This gives
�.S/D .1C .�1/d�1/.�1/d.d�1/=2, where again the mismatch between the standard
orientation of the conormal bundle and the ambient complex variety contributes the
factor .�1/d.d�1/=2.

Importance of the local homology computation lies in the following localization
result. Let u� WD L.z�/ 2 Rd be a point on the boundary of amoeba.Q/ (recall L is
the logarithmic map z 7! log jzj).

Theorem 6.9. Assume that the quadratic critical point z� is the only element of
T.u�/\ V , that z� lies on the boundary of a component of amoeba.Q/c and that r is
supporting. Then for any � > 0, there exist "; c� > 0 such that for all c 2 .0; c�/, the
intersection class 	.T/ � Vc can be represented by a chain supported on

B�.z�/ [ ¹h � h� � "º:
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Proof. Choose � small enough so that the conclusions of Corollary 6.3 hold. As the
intersection of V with the torus T.u�/ containing z� is a single point, standard com-
pactness arguments imply that for sufficiently small positive ı, the intersection of V

with the L-preimage of B.u�; ı/ is contained in B�.z�/. Pick a torus T.x/, where x is
a point in the intersection of B with the component of the complement to the amoeba
defining our power series expansion. Choose " > 0 such that ¹h � h� � "º inter-
sects B�.z�/. Let y be a point in the component B 0 defined at the end of Section 3,
such that hyr.y/ < hyr.z�/� ". Choose any smooth path ¹˛.t/ W 0 � t � 1º from x to y
that passes through B�.z�/ and along which hyr decreases. Then the L-preimage of
that path is a cobordism between T and a torus T0 in ¹h � h.z�/ � "º. The transver-
sality conclusion of Corollary 6.3 means that this cobordism, or a small perturbation
of it, produces a chain realizing the intersection class 	.T/ and satisfying the desired
conclusions.

We now come to the main result of this section, which completes step (1) of the
outline at the end of Section 3.

Theorem 6.10. For even d , the intersection class 	.T/ is equal, up to sign, to ŒSc� in
Hd�1.Vc ;Vc.� �"//.

Proof. Let e denote the class of 	.T/ in the relative homology group H�. Then, by
Lemma 6.7, we have e D aH� C bS� for some integers a and b. We claim that

hHC; ei D ˙1; hSC; ei D 0: (6.2)

The construction of the chain representing the intersection class 	.T/ in Theo-
rem 6.9 implies that it meets the chain representing HC at precisely one point z0c . The
point z0c is not necessarily the point zCc , but it is characterized by being the unique
point where the homotopy intersects the real variety Vc;R � Vc .

The intersection class is represented by a chain that is smooth near z0c . We need to
check that its intersection with the “upper lobe” HC is transverse within Vc . Indeed,
one can linearly change coordinates centered at z0c so that in the new coordinates z0

the homotopy segment runs along the x01 axis, and thus the equations defining the
cobordism are x02 D � � � D x0

d
D 0. Then Vc is given by z01 D R.z02; : : : ; z

0
d
/ with

dRjzC� D 0. By direct computation, the intersection is transversal, and the tangent
space to the chain representing the intersection class at zC� is the tangent space to Vc

at zC� multiplied by i .
Because HC and e intersect transversely at a single point, the first identity in (6.2)

is proved. For the second identity, we again rely on perturbations of the cobordism
defining the intersection class. If the path defining the cobordism avoids z�, for c small
enough, the chain realizing 	.T/ constructed in Theorem 6.9 will completely avoid
the chain representing S, implying that the intersection number of e with SC is zero.
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To finish, we substitute (6.2) into Proposition 6.8. We compute

˙1 D hHC; ei D a � 0C b � ˙1;

therefore b D ˙1, and

0 D hSC; ei D ˙a˙ b�.Sd�1/:

When d is even, the Euler characteristic of the .d � 1/-dimensional sphere vanishes
together with a.

7. Proof of the main theorem and Theorem 5.3

We are now ready to prove Theorem 5.3, and thus obtain our main Theorem 2.5.
At each stage, it is easiest to prove the result for fixed yr and then argue by compactness
that the conclusion holds for all yr 2 K. We start with a localization result. Use the
notation 	c to denote intersection class with respect to the perturbed variety Vc .

Lemma 7.1. Fix yr 2 K. Under the hypotheses of Theorem 6.10, there is an " > 0

such that the intersection class 	c.T;T0/ is

	c D ŒSc�C Œ
c�;

where the cycle 
c.yr/ representing the class Œ
c�2Hd�1.Vc/ is supported in Vc.<�"/

with respect to hyr.

Proof. By Theorem 6.10, 	c � Sc is mapped to zero in the second map of the exact
sequence

� � � ! Hd�1.Vc.< �"//! Hd�1.Vc/! Hd�1.Vc ;Vc.< �"//! � � � :

Hence 	c � ŒSc� is represented by a class in Hd�1.Vc.< �"//.

Let † denote the singular locus of V , that is, the set ¹z 2 V W rQ.z/ D 0º. The
point z� is a quadratic singularity, thus isolated, and we may write † D ¹z�º [ †0,
where †0 is separated from z� by some positive distance.

Corollary 7.2. If the real dimension of † is at most d � 2, then for some ı > 0, the
cycles ¹
c.yr/ W 0< jcj< ı; yr2Kºmay be chosen so as to be simultaneously supported
by some compact „ disjoint from †.

Remark. In the case where † is the singleton ¹z�º or when any additional points
z 2 † satisfy h.z/ � h.z�/ � " for all yr 2 K, the proof is just one line. This is all our
applications presently require, however the greater generality (although most likely
not best possible) may be useful in future work.
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Proof. The first step is to prove that for fixed yr, we may choose the cycles ¹
c.yr/ W 0 <
jcj< ıº satisfying the conclusion of Lemma 7.1, all supported on a fixed compact set
„ avoiding†. It suffices to avoid†0 because the condition of being supported on V�"

immediately implies separation from z�. The construction in Theorem 6.9 produces
a single homotopy for all c, which is then intersected with each Vc . It follows that
the union of the intersection cycles is contained in a compact set. By the dimension
assumption, a small generic perturbation avoids†0 while still being separated from z�.

Having seen that for fixed yr, the cycles ¹
c.yr/ W 0 < jcj < ıº may be chosen to
satisfy the conclusions of Lemma 7.1 and to be supported on a compact set „.yr/
avoiding†, the rest is straightforward. For each yr, there is a neighborhood N .yr/ � K
such that ys 2 N and hyr.z/ � hyr.z�/ � " imply hys.z/ � h.z�/ � "=2. Thus we may
choose 
c.ys/ D 
c.yr/ to be independent of ys over N .yr/. Choosing a finite cover
of K by these neighborhoods, the union of the corresponding sets „.yr/ supports the
cycles 
c.yr/ for all c and yr.

Theorem 6.9 is a rather standard result about pushing the intersection class below
height h.z�/ except in a small ball about z�. Our proof of Theorem 6.9 uses an unspec-
ified torus T0 with polyradius in the descending component B 0 of Definition 3.4, and
is therefore not an explicit construction of a chain representing T, but is sufficient
to prove Theorem 6.10 and Lemma 7.1 describing the relative homology of the pair
.Vc ;Vc.� �"//.

Equation (7.1) in Lemma 7.3 is all we need to complete the proof of Theorem 5.3.
However, in Section 8 we study the asymptotic contributions of lower critical points,
these being the dominant contributions in the lacuna setting, when d is even and
greater than 2k. For this purpose, we need a more explicit description of a cycle
homologous to T at height below the critical point: the quadratic approximation of Vc

is only good in a neighborhood of the critical point, however finding a torus disjoint
from V may require traveling further down. The next lemma finds an explicit cycle
homologous to T, having height at most�" except for an arbitrarily small tube around
a piece of V�0, in two ways: one when a torus T0 at height �" can be chosen disjoint
from V and a different way when T0 intersects V .

Lemma 7.3. Choose x 2B , let yD�"x, let ˛W Œ0; 1�!Rd be the line segment from x
to y, and define T0 D T.y/.

(i) Suppose that T0 is disjoint from V , as in the proof of Theorem 6.9. Then there
exist "; c�; c0 > 0 such that

ŒT� D ŒoSc�C Œo
c0 �C ŒT0� (7.1)

for all jcj< c�, where 
c0 is the cycle from the conclusion of Lemma 7.1 with c
replaced by c0.
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(ii) Alternatively, if T0 is not disjoint from V , then instead of (7.1) one has

ŒT� D ŒoSc�C Œ.o
c0/��"#T0�; (7.2)

where .o
c0/��"#T0 is the connected sum of .o
c0/��" and T0 along their
common boundary .o
c0/D�" D @.T0 n �
c0/.

Proof. For the compact „ described in Corollary 7.2, the intersection of V with „
is smooth. By Proposition 3.1, there is a neighborhood of „ in V� n † that can be
parametrized as a 2-dimensional vector bundle over some compact subset „0 � V .
This bundle is naturally coordinatized by the values of Q so that for some small
c0� > 0, the tubular neighborhood around V„ can be identified with D0 � V„ for
D 0 WD ¹c 2 C W jcj < c0�º. We will denote this neighborhood by VD0

„ .
Lemma 7.1 implies that

ŒT� D ŒoSc�C Œo
c�C ŒT0�

for all small enough jcj (which we may assume from now on to be smaller than
c� < c

0
�). The class o
c can be represented by a small tube around a cycle 
c 2 Vc ,

which is entirely supported by VD0

„ . Using the product structure VD0

„ Š D0 � V„,
we can identify this tube with a product of a small circle (of radius �.c/ > 0) around
c 2D0 and 
�, a cycle in the smooth part of V obtained by projection of 
c . When c�
and � are sufficiently small, the maximum height of 
� is h� � "0 for some "0 > 0.

There exists a homeomorphism of the annulus D0 � D�.c/.c/ fixing its outer
boundary and sending the small circle @D�.c/.c/ around c into the circle of radius c�.
Extend this homeomorphism, fiberwise, to all of the tubular neighborhood VD0

„ . Fur-
thermore, extend it to the complement of VD0

„ in such a way that it is identity outside
of a small vicinity of VD0

„ (and thus near Sc and T, T0). Choose c� smaller if neces-
sary and take o
 to be the c�-tube around 
� for all c with jcj < c�. Then this cycle
avoids Vc for all c with jcj < c� and has maximum height less than h� � ", where " is
positive once c� has been chosen sufficiently small with respect to "0. This completes
the proof of case (i).

For case (ii), let ˛W Œ0; 1�! Rd be as in Theorem 6.9 parametrizing the line seg-
ment from x to some y 2 B 0. Let T00 denote the torus with polyradius y, and let T0

be the torus at height "0 which is the slice of the homotopy in Theorem 6.9 for some
t 0 2 .0; 1/. Let y0 be the corresponding basepoint.

The homotopy swept out by tori with polyradii ˛.t/ intersects V and defines an
intersection cycle 
 . The homotopy ¹L�1˛.t/ W 0 � t � 1º intersects V , yielding an
intersection .d � 1/-chain 
�", which is not a cycle. Its boundary is the .d � 1/-
cycle 
D�" (assuming, without loss of generality, transversal intersections). These
objects are illustrated in Figure 8. Comparing the known expression for ŒT�

ŒT� D ŒoSc�C Œo
�C ŒT00� (7.3)
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T

T0

T00
Dn�.
/

V


�


.o
/��"#T0
oSc

Figure 8. Removing a neighborhood of V from an expanding torus homotopy creates
a region in M whose boundary is a useful cobordism. The cobordism in (7.3) is given by
.o
/��"#T0 C @.D n �
/C oSc .

to the desired expression for ŒT�

ŒT� D ŒoSc�C Œ.o
/��"#T0�

using the chain-level identity

.o
/��"#T0 D .o
/��" C .T0 n �.
//;

we see that the difference is represented by the chain

.o
/��" C .T0 n �.
// � o
 � T00 � T00 D �.o
/��" C .T0 n �.
// � T00

D @.D n �.
//;

where D is the .d C 1/-chain given by the L-preimage of ¹˛.t/ W t 0 � t � 1º. Since
the difference is a boundary, this establishes (7.2).

Proof of Theorem 5.3. Let 
.yr/ be chosen as in the first conclusion of Lemma 7.3, let

�.yr/ WD o
.yr/C T.y/;

which must satisfy condition (iii) of Theorem 5.3, and choose �c WD oSc . Conclu-
sion (i) follows from the choice of c� in the proof of Lemma 7.3. Conclusion (ii) is
equation (7.1). As the compact cycle � is independent of c, equation (5.1) follows
from convergence of !c to ! on � for each r. It remains only to verify (5.2).

To prove (5.2), choose a local coordinate system in which Q is reduced to its
quadratic part, and rescale it by c1=2 (either root will work). In this coordinate system
u D vC iw, we are integrating over the cycle oS1, where

S1 D

²
v21 C

dX
kD2

w2k D 1 W w1 D v2 D � � � D vd D 0

³
:
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In the new local coordinates zD z�C c1=2u .u/ with  holomorphic and  .0/D 1,
the form z�r!c becomes

z�r!c D z�r�1
�

�
1C c1=2

u
z�

��r�1P.z� C c1=2u .u//
ckq.u/k

cd=2du

D cd=2�kz�r�1
� H.u; c/du;

where q is the quadric (4.1) and

H.u; c/ WD
�
1C c1=2

u
z�

��r�1P.z� C c1=2u .u//
q.u/k

:

The function H.u; c/ is holomorphic in u and bounded on oS1 uniformly in c.
As c ! 0, H.u; c/! P.z�/=q.u/k , and (5.2) follows.

8. Application to the Gillis–Reznick–Zeilberger function with critical
parameter

Having established the exponential drop, this section extends Theorem 2.5 to obtain
more precise asymptotics for ar. Most of what follows concentrates on the GRZ exam-
ple, however we first state a result holding more generally in the presence of a lacuna.
A critical point at infinity, formally defined in [4], can be viewed as a sequence of
singularities going off to infinity in such a way that the limit of the differential of
the height function at the points approaches zero. Here, we note only that there is an
effective test for critical points at infinity [4, Algorithm 1] and that our GRZ example
does not have any.

Theorem 8.1. Assume the hypotheses of Theorem 2.5. Fix yr, and let c1 > c2 be the
heights of the two highest critical points, the highest being the quadratic singularity.
Suppose, in addition, that Q has no critical points at infinity in direction yr at any
height in Œc2; c1�. Then for every " > 0, there is a neighborhood bE of yr such that as
r!1 with r=jrj 2 bE ,

ar D O.e
.c2C"/jrj/:

Theorem 8.1 is an almost immediate consequence of Theorem 2.5 and the follow-
ing result.

Proposition 8.2 ([4, Theorem 2.4 (ii)]). Let Œa; b� be a real interval, and suppose
that V� has no finite or infinite critical points z with hyr.z/ 2 .a; b�. Then for any
" > 0, any chain � of maximum height at most b can be homotopically deformed into
a chain � 0 whose maximum height is at most aC ".
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Proof of Theorem 8.1. Apply Proposition 8.2 with aD c2 and b D c1, resulting in the
chain � 0. Applying Theorem 2.5 and the homotopy equivalence of � and � 0 in M,
we have

ar D

Z
�0

z�r P

Qk

dz
z
CR;

where R decreases super-exponentially and, in the polynomial case, is in fact zero for
all but finitely many r. The height condition on � 0 implies that this integral is bounded
above by the volume of � 0, multiplied by the maximum value of jF j on � 0, multiplied
by e.c2C"/jrj.

In the remainder of this section, as in Example 2.6, we let

F.z/ WD
1

1 � z1 � z2 � z3 � z4 C 27z1z2z3z4
:

Fix yr to be the diagonal direction. We will prove Theorem 2.8 by first computing an
estimate for ar up to an unknown integer factor m. We then use the theory ofD-finite
functions and rigorous numerical bounds to find the value of m. Lastly, we indicate
how the value of m could possibly be determined by topological methods. In order
to discuss the sets V."/ relative to different critical heights, we extend the notation
in (2.1) via

V�t WD V \ ¹z W hyr.z/ < tº:

Proposition 8.3 ([4, Proposition 2.9]). Let F D P=Q, V , the component B and the
coefficients ¹arº be as in Theorem 2.5. Fix yr and suppose the critical values are
c1 > c2 > � � � > cm with c1 being the height of the quadric singularity z�. Suppose
there are no critical points at infinity of finite height. Then there is a decomposi-
tion C D

Pm
jD1

o
i in Hd .V�/ such that for each j , 
j 2 V�cj and is either zero
in Hd�1.V�cj / or projects to a nonzero element of Hd�1.V�cj ; Hd�1.Vcj�"//. The
decomposition is not unique, but the least j for which 
j ¤ 0 and the projection �
j
to Hd�1.V�cj ;Hd�1.Vcj�"// is well defined.

These cycles represent classes in integer homology, thus giving a representation
of ar as integer combinations of integrals over homology generators of the respective
relative homology groups. Such integrals are generally computable via saddle-point
integration. However, determining the integer coefficients appearing in this repre-
sentation can be extremely difficult, related to the so-called connection problem for
solutions of differential equations. Solving the system Q D 0 and rQ D �rhyr,
where � is an additional parameter, gives the set of critical points.

Proposition 8.4. The critical points of V are precisely the points z� WD .1=3; 1=3;

1=3; 1=3/, w WD .�; �; �; �/ and w0 WD xw, where � D .�1 C i
p
2/=3. There are no

critical points at infinity. The point z� is a quadratic singularity.
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Let c1 D hyr.z�/ D log 81 and c2 D hyr.w/ D hyr.w0/ D log 9. Generators for the
rank 2 homology group H3.V�c2 ; V�c2�"/ are given by the unstable manifold for
downward gradient flows at w and w0, respectively; denote these chains by 
 and 
 0.
The conclusion of Theorem 2.5 in this case is that

ar D

Z
�

z�rF.z/
dz
z
;

where � 2 V<c1 . By Proposition 8.3,

� D m o 
 Cm0 o 
 0

in H3.V�/ for some integers m and m0, which must be equal because the coefficients
are real. Explicit formulae in [32, Section 9.5] evaluate

R



z�rF dz=z, which, after
adding the complex conjugate, leads to the result in Theorem 2.8 with 3 replaced
by m. To prove Theorem 2.8, it remains to determine the integer m.

D-finite asymptotics and connection coefficients. A univariate complex function
f .z/ is called D-finite if it satisfies a linear differential equation with polynomial
coefficients,

pr.z/f
.r/.z/C pr�1.z/f

.r�1/.z/C � � � C p0.z/f .z/ D 0;

where pr.z/ 6� 0. We call such a linear differential equation with polynomial coeffi-
cients a D-finite equation. Our approach to determining m relies on the fact that the
diagonal of a rational function is D-finite [7, 23], and that asymptotics of D-finite
function power series coefficients can be determined up to constants which can be
rigorously approximated to large accuracy. In general, it is not possible to determine
these constants exactly without additional information (in fact, there does not even
exist a good characterization of what numbers appear as such constants) but knowing
asymptotics of an;n;n;n up to an integer allows us to immediately determine the value
of m.

The process of determining an annihilating D-finite equation of the diagonal of
a rational function lies in the domain of creative telescoping, a well-developed area
of computer algebra. In particular, there are popular packages in MAGMA [22] and
MATHEMATICA [20] which take a multivariate rational function and return an anni-
hilating D-finite equation. For the running example of this section, the diagonal

f .z/ D
X
n�0

an;n;n;nz
n

satisfies the linear differential equation

z2.81z2 C 14z C 1/f .3/.z/C 3z.162z2 C 21z C 1/f .2/.z/

C .21z C 1/.27z C 1/f 0.z/C 3.27z C 1/f .z/ D 0: (8.1)
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The following standard results on the analysis of D-finite functions can be found in
Flajolet and Sedgewick [10, Section VII.9].

• The solutions of a D-finite equation form a C-vector space, here equal to dimen-
sion three.

• A solution of (8.1) can only have a singularity when the leading polynomial coef-
ficient z2.81z2 C 14z C 1/ vanishes. Here the roots are 0, �4, and its algebraic
conjugate x�4, where � is the complex number appearing in the coordinates of the
critical point c2.

• Equation (8.1) is a Fuchsian differential equation, meaning its solutions have only
regular singular points, and its indicial equation has rational roots. Because of this,
at any point ! 2 C, including potentially singularities, any solution of (8.1) has
an expansion of the form�

1 �
z

!

�˛ dX
jD0

�
gj

�
1 �

z

!

�
logj

�
1 �

z

!

��
(8.2)

in a disk centered at ! with a line from ! to the boundary of the disk removed,
where ˛ is rational and each gj is analytic. At any algebraic point z D !, there are
effective algorithms to determine initial terms of the expansion (8.2) for a basis of
the vector space of solutions of (8.1).

• If g.z/ D
P
n�0 cnz

n is a solution of (8.1) which has no singularity in some disk
jzj<� except at a point zD!, and g.z/ has an expansion (8.2) in a slit disk near!
(a disk centered at ! minus a ray from the center to account for a branch cut), then
asymptotics of cn are determined by adding asymptotic contributions of the terms
in (8.2). In particular, a term of the form C.1� z=!/˛ logr.1� z=!/ with ˛ … N

gives an asymptotic contribution of !�nn�˛�1 logr.n/ C
�.�˛/

to cn. Furthermore,
if g.z/ has a finite number of singularities in a disk and has an expansion of the
form (8.2) at each, then one can simply add the asymptotic contributions coming
from each point in the disk to determine asymptotics of cn.

These results, combined with rigorous algorithms for numerical analytic contin-
uation of D-finite functions, allow us to rigorously determine asymptotics. For our
example, the SAGE ORE_ALGEBRA package [18] computes a basis of solutions to
equation (8.1) whose expansions at the origin begin with

a1.z/ D log.z/2
�1
2
�
3z

2
C
9z2

2
C � � �

�
C log.z/.�4z C 18z2 C � � � /

C .8z2 � 48z3 C � � � /;

a2.z/ D log.z/.1 � 3z C 9z2 C � � � /C .�4z C 18z2 C � � � /;

a3.z/ D 1 � 3z C 9z
2
C � � � ;
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and a basis of solutions to (8.1) whose expansions at z D �4 begin with

b1.z/ D 1C
�13
2
C
43
p
2

4
i
�
.z � �4/2 C

�8165
48
C
943
p
2

30
i
�
.z � �4/3 C � � � ;

b2.z/ D
p
z � �4 C

�13
3
�
365
p
2

96
i
�
.z � �4/3=2

�

�7071
1024

�
1041
p
2

32
i
�
.z � �4/5=2 C � � � ;

b3.z/ D .z� �
4/C

�17
3
�
31
p
2

6
i
�
.z� �4/2�

�1013
72
C
1805
p
2

36
i
�
.z� �4/3C � � � :

Since we can compute the power series coefficients of the diagonal generating
function f .z/ at the origin, we can represent f .z/ in the aj .z/ basis. In fact, because
f .z/ is analytic at the origin, it must be a multiple of a3.z/, and examining constant
terms shows that a3.z/ D f .z/. Since the coefficients of f .z/ grow, it must admit
a singularity at z D �4 or z D x�4 (in fact, we can deduce that it will have a sin-
gularity at both because we already know its dominant asymptotic behavior). If we
can determine f .z/ in terms of the bj .z/ basis, then we will know its expansion in
a neighborhood of the origin, and therefore be able to determine asymptotics of its
coefficients. Thus, we need to solve a connection problem, representing a function
given by a basis specified by local information at one point in terms of a basis speci-
fied by local information at another point.

To do this, it is sufficient to determine the change of basis matrix converting from
the aj .z/ basis into the bj .z/ basis. Using algorithms going back to the Chudnovsky
brothers [8, 9] and van der Hoeven [38], and recently improved and implemented
by Mezzarobba [25, 26], we can compute this change of basis matrix numerically to
any specified precision. The key is to use numeric analytic continuation to evaluate
the aj .z/ and bj .z/ to sufficiently high precision near a fixed value of z. Such eval-
uations can be done using the series expansions around each point (which can be
computed efficiently) and rigorous bounds on the error of series truncation [27].

Proof of Theorem 2.8. In particular, computing the change of basis matrix in this
example using the SAGE implementation of Mezzarobba gives

f .z/ D a3.z/ D C1b1.z/C C2b2.z/C C3b3.z/;

where C1, C2, and C3 are constants which can be rigorously computed to 1000 deci-
mal places in under 10 seconds on a modern laptop. As b2.z/ is the only element of
the bj .z/ basis which is singular at z D c2, the dominant singular term in the expan-
sion of f .z/ near z D c2 is

C2
p
z � �4 D � .3:5933098558743233 : : :

C i0:38132214909311386 : : :/
p
z � �4:
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Thus, f .z/ has a singularity at z D �4, and the asymptotic contribution of this singu-
larity to an;n;n;n is

‰1.n/ WD
.4i
p
2 � 7/n

n3=2
0:543449606382202 : : :C i0:259547320313100 : : :

p
�

CO.9nn�5=2/:

Repeating the same analysis at the point z D x�4 gives an asymptotic contribution

‰2.n/ WD
.4i
p
2C 7/n

n3=2
0:543449606382202 : : : � i0:259547320313100 : : :

p
�

CO.9nn�5=2/;

so that an;n;n;n has the asymptotic expansion an;n;n;n D ‰1.n/C‰2.n/.
Comparing this expansion (with numerical coefficients known to 1000 decimal

places) with the expansion in (2.4) which has constants that are unknown but restricted
to be integers, proves that �2 D �3 are integers equal to 2:99 : : : up to almost 1000
decimal places (almost 1000 decimal places more than needed to make this conclu-
sion), meaning m D 3. This finishes the proof of Theorem 2.8.

Example 8.5. We can repeat this analysis for the KZ function

FKZ.z/ D
1

1 � e1.z/C 2e3.z/C 4e4.z/

D
1

1 � .x C y C z C w/C 2.xyz C xyw C xzw C yzw/C 4xyzw
:

The diagonal of FKZ satisfies the D-finite equation

� t2.16t2 � 24t C 1/f 000.t/ � 3t.32t2 � 36t C 1/f 00.t/

� .112t2 � 80t C 1/f 0.t/C 4.1 � 4t/f .t/ D 0

with a basis of solutions at the origin consisting of a solution with power series expan-
sion

1C 4t C 40t2 C 544t3 C � � �

and two solutions with logarithmic singularities, and a basis of solutions at the singu-
larity � D 3=4 � 1=

p
2 determining dominant asymptotics of the diagonal sequence

consisting of two analytic solutions at z D � and a solution whose expansion at z D �
is of the form

p
t � �CO..t � �/3=2/:

Numerically computing a change of basis matrix gives an expansion

.4:4125 : : :/
p
t � �CO..t � �/3=2/
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for the diagonal of FKZ, leading to an asymptotic expansion

.0:2577973 : : :/��nn�3=2 CO.n�5=2/

for the diagonal coefficients whose leading coefficient can be computed to any accu-
racy. Matching this up with the asymptotic contributions of the smooth critical points
shows each contributes with a “multiplicity” of one.

9. Concluding remarks

Explaining the multiplicity

We have seen that the integral over C.c2/ and C.c3/ appear in the Cauchy integral
representation of an;n;n;n with a multiplicity of 3. Expanding a torus past a smooth
critical point leads to a coefficient of 1 when the critical point is a height maximum
along the imaginary fiber and zero when it is a height minimum along this fiber.
Evidently, when deforming the Cauchy domain of integration past the highest critical
point c1 D .1=3; 1=3; 1=3; 1=3/, the resulting chain � lying just below this height is
not like a simple torus and instead, under gradient flow, has multiplicity 3 in the local
homology basis at the diagonal points � and x�.

Problem 9.1. Give a direct demonstration of these coefficients being 3.

Our best explanation at present is this. If W is a smooth algebraic hypersurface,
Morse theory gives us a basis for Hd�1.W / consisting of the unstable manifolds for
downward gradient flow at each critical point. The stable manifolds at each critical
point are an upper triangular dual to this via the intersection pairing. The original torus
of integration is a tube over a torus T0 in V . If V were smooth, we would be trying
to show that the stable manifold at w in V� intersects T0 with signed multiplicity˙3,
where w D .�; �; �; �/. This is probably not true in the smooth varieties Vc . However,
as c! 0, part of the stable manifold at w gets drawn toward z�D .1=3;1=3;1=3;1=3/.
Therefore, in the limit, we need to check how many total signed paths in the gradient
field ascend from w to z�.

By the symmetry, we expect to find these paths along the three partial diago-
nals: ¹x D y; z D wº, ¹x D z; y D wº and ¹x D w; y D zº. Solving for gradient
ascents on any one of these yields three that go to z rather than to the coordinate
planes. If these all had the same sign, the multiplicity would be 9 rather than 3, there-
fore, in any one partial diagonal, the three paths are two of one sign and one of the
other. It remains to show that the signs are as predicted, that these are the only paths
going from w to z�, and to rigorize passage from the smooth case to the limit as
c ! 0.
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Computational Morse theory

One of the central problems in ACSV is effective computation of coefficients in inte-
ger homology. Specifically, the class ŒT � 2 Hd .M/ must be resolved as an integer
combination of classes o� , where � 2 Hd�1.V�/ projects to a homology generator
for one of the attachment pairs Hd�1.V�c ; V�c�"/ near a critical point with criti-
cal value c. What is known is nonconstructive. There is a highest critical value c
where ŒT � has nonzero homology in the attachment pair. The projection of ŒT � to
Hd�1.V�c ;V�c�"/ is well defined. If this relative homology element is the projection
of an absolute homology element � 2 Hd�1.V�c n V�c�"/, then there is no Stokes
phenomenon, meaning one can replace ŒT � by ŒT � � � and continue to the next lower
attachment pair where ŒT � � � projects to a nonzero homology element.

The data for this problem is algebraic. Therefore, one might hope for an algebraic
solution, which can be found via computer algebra without resorting to numerical
methods, rigorous or otherwise. At present, however, we have only heuristic geometric
arguments.

Problem 9.2. Given an integer polynomial and rational yr, algebraically compute
the highest critical points z for which the projection of ŒT � to the attachment pair
is nonzero. Then compute these integer coefficients. Also determine whether T is
homologous to a local cycle, and in the case that it is, find a way to continue the
computation to the next lower critical point.

Combining computation and topology

One of the main achievements of the present paper is the preceding chain of rea-
soning that combines topological methods with computer algebra. Computer algebra
methods give asymptotic formulae for the diagonal coefficients which includes an
unknown constant, computable up to an arbitrarily small (rigorous) error term. These
methods say nothing about the behavior of coefficients in a neighborhood of the diag-
onal. Topological methods show that in a neighborhood of the diagonal, coefficients
are given by an asymptotic formula which is the sum of algebraic quantities up to
unknown integer factors. This method on its own cannot identify the correct asymp-
totics without further geometric methods that have, thus far, eluded us. Combining the
two analyses determines the integer factors, leading to rigorous asymptotics through-
out an open cone containing the diagonal direction.
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