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Fluctuations of dimer heights on contracting
square-hexagon lattices

Zhongyang Li

Abstract. We study perfect matchings on the square-hexagon lattice with 1 x n periodic edge
weights and with one of the following boundary conditions: (1) each remaining vertex on the
bottom boundary is followed by (m — 1) removed vertices; (2) the bottom boundary can be
divided into finitely many alternating line segments, each of which has a fixed positive length
in the scaling limit, such that all the vertices along each line segment are either removed or
retained. In case (1), we show that under certain homeomorphism from the liquid region to
the upper half-plane, the height fluctuations converge to the Gaussian free field in the upper
half-plane. In case (2), when the edge weights x1, ..., x, in one period satisfy the condition
that x; 41 = O(exT"a), where o > 0 is a constant independent of N, we show that the height
fluctuations converge to a sum of independent Gaussian free fields.

1. Introduction

A perfect matching, or a dimer configuration, on a graph is a subset of edges such that
each vertex is incident to exactly one edge in the subset. Dimer configurations appear
naturally in statistical physics to model the structure of matter, for example, the perfect
matchings on the hexagon lattice is a mathematical model for the molecule structure
of graphite. Through explicit combinatorial correspondence, the dimer model is also
closely related to other lattice models in statistical mechanics, including the Ising
model [25,27], the 1-2 model [15, 16, 26, 28] and a general polygon model [14].
By developing the technique of Kasteleyn, Temperley and Fisher [18, 40], the par-
tition function (weighted sum of configurations) of dimer configurations on a finite
plane graph can be expressed explicitly as the determinant or Pfaffian of a weighted
adjacency matrix; the local statistics can be computed [19]. By studying the spec-
tral curve of the periodic dimer model using techniques from algebraic geometry,
the sharp phase transition result can be established [22, 24]. The asymptotics of the
rescaled dimer height function on a graph approximating a simply connected domain
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can be studied by a variational principle [10,23] and also by the asymptotics of certain
symmetric functions (see [1,2,5,6,9,13,32,36-38]).

The Gaussian free field (GFF) is a Gaussian process indexed by high-dimensional
parameters. The main aim of this paper is to investigate the connection between the
height fluctuations of the dimer model on a contracting square-hexagon lattice and the
Gaussian free field. It was first shown in [20,21] that the (non-rescaled) height func-
tion for the dimer model with uniform underlying measure on a simply connected
square grid with Temperley boundary condition converges to a GFF in distribution.
The result was later proved for the whole-plane isoradial graph [11] and the sim-
ply connected isoradial graph with Temperley boundary condition [29]. For boundary
conditions other than the Temperley boundary condition, the convergence of height
fluctuation for the dimer model with uniform underlying measure on a contracting
hexagon lattice to GFF was proved in [38]; the corresponding result on an Aztec dia-
mond (contracting square grid) with uniform underlying measure was proved in [9] by
analyzing the asymptotics of the Schur function in a neighborhood of (1,1,...,1) [7].

A related model is the dimer model on a contracting square-hexagon lattice whose
underlying measure depends on periodically assigned edge weights with period 1 x n.
In [5,32], we studied this model by establishing an identity of the partition function
of the dimer model on such a graph and the value of the Schur function depending on
edge weights and then analyzed the asymptotics of the Schur function in a neighbor-
hood of a generic point (x1, ..., xy). The law of large numbers for the rescaled height
function was proved for two specific boundary conditions on the bottom boundary:
(1) each remaining vertex on the boundary is followed by (m — 1) removed vertices,
where m > 1 is a positive integer; (2) the bottom boundary is divided to alternating
line segments with either all vertices removed or all the vertices preserved in each
segment. We shall call the first boundary condition the staircase boundary condi-
tion and the second boundary condition the piecewise boundary condition. In this
paper, we study the non-rescaled height fluctuations for the dimer model on the con-
tracting square-hexagon lattice with the above two boundary conditions and show
that they converge to GFF in a certain sense, building on the analysis of the Schur
function at a generic point (see [5, 32]), and the techniques to relate fluctuations
of particle systems determined by Schur generating functions and GFF developed
in [7].

The paper is organized as follows. In Section 2, we introduce the contracting
square-hexagon lattice and the main technical tools used in this paper; we also state
the main results proved in this paper. In Section 3, we introduce the staircase bound-
ary conditions and review the limit shape result for the dimer model on a contracting
square-hexagon lattice with 1 x n periodic edge weights and the staircase boundary
conditions. In Section 4, we prove that certain statistics constructed from the dimer
model on a contracting square-hexagon lattice with 1 x n periodic edge weights and
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the staircase boundary conditions converge to Gaussian distribution in the scaling
limit. In Section 5, we introduce the piecewise boundary conditions and review the
limit shape result for the dimer model on a contracting square-hexagon lattice with
1 x n periodic edge weights and the piecewise boundary conditions. In Section 6,
we prove that certain statistics constructed from the dimer model on a contracting
square-hexagon lattice with 1 x n periodic edge weights and the piecewise bound-
ary conditions converge to a sum of finitely many independent Gaussian random
variables in the scaling limit, whose number depends on the size of the period n.
In Section 7, we show that the statistics constructed from the dimer model on a con-
tracting square-hexagon lattice with 1 x n periodic edge weights and the staircase
boundary conditions converge to a GFF in the upper half-plane, under a homeomor-
phism from the liquid region to the upper half-plane. In Section 8, we show that the
statistics constructed from the dimer model on a contracting square-hexagon lattice
with 1 x n periodic edge weights and the piecewise boundary conditions convergence
to a sum of n independent GFFs in the upper half-plane.

2. Background

In this section, we define a general class of graphs (the contracting square-hexagon
lattices) on which the height fluctuations of dimer configurations are studied in this
paper. Dimer models on such graphs have been studied in [3-5,30-34], and the limit
shape results were explicitly established. We also review the main technical tools used
in this paper, including the Schur function, the Young diagram, etc.

2.1. Square-hexagon lattices
Consider a doubly-infinite binary sequence
¢=1(..,c—3,¢-1,C0,C1,C2,...) €10, 1}Z
indexed by integers
Z={..,-2,—-1,0,1,2,...}.

The whole-plane square-hexagon lattice associated with the sequence ¢ is a bipar-
tite plane graph SH(¢) defined as follows. Its vertex set is a subset of % X %. Each
vertex of SH(C) is either black or white, and we identify the vertices with points on
the plane. For m € Z, the black vertices have y-coordinate m, while the white ver-
tices have y-coordinate m — % We will label all the vertices with coordinate m as
vertices in the (2m)th row, and all the vertices with coordinate m — L ag vertices in

2
the (2m — 1)th row.
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We further assume that

» each black vertex in the (2m)th row is adjacent to two white vertices in the
(2m + 1)th row;

* if ¢,y = 1, each white vertex on the (2m — 1)th row is adjacent to exactly one
black vertex in the (2m)th row; if ¢,, = 0, each white vertex on the (2m — 1)th
row is adjacent to two black vertices in the (2m)th row.

See Figure 1.
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Figure 1. Graph structures of the square-hexagon lattice SH(¢) on the (2m — 1)th, (2m)th,
and (2m + 1)th rows, which depend on the values of (c;;): (a) between the (2m)th and the
(2m + 1)th rows; (b) between the (2m — 1)th and the (2m)th rows when ¢;,; = 0; (c) between
the (2m — 1)th and the (2m)th rows when ¢,; = 1. Black vertices are along the (2m)th row,
while white vertices are along the (2m — 1)th and (2m + 1)th rows.

Note that for any ¢ € {0, 1}, each face of SH(¢) is either a square or a hexagon.
If ¢; = 0 for all i € Z, SH(C) is a square grid, while if ¢; = 1 for all i, SH(¢) is
a hexagonal lattice.

We shall assign edge weights to the whole-plane square-hexagon lattice SH(¢)
satisfying the following assumption; see Figure 1.

Assumption 2.1. For m > 1, we assign weight x,, > 0 to each NE-SW edge joining
the 2m)th row to the 2m + 1)th row of SH(¢). We assign weight y,, > 0 to each
NE-SW edge joining the 2m — 1)th row to the (2m)th row of SH(C), if such an edge
exists. We assign weight 1 to all the other edges.

A contracting square-hexagon lattice is built from a whole-plane square-hexagon
lattice as follows.
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Definition 2.2. Let N € N. Let Q = (21,...,Qxy) be an N -tuple of positive integers

suchthat 1 = Q;{ < Qy <--- < Qpn.Setm = Qy — N.

The contracting square-hexagon lattice R (€2, ¢) is a subgraph of SH(¢) built
of 2N or 2N + 1 rows. The rows of R (2, ¢) inductively, starting from the bottom,
can be enumerated as follows:

» The first row consists of vertices (i, j) withi = Q1 — % L QN = % and j = %
We call this row the boundary row of R (2, ¢).

e Whenk =2s,fors =1,..., N, the kth row consists of vertices (i, j) with j = %
and incident to at least one vertex in the (2s — 1)th row of the whole-plane square-
hexagon lattice SH(¢) lying between the leftmost vertex and rightmost vertex of
the (25 — 1)th row of R(L2, ¢).

e Whenk =25+ 1,fors =1,..., N, the kth row consists of vertices (i, j) with
j = % and incident to two vertices in the (2s)th row of R(2, ¢).

See Figure 2 for an example of a contracting square-hexagon lattice.

Figure 2. Contracting square-hexagon lattice with N =3, m = 3, Q = (1, 3,6), (c1,¢2,¢3) =
(1,0,1).

2.2. Partitions, Young diagrams and Schur functions

We denote by GTy the set of N-tuples A of integers satisfying A1 > A, > --- > Ay,
and let GT; be a subset of Gy consisting of all the A’s in GT such that Ay > 0.
For A € GTI‘VF, let

N
A=A

i=1
A graphic way to represent a non-negative signature p is through its Young dia-
gram Y, a collection of |A| boxes arranged in non-increasing rows aligned on the left:
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with A1 boxes on the first row, A, boxes on the second row, . .., Ay boxes on the Nth
row. Note that elements in GT;\; are in bijection with all the Young diagrams with N
rows (rows are allowed to have zero length).

Definition 2.3. Let Y, W be two Young diagrams. We say that ¥ C W differ by
a horizontal strip if the collection of boxes in Z = W \ Y contains at most one box
in every column. We say that they differ by a vertical strip if Z contains at most one
box in every row.

We say that two non-negative signatures A and u interlace and write A < pu if
Y, C Y, differ by a horizontal strip. We say they cointerlace and write A <’ p if
Y, C Y, differ by a vertical strip.

Definition 2.4. Let A € GT;\; be a partition of length N. We define the counting
measure 7 (A) corresponding to A as follows:

i=1
Moreover, if A is a random partition with distribution p, we use m(p) to denote the
corresponding random counting measure.
Definition 2.5. Let A € GT y. The Schur function is

Aj+N=j
det; j=1,..,~(u;’ )

H1§i<j5N(ui —u;)

sx(ul,...,uN) =

2.3. Dimer model

Definition 2.6. A dimer configuration, or a perfect matching, M of a contracting
square-hexagon lattice R (€2, ¢) is a set of edges ((i1, j1), (i2, j2)) such that each
vertex of R(S2, ¢) belongs to a unique edge in M. The set of perfect matchings of
R(2,¢) is denoted by M(£2, ¢).

Definition 2.7. Let M € M(2, ¢) be a perfect matching of R(2,¢). A V-edge
e = ((i1, j1), (i2, j2)) is a present edge in the dimer configuration M such that
max{ji, j2} € N (i.e., its higher extremity is black). A A-edge e = ((i1, j1), (i2, j2))
is a present edge in M such that its higher vertex is a white vertex, or equivalently,
max{ji, jo} € N + % In other words, the edges in M whose lower vertex is in an odd
row are V' -edges, and those ones whose lower vertex is in an even row are A-edges.
If an edge e = ((i1, j1), (i2, j2)) is an V-edge (resp. A-edge), then both of its end-
points (i1, j1) and (i3, j») are called V-vertices (resp. A-vertices). Note that whether
a vertex is a V-vertex or a A-vertex depends on the dimer configuration M .
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Definition 2.8. The partition function of the dimer model of a finite graph G with
edge weights (We)ecE(G) is given by

7= 3 [

MeMeeM

where M is the set of all perfect matchings of G. The Boltzmann dimer probability
measure on M induced by the weights w is thus defined by declaring that the proba-
bility of a perfect matching is equal to % [Teear we-

We shall associate to each perfect matching in M (€2, ¢) a sequence of non-nega-
tive signatures, one for each row of the graph.

Construction 2.9. To the boundary row 2 = (21 < --- < Q) of a contracting squ-
are-hexagon lattice is naturally associated a non-negative signature w of length N by

C()=(QN—N,...,91—1).

Let j € {2,...,2N + 1}. Assume that the jth row of R(2, ¢) has n; V-vertices
and m; A-vertices. The dimer configuration at the jth row of R(S2, ¢) corresponds
to a signature u € GT,;’:_ such that

o p=(U1, .\ Uny)-

*  We label all the V-vertices on the jth row by the 1st V-vertex, the 2nd V -ver-
tex, ..., the n;th V-vertex, such that the 1st V-vertex is the rightmost V-vertex
on the jth row. for I < k < n;, g is the number of A-vertices to the left of the
kth V-vertex.

Then we have the following assertion.

Theorem 2.10 ([5, Theorem 2.13]). For given 2, ¢, let w be the signature associated
to Q2. Then Construction 2.9 defines a bijection between the set of perfect matchings
M(2, ¢) and the set S(w, ¢) of sequences of non-negative signatures

@

@N+1), o

@N) O

{u n Do

where the signatures satisfy the following properties:

Al the parts of 1'% are equal to 0.

o The signature N+ is equal to w.

e For0<i<2N+1u®eGT;"

» The signatures satisfy the following (co)interlacement relations:
@N+D 1 CN) L CN=1) @) () 0

0 =1

Moreover, if ci = 1, then p@N+3-2K) — ,@N+2-2k)
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The following proposition, proved in [5], shows that the partition function of
dimer configurations on a contracting square-hexagon lattice can be computed by
a Schur function depending on the boundary condition and the edge weights. There-
fore, it opens the door for investigating the asymptotics of the periodic dimer model
on a contracting square-hexagon lattice by studying the corresponding Schur func-
tions.

Proposition 2.11. Let R(2, ¢) be a contracting square-hexagon lattice built from
a whole-plane square-hexagon lattice SH(¢) with edge weights {x;, yi, 1}1<i<n as-
signed as in Assumption 2.1. Let

L ={i|ie{l,2,...,N},¢c;i =0}.
Then the partition function for perfect matchings on R(S2, ¢) is given by

7 = [ l_[ Fi]sw(xl,...,xN),

iely

where w is the N -tuple corresponding to the boundary row of R(2,¢), and T is
defined by

N
I = H (I + yixs).

t=i+1

Proof. See [5, Proposition 2.18]. [

2.4. Main results

Now we state the main results proved in the paper.

Let C° be the space of smooth real-valued functions with compact support in the
upper half-plane H. The Gaussian free field E on H with the zero boundary condition
is a collection of Gaussian random variables {£7 } fecge indexed by functions in C >,
such that the covariance of two Gaussian random variables &y, , £z, is given by

Cov(&s,. ) = /H /H £1(2) fo(w)Gu(z, w) dz dZ dw d b,

where

1
Gu(z,w) = ——nln‘ _), z,w € H,

Z—w
2 w

z —

is the Green’s function of the Dirichlet Laplacian on H.
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The Gaussian free field E can also be considered as a random distribution on C§*°
of H such that for any f € C$°, we have

2(f) = /Hf(Z)E(Z)dZ =

where E(z) is the generalized function corresponding to the linear functional Z. Note
that GFF is conformally invariant in the sense that for any simply connected domain,
S € C,and let ¢: S — H be a conformal map from § to H. Then the GFF on S is

Bs5(2) == E(9(2)).

See [39] for more about GFF.

Consider a contracting square-hexagon lattice R (€2, ¢). Let w be a signature cor-
responding to the boundary row.

Letk € [0,1)and A € GTy_|,n. Let

N—|kN]
pf=p NI = N+ (V= kN ) — i) forj =12,
i=1
where A is the random partition corresponding to the dimer configuration at level «x of
the square-hexagon lattice.

The main results proved in this paper (Theorems 2.12 and 2.13) state that in the
liquid region, the fluctuations of certain observables of the random perfect matchings
on a contracting square-hexagon lattice converge to the pullback of GFF in the upper
half-plane. The liquid region, simply speaking, is the region in the simply connected
domain approximated by the rescaled square-hexagon lattice where either the density
of each type of edges (A-edges or V-edges as defined in Definition 2.7) is in the
open interval (0, 1) (i.e., neither O nor 1) or each type of edges has strictly positive
probability to occur. See Definition 3.7 for a rigorous description of the liquid region.

Let

N-UD /7
MK - —

o= T+ (P}c+1 _EP}C-H) (2.1)
and
Yi
Uz == >
ie{1,2,...n}NI> L+ yiz
1
V(z) =~ :
(2) Zz_x,-

Jj=1
n m—1
z mz 1
W == (G - z—x,-)'
i J

Jj=1
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Define

) = WE)+VE@)U(@)-UE)+WE2)V(z)+ (V(Z) - UEZ)W(z) 2.2)
XLl = Uz) —U@) -V + VE) (&
W(E) — W(z) + V() - V(z)

Uz) —UG) — V() +VE)

ke(z) = (2.3)

Theorem 2.12 discusses asymptotics of the perfect matchings under the staircase
boundary conditions.

Theorem 2.12. Consider random dimer configurations on the square-hexagon lat-
tice with staircase boundary condition on the bottom boundary with corresponding
partition given by

AN) = ((m—=1D(N =1),(m=1)(N =2),....(m—1),0), 24
where m > 1 is a positive integer. Let
S:{zec:0<Argz<1}. 2.5)
m
ThenforO <k <1, j € N,

Mf —Mj asN — oo, and Mj = 12 () E(2)dyg(z).

zeSiky (z)=k

Here E(z) is the Gaussian free field in' S, and (x g, kg) is a homeomorphism from S
to the liquid region defined by (2.2) and (2.3).

Theorem 2.13 discusses asymptotics of the perfect matchings under the piecewise
boundary conditions.

Theorem 2.13. Let M ]f‘ be defined as in (2.1) but with respect to piecewise boundary
conditions satisfying Assumptions 5.1, 5.2 and 5.3. Then the liquid region is a disjoint
union of n simply connected components 81, . .., S,. Then we have

M]f‘—>Mf as N — oo,

where

n

M=) [ Y5, () Ei(2) dys, (7).
i=1 ZEH,KSI. (z)=K

Here for 1 <i <n, E;(z)’s are n independent Gaussian free fields in H, and for
eachi € [n], (xs,;,ks;) is a homeomorphism from the upper half-plane to §; defined
by (8.2), (8.4) and (8.3), (8.5), respectively.
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Here Assumptions 5.1, 5.2 and 5.3 discuss the piecewise boundary condition and
conditions of edge weights. The key point is that as the size of the graph N goes
to infinity, the ith largest edge weight is exponentially small in N compared to the
(i — 1)th largest edge weight; see Assumptions 5.1, 5.2 and 5.3 for details.

The major new techniques developed in this paper are approaches to deal with
boundary conditions. For the staircase boundary conditions, we prove a homeomor-
phism from the liquid region to S, given by a certain non-real root of an algebraic
equation; then the (unrescaled) height fluctuations converge to a pullback of GFF
in S. For the piecewise boundary conditions, the results for convergence of height
fluctuations to GFF is built upon results in [32], where it is proved that the liquid
region splits to disconnected components. In this paper, we further prove that the
height fluctuations in each component of the liquid region is a pullback of an inde-
pendent GFF under a homeomorphism from the component of the liquid region to the
upper half-plane.

3. Staircase boundary conditions

In this section, we introduce the staircase boundary conditions on the bottom bound-
ary of a contracting square-hexagon lattice and review the limit shape result of the
dimer model on such a lattice.

Consider a contracting square-hexagon lattice R(S2, ¢) with edge weights as-
signed as in Assumption 2.1. Suppose that the configuration on the bottom row cor-
responds to the partition given by (2.4). More precisely, each remaining vertex on
the boundary row is followed by (m — 1) removed vertices in the boundary row;
the leftmost vertex and the rightmost vertex on the boundary row are both preserved
in R(2,¢). In [35, Example 1.3.7], the Schur function of such a signature is computed
explicitly as follows:

xm _ xm
1
SA(N)()C],...,)CN) = 1_[ f] (3.1)
1<i<j<N Xi Xj
Definition 3.1. Let
X = (x1,%2,...,x5) € RV, (3.2)

Let pn be a probability measure on GT . The Schur generating function with respect
to pn, X is given by

sa(ui, ... uN)

CEEEEY = A’ )
SPN’X(MI’ ,MN) Z ,ON( )Sk(xl7"'7xN)

AeGTy
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For a positive integer s, let s = [s mod n]. We make the following assumption on
edge weights.

Assumption 3.2. Assume that the edge weights x; (1 <i < N), y; (j € I») are
periodic in i and j with period n, i.e.,

X; = X, (3.3)

1

Vi =i (3.4)
for1<i <N, jeb.

Lemma 3.3. Let x; >0 (1 <i < N), y;j (j € I2) be edge weights of a contracting
square-hexagon lattice R(2, ¢) satisfying Assumptions 2.1 and 3.2. Let

X(N_t) = (Xm, ey XIV)’
Y® = (x1,....x7)

for each integer t satisfying 0 <t < N — 1, where x; > 0 (1 <i < n) are weights
of NE-SW edges joining the (2i)th row to the (2i + 1)th row of the contracting
square-hexagon lattice, see Figure 2. Let A(N) be the partition corresponding to the
configuration on the boundary row, and let p* be the probability measure on GT ;_t
which is the distribution of partitions corresponding to the dimer configuration on the
kth row of vertices of R(S2, ¢), counting from the bottom. Then we have

Spk,X(N—t)(ul,...,MN_t)
s, un—, YO) I Iﬁ 1+ yqu;
= SA(N)(X(N)) fe(l ¥y j=1 +y;xt+]
fork =2t+1,t=0,1,...,N — 1.
Moreover,
Sok xN—n (U1, .., UN—¢)
_ s, uy—, YO) l—[ All—[t 1+ y7u,
- SMN)(X(N)) ie{l,...t+1}n1 j=1 1+ YiXes
fork =2t+2,t=0,1,...,N — L.
Proof. See [5, Lemma 3.17]. [

Lemma 3.4. Let k € (0,1). Let R(S2, ) be a contracting square-hexagon lattice. Let

{AML(1 — k)N |}NeN be a sequence of partitions corresponding to dimer configura-
tions on the [2(N — [(1 — k)N |) + 1]th row of R(L2, ¢), counting from the bottom.



Fluctuations of dimer heights on contracting square-hexagon lattices 63

In particular, A(N) is a fixed partition corresponding to the bottom boundary config-
uration. Let p* be the measure on the configurations of the kth row, counting from
the bottom. Let X be an N -tuple of integers given by (3.2), which are also edge
weights of R(2, ¢) satisfying (3.3). Let p|(1—)N] = IOZ(I\I_L(I_")NJ)Jrl be a proba-
bility measure on GTC&_K)NJ. Note that pn := 8;,(n) is the distribution of partitions
corresponding to the dimer configurations on the bottom row, in which A(N) has
probability 1 to occur. Let Sp (o n . x (U1, ..., U|(1—¢)N|) be the Schur generating
function corresponding to p|(1—yN| and X. Then we have

(1) Assume 1 <i < n, then

lim 1 dlogSp_on.x U1, U 1—)N])
N—oo (1—Kk)N ou; W1 u (10N )
=(X14+N =LA —K)N [5+-sXN)
= H;(X,Y, k),
where
1 mxm—1 1 -1
AT T SRR Pt
(1—x)n ellanmy, N TX X=X 2x;
J#i
K Vi
+ — _— 3.5
—on 2 Tiys G-)

j€{1,2,....,n}N1»
(2) Assume 1 <i,j <|(1—x)N]andi # j. Then
. azlogslp(]_K)NJ,X(ulv~--7”[(1—K)NJ)

lim

N —o00 ou; 0u; WU (1—0)N )
=(X14N—L(1—k)N ] >+>XN)

= G('xl ) xj),
where

m2xm—1xym—1
ol Y A SR Y .
G(xlax]) = (x,m_x;’_”)Z (xi_xj)z 1f Xi # _x]’
otherwise.

(3) Assume i, j,k € {1,2,...,n} are three distinct integers, then
im0 oo X (1 MmO ) =0
N—oo Ou; 0u; duy g ti N) =X s XN

Proof. The results can be obtained by applying Lemma 3.3, (3.1) and Definition 3.1
and making explicit computations. |
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2(N—[(1-k)N])+2

Remark 3.5. Lemma 3.4 still holds if we define p| (1§ | := p and

{Al(1 —k)N |}neN is a sequence of signatures corresponding to dimer configurations
onthe [2(N — [(1 — )N |) + 2]th row of R(L2, ¢).

Proposition 3.6. Let R(Q2U(N), ¢) be a contracting square-hexagon lattice with the
configuration at the bottom boundary given by

QIN)=(0,m+1,2m+1,....,(N —)m + 1).

Assume also that the edge weights are assigned as in Assumption 2.1 (see Figure 2
for an example) and satisfy Assumption 3.2. Let

n

Vi z

i€{1,2,..n}NI,
n m—1
z mz 1
+ n(l —«) Z(zm—x”’ B z—x~)'
j=1 J J

Let pF be the measure on the configurations of the kth row, and choose « € (0, 1),

such that k = [2kN]. Then the corresponding random counting measure m(p*), as
defined in Definition 2.4, converges to m* in probability as N — 0o, and the moments
of m* are given by

n

1 dz
Pk — - hatl p+1
/Ry m"“(dy) igzl 2+ i §é,+,~ . [Fem(2)] . 3.6)

Proof. See of [5, Section 8]. [ ]

We can compute the Stieltjes transform of the limit measure m“ when x is in
a neighborhood of infinity by

n

v’ 'm (dY) Fem(2)
Stawe (1) —ZfR i szgé g(1-=2=). @7

t+i

Integrating by parts, we have

FK m(Z))

Jry/m@dy) <
Z xJt1 Z él+l IOg( ) _ Fem(2) dz.

The integrand has poles at roots of

FK,m(Z) = X.
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Definition 3.7. Let R be the rescaled square-hexagon lattice, i.e., R = %{R(Q,é),
with coordinates (y, k). Let £ be the set of (x, ) inside R such that the density
dm* (%) is not equal to 0 or 1. Then £ is called the liquid region. Its boundary d&£
is called the frozen boundary.

4. Central limit theorem for staircase boundary conditions

In this section, we construct certain statistics from the (random) dimer configuration
on a contracting square-hexagon lattice with staircase boundary conditions and show
that they converge in distribution to Gaussian random variables in the scaling limit.
The main theorem proved in this section is the following.

Theorem 4.1. The collection of random variables

{N—l [p]((l_K)N) _]Epl((l_K)N)] (41)

}IGN; K=d],....am
converges as N — 00, in the sense of moments, to the Gaussian vector with zero mean
and covariance

1-k1)N 1—k2)N
cov(plIT DN pla—N)

m
N—o0 Nh+h

A=k (1= k)2 N Nz zH(z)\"
o (27Ti)2 ZZ lz—x;|=¢ %w—xﬂ:s(; n(z —x;) * 1 _Kl)

i=1j=1

1=

n 123
X (Z o + wH(w)) 0(z,w)dzdw,

—n(w—x;)  l-k

where

* &> 0is sufficiently small such that the disk centered at x; with radius & contains
exactly one singularity x; of the integrand;

* the z- and w-contours of integration are counter-clockwise.

The idea we use to prove Theorem 4.1 is to compute the moments of (4.1) and
then show that they satisfy Wick’s probability theorem in the N — oo limits; this
gives the Gaussian distribution of these random variables as well as the explicit form
of the covariance. The major new ingredients, compared to [7], are the computations
under the staircase boundary conditions.

Let X be given by (3.2), and let Vy (X)) be the Vandermonde determinant, i.e.,

W =[] Gy —x.

1<i<j<N
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Proposition 4.2. Let py be a probability measure on GTy, and let A € GTy. Let
U= uy,us,...,uy) € CN. Then

N N
EY L+ N-)fi= > on)Y (i +N -

i=1 AeGT N i=1

VN(U) ZW 0 V()8 x (U] 42

and
N N
E(Z(Ai +N - A+ N - j)’)
i=1 j=1
= 7 (U) Z(u 2:) Z(u ANVN WSy x(U)] . (43)

. D
where 0; represents By

Proof. Let A € GTy, and let s, be the Schur function with respect to A. By [6, Pro-
position 4.3], we have

N
Z(u ) VN (U)si(U) = (L + N — DEs (U). (4.4)

w (U) =

Dividing by s, (X) both sides of (4.4), then taking expectations for A with respect to
the distribution py and evaluating at U = X, we obtain (4.2). Expression (4.3) can
be obtained in a similar way by performing the above process twice. ]

Let f(x1,...,x;) be a function of r variables. Define
1
Sym f(x1,...,x,) = ] Z S (Xo1): Xg@2)s - - > Xa(r))s
X1 seeesXrp . O’GE;»

where X, is the symmetric group of r elements.
For an integer [ > 0 and ¢ € (0, 1], let

Ur = (i, uz, ..., uNy)s 4.5)
Xt = (XN_LtNJ+1,...,)CN), (46)
1 [N ]
\?’(Z,t)(Ut) =

ui9:)' View ) (U0 8o, %, (Un), - (A7)
SthNj:Xt(Ut)VLtNJ(Ut) ;( LU l-tNJ( Z) PLIN | X[( z)

where p|;n | is a probability measure on GT ;.
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In order to analyze the asymptotics, we first introduce the following technical
lemma.

Lemma 4.3. Let f(z) be a complex analytic function in a neighborhood of 1, and
let r be a positive integer. Then

S f(z) 1 /@)
ym

trozr (1= 22) o+ (@1 = 2o ) (G570 T (r 4 DU 9z L=t

.....

Proof. See [6, Lemma 5.5]. ]
Proposition 4.4. Assume the assumptions of Lemma 3.4 hold. We use the notation 0;
to denote % Then we have

(1) the degrees of N in the functions ¥ +)(U;)|u,=x, are at most | + 1;

(2) for1 <i < N, the degrees of N in functions 0; ¥ +)(Us)|u,=x, are at most [ ;

moreover,
Ll
9 Fu,0(U)lu,=x, = ai[Z(,)(’ +1)!
r=0
X Z Sym ”él(aal[log SthNJ,Xt])l—r ]
{at,omap gy Aodrtl (Uay = Uay) -+ (Ua, _“ar—i-]) Ui=X;
c{1,2,...,sN |}

+ TunUdlu,=x,

where the degree of N in T(; 1)(X;) is less than I;

(3) the degrees of N in the functions 9;0; ¥ +(U;)|u,=x, are at most | — 1 for
anyl1 <i,j <N,i#j.

Proof. Whent =1and X; = (1,..., 1), the proposition is proved in [7, Lemma 5.5].
Consider a general Sy, |, x, with X; given by (4.6). Since

SPLtNJaXt (Xe) =1,
the function log Sy, |.x, is well defined in a neighborhood of X;. Note that
0; S X
—PUNDTL g, (10g Sp X, )-
SthNJaXt
This way we can write F(; ;)(U;) as a large sum of factors of the form

l—,
cou; (8 [log Spy, 1. x, D -+ (37 [log Sy, x, 1)

(Ui —ug,) (Ui —ugq,)
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where i,ay, ..., a, are distinct indices, s;,d; € N U {0} for j = 1,...,¢, and
t
S1 < 8y < --r < Sy, r+SO+Zdej=l. (4.8)
j=1
Moreover, ¢g depends on r, s;, dj, butis independent of N, ay, . .., a,. By symmetry,

we can write

FanWU)= > @+D Y

l_
Sym cotla; " (92 10g Sp ). x, D' -+ (92, 0g Sp ). x, D (4.9)
ar iy (Ua, —Uay) -+ (Ua, — Ua, ) )

where the first sum are over r, {s;}, {d;} satisfying (4.8), and ¢ depends on r,
{sj}, 4d;}.

Applying Lemma 3.3, (3.1) and Definition 3.1 and making explicit computa-
tions, we can compute (3" [log Spin.X,]) and obtain that the degree of N in it is
at most 1 for all s, > 0. Hence for each 1 < w < ¢, the degree of N in each factor

(022 [log SpUNJ,X,])dw is at most dy,. For each given choice of {ay,...,ar4+1}, we
define an equivalence relation on the set {a;,...,ar+1}: for 1 <i,j <r +1, we
say a; and a; are equivalent if and only if [a; mod n] = [a; mod n]. Let Ay, ..., Ay
be all the distinct equivalence classes under this equivalence relation, where w is
a positive integer satisfyingw <r + 1. For 1 <i <w,letC; = {ay,...,ar+1} \ 4;.

Forl <i <r+1,letay,...,d;,...,ar+1 be r distinct integers obtained from
ai,...,ar+1 by removing a;. Then

I—
Sym Cola, %0 (3211 [IOg SPLZNJ:Xt])d1 T (aZt] UOg SPLtNJ,Xt])dt

Alse.r41 (ual _uaz)"'(ual _uar.:,.])

= — ghlites:
(r+1)!,; cil)

1—
« Sym ( Sym cottly; ™ (5108 Sppn 3 D -+ (934 [10g Spp, vy x, D%
4; Ci l_[,-eci (Ua; — Uq;)

1
* )
najeAi (uai - uaj)

1—
_ Xw: |Al| Sym (C()Llai %0 (azll [log S;OL;NJ,XI])dl tet (azl; [IOg SPLINJ,XI])dt
i=1 r+1 Aj l—[jeci (”ai_ uaj)

—)
HajeAi (Ua; —Ua;) ‘

X

(4.10)
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By Lemma 3.4 and (4.8), the degree of N in

1—
Colg,; %0 (321 [log SPLINJ’XI])dl U (aflti [IOg SPLzNJ’Xt])dt

njeCi (ua,' - uaj)

is at most / — r. By Lemma 4.3, the degree of N in (4.10) is at most / — r. Summing

over all the choices {ay,...,a,+1} C {1,2,...,[tN]} (there are O(N"*!) such
choices), we obtain that the degree of N in F{; ;)(U,) is at most [ + 1; then part (1)
of the proposition follows. ]

For positive integers /1, [, we define

I1—1

iyna) =0 2" > e+

r=0 {ay,...ar4+1}C{1,2,...,[tN |}
1 o —1—
xSy uall a, [f'(lz,t)](aa] [log SPUNJ,X[])ZI =r
A yeeey Ay 41 (ual _uaz)"'(ual _ua,«+1) .

Lemma 4.5. Assume the assumption of Lemma 3.4 holds. Let [1, [ be arbitrary pos-
itive integers, and t € (0, 1], then

LN ] LN ]

D i 9" Y iy 00) 2 View | Spyp i)

i1=1 ir=1

= Fu,.00(UD) Fr.0Ur) + 4, 1,0 (Us) + T(Uy), 4.11)

1

Viin| SPUNJ Xt

where 9, 1,1 (Us)|lu,=x, has N-degree at most Iy + I, and T(U;)|y,=x, has N
degree less than [y + l. Moreover, for any index i, the function 0; 9, 1,.1)(Us)|u,=x,
has N -degree less than 1 + 1,.

Proof. The proof follows from arguments similar to ones in the proof for the case
X = 1V,¢t = 1[7, Lemma 5.7]. We sketch the idea here. Note that the left-hand side
of (4.11) is exactly

1N ]
1
) @i 3" Vien1Sopn X Fiiny (U]
VieNSpin. X ilz=:1 e LN 2pien 1 X I (12) (Ut

It can be rewritten as the sum of terms of the form

I— .
cottdy "9\ [F1,,0) (92, [10g Spy, vy x, NP - (37 log Sp ) x, D

Sym ;
a1,eeslr i1 (”al _uaz)(“al _“a3)"‘(“a1 _”ar+1)
where 7, So, S1, ..., Sp,d2, ..., d, are non-negative integers and

$2 <83 <+ <Sp, So+Ss1+s2d2++spdp+r =1
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Then ¥, 1 (Us)Fa, 1) (Ur) comes from the terms with s; = 0; §¢, 1, ) (U;) comes
from the terms with s = 0,57 = 1,55 = 1, d» = [; — 1 — r. The N-degrees of these
terms can be obtained by applying Lemma 3.4. |

Let s be a positive integer. For a subset {ji,..., jp} C{1,2,...,s},let P
be the set of all pairings of the set {1,2,...,s} \ {j1,.... Jp)- The set JPJSI ) is
non-empty only when s — p is even. For a pairing P, let ]_[(a, p)ep denote the product
over all pairs (a, b) from this pairing.

Proposition 4.6. Assume that the assumptions of Lemma 3.4 hold. Let 5,11, .. .,ls be
arbitrary positive integers, and let t € (0, 1]. Then

[N | [N | [tN]

D i 0i)" D i 0i) D (i85 View Sopn x0]

i1=1 ir=1 is=1

N
- Z Z ‘(P'(lj]’t)(Ut)' j[,,t)(Ut)

P=0{j,....Jp1C{1,2,...,5}

X( Z 1_[ GlladyyUe) + T i 'p(Ut)),

Pe:i"1 ip (a,b)eP

VUNJSPUNJ Xy

where 7}11;,S...,jp (Un)|u,=x, has N-degree less than Y ;_; I; — > 7_, ;..

Proof. The proposition can be proved by induction on s similarly to the proof of [6,

Proposition 5.10], where the case X = 1% is proved. |

Let [ be a positive integer, and let ¢ € (0, 1]. Let

[N ]
> i) Vi) Spiun X (U, -

i=1

E;, = F X)) =————""—
1t .0 (Xyt) Viw Som ke

Lemma 4.7. Assume the assumptions of Lemma 3.4 hold. Let 5,11, . . .,ls be arbitrary
positive integers, and let t € (0, 1]. Then

[tN] LN ]

V.. 1Y E ir 0 lz_E
VL[NJSPI_INJ X; ( Z(u 181) ll,t)( Z(u 282) lz,t)

i1=1 ir=1
1N ]
x ( D (i 9i)b — Els,z) VN1 Spiin 1 Xe
i_g—l U[=X[

=> 11 5(1a,1,,,z)(U)‘ +T@(Uz)|U,=Xn

PePj (a,b)eP

where Ty(Uy)|u,=x, has N -degree less than > ; _, ;
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Assume the distribution of A is py—|,n . Let E be the expectation under the prob-
ability measure py_|n |, and let

N—|kN N—|«N
cov(pN—IeND (N —leN D))

N—|kN N—|kN N—|kN N—|kN
= E(pNIND | p(N—leND)  p, N=leN D (VLN ),

Then by Lemma 4.7 with s = 2, we have

N—|kN N—|kN
lim COV(P](c Le J), pl( L J)) — 1im Gl 1—10) (X [N 415 -+ XN) @.12)
N—o0 Nk+ T Nooo Nk+l : .
We have
g(k,l,l—K)(xl_KNJ+1, ... ,xN)
k—1 k—1
=Ky, X ( )(q +1)!
g=0 A{aj,..ag+1} q
c{1,2,....N—[kN |}
X Sym g, a, [F0,1-0) (0 108 Sop e .Gy 1)) 79 (
alseeng1 (ual _uaz)"'(ual _uaq-',-l) uu/J:.L.;NJ)
=X1—«

k—1

k—
~ k > ( ql)(q+l)!

q=0 {aj,...ag+1}
c{1,2,...,N—|kN ]}

—l—q)

k k
< Svm (”m (g, [log SPN—I_KNJ:(XLKNJ—H ----- )]
al,e.,Gg41 (ual - uaz) e (ual - uaq+1)

xaal[i > (i)(r—l—l)!

r=0  {b1,...br4+1}
c{1,2,...,.N—|«kN ]}

I I—

Up, (abl [log SPN—LKNJs(kaNJ—‘,-lr--axN)]) ’ ])

X Sym
bi,...br g1 (ubl _ubz)'”(ubl _ubr+1)

W1 NN )
=X1—«

The approximate equality above contains only leading terms of 04, [F(1,1-x)]; see
Proposition 4.4 (2).
We first consider the case that

{al,...,aqH} N {bl,---abr—{—l} = 0.
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By Lemma 3.4, we have

aal[i > (i)(r-i-l)!

r=0  {b1,....br41}
c{1,2,...N—|kN]}

“5,1 (0p, [log SPN—LKNJ’XK])l_r]
X y
byybyyy (Uby —Uby) e (Upy —Up, )
!

W15t N— N )=X1—k

= > (i)(rﬂ)!(z—r)

0 {b1,..br41}
c{1,2,...N—|«kN]}

r

uél (9, [log Spy e :XK])l_r_laal b, [10g Spn_pen . Xo]

X Sym (u1,...,
bi,..., br41 (ubl - sz)"'(ubl - ubr_H) uN—l_/cNJ)
=X1—«

I
~Y Y (r)v )

r=0  {by,..by41}
c{1,2,...N—|kN]}

uly (Hp, (X, Y,60)) " INT1G (xgy , Xp,)

X .
biyesbr 41 (Mbl - ubz) te (ubl - ubr_H) (=7")1(’1':s:N—LKNJ)
Moreover,
k k—1—
Sym (”al(aal[log SPN*LKNJs(xLKNJ+1a-~st)] 1-9)
ap,...,ag+1 (ual —uaz)"'(ual —uaq_H)
: !
S DR D [
r=0  A{b1,....by41}
c{1,2,...N—|kN]}
l I—
% Sym Up, (9p, [log SPN—LKNJ,(xLKNJ+1,--~,XN)]) "
by,....br 41 (ubl _ubz)'“(ubl _ubr+1) (U uN—LKNJ)
e =(X|kN]+15-XN)
uk ((Hay (XY, 1)k 174 N*=174)
~ Sym

ay,elg1 (ual _uaz)"'(ual _uaq_H)

: I
XZ Z (r)(r—l—l)!(l—r)

r=0  {b1,....br4+1}
c{1,2,....N—|kN]}

ulh (Hp, (X, Y, )7 INPT1G (xgy, xp, )
X  Sym

bi,...br 41 (ubl _sz)"‘(ubl _ubr+1) 1,y uN—LKNJ).

=X1—«
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Lemma 4.8. Let

1 mz™1 1 K Vi
Ho =~ Y (G )+> 2 -
je{1,2,...n} J J jell1,2,.n3nDs 7
The contribution of the terms for which {ay, ... ,aq41} N {b1,....br11} =0 to

G ,1,1-)(X1—1), as N — oo, is asymptotically

(1—K)k+lNk+l z z zH(z2) k
(27T1)2 %Z —x|= e¢w —xj|= E(i n(Z—xl)_l_ I—K)

n

X (Z w + wH(I:)) G(z,w)dzdw, 4.13)

,=1n(w_xi) 1-—

where ¢ > 0 is sufficiently small such that for each 1 <i < n, the disk centered at x;
with radius & contains exactly one singularity x; of the integrand.

Remark 4.9. Note that H; (X, Y, ) defined by (3.5) satisfies

Hi(X,Y, k) = lim H(2).

— K z—X;

Proof of Lemma 4.8. Note that

(Je=n=i(7)

By the computations above, the contribution of the terms when {a, ..., agz+1} N
b1, ... b1} =010 Gk 1,1-)(X1-«), as N — 00, is asymptotically

k—1 k—1
=k > ( . )(q—i—l)!

q=0 {al,...,aq+1}
c{1,2,...N—|kN]}

u];l ([Hal (X, Y, K)]k_l_qu—l—Q)
x  Sym

(ual - Maz) (”a1 - uaq+])

al,...,ag+1

-1
[ —1
x [ !
> )3 (" e+
r=0{by,....by11}C{1,2,..N—|kN]},
{b1,esbrr1i0{ay,....ag+1}=0

uly (Hp, (X, Y, k)7 INPT1G (xg, xbl)i|

X Sym
bi,.bry1 (ubl - ubz) Tt (ubl - ubr+1)

W1 NN )
=X1—«

We consider the equivalence relation on {ay, ..., aq+1} (resp. {b1,...,b,41}) such
thatfor1 <i < j <g+1,a; anda; (resp.for 1 <i < j <r + 1, b; and b;) are
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equivalent if and only if (¢; mod n) = (a; mod n) (resp. (b; mod n) = (b; mod n)).
Let Ay, ..., Ay (resp. By, ..., Bg) be all the equivalence classes in {ay, ..., dq+1}
(resp. {b1,...,br+1}) under such an equivalence relation, where %, g are positive
integers satisfying 1 <h <g+ 1,1 <g<r+1.Forl <i<handl <j <g,let

Ciz{al,...,aq+1}\Ai, Dj={b1~-wbr+l}\Bj‘

Then we have

-1

VD VI () R ot
o g )T G

=0 {al,...,aq_H}
c{1,2,..,N—|kN]}

S |:u’;i ([Hq; (X, Y, i)k 174 Nk=1-4) 1
X Sym
4; [la,ec; (a; — tay) [a;ea\(a;y (a; — Ua,)

-1 I_1 h IB; |
x [ ! J
Y Y (") e
r=0 {b1,‘..,b,-+1}C{I,Z,...,N—LKNJ}, j=1
{b1,esbrr130]an,..ag+11=90

uy, (Hp, (X. Y. 6))! "7 INI7 71 G gy x,)

l_IbUEDj (ubj - ubv)

X Sym (
Bj

X
b'lUEBJ \{bj}( J w)

W1 N— N )
=X1—«

By Lemma 4.3, we have

k—1

k—1 £ 14
=y ¥ (@+D!y
q=0 {a 9 = @+1
Lseees@g+1} i=1
c{1,2,..N—[kcN |}

1 gl (u’;l_([Hai(X, Y, )k 1ma Nk=1-a)

X
| Ai ! Bu(‘l‘?"l_l naseci (1a; — tay)

h

I-1 e
I—1 |Bj] 1 9Bt
> )3 (" e s e
r=0{by,....by41}C{1,2,...N—|kN ]}, j=1 I Oy,
{b1,ebry1in{ay,....ag+13=9

uly (Hp; (X, ¥, )Y = N1 G (g, xw)

HbUEDj (ubj - ubv)

X

W15 UN— kN )
=X1—«

=
—

g 1 8\A,‘|—l

k!
=22 Z(k—1—q>!<|Ai|—1)!au,,ff'—1

q=0 {ay,..., aq—l—l} i=1
c{1,2,...N—|kN]}
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(”];,- ([Hq; (X, Y, 1)k 71-a Nk—1-a)
X

HaseC,» (Ua; — Uay)

=1 1 h 1 91Bs1-1
XZ Z (l—l—r)'Z(|B~|—1)' B, -1
r=01{by,....by 1 1}C{1,2,...N— &N ]}, Tj=1 ) 8“1;_,—

{bl,.‘.,br+1}ﬂ{a1 ,...,aq+1}=ﬂ
uy (Hp, (X.Y, K))l—'—lN’—"‘G(Xa,-’xb,~))
o b

W1 N— N )

=X1—«

HbUEDj (ubj - ubv)

Using the residue theorem, we obtain

P g k k—1— k—1—
k! H INTTT
=Y Y Yaiake [ )
20 {aragr) i1 ( — 1= q) Z=Uq; (Z — Ma,') 4 naSECi (Z — Mas)
c{1,2,...N—|«N |}

-1 n
> 2 —1=n

r=0{by,....by+1}{1,2,...N=|kN |},
{b1seshrr1}30{arse...ag+1}=90

—_

LS}

h

g (e

(W —up )BTy, cp, (W — up,)

W1y N— [N )
=X1—«

j=1

n 1 N - k
~ NkF! Z Res [(ﬁ Z + ZH(Z))
z=Xx;s Z— X;

X
i=|kN]+1 !

n 1 N w l
<[ 3 Res ((— ) +wH<w)) G(z,w))ﬂ
|: =% \\N =[N 41 W Tt

CONFH (e I 1z zH(z)
- (27‘[i)2 ;;%z—xil:e (I’l I; Z—Xp " 1 -k )

1 < H
X ¢ (— Z v + @ (w))G(Z, w)dwdz.
lw—x;|=¢ \ 1 w— Xg4 11—«

q=1

Then the lemma follows. n

Now we consider the case where
|{a1,...,aq+1}ﬂ{bl,...,br+1}| =1. (414)

Without loss of generality, we suppose that a; = by, and all the other indices are
distinct.
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Then we have

k k—1—
Sym (“al(aal[k)g Son—Len 1L 410X n)] =)

(ual - ”az) Tt (”a1 - uaq+1)

xaa,[zl: > (i)(r—i— 1!

r=0  {bs,...by41}
c{1,2,....N—|kN]}

al,..,ag+1

I -
o« Sym Uy, (g, [log SPN—LKNJ,(xLKNJ+1,~--,xN)]) g i|
arba,....br41 (tay —up,) -+~ (Uay —Up, ) (;tngKNuﬁ:lLKNajciv)
~ Sym ( ”51 NET1 0 H (g )11
aj,..ag+1 (1 - K)k_l_q (ual - uaz) e (ual - uaq+1)

xaal[z > (i)(r+1)!

r=0  {bz,...by41}
c{l,2,..N—|kNJ}

g, N'7[H(ua))I'™"
x  Sym -
ay,bs,....br 1 (1 - K) r(ual - ubz) e (ual - ubq+1)

Wi UN— kN
=(X[kN J+15XN)
The summation over indices when (4.14) holds gives terms of order N”t4*1 We can
see that the contribution of the corresponding terms to ¥ x,1—)(X1—«) as N — o0
is I := I, + I, where I corresponds to Sym over the elements in the equivalent
class including {ai,....ag+1} N {b1,...,br41}, and I, corresponds to the sum of
Sym functions over the elements in each equivalent class without {a;,...,a4+1} N
{b1,...,br41}. More precisely,

U k—1 144
05 SIS S () U oo
q=0 {ay,...ag+1} q i=1 q

c{1,2,...N—[kN ]}

g {u’;i ([Ha, (X, Y, )14 NK=174) 1
X Sym
Aj naseCi (uai - uas) nateA,-\{a,-}(“ai - uar)

l

0 OB (Y
oy [Z Z Z(r-i—l) bsij(r)(r—i_ )t

AL r=0(p, By N—|«N ]}, =1
{b1sees 7500 r+131C{L,2,..., LN 13,
{b1,.0sbs,.csbr 130 ay ,...ag4+-13=0,

by=a;
ul (Hp, (X.Y, k)" NI 1
X Sym( - d ]} @i
B; nbUEDj(ubj _ubv) l_[bwij\{bj}(ubj _ubw) UN_|kN])

=X1—«
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-3 k-1 £ 4l
=k !
’ O G "L G

q=0 {al,...,aq_H}
c{1,2,...,.N—|«N]}

g {u’;,.([Ha,. (X, Y. )1 Nk=1=a) 1
Xy
A Hasec,- (uai — Uay) na;EAi\{ai}(uai —Ua;)
I h
0 |B;| )
) > > Bty ()
8”;1,' ~ . (r + 1) r
"=04by . bssbp i 13C{1,2,... N— kN [}, /=1
{b1,..., I;S,...,b,+1}n{a1 ..... aq+1}=®,
bs=a;
ub (Hp, (X, Y, k)" N'=" 1
X Sym( s - ]} W5y
B, [b,en, p; —un,)  Tlp,en;\in;)Mp; = Uby,) )
=A1—k

Here we use 1 to denote the indicator function. By Lemma 4.3, we infer

_ k—1 k!
S DD DI b

qg=0 {al,...,aq_H}
C{l 2,...N—|kN [}

1 9=t Tl ([H(ug,) )17 N*—179)
) Zl |4; ]! dug IA" ! [ Hasec,» (Ua; — Uay)

i=1

e (x > !
ug, \ = R (I —r)
=0 bbby 413C{12,, N= LN 1},

{b1,-sbssesbr 130 ay . aq4-11=0,

s =a;

511 1 aIBi=1 u (H(up, ) "N
X 9
Z| | vaBj |B || |B |—1 nbUEDj (ubj _ubv) ):| (ul,...,uN_L,(NJ)

j= =X1—«

x~

7 . k!
2 2 k—1—¢q)!

q=0  A{ay,..ag+1}
C{l 2,....N—|kN ]}

4 A= Tk ([H (ug,) 1 Nk—179)
. Z| ||A |' 8 lA -1 |: nasec,‘(”a,- _uas)

i=1




a (
X E
dua; \ =5 R
=Y {b1,...,bs,...
{B1,.sbsssb

h

X Z|B Mps¢B; B;1! 5

=1

1

1
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I
Z (I -r)

br41)C{1.2,.. N~ kN ]},

re1ya,....ag113=9,
bs=a;

91Bj1-1 ub (H(up,)' "N~ ')]

BT Tl e, (s, —105,)
J

1NN )
=Al1—k

By the residue theorem, we have

_ k—1
=3 X
q=0 {ay,...
c{1,2,...

Xi|Al|
(x,

x_Z|B|

D>

k!
—1—g)!
oy & q)
sN—|kN ]}
L1 g [uf;.([H(uai)]k—l—qN"—l—q>
Al g7 L Tlagec; (ta; —tay)

I
2 Y

04by,.. by wbr4+13C{1,2,....N—[kN]},

{b1,..., bj ,,,,, bry1}
bj=a;

1

Nat,....ag+1}=9,

1b €B; |B |'

1B uly (H(ug,)'"N'~ ’)]

“’?I HbUED_/(uai Up,)

W15 U N— kN )
Xl —K

KE H(HEI N
m ;ZESZI‘ [ HaseCi (z — ua,)

q=0 {aj,..ag+1}
c{1,2,...N—|kN]}
1 I
(2 )3 zl Bt e
(z— ug; )4 (l )
=0 b1 b 1312, NN ]}, T
{b1,.. 5bj7 Sbry1in{ar,...aq+11=9,
bj=a;
R (wl(H(w))l_’Nl_’ 1 1 ))]
X €S
W=la; HbUeDj (w —up,) (w —Ma,-)lle_l (w—z)? (=”1’1':’“N*LKNJ)
N— |_KNJ

- (27”)2 Zﬁz —x;|= e(

X ¢
lw—x;|=

N—|kN]

(x

i=1

z )k
Z—U;
i=1 !

1
1
v + wNH(W) | —— dwdz.
— Ui (w—2z)?
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We also have

k!

Y Y s

q=0 {ay,....ag+1}
C{l 2,..N—|kN]}

X ZlA | 1 gldil—1 ”Sf([H(”ai)]k_l_qu—l—q)
[A;]! 8ul;i1i|—1 I T——

i=1

1 h
Al 1
303 > T 2= Bl
- (I —r)H4 |B;|!
P=04by,..0.bs by 413C{1,2,...N= [k N ]}, J=1
{b1,..., bs,..,,br+1}ﬂ{a1 ..... aq+]}=0,

bs=a;
9lBj1-1 uéj (H(ubj))l_'Nl_’ 1 )}
X b
auLle_l [byen,\ipyy (e, — 1) (up; —up,)? Wt N —Len)
J =A1—«
where b; € Bj. Using the residue theorem, we can also infer
k—1 g k k—1—g Ark—1—
~ k! H aN q
=Y Y oo ke [FUEE :
k—1—)! Zoma | [lyec, (@ — tay)

q=0 {ay,...ag+1}
c{1,2,...N—|«kN |}

1 h
1 1!
x (z — ug, )4l Z Z (l_r),Zlble
! r=0{bs,....b+1}C{1,2,....N—|kN ]}, j=1
{b>,. .,br+1}ﬂ{a1,...,aq+1}=®,

1=a;
x Res | w! (Hw))' " N~ 1 I )}
€s
w=up; HbUEDj\{bl}(w - ubv) (w - ubj)lle (w - Z)2 (=u}1(’l':’“N—LKNJ)
1 N-— LKNJ R k
= 2ri)? NH
s T w g (F
je{1,2,....,n} pe{l1,2,.. ,n} PFEj J i=1
N—|kN| w 1
X 95 ( Z + wNH(w)) — dwdz .
lw—xp|=e i Wi (w—2) (=u}l(,1.:’,:lN—LKNJ)

Therefore, we have

T B (s il o 95 ¢ ( : +ZH<z))k
i i= lz—x;|=¢ J|lw—x;|=¢ n(Z_xl) -«

N—oo Nk+I (27[1)2

X(Z W +WH(“’)) U zaw, (4.15)

«n(w — x;) l—k ) (z—w)?

i=
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Finally, let us consider the case where
a1, age1} N b1, brsr}| = 2.

By Lemma 3.4, we can see that the contribution of these terms to § x)(X1—,) has
N -degree strictly less than k + /.
Therefore, we have the following proposition.

Proposition 4.10. Assume the assumptions of Lemma 3.4 hold. Then

cov(p((l K)N)’p((l K)N))

m
N—o00 Nk+I

=M S z zH(z)\F
= (27[1)2 ZZ%Z —x|= €¢w —xj|= g(i I’L(Z—xl)+ 1—K)

i=1j=1

n

X (Z al + ZH(Z)) 0(z,w)dzdw,
J

—n(z—-xj) l-«

where
0. w) = Gz.w) + —
z,w) =G(z,w _—
(z —w)?
cov(plI=ON) A=)y
Proof. According to formula (4.12), limy o ~E 7 should be the
sum of (4.13) and (4.15), divided by N k+! Then the proposition follows. ]

4.1. Multilevel correlations

Define a mapping ¢: {1,...,2N + 1} — {u@ v0):i, j € {1,2,..., N}} as follows:

(n—l) . .
utz2 if n is odd,
¢(n) = { (ﬂ) . .

vz if n is even.

Fori € {1,2,..., N}, define
Ci = (xi,Xi4+1,...,XN) € RN+
and fori € I, let

B; = y:Ci = (yiXi, YiXi1s..., yixy) € RVTIHL

Letl <n; <np <.-- <ng =2N + 1 be positive row numbers of the square-
hexagon lattice, counting from the top. For 1 <i <, let p,,; be the induced probability
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measure on dimer configurations of the n;th row. Then the induced probability mea-
sure on the state space

GTI.”IJ XGTL"%J X"'XGTL%‘YJ

2

by the measure proportional to the product of weights of present edges of dimer con-
figurations on the square-hexagon lattice R(2, ¢) can be expressed as follows:

k
Prob(¢ (1), .., ¢ (1)) = pa, ($(ns)) [ | Problg(ni—1)l ()], (4.16)

i=2

Here Prob[¢ (n;—1)|¢ (n;)] is the probability of ¢ (n;_1) conditional on ¢ (#;). In par-
ticular, we have

PrOb[H’(t_l)h)(t)] = prCN7[+1 (U(t) - l‘l’(t_l))’

@) oy _
Prob[v(’)m(’)] = sty (U =) AN 't +1¢€ 1y,
Lo—uo otherwise,

where 1v(”=u(” is the indicator of v® = ,u(t), x;, yj are edge weights, and

@O = =D, (1—1) XN —1425-,XN)

if @D <, ®
Prey +1(”(t) - M(t_l)) = ] TN S,(0) AN —(+15XN) if <V,
—t |
0, otherwise,
and
yll\l;(l;‘;{lt(f)\ S, () XEN—1+41,--XN) " /L(t) c v(t)
StBN—t+1(V“(t)_>V(t))= nj‘v:N—z+1(1+YN—z+1xj)Su(z)(XN_tH,...,xN) s
0 otherwise,

see [5, Section 2.4].

Definition 4.11 (Multidimensional Schur generating function). Let 1 < N; < N, <
-++ < Nj be positive integers. For a probability measure p on [[;_; GTx,, we define

the s-dimensional Schur generating function with respect to X = (x1,...,xx5) by
So.x(WUi,1, . UNT - ULs o UNGs)
_ » p()tl,...,/\s)li[ el M)
MEGTy, . A €GT, e=1 S0 ON 2 1o XN)
The multidimensional Schur generating function with respect to (1,...,1) was

defined in [8].
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Lemma 4.12. Let my, ..., my be positive integers. Let 1 <nj; <np <-.-- <np <
2N + 1 be positive row numbers of the square-hexagon lattice, counting from the top.
Assume that (¢ (ng),...,¢(n1)) has the distribution p defined by (4.16). For 1 <s <k,
let {Ol(s) be the l-order differential operator defined by

5]

1 da \!
D) = (i) JVizg): 417
Vl_n.sJ Z i aui’s L 2 ! ( )
where VLnTS | is the Vandermonde determinant on L”TSJ variables uy, . . ., uims. Let
X = (xN—L"TkJ-H’ ce s XN).
Then
i)r(r?ll)j)r(r?;) e O(Dr(,?,f)sp,X(ul,lv ey u["%J,l; ey Utks s uLnTkJak)i(ul""""’uL"TSJvS)
=X, Vi<s<k

N
=

[>%]

= (l 1 (¢(”1)11 L_J —11) 22:: (¢(n2)i2 + L%J —iz)mz...
<</’>(nk)zk L%J —ik)mk),

where E is the expectation with respect to the probability measure defined by (4.16),
and S, x is the multidimensional Schur generating function as defined in Defini-
tion 4.11.

N

L

M\w

]

ik

Proof. The theorem follows from explicit computations. |
Lemma 4.13. Suppose the assumptions of Lemma 4.12 hold. For 1 < s <k, let
n
ty=N— L ;J

Forl <s<k—1,let
N N
Sng) ._ | AT 1+ y;u,
b= (X ()" ) TT T 12
BN ! i€{tyr 141, ts}ND j=ts+1 iy

and let
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where V| s | is the Vandermonde determinant on |_n75j variables s, 41, ..., un. Then

i)r(r:lll)i)r(r:l;) . i),(,:lkfc)sp,x(ul,l’ ceey uL%‘J,I; e UK uLnTkJ,k)}(ulJ"“’uL%J,s)
=X, Vi<s<k
i)(nl) o@(”z) c:D(ﬂk) {S (u u )}|
my,k " my.k AN XWUN_| Bk 4100 BN (;lljéi.-,uz;ll)v)v
where Spmk 2.X (U1, ... uN) is the one-dimensional Schur generating Sfunction de-
fined as in Definition 3 1, and prg is a probability measure on GT Y, defined as in

nk J
Lemma 3.4.

Proof. We shall prove the lemma by induction on k. First of all, when k = 1, the
lemma obviously holds. Assume that the lemma holds when k = [ — 1, where [ > 2
is a positive integer. Then when k = [, we have

(n1) qy(n2) (n;) . .
i)m]l i)m22 ...i)mll SP’X(Ul,l,.--,ML”TIJJ’...,Mljly...,UL”TIJ,I)|(u1,s,...,uLn7quS)

=X, Vl<s<l/
VS W P AT N
= > oy hoy( G D B
$11 , ,
! AR
A GGTLnTIJ
Sp(.MI),X(ul,ls .. "u[nTIJ,l; . ";ul’l_l""’uLn/T_‘J,l—l) (“1~S""’"Lﬂz~1j,s)’

=X, Vi<s<l
where p(- |kl) is a probability on ]_[ =1 GTLns J obtained from p by conditional on the
configuration A’ on GT - By the induction hypothesis and Lemma 3.3, we have

‘Qr(r?ll) . Dl—1)

mj—1

Sp(-l)\/),X(ul,l, cees uL"T‘J,l; S WY PR UL”lil J,l—l)i(ul.x ..... uL"TSJ.S)
=X, Vli<s<I—1
— pn  fl2)  Fe—1)

mi,l—1"my,l—1 my_1,0—1
{Sp nj_j ('Ml)’X(uN—l_an_lJ—l—l’ ceey uN)}|(u1,...,uN)
L= =(X15esXN)
N 14 y;u
~Nm1) &(n2) N(ni—1) it
i)ml’i)mzl i)ml ],l 1{|: l_[ l_[ 1+yfx_i|
i{t; +1,.. .t 13¥NI jery_1+1 vy

8 SM(XN—L’ZIJ-H""’xN—L"IZ—IJ’uN—Lnlz—lj—i-l’“"uN)}
(uy,.uy)

SA[ (xN—I_%lJ-H’ e axN)

=(X1,..0:XN)
@:’711,) 335’722;) jj’:lllf_l]a)l
{Sl’(xN—L"ZIJH""’xN—L"’z—‘J’“N—L"’;‘Hl’ . ..,uN)}
SAI(XN—["TIJ-i-l""’xN) (U1sestiy)

=(X15sXN)
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Note also that

Sp(Uyg, oo uyny l)
J),Sf]l)( L7, )

s,v()?l) (R uL%LJ»/):XI
L%
nj N\
5+ 15]-9)
Z( 217
]:
_ ~(n,){sﬂ(”N—L”21J+1’""""”N)}
M s ey g o) 1)
Then the lemma follows. n
Letmq,...,mandnq,...,n; beasin Lemma4.12. For 1 < s < k, we introduce

the notation

= Fa gy Uunone g+ L) =)

..........

where F is defined by (4.7) and can be expressed as in (4.9).
Let 51 < s be positive integers between 1 and k. Define

Gs"”(uN—L"%JH’“"”N)
msl—l
mg, — 1
—ng X (™7 X e
r=o T Brobrit)

c{N—BL|+1,..,N}

Mms; 9 3 mg, —1—r
x  Sym ubl dup, [‘?(msza%)](a“bl [lOg San%J’X]) l
by,....br 41 (ubl - ubz) o (ubl - ubr+1)

Lemma 4.14. (1) The degree of N in the expression for G, s,|(u;,...un)=(x1,..oxn)
is at most mg, + my,. Moreover, for any index i the degree of N in the expres-
. P .
sion for WiGswz |yt v )=Cx1snx n) 18 less than mg, + mg,.

(2) We have that

1 ad
—_~——————m U; f
Viljsp nsy; X ! llsX: lau [ (msz’z )]
2 L=k ie{N—|—L|+1,..,N}
8 mxl—l A~
X (u—) nsy S X
laui [ =17 Tl ] W15t N)=(X1500,X V)

= Gsl,sz|(u1,...,uN)=(x1 ..... XN) + R,

where the degree of N in R is less than mg, 4+ m,.
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Proof We first prove part (1). In accordance with Lemma 3.4, the degree of N
in (au , [log Spml/2J x]))msimr is at most mgy, — 1 — r. In view of Lemma 4.4,
the degree of NV in the expression au [J‘*(msr,,32 /(2NY)] is at most m,. The summa-
tion gives O(N”*1) terms. Therefore the degree of N in Gy s |(uy,.cou n)=(x1,00xn)
is at most my, + my,. The fact that the degree of N in BiuiGsl’Q Ly seostt N)= (X1 s )
is at most my, + my, also follows from Lemmas 3.4 and 4.4, and by discussing the
cases where i € {by,...,by41}andi & {by,...,b,+1} separately.
Now we prove part (2). We have

1 Z ad

17 S 1 Y, ou; [ (mizsz )]
P nsy X X nsy
L5y ze{N—LTJ-H,...,N}

X(”" : )m\l WL"“JS nsy X

Bu,-

W1, uN)=(X1,500XN)

= my, 3 (mslr_ 1) 3 (r+1)! Sym

to+t1d1+"-+thdq+r (b1 i1) bysensbrt1
=ms;—1, c{N—| =L +1,..,N}
1 <tp<-<ly 2 e
msy—lo 9 F dy ... (24 dg
U e i, 250 Gy 008 S5 g XD (102 Sy xD

(ubl - ubz) e (ubl - ubr+])

Recall from the proof of Proposition 4.4 that the degree of N in 8 [log S Plns, /21> x|
is at most 1 for all #; > 0. Hence by Lemma 4.4, the degree of N in the expression
above is at most

di+--+dg+mg +1+ 1. (4.18)
Given that tg + t1dy + -+ tgdg + 1 =mg, — 1, 1) <1t <--- < 14, the maximal
of (4.18) is achieved whentp = d> = --- =d; = 0,t; = 1,d; = mg, —r — 1; with
maximal value my, + my,. Then part (2) follows. ]
Lemma 4.15. Letmy,...,mp andny, ..., ,ni be as in Lemma 4.12. Then

. 1
i e (D = By ) (DY) = Em) -+ (D) = By )
Sp’X(ul,l, ceey ML%JJ; ey ul,k1 ey ul_nTkJ’k)|(ul's""’uLn7SJ.S)=X‘Y
Vi<s<m
1

_Nl—>oon1+m2+ my Z l_[ G31’32|(u1 ----- UN)=(X1500XN)"

Pepk (s1,52)€P

Proof. The proposition follows from explicit computations and by analyzing the de-
gree of N of each term in the expansion. We sketch the proof here.
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The lemma obviously holds when k& = 1, for which both the left-hand side and the
right-hand side are 0. When k = 2, by Lemma 4.13, we have
&, = i)r(r:lll)@r(rfzz)sp,x(ul,l, UL U2, uLnTzJ,z)|(u1,S ..... upng ) o)
=X, for s=1,2

(n2)
:£$11;£J2228p n2 X(MN Ln2J+17---1uN)|(ul,.

_ 1 F@0 F02)

mi,1°"mp,2
SPL”TIJ’X(MN—L’%ZJ-H""’LIN)

UN)=(X] 500X N)

[exp(log[SpL,%J,X(uN_LnTzHl, cee, uN)])]
1

Sp ny ,X(UN_LQJ+1’---aMN)VLﬂJ(uN_LﬂJ+1,---,UN)
L) 3 ) 2

|(u1 yees U N)=(X1 500X N)

Y () e )

14
ie{N—|"F|+1,...N} Qui/ - Vi |y 5241000 UN)

N -
» l—[ l—[ 1 + yjus

I+ yjxs
[e{N=|"Z | +1,. ., N=|"L }nDr s=N—|"L]+1 YIS

0 \m2
<X () M)
JEN—"2]+1,..,N}

x [exp(log[$,, 2 x ey anHl,..-,MN)])]

W1, uN)=(X1500XN)

By Lemma 3.3, we have

N

1+ ysu
l_[ H¢

1+ yrxs
IE(N—"2 ]41,..N—| "L 30T, s=N—|"L]+1 Yits

S"’L”TIJ’X(MN—L%J +1,...,un)

SanTzJ’X(uN_LnTZJ +1,...,un)’

Then
1

Sp ny ,X(uN_L”JJ+1,---,uN)VLﬂJ(uN_LﬂJ+17---,MN)
L= 2 2 2

d \m
X Z (,a—ul) VLnTIJ(uN—LnTIJ'i‘l""’uN)

ie{N— L L]+1,..,N}

& =

X Spng Xy 12 g UN) Ty 22 (22 g UN) (o) -
=(X1,00XN
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Hence &, is a sum of terms of the form

091
mi—qo
a1§¥2+] |:COU oull mz,ZN][ 42( gSanl x)]
09t
<[ 10885 0y 0] /(e =)+ Gty =0 )|
Uay =(X1 e XN)
such that
* r,40.91,---.4¢> da,...,d; are non-negative integers;
¢ G2 <(q3 <---<(y;
¢ we have that
go+q1+qads + -+ q;d; +1 = my; (4.19)

i {al,...,ar+1}C{N—L"71J—I—l,...,N}.
When g1 = 0, we obtain Ey, | 5, Epy s, -

Now we consider the terms corresponding to g; > 1. By Lemma 4.4, the degree
of N in 93! [?mz%] is at most m,. By Lemma 3.4, the total degree of N in these
terms is at most my + dy + --- + dy + v + 1. By (4.19) and the assumption that

s1 > 1, we have
moy+dy+---+d; +r+1<my+m,
and the equality holds when
go=ds=---=d; =0, q1=q2=1, do=my—1—r.

This corresponds to G », in which the degree of N is at most m; + m,. The degree
of N is less than m; 4 my in all the other terms. This completes the proof when
k=2

We shall finish the rest of the proof by induction. For 1 <[/ <k — 1, let

e T,
Al = l_[ 1—[ + ix]_
iE{tl+1+l,..,,t1} j=t;+1 Vi J

By Lemma 3.3, we have

SanTIJ’X(uN_I_HTIJJFI,’ ceey uN)

Ay =

S U, o n L. UN)
'OL”l;_lJ’X( N—| liHj-i-l, N)
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Assume that the lemma holds for k = r — 1, where r > 2 is a positive integer.
When k = r, by induction hypothesis, we have

! g \m Vi
' > () g
Vim Sp ny X duj, ny
L2 17PN = B [+ 1,...,N} 1]
J \m2 I//\I_QJ
X Z (uiz—) ,\2 Ay .-
8u,~2 Vn73
E(N=|"2]]+1,...N} 17
d
X Uj, —— Vin n
. nX: ( i auir) [ =2 pL IJ’X] (15U N)=(X150005X N)
ir€{N =" ]+1,..,N}
1 J \"M1_~
= = Uiy, — Ving § n
Vi 8o ny X Z (“auh) MESROTEL
L 1P % g eN— | AL J+1,...,N}
(Z 5'7<mw1 ZN)?(mw2 = f(mwp,”“"’)
=0 Wi,.. awpe{z’ :}
( [T Gas + Riwy.y) = 5145+ 55,
oF (ul,‘..,uN)
Plwy...wp @HIEP =(*15.0XN)

where by induction hypothesis, the degree of N in Ry y,,...,w, is less than Zf:z l; —
> 71 L, and

1 Jd \I ~
Sl — {T Z (Uilw) I[VLHT]JSan J,X]}

1
n 2
LS9 X V= 2 J+1,....N}
r—1
X ( Z Emy, w1 Empyws -+ Emy,py wp
=0 wy,...wp€e{2,...,r}
X ( l_[ Ga,b + Rl,wl,...,w,,)) s
PEPl 1w, @b)EP @15 U N)=(X1500,XN)
I8 d0 \ha-1 A~
S2 = =< Z {(ui] —) [ ﬂsp ny ,X]}
n 0 Sp ny X < o, 2 P
L7 % i e N = B ]+ 1., N}

i 8ull )(Z Z (mwl HZUJU\/ ) (mwz 'lzu})v ) ' f(mll}pa%)

P=0wy,...,wp€{2,....,t}

<
x ( 3 [] Gas+ Rl,wl,...,wp))

Pe:Pl”w1 wp (a,b)eP

)

W1 U N)=(X1 500X V)

and S3 consists of all the other terms.
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By the definition of £y, ;, we have

r—1
Sl = Eml,l( § E Emwl,leme,wz"'Emw,,,wp

=0 wy,..., wpe{2,...,r}

X ( Z 1_[ Ga,b + Rl,lUl,...,U)p))
P

Pep| w » (a,b)eP

(150U N)=(XT 503X N )

By Lemma 4.14, we have

52 = {(E : z : § : Mwy,wy mwx 1:Wx— lEmwx+1,w.>c+l “'Emwp,wp

p=0 Wi,....,.Wp x=1
€{2,...,r}

X [(Gl,x + Rl,x)( Z 1_[ Gap + Rl,wl,...,wp)])} roin)

Peﬂ’{w1 wp (a,b)eP =(X150e0rXN)

where the degree of N in R x is less than /; + Ix.
Hence we have

S2 = {[ § : 2 2 mwl wq o mwx 1 Wx— lEmw)H,lawx-‘rl "'Emwp,IUp

p=0 Wi,oWp x=1
€{2,...,r}
x (G1 x Z l_[ Gap + Rwl,...,mx,...,w,,>]} Lotin)
Pej)lr Wi wp (a.b)eP =(X1,..0,XN)

where the degree of N in Ry, ... w, is less than Z§=2 Li =30 Ly,
Note that

,
Si+8S=) > Emy, 01 Emuyws *** Emuy

pP=0wy,...,.wpe{l,2,...,r}

< ( Z [T Gab+ Rutwy)

wp (a,b)eP

9
W15 N)=(X15005XN)

where the degree of N in Ry, ... w, is less than ZE:I l; — Zf):l L, -
It remains to show that S5 does not contribute to the leading terms. Define

'}gjla-najp = Z 1_[ Ga,b + Rl,wl,...,wp

PeP! . ., @beP

By Lemma 4.14, the degree of N in #;, ... j,|uy.=q,..,1) is at most Y ;_, I;
Zj’ —1 lw; . Moreover, by Lemma 4.14, for any index i, the degree of N in the expres-

i 9 gp. . i ! L _ NP
ston B_W'}’fjlam,m @1t n) =t ey I JesS than 355 o i = 37y L



We write

1 a mp . r—1
[ Z (”"lﬁ) I[VL";JSPL"IJ’X](Z

LI X G N 41,V p=0

> Fono 22 oy 5523 P, 220 Y%“’“’”’) (et )

Wi, WpEL2,...,1} =(X1,00sXN)

as a sum of terms of the following form

Sym [ =05 log S5y D -+ (0 Hog S5y X)W O

nwy ) .o
ay,..,ag+1

(mwl,

X0 F g g 0Ty [ (e — uaz)---(ual—uaq+1))], (4.20)

( wl)a
where
« {ar.....ag41} C{N — |5+ 1,....N};
* 5] <§p <--+ <8 are positive integers;
* fi...., fp, ho are non-negative integers;

¢ we have that
qg+so+sidi+-+sidi + fr+-+ fp+ho=my. (4.21)

By Lemma 3.4, the degree of N in ([log Sanl/zJ,X])dl - (97, [log Spy,,, Lo, x )% is at
most d; + - -- + d;; therefore, the terms in (4.20) with highest degree of N have the
form

frod h
uall (aal [10g SPLnl 5 ])dla ( "wl ) ~aafff m ’%)aa?%jlw-’jp

S w H ( wp
ym 9
alse0g41 (ual _uaz)”'(ual _uaq+1)

4.22)
where

S():dz:"':dzzo, S1:1.
Let B={i €{l,2,..., p}: fi = 0}. Then

(4.22) = []_[ F o )]S(ul, uw).

: (mwi, N
ieB

It suffices to show that the degree of N in S, except for S; and S5, is less than
i1 li =Y ;cp li- Note that the degree of N in 9, [log San1/2J,X]d1 is at most d;
by Lemma 3.4.
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The summation over

{ai,...,aq441} C {N—L%J —|—1,...,N}

gives O(N9+1) terms. By Lemma 4.4, when i ¢ B, the degree of N in 3! #

1 (mwi 7%)
is at most m,,, . Therefore, the degree of N in S(uy,...,ux) is at most =
r )4
S Yo bt Y gt
i=2 i=1 ie{1,2,...,p}\B

By (6.5) and (6.10), if |B| < p —2,q + d1 + 1 < my — 1, then the degree of N
in S(uy,...,uy) is at most

;
Zmi —mei — 1.

i=1 ieB
Therefore, only the terms where at most one f; is nonzero contribute to the lead-
ing order. In these terms, if sy > O, then by Lemma 6.8, the degree of N is less
than Y i, m; — > ;cp Muy,. So only the terms where 1o = 0 and at most one f; is
nonzero contribute to the leading order. These terms are in S and S». Then the proof
is complete. u

Proof of Theorem 4.1. The theorem follows from Lemma 4.15 like in the single-level
case. The only difference is in the expansion {b1,...,b, 41} C{1,2,...,[(1 —t;)N |},
while {a1,...,a44+1} C{1,2,..., (1 —#2)N]}. The joint Gaussian distribution fol-
lows from the fact that the moments satisfy Wick’s probability theorem. ]

5. Piecewise boundary conditions

In this section, we introduce the piecewise boundary conditions on the bottom bound-
ary of a contracting square-hexagon lattice and review the limit shape results for
perfect matchings on such a graph.

For N > 1,1et A(N) e GT IJ\? . We consider the following special asymptotic case
of A(N)as N — oo. Let

Q=(Q << <Qy)=ANN)+ LAn_1(N) +2,.... 2 (N) + N).

Indeed, 21, ..., Qp are the locations of the N remaining vertices on the bottom
boundary of the contracting square-hexagon lattice. Assume

Q:(AlsAl+17"'9Bl_lvBlsA21A2+17"'932_17321""145"
A+ 1,... By —1,By), 5.1
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where Y ;_;(B; — A; + 1) = N, and s is a fixed positive integer independent of N.
Suppose as N — oo,

Ai(N) =a;N +0o(N), B;(N)=b;N +o(N) forl <i <y,

and a; < by < --- < ag < by are fixed parameters independent of N and satisfy
>, (bi —a;) = 1. Assume the edge weights {x,-}fv=1 and {yj}jer,n1,2,..,N} sat-
isfy (3.3) and (3.4), respectively.

Let ¥ 5 be the permutation group of N elements and let 0 € X . Let

X =(x1,...,xN).

Let x1, ..., x, be all the distinct elements in {x1,...,xy}. Let E% be the subgroup
of ¥ that preserves the value of X ; more precisely,

»X ={0 € Sn:ixg) =X for 1 <i < N}.

Let [Zn/ Z%]’ be the collection of all the right cosets of Z% in ¥ . More precisely,
[En/EN] ={ZxNo:0 € Iy},
where for each o € Xy, 2])\(,0 ={f0:& € 21)\(,} and £0 € X is defined by
Eo(k) =&(o(k)) forl <k <N.
For1 <j < N,let
nj(N) = [{k:k > j, Xo) # Xo(j)}-

Forl <i <mn,let

ENN) = {4 (N) + 1] (N): xo(j) = xi}s

and let ¢ %) (N) be the partition obtained by putting all the elements in ®@)(N) in
decreasing order.

To study the asymptotics under the piecewise boundary conditions, we make the
following assumptions.

Assumption 5.1. Let (xy,...,xy) be an N -tuple of real numbers at which we eval-
uate the Schur polynomial such that
* N is an integral multiple of n;

. {xi}zN=1 are periodic with periodn, i.e., x; = xj for 1 <i,j < N and [i mod n] =
[/ mod n];

¢ X1 >Xp>-r>Xx, >0
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Assumption 5.2. Assume x; v = x1 > 0 and (xa,n, ..., Xn,N) changes with N.
Assume that for each fixed N, (x1,n, ..., Xn N) satisfies Assumption 5.1. Moreover,
assume that

. X
log(mln1§i<j§n xl.’N)

R JN

lim inf

N—o00 N

>a >0,

where « is a sufficiently large positive constant independent of N.

Assumption 5.2 requires that as N — oo, each x; n is exponentially small in N
compared to x(;—1), 5. One can also see that under Assumption 5.2, except for x1 v,
all the other weights converge to 0 exponentially fast as N — oo.

Letog € [Zn/ Z%]’ be the unique element in [/ Z%]’ satisfying the condition
that for any representative oy € 09, we have

Xop(1) Z Xop(2) = *** Z Xoo(N)- 5.2)
Let m; be the limit of the counting measures for ¢-90)(N) as N — oo.

Assumption 5.3. Assume x1, ..., xy satisfy Assumption 5.1. Let A;, B; be given as
in(5.1). For1 <i <, let

Bi— A, +1=K;.

By (5.1), we may assume

A=Ay == Ak, = p1,
AKg+1 = AKg+2 = = = AR 4K, = M2,
Avi ke = Masik =S AL K = M
and note that
f1 > > L
are all the distinct elements in {A1, A2, ..., AN}. Let
Ji={t:1<p<N,1 =<t <s,[oo(p) mod n] =1i,Ap = pr}. (5.3)

Suppose that all the following conditions hold:
e Ifl<i<j=<nleld,andteJj thenl <t.
» Forany p, q satisfying 1l < p <sandl1 <q <s,and q > p,

Ci1N SHp— Mg = CyN,

where Cy, Cy are constants independent of N .
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The key point of Assumption 5.3 is, if we order all the edge weights as in (5.2)
and have x4, (;) correspond to the ith part A; of the partition on the bottom, then one
cannot have X (i) = Xg, @) if A; # A;. Assumption 5.3 also supposes that the bottom
boundary is divided into finitely many alternating segments of particles and holes;
then each segment grows linearly with N.

Let

In(u)
Hm’(u)2/0 Rn (t)dt—l—l ( )

and let Ry, be the Voiculescu R-transform of m; given by

1 1
S$ ) 7

m; —

where Sp,, is the moment generating function for m; given by
Smi (z2)=z+ Ml(m,-)zz + Mz(mi)Z3 4+

Mi(m;) = [ x¥m; (dx), and S,;il (z) is the inverse series of Sy, (z). See also [6,
Section 2.2] for details.

Proposition 5.4. Suppose Assumptions 5.2 and 5.3 hold. Let k € (0, 1) be a posi-
tive number. Let p|(1—)n| be a probability measure on GTF(—I—K)NJ as defined in
Lemma 3.4 or Remark 3.5. Let m[p|(1—«)n|] be the corresponding random count-
ing measure. Then as N — 0o, m[p|(1—¢)n|] converge in probability, in the sense of
moments to a deterministic measure m*, whose moments are given by

1 " dz n—i z p+1
p K d = ———- —_— ,
/Rx m*(dx) 2n(p+1)ni;§£cl . (ZQI,K(Z)+ - +n(z_1)) ,

where for 1 <i <n,

T—on K)n [Hmz (z) —(n—i)logz
Qi’K(Z) = +K Zre{l,Z,...,n}ﬂIz log lliy;rz;cll] ifi =1,
m[Hmi (z2) —(n—i)logz] otherwise,
and fori > n + 1,
01 (2) = Qi mod n)uc(z) if (i mod ) # 0,
o Oni(2) otherwise.

Proof. See of [32, Theorem 2.18]. [
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Lemma 5.5. Let k be a positive integer such that 1 <k < N. Let

u; ifl1 <i <k,
Wi = . .
x; ifk+1<i<N.

Assume k = gn + r, where r < n, and q, r are positive integers. Let A € GT;\; be
an arbitrary partition. Then the Schur function can be computed by the following
Sformula:

n
(i,o)N
sp(wi, ..., wy) = Z nxlu» )|

oe[mn /DX i=1

r

Xl_[s . (ui Un+i Ugn+i 1 1)
i,0 -, e
M ¢ (N) xi xi ) ) xi ) )
n
Ui Uni U(g—1)n+i

X l_[ s¢(’~0')(N)(_7 g e ey 317"'91

. Xi Xi Xi

i=r+1

1

x -
i<j,xol<i_)[¢xc(j> Vo) = Wo())
where 0 € 6 N Xy is a representative.
Proof. See [32, Proposition 3.4]. [
Theorem 5.6. Under Assumptions 5.2 and 5.3, for each given {a;,b;}}_,, when a in

Assumption 5.2 is sufficiently large and k < n, we have

k
.1 SANY(UIXUN - o URXE N Xk 1,N s - -+ » XN,N)
lim — log : : : — =Y [Qi(u;)], 5.4)
N—oo N SANY (X1L,N - XN,N) ; o

where for 1 <i <k,
(1) if [i mod n] # 0,

0 (1) = Huw; s ) (n —[i mod n])log(u)’

n

and the convergence of (5.4) is uniform when uy, . .., uy are in an open com-
plex neighborhood of 1;
(2) if[i mod n] =0,
Hm, (1)
0iw) = =22,

Proof. See [32, Theorem 2.9]. [ ]
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Lemma 5.7. Suppose Assumptions 5.2 and 5.3 hold, and let o be given as in Assump-

n

tion 5.2. For each given {a;, b;}!_,, when o is sufficiently large, for any o ¢ 0o, we

have
(i,00) N
]_[7=1 xllij ( )‘1_[;1:1 S¢(l.(70)(N)(1,...,1)

n @O (N)| ,
Hi=1xi,N [lizi sgeomy(d,.... 1)
1
Hi<j,xao(i),N¢xoo(j).N X0 (i).N ~Xo0(j).N

2
eCN

- El

X

1
Hi<j,xo<i>.zv¢xo<./>‘1v Xo(i).N ~Xo(j).N
where C > 0 is a constant independent of N and o, and increases as o increases.
Indeed, we have

lim C = oo.
o«—>00

Proof. See [32, Proposition 4.5]. |

6. Central limit theorem for piecewise boundary conditions

In this section, we construct certain statistics from the (random) dimer configuration
on a contracting square-hexagon lattice with piecewise boundary conditions and show
that they converge in distribution to a sum of » independent Gaussian random vari-
ables in the scaling limit, where 1 x 7 is the size of a fundamental domain. The main
theorem proved in this section is Theorem 6.1.

Theorem 6.1. Assume k1, k5 € (0, 1). Then the random variables {ﬁ[p}(l_xwJ —

Ep IL(I_K)NJ]} 1.« converge in distribution to a mean 0 Gaussian vector with covariance
La—x)N ]

given by Proposition 6.16. Moreover, each %[pl — EplL(l_K)NJ] converges in

distribution to the sum of n independent mean 0 Gaussian random variables.

Again, the idea that we use to prove Theorem 6.1 is to compute the moments of
these random variables and then show that they satisfy Wick’s probability theorem
in the N — oo limits; this gives the Gaussian distribution of these random variables
as well as the explicit form of the covariance. The major new ingredients, compared
to [7], are the application of Lemma 5.5 in computations of moments and the splitting
of these variables into a sum of independent Gaussians when the edge weights satisfy
Assumptions 5.1, 5.2 and 5.3.

6.1. First order moments

In this section, we compute the expectation of the random variables Z}(:l n N Ai +
L(1 —k)N] —i)k.
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For the piecewise boundary conditions, the proof of Proposition 4.2 still holds.
For k € (0, 1), let

XN = (X1N:-- - XNN),
XNi = (X14N—[(1—)N|,N+ - - -+ XN,N),
Unix = (U1, U2, ..., U (1—)N])>
UNnji,x = (U1X14N—|(1=)N|,N» U2X2 4 N—[(1—)N |,N + - - - » U (1—k)N | XN, N )-

Let A € GT|(1—«)n]» and let p|(;—c)n | be a probability measure on GT| )N ]
as defined in Proposition 5.4. Then we have

L(1—)N
Erew :=E Y (Li+|A—0)N]|-i)*
i=1
L1—~)N ]
= > PN DD A+ LU —N]—i)F
AeGT (1—)N | i=1
1 L(1—)N ]

k
= E u—) Via-o)N ] (Unk,x)
VL(I—K)NJ(UN,K,X) P ( laui L(1—k)N | K

X SPLU—K)NJ,XN,K (UN,K,X))

Une=(,..,1)
Forl1 <i <N, let
XiN ifl<i<N-|[(1-k)N],
v = . .
Xi NUi—-N+|(1—-)N] TN —=[(1=k)N]+1=<i <N.

Let A(N) be the partition corresponding to the boundary condition. For 1 <i <n,
let

R(@) ={1=j=[A=k)NJ:[(j + N = [(1 =«)N]) mod n] = [i mod n]},

andfor1 <i < |(1 —k)N], let

j@) =

[i+N—-[(1—-«)N]Jmodn if (i +N —[(1 —«)N]]modn) # 0,
otherwise.

Assume
I_(l - K)NJ =gNiN + TNy,

where gn  and 7y  are non-negative integers satisfying ry , < n.
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By Lemmas 3.3, 5.5 and 5.7, we obtain

1 L(I_K)NJ 8 k
EixN = (M—) Via—on ] (Un,x)
T Via—on) (Uniex) ; Pou ) T HITONIEER
N [SA(N)(UN,K,X, X1,Ns-- s XN—|(1=)N|,N)
savy(Xw)
1N
x I1 I Jl”l‘”f"w—m—mm]
y—_— U P
le{l,.N—|(1—)N NI, j=1 L+ YN TN U
L(A—«)N ]
: (w70) o
= ui— ) Via-on(Unx,x)—— ,
Na-on(UNc.x) ; You; ) THATONTEReX Ty Unr
where

N 4 Yo TN

Ty = I1

e NLA—ONnL  j=1 T YIXN—[a=oNT+;

N,k
X ( 1_[ S.00) Ny Ui Untis oo Ugy entis 1o 1))

i=1

n
X ( l_[ S¢(j(i),(70)(N)(Mi,un+i,...,M(qN'K_l)n_H,1,...,1))

i=ry+1

(11 ;)(1 +o(1)

. Voo (i) — Voo (j
i< Xoq (1) A ¥o0 () 0(@@) 0(J)

PN = (HS¢(i,UO)(N)(1,...,1))( l_[ ;)(14—0(1))

: .. Xoog@) — Xoo(j
i=1 ,<J’xao(i)¢x00(” o) 0(J)

Then we have

Ek,K,N = Z EIE{IS,N’
j=1
where

0 . 1

KNV N | (Un e, x)
0 \k Ty

= P Vi1 U —
Z (u, 814,-) LN (UNe.x) Py Uy =@,...1)

ie{l,...,[(1—)N [}NR())

Z ( 0 )k TN,i
iell,....|(1—k)N }NR() i/ Py

’

UN,K:(I""al)
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in which

I+ yrxjeyu;
TN,[ = ( l_[ #)Sd)(j(i),ao)(lv)(ui,1,..., l)
Ie{l,..N—|(1—<)N |}N 1, YiXja)

(T =) ) ™)

Jj(@)<k=<n k<j(i)<n

x ( [1 [wixji) — xk]>€N°(1),

N—[(1=«x)N|+1<k<N,
k mod n=j(i),
k—N+|(1—K)N | #i

1
Pni = s¢(j(i),0'())(N)(1,---,1)( 1_[ (—)

jl)<k=<n Xi6) — Xk )

1 N
(I =) )0 T e —wd)e™,
k<jt)<n ~* @ N—[(1=k)N]+1<k<N,

k mod n=j(i),
k—N-+|(1—k)N]#i

KN
n

In the expressions above, the 0(1) terms converge to 0 uniformly when u; is in a neigh-
borhood of 1.

If the edge weights satisfy Assumption 5.2, when j(i) > k, u;xj() is exponen-
tially small in N compared to xz, hence we obtain

‘ 9 \k VniTn
EY = lim ) ” RE.LAELAR
RN = (ko ) i/ Wy Py
for 1<k =N i€{1,e, [(A=K)N INR(j) NiLNi

Une=(1,..,1)

where
~ I+ yixjeyui
Ini = l_[ #)%U(iwo)(}v)(uh I,...,1)
l1e{l,...N—[(1—)N }nI, YIXjG)
1_[ 1 2\ No(1)
X ( (—> n )e o(1 ’
j)<k<n UiXji) — Xk
~ 1 %
Pyn; = S¢(./(i).(ro)(N)(l,...,1)( H (—_) )eNo(l)’
j)<k<n IO T Yk
Vi = H [wixja) — xkl,

N-|(1—«)N]+1<k<N,
(k mod n)=(j(i) mod n),
k—N+|(1—k)N ]#i

Wi = I1 [xj) — xk]-
N—-l(1-k)N]+1<k=<N,

(k mod n)=(j(i) mod n),
k—N+|(1—k)N ] #i
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Note that
i 1 0 \k ~ ~
EIE]/ZN = > W—ﬁ(ux$> Vn,i CXP[IOg(TN,i)]‘UN_K (6.1)
ie{l,..,[(1—x)N]} "TNELN ! =(1,...,1)
NR(j)
and
AT w.;

d ~ ~ 9 -
= expllog(Tn,i)] = exp[log(Tn,i)] =—[log(Tn.)].
Bu,- Bu,- aui

Lemma 6.2. Assume k € (0, 1) and the edge weights satisfy Assumption 5.2, then for
1<i<|[(1—k)N]andi € R(j),

1 8[10g TN’,'] K Z YiXja) kn— ji)

. L,
N o )

1 U +
lebni g,y T YIXGw n

and the convergence is uniform when u; is in a neighborhood of 1.

Proof. The lemma follows from explicit computations and [9, Theorem 3.6]; see
also [6, 13, 17]. ]

6.2. Second order moments

Let
L[(A—k)N] L(1-k)N ]
Ex1.c.N :=E( Yo i+ la=0N]-DF (/\j"‘L(]—K)NJ—j)Z)
i=1 j=1
LA—x)N]
= Z PlLa-k)N ] (A) Z i + [(1=Kk)N | — i)k
AeGT | (1—)N ] i=1
L(1—k)N]

x Qg+ 1 =0N] =)
j=1
L(I_K)NJ a k I.(I_K)NJ 8

= 1 ; (uia—ui) ; (uj %)l

Va-oN | (UN,x)

X Vi1=)N J(UN . x)S oy —ow 1 X v (UN,/C,X)|UN’K=(1,W,1)-
Again, by Lemmas 3.3, 5.5 and 5.7, we obtain
LA—k)N | 9 \k LA—=k)N | 9

X (wg) X ()

1
Via=on 1 (Unk,x)

Erie,Nn =
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SANY(UNye, X X1,N+ -+ - s XN—[(1=k)N|,N)

X VI(1=)N | (UN,K,X)(

savy(Xw)
LA—k)N] o
x l_[ l_K[ L+ YN [N T+
1+ yixv—a—ovies J|UnNe
1e{1,..N—|(1—)N]}nl, j=1 I"N—|(1—k)N]+j =11
= u,_
VI_(I—K)NJ (UN,IC,X) =1 ' au,-
LA—«)N]
0 \! Tn
x uj— ) Via- U - .
> <’auj) La-oN UNexX) 5ol

Jj=1

Then we have

n

n
Erjen =Y. Elgslt/)cN

s=1t=1

60 ! ) oy
k,lc,N Oui
Via-omUnex) ;o Tahony retda-ony © 0%
ﬂR(S) ﬂR(t)
9 \! Tn
— Y Vi U -
X (ur 8u,) La—N ] (UN.k.x) Py Un =(,...,1)

d \k d \!
- X (wg) X (wg,)
) ou; ou,
ie{l,...,[(A—c)N]INR(s) [re{1,...,((A—k)N |}NR(2)]
(s,)  (s,t)
Vv, TG

(s,1) (s,1)
W G PN

6.2
Un.e=(1,...,1) 6.2)

and where (assume the edge weights satisfy Assumption 5.2)

() Ifs = 1,
1+ yyxsu;
o) = SRRl
Ty ir = ( I1 5y )
le{l,...,.N=|(1—x)N}nI, s
1+ y]_xsur)
X ——— )85 (5.0 u;,ui,1,...,1
[1 T4y, S5 coan ity )

le{1,...N—|(1—«)N [}NI>

M Gema) DT (o)™ e
(T Go==) "CTT )" )ere
s<k<n UiXs = Xk s<k<n UrXs = Xk

1 2k N

5 "\ pNo(1)
PN,(i,r)_S¢(“’0’(N)(1""’1)( H <Xs—Xk) )e o

s<k<n
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Win=( T1 b —x)

N—-l(Q—«)N]+1<k<N,
(k mod n)=(s mod n),

k=N+|(Q-c)N]¢{i,r}

X ( 1_[ [urxs — xk])(u,-xs — UrXs)

N—[(1-«k)N]+1<k<N,
(k mod n)=(s mod n),
k—N+|(1—k)N]¢{i,r}

sz;s,’(i,)r) = 1_[ [s — Xk )2 (Xi 4 N— (1= )N | = Xr+ N—[(1—0)N ] )-

N—-l(1—«)N]+1=<k<N,
(k mod n)=(s mod n),
k—N+|(Q—«)N | ¢{i,r}

In the expressions above, the o(1) terms converge to O uniformly when u;, u, are in
. 2 . .
a neighborhood of 1 as N — oo; moreover, the operator au?—am acting on logo(1) is

identically O (instead of converging to 0 as N — 00).

Q) Ifs #¢,
76D ( I 1+ y,-xsui)
N,(@,r) 1+y[xs
le{1,...N—|(1—k)N|}NI,
1+ ViXsiuy
X 1_[ H—_X)Sq;(s.ao)(N)(ui, L....1)
le{l,...N—|(1—k)N [}nI, Vs
1 KN
<sgoamontin oo D( T () ™)
$HeOT T S<k]_£n UiXs — X
KN
A G ) G )™
UrX: — X) Ui Xs — UpXy

t<k<n
) _p . p No(1 0 _ o1 0 _ . T
PN,(i,r) = PN,t PN,re ‘ )» VN,(i,r) = VN,t VN,ra WN,(i,r) = WN,l WN,r-

In the expressions above, the o(1) terms converge to O uniformly when u;, u, are in
. 92 . .
a neighborhood of 1 as N — oo; moreover, the operator 3u,0u; acting on logo(1) is

identically O (instead of converging to 0 as N — ©0).

Lemma 6.3. Assume k € (0, 1) and the edge weights satisfy Assumption 5.2, then

(1) Forl1 <i<j <|(l1—=x)N]andi,j € R(s),

2 (s,5)
- 0”[log T[\i(i,r)]
lim ————
N—o0 au,-au,

__» [10g (1= (i = Dty 1)

Uiy

iHpy (ui) —up Hy, (ur))]’

Ui — Uy

and the convergence is uniform when u; is in a neighborhood of 1.
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Q) For1 <i<j<|(1—«k)N]andi € R(s), j € R(t) withs # t,

) 02[log ijls”(ti)’r)]
lim ————~2 =

N—o0 auiaus

’

and the convergence is uniform when u; is in a neighborhood of 1.

Proof. First we consider the case where i, j € R(s). We have

- 9%[log Tli,s”(“;?r)] - P[logs o oy @is s 1, 1)
lim ——————— = lim .
N—>00 ou; 0u, N—00 ou; 0u,

Then part (1) of the lemma follows from [9, Theorem 6.8]; see also [7, 13].
Now we consider the case where i € R(s), j € R(t) and s # ¢. In this case,

. g [log Tlgyki)r)] . 92 [—log(uixs,n —urxs,N)]
lim ————= = lim : :
N—oo ou; 0u, N—oo ou; 0u,

. Xs,NXt,N
lim >
N—oo (Ui XgN — UrXs,N)

and the limit is 0 by Assumption 5.2. ]

6.3. Asymptotic analysis

Let
() _ !
k,IC,N Vl_(l—K)NJ(UN’K’X)TN
J \k
x > <“" 8u,~> Via-oN](Uniex)TN . 6.3)

ie{l,...,[(1—)N ]}
NR(s)
For simplicity, we use the notation d; to denote % Expanding the right-hand
side of (6.1), we can write E ]Ejlz y as asum of terms of the form
cox" sy (" [log Ty, )1 -+ (3" [log T )™

(X)) = Xay) - (Xji) — Xa)

(6.4)

Similarly, we can write the right-hand side of (6.3) as a large sum of terms of the form

cox’yut %0 (@7 [log Ty )41 -+ (3" [log Tw )%

(Xj()Ui — XayUa—N+1(1—-0)N ) = (Xj@)Ui — Xa, Ua,—N+|(1-c)N])

such that
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* forl <s <r,asis apositive integer satisfying N — |[(1 —«)N| + 1 <a; < N;
* in (6.4), we have (ag mod n) = (j(i) mod n) forall 1 <s <r;

o N-—|(1-«x)N]+i,a1,...,a, are distinct;

o {5 };.:0 and {d; }§'=1 are non-negative integers satisfying s; < s, <+ < §¢;

¢ we have that
r+so+s1dy + -+ 5:dp =k (6.5)

* (o is a constant independent of N and aq,...,a,.

From expression (6.1), we see that any terms obtained by permuting i,a; — N +
lA—=k)N],...,ar — N+ |[(1 —x)N | of (6.4) within {1,2,...,[(1 —«)N |} N R())
are still present in the sum. Let

ai =a1—N+|_(1_K)NJ.

Hence we have

Ew= X ebt 3 lim
rdsi Y _ g dd; Y {@1,00lr 1} Xapyq—>Xj
‘/sz{tisgy (()é)j ! G{I’Z’H}E((I'YK)NJ} A
J
k— ~ ~
Sym coxg, uz (95 llog Ty z, ¥ -+ (35 [log Tz, ™
Unvi
al,ear41 (xal _xaz)"'(xa] _xar+l) =1{Vl.,...,l}

where the constant co may depend on r, {s;}\_, and {d; };_,.

Lemma 6.4. Let

=N
Ty = I . l—f N+ N Y
e N-La—oNDnL  j=1 T YIXN[a=oNT+;

.
X (1_[ S@.00) Ny Ui Untis o Uy entis 1o 1))
i=1
n

X l_[ S¢(j(i),00)(N)(ui, Untise s U(gye—Dntis Lo v 1))
i=r+1

1
< I ——— ) +o)).
. . Xiuy — Xj
N—-l(Q=)N]+1<i<N, 1<j<N—-|(1-)N], !
i€R(p), j€R(q), p<q

I7L(1—/<)NJ = l_[ l_[ (xju; — xju ).

k=1 1+N—-|(1—k)N]<i<j<N,
(i mod n)=(j mod n)=(k mod n)

n
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Assume a, b, c € R(j) and are distinct positive integers. Assume that the o(1) in the
definition of Ty converges to 0 uniformly when ug, up, u. are in a neighborhood of 1.
Then

3% log[Tw] Y
N—00 0Ug0Up U 1 Un =(1,...,1) o
Proof. We have
. 03 IOg[TN] . 93 log[s¢(j.ao)(N) (uay Up,Uc, 1, ..., 1)]
lim —————— = lim .
N—oo 0UgdUpdu, |Un . =(1,..,1)  N—oo 0ug0upou,
To compute the derivative on the right-hand side, note that
lim m[¢U-°0)(N)] = m;.
N—o0
By [9, Theorem 6.8] (see also [7, 13]),
. 82log[s¢(.i~00)(N)(ua9ub5uC917"'91)]
lim
N—o0 Buaaub
92 ugH), (ug) —upHy, (up)
- tog (1= (g = Dot — 1) —4— —).
Uy 0up Ug —Up

and the convergence is uniform when (u4, up, u.) is in a neighborhood of (1,1, 1).
Therefore, we can take the derivative with respect to u. on both sides. The right-hand
side is independent of u., and the derivative with respect to u. is 0. Then the lemma
follows. ]

Lemma 6.5. Let k € (0, 1) and the edge weights satisfy Assumption 5.2. Then
(1) The degree of N in E(]) N is at most k + 1.
(2) For any integer i satisfying 1 <i < |(1 — k)N | and i € R(j), the degree
of N in 33 F(])N|UNK—(ls 1) is at most k.
(3) For any integer i satisfying 1 <i < [(1 —k)N] and i ¢ R(j), the degree
of N in _F(])N|UNK—(1 1) is less than k.
(4) For any integers i, iz satisfying 1 <iy <iz < [(1 —«)N | and iy, iz € R(j),

the degree of N in Bulagu, FIEJK)leN‘K=(1 ,,,,, 1) is less than k.

1

Proof. We first consider the asymptotics of

cox}, us 0 (35 [log Tz, DU -+ (8. [log T, D

lim Sym
Un .« :
Xayp s Xa, — Xao) o+ (Xg, — X :
Xay oy —X; al,..ar41 ( aj a2) ( a ar+1) ={1,..., 1}
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Following computations similar to the ones in Lemma 6.2, we obtain that the degree
of N in each factor (82’1 [log Tnz, ])¥1 is at most ;. By identity (6.5), the degree of N
in (6.6) is at most k — r. Summing over the permutations, we obtain that

> lim
Xay s Xap ] >X)
{a1—N+[(1—K)N],....ar41-N+|(1-6)N |}
€{1.2....[A-ON }NR()
k— ~ ~
o 0%, (93 [log Tz, )™ - (9% [log Tz, ])*“
ym

Al yeennly 41 (xal _xaz)"'(xal _xar.:,_])

is the sum of 0(N’+1) terms, the degree of NV in each of which is at most k — r. So,
the degree of N in E ,(c] 3 y isatmost k + 1, and we complete the proof of part (1).
Now we prove parts (2) and (3). We consider the following two cases.

e Assumei € R(t). Consider

0]

. aFk,lc,N d z :

o?)i — =
ou; Un,.=0,.,1)  0uy;

t to.

r>0,{s; 20}; _.{d; =0}; _;:

so+s1dy++s;dt+r=k

> (r+1)! lim
xaw —>xj,
{a1—N+|[(1—k)N],....ar41—N+[(1—«)N ]} 1<w<r+1

c{1,2,...,l(aA=K)N }NR())

k— j b it
Sym coxg Uz 0 (95 [log TIS,],(%J)])’Z‘ -+ (97 [log Tﬁ,{(a)l Nk ]
@yseelr 1 (Xa, UG, — XayUg,) **+ (Xa  Ua, — Xa, 4 UG, 1) Un.x

=(1,...,1)

withi ¢ {a1 — N +|(1—«)N|,...,ar+1— N + |1 —x)N|} C{1,2,...,
| (1 —k)N]}. When « € (0, 1), there are O(N" 1) such terms. If i € R(t), then

3 .
S [35 (log T\, ;)1

3u, Un.=(1,....1)

— A1 GO ypdg—1 0 g8 (j.1)
= dq[a;jz (log Ty @, ,i))] i 3_21,'[82; (log Ty @, 7,-))]‘

oy 0 .
= dg[03 oz TN~ 5135 (log T/, )

Un(=(1,...,1)

Une=(1,..,1)

By Lemmas 6.2 and 6.3, the degree of N in the expressions above is at most
dg —1ifr = j, and is strictly less than d; — 1 when r # j. Note that ; can be
written as a sum of terms of the form

coxg, ul @[3, log TR D) -+ @3, llog T

lim  Sym a1 a N.@h)
UN °
Xap>es ap,.., (Xa; — Xay) -+ (Xay — Xa,4y) —1
xap S W 1 2 1 r+1 =(1,..,1)
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By Lemmas 6.2 and 6.3, the degree of N in the expressions above is at most
di+---+d;—1whenr = j,andislessthan d; + --- + d; — 1 when r # j.
Since r + s¢ + s1dy + -+ + s:d; = k, we have

di+-+di—1<k—r—1,

and in the sum over {a; — N + |[(1 —«)N|,...,a,41 — N + [(1 — k)N |} €
{1,2,..., (1 =k)N |} N R(j), it is the sum of O(N"*1) of such terms, we
obtain that the degree of N in this sum is at most k when r = j; and is less than k&
when r # j. This completes the proof of part (3).

¢ Consider the case where

iefa;— N+ |(1—-k)N],...,ar41— N+ (1 —Kx)N|}
c{LL2,....,|(1 —=k)N]}.

Note that there are O(N") such terms in total since i is fixed. By Lemmas 6.2
and 6.3, the degree of N in

k— i, ~(.
coxg us "0 (0 [0 log T D)) -+ (% log T\ )

Sym U
Alseenr+1 (xa1 - xaz) T (xal - xar+1) :1(\/1'1(.“’1)

is at most / — r. This completes the proof of part (2).
Now we prove part (4). Note that

2 (J)
d Fk,K,N

Builauiz

Une=(1,1)

92 ) 1
= —[ lim ~ ~
Outiy Outiz L x> Cxtmoa ) Vi1-N | (Une. ) T

x ) (”i i)kﬂ(l—ij (UN,K,X)TN])

ie{l,..,|(1—k)N ]} Oui
NR(j)

32
- W[ 3 3 (r+1)!

r>0,{s; >0} _,{d; >0}/ _,: {a1-N+[(1-)N|,...ar 1 —N+|(1-k)N ]}

Une=(1,....1)

so+s1d1+..5:di+r=k c{1.2,..., (A=) N [}NR()
_ cox! Uk (351 [log Ty )91 -+ (82 [log Ty ])%
x lim Sym L . 2l ]‘U
i ~ ~ ). ~ ~ N, ’
fg%:rx-l{’l als-.ar41 (xa]ual xazuaz) (xalual xar+1uar+]) =(1i“’1)

The following cases might occur:
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{i1.iyN{ay....,dr+1} =@, and both 9;, and 9;, are applied to the same log Tn.
We have

92 [asw [log Ty] ]dw
[Qug, [s»
8Sw [log 'IA:'N] :Idw_z asw+l [log TN] 8Su)+1 [log 7~—‘N]
dug

8ui18ui2

= du(dy )]

dujy duz Ju, Ouz
8Sw [log TN] ]dw—l GSw-l-Z [log TN]

Sw
3”51

+du| .
v au,-lau,-zauf;f

By Lemma 6.4, the degree of N in the expression above is less than dy, — 1.

Taking into account all the other factors, as well as the sum of O(N"*1) terms, in

this case the degree of N in (Eisz(j;()A,/aui1 i) Uy e=Q,...,1) is less than

ditdy+--+di—1+r+1=<k.

{ir, iz} N{dy,...,dr1} = @, and 0;, and 9;, are applied to different log Tn.
In this case, the degree of N is at most

di+dy+--+di—2+r+1<k—-1.

iy €{ay,....ar+1} and ip ¢ {ay,...,ar+1}. In this case, we take the sum over
O(N") terms since one element in {ai, ..., ar+1} is fixed to be i;. Then the
degree of N in (82Fk(’JK)’N/aui1 i) Uy c=(1,...,1) i at most

di+dy+--+di—14+r<k-—1.

{i1,iz} Clay....,ar+1}. Inthis case, we take the sum over O(N”~!) terms since
two elements in {a,...,a,+1} are fixed to be i1 and i,. Then the degree of N in
(E)sz(ij),N/auil i) Uy e=(1,...,1) is at most

di+dy+--+di+r—1<k-1

Then the lemma follows. [ ]

6.4. Covariance

Let

k—1
6han =k (") Y (r+ 1)
r=0 {a;—N+[(Q1—k)N|,...ar+1—N+|(1—«)N |}
€{1,2,...,l(A—k)N |}INR())

k— g —1—
xtsluiil 50851 [Fl(jc,N](aﬁl [log TN])k =

x lim Sym

Xayse-- Alsedr4 (-xaluiil _xazuﬁz) (xalulil - xﬂr+luﬁr+l)
Xap 4 7>%j
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Lemma 6.6. Let [, k be arbitrary positive integers. Then

s . () (s) ~(J,S)
Eien = EenElen T GK,N,(l,k)’UN,K=(1,...,1) + R,

where

* ifj =s, the degree of N in 5£j}é)(l k)lUN,Kz(ls--'sl) is at most | + k;

* ifj # s, the degree of N in 6;?}\?(1 k)lUN.K=(1,-~,1) is less than | + k;
* the degree of N in R is less than | + k.

Proof. By (6.2) and (6.3), we obtain

() _ , I \*
BN = lim Z (”la_ul)

M Ok moan) ey 10N 1)
- NR(j)

(J»5) 7 (J,s)

3\ VN TG

X (w du ) W0s) pUs)

re{l,...,[(1—k)N |} r NG, U N,G,r)
NR(s)

1 . 0
B m xk_)%)lcrknmod n) Z <ui au
NG NLGr) for 1<k <N ie{l,..h,%((l_—)x)NJ}
j

1 NG ()
X v G Z (“’ 3ur) VNG TG Une=(1,....1)
N,G,r) " N,G,r) re{l,...,[(1—)N |}
NR(s)

Un.=(,...,1)

k. .
Uss) 7 (»s)
i ) VG TN

Note that for any integer w, we have

9% [ ! I N G s
Vl»s" TJ»S:
w| G G > (“r ) NG NG .
0 Y o TN i) reltGaonly 0% UNwe=(Ls)
NR(s)
_ 9" e
oul LN Uy e=(1,..01)

Then E ,Ej l’sz  can be written as a sum of the following terms:

P . .
cox” k™o agl1 [FI(S)N][aZ'ZI (log 7U8) ))]dz . [8::{1 (log TIsfj,(gl ,r))]dt

Syvm al " ay 5K, N,(@,r
aly (Xa Uz, — XaUz,) -+ (Xa Uz, — Xa, 1 UG, ) Une
ar’y1 1 2742 1741 r+17ar+ =(L,...,1)
k—s0 oS () s = \1d ~ F d
_ Sym coxg,uz 07 [F) ) N1105 (log Ty)] % - [0F (log Ty) V9]
- U
ALreesrl (Xa Uz, = XayUa,) - (Xay Ua; — Xa, 41U,y ) (i1

such that
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* r,8,51,...,8¢,d2,...,d; are non-negative integers;
¢ S < Sz < e < Sy,

¢ we have
so+ 81+ 82do +--+s5:dy +1 =k; (6.7)

o {a1.....ar41) C{N = [(1—=K)N|+ 1N — [(1—=k)N| +2.....N} N R(j).

When s; = 0, we obtain Fl(jc)’N Fk(,j;(),N|UN,K:(la~-~sl)‘

Now we consider the terms corresponding to s; > 1. By Lemma 6.5, the degree
of N in 8211 [F l(fc) y]isatmost/ when j = s and is less than / when j # s. Therefore,
the total degree of N in these termsisatmost/ +dy +---+d; +r + 1 when j = s;
andislessthan/ + dp + -+ d; +r + 1 when j # s. By (6.7) and the assumption
that s; > 1, we have

l+dy+--+di+r+1<I+k,

and the equality holds when sg = d3 =---=d; =0,51 =5, =1, do =k —1—r;

this corresponds to G,Ejl’\s,)(k Iy in which the degree of N is [ + k when j = s, and the

degree of N is less than [ + k when j # s. The degree of N is less than [ + k in all
the other terms. This completes the proof. |

Lemma 6.7. We have

kY (up ) () lamomi T,

Va-onTn i€{1,2,.....(1—)N |} ‘ =(1,...,1)
NR(j)

e
=GNk Uncm(l) R,

where the degree of N in R is less than | + k.
Proof. This follows from the proof of Lemma 6.6. ]
Lemma 6.8. Leti € {1,2,...,|(1 —«)N|}. Then the degree of N in

0 ~(
2 Gus»
aui k,N,(k,l) Un.c=Q,..., 1)

is less than k + 1.

Proof. Note that 5,Ej1’\s,)(k ;) is the sum of terms

k— ~ 11—
xp 00, [F 100, log Ty k=1~

alag

Sym .
aj,...dr41 (xaluiil _xuzuiiz)"'(xalual _xar+1u5r+1)
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If we take derivatives 3 , the following cases might occur:

1) iefay,... ,a,+1}. Since one element in {ay,...,a,+1} is fixed to be i, we
take the sum over O(N”) terms. By Lemmas 6.4 and 6.5, the degree of N is
at most

l+k—-1-1r)+r=1+k—-1;

(2) i ¢{ay,...,ar+1)}. Inthis case, we take the sum over O(N"*!) terms. Again
by Lemmas 6.4 and 6.5, the degree of N is less than

l+k—1—-r+r+1=1+k.

Then the lemma follows. n

6.5. Products of moments

Recall that J’,f)l is the set of all pairings of the set {1,2,... s} \ {wi,..., wp}.

LWp
We have the following lemma concerning the products of moments.

Lemma 6.9. Let s, [y, ..., be positive integers, and let

Jieejs€{1,2,. . n).

Then
1 d \AI

> Oy
= Mil—' (uiz—_>
Na-om TN jcao Tamony 7 e Ta—ony - 02
NR(j1) NR(j2)

0
X > (uzba ) V- K)NJTN]‘
isel1,2,..[(1—)N ]}
NR(js)

S
. (jwl) (jwz) (jwp)
- Z Z Flwl #,N FlwzaK’N o Flws €N

p=0wi<-<wp

UN,K=(15--~:1)

€{1,2,...,s}
G Uaxin)
” ( Z 1_[ %N, la.ly) R) )UN =1,
Pep; WY ..o wp (a,b)eP s seees

where the degree of N in R is less than Y ;_, l; — 57:1 Lw; -

Proof. The lemma can be proved by induction on s, similar to the proof of [7, Propo-
sition 5.10]. We sha}l now sketch the proof. When s = 1, the lemma follows from
the definition of Fl({c ) - When s = 2, the lemma follows from Lemma 6.6. Assume
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that the lemma holds for s = ¢t — 1, where ¢ > 2 is a positive integer. When s = ¢, by
induction hypothesis, we have

1 d \h d \L
%7 T Z (”113 ) Z ("iz—au‘ )
LA=NIIN i e(1,2,...,[(1—0)N |} i ize{l,z ,,,,, L(1—©)N |} 2
NR(j1) R(j2)

d
x Z (uz,a ) Va K)NJTN]‘
ire{1,2,...,[(1-k)N ]}
NR(jr)

1 0
== (“”a ) [V|_(1 K)NJTN]
Via—on|Tn i1€{1,2,...,(1—)N |}
NR(j1)

t—1
Gwy) Gwsy) Gwp)

p=0 Wi<-<wp

€{2,...,t}

~ (asiv)

STOND SR § - T ) [

Na=(1,...,1)
PeJl.wl ..... wp (a.b)ep
=81+ 82+ 53,
where by induction hypothesis the degree of N in Ry ... w, 18 less than Zf:z l;i —
iy
1 d \ ~ ~
Sl = {ﬁ Z (u,-l a—) [VL(I—K)NJ TN]}
Na-on )TN i1€{1,2,...,[A—K)N |} Uiy
1)
— Gy paGwn) Giop)
Jw Jw Jw
p=0 w1 <-<wp
€{2,...,t}

=~ (Jas>Jip)

(X T 8% ) ’

Pe‘?f.wl ..... wp (a’b)EP UN'K=(1’“.’I)
ll a -1 o ~
Sy = =—————— Z {(uil a_) [VL(I—K)NJ TN]}
Via—on Tn i1€{1,2,....(1—k)N |} Uiy
NR(j1)

(]wl) (j11)2) (Jw )
{5 )(2 SRR B
i =0 Wi <-<wp
€{2,....t}

7 Uasib)
x < Z l_[ GK N, (}l)a,lb) + R19wls'--’wﬁ>)}

pepl, ., (@beP

UN.K=(1 ..... 1)



Fluctuations of dimer heights on contracting square-hexagon lattices 113

0 are applied to

VL(1 —K)N]| Ty or uj,, and S, corresponds to the terms where all the differentiations

Indeed, S corresponds to the terms where all the differentiations T

and S3 are all the other terms.

ou;
ll .
By the definition of F l({c) N> We have

t—1
(j]) (jwl) (jw2) (]ws)
S1=F, KN(Z Z B e Fryieon iy ien
p=0 w1 <-<Wp
€{2,...,t}

~ (asip)
x ( Z l_[ GK,N,(?a,lb) + Rl,wl,...,wp))

Peﬂ’f.wl wp (a,b)eP

Un.=(,...,1)

By Lemma 6.7, we have

(]wl) (]wx 1) (ij+1) (Jws)
p= owp < <u)px_1
€{2,...,t}

<[ Gl + R0

~ (asivn)
x ( Z 1_[ GK N(ll)a 1) + Rl,wl,-..,wp)]}

PepPf (a,b)eP

Lwy..... wp

’

UN.K=(15-~~’1)

where the degree of N in R y is less than /; + .
Hence we have

(]wl) (lwx 1) (ij+1) (]wp)

p=0w<+<wp x=1

€{2,...,t}
(G(JI,JY) Z l—[ (Ja Jb) + R N )}
N, (11,1x) PRAR) W seeesWiyeeesWp Un x ,
PEP] ).y @DIEP =(1,....1)
where the degree of N in Ry, . 5., . w, is less than Z§=2 Li =30 Ly,
Note that
t
_ (]wl) (]wz) (jw )
Sl + S2 - Z Z FlwlaK:NFlwz,KaN o FlprCaN
p=0 W] <-<wp
€{1,2,...,t}
~ (aip)
x ( > JT GV, + Rwl,...,wp) Uyt

PePly .y @b)EP

where the degree of N in Ry, ....w, is less than Z§=1 Li =30 Ly,
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It remains to show that S3 does not contribute to the leading terms. Define

7 — ~ (asJjb)
Hjl,m,jp = Z l—[ GK,N,(la,lb) + Rl,wl,...,wp-

Pt
Pe‘/].wl

In view of Lemma 6.6, the degree of N in ﬁjl ,,,,,, jp Uy c=(1,...,1) 1S at most Z§=2 l;i —

;’ —1 lw; . Moreover, according to Lemma 6.8, for any index i, the degree of N in
d 17 . t p
Wl_Hjl,...,jp |UN,K=(1 ..... 1) is less than Z,‘:z li — Zj=1 lw.i'
We write

1 d

I ~ -
— Via— T
uj, 8141']) Via—on)Tn]

Na-on| TN i1€{1,2,...,[(1—=)N |}
NR(j1

t—1
(fw]) (jwz) (lwp) Iy
p=0wi<-<wp
€{2,...,t}

UN.K=(15"-:1)

as a sum of terms of the form

lim Sym (6.8)

XaysesXap 417X ay,.e.,ar 41

X" ull —50 (a%ll[log TN])dl . (8g’t[log TN])d, 821;1 F(jwl) . agp F(jU)p) aﬁo ﬁj] .... i

ar’a; 1 lwlaK’N' 1 lwp sk, N "aq

(Xa,Ua, — XaUa,) - (Xa UG, — Xa, 1 Ud, )
where
« {ar,....dr41) C{L2,.... |01 =)N} N R(j1);
e 51 < §p <--- < §; are positive integers;
* fi,.... fp. ho are non-negative integers;
s r+sotsidi+-+sdi+ i+ + fp+ho =11
By Lemma 6.2, the degree of N in (8%‘1 [log Ty])41 --- (Bflft [log Tn])¥ is at most
dy + --- + d;; therefore, the terms in (6.8) with highest degree of N has the form

1 T Gwy) Gwp)  qho 77
xg ull (9, llog Ty oL F,/™) 07 F)70) oo

wy kN Ve, e N %G Hitsesip
Sym ! L , (6.9
alse-ar41 (xalual —Xazu;iz)---(xalugl _xar+1”?ir+1)
where
S0:d2:"':dt:O, S1:1. (610)

Let

B={ie{l,2,...,p} fi =0}
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Then

(6.9) = (H F0 ) S uamon)).

where S(u1,...,u|1—cn) is a symmetric function. It suffices to show that the degree
of N in S, except for Sy and S, is less than > ;_, l; — Y ;cp li. Note that the
degree of N in dz, ([log Tn])? is at most d; by Lemma 6.2. The summation over
{@y,....83r+1) C{1,2,.... (1 —k)N |} N R(jy) gives O(N"*1) terms. By Lem-
ma 6.5, when i ¢ B, the degree of N in Bg ij’) y 1s at most [y, . Therefore, the

degree of N in S(uy, ..., u|(1—c)n]) is at most
Zl_zlw:+dl > by A+l
i=1 i€{1,2,....,p}\B

By (6.5) and (6.10), if |B| < p —2,r1 +dy1 + 1 <1 — 1, then the degree of N
in S(ui, ..., u|(1—)n ) is at most

Z =Y L1

i=1 i€eB

Therefore, only the terms where at most one f; is nonzero contribute to the leading
order. In these terms, if o > 0, then by Lemma 6.8, the degree of N is less than
> _1li— ;e li- So only the terms where 1o = 0 and at most one f; is nonzero
contribute to the leading order. These terms are in S and S,. Then the proof is com-
plete. |

Lemma 6.10. Let s, (1, ..., [ be positive integers, and let jy, ..., js € {1,2,...,n}.
Then

T (g ) ]

Via-on TN i1€{1,2,....[(1—k)N |}
NR(j1)

d Us)
x[ Z (”1\3 ) Ma—on vl - El N
is€{1,2,...,[(1—k)N ]}
NR(js)

— (ja,jb)
= Il G5t + Rluye=a..-
PePj (a,b)eP

]‘UN!K=(1,...,1)

Proof. The lemma follows from Lemma 6.9 by explicit computations. See also the
proof of [7, Lemma 5.11]. [ ]
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Lemma 6.11. Let s, [y, ..., be positive integers, and let ji,..., js € {1,2,...,n}.
Let Py C Py consisting of all the pairings of {1,2,...,s} such that in each pair (a,b)
in the pairing, j, = jp. Then

1 1 0\
lim _ _ [ 3 (u,- _) _ pUD ]
[FEm——p v e n
N—oco N4 V|_(1—/<)NJ Tn i (1.2, [(1=k)N |} au,l 1,k
NR@j1)
X 2. (uzsa ) Via—on Tn) — E;") Un o
is€{1,2,....,[(1—k)N |} K seees
R(Js)

_ (Ja Jb) . ,
- Nh—>oo N11+ s Z 1_[ KN(la,lb)|UN~'<=(1"“’1)1]“=”’]’
pPepy ab)eP

where the degree of N in R is less than Y ;_, ;

Proof. The lemma follows from Lemma 6.10 and the fact that the degree of N in R
therein is less than /; + - -- + [, and that the degree of N in GIEJI“V](’I’ ) 1) is less than
la + I if jo # Jb. =

6.6. Integral formula for covariance
Assume that k € (0, 1) and k is a positive integer. Let

N LA—k)N]
plTIM = 3 G+ L0 =N =),
i=1

where
A=A A a-0n)) € GTa—n)

has the distribution p|(;—¢)n | as defined in Lemma 3.4. Explicit computations show
that

1—k)N —Kk)N 1—k)N 1—k)N
E(pl(lt( ©) J)_Epl(lm ©) J))(pl(zL( OND _ g, (L( —OND)
—k)N —k)N
X(Pz(}(l ) J)_Epl(sL(l OND)
1 I NG
R e IR S (T A I

Flsensjs€{1,2,0m} Vla-0n TN i1e{1,2,....,[(1—)N ]}
NR(j1)

9 \Is ~ -
X[ > (”isﬁ) Via-on)Tn] - Ez(s]}N]‘UN.K - (6.11)
is€{1,2,...[(1—)N ]} s =1,...,1)
NR(js)
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Lemma 6.12. We have

: 1 (La—)N]) (LA=)N Dy, (LA=K)N]) (La—)N])
Jim NI E(p,, —Ep;, )(py, —Ep), )
_ ; ~ .7
< lngnoo Nh+h G b Unse=(1,..1)
j=
Proof. The lemma follows from (6.11) and Lemmas 6.11 and 6.6. ]

Therefore, in order to obtain an explicit integral formula for the covariance

1
lim
N =00 Nl1 +1>

1-«k)N 1-«)N 1-«)N 1-«k)N
E(pl(]L( K) J)_Epl(lL( K) J))(pl(zL( «) J)_EP(L( K) J))’

Iy
it suffices to obtain an explicit integral formula for

lim 60;]) )
N—o00 Nll-i-lz K,N,(11,12) Uy.e=(1,...,1)

where 1 < j < N.
We have

: ~G.0)
am e GeN )

UN,K:(I"'-al)
-1

. 1 L -1
:A}Tm—NthllZ( . ) > (r + 1)!

r=0 {a1—N+[(1—«)N|,....ar+1—N+[(1—«)N ]}
€{1,2,....,|(1—k)N]}NR())
I - 11—
| X, ul (97, llog Ty ) =17
X lim Sym

XaysoXapr 1 77X ay,ena, 41 (xalu?il - xag”ﬁz) T (Xalugl —Xa, 4 ufir+1)

>
/
<t () )3 s+
520N b =N LA=ON | obs 41~ N +L(1—)N |}
1,2, (- N INR()

coxls)l u%z (8;;l [log Tn])2~s
x lim Sym L :|
. - _ ~ ... ~ _ ~ U
fé'z’i);):ﬁlbl """ bs+1 (xblubl xb2ub2) (xblubl xb~"+1ubs+1) =1(Vl':{...,1)

We consider the following cases:

e If{ay,...,ar41} N{by,...,bs+1} = 0, we have
9z, (35, [log Tw 1)~ = (I — ) (35, [log Tw)">~* "8z, (35, llog Tw)).

where the degree of N, when Uy, = (1,...,1),isatmost [, —s — 1.
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Note that by Lemmas 6.2 and 6.3, we have

-1
1 1

, hH—1
ne= gim () 2,

r=0 {a1—N+1(1—k)N|,...,
ar+1—N+[(1—-«)N]}
€{1,2,...,|(1—=)N |}NR(j)

X ull (g, [log T ])i=1-r

a) "a,

X lim Sym
XaysesXap 417X ay,..ap41 (Xa, Uz, — xazuaz) e (Xq, Ug, — Xa, 44 u5r+1)

Iy
WEG), B e

s=0 —N+[(1=k)N],...bs+1—N+[(1—«)N ]}
c{1,2,....,|(1—ck)N |}
NR()Aat,....ar+1}3{b1,....bs11}=0

I ~
coxy, ugzl (93, [log Tn])2—s :|
\'+1)

x  lim Sym
- -~ _ ~ ). ~ _ ~ U

I1—1
1 1

. I —1
=A}£’%o—zvll+lzllz( . ) > (r+ 1!

r=0 {a1—N+|[(A—«)N|,....ar+1—N+[(1—«)N |}
€{1,2,...,(1—k)N [}NR())

/ 11—
xglua.ll[Aj(ugl)N]ll 1=r

X lim Sym
XapsXap 41 % ay,nap i (Xay U, — XapUa,) *+* (Xay Ua, — Xapy  Ua, )

I
x [Z(l;)(zz—s) > (s 4+ 1)!

s=0 {b1i—N+|(A—«)N|,....bs11—N+|(1—«)N |}
c{1,2,....[(A—k)N |}
NRG).Aa1,....ar+130{b1,....bg11}=0

l —_——
b, (A g )N D21 By gy iz, ]

X ligl Sym U ;
X Xj, ~ — ~)... ~ _ ~
12%&11 b1sesbst1 (xb‘ubl xb2ub2) (xblubl xbs+1ubs+1) =l(\/1’:6...,1)
where
53 X knl g Il () if =1
n lelzﬂ{l,z ..... n} 14+y;x12 n z n m; j -
Aj@ =" . _ (6.12)
_ZT+7sz_/(Z) if2<j<n
and

82 ZHI/n_/ (Z) - er/n/ (w)
Bi(z,w) = aZaw[log (1—(2—1)(10—1) p— )] (6.13)
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By Lemma 4.3, we obtain

. I, !
fim Jim NTE r;) G —1—r)ir!
x > a—r[zll [NA-(z)]l‘_l_’][i _ bt
{a1—-N+[(1—Kk)N|,..., 0z” ’ 5=0 (lp —s = D!s!

ar4+1—N+|(1—k)N |}
€{1,2,....,|(1—k)N [}NR(j)

S

d
. > o 0 A, 0257 By e )

(z,u))=(1,1)'

{b1—N+|(1—)N|,...,
bs1—N+1(1-)N |}
c{1,2,....l(A—«)N ]}NR()),
{arssar+130{b1 s b5 1}=0
By the residue theorem, we deduce that
11—1
1 !
I ~ li
1Y v Nhth ;) (GG—-1-=r)
NNA T RS D!
z zZ 2:
D G D
— _ 1)r+1 o — |
{a1—=N+1(1—k)N|,..., =1 (Z 1) s=0 (12 s—D!

ar+1—N+[(1-k)N]}
€{1,2,...,/[(1—k)N |}NR())

w2[NA; (w)]2=5"'B;(z, w)
% > Res [ j(w s ’ ]D

{b1—=N+(1—)N ...,
bs+1—N+1(A—-k)N |}
c{1,2,...,[(A=c)N ]}NR(}),
{arsesar+130{b1 5. sbs+1}=0

1 1 1 ﬁz—”:s (l-(l - K)NJ - + ZNAJ (Z))ll

~ - im
(27i)2 N—>oo Nlitl2 n z—1

n w—1

1 1—-x z I
- A
(27i)2 fé_”:s( n 1" J(Z))

1— 1
x¢ < KL—FwAj(w)) 2Bj(z,w)a’wa’z.
lw—1|=¢ 1

n w-—

x¢ (L(I—K)NJ w +wNAj(w))lsz(z,w)dde
lw—1|=¢

e If {ay,...,ar+1} N{b1,...,bs+1}| > 2, then the degree of N in these terms is
at most

Lh—s+lhi—-1—-r+r+l1+s+1-2=4L+L-1<I+1,,

therefore the contribution of these terms to the limit is O.
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e If {ay,...,ar+1} N{b1,...,bs+1}| = 1, then

I1—1

1 h—1
— : |
b= gim g (1) ) 1y
r=0 {a1—N+|(A—«)N],...ar4+1—N+|(1—«)N]}
€{1,2,....|(1=k)N }NR())

xh ulJl (37, [log Tx])hr—1-"

aya

X lim Sym
XayseeXap£17% ay,are (Xa Ua, — XaaUa,) (Yo Ua, — Xay 41 “5r+1)

153
l
xaal[z(z) > (s 4+ 1)!
520N b N+ (A=)N by 41 ~N+L(A=)N |}
1.2, [(1Z)N IOR(),

a1y sar+130{01 5 sbs1}=1

coxs, uﬁg (95, llog Tw])>~
x  lim Sym L
Xbw >Xj> yb (xXp ug — Xpyup ) (Xp U, — Xpg U )i| Un.«
1<w=<s+1 P1rPs+l 1 2 1 ST bs+17 =1 (1,...,1)

S R
i = !
= Jim e () )3 -+ 1)
r=0 {a;—N+1(1—«)N|],...ar+1—N+[(Q—«)N |}
€{1,2,..., L(1—k)N]INR())

1 1i—1—

. Xgy Uz, [Aj (g )N
X lim Sym

XaysoXar 417X ay,...a,41 (xaluiil - xa2u52) T (xaluﬁl - xa,+1uﬁr+1)

can[3(%) D .

s=0 {b1—=N+|(A—k)N|,...bs11—N+[(1—k)N |}
c{1,2,....,|(1=c)N[}NR(}),
I{a],...,ar_H}ﬁ{b],...,bs+1}|=1
I _
| x5, 12 (14, g, )N D=
x lim_ Sym U
o 25 bribear (ViU = XU, ) e (6 U, — Yooy up ) [[UNe
By Lemma 4.3, we deduce I, := I3 + 14, where
-1
. 1 L —1
o= i et () 2
r=0 {a1—=N+1(A—«)N],...ar4+1—N+|(1—k)N]}
€{1,2,....(1—k)N [}NR(j)
T 21,
s 14y i VP70, | 5(2)
ap s=0
& I A:(u~ )N Ir—s
x 2 2[4, (g NI ||
{b1—=N+L(A—k)N],...bs41—=N+L(1-)N|} ~ b =(1,..,1)

c{1,2,...[(1—k) N ]}NR(}),
{arsesar4130{b1 5 sbs 41} ={b1}
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I1—1

—1
= jm —p N’1+l 12( 1 ) )

{a1—=N+|(A—«)N],....ar41—N+[(1—k)N ]}
€{1,2,...,|(1—«)N|}NR())

0" ) I1—1 L 12

s=0

as+1

I _
x > Gz (uz, )N)2 )H o
{b1—N+(1=©)N],....bs1—N+|(1—6)N [} =(1,...,1)
c{1,2,...,lA=)N }NR()),
{ar,...ar41304b1,....bs1+1}=1{b1

and

I1—1
1 1

L —1
o= im et (M) >
r=0 {a1=N+|(A—«)N|,...ar41—N+[(1—k)N]}
€{1,2,...,|(1—k)N ]}NR(j)

r

9 2 (1
5T [z [A; (ua, )N "0z, [Z(;)

ai s=0

S
I _
" )3 AL )
{b1—N+L(1—K)N],....bs41—N+[(1-)N]} ~ by =(T,.s1)
c{1,2,... A= )N [}NR(}),
{atsesar4130{b1,esbs+1}=1b, 1, #1

=0.
By the residue theorem, we infer

e
L 1!

“{a1—=N+l(Q—«)N|,...ar+1—N+[(1—k)N]}
e{1,2,....(1—k)N | 3NR(})

A NI 1!
o [N 5
Zog, z— 1) — (I, — 5)!
lz[A_ 12—s
w?2[4;(w)N]
x ) Z_ (s+1)w1§gs51( R ) Unx
{b1~N+L1—K)N]..... —(Ths)

bs+1—N+[(A—«)N |}
c{1,2,...., (A=) N ]}NR(),
Hats-wsar+130{b1,bs1H=1

o 1 1 l1—K)N]| PR
= lim ——fé ) ( — —i—NzAJ(z))

N—oo Niitl (27i)2 n

Xﬁ | (l'(l_K)NJ i +NZAj(w)>12;dwdz
w—1|=¢

n w—1 (z —w)?
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(1-x) g
:ﬁﬁz—lla( an zil +ZAJ(Z))

1—x) w . I 1
X%w | 8( wT—FUJA](UJ)) mdll)dz

Then we have the following proposition.

Proposition 6.13. We have

lim E(p{l0-OND _ g, (la=0ND) (,(0-0ND _ g, (0-0ND)

N—=o00 Nl] +1>

= (l—K) z . I
_;W?ﬁ_”:g( - Z_l—i-zA_,(z))

xygw ) 8<(1_K)L+wA (w)) [Bj(z,w)+

n w-—1

1
(Z_—w)z]dwdz,

where for 1 < j <n, Aj(z) and Bj(z,w) are given by (6.12) and (6.13).

6.7. Central limit theorem in multiple levels
Let

l>Kk1=zk2>- 2k >0, 1<ny<np=<---<ng<2N+1,
such that for 1 <i <k,

|5 = 1a=kn)

2
and
UN,K] N 999, ¢
= (U1, 1X14+ N[ (1=« )N |,N » U2,1X24 N~ (1= )N |,N s - - - » U (1= )N |,1XN,N 5
U1 2X14+N—|(1—k2)N |, N> U2 2X24- N—|(1—k2)N|,N> -+ - > U|(1—k2)N|,2XN,N ;- - -
UL EX T4+ N—[(1—kx)N N> U2 kX240 N[ (1= )N |, N s - - s W[ (1= )N |k XN,N)-

Let S, x (Un,,....xs,x) be the multidimensional Schur generating function as defined
in Definition 4.11, where p is the joint distribution of partitions on the nth, nsth, ...,
nxth row of the square-hexagon lattice, counting from the top. Then explicit compu-
tations show that

1—x1)N 1—k2)N 1— N
Ep(L( —K1) J)p([( —Kk2)N]) pl(IE( k)N ])

_ m1) n(n2) (ng)

= i)ll 1 {[)122 ...fl)lk Sp’X(UN’KI""’Kk’X)’(ul.S>""uL"TSJVS)z(L“"l) Vi<s<k’

where "(Dl(,»ni) is defined in (4.17).
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Lemma 6.14. Suppose the assumptions of Lemma 4.12 hold. For 1 < s <k, lett; =
N — 5] Let

() ._ | 3 I \bs
D =X (wg) )P
VL'”J i=tg+1 du; :
where VLnTS ] is the Vandermonde determinant on L"TSJ variables W1 X, 41, U2 Xt 42,

U s | XN Then

i)l(lnl)chl(;Z) cee :Dl(:k)SPaX(UN’Kl""’Kk’X)|(u1VS,..., ]

U ns
2 1.s

So ny X (UNky,x)
[l

)=(1,...,1), Vi<s<k

— ! pv
S'OL”TIJ:X(UN,IQ,X) h SpL%zJ,X(UN,xz,X)

o SPL"kil J:X(UNaKk—l X)
x D

(nk){S
ne X (UN e, x)} ,
e SpL’LkJ’X(UN,Kk,X) PLog) Kk (uy,.. ’“N)

seees

where § Plag /2] X (UN ki, x) is the one-dimensional Schur generatmg function defined
as in Definition 3.1, and prg is a probability measure on GT deﬁned as in

Lemma 3.4.

Proof. The lemma follows from arguments similar to those used in the proof of
Lemma 4.13. u

For 1 <5 < N,let ) be defined as in (6.3). Let

k—1
~(Jj,s) _ k—1
Gl =K Z( r ) Z (r+1)!
r=0 {a1—N+1(A—k N |,.car 4 1—N+[(1—«1)N ]}
€{1,2,...,l(A—k )N J}NR())
k s e
xalua 0 i l(fc)z ~1(0a, [logTN,Kl])k =r
X lim Sym

b
Xay s Xap 1%y, ar g (Xag U, — XayUa,) - (Xa, Uz, —Xa,+1u’a“,+])

L[(1—k1)N ] 1+ylxN (A=ONTE Y

Ty = I

le{l, . .,N—|(I—c)N}nL,  j=1 L+ vy —a—onT+)

,
X(1_[S¢(j(i),00)(N)(ui’un+iv-- qu,(n-H, yee 1))
i=1
n
X( H S¢(j(i),00)(N)(ui,Mn+i,.. “(qNK—l)rH-lv y.. 1))
i=rt1
1
x ( I1 —)(1 +o(1)).
. Xiuy — X;j
N—|(1—k)N]+1<i<N, l

1<j<N—|(1—k)N|,i€R(p), j€R(q), p<q
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Lemma 6.15. We have

Iim ————
N =00 Nl1+ A+l

><(p(L(l KK)N ) Ep(L(l—Kk)NJ))

1 G Yasin)
:N]Lw N+t Z Z 1_[ G n Nl UN,K=(1,...,1)11'a=fb]'

J1seesds  peps (a,b)eP
e{1,2,....n} 9

N —k1)N —Kk2)N —k2)N
( (L(1 —Kk1)N]) Epl(lL(l K1) J))(pl(zL(l Kk2) J)_Epl(zL(l K2) J)).,.

Proof. The lemma follows from arguments similar to those used in the proof of
Lemma 6.11. |

Proposition 6.16. Assume i1,k € (0, 1). Then

hm
N—o00 Nl1+12

= (I—k1) z 4 1
—;@:r—i)zggz_u:s( p Z_1+zA,(Z))

f, . (T o) e+

N —k1)N —k2)N —k2)N
( (L(1 —Kk1)N]) Epl(lL(l K1) J))(pl(zL(l Kk2) J)_Epl(zL(l Kk2) J))

1
n —w)z] dU)dZ,

(z -
where for 1 < j <n, Aj(z) and Bj(z, w) are given by (6.12) and (6.13).

Proof. The proposition follows from arguments similar to those used in the proof of
Proposition 6.13. u

Then Theorem 6.1 follows. More precisely, the Gaussian distribution follows from
Lemma 6.15 and Wick’s probability theorem.

7. Gaussian free field in staircase boundary condition

The goal of this section is to prove Theorem 2.12; we review the results on the limit
shapes of complex Burgers equation in [23] and discuss their consequences in the
limit shapes of square-octagon lattices. The results proved in this section will be used
to show that there exists a homeomorphism from the liquid region to the region S
(defined by (2.5)), and then to show that the fluctuation of certain statistics is the
pullback of GFF under such a homeomorphism.

7.1. Height function

Suppose that R(2(N), ¢) is a contracting square-hexagon lattice and that the edge
weights of SH(¢) satisfy Assumption 2.1.
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The planar dual graph SH*(¢) of SH(¢) is obtained by placing a vertex of SH*(¢)
inside each face of SH(¢); two vertices of SH*(¢) are adjacent, or joined by an
edge in SH*(¢), if and only if the two corresponding faces of SH(¢) share an edge
of SH(¢).

We place a vertex of SH*(¢) at the center of each face of SH(¢) and obtain an
embedding of SH*(¢) into the plane. Each face of SH*(¢) is either a triangle or
a square, depending on whether the corresponding vertex of SH(¢) inside the dual
face in SH*(¢) is degree-3 or degree-4.

For a contracting square-hexagon lattice R (€2, ¢), let R*(£2, ¢) be a finite trian-
gle-square lattice such that

e R*(£,0) is a finite subgraph of SH*(¢) as constructed above;
*  R(Q,¢) is the interior dual graph of R*(L2, ¢).

In other words, R*(2, ¢) is the subgraph of SH*(¢) consisting of all the faces of
SH*(¢) corresponding to vertices of R(2, ¢); see Figure 3.

Definition 7.1. Let M € M(R2, ¢) be a perfect matching of a contracting square-
hexagon lattice R (2, ¢). We color the vertices of R(S2, ¢) by black and white as
in Section 2.1. A height function /s is an integer-valued function on vertices of
R* (2, ¢) that satisfies the following property.

Let f1, f> be a pair of adjacent vertices of R*(2,¢). Let (f1, f2) denote the non-
oriented edge of R* (€2, ¢) with endpoints f; and f>, and let [ f1, f2) (resp. [ f2, f1))
denote the oriented edge starting from f; (resp. f>) and ending in f5 (resp. f1).

*  When (f1, f2) is a dual edge crossing a NW-SE edge or a NE-SW edge of SH(¢):
— If an oriented dual edge [ f1, f2) crosses an absent edge e of SH(¢) in M, then
har (f2) = har(f1) + 1if [f1, f2) has the white vertex or e on the left, and

har (f2) = har (f1) — 1 otherwise.

— If an oriented dual edge [ f1, f>) crosses a present edge e of SH(¢) in M, then
hay (f2) = hp(f1) — 3 if [ f1, f2) has the white vertex of e on the left, and
har (f2) = har(f1) + 3 otherwise.

*  When (f1, f2) is a dual edge crossing a vertical edge of SH(a):

— If an oriented dual edge [ f1, f2) crosses an absent edge e of SH(¢) in M, then
hayr (f2) = har (f1) + 2 if [ f1, f2) has the white vertex of e on the left, and
ha (f2) = har(f1) — 2 otherwise.

— If an oriented dual edge [ f1, f>) crosses a present edge e of SH(¢) in M, then
har (f2) = hp(f1) — 2 if [f1, f2) has the white vertex of ¢ on the left, and
hy (f2) = har (f1) + 2 otherwise.

*  hu(fo) =0, where fjy is the lexicographic smallest vertex of R*(£2, ¢).
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It is straightforward to verify that the height function above is well defined, by
checking that around either a degree-3 vertex or a degree-4 vertex, the total height
change is 0. Moreover, since none of the boundary edges of R(£2, ¢) (by boundary
edges we mean edges of SH(¢) joining exactly one vertex of R(€2, ¢) and one vertex
outside R (L2, ¢)) are present in any perfect matching of R(2, ¢), the height func-
tion restricted on the boundary vertices of R*(£2, ¢) is fixed and independent of the
random perfect matching; see Figure 3.

Figure 3. Contracting square-hexagon lattice R (€2, ¢), dual graph R* (€2, ¢) and height func-
tion on the boundary. The black lines represent the graph R (€2, ¢), the gray lines represent
boundary edges of R(£2, ¢), the red lines represent the dual graph R* (L2, ¢), and the height
function is defined on vertices of the dual graph. The values of the height function on the bound-
ary vertices of R*(€2, ¢) are also shown in the figure.

Theorem 7.2 (Law of large numbers for the height function). Assume that the as-
sumptions of Proposition 3.6 hold.

Let p’li, be the measure on the configurations of the kth row, and let k € (0, 1) such
that k = [2kN]. Let m* be the limit of the counting measures m(p]f\,) in probability
as N — oo with moments given by (3.6). Define

_kr
2n
1—«

h(y,«) ;= 4(1—/{)/ dm* — 2y + 2. (7.1
0

X
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Then the random height function hyy associated to a random perfect matching M, as
defined by Definition 7.1, has the following law of large numbers:

hy ([xN]. [kN1)

N — h(y,k) when N — oo,

where x, k are new continuous parameters of the domain.

Proof. We use the same arguments as in the proof of [5, Theorem 3.7]; more precisely,
a combinatorial relation between the height function and counting measure, as well as
the convergence results of counting measures as given by Propositions 3.6 and 5.4. m

7.2. Variational principle and complex Burger’s equation

Let SH(¢) be the whole plane square-hexagon lattice with edge weights assigned as in
Assumption 2.1 and periodically with period n such that (3.3) and (3.4) hold. Then Z?
acts on SH(¢) by translations, which are vertex-color-preserving and edge-weight-
preserving isomorphisms of SH(¢). Let SH; (¢) be the quotient graph of SH(¢) under
the action of Z?2. The graph SH; (¢) is called a fundamental domain of SH(¢), which
is a finite graph that can be embedded into a torus.

Let y, and y, be two directed simple cycles winding once around the two homol-
ogy generators of the torus where SH; (¢) is embedded. Assume the edge weights of
the square-hexagon lattice satisfy Assumption 2.1. We shall modify the edge weights
of the graph and construct a modified weighted adjacency matrix (Kasteleyn matrix)
for SH;(¢), which plays an essential role in the analysis of periodic dimer models,
see [18,21,40].

e Multiply all the edge weights x; by —1. This way, around each face of degree 4,

’

there are an odd number of “—” signs multiplied by edge weights, while around
each face of degree 6, there are an even number of “—” signs multiplied by edge

weights.

«  Multiply the weight of each edge crossed by y, with w (resp. w™1) if the black
vertex of the edge is on the left (resp. right) of the path; then multiply the weight
of each edge crossed by y, with z (resp. z~!) if the black vertex of the edge is on
the left (resp. right) of the path.

Let K(z, w) be the weighted adjacency matrix of SH; (¢) with respect to the modified
edge weights after the multiplication above. More precisely, the rows of K(z, w) are
labeled by white vertices of SH;(¢), while the columns of K(z, w) are labeled by
black vertices of SHy (¢). For a black vertex B and a white vertex W of G1, the entry
Kpw(z,w) is 0 if B and W are not adjacent; if B and W are joined by an edge egw
in SH; (¢), then the entry Kpw (z, w) is the modified weight of the edge epw . Let
P(z,w) = det K(z, w) be the characteristic polynomial. See [24] for more results
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Figure 4. A fundamental domain in a periodic square-hexagon lattice. The subgraph bounded
by the dashed lines is a fundamental domain.

about the characteristic polynomial and the phase transitions of the dimer model on
a bipartite, periodic graph.

Example 7.3. Consider a fundamental domain of a square-hexagon lattice as illus-
trated in Figure 4. We have

Z— X w
K =
(z,w) (1 + yoz z-— xl)

and
P(z,w)=detK(z,w) = (z — x1)(z — x2) — w(l + y,2).

Proposition 7.4. Let h be the limit height function as given by (7.1). In the liquid
region, we have

(18h+118h+n> 1( ) (7.2)
-—+ -, -—— + = ) = —(argz, —argw), .
40x "2 a9y o) T pEH TR

where the functions z and w solve the differential equation

Zy | Wy

z w

=0 (7.3)

and the algebraic equation P(z,w) = 0.
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Proof. Use the same arguments as in the proof of [23, Theorem 1]; see also [10]. m

When the edge weights satisfy Assumptions 2.1 and 3.2, we can choose a funda-
mental domain such that P(z, w) is linear in w. More precisely, when the period of
the graph is 1 x n, each row of the weighted adjacency matrix K(z, w) has exactly
two non-vanishing entries. Choose a fundamental domain consisting of 2n rows and
2 columns such that the topmost row is a row of white vertices, and the rightmost
column is a column of white vertices. Assume y, is oriented from the left to the
right and yy, is oriented from the top to the bottom. Let SH; (¢) be the toroidal graph
constructed from the fundamental domain above by identifying the left and right
boundary as well as the top and bottom boundary. Let vj, be a white vertex of SHy (¢).
The following cases might occur.

*  When vy has degree 3:

— If the vertex is not incident to an edge crossed by y,, the two non-vanishing
entries of K(z, w) on the row corresponding to vy are z — x; and 1.

— If'the vertex is incident to an edge crossed by y, the two non-vanishing entries
of K(z,w) on the row corresponding to vy are z — x, and w.
*  When vy has degree 4:
— If the vertex is not incident to an edge crossed by yy, the two non-vanishing
entries of K(z, w) on the row corresponding to vy are z — x; and 1 + y;41z.
— If'the vertex is incident to an edge crossed by y, the two non-vanishing entries
of K(z,w) on the row corresponding to vy are z — x,—1 and w(1l + y,z).

In the toroidal graph SH; (¢), each vertex is adjacent to exactly two vertices, with
possible multiple edges joining two adjacent vertices. We may consider SHy (¢) with
vertices located on a circle, then P(z, w) = det K(z, w) counts the (signed) partition
function of dimer configurations on the circle.

Solving the equation P(z, w) = 0 for w, we have

w = R(z),

where R(z) is a rational function of z (quotient of two polynomials in z). By the
explanations above, R(z) can be written down explicitly as

l'[?=1(2 — Xi)

R(z) = )
[li—g2. mnn(1+yi2)

Therefore, given P(z, w) = 0, (7.3) becomes

R(z2)
et ZR'(2)

zy = 0. (74
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Lemma 7.5. Let z be a solution of the equation

X
Fem(z) = , (7.5)
11—«
in the upper half-plane, then z also satisfies the differential equation (7.4).
Proof. Differentiating (7.5) with respect to y and «, we have
9z
br 1
2= _ . (7.6)
i n
g_/i _'El ZiEIzﬂ{l,Z,...,n} 1-}31);[2 + Zj=l n(zixj)

Given the different scalings of (x, y) and (x, k) (more precisely, in the (x, y)-system,
we assume each fundamental domain has height 1 and width 1; while in the (y, )
system, we assume each fundamental domain has width 1 and height n), we have

o _0 .0 9
—=— and —=n—.
dx  Jy ay oK
The right-hand side of (7.6) divided by 7 is exactly 5. .

Lemma 7.6. Assume all the edge weights x;’s are distinct. Let m > 1 be a positive
integer. Then

(1) Fork = 0 and any y € (0, m), the equation
Fom(z) = x (7.7)
has a unique root satisfying

Arg(z) = % (7.8)

(2) For each z satisfying Arg(z) = 7, there exists y € (0,m) such that equa-
tion (7.7) holds.

Proof. We first prove part (1). Equation (7.7) has the form

Let "/a be the non-negative mth root of a non-negative number a. Assume z =
%/Rem, where R = |z™| > 0. Then we have

1~ -mR
j=1 J
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It suffices to show that (7.9) has a unique solution in R € [0, c0). Explicit computations
show that (7.9) is equivalent to the equation

n

fER) =) (-mR) [  R=x")—xn][-R-x" =0.

j=1 i€{1,2,..,n},i#j i=1
Without loss of generality, assume that
0< X1 <Xp <-++<Xp.
We have
sgn[f(x[")] = (=1)"".
Moreover, when y > 0,
sgn[f(0)] = (=1)"*.
Given y < m, we have
sgn[f(—o0)] = (=1)".
Therefore, the equation f(z) = 0 has a solution in each of the following intervals:
(—00,0), (x7".x3"), (X3, x5). ... (x).

Given y < m, f(z) is a degree-n polynomial and has at most n distinct roots in C.

Therefore, we have f(z) has exactly one root in each of the above intervals. In par-

ticular, f(z) = 0 has exactly one root in the interval (—oo, 0), one of whose mth root

gives the unique solution of (7.7) satisfying (7.8). Then part (1) of the lemma follows.
Now we prove part (2) of the lemma. Let

n

1 mt
1) =— )
&) nZt+xJ’-”

j=1
Then
1 & mx™
=iy MYy
& n;(t+x;”)2

for any ¢t € R. Moreover,
g(0) =0, lim g(t) =m.
—>00

Then part (2) of the lemma follows. ]
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Lemma 7.7. Assume all the edge weights x;’s are distinct. Let m > 1 be a positive

integer. Assume
[I, N{1,2,...,n}| =r.

For each k € [0, 1] and each y € [0, m], the equation

X
1—«

FK,m(Z) =

has a unique root zo(x, k) such that
(1) Argzo(x.0) = 5
(2) z0(0,x) = 0.
) My (2 -1 zo(x. k) = o0
(4) zo(x. 1) €0, +00).

(5) zo(y, «) is continuous in (), k).

Proof. Let
gm-1,j(2) = Zz" Pk,

Then when « = 1, the equation (1 — «) F ;, = y has the form

n 0gm— 1 /(Z)

z
PO= Y el ee

ielLn{1,2,...,n} 1 8m—1,j (Z)

x=0.

(7.10)

Note that p(z) is well defined on (0, +00) since g;—1,;(z) > 0 whenever z > 0.

When y € (0,m —1 + 1), we have
p(0) <0 and p(+o0) > 0.
Moreover, we have the following assertion.
Lemma 7.8. Ifz € (0, +00) and x;,y; > 0, then
p'(z) > 0.

Proof. Note that

p'(z):% Z _ _Z(ng 1,)gm 1,j —2(g),_ 11)2

iel,N{1,2,...,n}
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It suffices to show that for z > 0, x; > 0, we have
Tin(2) 1= (28p_1.;) 8m—1,j — 2(&p_1.;)> = 0. (7.11)

We prove (7.11) by induction onm. Whenm = 1, we have g,,—1,; = 1 and T,,(z) = 0.
Assume (7.11) holds whenm = [ — 1,1 > 2. When m = [, we have

81-1,j = Z&1-2,j + x,m_l,
Ti(z) = [281-2.; + 2°8] 5 ;) (2812, + X, ) = 2(812. + 28], ;)°
=2°Ti_1(z) + X]l-_lgl—Z,j + zx}_1(3g;_2’j +8/,,)>0.

Since 7;—1(z) > 0 by induction hypothesis, g;— ; > 0,8, , ; >0and g/’ , . > 0.
Then the lemma follows. u

Hence p(z) = x has exactly one root in (0, c0) when y € (0,m — 1 + ). The
root converges to O when y goes to 0, and the root approaches +o0o when y goes to
m—1+ .

The fact that there is a unique root of (7.10) satisfying condition (1) follows from
Lemma 7.6. The root when x = 0 satisfying condition (1) and the root when k = 1
satisfying condition (4) can be considered as boundary conditions for the Burgers
equation. More precisely, the slope of height is % on the bottom boundary x = 0
of the rescaled square-hexagon lattice &R, while the slope of height is 0 on the top
boundary ¥ = 1. Since the surface tension function is strictly convex in the liquid
region, the solution of the Burgers equations satisfying the given boundary conditions
is unique; see [10,22]. By Lemma 7.5, a root satisfying (1)—(5) is also a solution of the
Burgers equation satisfying given boundary conditions, then the lemma follows. m

Lemma 7.9. Let £ be the liquid region of the limit shape defined as follows:

(1) the region is a subset of
R = {()(,K)ZOSK <L0<y<m+ (l—l)l(};
n

(2) the solution zo(x, k) of Fem(z) = ﬁ given as in Lemma 7.7 remains non-
real in the region;

(3) the region includes the bottom boundary k = 0,0 < y < m when m > 2.

Let £, be the interior of L. Let Te be a mapping on £ which maps each point
(x,x) € £ to zo(x, k). Then, restricted on £,, T¢ is a homeomorphism from &£, to
T¢(£5). Moreover,

Te(Ly) = {z eC:0<Argz < 1},
m

and Arg z is the principal argument of z.
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Remark 7.10. Note that R is exactly the scaling limit of the region covered by the
contracting square-hexagon lattice with perfect matchings, hence the liquid region is
a subset of R.

Proof of Lemma 7.9. First we show that T¢ is one-to-one from &£ to T¢ (£). Then if z
X, we have F ,(Z) = t%-. Hence we can solve for y
and « in terms of z as in (2.2) and (2.3).

Therefore, T is one-to-one from &£, to T¢ (£,). From the expressions for Ty, y ¢

and kg, it is straightforward to see that T¢, y¢ and kg all are continuous.

is a solution of Fy ,,(z) =

Then we claim that
£o =L\ {k =0} (7.12)

Note that £ € R and {k = 0} is part of the boundary of [R. Since £, is the interior
of £, we must have £, C £ \ {« = 0}. It remains to prove £, 2 £ \ {x = 0}.
To see why that is true, let (x1,k1) € £ \ {k = 0} and z; = T¢(x1,k1). From the

definition of £, we have z; ¢ R. Note that z; is the root of Fy, ,»(z) = 1{/‘61 as given

by Lemma 7.7. Given 0 < k; < 1, we obtain

2t7mi
zl¢{xje%:l<j§n,1§l§m}~

We shall show that (y2,«2) € £ \ {k = 0} whenever |y; — y2| and |k; — k| are
sufficiently small. Fix ¢ > 0 such that

* we have
B(z1.e) N[RU{xjem:1<j<n1<t<m)=0 (7.13)
° infzeE)B(zl,s) |FK1,m(Z) - li}q | > 05
o Fem(z) = lf,‘q has a unique zero in B(z1, €).
By (7.13),
X1
F/q,m(Z)_ _FKz,m(Z)+ <77
1 — Ky 1 — k2

for any n > 0, whenever |y; — x2| and |x; — k3| are sufficiently small, and z €
B(zy1,¢).
Therefore, when |y; — x2| and |«1 — k2| are sufficiently small, we have

A1 X1 X2
Feym(z) — ‘) > | Fieym(2) — — Fe,m(2) +
1— 1-— K1 1-— K>
for any z € dB(z;, €). By Rouché’s theorem, Fy, ,»(z) — lffcz has a root in B(zy, &),

which is as described in Lemma 7.7. Hence (y2,k2) € £ \ {k = 0}, and we obtain
expression (7.12).
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Similar arguments show that for any point (y,0) with 0 < y < m, there is a neigh-
borhood Bs(x,0) such that Bg(y,0) N H4 € £, where H is the upper half-plane.
Now we claim that

Te(Ly) C {ZE(C:0<ArgZ< %} (7.14)
To see why that is true, assume there exists a point
ceTe(Lo)\ {z eC:0<Argz < %}
Let d € £, such that
Te(d) =c.

By Lemma 7.7, we see along the boundary x = lof R, z¢ € [0, 00). By continuity
of zg, we can find ¢; € Tg(d£) N (0, +00), d1 € L \ {(x,k): k = 0} such that

Tg(dy) = c1.

In particular, d; cannot be along the line k = 0 by Lemma 7.7 (1). Since R is con-
nected, we can find a path pg4, in R joining d and d; such that pg4, N {k = 0} = 0.
By continuity, T¢(paq,) is a continuous curve in C joining the point ¢ satisfying
Argc > 7 and the point ¢; satisfying Argc; = 0. (Note some point (y, k) € pgq, may
be 0ut51de the liquid reglon in that case, T¢ maps (y, K) to zo(, k) as in Lemma 7.7
which is real.) By (7. l) € [-2, 2], hence ldh + > € [0, 1]. By (7.2), we have
Arg(zo(x, x)) € [0, 7] for all (x, k) € R. Then there ex1sts ¢3 = Tg¢(d>) such that
dy € paa, and Argcy = 7. Since dz = (X 2(c») K£(c))» DY (2.2), (2.3), we obtain
that

xe(c2) = Z - € (0,m) when Arg(cy) = o
)

kg(c2) = 0.

This contradicts the fact that pg4, N {(x.«): x € (0,m),k =0} = @. The contradiction
implies (7.14).
We finally show that

{z eC:0<Argz < —} C Te(Ly).

Assume that there exists € 3T (£,) suchthatt € {z € C:0 < Argz < -} \ Te(&Lo).
Then there exists a sequence {t, }neNn C T (L,) such that

lim ¢, =¢.
n—0o0
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By continuity of (2.2) and (2.3), we have

Jim () = x(0),  lm k(tn) = k(7).

Hence (x(¢).k(t)) € £, U 0L, is such that Fy) m(z) = 151(;():) has aroot ¢ in {z €
C:0 <Argz < 7} asdescribed in Lemma 7.7. Note that k(¢) # 1, because if k () = 1,
then Argt = 0. Also y(t) # 0, because if y(¢) = 0, then t = 0. Moreover, y(t) #
m + (5 — 1)k (¢), because otherwise 1 = oo. Then x(t), k(¢) € £. Since Argt # 7,

k(t) #0,wehave (x(¢),k(t)) € £, and t € Te(L,). Then the proof is complete. =

7.3. Proof of Theorem 2.12

Proof. By Theorem 4.1, we have

1—k1)N 1—k2)N
covipy ™ ) -k (1 =)

Nh_r)noo Nh+l (27i)?

x szé— N 9|§ o [Fre (D] [Fey m(w)]2 Q (2, w) dzdw. (7.15)

i=1j=1

The poles of Fy ,,(z) are of 3 types:
(1) x1,...,x, lying on the positive real axis;
2) —ylj for j € I, N{1,2,...,n} lying on the negative real axis;

(3) roots of z" = x}" except xj for j = 1,...,n, lying on the circle centered at O

with radius x;.

We may change the sum of contour integrals in the right-hand side of (7.15) into an
integral over a contour enclosing all the poles of Fy ,,(z) of type (1), yet enclosing no
poles of types (2) and (3), with respect to both z and w.

For k € (0, 1), let

Zq(k) = {Z:Fk,m(Z) = 1% X € [O,m + K(% - 1)];

K’
z is aroot as given by Lemma 7.7}.
Let
Zy(k) ={z:Z2 € Z1(k)} and Z(k) = Z1(k) U Z,(k).

We claim that for ¥ € (0, 1), Z(k) is a contour in the complex plane C enclosing
all the poles of Fy n(z) of type (1), yet enclosing no poles of type (2) and (3). By
Lemma 7.9, we have

Zi(k) C {0,400} U {2:0 < Argz < z}.
m
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Note that z9(0,«) = 0 and zo(m + Kk (;; — 1), k) = +o00 by Lemma (7.7). Since Z5 ()
is the complex conjugate of Z; («), then the claim follows.
For k1,5 € (0, 1), (7.15) becomes
—k1)N —k2)N
; COV(PI(I(I k1) )’ pl(2(1 Kk2) ))
N o Nh+h

(=) —kp)l2 I I
- (27i)? séez(/q) Sé;ez(xz)[FK“m @ Feom(w)]

X 0(z,w)dzdw
1

2702 Jez, ()

: I =12
- (2ri)? éeZl(Kl) fiueZz(/cz)[X;C @1 eI w) dzdw
! =101 123
b B e e 0w dzdw

—1 =141 —\1l2
+ 2ni2 éezz(’q)%ﬂezz(m[)(x(z)] [z @)]2Q(z, w) dzdw

_ 1 I 1)
- 5éez,<m ¢ o O )
x [Q(z,w)dzdw — Q(z,w)dzdw — Q(z,w)dzdw + Q(z, w)dzd w],

95 e T e @) 0z w) d=duw
weZ(k2)

where
mzzm—l wm—l

0(z,w) =
Note that

Q(z,w)dzdw + Q(z,w)dzdw + Q(z,w)dzdw + Q(z,w)dzdw
zm — ™
Zm — wm
Hence the random variables {M jf‘ }ce(,1),jeN, defined by (2.1), converge to the
Gaussian distribution with mean 0 and limit covariance
- $ b e
2r(j1 + D2+ D) Jzez (1) Jwezi (r)

zm—wm‘

: KI prkay _
Nh_r)noo cov(M; ', M;?) =

x Xx(w)fz“dln) (7.16)

Zm_wm
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Integrating by parts, we obtain that the random variables {M] }ce(0,1),jeN are
Gaussian with mean 0 and covariance

cou M M) = $ X2 ()"
zeSikg (z)=k1 JweS:ky (W)=k2

dyz(z) dyz(w)

e T Gs(z,w)dzdw, (7.17)

x xz(w)”
where §s(z, w) is Green’s function on S given by

—In

1 zm—w”’)
2x lzm —qgm|

Then integration by parts shows that the right-hand sides of (7.16) and (7.17) are
equal. [

8. Gaussian free field in piecewise boundary condition

In this section, we prove Theorem 2.13.
For1l <i <n,let

z

z—1+1—/<

1
Fiu®) =~ 24,(2),

where A;(z) is defined by (6.12).
Lemma 8.1. Forany y > 0,k € (0,1) and 1 <i < n, the equation

X
1—«

Fi(z) = 8.1

has at most one pair of complex conjugate roots.
Proof. See [32, Proposition 7.2]. ]

Let J; be defined as in (5.3). Under Assumption 5.2, we may assume that

- Jldivdi + 1, diga =1} ifl<i<n-—1,
Y tdady 1, ) ifi =n,

where for 1 <i <n,

l=di<dr <---<d, <s.
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Lemma 8.2. Let 1 <i <n. Let §; consist of all the (x, k) in R (the rescaled square-
hexagon lattice %:ﬂ(ﬂ, ¢) in the limit as N — o0) such that equation (8.1) has
exactly one pair of complex conjugate roots. Let H be the upper half-plane defined by

H = {z:Imz > 0}.
The mapping
Tsil Si — H

maps (x,k) € 8 tot ;= Stl(n_l_l)(log z), where z is the unique root of (8.1) in Hi,
and Sty is the Stieltjes transform of the measure m; defined by (3.7). Let

y1x1 exp[Stm, (1)]
p(t) = : ,
e ,20{21;2,“_,”} 1 + y;x1 exp[Sty, ()]
exp(Stm, ()
g(1) = —PEtmi(

~exp(Stm, (1)) — 1
Then Ts, is a homeomorphism with inverset — (xs, (t),ks, (t)) forallt € H given by

t(p() —q@®) —1(p(H) —q(@) —(n — (T — 1)

1) = , 8.2
w50 nlp©) - pO = g(0) + 47 ¢
t—t
1) = , 8.3
S T S G B T =0 ©
and for2 <i <n,
iq(t) —tq(0) + (( —1)(n —1i)
(1) = , 8.4
O R TG) &
r—t

()= ———. 8.5

0= a0 &

Proof. The proof of the lemma is an adaptation of [9, Proposition 6.2]; see also [12,
Theorem 2.1]. ]

Then Theorem 2.13 follows from arguments similar to those used in the proof of
[9, Theorem 6.3].
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