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Thomas—Yau conjecture and holomorphic curves
Yang Li

Abstract. The main theme of this paper is the Thomas—Yau conjecture, primarily in the setting of
exact, (quantitatively) almost calibrated, unobstructed Lagrangian branes inside Calabi—Yau Stein
manifolds. In our interpretation, the conjecture is that Thomas—Yau semistability is equivalent to
the existence of special Lagrangian representatives. We clarify how holomorphic curves enter this
conjectural picture, through the construction of bordism currents between Lagrangians, and in the
definition of the Solomon functional. Under some extra hypotheses, we shall prove Floer theoretic
obstructions to the existence of special Lagrangians, using the technique of integration over moduli
spaces. In the converse direction, we set up a variational framework with the goal of finding special
Lagrangians under the Thomas—Yau semistability assumption, and we shall make sufficient progress
to pinpoint the outstanding technical difficulties, both in Floer theory and in geometric measure
theory.
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1. Foreword

The visionary proposal of Thomas and Yau [82, 83] is the philosophy that existence and
uniqueness questions of certain special Lagrangian branes inside an almost Calabi-Yau
manifold (X, w, Q) should be governed by stability conditions in the derived Fukaya cat-
egory (see Section 2.1). This proposal lies at the intersection of two major mathematical
disciplines:
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(i) From the viewpoint of geometric measure theory, the Thomas—Yau proposal prom-
ises a systematic method to prove existence theorems for special Lagrangians, which are
certain absolute volume minimizers within prescribed homology classes. Currently, the
known construction methods are based on perturbative techniques, symmetry reductions,
some special ansatzes, and integrable system techniques specific to low dimensions [44].
In contrast, Thomas and Yau suggests the difficult PDE questions may be reducible to
largely topological and algebraic questions in Floer theory.

(i) From the viewpoint of mirror symmetry, the Thomas—Yau proposal is a window
beyond homological mirror symmetry. Currently, most of the mathematical works on mir-
ror symmetry are concerned with the duality between pure symplectic topology and pure
complex geometry, and as such have a largely topological and algebraic flavour. As soon
as one simultaneously considers the full Kihler geometric data on each side of the mirror,
then questions of analytic nature become inevitable, and the Thomas—Yau proposal is a
central component of this larger picture (see Section 2.4).

Two decades have lapsed since their proposal, but we feel only a small part of the mys-
tery has been unveiled. Part of the problem is that the relevance of holomorphic curves to
the Thomas—Yau proposal is insufficiently understood, despite their central role in defin-
ing the Fukaya category. One of the main goals of this paper is to propose the following
picture, in the more specialized setting of exact Lagrangian branes inside (almost) Calabi—
Yau Stein manifolds: Using (n + 1)-dimensional universal families of holomorphic curves
associated to certain (n — 1)-dimensional moduli spaces, one can construct bordism cur-
rents between two n-dimensional Lagrangians in the same derived category class. More
generally, one can also sometimes associate bordism currents between several Lagrang-
ians, the notable example coming from distinguished triangles. This is a special case of the
open-closed map well known to symplectic geometers, and some lower brow expositions
are given in Section 3.1.

Solomon [77] defined a functional on the universal cover of the space of Lagrangians
within the same Hamiltonian deformation class, whose critical points are precisely spe-
cial Lagrangians. In the exact setting, we will give a more homological formula for the
Solomon functional, and propose that the bordism current produced from holomorphic
curves allows one to extend the functional to Lagrangian objects in the same derived cat-
egory class, which is well defined without the universal cover problem (see Section 3.2). A
different perspective involving integration over moduli spaces is presented in Section 3.7,
and we suggest further how the Solomon functional may generalize to compact Calabi—
Yau manifolds.

We further specialize to almost calibrated Lagrangians. We propose that given a dis-
tinguished triangle Ly — L — L, — L;[1], then there are Floer theoretic necessary
conditions for L to be a special Lagrangian:

arg/ Qfarg/Qfarg/ Q.
L] L L2



Thomas—Yau conjecture and holomorphic curves 3

Here Ly, L, are not required to be special Lagrangians, and the cohomological integral
is the only quantitative way they enter into obstruction criteria. In other words, obstruc-
tions are of numerical nature. We will prove this assuming further that the bordism current
from holomorphic curves satisfies automatic transversality and a positivity condition (see
Sections 3.3-3.5). The main technique is integration over the (n — 1)-dimensional mod-
uli spaces of holomorphic curves. We also give generalizations to several Lagrangians,
to make possible contact with Harder—Narasimhan decomposition. Compared with the
proposal of Joyce [45], the Floer theoretic obstructions capture some features of the
Bridgeland stability condition, but instead of tackling the entire derived Fukaya category
DP? Fuk(X), we restrict to almost calibrated Lagrangian objects, which morally corres-
pond to the heart of a z-structure.

For a sample application of the moduli space integration technique, see Theorem 3.21,
Theorem 3.26, and Proposition 3.40.

Remark 1.1. While Joyce’s prediction of a Bridgeland stability condition is a very impor-
tant heuristic motivation for this paper, in our proposal we will carefully avoid assuming
that the Bridgeland stability condition exists on D? Fuk(X), or that D? Fuk(X) is idem-
potent closed, or that the almost calibrated Lagrangians form an abelian subcategory of
D? Fuk(X), except when we make comparisons with Joyce’s program.

When there are no destabilizing distinguished triangles, we say the derived Fukaya
category class of L is Thomas—Yau semistable (see Definition 3.32). This is similar to the
original viewpoint of Thomas and Yau [82, 83]. Let X be a Calabi—Yau Stein manifold,
such that (w, ) satisfies the complex Monge—Ampere equation, and the regularity scale
of the Calabi—Yau manifold tends to infinity asymptotically. Let &£ be the geometric meas-
ure theoretic closure of the class of exact, quantitatively almost calibrated, unobstructed
Lagrangians in the D? Fuk(X) class. (Beware that we include immersed and singular
Lagrangians as in Joyce [45], so the definition of &£ is partially conjectural.) According to
our interpretation of the Thomas—Yau conjecture, if Ly € &£ is Thomas—Yau semistable,
then there exists a special Lagrangian current in £ (see Section 5.5.1 for the full ver-
sion). Moreover, it is desirable that the special Lagrangian current carries unobstructed
brane structure in some formal sense, to represent the D? Fuk(X) class or some weaker
equivalence class.

We will make a start on the variational approach to tackle the Thomas—Yau conjec-
ture in the exact and quantitative almost calibrated setting. A summary of the variational
strategy is in Section 5.3. We prove a number of uniform estimates independent of the
Lagrangians, notably the potential clustering property, which implies a uniform bound on
the energy of holomorphic curves, and that the Solomon functional deviates from an ele-
mentary functional by a uniformly bounded amount (see Sections 5.1 and 5.2). We are not
able to complete the proof of the Thomas—Yau conjecture, but we try to identify the main
technical difficulties to be overcome. To make contact with the a priori compactness theor-
ems in geometric measure theory, it is natural to set up the variational program in terms of
Lagrangian currents and varifolds. One then encounters both geometric measure theoretic
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difficulties, to do with the existence of enough Lagrangian competitors, and the difficulty
to make sense of Floer theory for Lagrangian currents. We expect that many aspects of
Floer theory will not be robust under passage to such weak limits of Lagrangians, but as a
heuristic principle, we hope that the bordism currents relevant to our proposal are robust
(see Section 5.4).

Assume there is a suitable compactness theory for Lagrangian objects, then we expect
the existence of special Lagrangians to be essentially equivalent to the properness of the
Solomon functional. The following heuristic principle would then explain why Thomas—
Yau conjecture could be true: for a sequence of Lagrangians whose Solomon functional
diverges to infinity, the underlying Lagrangian objects should break up into a bounded
number of connected components L;, such that the Lagrangian potential on each compon-
ent has uniformly bounded oscillation, and the asymptotic behaviour of the Solomon func-
tional is controlled by Floer theoretic data related to the cohomological integrals |, L -
We will give evidence for this picture (see Section 5.5), and explain a similar picture for
Hermitian Yang—Mills connections (see Section 2.5).

For another summary on the logical structure of the variational program, see Conjec-
ture 5.21 and the subsequent discussions.

Although we restrict to the exact setting in the above, we will leave the room open for
more ambitious speculations in the setting of compact almost Calabi—Yau manifolds. The
almost calibrated condition, on the other hand, is essential in our proposal, and cannot be
dropped within this framework even with substantial efforts.

Aside from the main goal of making the proposal and presenting evidence, this paper
also contains a large amount of expository content, which aims to present both a (biased)
overview and a critique of the current literature on the Thomas—Yau conjecture, and to
explain how our picture fits into this body of works. The most relevant works are the
original papers of Thomas and Yau [82, 83], and the major update by Joyce [45]. We
will devote substantial attention to their main considerations (see Sections 2.1-2.5, 2.7,
and 4.1), and the significance of the Thomas—Yau—Joyce proposal to mirror symmetry
(see Section 2.4), and we will constantly draw comparisons between their pictures and
ours. We also touch on a number of other relevant works:

* Joyce-Imagi—Santos [41] gave a characterization of Lawlor necks, in which holo-
morphic curves made an interesting, albeit somewhat technical appearance; see Sec-
tion 2.3.

* The Hermitian Yang-Mills equation [26,27,84] was a major inspiration to Thomas and
Yau. The deformed Hermitian Yang—Mills equation [16, 18-20] has been advocated as
a mirror version of special Lagrangians; see Sections 2.5 and 2.6.

e Solomon [77-79] introduced a functional and a formal Riemannian metric on the
infinite-dimensional space of almost calibrated Lagrangians in a given Hamiltonian
isotopy class. This space is too small for our variational purpose, but his functional is
fundamental to our proposal; see Section 2.8.
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* Lotay and Pacini [57,58] introduced a formal GIT picture for totally real submanifolds.
Their notion of ‘geodesic’ was our main inspiration for the bordism currents between
Lagrangians; see Section 2.9.

* Neves [62-64] pointed out the inevitability of finite time singularity in the Lagrang-
ian mean curvature flow, which is fundamental to Joyce’s proposal [45]. Some of his
technical arguments are adapted to support our variational program in Section 5.2; see
Sections 4.1 and 5.2.

» Joyce’s earlier work on wall crossing and special Lagrangian counting problems [42] is
in some sense the elliptic cousin to his Lagrangian mean curvature flow proposal [45];
see Section 4.2

Remark 1.2 (Prerequisites). While we have endeavoured to survey most of the previ-
ous works directly aimed at the Thomas—Yau conjecture (regrettably with some inevitable
omissions), there is a very extensive literature on geometric measure theory and sym-
plectic geometry in the background. We do not assume expertise on these matters, but
some previous exposures such as F. Morgan’s introductory book [61], and the excellent
surveys of Auroux [9] and Smith [75] would be useful. The most important background
facts for our main purpose are recalled in Section 5.1 and the Appendix on the Fukaya
category. While the brief summary therein is not completely sufficient for all arguments
in this paper, we hope the casual reader could get the main gist, if not some sporadic
remarks. The punctilious reader may wish to refer to the Floer degree and sign conven-
tion summarized in the Appendix, which is different from, e.g., Seidel’s book [71]. The
various allusions to Kéhler geometry are mainly for motivational purposes, which can be
skipped by readers less interested in these topics.

Remark 1.3 (Rigor). This paper contains a somewhat unconventional mixture of pro-
posals, expositions and proofs. We have attempted to indicate all speculative elements as
‘heuristic’ or ‘conjecture’. Other arguments are either complete proofs, or sketches inten-
ded as expositions.

2. Thomas—Yau conjecture backgrounds

2.1. The Thomas—Yau-Joyce picture

An almost Calabi—Yau manifold (X, w, J, Q) is a complete n-dimensional Kéhler man-
ifold with a nowhere vanishing holomorphic volume form. It is called Calabi—Yau if the
complex Monge—-Ampere equation " = const 2 A Q holds, whence X is Ricci flat. A
real n-dimensional compact submanifold of an almost Calabi—Yau manifold ¢: L — X is
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called special Lagrangian of constant phase angle 6 e R, 'if
ol =0, Im(e_leL) =0.

Special Lagrangian submanifolds have unobstructed deformation theory.> Furthermore,
if X is Calabi—Yau, then a special Lagrangian is a minimal submanifold, and in fact
minimizes the area within its homology class, thanks to the calibration inequality for
submanifolds, saturated precisely by special Lagrangians:

/LRe(e_iéQ) /L Q

We will always impose some compactness or convexity at infinity on X to ensure the
Fukaya category of (X, w) makes sense.

=

=< / dvol(L) = Vol(L).
L

Thomas-Yau’s proposal. In [82,83], Thomas and Yau introduced the remarkable philo-
sophy that existence and uniqueness questions of special Lagrangians inside an (almost)
Calabi—Yau manifold (X, , Q) should be related to stability conditions in the Fukaya cat-
egory. Turning this intuition into precise mathematical predictions, is however not easy,
for at least the following geometric reasons, in addition to the analytic difficulties related
to minimal surfaces and mean curvature flows:

(1) The Fukaya category as it currently stands is likely inadequate for the purpose: the
special Lagrangian representatives of a given derived Fukaya category class in D?Fuk(X),
should it exist, is by no means guaranteed to be smooth and embedded. Thus one would
like to enlarge the objects of the Fukaya category to include immersed and possibly sin-
gular Lagrangians. From the viewpoint of symplectic topology, the lack of Lagrangian
objects is a basic difficulty, which is usually hidden in the non-geometric step of taking
the twisted complexes in the construction of D? Fuk(X), and the idempotent completions
in the construction of D7 Fuk(X) (see Section A.2).

(i) The knowledge of the stability conditions is severely deficient. Thomas—Yau’s
paper predates the ingredient of Bridgeland stability,’>* but the basic problem remains
open: how to construct a stability condition on the derived Fukaya category D® Fuk(X)
from the information of a holomorphic volume form 2 on X ? In contrast, in analogous
problems such as the existence of Hermitian Yang—Mills connections, the stability con-
dition is known a priori before the more serious endeavour to solve the PDE. One of the

I Different lifts of the phase angle from R /7 Z to R shift the grading of the brane structure, so they are
different as objects of the Fukaya category.

2However, obstructions may arise if brane structures are taken into account.

3What was available at the time, was the famous ji-stability related to Hermitian Yang-Mills connec-
tions, of which Thomas and Yau were of course leading experts.

“There are current debates whether Bridgeland stability is the ultimately correct framework for
formalizing the physical intuition of stability conditions controlling BPS particle decay [31]. We regard
Bridgeland stability as a working definition, to be modified in case future evidence arises.
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goals of this paper is to explain some modest progress on this issue, namely that there are
non-trivial Floer theoretic obstructions to the existence of special Lagrangians.

Thomas—Yau primarily restricted attention to the case of almost calibrated Lagrang-
ians, meaning the Lagrangian angle function @ satisfies’

—£<9<£.
2 2

Notice that this restriction removes any w7 ambiguity of the Lagrangian angle, so the
Lagrangian is graded. Since we are focusing on compact Lagrangians, it makes sense to
restrict to a more quantitative version, for some fixed small ¢ > 0:

_g+859§g_8. @

One immediate consequence is an a priori volume bound.

Lemma 2.1. If L satisfies (2.1), then Vol(L) < z— [, Re Q.

Proof. From et?dvol; = Q| =Re Q| + vV—1Im 2|, we see Re 2 is an orientation
form on L, and we arrive at

1 1
Vol(L):/ Re2 < —— | ReQ,
1 cosf sing Jp,

as required. ]

Remark 2.1. Another immediate consequence of the almost calibrated condition, is that
the complex number Z(L) = fL 2 is non-zero, with ¢(L) = % arg Z(L) € (—%, %)

Keeping our narrative closer to the historical development, Thomas and Yau were
inspired by pu-stability for Hermitian Yang—Mills connections. They assumed that the
principal mechanism which can forbid the Hamiltonian isotopy class of L from admitting
a special Lagrangian representative, is related to a distinguished triangle in the Fukaya
category, the primary geometric source being that L is Hamiltonian isotopic to a graded
Lagrangian connected sum L = L#L,,° such that ¢(L,) > ¢(L,). Based on this intu-
ition, Thomas made an attempt to define a notion of stability (see [82, Definition 5.1] and
Definition 3.32 below).” Thomas then made the following important prediction.

3The important thing is that the upper and lower bounds on @ differ by 7. Shifting the interval by a
constant is inconsequential.

Tt is very important for Thomas and Yau that the Lagrangian connected sum is asymmetric in L
and L,. Our notation for the Lagrangian connected sum agrees with Thomas and Yau, but is opposite
to Joyce [43] and a large number of symplectic geometry texts. Our convention is compatible with the
distinguished triangle L1 — Li#L, — L, — Lq[1].

7We will not repeat their definition verbatim here because the author thinks its focus on the Hamiltonian
isotopy class, instead of the Fukaya category class, is largely a limitation of its time. It is the spirit rather
than the letter of their definition which matters.
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Conjecture 2.2 ([82, Conjecture 5.2]). A graded Lagrangian has a special Lagrangian
representative in its Hamiltonian class if and only if it is stable, and this special Lagrang-
ian representative is unique.

Thomas and Yau [83] analyzed the problem again from the Lagrangian mean curvature
flow (LMCF) perspective, and made a somewhat more cautious prediction, which roughly
amounts to the following. When a destabilizing decomposition into Lagrangian sums is
forbidden, either by a smallness assumption on the oscillation of the phase function 6, or
because the volume of L is smaller than Vol(L;) + Vol(L,) for any putative decomposi-
tion, (notice both conditions are preserved under the flow), then they conjectured that the
mean curvature flow starting from L will converge into a special Lagrangian [83, Sec-
tion 7].

Bridgeland stability, Joyce’s proposal. To trace the subsequent development, and move
beyond the almost calibrated setting, we need to recall an important piece of homological
algebra known as Bridgeland stability conditions on a triangulated category [13].

Definition 2.3. A Bridgeland stability condition (Z, ) on a triangulated category O con-
sists of a group homomorphism (‘central charge’) Z from the (numerical) Grothendieck
group K(D) to C, and full additive subcategories P (¢) C D for each ¢ € R, whose ob-
jects are called ‘semistable objects of phase angle m¢’,® satisfying the following axioms:

Phase. If L € P(¢), then Z(L) = m(L)exp(in¢) for some m(L) > 0.
Shift. Forall ¢ € R, P(¢p + 1) = P(P)[1].
Monotonicity. If ¢ > ¢ and L; € P(¢;), j = 1,2, then Homgp (L, L2) = 0.

Harder—Narasimhan decomposition. For each non-zero object L € D, there are a finite
sequence of real numbers ¢; > ¢ > -+ > ¢y and a Harder—Narasimhan decomposition

0:80—>81—)"'—>8N:L, (22)
with distinguished triangles
& 1— 86 —L; = &_4[l]

such that L; € P(¢;).

Calibration. For any fixed norm on the finite-dimensional vector space K(D) ®z R, we
have a uniform constant C, such that any semistable object L satisfies

L] = CIZ(L)I.

Remark 2.2. For the heuristic but naive geometric meaning, one can imagine that D is
the derived Fukaya category, K(D) is the sublattice of H,(X) generated by the Lagrang-
ians, the central charge is Z(L) = [; €, the subcategory £ (¢) is generated by the special

8n the convention of Bridgeland, the phase is ¢. We have instead opted to call ¢ the phase, which is
more naturally identified with the phase angle of special Lagrangians.



Thomas—Yau conjecture and holomorphic curves 9

Lagrangians of constant phase angle 6 = ¢, the Harder—Narasimhan decomposition
means a multiple Lagrangian connected sum with decreasing phase angles

L ~ Ll#Lz#"'#LN,

and the calibration property comes from the fact that the total mass of a special Lagrangian
is equal to | Z(L)|, and the mass bounds any norm of [L] € H,(X) using Poincaré duality,
assuming H, (X)) is finite-dimensional.

Remark 2.3. We write the subcategory generated by all the & (¢) within the interval
¢ € (¢o, P1] as P (o < ¢ < ¢1). The important property is that P (o < ¢ < ¢po + 1)
is an abelian category, known as the heart of a bounded #-structure. The advantage is
that while in general triangulated categories only distinguished triangles make sense, for
abelian categories we can talk about exact sequences, subobjects and quotients.

With the hindsight of Bridgeland stability condition, and more than one decade of pro-
gress on the mean curvature flow as well as symplectic geometry, Joyce [45] produced a
major update of the Thomas—Yau picture. We shall discuss more about the LMCF con-
siderations in Section 4.1, but it suffices here to give away its main punchline (see [45,
Conjecture 3.34]).

Let (X, w, Q) be a Calabi—Yau manifold,” either compact or Stein. There should be
an enlarged version of the derived Fukaya category D® Fuk(X), including classes of
immersed or mildly singular Lagrangians, and a Bridgeland stability condition (Z, &)
on D? Fuk(X), whose central charge is

Z(L):/LQ.

Given a Lagrangian brane L (with grading, orientation, relative spin structure, local
system and bounding cochain data) such that the Floer cohomology is unobstructed, and
suppose L is generic in its Hamiltonian isotopy class. Then the LMCF (L;);~¢ (with brane
structure) starting from L exists for all time with surgeries at a finite series of singular
times. The nature of these surgeries have conjectural descriptions. The Lagrangian can
change its Hamiltonian class at these surgeries, but maintains its derived category class.
Att — oo, the Lagrangians L, converges in the geometric measure theory sense to a union
of graded special Lagrangian currents L1, ..., Ly of phase angle 51 > @2 > > éN with
multiplicities counted:

Aim Ly =Ly+-+Ly. (2.3)

If there is only one constant phase angle ] appearing in the infinite time limit, then L
defines a semistable object of phase 6 in D? Fuk(X). Otherwise, L is not semistable with

°The complex Monge—-Ampere equation is convenient but not indispensable, see Section 4.1.
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respect to any phase angle, and the infinite time limit supposedly give rise to the Harder—
Narasimhan decomposition.

Joyce’s program is much more ambitious in the sense that it attempts to capture
the entire triangulated category D? Fuk(X). The original Thomas—Yau proposal, which
is concerned only with almost calibrated Lagrangians, fits into the Joyce picture as an
abelian subcategory P(—n/2 < 6 < m/2) C D? Fuk(X),'” the heart of a certain -
structure. The main appeal of Joyce’s mean curvature flow perspective, is that if the infinite
time limiting currents Ly, ..., Ly can be given suitable brane structures to be admitted
as objects of D? Fuk(X), then the program gives a conjectural dynamical mechanism to
explain the Harder—Narasimhan decomposition, which is the most non-trivial aspect of
the Bridgeland stability. Its principal drawback is that Joyce offers no a priori informa-
tion on the Bridgeland stability beyond the central charge, other than letting off the mean
curvature flow to find its own destiny. This limits its practical applicability, for instance
to existence questions of special Lagrangians in prescribed classes in D? Fuk(X). See
Section 3.6 for more discussions.

Why Thomas—Yau has predictive power. At this moment an objection may arise: since
the Thomas—Yau—Joyce picture is beset by some vagueness and plenty of technical diffi-
culties, why is it useful as a guiding principle at all? Besides the supportive evidence that
we shall soon discuss, the main answer is that the Thomas—Yau philosophy transforms a
PDE problem (the existence of special Lagrangians) into a categorical framework, which
if better understood is in principle checkable by algebraic means. A Bridgeland stability
is the interplay between a category and a numerical property. In the analogous problem
of Hermitian Yang—Mills connections, the existence criterion is formulated by p-stability,
which compresses the information of the Kéhler form into only certain intersection num-
bers/cohomological integrals (see Section 2.5). Likewise, the stability condition respons-
ible for the existence of special Lagrangians, even though it is not adequately specified, is
in principle a compression of the analytic data of a holomorphic volume form, and quite
plausibly enters only through cohomological integrals of €2, as will be discussed more
fully in Section 3. As an indication of the possible predicative power of the Thomas—Yau
picture, here is a sample question as food for thought:

Question 1. Fix the holomorphic volume form Q2. Let w;, w, be two generic Kihler
forms, differing only by the differential of a compactly supported 1-form. Can we define
a count of special Lagrangian rational homology spheres, such that the numbers agree for
w1 and w,?

OHere we ignore the ‘small’ difference between < and <. This would be justified if  is suitably
generic so that there is no special Lagrangian of phase /2, namely that the countably many numbers
Arg [, Q for [L] € Hy(X, Z) miss the number /2.
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Remark 2.4. As we shall see, the main evidence of Thomas—Yau picture (see Section 2.2)
does not really use the complex Monge—Ampere equation.'! On the mirror side, as a
consequence of the p-stability characterization, the existence of Hermitian Yang—Mills
connections on a compact Kihler manifold does not depend on the choice of the Kihler
form within a fixed Kéhler class.

2.2. Principal evidence of Thomas—Yau

Thomas and Yau offered a number of arguments in support of their picture. We now
describe the evidence from first principles, and will later return to the evidence from ana-
logies.

The following elementary observation is a first indication about how special Lagrang-
ian objects resemble stable objects of a Bridgeland stability condition.

Proposition 2.4 ([83, Section 5.2]). Let L, L’ be unobstructed Lagrangian branes whose
supports are compact special Lagrangian manifolds, with Lagrangian angles 07, > 0p,.
Then HF*(L, L") = 0 fork < 0.

Proof. After C°°-small Hamiltonian perturbation we may assume any intersection point p
between L and L' is transverse. We can write the tangent planes of L, L' inside 7, X ~ C”"
in the standard form

T,L=R"CC" T,L = (... R"CC" 0<¢; <.

The Floer degree of the intersection point p is
1 n
prL,u(p) = ;(GL — 0L + led’i) >0,

whence HFF(L,L’) = 0 fork < 0. n

Remark 2.5. As is clear from the proof, the special Lagrangian condition can be relaxed
to infy, 07, > sup;, Op .

Remark 2.6. Our Floer degree convention follows Joyce [45], but is opposite to that of
Seidel [71] and many other symplectic geometry texts. In our convention, shifting the
Lagrangian phase by kx for k € Z is equivalent to considering the shifted object L[k].
Thus a slight extension of the above is that if 67, > 67/ + [, then

HF*(L, L'y = HF*!(L,L'l)) =0, k<1

"'The almost Calabi—Yau setting is desirable not only for the sake of generality, but may be essen-
tial to achieve suitable genericity. As an additional motivation on the side of physics, the SCFT condition
translates into a Kéhler condition on the target space metric, which satisfies the Ricci-flatness only approx-
imately [39, Section 14.2.4].



Y. Li 12

The most compelling evidence due to Thomas and Yau is as follows.

Theorem 2.5 (Thomas—Yau uniqueness [83]). Let L, L' be unobstructed Lagrangian
branes supported on embedded special Lagrangians of the same phase, which define iso-
morphic objects in D® Fuk(X), then their supports coincide.

Remark 2.7. The most general Thomas—Yau uniqueness, which includes immersed Lag-
rangians, seems to be due to Imagi [40]. The original Thomas—Yau theorem is phrased in
terms of uniqueness in the Hamiltonian isotopy class, even though it can be cast in more
general categorical terms. The categorical perspective is preferred, because it is closer to
the spirit of homological mirror symmetry, and because one derived Fukaya category class
may contain several Hamiltonian isotopy classes. If immersed Lagrangians are allowed,
then isomorphism in D? Fuk(X) would also identify certain embedded Lagrangian objects
with immersed objects of different topologies. When this happens, an interesting corol-
lary of Thomas—Yau uniqueness is that at most one of these Hamiltonian classes contains
special Lagrangian branes.

Sketch of the proof. Assume the supports do not coincide. After small Hamiltonian per-
turbations, we can ensure the perturbed Lagrangians L, L’ have transverse intersections,
and still define the same isomorphic objects in D? Fuk(X). Under the special Lagrangian
assumption, through judicious choice of the Hamiltonian via Morse theory as in Thomas—
Yau [83, Theorem 4.3], or by using genericity arguments based on real analyticity as in
Joyce-Imagi—Santos [41, Section 4.3], one can ensure there is no intersection point LNl
of degree 0, n, so in particular

HF°(L,L'y~ HF*(L,L') = 0.

However, this implies the cohomological unit of HF*(L, L) is zero, so the Floer cohomo-
logy ring of L is zero, namely L is a zero object in D? Fuk(X), contradiction. |

The Thomas—Yau argument reveals the relevance of the Fukaya category to special
Lagrangian geometry. The role of holomorphic curves, which are a central ingredient in
the Fukaya category, is however rather opaque in this argument; their only appearance is
to make the Floer cohomology defined.

2.3. Variant: Uniqueness of the Lawlor neck

A variant of the Thomas—Yau argument'” appears in the subsequent work of Joyce—
Imagi—Santos [41] on the uniqueness of Lawlor necks, where holomorphic curves and the
algebraic structures of the Fukaya category appear in a more prominent, albeit somewhat
technical way.

12 Abouzaid and Imagi have mentioned in their talks some other interesting applications on the topology
of special Lagrangians inside the cotangent bundle of a special Lagrangian with some fundamental group
conditions, using another variant of the Thomas—Yau argument. We look forward to the appearance of their

paper.
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Lawlor necks. We first recall some basics about Lawlor necks [46, 52], which are non-
compact embedded exact special Lagrangians Ly 4 inside the standard Euclidean C”",
asymptotic at infinity to the union of two planes

H():Rn, H¢=(€i¢1,...,€i¢n)Rn,0<¢i<7{, Z¢l=H

Symplectic topologically, they can be viewed as a realization of the Lagrangian handle
S"=1 x R that appears in the Lagrangian connected sum construction. This motivates the
Ansatz

Loa={z1()x1,....z22(0)xn) 1y e R, x; € ]R,xf + .- +x3 = 1}.

The special Lagrangian condition translates into an ODE system on the functions z1(y),
..., Zn(y), which can be solved exactly as follows.
Letn > 2anday,...,a, > 0, and define polynomials p, P by

p(x)

p(x) =1 +ax?) - (1+ax?)—1, P(x)= e

Define real numbers ¢, ..., ¢, and A by

*© dx ® dx
- R
P = /_oo (1 + axx2)/P(x) /_oo 2P0

Clearly ¢y, A > 0, and elementary integration shows »_ ¢; = . This yields a 1-1 corres-
pondence between n-tuples (ay, ..., a,) with ag > 0, and (n 4 1)-tuples (@1, ..., ¢dn, A)
with ¢ € (0,7), > ¢ = m and A > 0. Setting

. Y dx
2e(0) = MO a4 2, where Y () :‘”‘f (I + axx2) P(x)|
0 k

yields the solution (z;(y), ..., zx(»)), hence the Lawlor necks Ly 4.

For fixed asymptotic planes I1g, I1g, the Lawlor necks arise in a 1-parameter family,
related to each other by the rescaling Z — AZ in C”, and A behaves like 2-dimensional
area A — A2 A under this scaling. One also observes that asymptotically near infinity, the
Lawlor necks are graphs over I1q (resp. I14) of the differential df , where

|f1=0(xP™"), 18I =O(IxP™"%).

We say the Lawlor neck has asymptotic decay rate 2 — n. The upshot is that it approaches
ITy U 1y sufficiently fast.

Joyce-Imagi—Santos uniqueness theorem.

Theorem 2.6 ([41]). Letn > 3."3 Assume L is a smooth embedded exact special Lagrang-
ian of phase zero, asymptotic at rate < 0 to the union of the two planes I1o U Iy with
> ¢i =, then L is Ly 4 for some A > 0.

13The theorem is also true in complex dimension 2, proved earlier by Lotay and Neves [56] by other
means not involving Floer theory.
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Here is a sketch of their arguments.

Using the asymptotic assumption on the exact Lagrangian L, one can assign an ana-
lytic invariant A(L) to L as follows. Let f1,: L — R be a primitive of the Liouville form A,
namely df; = Alr, then f7 converges to constants co, cg at the two asymptotic ends
along I, I14 respectively. Then one defines A(L) = cg — co. If L coincides with the
Lawlor neck Lg 4, then A(L) = A.

Partially compactify C” into a Liouville manifold identified as the plumbing M of
two cotangent bundles 7*S™ with T*S". Here the two copies of S” arise topologically
as one-point compactifications of ITo and I14 by adding the points at infinity cog and cog,
and topologically M is the union of C” and the two cotangent fibres over cog and 0oy
respectively. Under suitably fast decay condition at infinity, the unknown special Lagrang-
ian L can be compactified into an exact graded embedded Lagrangian L inside M. One
would like to compare this to the Lagrangian l_,q;, 4 obtained by the compactification of
the standard Lawlor necks Ly 4 inside M.

By analyzing the intersection pattern with the two cotangent fibres at infinity, and using
the classification results of Abouzaid and Smith [3], one shows that inside D? Fuk(M),
the Lagrangian object L is isomorphic to one of the two Lagrangian connected sums of
the two S™ with suitable gradings, and in fact the assumption on Floer degrees

Y pi=nx

singles out L ~ de,, 4 € Db Fuk(M), the opposite surgery corresponding to

d_¢i=m-Dr

This step needs n > 3. For contradiction, we assume L does not coincide with Zd,, 4 for
any choice of parameter 4 > 0.

By modification of the Thomas—Yau argument, one shows that after a small Hamilton-
ian perturbation L” of E¢, 4, we can ensure L” is transverse to L, there is no degree 0, n
intersection points in L” N L inside C”, and there is precisely one intersection point p
and ¢ in L” N L on each of the two cotangent fibres at infinity respectively. Moreover, the
D® Fuk(M) class and the analytic invariants of L” agree with that of Z¢, A

Remark 2.8. The subtlety at infinity prevents one from removing degree 0, n intersections
outside the C” region, so one does not reach an immediate contradiction as in the Thomas—
Yau argument. This technical failure is necessary, because the Lawlor necks with fixed
asymptotic planes are not unique, but do arise in a 1-parameter family. It is in overcoming
this technical problem that holomorphic curves appear in [41].

Now suppose the Lawlor neck is chosen with the parameter A = A(L), which pre-
sumes A(L) > 0.

Lemma 2.7 ([41, Theorem 2.15]). Assume J is a generic almost complex structure on M
compatible with the Liouville structure. There exists a J -holomorphic strip ¥ with bound-
ary on L and L" and two corners at p and q respectively.
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Proof. Consider the Floer cup product with mod 2 coefficients
HF%L",L)® HF°(L,L") - HF°(L,L),
which can be identified as the cup product
HYL,L)y® H*(L,L) — H°(L,L), 1;Ul; =13,

and thus must be non-trivial. However, at chain level this Floer product comes from the
Aoo Operation
my:CFY(L",L) ® CF°(L,L") - CF°(L, L),

which must be non-trivial; see the appendix for more exposition on Floer theory, especially
Example A.1. The counting interpretation implies there are intersection points

p e CF(L,L") and ¢’ e CFY(L",L)~ CF"(L,L")Y

and some holomorphic strip in between. Since degree 0, n intersection points cannot occur
inside C”, they can only occur at infinity, so we must have {p, ¢} = {p’. ¢’} [

Now the area of the J-holomorphic curve can be computed cohomologically. Using
the choice of parameter A, we have

z X p'—q’ q'—p'

= £(A(L) — A(L")) = £(A — A) = 0.

This contradicts the positivity of area of the holomorphic curve, which proves L must
coincide with Ly 4.

Finally, one needs to a priori justify A(L) > 0. This relies on a slightly more com-
plicated holomorphic polygon counting argument, and the main upshot is that one can
produce a non-trivial holomorphic triangle from a distinguished triangle in D? Fuk(M),
with the three edges on L, TTy U {oog} and ITy U {oog}. Then one shows A(L) has the
interpretation as its area, so must be positive.

Ideal triangles. In [41] the perturbations involved in the partial compactification and the
genericity of the almost complex structure makes the holomorphic curves rather difficult
to visualize.'* We now present a heuristic way to see holomorphic triangles with the edges
on E¢,, 4, ITo U {oop} and I1y U {004}, by restricting attention to C” with the standard
complex structure, and we imagine the two vertices 0og, 00¢4 as the intersection points at
infinity.

14A typical feature of Floer theory, is that completely realistic examples about holomorphic curves are
also non-explicit.
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We choose any X = (x1,...,X,) € S""!. Assume first that x; # 0. Then coordinate-
wise, we have a real curve in C swept out by zx (y)xy as y varies from —oo to +o0, and
two straight rays emanating from the origin defined by sign(x; )R and sign(xg)e’®* R .
Inside C, these three real curves enclose a non-compact holomorphic triangle, with one
vertex at the origin, and two idealized intersection points at the infinity of sign(x; )R 4+ and
sign(xx)e'?*R 4. In the product space C”, this gives rise to a holomorphic triangle X3
with boundary on Ly 4, I1g, I1g, and corners at 0, 00g, 00g4. Now in case some x; = O,
there is still a holomorphic triangle in the product space that makes sense; the k-th projec-
tion of this triangle is simply the origin. What happens when x; — 0, is simply that the
k-th projection ;. (X3) becomes very thinly concentrated near the two rays sign(xx )R
and sign(xk)ei¢k R, and its area shrinks to zero. Moreover, for any given ¢, the subset
YNy 1(|z| > &) disappears into the infinity of C" as x; — 0. Thus when we restrict
to any compact subset of C”, the holomorphic discs behave continuously as x; — 0.

Example 2.8. In the most symmetric case ¢ = ¢ = --+ = ¢, = 7., the Lawlor neck
is invariant under SO(n, R), and these holomorphic triangles are up to SO(n, R) rota-
tion, simply the triangle inside the first coordinate line C C C” enclosed by the three
Lagrangians.

Using any of the holomorphic triangles X3 parametrized by S™~!, we can calculate
its area cohomologically by

/w:/A:/ AfLys = 4,
b F)> AZNLy4

which is the intuitive explanation of why A must be positive, an important ingredient
of [41].

‘We want to draw attention also to a different aspect not explicit in [41]: that these holo-
morphic triangles naturally arise in an (n — 1)-dimensional moduli, rather than as isolated
triangles. Consequently, the universal family of such holomorphic triangles is naturally
(n + 1)-dimensional. A generic point on ITo U [Ty U Ly 4 is swept out precisely once
by some 0¥ ;. When the orientations are taken into account, then the total space of this
universal family gives rise to an (n + 1)-dimensional integration current, which provides
a bordism current between the integration cycles of Ly 4 and ITy U IT4. Producing bord-
ism currents via universal families of holomorphic curves will be essential to our proposals
concerning the Thomas—Yau conjecture.

2.4. Philosophy of open string mirror symmetry

The Thomas—Yau conjecture is largely motivated by mirror symmetry, based on the ana-
logy between special Lagrangian geometry on the A-side (‘symplectic’), and stability
conditions in the derived category of coherent sheaves on the B-side (‘holomorphic’).
It is worth emphasizing that mirror symmetry is quantum by nature, and only sometimes
admits classical geometric interpretations. The mathematical predictions of open string
mirror symmetry chiefly fall into the following three classes.
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Homological mirror symmetry (the categorical approach). Given a (compact) Calabi—
Yau manifold X viewed as a symplectic manifold, one expects to find a (compact) Calabi—
Yau manifold XV viewed as a complex manifold (sometimes over the Novikov field), such
that the (derived, idempotent closed) Fukaya category D7 Fuk(X) is equivalent as a trian-
gulated category to the derived category of coherent sheaves Coh(X ). Frequently, there
is a preferred Ao, enhancement on both sides, such that D” Fuk(X) ~ D? Coh(X ") holds
as an Aso-equivalence. The concrete implication is that Lagrangian branes L correspond
to objects E of D? Coh(X "), such that the Floer groups are identified with the Ext groups,
which explains the name ‘homological’:

HF*(L,L) ~ Ext*(E, E).

Homological mirror symmetry has many ramifications beyond Calabi—Yau manifolds,
involving for instance Fano manifolds and Landau—Ginzburg models. As a general fea-
ture, homological mirror symmetry only uses pure symplectic topology (vis-a-vis complex
geometry) on either side of the mirror. It is the best understood aspect of mirror symmetry,
with many special cases proven.

SYZ mirror symmetry (the moduli space approach). Taken in a somewhat generalized
and very optimistic sense,'” the Strominger—Yau—Zaslow philosophy says that after taking
into account the quantum instanton corrections, then the moduli space of (semi)stable
Lagrangian branes within fixed homology classes acquires a modified complex structure,
and can be identified with certain moduli spaces of (semi)stable objects from the mirror
side. The stable Lagrangian branes are believed to be related to special Lagrangians via
the Thomas—Yau conjecture. Most of the literature concentrates on the restricted case
of (special) Lagrangian torus fibrations arising from the large complex structure limit,
in which case the moduli space of Lagrangian branes supported on the fibres inside X
should recover the moduli space of points on X ¥, namely the mirror manifold XV itself.'
Beyond the torus fibration case, the moduli space of Lagrangian branes defined by the
Maurer—Cartan equation typically has singularities, which is compatible with the fact that
the moduli space of semistable objects in D? Coh(X V) typically is very singular.

DT theory (the counting approach). In the special case of Calabi—Yau 3-folds, the mod-
uli spaces/stacks of semistable objects have virtual dimension zero, so one can hope
to extract enumerative invariants, which can be thought of as integrals over the moduli

5The SYZ paper [81] focuses primarily on special Lagrangian torus fibrations, but hints at more general
special Lagrangian branes. Some more discussions can be found in Fukaya’s work [33, Section 8.5].

16This SYZ mirror construction has seen the intense research effort on the symplectic side by
Auroux [8], Abouzaid, Fukaya, among many others. The very recent progress [86] achieves a non-
archimedean mirror from Fukaya categorical considerations, but the nature of singular fibres is still not
adequately understood. The skeptics may reasonably doubt if special Lagrangians exist at all in the region
with large curvature inside the Calabi—Yau manifold. Even if they do exist, there is insufficient evidence
that the fibration structure persists. This is maybe the weakest point of the SYZ conjecture.
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space, the most basic version being the Euler number. Donaldson-Thomas theory is a
highly elaborate framework for extracting such numbers using virtual techniques, on the
side of D? Coh(XV). It is suggested (e.g., in [33, Section 8.5]) that one can assign DT
invariants to the moduli space of semistable objects in the Fukaya category,!” and these
should be equivalent to the DT invariants on the mirror X Y. The role of Thomas—Yau
conjecture is that in principle it transforms a problem about counting special Lagrangian
objects, into a categorical framework involving Calabi—Yau Ao-categories and stability
conditions, which then supposedly'® feeds into the grand machinery of Kontsevich and
Soibelman [47-50]. This DT perspective may be regarded as the ultimate goal of Thomas—
Yau conjecture,'” and is close to the physical applications involving BPS states counting,
although on the A-side it is the most removed from mathematical attempts.

It is worth emphasizing that taking stability questions into account requires one to go
beyond homological mirror symmetry. While the Fukaya category (vis-a-vis D?Coh(X"))
depends only on the symplectic (holomorphic) data, the stability condition remembers
information about the holomorphic volume form (polarization class), which now sees the
B-side (A-side). As such, neither the above strong version of the SYZ mirror symmetry,
nor the DT mirror symmetry are consequences of homological mirror symmetry alone, as
indicated already in the SYZ paper [81]. A very general framework that encompasses
all the three aspects of mirror symmetry is in Kontsevich and Soibelman [47], but how to
fit the A-side into this picture is wildly conjectural.

Caveats for differential geometers. However, in the differential geometric literature on
the Thomas—Yau conjecture, one often attempts to go beyond all these aspects of mirror
symmetry, and tries to directly compare the space of Lagrangian submanifolds inside X,
with the space of holomorphic vector bundles equipped with Hermitian metrics over X V.
This comparison must be treated with caution, because there is no general bijective corres-
pondence between these two infinite-dimensional spaces, and because mirror symmetry
is properly a quantum phenomenon which is not fully captured by classical considera-
tions. In fact, mirror symmetry only relates Fuk(X) and Coh(X V) after taking the derived
category, and there is no general reason for the heart of a preferred 7-structure on the
derived Fukaya category (e.g., the ¢-structure defined by some almost calibrated condi-
tion) to agree with Coh(X ). Having vaccinated the reader with these precautions, we
shall regard such comparisons as useful formal analogies, and we consider those aspects
with quantum interpretations as more reliable.

17This would presuppose suitable properness and algebraicity on the moduli space of special Lagrangian
objects, which is a highly non-trivial claim related to the Thomas—Yau conjecture. For instance, in the SYZ
special Lagrangian torus fibration case, compactifying the moduli space requires good understanding in the
singular region, which is far beyond current knowledge.

8modulo heroic efforts

19 As an analogy, the practical calculation of Donaldson’s ASD instanton invariants depends largely on
the solution of Hermitian Yang—Mills equation on algebraic surfaces.

2In the words of SYZ, they required the full equivalence of the two type-II string theories, including
the full BPS spectrum.
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2.5. Hermitian Yang-Mills

Hermitian Yang—Mills (HYM) connections have long been established as the epitome of
how stability conditions control the existence questions of geometric PDEs, but we shall
attempt to say a few new words besides the customary homage. We consider Hermit-
ian metrics H on a holomorphic vector bundle £ — X" over a compact Kéhler mani-
fold XV,*" inducing the Chern connection Vg and the curvature F € Q! (End(E)).
The HYM equation can be written as

v=1_ u(E)

n—1
wyv N ——Fg
X 21

; _ Jyva(E)A Wit _deg(E)
= T ap, UE® @k wE) = K(E) = (E)
This implies the Yang-Mills equation Vy; Fg = 0, and in fact HYM connections are abs-
olute minimizers of the Yang—Mills energy among all unitary connections on the Hermit-
ian vector bundle E. The p-stability (resp. semistability) means that for all proper coher-
ent subsheaf £/ C E, the slope w(E’) < w(E) (resp. w(E’) < u(E)). The bundle E is
called p-polystable if it is a direct sum of u-stable bundles of the same slope.
The famous Donaldson—Uhlenbeck—Yau theorem is as follows.

Theorem 2.9. On a compact Kdhler manifold, the holomorphic bundle E admits an HYM
metric if and only if E is p-polystable.

Remark 2.9. Certain parallels between HYM and special Lagrangians are already known
to Thomas and Yau. The Chern connection Vg is analogous to the Lagrangian subman-
ifold L (with U(1) local systems), the HYM equation as a first order equation on Vg is
analogous to the special Lagrangian condition on L, the second order Yang—Mills equation
is analogous to the minimal surface equation on L, and the Yang-Mills energy minimiz-
ation is analogous to the volume minimization. If the Lagrangian L is represented as the
graph of an exact 1-form, then the potential function defining L could be viewed as ana-
logous to the Hermitian metric H. Finding a mirror analogue resembling the p-stability
was one of Thomas and Yau’s principal motivations.

Ju-stability and its wider context. We now recall why the HYM equation implies p-semi-
stability. Let E’ C E be a holomorphic subbundle (or more generally, a proper coherent
subsheaf). A basic feature of holomorphic geometry is that pointwise curvature decreases
in subbundles: the Chern curvature Fg/ g for the restricted Hermitian metric H | g satis-

fies
N—=1Fg g <~—1Fg H|E.

Wedging both sides with a))"’,Cl, taking the trace, and integrating over XV, we get

/ c1(E') A o5t < p(E)k(E"),
X\/

21Tf we are interested in non-compact A-model target spaces, the mirror is in fact not a compact Kihler
manifold. We hope the reader will excuse us on this issue, since mirror symmetry is only used as motivations
in this paper.
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namely u(E’) < u(E), which is u-semistability. Although this argument is very trans-
parent, we wish to summarize its key features:

* Even though connections and curvatures make sense in a more general setting, we
need the integrability of Kihler geometry to obtain pointwise positivity.”>

¢ To derive u-stability, one integrates over XV, which can be interpreted as the moduli
space of constant maps into X V.>

* The input from complex geometry can be interpreted as a short exact sequence
0—>E — E—E/E —0,

which has a categorical meaning in D? Coh(X") as a distinguished triangle.
e The role of the Kihler form enters via cohomological integrals.
* There is no need for the complex Monge—Ampere equation.

Most of these features are not specific to HYM connections, but similar arguments give
rise to obstructions for a large class of PDEs involving holomorphic bundles, such as the
deformed Hermitian Yang—Mills equation.

Remark 2.10. The p-semistability condition can be recast in terms of the central charge
Z(E) = —deg(E) + ~/—11k(E), as saying arg Z(E’) < arg Z(E) for all non-zero proper
subsheaves E’ C E. It is worth emphasizing that except for the case of Riemann sur-
faces, u-stability does not give rise to a Bridgeland stability condition on D? Coh(X V),
since skyscraper sheaves will generally have zero rank and zero degree, hence zero cent-
ral charge. A similar but more subtle failure of Bridgeland stability happens in the context
of the deformed Hermitian Yang—Mills connections (see [19, Section 4]). Such a failure
does not spell doom for the PDE applications, nor for DT theoretic applications.* Even
though Bridgeland stability seems to be a plausible framework for special Lagrangians in
the light of Joyce’s proposal, it is probably advisable to maintain a more flexible attitude
to stability conditions.

Donaldson functional. The reverse direction, that p-stability implies the existence of
HYM connections, is the hard part of the subject, and a key ingredient is the Donaldson
functional. We make the not very essential simplification that c; (E£) = 0. Donaldson [26,
27] defined a functional M on the infinite-dimensional space # of Hermitian metrics on
the fixed bundle E, by prescribing its first variation at any point H € #:

SM= | Tr(V—1FgSHH™") A0}y
XV

221t would be interesting if the physicists can explain this positivity from supersymmetry, which is
closely related to the Kihler condition.

23Path integrals on the topological B-model typically localizes to the moduli space of constant maps.
This suggests a worldsheet interpretation, which will be more apparent on the mirror side.

24R. Thomas defined DT invariants for z-stability long before the insight of Bridgeland.
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Obviously from the definition, the critical points are precisely the HYM metrics. Less
obviously, this functional is well defined up to an additive constant fixed by the choice of
a reference Hermitian metric Hy. Different choices are related by

M, (H) = Mgy (H) + Mp,(Hp). (2.4)

The space J can be formally assigned a Riemannian structure with non-positive
curvature:

ISH |? = /XV Tr(SHH™')? A 0.

The geodesics in J are given by e’4 H where A is self adjoint with respect to H, and the
Donaldson functional is convex along geodesics.

Proof idea of the Donaldson—Uhlenbeck—Yau theorem. In sketchy terms, one standard
proof of the Donaldson—Uhlenbeck—Yau theorem (closest to Simpson’s approach [74])
proceeds via the heat flow. It has two principal steps:

(i) Consider the HYM heat flow
0HH™ ' = —v/—1AFy.

Using certain parabolic maximum principles, one proves long time existence by show-
ing that all derivatives of H remain bounded for any given finite time. Furthermore,
supyv |AF| and || F|z2 are non-increasing in time, so remain uniformly bounded for
all time. This step does not use stability.

(i) The Donaldson functional is non-increasing in time almost by definition, so has
a uniform upper bound for all time. Together with the pointwise bound on A F, which
is like a Laplacian bound, one eventually shows that if H(¢) fails to be L bounded for
all time, then there exists an L2-subbundle of E with destabilizing properties, which is
then interpreted algebraically as a subsheaf. (Roughly, the destabilizing sheaf comes from
the eigensubspaces of E corresponding to the small eigenvalues of H () with respect to a
fixed reference metric; compare the variational viewpoint below.) The stability condition
rules out this case; one then shows that H(¢) actually converges smoothly at infinite time
to a solution of the HYM equation.

Remark 2.11. An alternative approach by Donaldson [27] in the projective manifold case,
is also based on the flow method, but uses a dimensional induction in which the stability
condition appears indirectly through alternative algebro-geometric characterizations. The
approach of Uhlenbeck and Yau [84] uses the continuity method instead, where the stabil-
ity condition appears in a way similar to the above.

We now discuss the variational perspective to the HYM equation, even though no
proofs have been constructed along such lines. One would try to compactify # in some
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weaker topology (which is not known),”” extend the Donaldson functional to this compac-
tification, attempt to find a minimizer of the functional, and then prove its regularity. Since
the Donaldson functional is convex, it is natural to expect the existence of minimizer is
equivalent to the properness of M, or roughly equivalently M should grow at the infinity
of J.

Suppose now that E fits into an extension sequence

00— F,—>FE— E,—0.

Take arbitrary Hermitian metrics Hg and Hg, on E and E; respectively,’ and regard Hg,
as a semi-Hermitian metric on E. We can then produce a 1-parameter family of Hermitian
metrics on E, via H(s) = e *Hg + HE,. For s >> 1, the metric H(s) can be understood
as equal to e* Hg when restricted to Eq, and almost equal to Hg, on the orthogonal
complement of E;. In terms of bundles with connections, in the limit s — co we get
E| & E, with the Chern connection for Hg |g, ® HE,. As such, it is an easy exercise to
show that to leading order

M(H(s)) ~ —27s / c1(Er) Aot
XV

Recall we have assumed ¢ (E) = 0 to simplify the definition of the Donaldson functional.
Thus the subbundle E; destabilizes E, precisely when the degree of E is positive, so
M(H(s)) goes to —oo along this 1-parameter family.

If one wants to turn the variational approach into an actual proof, one needs to further
show that all possible ways to approach the infinity of (the metric completion of) # can
be approximated by such 1-parameter families of algebraic origin. For our motivational
purpose, it suffices to emphasize the following conceptual points:

* The interesting limiting behaviour of the Donaldson functional occurs at an infinite
distance boundary of (the metric completion of) #. This sits well with the non-
positive Riemannian curvature of # .

» The stability condition controls the asymptotic behaviour of the Donaldson functional
near the boundary of J.

Remark 2.12. The non-linear analysis concerning special Lagrangians is more difficult
than HYM. For instance, the finite time singularities of the LMCF are inevitable. The
HYM equation can be viewed as a toy model which shares some, but by no means all, of
the high level features with the special Lagrangian equation.

25What is known is how to compactify the space of Kihler potentials via psh functions, see the work
by Boucksom [11] for its fantastic application to Kéhler—Einstein metrics. In that context, the boundary at
infinity is related to non-archimedean geometry.

26The fact that the choice of Hermitian metrics will not ultimately matter is an expected feature, ana-
logous to the relation between Kihler potentials and non-archimedean potential theory.
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Infinite-dimensional GIT picture, and possible lack of mirror analogue. The HYM
equation famously fits into a formal geometric invariant theory (GIT) framework. For this,
we slightly change viewpoint, and consider the bundle £ equipped with a fixed Hermitian
structure, while the (0, 1)-connection 55 encoding the holomorphic structure is allowed
to vary. Each g uniquely determines the Chern connection Vg. The group of complex
gauge transformations GL(E, C) acts on the space of integrable (0, 1)-connections, via

§E — gogg og_l.
This action is analogous to a complex reductive group action on a finite-dimensional
Kéhler manifold. The subgroup U(E) of unitary gauge transformations is analogous to the
maximal compact subgroup. The space GL(E, C)/U(E) can be formally identified with
the space of Hermitian metrics on E. The HYM equation arises naturally from consider-
ations of the moment map, and the Donaldson—Uhlenbeck—Yau theorem can be formally
motivated from this picture [27].

This kind of infinite-dimensional GIT framework has successfully suggested the an-
swer in many problems within Kéhler geometry, so it is only natural that many people
have attempted to find an analogue suitable for special Lagrangian geometry. One such
attempt is as follows. Thomas [82, Section 3] considered the space

Z ={(L,A): L C X is Lagrangian, A is a flat U(1)-connection on L}

(not up to gauge equivalence!). The tangent space is Z!(L) & Z!(L), where Z'(L) is the
space of closed 1-forms on L. This suggests an almost complex structure on Z

J:(_Ol é)

With some hesitation,”” Thomas attempted to complexify the Hamiltonian group action
into a complex infinite-dimensional group action. Unfortunately, there seems to be no
natural way to do this in general, and J is not quite an integrable complex structure. On
the other hand, the moduli space of special Lagrangians with U(1)-local systems does have
a natural complex structure induced from J, which is however naive in the sense that the
complex structure of the moduli space of Lagrangian branes is subject to further quantum
corrections due to holomorphic curves, known also as ‘worldsheet instantons’ [8].

There seems to be no agreed interpretation, but in the author’s view, this suggests
the infinite-dimensional GIT framework is itself inadequate for the purpose of special
Lagrangian geometry.”® As we explained in Section 2.4, the main predictions of mir-
ror symmetry are quantum in nature, and one should be cautious about taking an overly

2’Thomas was aware of the possible objections, and did not use the GIT analogy as the principal basis
of his proposal.

ZThomas’s suggestion is not the only possible way to achieve a GIT analogy. However, the other
proposals [28,57] do not exhibit the mirror analogy in the same intuitively plausible way.
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classical perspective. From our perspective, one underlying reason why the infinite-dimen-
sional GIT framework is successful in Kéhler geometry, is that on the B-side one does not
see the worldsheet instanton effect directly. On the A-side we have no such luxury.

As a word of console, although GIT is very good at suggesting the correct stability
conditions for a PDE problem in K#hler geometry, it is almost never involved in the actual
proofs of existence and uniqueness results for PDEs.

2.6. Deformed Hermitian Yang-Mills

Much recent research concentrates on a more non-linear cousin of HYM, known as the
deformed Hermitian Yang—Mills equation (dHYM), expertly surveyed in [19]. Although
the techniques involved in dHYM are more akin to other areas of Kihler geometry, such as
Kihler—Einstein metrics and the J -equation,” its motivation is in part to find an improved
mirror analogue of special Lagrangians, with the distant goal of constructing the Bridge-
land stability on the B-side of the mirror.

The equation can be motivated differential geometrically from semiflat mirror sym-
metry [20]. To start, one imposes foric symmetry, so that over a local n-dimensional
base D, the A and B sides are respectively the T7"-bundles 7*D/A and TD/AY equipped
with the canonical symplectic/complex structure, where A and A" are dual lattices, so that
the torus fibres are naturally dual. A section L of T*D/A over D fibrewise determines
a flat U(1)-connection on the corresponding fibre of TD/A, and the Lagrangian condi-
tion on L is equivalent to these fibrewise connections fitting into a connection A on a
line bundle E over TD/A, with the integrability condition F£’2 = 0. Now a Hessian
metric on D induces a Kihler structure on both sides. The condition for L to be a spe-
cial Lagrangian of phase 5, translates into the mirror condition on the holomorphic line
bundle: R

Im(eiie(a)xv + FA)n) = 0.

Here the curvature Fy4 of the U(1)-connection is an imaginary valued (1, 1)-form. Up
to rescaling wyv, the global version is the dHYM equation for a Hermitian metric on a
holomorphic line bundle E over XV, thought of as a PDE on the potential function ¢:

Im(e_ig(wxv +V=1ag)") =0, [ap =a+ V—130p] € —c1(E).

For an alternative view, we can pointwise simultaneously diagonalize wyv and a4, to
extract the eigenvalues A;,

VT

/1 _ _
(1)Xv=—2 Zdz,-/\dzi, a¢=TZAidZi/\dzi~

PIndeed, the recent breakthrough of Gao Chen [16] on dHYM is largely based on the methods he
developed for the J-equation. The work of Collins et al. [18] has strong analogy with the homogeneous
complex Monge—Ampere equation important for CSCK metrics.



Thomas—Yau conjecture and holomorphic curves 25

The dHYM equation is then
O (a) = Zarctan)t,- =6 mod 7 Z.

14
Thus the equation actually separates into several discrete branches depending on the
choice of 0, and changing ] by km can drastically alter the behaviour of the equations.
Replacing 6 by -6 (so E is replaced by its dual) does not change the problem, so without
loss of generality 0 < 6 < . There are two significant limiting cases:

(i) When A; > 1 forany i, so 0~ = %i, the equation becomes approximately

the J-equation
oA wyv

Olg)_l N wxv = ffTXag
Most mathematical works on dHYM assume some lower bound such as 6 > @, which
may be morally interpreted as being near this large phase limit.

(ii) When |A;| < 1 for any i, so 6 ~ > Ai, the equation is approximately the line
bundle case of the HYM equation

-1
_ oA WL,
ap Akt = Janogt wyv.

J ok
This is also known as the large volume limit, in the sense that the Kédhler metric length
scale is much larger than the curvature scale of the bundle.

Towards a Bridgeland stability condition. The existence of dHYM solutions has algeb-
raic obstructions. Let V be a p-dimensional subvariety of XV, with 1 < p < n. Under the
large phase assumption 6> @ a pointwise consideration of eigenvalues shows [19,
Proposition 3.4]

Im(/v e_«/jl(é—(n_P)%)(a)XV + 4/_1a¢)n) > (.
More suggestively, denote
Zv(E) = —/ e~ V71OV e h(E) € RageY 9V E)  4,(E) e (0, 1),
14

so the algebraic obstruction can be rewritten as

Im( Zy(E)
Zxv(E)

This bears some resemblance to a Bridgeland stability condition with central charge
Zxv (E), even though on a technical level there are some discrepancies [19, Section 3.2].
In the simplest understood examples, such as the blow-up of CP? in a point, the obstruc-
tion criterion for dHYM seems to refine Bridgeland stability, in the sense that every dHYM
stable object is Bridgeland stable, but not conversely. It is not entirely clear how to inter-
pret this (see Remark 2.10).

) >0, ie,¢y(E)> dxv(E)=0— @
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Main achievements on dHYM. Some of the most significant results on the dHYM equa-
tion are as follows:

* There is a well developed formal GIT picture ([18, 21], [22, Section 2]), including
a complexified group action on an infinite-dimensional Kéhler manifold, a moment
map, a negatively curved symmetric space, and a Donaldson-type functional which is
convex along geodesics.

+ The geodesic equation with prescribed boundary data have C!:!-solutions and vis-
cosity solutions under a large phase assumption [19, Theorem 2.7]. This leads to
non-trivial algebraic obstructions [19, Section 3].

* Assume large phase 6 > @ and the existence of a subsolution in the suitable

sense, then the dHYM equation can be solved [19, Theorem 5.2].

* Assume large phase 6> @, then the existence of dHYM solution can be formu-

lated in terms of algebraic obstruction conditions [16].

Will dHYM lead to the mirror Bridgeland condition? Despite substantial progress,
many essential difficulties still need to be overcome before the dHYM equation can give
rise to a Bridgeland stability condition on D? Coh(XV):

* Can one relax the large phase assumption?

* Is there a generalization of dHYM equation to higher rank vector bundles? (Near
the large volume limit, the asymptotic existence criterion for a generalized dHYM
equation is understood in [25], but there is no fully non-perturbative result as in the
line bundle case.)

* Can this story be extended to complexes of vector bundles?
* How can one compare the answer with the A-side of the mirror?

Time will tell how far one can push in this program, but we would like to momentarily
play the skeptic’s advocate.

The differential geometric motivation’” of dHYM assumes semiflat ambient Kihler
metrics. Such metrics only arise naturally if the manifold has toric symmetry, or as a
good approximate description for degenerating Calabi—Yau metrics near the large com-
plex structure limit/large volume limit. Near this limit, the dHYM equation may be an
improvement on the HYM equation as the mirror version of special Lagrangians. But far
away from such limits, the instanton corrections cannot be ignored, and indeed a general
Kihler metric has no toric symmetry.

The reliance on the large phase assumption is a possible indication of a breakdown
once we move too far from a large phase limit. In the closely related special Lagrangian

30There is an independent physics motivation for dHYM from the Dirac—-Born—Infeld action. The DBI
action is however not an exact result, but depends on the assumption that certain derivative terms of the
curvature can be ignored. Unlike the A-model side where the central charge Z(L) = [, 1, 2 is believed to

hold exactly, on the B-side the central charge formula Zxv (E) = — [y e~V loxv ch(E) is believed to be
subject to worldsheet instanton corrections.
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graph equation, relaxing the phase condition is known to result in rather severe singularit-
ies for the viscosity solutions.

Being the section of a torus fibration is a serious assumption on the topology of a
Lagrangian.

The difficulty with higher rank vector bundles is a possible indication that Coh(X )
may be not the natural abelian subcategory of D? Coh(X V) suited for dHYM. Further-
more, there is no a priori guarantee for arbitrary stability conditions to correspond to
PDEs,’! or to have any classical geometrical interpretation at all. In particular, the B-side
mirror to the hypothetical special Lagrangian stability condition may well be an abstract
stability condition with no particular PDE interpretation.

Due to the lack of imagination, it is hard to see how PDEs can know about the degree
shifts of a complex of vector bundles, and how it can detect homotopy equivalence of
complexes.

If we take this skeptical view, then we do not expect an exact comparison between the
hypothetical Bridgeland stabilities on both sides of the mirror, without adding very sub-
stantial assumptions such as toric symmetry. But when HYM shares the same qualitative
features as dHYM, which admit a mirror interpretation, it lends more plausibility for these
features to appear also on the special Lagrangians.

2.7. Extensions and wall crossing

Part of Thomas and Yau’s insights is that one should focus on the categorical aspect
of mirror symmetry when we look for an analogy between the A-side and the B-side.
Their starting observation is that Lagrangian connected sums are analogous to bundle
extensions [82, Sections 3 and 4].

Extension bundle vs. Lagrangian connection sum. An essential aspect of Coh(XY) is
that new bundles can be constructed from extensions of known bundles E, E,, namely

0—->FE > FE— Ey,— 0.

Such extension sequences are classified by the complex vector space Ext! (E5, E1). Due to
the C*-scaling, the choice of E is parametrized by the projective space P (Ext!(E>, E})).
In general, extensions are not symmetric in E1 and E,. The extensions

0—->E,—>FE—>FE —0

are classified by Ext! (Ey, E,), which is a quite different space. Extensions can also be
viewed as distinguished triangles in D? Coh(X").

3UIf a Bridgeland stability condition arises from a PDE, there is no a priori guarantee that its deforma-
tions also come from PDEs.
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In the mirror picture, exact sequences do not make a priori sense, but one can talk about
distinguished triangles, whose geometric sources are the graded Lagrangian connected
sums L#L,, fitting into a distinguished triangle

Ll — LI#LZ —> L2 — Ll[l]

Such distinguished triangles are classified by HF(L,, L1).*> Again there is a scaling
symmetry related to the neck size of the Lagrangian connected sum, and there is an asym-
metry between L1#L, and Lo#L ;.

This analogy is a prime example of homological mirror symmetry. On either side, only
pure complex geometry/pure symplectic geometry appears.

Wall crossing. Wall crossing in the categorical context refers to the following phenom-
enon when the stability condition varies in a 1-parameter family, with central charges Z;.
For ¢t > 0, the objects Eq, E», E in the extension sequence are all stable, so necessarily

arg Z;(Ey) <arg Z;(E) < arg Z,(E2), Z(E) = Z:(E1) + Z:(E>).

At t = 0, the phase angles become equal, and for # < 0, the phase angle inequality is
reversed, and E becomes unstable. This phase alignment occurs on a codimension one
locus in the space of stability condition, and thus they are called walls. Every extension
sequence potentially gives rise to a wall, and the walls can be dense in general.

A notable special case is w-stability of bundles for a 1-parameter family of Kihler
classes [w;], and the slopes w(E1), w(E2), w(E) become equal precisely for 1 = 0. On
one side of the wall, the HYM connections exist on £, E5, E, and on the other side £
becomes unstable and no longer admits any HYM connection.

Thomas [82] interpreted a gluing construction of Joyce as the mirror analogue of the
wall crossing phenomenon for bundles.* In the simplest case, let n > 3, fix a symplectic
structure w, and vary the holomorphic volume form €2, in a 1-parameter family while
keeping the almost Calabi-Yau condition. Let L}, L? be smooth special Lagrangians with
respect to 2, with phase 6} and 62, intersecting transversely at precisely one point p,
with Floer degree ;2 ;1(p:) = 1, such that 62 — 0} increases past zero at 1 = 0, and in
particular 6]
inside C":**

= 93. Thus at t = 0, the tangent planes can be put into the standard form

TyLy=('%".....e"")R", T,L§=R" 0<¢p <7 Y ¢ =r.

Nt

— _snl
w= TZdzk/\dzk, e Q =a"dzy A~ ANdzy, a > 0.

%2The caveat is that unlike bundles, the neck length of the Lagrangian connected sum cannot be arbit-
rarily large.

31t is quite remarkable that Thomas and Yau knew before Bridgeland, that stability conditions make
sense categorically beyond p-stability, and the mirror of the hypothetical special Lagrangian stability con-
dition does not need to be p-stability.

34The constant a comes from the almost Calabi—Yau structure, and @ = 1 in the Calabi—Yau case.
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This provides the appropriate framing data to topologically glue in a Lawlor neck Ly 4
(see Section 2.3) to desingularize L! U L? for small 7, so that the glued Lagrangian has
the topology L1#L2. Joyce [43, Theorem 9.10] shows that for each small ¢ > 0, the glued
Lagrangian can be perturbed into a special Lagrangian of phase 6; ~~ 9(}. Ast — 0, these
special Lagrangians converge as currents to L} U L2, while for 7 < 0 this gluing strategy
does not produce any new special Lagrangian.

The central charges are

Z(L)) = /Li Qb = RieV10 Z(LML?) = Z(L)) + Z(L?) = R,V 10",
t

In particular, R} sin(6} — 6;) = —R? sin(6? — 6,). The asymmetry between ¢ > 0 and
t < 0 in Joyce’s gluing construction comes from an approximate formula for the Lawlor
neck parameter valid for small ¢,%

R} sin(—0;} +6,) =a™A > 0.

Thus th < 60, is needed in the gluing construction. This is strongly reminiscent of a Bridge-
land stability condition. What happens when ¢ crosses zero can be interpreted as wall
crossing.

To summarize, the mirror analogy of wall crossing phenomenon is of categorical
nature. However, it goes beyond homological mirror symmetry as soon as it involves the
stability conditions, and the new problems involve analytical aspects, beyond purely topo-
logical issues. The similarity between the Joyce gluing and the bundle case is a strong
motivation for Thomas and Yau. However, the Joyce analysis is only valid in a perturb-
ative regime, and what is missing here is a non-perturbative understanding of when the
D® Fuk(X) class of the Lagrangian connected sum can admit special Lagrangians.

2.8. Space of almost calibrated Lagrangians

‘We now return to the A-side of the mirror and describe the work of J. Solomon [77, 78],
generally accepted as the canonical picture on the subject. While dHYM is motivated by
the dream of a correspondence (semiflat mirror symmetry) between the two sides of the
mirror at the level of classical objects, Solomon is interested in the structural similarities
between the infinite-dimensional spaces involved in the mirrors, and especially in find-
ing analogues for the HYM equation.’® The reader is thus invited to keep in mind the
comparison with Section 2.5.

Let £ be the space of almost calibrated compact immersed Lagrangians in an almost
Calabi—Yau manifold (X, w, 2),

$+={L:L—>X|—%<9<%}.

35For a heuristic short derivation see [42, Section 6]. Beware that Joyce’s Lagrangian connected sum
has the opposite convention.
36Solomon’s work predates the substantial works on the dHYM equation.
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For the benefit of intuition, we shall loosely identify the Lagrangian immersion with its
image. Solomon [78] considers the space O of Lagrangians which are exact isotopic (aka.
local Hamiltonian isotopic)’’ within £ to a fixed Lagrangian. It should be borne in
mind that unlike the space ¢ of Hermitian metrics on a bundle, the space @ may have
very non-trivial topology; we call its universal cover ©. The formal deformations of the
Lagrangians are given by the Hamiltonian functions 4#: L — R, up to the ambiguity of
an additive constant. Solomon proposes to fix the constant by the normalization condition
f I hRe Q2 = 0, and assigns a formal Riemannian metric on

L0 = {h:L—>R|/hReQ=O},
L

via the formula

(h,k)z[hkReQ.
L

This is positive definite because Re €2 is a volume form on L by almost calibratedness. The
main result of [78] is a computation on the Riemannian curvature of ¢, which is found to
be non-positively curved, similar to the HYM setting. A further paper [79] computes the
geodesic equation with respect to this formal metric, and reinterprets a geodesic between
Ly, Ly € O interms of a 1-parameter family of special Lagrangians (of phase 7 instead!)
with boundary on Lo U L.

Another major aspect of Solomon’s work is to look for an analogue of the Don-
aldson functional. The definition of this Solomon functional does not really require the
almost calibrated condition, even though some of the main properties do. Choose some
appropriate 6 e (=%, %) so that [, Im(e Q) = 0. Now take a 1-parameter family of
Lagrangians L; in @ with associated Hamiltonian functions /;: L; — R. Solomon defines

1 _
S = [ dt htIm(e_wQ).
0 L

His main theorem is the following.

Theorem 2.10 ([77]). The functional $ is independent of Hamiltonian deformations of
the path of Lagrangians fixing the two ends. In particular, by fixing the starting Lagrang-
ian Lo, we obtain a functional § of the endpoint Lagrangian, which is well defined on the
universal cover 0.

Like the Donaldson functional, this well definition is non-trivial. It is however obvious
that the critical points in @ are precisely special Lagrangians of phase 6. Furthermore, we
have the following theorem.

3TExact isotopies of immersed Lagrangians differ from global Hamiltonian isotopies, in that the
Hamiltonian function on the Lagrangians may depend on the local sheets, so may not always extend
smoothly to the ambient space.
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Theorem 2.11 ([77]). Assume 6 = 0. Then the second variation of S at a critical point
is positive semidefinite. Furthermore, along a geodesic with respect to Solomon’s formal
Riemannian metric, the functional § is convex.

The analogy with Donaldson’s picture in Section 2.5 should be quite clear.

Limitations. Unlike Thomas and Yau who based their bet primarily on the Floer theoretic
or categorical aspects, which are closer to the quantum world of topological field theories,
Solomon’s picture is predominantly classical, and its chief limitation comes from fixing
the topological type of the Lagrangian:

(i) There is no appearance of the brane structure, or the role of holomorphic curves.

(i) Solomon works with exact isotopic Lagrangians, but the Thomas—Yau argument
suggests it is more natural to work in a derived Fukaya category class.

(iii) The Solomon functional is only well defined by passing to a highly non-trivial
universal cover. In the very special case where @ and Im(e? 952) are exact forms on X,
Solomon gave a formula [77, Theorem 1.3] that shows his functional is well defined on ©.
We view the exactness on Im(e’@Q) as too strong an assumption for applications.

(iv) The infinite-dimensional Riemannian structure is incomplete in a much more
severe way compared to the B-side analogues. This means that in non-pathological exam-
ples, we can reach the boundary of the exact isotopy class within finite distance in the
Solomon metric, such that the Solomon functional remains finite.

This is geometrically very significant. In the LMCF approach, this would strongly
suggest the formation of finite time singularity, which is a major difference with the HYM
case. In the variational viewpoint, this incompleteness would negate all the favourable
arguments from the convexity of the functional and the non-positivity of curvature, and
suggest instead that the exact isotopy class is not an adequate framework for finding spe-
cial Lagrangians. We will discuss later that a more promising variational framework needs
to incorporate Lagrangians from the same derived Fukaya category class, not just the same
exact isotopy class.

Exact isotopy class versus derived category class. The example below is closely related
to the most symmetric case of the Lawlor necks (see Section 2.3). It is also morally related
to the Lawlor neck pinching singularity in the Joyce program [45, Section 3.5].

Example 2.12. Consider two almost calibrated Lagrangians L', L? with a unique inter-
section point p, and there is a Darboux chart around p modelled on By C C", such that
inside the chart L', L2 the local setup is

. V=1
L! = oi7/nRn [2 = R", w:TZdzk/\dEk, Q%Hdzk.

Let (L;)o<t«1 be a 1-parameter family of Lagrangian connected sums with neck length
O(t), which all agree with L U L, except in a compact subset in Bj. Inside Bj, we take
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the Ansatz
L ={tys)x1,...,ty(s)xn) | x% R xi =1},

where the curve y(s): R — C can be chosen so that L, is almost calibrated and agrees
with L1 U L, outside By /. Clearly, L, are related by scaling inside B;. The Hamiltonian
vector field along L,, which is really a section of (TX/TL,)|z,, agrees with (y(s)xy,...,
y(s)x,) inside B; and is zero outside.® The corresponding Hamiltonian function /, is 2
times a smooth function of one variable s; a small caveat is that &, converges to two
generally different constants along L and L,. Thus it takes finite distance in the Solomon
metric to reach the limit # — 0, and the Solomon functional remains finite, but the topology
changes from L, to L' U L2

Remark 2.13. The Hamiltonian functions /4, along L; can be extended to global func-
tions on X, with

Ihellco = O@?).  Ndhellco = O@),  [[V?hillz= < C.

But in the ¢+ — O limit, the second derivatives fail to be continuous at the origin, and
indeed L, changes topology in the limit.

In this example the essential failure is the breakdown of smoothness. In view of Joyce’s
program, this suggests that the remedy is to allow for (Floer theoretically unobstructed)
almost calibrated Lagrangians connected to each other not just by exact isotopies, but
also surgeries such as Lagrangian connected sums. In these transitions the derived cat-
egory class of the Lagrangian is unchanged, and the Thomas—Yau argument suggests the
D? Fuk(X) class is a natural framework to look for special Lagrangian representatives.
The following fundamental question is thus relevant for the compatibility between the
geometric and the categorical perspectives:

Question 2. When are two almost calibrated unobstructed Lagrangian branes isomorphic
in D? Fuk(X) connected by exact isotopies with surgeries?

Remark 2.14. The Joyce program suggests that running the LMCF would result in a
sequence of exact isotopies and surgeries, to connect the initial Lagrangian to its infinite
time limit, which one hopes to be the unique representative of the Harder—Narasimhan
decomposition. In the almost calibrated case, there is no ‘collapsing zero object’ in this
process for homological reasons, so the surgeries should be continuous in the geometric
measure theory sense. Since any two such Lagrangians within the same D? Fuk(X) class
are expected to flow to the same limit, they are supposedly connected to each other through
a continuous family of unobstructed Lagrangians.

3This is consistent because near the boundary of B, the position vector is a tangent vector of L, so
vanishes in the quotient TX/TL;.
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2.9. Totally real geometry

There is another interesting framework due to Lotay and Pacini [57, 58], which makes the
holomorphic curves appear on the forefront, and exhibits good analogy with the classical
GIT picture, by enlarging the space of Lagrangians into the space of fotally real subman-
ifolds.

Let (M, w, J) be a Kédhler manifold. A real n-dimensional submanifold L is called
totally real, if at every point T, L is transverse to J7,L. Lotay and Pacini introduce a
formal principal bundle » — T, where J is the space of totally real immersions ¢: L — X
isotopic to a given immersion, and J is formally its quotient by the orientation preserving
diffeomorphism group Diff* (L) of L.* There is a horizontal distribution, which at each
point ¢ € J assigns the transverse bundle JT¢(L), so gives a way to lift tangent vectors
from T to &. They then define a geodesic to be a curve ¢, in f, such that the tangent vector
field d,¢; is parallel with respect to the horizontal distribution. As a caveat, here the word
‘geodesic’ does not suggest a Riemannian metric. An alternative characterization [57,
Lemma 2.2] of a geodesic, is a 1-parameter family of totally real submanifolds (;: L — X,
such that there is a fixed vector field Y € I'(L, TL), with

d
Elt = Jlt*Y, [Lt*Yv JLt*Y] =0.

Geometrically, one can imagine (i;)o<;<1 sweeps out an (n + 1)-dimensional subman-
ifold with boundary, foliated into complexified integral curves of Y, which are holo-
morphic curves inside X .

Lotay and Pacini also define the J-volume functional on 7. Pointwise on a totally real
submanifold L, a real cotangent vector of L corresponds to a (1, 0)-form in ALO y |L,so
taking the n-th wedge power, we have a canonical isomorphism between A” L @ C and
Kx|L- Now the Kihler structure on X induces a Hermitian metric on Ky, and pointwise
on L an element of Ky with unit Hermitian norm uniquely specifies a volume form d vol y
on L. Their J-volume functional is

Voly (L) = / dvoly.
L

It is easy to show Vol provides a lower bound Vol; (L) < Vol(L) to the Riemannian
volume of L, with equality precisely when L is Lagrangian.

In case X is Calabi—Yau, this construction is particularly transparent. The totally real
condition is equivalent to the pointwise non-vanishing of € when restricted to L, and

Lo

%Lotay and Pacini did not worry about analytical issues involving the quotient; their picture is entirely
formal.

< Voly(L) = / 70 < Vol(L),
L
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where the phase factor is chosen to make e ¢ an orientation form on L. Consequently,
any totally real submanifold in a Calabi—Yau manifold with 8 = 6 constant, with no need
for the Lagrangian condition, is an absolute minimizer of the Vol ; functional. This enorm-
ous space of critical points is closely related to the non-ellipticity of the critical point
equation. The situation is somewhat better in a negative Kéhler—Einstein ambient space,
where the critical points coincide with minimal Lagrangians [57, Section 5.5].

One of their main results is the following.

Proposition 2.13 ([57, Theorem 5.10]). In a Kdihler—Einstein ambient manifold with non-
positive Ricci curvature, the J-volume functional is convex along the geodesics.

There is also a formal GIT picture [57, Section 6]: to some extent the space & can be
viewed as the infinitesimal complexification of Diff* (L), with the space of orbits 7. The
J -volume functional is formally a Kihler potential on &, and the Diff " (L)-moment map
gives rise to critical points of the J-functional.

Limitations. From the viewpoint of special Lagrangian geometry, the limitations of the
Lotay—Pacini picture are as follows:

(i) The Lagrangians are largely relegated to the back stage. As clear from the above,
in the Calabi—Yau case the space of critical points is too enormous. Their framework may
be more useful in the negative Kédhler—Einstein case, but the lack of ellipticity is a severe
obstacle.

(ii) There is no attempt to link up with Floer theory. As such, they lack satisfact-
ory existence criteria for the holomorphic curves, despite making some limited progress
in special cases. In fact, Lotay and Pacini’s geodesics seem too oversimplified from the
Floer theoretic viewpoint: one needs to address transversality questions in general, and
holomorphic disc breaking should occur in moduli spaces of dimension > 1.

2.10. Analogy with tunnelling effect

Note. This section is meant to be purely inspirational, and its aim is to present some
analogies and comparisons with no claim to physical accuracy.

Notice the Thomas—Yau argument is a little mysterious from the following classical
perspective: how could two Lagrangians in possibly different Hamiltonian isotopy classes
communicate with each other? This situation seems conceptually similar to the phenom-
enon of tunnelling in quantum mechanics: there may be several minima of the classical
potential function separated by potential wells, but there is a non-trivial quantum amp-
litude for the particles to move in between, thereby removing the ground state degeneracy.
In the Thomas—Yau setup, we have two putative special Lagrangians, which are analogous
to the energy minima points, and the Thomas—Yau uniqueness statement is similar to the
removal of degeneracy, resulting in a unique ground state.

The physicists tell us that branes are dynamical objects and can fluctuate. If so, it might
make sense to ask about the amplitude for a brane to start with a given configuration and
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end with another. Now if Lagrangian branes behave like classical particles moving on
an infinite-dimensional space such as Solomon’s space 9, one might expect Solomon’s
formal picture to be relevant for describing this amplitude, and the incompleteness of @
would suggest a non-trivial amplitude to tunnel outside @ to another Hamiltonian isotopy
class. As a conflicting viewpoint, the use of Floer theory in the Thomas—Yau argument
suggests the Lagrangian branes communicate by the strings stretched between them, so
one might expect the amplitudes to be computed in terms of worldsheet integrals. Lotay
and Pacini’s geodesics fit this viewpoint better, and have the major advantage of making
sense outside a given Hamiltonian isotopy class.

Tunnelling effects made a famous appearance in Witten’s interpretation of Morse the-
ory [85] in terms of supersymmetric quantum mechanics, with an eye towards applications
in quantum field theory. In Witten’s context, the tunnelling amplitude between two critical
points of a Morse function is to leading order proportional to e =5, where S is proportional
to the difference of the two critical values. Now Solomon’s functional has some similarity
with a Morse function whose only critical points are minima. In Sections 3.2 and 3.7 we
will unify the Solomon functional with the Lotay—Pacini geodesics, in the special case
of exact Lagrangians. Could the Solomon functional have any physical interpretation in
terms of the logarithm of the tunnelling amplitudes?*’

3. Moduli space of holomorphic curves

The theme of this section is the bordism currents produced from the (n 4 1)-dimensional
universal family over the (n — 1)-dimensional moduli spaces of holomorphic curves. This
theme unifies the search for the Floer theoretic obstructions, and the problem of extending
the Solomon functional to the derived Fukaya category setting. One of our central tech-
niques is integration over the moduli spaces, to prove both identities and inequalities. The
primary setting of this section is exact graded compact Lagrangians inside Calabi—Yau
Stein manifolds, with occasional comments on the compact Calabi—Yau case.

The Floer theoretic obstructions are necessary conditions to the existence of special
Lagrangians in the exact and almost calibrated setting. We will give a large number of a
priori heuristic principles to place very stringent constraints on what kind of obstructions
we are looking for, then prove the Floer theoretic obstructions under the extra hypotheses
of automatic transversality and a positivity condition (see Section 3.5), and then compare
our picture to Joyce’s proposal on Bridgeland stability (see Section 3.6). The converse
direction, in search of sufficient conditions for the existence of special Lagrangians, will
be laid out in Section 5.

40As a grain of salt, Witten’s interpretation concerns supersymmetric QFT, while the Thomas—Yau
picture concerns the dynamics of Lagrangian branes, which is a target space perspective on string theory,
which lacks a fundamental path integral formulation. As such, our suggested physical interpretation is not
logically rigorous, but only a guess.
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We also present two perspectives on extending the Solomon functional to unobstruc-
ted Lagrangians within the same D? Fuk(X) class. The more elementary perspective (see
Section 3.2) works only in the exact setting, and implies the first variation formula under
Hamiltonian isotopies in a rather straightforward manner. The second perspective (see
Section 3.7) represents the Solomon functional as an integral over the moduli space of
holomorphic curves, which we hope can be generalized to the compact Calabi—Yau set-
ting. Section 3.8 contains more applications of the moduli integral technique.

Remark 3.1. The two assumptions of automatic transversality (which roughly means that
no perturbation of almost complex structure is needed, see Section 3.3) and the positivity
condition (see Section 3.4) will feature prominently in the major results of this section.
Correspondingly, we will not dwell on the detail of the perturbation schemes aimed at
overcoming the transversality issues, which are painstakingly carried out in [4, 14, 15,67,
68]. The expert readers may convert to their favourite schemes as they prefer. For more on
our clockwise conventions such as gradings and signs, which differ from many symplectic
texts, see the appendix.

3.1. Lotay—Pacini picture revisited

From a Floer theoretic perspective, the main insight of Lotay and Pacini (see Section 2.9)
is that given two Lagrangians L, L’ decorated with suitable brane structures, one should
look for a family of holomorphic curves with boundary on L and L’, which pass through
any generic point of L and L’. In their formal picture, such families are called ‘geodesics’.
What Lotay and Pacini did not provide is a good existence criterion for their geodesics.
Now, even though we will soon specialize to a much simpler setting, we wish to explain
how their geodesics fit into the Thomas—Yau—Joyce picture.

In the setup of Bridgeland stability, the central charge is defined as a homomorphism
from the Grothendieck group of a triangulated category to C, which factorizes through a
finitely generated lattice, viewed as a numerical Grothendieck group. In view of the applic-
ation to special Lagrangians, the triangulated category is D? Fuk(X), and the numer-
ical Grothendieck group should be a subgroup of the homology group modulo torsion
H,(X,Z)/ tors. In particular,

« if two Lagrangian branes L, L’ define the same object in D? Fuk(X), then this picture
predicts them to lie in the same homology class in H, (X);

e if Ly - L — L, — Lq[1] is a distinguished triangle, then [L,] + [L,] = [L] in
H,(X).
This means Floer theory must provide a bordism current between L, L’ (resp. L and

L1 U L), namely an (n + 1)-dimensional integration current € with 0€ = L — L’ (resp.
0€ = L — L1 — L,).*! In Floer theory, cycles are constructed from moduli spaces of

“IThe boundary of integration currents do not detect contributions from supports of small enough
dimension. In this respect they are similar to pseudocycles, although when we generalize to Lagrangians
with very weak regularity later, the language of currents may be more natural.
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holomorphic curves and evaluation maps, so this current € should come from families
of holomorphic curves, possibly with highly sophisticated perturbations and virtual tech-
niques. This suggests the Lotay—Pacini geodesics, construed in this homological sense,
should be part of the Fukaya category foundation necessary for the Thomas—Yau-Joyce
program.

High brow viewpoint. The claim that the K-theory of the derived Fukaya category of a
symplectic Calabi-Yau manifold (exact with suitable convexity at infinity, or compact)
factorizes through homology H,(X) modulo torsion seems well known to symplectic
topology experts, although a precise reference seems rather difficult to find. We now sketch
a high brow viewpoint explained to the author by P. Seidel and S. Rezchikov, and will
later explain in more detail a more pedestrian approach in the exact setting. The claim is a
formal consequence of the existence of maps

Ko(D? Fuk(X)) =% HHo(D? Fuk(X)).
HHo(D? Fuk(X)) 25 QH"(X: Anoy) = Hy(X) ® Aoy,

Here H Hy(D? Fuk(X)) is the Hochschild homology in degree zero. The first map sends
the K-theory class of an unobstructed Lagrangian brane L (compact, graded, oriented,
with spin and bounding cochain structure) to the unit

1, € HF*(L, L) — HHo(D" Fuk(X));

the well definition of this map is an essentially algebraic fact. Suppose L, L’ are iso-
morphic in D? Fuk(X), then there are closed morphisms « € CFO(L, L"), BeCF (L', L)
whose derived category compositions are equal to 1, € HF°(L, L), 1 € HF°(L', L")
in cohomology. The Hochschild differential of 8 ® o exhibits 17 — 17/ as a coboundary
in the Hochschild chain complex, so 17 = 17/ in HHy(D? Fuk(X)). Some additional
calculation shows the compatibility with distinguished triangles.

The second map is a special case of the open-closed string map, and in general requires
working over the Novikov field. One then needs the claim that 1;, is sent to the homology
class [L] € H, (X), without quantum correction. The intuitive meaning of the open-closed
string map is to consider holomorphic discs with boundary on L with an unconstrained
boundary marked point, and find the cycle in X traced out by an interior marked point. The
claim amounts to saying that the only contribution comes from constant maps. Unfortu-
nately, the author is unable to locate a general reference. Granted this claim, we would get
by composition a map from Ko(D? Fuk(X)) to H,(X; Anov) Which sends the K-theory
class of L to the homology class [L].

Remark 3.2. The claim that the non-constant holomorphic discs do not affect the image
of 1z in QH™*(X; Ayov) under the open-closed map, has the following intuitive explan-
ation, communicated to the author by P. Seidel. The moduli space of holomorphic discs
with an interior marked point constrained to a given n-cycle in X, together with an uncon-
strained boundary marked point, admits an S!-action coming from the rotation of the



Y. Li 38

disc. Unless the holomorphic disc is constant, the S 1" action has finite stabilizer, which
suggests that the virtual count contribution from non-constant discs should vanish, hence
by Poincaré duality the contribution of non-constant discs to the open-closed map van-
ishes.

Without assuming this claim, then one has the weaker conclusion that the image of 17,
under the open-closed map is [L] € H, (X, Anov), modulo terms with strictly positive
Novikov exponents (due to the positive energy of the non-constant discs). Supposing that
L and L' are isomorphic in D? Fuk(X), the above discussion would imply that [L] = [L’]
modulo terms with strictly positive Novikov exponent, and by comparing the leading order
term, we would still deduce L = L’.

In Sections 3.1.1 and 3.1.2 we will give a more concrete perspective on why L is
homologous to L’ in the exact setting.

3.1.1. The exact embedded Lagrangian case. We specialize to the setting of Stein man-
ifolds, and all Lagrangians are assumed to be exact, graded and compact, and in particular
carry an orientation (see the Appendix for some basic Floer theory). The local systems
have holonomy in R, Q or Z. We consider two transverse embedded Lagrangians L, L’
in the same derived Fukaya category class. By definition, we have closed morphisms
a e CFOL,L"Y and B € CF°(L’, L); we sometimes view the Lagrangian intersections
in B as degree n outputs. Moreover, in terms of the product structure on cohomology
HF°(L,L"Y® HF°(L',L) — HF°(L'. L),
HF°(L',L)® HF°(L,L") — HF°(L, L),
the composition &« o § = 17/ and § o @ = 11. These conditions completely characterize
isomorphism in D? Fuk(X). Our goal is to explain the following result.

Proposition 3.1. There is a bordism current € such that 9€ = L — L’ in the sense of
currents.

The bordism current will be constructed from universal families of (perturbed) holo-
morphic strips with boundary on L and L', and with ends at & and 8 (meaning that the
ends of the strip converge to intersection points of L, L’ of degree 0 and n respectively,
and «, § encode the weighting factors to the contribution of these intersection points).
We will assume all the usual transversality assumptions in Floer theory are satisfied, so
the compactified moduli space M («, B)/R of perturbed holomorphic strips up to domain
translation is a smooth manifold with boundary and corners, of dimension (n — 1). The
notation really stands for a formal sum of many moduli spaces, coming from the sum-
mands of «, 8. The universal family is fibred over this moduli space M(«, §)/R, whose
fibres are the solutions to the Cauchy—Riemann equation (with domain dependent per-
turbations of the almost complex structure), which we call perturbed holomorphic curves.
The fibres over the boundary of the moduli space are broken holomorphic curves. The
orientation on the universal family is induced from the complex orientation on ¥ and the
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orientation on the moduli space, up to an extra minus sign (see Example A.2 for conven-
tions). Upon evaluation to X we obtain an (n + 1)-dimensional current €.

Remark 3.3. If the Fukaya category is defined over Z, then all the weighting factors to
the various universal families are all integers, and € is naturally an integral current. If we
use Fukaya categories over Q or R instead, then € is only guaranteed to be a finite Q
(resp. R) linear combination of integral currents.

Our main task is to understand the boundary of €. There are two sources of boundaries
as follows:

e The holomorphic curves themselves have boundary along L U L’. This boundary con-
tribution is always supported on L U L’.

* The compactified moduli spaces have boundary due to holomorphic strip breaking.

In schematic notation, the boundary of the moduli space is described by

(M. B)/R) = | M(e.r)/R x M(r. B)/R.

Here r can range from all intersection points of degree between 1 and n — 1. The notation
M(c, B)/R stands for a weighted sum of moduli spaces, with weighting coming from the
holonomy factors of the local systems.

Next comes a crucial observation. Although 2 < degr < n — 2 give rise to boundaries
of the moduli space M(c, B)/R, their contributions to d€ are contained in the univer-
sal families associated to M («, r)/R and M(r, B)/R. These smaller moduli spaces have
dimension at most n — 3, and the corresponding universal families have dimension at
most n — 1. By rectifiability considerations, the n-dimensional current d€ cannot receive
contributions from at most (n — 1)-dimensional supports, so such disc breakings do not
contribute to J€.

Now for deg r = 1, the moduli spaces M(c,r)/R are zero-dimensional, so their
presence merely amounts to some counting factors. The condition for ¢ to be closed in
CFO(L, L’) is equivalent to the weighted count of M (e, 7)/R being zero. This weighted
sum appears as the coefficient of the n-dimensional current defined by the universal family
over M(r, B)/R. Thus we see that r € CF!(L, L") does not contribute to J€. Similarly,
the condition for S to be closed in CF°(L’, L) implies that r € CF'(L’, L) (alternatively
viewed as degree n — 1 intersections from L to L’) does not contribute to €. In summary,
0'€ must be an integration cycle supported on L U L’.

Since J%€ is itself the boundary of a current, it must be closed. This explains why 9€
is a constant linear combination of the integration cycle of L and L’, instead of some
non-trivial function times these cycles. The constant coefficients can be pinned down by
counting the number of holomorphic strips passing through a given generic point on L
(resp. L'), and the choice of the generic point does not matter. Such counts are pre-
cisely the geometric interpretation of the Floer product HF°(L, L") ® HF°(L', L) —
HF°(L',L'),and HF°(L',L) ® HF°(L,L") — HF°(L, L) (see Example A.1). When




Y. Li 40

the moduli space orientations are taken into account, we obtain 0€ = L — L’ (see Exam-
ple A.2 for an exposition on signs).

Remark 3.4 (Homological uniqueness of the bordism current). Some auxiliary perturba-
tion data goes into the construction of € due to the need to ensure transversality. If we fix
L, L', but change the domain dependent almost complex structures, then the difference
of two bordism currents € — €’ has zero boundary in the sense of currents. Recall that
Stein manifolds have the homotopy type of a CW complex of dimension < n, and thus
Hi(X) =0fork >n + 1, so € — €’ must be the boundary of an (n + 2)-dimensional
current. For an alternative viewpoint, this (n + 2)-dimensional current can be concretely
provided by parametrized families of pseudoholomorphic curves (see Remark 3.6).

3.1.2. Immersed case. Still working in the exact setting, we now allow (L, b), (L', b’)
to be unobstructed immersed Lagrangians with transverse self intersections. Assume they
intersect transversally, and define isomorphic objects in D? Fuk(X). We now wish to
explain why Proposition 3.1 should continue to hold even in the immersed setting, without
delving too deep into the specifics of the perturbation schemes and transversality issues.
For some background on the immersed Floer theory, see Section A.2.

The isomorphism condition gives us closed morphisms o € CFO(L, L’) and B €
CF°(L’, L) whose cohomological compositions give the identities. At the chain level,

b.b' bb /
my” (B,a) = 1o —mi(y), my (@, B) = 1p +m] ()

where 17,, 17/ stand for the geometric units (represented by a sum of local maximum points
of Hamiltonian functions on L, L’ respectively), and y, y’ are elements in CF~!(L, L),
CF~Y(L’, L") respectively. Notice in the almost calibrated case, y, ¥’ would be both zero,
since there are no self intersections of degree —1.

As before, the bordism current shall be constructed from the universal family of (per-
turbed) holomorphic curves with boundary on L and L’. But instead of working only with
holomorphic strips, we need holomorphic polygons with corners not only at intersection
points in ¢, B, but also at points in b, b’. In addition to the holomorphic strip moduli space
M(c, B)/R, we also need the moduli space of polygons M (b, ...,b,a,b',..., b, B),
and M(b,...,b,y), M(b',...,b",y"). The notation here is a shorthand for a weighted
sum of many moduli spaces of polygons. Since the bounding cochain elements have Floer
degrees one, these moduli spaces all have dimension n — 1. The energy of the polygons
satisfies the topological formula (A.4), so by the Novikov positivity requirement of bound-
ing cochains, there is a uniform a priori energy bound once «, 8, v, Y’ are given, whence
there are in fact only finitely many moduli spaces involved. Each moduli space provides
a universal family of holomorphic curves, and the sum of all the contributions defines an
(n + 1)-dimensional current €. For sign conventions, see Section A.2 and Example A.2.

The boundary of € comes from two sources: the boundary of the individual holo-
morphic curves which lie on L U L', and the boundary of the compactified moduli spaces.
In the exact setting, there are no sphere bubbles. As in the embedded case, for support
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dimension reasons, the boundaries of the compactified moduli space that can contribute
to dC, is caused by curve breaking into two pieces arising in 0 and (n — 2)-dimensional
moduli spaces. The cancellation of these contributions is very similar to the standard argu-
ment for the Floer differential to square to zero (see Section A.2).

For breakings at a nodal point mapping to CF!(L, L') (resp. CF'(L’, L)), the contri-
butions vanish due to the closedness condition m?’b, (o) = 0 (resp. the closedness of ).

For breakings at degree 2 self intersection point on L (resp. L’), the contributions
vanish due to the Maurer—Cartan equation on b (resp. b’).

A new way of disc breaking/splitting, is at a degree zero self intersection r on L
(the L’ case being entirely similar). The discs of M(b,...,b,a,b’,...,b’, B) can break
into a virtual dimension zero disc with input at b, ...,a,b’,...,8,b,...,b and output
at r, and a virtual dimension n — 1 disc with input corners at b, ..., b, r. On the other
hand, the discs of M (b, ..., b, y) can break into a virtual dimension zero disc with input
ath,...,y.b,...,band output at r, and a virtual dimension n — 1 disc with input corners
at b, ..., b, r. These two effects cancel out.

After the cancellation of all moduli space boundaries, the only contributions d€ are
supported in L U L’. As in the embedded case, 9% is locally a constant multiple of the
underlying cycles of L, L’. The interpretation of the geometric unit pins down 0€ =
L — L’ as in the embedded case.

Example 3.2. If L and L’ are disjoint Lagrangian branes which both define the zero object
in D? Fuk(X), then «, B are both zero, and € comes entirely from the y, y’ contributions.
Of course, zero Lagrangian objects have zero homology class, which cannot happen in the
almost calibrated case.

Remark 3.5. If there are degree —2 self intersections of L, then the choice of y is only
unique up to mll’ of some element in CF~2(L, L). The corresponding choice of € would
be ambiguous by the boundary of an (n 4 2)-dimensional integration current. As a closely
related issue, our conditions on «, B are merely cohomological, so in general we can
adjust & and B by coboundary terms, which would affect € also by the boundary of an
(n + 2)-dimensional current. If we impose L, L’ to be almost calibrated, then there are no
CF~Y(L, L") elements to begin with, and these phenomena do not happen.

On the other hand, € still depends on the choice of local systems and bounding
cochains, which may contribute non-trivial holonomy factors. Gauge equivalent choices
affect € by the boundary of an (n 4 2)-dimensional current. One may naturally ask the
following questions.

Question 3. Up to gauge equivalence of bounding cochains and local systems, is there an
optimal representative of €?

Question 4. Given an exact isotopy with surgery between L and L’ among unobstructed
Lagrangians, is there a preferred choice of € (see Question 2)?
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Distinguished triangles. In our convention, an immersed Lagrangian can be made up of
several connected components. A prototypical situation is when L’ is the union of two
immersed Lagrangians L1 and L,, with some degree one intersections in CF!(L,, Ly)
arising as part of the bounding cochain data of L’. When the brane structure is taken
into account, we can view L’ as a twisted complex built from L;, L, (with bounding
cochains by, b, suppressed in the notation) and a closed morphism y € CF!(L,, L) =
CF°(Ly[—1], Ly). Inside D? Fuk(X),

~ T ~ (L27b2)
L=t _( 14 (Llﬁbl)).

We have a distinguished triangle
Lo[-11 5 Ly — Cone(y) — L,
and L ~ L’ ~ Cone(y). Rotating the triangles, we get another distinguished triangle
Li—>L— L, 5 L[]

The bordism current between L and L’ is an (n + 1)-dimensional integration current with
0€ = L — L1 — L. In particular, this explains that the Grothendieck group of D? Fuk(X)
should factorize through H,, (X).

Here is a more geometric perspective on the bordism currents arising from distin-
guished triangles, which is very close to Thomas and Yau’s original viewpoint, where
the fundamental phenomenon is Lagrangian breaking. In the simplest case, we can ima-
gine L is isomorphic in D? Fuk(X) to the Lagrangian connected sum L;#L, (beware
our convention for L;#L is the same as Thomas—Yau [82] but different from many sym-
plectic texts), so that we can construct a bordism current between L and L;#L,. Now
when L#L, deforms, the Lagrangian handle part can shrink, and in the limit L#L, can
break into two components L U L, (see Example 2.12). The bordism current between L
and L U L, should simply be the limit of the sequence of bordism currents. This picture
illustrates that even when the topology of the Lagrangians can change under non-smooth
convergence, the bordism currents should persist in a continuous way.

One can proceed with the case of many Lagrangians, namely we take the immersed
Lagrangian L’ to be the twisted complex (see Section A.2)

(Ln.bwn)

byn-1  (Ly-1.bn-1) G.1)

by by_1,1 o by (Ly,by)

In this case, assuming L is isomorphic to L’ in D? Fuk(X), the bordism current between
L and L’ amounts to a bordism current between L and L U L, U --- U Ly.
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This multi-Lagrangian situation is built out of many distinguished triangles: for 1 <
k < N, let & be the immersed Lagrangian L; U --- U Ly corresponding to the twisted
complex

(L. br)

brx—1  (Lk—1.bx—1) (3.2)

b1 br—1,1 wo by (L1,b1)

Then (suppressing bounding cochains in the notation) we have a sequence in D? Fuk(X),
0=8—>8 —--—>8Ey~L,
with distinguished triangles
E_1—>8 — L, — &_1[1].

The morphism from L; to &;_; comes from b; ; for j < i. This setup should be reminis-
cent of Harder—Narasimhan decompositions (2.2), although at this stage we have not yet
brought in stability conditions, which shall be discussed further in Section 3.6.

3.2. Solomon functional revisited

Let (X, w, ) be an almost Calabi—Yau Stein manifold, and L be an exact Lagrangian
brane, with fL Im(e*?Q) = 0 for some suitable 6 € (=%, %). Our goal is to suggest
how the Solomon functional may be well defined without the universal cover issue, and
extended beyond a given exact isotopy class. Both issues are essential for the variational
approach to the Thomas—Yau conjecture, see Section 5.

Homological nature of the Solomon functional. Write the Liouville 1-form as A, so
dA = w, and the potential of the immersed Lagrangian L as fr, so dfy = A|. We con-
sider the potential as part of the brane data, so adding a constant to f7 is viewed as a
different Lagrangian brane. We shall consider a path of such Lagrangians L;, with asso-
ciated Hamiltonian functions /,, so there is a preferred way to parallel transport f7, as
recalled below.

Lemma 3.3. We have

1 ~ ~ ~
/ dt | heIm(e™ Q) = [ fr, Im(e7?Q)[1Z) - / AAIm(e™Q).  (3.3)
0 L; L; ULy

Proof. Let X; be the Hamiltonian vector field along L, associated to /;, namely dh; =
w(X;,-). We calculate the time derivative of f7,: along L,

ELxA =1xdA +d(xA) =xo +dxA) =d(h: +1xA),
so there is a preferred parallel transport of f7, along the path L;,

3,th = ]’lt + le.
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Hence,

0¢ I, Im(e_igﬂ) = (hy +1xA) Im(e_ieQ) + Jr. Lx Im(e_mQ).
L, L, Ly
Now by the Cartan formula and the closedness of €2,

Lx Im(e_’ﬁQ) =duiy Im(e_ieﬂ),

so after integration by part,

/ fr.xIm(e™Q) = — | dfi AxIm(e79Q) = — | 2 A Im(e70Q).
L, L, L

Combining the above,
o [ fi im(eQ) = / hy Im(e~0Q2) + / (A A Tm(e992)).
L, L,

Integrating in ¢ gives the result. ]

We observe that by the Kéhler condition w A Q = 0, so

d(A A Im(e_iéQ)) =wA Im(e_iGQ) =0.

This means the term fo L AA Im(e_iéﬂ) is a homological quantity, in the sense that we
can replace U; L; by any compactly supported (n + 1)-current € with € = L; — Ly,
which would automatically satisfy

[€—UiL:]=0¢€ Hyp1(X)

since H,+1(X) = 0 for Stein manifolds. In particular, this explains Solomon’s theorem
that his functional is invariant under Hamiltonian deformations of the path of Lagrangians.
The advantage of our homological interpretation is to allow more general currents €,
which in particular can come from families of holomorphic curves.

Proposed extension of the Solomon functional. Taking the homological interpretation
of (3.3) as starting point, a natural way to extend the Solomon functional is to make use
of the bordism current € between an unobstructed Lagrangian L and a fixed unobstructed
reference Lagrangian Ly. We have € = L — Ly as currents, and € comes from the
universal family of holomorphic curves. Our proposed formula is

S(L) =/fLIm(e_i§Q)—/ Lo Im(e_iéﬁ)—lm/ ineiQ. (34
L Lo €

A few conceptual points are in order.

(1) We emphasize that this depends not only on the underlying Lagrangian, but also
on the potential f7 .
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(i) There is no need to pass to any universal cover in the space of Lagrangians, as in
Solomon’s work (see Section 2.8).

(iii) The topology of L is no longer fixed, and in particular the Hamiltonian isotopy
class may change.

(iv) We view (3.4) as a unification of the very different viewpoints of Solomon and
Lotay—Pacini. In Section 2.10 we suggested that this extended Solomon functional may
be relevant for quantum tunnelling amplitudes between the branes L, and L.

(v) Suppose we vary the Lagrangian L within a 1-parameter exact isotopy family of
unobstructed Lagrangians L;. The bordism currents €; between L; and L satisfy

€, = €1, + Uy <t<s, Ly modulo exact (n + 1)-dim currents,

then the computation in Lem 3.3 proves the first variation formula for the Solomon func-
tional

iS(L,) = f he Tm(e719Q), (3.5)
dt L,

which is of course the defining feature of the Solomon functional. Consequently, the form-
ula (3.4) extends Solomon’s definition in our exact setting, and fixes the multi-valuedness
problem (i.e., the need to pass to universal covers) in Solomon’s work.

Change of reference Lagrangian. The definition of the Solomon functional depends
on the reference Lagrangian L, and we write S7,(L) when we wish to emphasize this
dependence. The following feature of the Solomon functional resembles the Donaldson
functional in the HYM context (see (2.4)).

Proposition 3.4. Under the change of reference Lagrangians,
SLo(L) = 1y (L) + SLy(Lp). (3.6)

Proof. We shall use the homological nature of the Solomon functional and the fact that
H,11(X) = 0. We pick €;, €,, €3 such that

3, =L—1L), 06 =Ly—Ly 06 =L~—Ly.

Then €; + €, is homologous to €3, so we can replace €3 by €; + €, to compute Sz, (L),
whence (3.6) follows. ]

Remark 3.6. A more Floer theoretic argument that €; + €, is homologous to €3, which
does not appeal to Hy41(X) = 0 directly, can be sketched as follows. We assume Ly, Ly,
L are three unobstructed Lagrangians mutually isomorphic in D? Fuk(X), and

HF ' (Ly,Lo) = 0.

Of course, the self Floer cohomologies of Ly, L{), L are all isomorphic, and HF 1=0is
a necessary condition if the D? Fuk(X) class admits any almost calibrated representative
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at all. We consider « € CF(Lo, Ly), B € CF°(L},, L), y € CF°(L, Lo) representing
the generators of HF Y, such that at the level of Floer cohomology

yoBoa =1L, aoyof =1y, Poaoy=IL

For simplicity we first assume almost calibratedness, so that CF~! = 0, and there is no
ambiguity for these generators. Notice the compositions 8 o «, Y o B, o y provide gener-
ators of HF®(Lg, L), HF°(L},, Lo), HF°(L, L},). Consider the n-dimensional moduli
spaces M of holomorphic discs with corners at «, 8, ¥ and the self intersection points cor-
responding to the bounding cochains. The corresponding universal family ¢ provides an
(n + 2)-dimensional current, whose boundary comes from disc bubbling and disc break-
ing. Most of the boundary contributions are eliminated by the Maurer—Cartan equation
of the bounding cochains, the closedness of «, §, y, and support dimension reasons, and
only three boundary contributions survive. These are the (n + 1)-dimensional bordism
currents between L, L{) (resp. Ly, L and L, Lg) constructed from the universal family of
holomorphic curves associated to the generators o, —y o B (resp. B, —x oy and y, B o ).
We can identify these as €5, €1, —€3. The upshot is that Floer theory explicitly provides
the (n + 2)-dimensional current that exhibits the homological relation between €1 + €,
and €3.

In general without assuming almost calibratedness, then CF ~1 can be non-zero. Then
we need some extra n-dimensional moduli spaces to account for the non-uniqueness of
cohomological representatives of HF, an issue quite similar to Section 3.1.2. A subtle
new issue is that the moduli space M receives new boundary contributions involving
the mé’ products (this shorthand notation indicates the presence of bounding cochain ele-
ments, see (A.8)) of «, B, y. The three cyclic permutations of «, 8, y produce three mé’
products, which are elements in CF~1(Lg, Lo), CF~!(Ly, L{) and CF~!(L, L) respect-
ively, and the (n — 1)-dimensional moduli of polygons with one corner at the CF~!
intersections and the other corners at bounding cochain elements contribute to 9€. Now
by the Ao relation, and the closedness of «, 8, y,

m (m5(y, B, @) + m5 (v, m5(B, @) — mh(m5(y, B), ) = 0.
Writing
mb(y,m5(B,a)) = 11, + m(81) and m(m5(y, ), &) = 11, +m5(52),

we see mé’ (y. B, ) + 61—z s mll’-closed, so by the assumption that HF ~!(L¢, Lo) =0,
itis in fact —m}I’ (£1) for some &1 € CF~2(Lyg, Lo). We can then produce an n-dimensional
moduli space, from polygons with a corner at ¢;, and other corners at the bounding
cochain elements. Completely analogously, one can produce two other n-dimensional
moduli spaces from &, € CF~2(Ly, L) and e3 € CF~2(L, L). Combining the (n + 2)-
dimensional universal families over the n-dimensional moduli spaces, results in an explicit
bordism current between €; + €, and €3.
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3.3. Automatic transversality

In our later applications, it is not enough to just have a bordism current between Lag-
rangians L, L’ constructed from perturbed pseudoholomorphic curves. Two additional
conditions are desirable: automatic transversality and positivity condition. These are nat-
ural properties of the highly idealized picture of Lotay and Pacini (see Section 2.9), but
may seem rather strong for Floer theorists.

In this section we discuss various sufficient conditions for automatic transversality,
which intuitively means that the bordism current € is constructed without perturbing
the integrable complex structure. This requires that the (extended) linearized Cauchy—
Riemann operator is surjective, namely the moduli space is regular. The next section will
discuss the positivity condition. Complex integrability and the existence of holomorphic
volume form €2 will be assumed throughout. All holomorphic curves are assumed to be
non-constant.

Automatic transversality. There exist a finite collection of (n — 1)-dimensional smooth
moduli spaces of holomorphic curves u: ¥ — X with respect to the integrable complex
structure, constructed from the inputs in CF°(L, L"), CF°(L’, L) ~ CF™(L, L")V and
the bounding cochain data as in Section 3.1, such that by taking the weighted sum of
the (n + 1)-dimensional universal families of holomorphic curves, we obtain a current €
with € = L — L'. This bordism current € agrees with the bordism currents constructed
from generically perturbed almost complex structures, up to the boundary of an (n + 2)-
dimensional current.

Moreover, considering the boundary of holomorphic curves 0¥ varying in the (n — 1)-
dimensional regular moduli spaces, we obtain n-dimensional universal families, sweeping
out the cycle L — L’; we require the evaluation map from these n-dimensional univer-
sal family to L U L’ to be immersions, except at the corner points of X mapping to
the Lagrangian intersections, where the failure of immersion is ‘minimal’ (see below for
details). We say that the bordism current € consists purely of ‘automatically transverse
curves’.

Automatic transversality, weak version. We can allow certain holomorphic curves
u:x— X

arising in (n — 1)-virtual dimensional moduli spaces, which are not automatically trans-
verse, subject to the following requirements on these extra bad curves:

(1) When virtual perturbation theory is taken into account, € = L — L/ still holds.

(2) Atany such bad curve u: ¥ — X, given any n — 1 first order deformation vector
fields, the 1-form Q(-, vy, ..., v,) restricted to X vanishes identically. Intuitively,
this means €2 vanishes identically on the Zariski tangent space of the universal
family at u: ¥ — X. As a caveat, these Zariski tangent spaces may be higher-
dimensional.
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(3) The boundary evaluation u: 90X — L U L’ for all such bad holomorphic curves
is contained in some subset of L U L’ of Hausdorff dimension < n — 1. As such,
at almost every point on L U L', only automatically transverse curves pass through
it.

(4) The Solomon functional can be computed by integrating only on the part of €
consisting of automatically transverse curves.

The automatic transversality assumption should be viewed as a higher-dimensional
generalization of the fact that on Riemann surfaces, the non-trivial holomorphic polygons
are immersions up to the boundary (see [71, Section 13 (b)]. The intuition for the weak
version is that we sometimes need extra holomorphic curves to maintain 0€ = L — L/,
but for questions related to the Solomon functional and the boundary evaluation to the
Lagrangians, these extra curves do not contribute.

Index theory preliminary. For a pseudoholomorphic polygon u: ¥ — X with inputs at
P1,---, Pr and an output at g, arranged in clockwise order, the index is

k

degg — ) _ deg pi.
1

where the degree convention is (A.1). The index amounts to a Maslov number compu-
tation, and an alternative topological description is as follows: take a section s of the
complex line bundle A"TM — X, which restricts on dX to a section of the real line
bundle A”TL. (When several Lagrangians are involved, it is understood that 7'L refers
to the appropriate Lagrangian on the portion of 9X.) We assume s has isolated zeros up
to the boundary and the corner (aka. strip like ends). We may also regard s as a function
(s) on the polygon, by contraction with 2. Then

Index =2 Z(interior zeros) + Z(boundary Zeros)

+ Z(excess corner zeros) + n. 3.7

Here the order of zeros is computed from winding numbers, and for general sections s
may take positive and negative values. At a corner where 0% passes from L4 to L_ in
the clockwise direction, we can put the tangent spaces 7L 1+ C TX into the standard form
respecting the complex structure

Ly=R" L_= (.. .  "R" 0<¢p;<n, TX=R"Q®C,

so if Q(s) ~ z% in the complex coordinate of the upper half plane model, the excess
vanishing order at the corner is o — % Z'l’ ¢;. Formula (3.7) is equivalent to the standard
index formula by a topological version of the Cauchy residue formula.
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3.3.1. Automatically transverse cases.

Holomorphic strip. We first consider the holomorphic strip case with input p and out-
put g, and the integrability of the complex structure will be important. The first order
deformations of the holomorphic strips X are given by holomorphic sections of TX |5,
which takes boundary value in 7L over 9%, and decays at the corners.

Lemma 3.5. Ifvy,..., v, are first order deformation vector fields, then either
Qi,...,v,) =0

everywhere on X, or we must have deg g — deg p > n, and when the equality holds then
Q(v1,...,vy) only vanishes at the ends with excess vanishing order zero.

Proof. We have a section of A"TX|y given by vy A --- A v,, which takes boundary
value in A"TL on 0X. Since vy, ..., v, are all holomorphic, so must be the function
Q(v1, ..., vy). Assume this function is not identically zero. By holomorphicity, the zeros
are isolated. We claim that the order of zeros must be non-negative everywhere. This is
clear for the interior and the boundary points. We analyze the ends of the strip as the origin
in the upper half plane model with holomorphic coordinate z, putting 7L + in the standard
form at the corner point. The deformation vector field has the leading asymptote

Vg = (aklz¢‘/”,...,aknz¢”/”) +0(), k=1,2,...,n,

hence
Q1, ..., vp) = 2EP/7 (det(ag,) + o(1)),

and the excess vanishing order is non-negative. By the index formula (3.7), the index
deg g — deg p > n, and when equality is achieved all vanishing orders must be zero. In
particular, det(ag;) # O at the corners. |

Corollary 3.6 (Automatic transversality, strip case). Suppose that degq — deg p = n.
Ifvy,..., v, are R-linearly independent at some point on 0% away from the two corners,
then vy, ..., v, span the space of all first order deformations, the obstruction space van-
ishes, and the moduli space is smooth ar u: ¥ — X. Moreover, the holomorphic strip is
an immersion up to the boundary.

Proof. Since vy, ..., v, are R-linearly independent at a point on 9%, they span TL at
the point, so Q(vy, ..., v,) # 0. By the lemma above vy, ..., v, are pointwise complex
linearly independent as sections of the holomorphic vector bundle 7X over X, so any
holomorphic first order deformation can be written as

V= flvl +"'+fnvn‘

The functions f1,..., f, are holomorphic on X up to boundary, and even up to corners
due to det(ag;) # 0. Now subtracting a constant linear combination of vy, ..., v,, we
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can ensure v vanishes at any chosen point on dX. Then Q(v, va, ..., v,) has a zero, so
must be identically zero by the above Lemma, whence f; = O identically. Similar all
fr = 0,s0v = 0. This proves that vy, ..., v, span all first order deformations. Since the
index is 7, and the first order deformation space is 7-dimensional, we must have vanishing
obstruction space.

There is a special deformation vector field from R translation. The non-vanishing
result then implies that the holomorphic strip is an immersion up to boundary. At the
corners, the holomorphic strip is to leading order

(a1227 + 0(2),...,anz®'™ + 0(2)), axr #0Vk, |z] < 1.

By det(ay;) # 0, this translation vector field cannot be O(z) at the corner, so for at least
one choice of k, we have ay # 0. We say the failure of immersion at the corner is ‘min-
imal’. ]

Holomorphic polygon. We now move on to holomorphic polygons with k + 1 corner
points for k > 2. The extended linearized Cauchy—Riemann equation (see [71, Chapter 9])
involves a vector field v € C%°(Z,u*TX) decaying at the ends, and p € Q%! (Z, T ) rep-
resenting a tangent vector of the Stasheff associahedron (i.e., the deformation of Riemann
surface structure on the domain ), satisfying

- 1
8v+EJXoduo,o:0,

where Jx is the complex structure on X. Here p can be taken to be compactly supported,
so dv = 0 near the corners. The next lemma immediately follows.

Lemma 3.7. Given first order deformation vector fields vy, . . ., v,—1, then the (1,0)-form
Q(-,v1,...,V—1) on X is holomorphic.

Remark 3.7. Adding vector fields on ¥ valued in TX to vy, ..., v,—1 does not affect
Q(-,v1,...,Vy—1) as a 1-form on X. Thus this 1-form is insensitive to how one represents
the Riemann surface structures on the abstract polygon.

We impose that the input at one of the k£ corners maps to an intersection point in
CF°(L, L"), and the other inputs map to degree one self intersections of L or L’. The
output mapsto g € CF*(L, L").

Proposition 3.8 (Automatic transversality, polygon case). Suppose vy, ..., v,—1 are lin-
early independent first order deformation vector fields. Either Q(-, vy, ..., v,—1) vanishes
identically as a 1-form on X, or we must have degq > n, and when the equality holds then
Q(-,v1,...,vy—1) only vanishes at corners. In this case, all first order deformation vector
fields are spanned by v, ..., vy—1, the holomorphic polygon u: ¥ — X is an immersion
up to the boundary, the obstruction of the extended linearized operator vanishes, and the
moduli space is smooth atu: ¥ — X.
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Proof. By viewing the domain of the polygon as a strip with extra boundary punctures, we
produce a holomorphic vector field v, as the R-translation vector field. However, unlike
in the strip case, at the degree one self intersection corners v, does not typically have the
required decay to be admitted as a deformation vector field. Indeed, by thinking about such
a corner point as the origin in the upper half plane model of ¥ with local coordinate z,
then zv, decays at the corner, but not necessarily v,, itself.

Now vy A --+ Ay is a section of A" TX with boundary value on A" T L, and in addition
Q(v1, ..., vy) is a holomorphic function on X. We assume from now on that it is not
identically zero. The index of the ordinary Cauchy—Riemann operator is

k
degq—Zdegpk =degqg —k + 1.
1

Invoking (3.7) this is computable from the vanishing orders of Q(vq, ..., v,):
degg—k+1=2 Z(interior zeros) + Z(boundary zeros) + Z(corner Zeros) + n.

The interior and boundary vanishing orders are non-negative. Since the vy are holo-
morphic near the corners without correction, the proof of Lemma 3.5 shows that the excess
vanishing order at the CF(L, L") corner and the ¢ corner are both non-negative. At the
degree one self intersection corners, the excess vanishing order of Q(vy, ..., vy—1, ZVy)
is non-negative by the same previous arguments, so (v, ..., Uy—1, Uy) itself has excess
vanishing order > —1. Hence,

degg—k+1>n—-k+1,

namely degg > n.

When the equality is achieved, all bounds are saturated. In particular, Q(vy, ..., vy,)
can only vanish at the corners, so u: X — X is an immersion up to boundary. At the
corners, the same arguments in Corollary 3.6 shows the failure of immersion is minimal.

If v is the deformation vector field corresponding to an arbitrary kernel element of
the extended linearized operator, then after subtracting off a constant linear combination
of vy,...,v,—1, Wwe may assume v is tangent to X at any chosen point on dX. The same
argument in Corollary 3.6 shows v is tangent to the image of 3. The immersion property
allows us to lift v to the domain . There is no room to deform the complex structure
of X, nor is there any automorphism of X, so in fact v vanishes identically. This shows
that vy, ..., vy—1 span all first order deformations. But deg g = n implies that the index
of the extended linearized operator is

k
degq—Zpk+k—2=n—l.
1

Thus the cokernel dimension is zero, namely the obstruction space vanishes. Consequen-
tly, the moduli space of such holomorphic polygons is smooth. ]
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Remark 3.8. Using the Floer degree formula given in (A.1), the asymptotic behaviour of
Q(v1,...,vy) at the corners can be extracted from the above proof: at the CF°(L, L)
corner point p,

Quy,...,v,) = apz(eL’_eL)(p)/”(l + 0(2)), ap #0, arga, =6r(p) mod nZ.
At the degree one self intersections p; € CF'(Ly,L_)on L or L',
Q1. ..., vp) = a;z0-"00@/T (1 L O(z)), a; #0, arga; = O, (p1) mod 7Z.
At the degree n output g,

Quy,...,v,) = aqz(eL_eL’)(q)/”(l + 0(2)), aq #0, arga; = 60r/(q) mod 7Z.

Weighted Sobolev space with exponential growth. We now discuss solutions to linear-
ized Cauchy—Riemann equations in weighted Sobolev spaces W 1%/ (see [72, Section 2]).
These spaces agree with their unweighted counterparts along the strip like input ends, but
at the strip like output end s > 0, a vector field v € W52# means that exp(—pus)v lies
in W2, Generally we choose j to avoid a discrete set of indicial values. The main point
of these weighted Sobolev spaces is that they allow for holomorphic vector fields with pre-
scribed exponential growth along the output end, which is conceptually similar to allowing
for meromorphic functions in Riemann surface theory. If we think of the strip like end ¢ as
the infinity (resp. the origin) in the upper half plane model of X, then the natural coordin-
ate is z = ™D (resp. z = e 7+ and the exponential growth o(e/*) becomes
o(|z|/7) (resp. o(|z| /7).

For larger p, more vector fields are included in the Sobolev space and the index
increases by one each time u crosses an indicial value (counted with multiplicity). In
our problem, the indicial values are

o1+ 72, ¢+ 7Al,...,pn + 77,

where ¢1,. .., ¢, are the characterizing angles at the Lagrangian intersection point g at the
output end. Then the index for the linearized Cauchy—Riemann operator W 1214 — [2:#

18
k

degqg — Z deg p; 4+ number of indicial values between 0 and p, (3.8)
1

where k is the number of input ends. In particular, for holomorphic strips with deg p =
deg g (resp. degg — deg p = 1), then the index for © = m is equal to n (resp. n + 1). In
contrast, the ordinary index (for the u = 0 case) is zero, and the moduli space obtained by
taking R-quotient has virtual dimension —1 (resp. zero). There are in fact sufficient condi-
tions to rule out the negative dimension moduli spaces, and constrain the zero-dimensional
moduli spaces.
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Lemma 3.9. In the holomorphic strip case, assume vy, ..., v, are in the kernel of the
linearized Cauchy—Riemann operator on WLZB=7 sych that Q1,...,v,) does not
vanish identically. Then degq — deg p > 1. When the equality is achieved, the holomorphic
strip is an immersion up to the boundary with minimal vanishing at the corner, and the
zero-dimensional moduli space is regular.

Proof. We modify the proof of Lemma 3.5 and Corollary 3.6. We think of the corner g as
the origin in the upper half plane model. Without loss of generality v,, is the R-translation
vector field of the holomorphic strip. Then the leading order asymptotic is

v = (aklz¢1/”_1,...,aknz¢"/”_l) +0(), k=12,....n—1,

and
vy = (anlz¢1/”, .. .,annz¢"/”) + 0(2),

hence
Qv1,..., vy) = 2 &/ T (det(ay ;) + o(1)).

The excess vanishing order is > 1 — n, where negative order stands for poles. By the index
formula (3.7) for the ordinary linearized Cauchy—Riemann equation, we have

degg—degp>1—n+n=1,

and equality forces Q2(vy, ..., v,) to have no interior zero, no boundary zero, minimal
zero at p, and det(ag;) # 0 at ¢. The argument in Corollary 3.6 shows vy, ..., v,, % span
the real vector space of first order deformations in W27 In particular, the only first
order deformation which decays at ¢ is the R-translation vector field. Thus the cokernel
to the ordinary linearized Cauchy—Riemann operator vanishes, and the moduli space is

regular. u

A very analogous statement holds in the polygon case, and is left to the reader.

Lemma 3.10. In the holomorphic polygon case, we assume that vi, ..., Vy,—1 are in
the kernel of the extended linearized Cauchy—Riemann operator on WVZHR=" sych that
Q(-,v1,...,Vy—1) does not vanish identically as a 1-form on X. Then

k

degq—Zdeng+k—220.
1

When the equality is achieved, the holomorphic polygon is an immersion up to the bound-
ary with minimal vanishing at the corner, and the zero-dimensional moduli space of
holomorphic polygons is regular at u: ¥ — X.

A similar statement applies to teardrop curves.
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Lemma 3.11 (Regularity of teardrops). Let u: ¥ — X be a teardrop curve with a unique
output q and no input ends. Assume vy, ..., V,—1 are in the kernel of the linearized
Cauchy—Riemann operator on WVZH=" sych that Q(-, vy, ..., vyp_1) does not vanish
identically as a 1-form on X. Then degq > 2. When the equality is achieved, the teardrop
curve is an immersion up to the boundary with minimal vanishing at the corner, and the
kernel of the ordinary Cauchy—Riemann operator is spanned as a real vector space by the
Moobius vector fields on X fixing the q corner, and the cokernel vanishes.

Proof. We modify the proof of Lemma 3.9. We think of the corner ¢ as the origin in the
upper half plane model, and take v,, instead to be the Mobius vector field z2d, on . This
has one higher order of vanishing:

vy = (an12¢1/”+1, .. ,annz¢"/”+1) + 0(z?).

This leads to
Qv1, ..., vp) = &P/ 2(det(ar ;) + 0(1)),

so the excess vanishing order at g is > 2 — n. The index of the ordinary linearized Cauchy—
Riemann operator is

degg =2 Z(interior zeros) + Z(boundary zeros) + Z(excess corner zeros) + n,

whence degg > 2.
When the equality is achieved, then there is no interior or boundary zero and

det(ag;) # 0

at the corner, hence the immersion claim. The argument in Corollary 3.6 shows that
Vi,...,Upn, "7, 'Z’—'z' span the real vector space of first order deformations in |1 ZREE T par-
ticular, the only first order deformation which decays at ¢ are spanned by v, and z7 v,
namely the Mobius generators. Since the index of the ordinary Cauchy—Riemann operator
is two, the cokernel must have dimension zero, namely the obstruction vanishes. [

The above lemma describes the optimal case for teardrop curves. Such degg = 2 tear-
drop curves arise in isolated zero-dimensional moduli spaces after taking the Aut(D?2, q)
quotient, and the counting contribution to mg are £1 depending on the spin structure and
the orientation issues.

Structure of linearized Cauchy-Riemann equation. Let > be a holomorphic polygon
with £ > 0 input ends p;, and one output end at ¢. The case k = 0 corresponds to teardrops,
and k = 1 corresponds to strips. We consider the ordinary linearized Cauchy—Riemann
operator in weighted Sobolev spaces W 124, to classify the structure of the first order
deformation theory. As usual, the complex structure is integrable. Since 9 is elliptic, its
cokernel in L2 is finite-dimensional, represented by holomorphic 1-forms on X, which
must have finite order of vanishing at g. For large enough u, the dual space L%~ for L%
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imposes an exponential decay condition O (e~#%) at g, so the cokernel eventually vanishes
for 44 > 1. Then the kernel dimension in W12/ is equal to the index, computed by (3.8).
For convenience, we use ;1 € 7N, which avoids the indicial values. Then
k
dim(kerd C W) = degq — Zdeg pi+ B (3.9)
: F14

It is convenient to view the domain X of the holomorphic polygon as the upper half-
plane with coordinate z, with corners p; on the real line and ¢ at infinity.

Lemma 3.12. Ifv € kerd C WL2H, then v = fw for some real coefficient polynomial
function f on the upper half plane, such that w is non-vanishing on R\ {p1, ..., px},
and vanishes minimally at p; (meaning w is indivisible by z — p; ).

Proof. If v vanishes at any boundary point @ on R \ {p1, ..., pr}, or if v vanishes at p;

beyond minimal order, then - (resp. Z_" p,) is also a first order deformation with the
1

zZ—a
same 7L boundary condition, subject to the growth constraints at infinity. Since the kernel
dimension is finite, the divisions can only happen a finite number of times, producing the

polynomial f. L]

Let p € ¥ ~ dH, and let K be the maximal number depending on p, such that there
exist R-linearly independent vy, ..., vk € ker d satisfying the following conditions:

» If p is not a corner point, then vy (p), ..., vg(p) are R-linearly independent vectors.
e If p = p; is a corner point, then the non-zero elements in the R-span of vy, ..., vg

are vector fields vanishing minimally at p.

Lemma 3.13. Any v € kerd C W 12K js of the form g1vy + -+ + gk vk for some real
coefficient rational functions g1, . .., gk, non-singular at p.

Proof. Without loss of generality p = 0. Let wo be any first order deformation. By the
maximality of K, we can choose real numbers a;, such that the first order deformation
Wy — Z{( a; v; vanishes at zero, so wo — Z{( a;1v; = z¥1w, for some first order deform-
ation w; which is non-zero at the origin. Finite dimensionality means this process can be
repeated for only a finite number of times:

k
wo = E ai1v; +z"'wy,
_ k2
wy = aijaVi + 277 Wy,

WN—1 = ZaiNvi +szwN.

We choose the smallest N such that vy, ..., vk, Wy, ..., wy are R-linearly dependent as
vector fields; notice vy, ..., vk are linearly independent, so N > 0. We then get a linear
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relation

K
fo@wy =) fi)ui,
1

where fy, ..., fx are polynomials, and f,(0) # 0. This implies the claim. |

We can also apply a Mobius transform to make the output end ¢ lie at the origin.
The growth condition translates to o(|z| /™) at zero. Let K be maximal, such that there
are R-linearly independent vector fields zHI/T Vlyenns 7 Mm Vg € kerd C W2 and
any non-zero element in the R-span of vy, ..., vg vanishes minimally at ¢ = 0. As a
caveat, this does not assume vy, ..., Vg satisfy the growth constraints at infinity to lie in
kerd C W11 Minor adaptions give the following lemma.

Lemma 3.14. Any v € kerd C W 12K js of the form z—*/™ (g vy + - - + gk vk ) for some
real coefficient rational functions g1, ..., gk, non-singular at q.

Corollary 3.15. The number K is independent of the boundary and corner points on 0X.

We view the boundary 3X ~ P! (R). By the above lemmas, there is a real algebraic
vector bundle & of rank K over P! (R) such that vy, ..., vk provide the basis of local sec-
tions. By Grothendieck’s classification of vector bundles, we obtain the following result.

Proposition 3.16. The vector bundle & ~ 69{( O (n;) for some n; € 7.

Since the rank K is non-decreasing in u, it eventually stabilizes for p >> 0. Since
around any given point, the same choice of vy, ..., vk is valid for all large u, the algeb-
raic vector bundle & is independent of i >> 0. The elements of kerd C W12 can be
interpreted as global sections of & ® (9(%). Thus for all large p,

dim(kerd ¢ W'2#) = dim T (P! (R). € ® (9(%)) = K(% +1) + le:n,-.

Contrasting with the index formula (3.9), we have the following.
Corollary 3.17. The rank K = n, and the degree Y | n; = degq — Zlf deg p; —n.

The structure of & ~ 69{( O (n;) provides meromorphic sections vy, ..., v, which are
a basis of local sections on R C P! (R), and have excess vanishing orders n1, ..., n, atq.
Consider the function Q(vq, ..., v,). By construction, it has no boundary zero, and its
excess corner vanishing order is Y ] ;. Comparing with the index formula (3.7),

k
degq — Z pi =2 Z(interior zeros) + Zni +n.
1

Since all interior vanishing orders are non-negative by holomorphicity, we then obtain the
following corollary.
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Corollary 3.18. We have Q2(vy,...,v,) # 0 in the interior of X.

The significance is that the algebraic vector bundle structure on & — P!(R) now
extends over the entire . The vy, ..., v, now provide the basis of local sections for the
vector bundle u*T X |x. One upshot is that an algebraic structure arises on u*7TX — X
from solving the Cauchy—Riemann equation with Lagrangian boundary:

W*'TX,u*TL) ~ (70 (n;), natural real structure). (3.10)

In contrast, the Lagrangians are only assumed to be smooth, not necessarily real analytic.

To analyze obstructions, Serre duality motivates us to consider the dualized cokernel to
the ordinary (unweighted, unextended) linearized Cauchy—Riemann operator. A dualized
cokernel element 7 is represented by a holomorphic 1-forms in Q(X, u*T*X) with
L? integrability, and its 7* X factor lies in the annihilator of the 7L boundary condition.
Equivalently, for all test vector fields v € WL2(X, TX, TL),

/E@mn):o,

where (, ) is the pairing of TX with T*X, and the wedge takes care of the forms on X. In
the canonical form (3.10), this dualized cokernel is isomorphic to

F'(RP', @70 (-2 —ny)).
In particular, we have the following result.

Corollary 3.19. In the teardrop curve case k = 0, the strip case k = 1 and the triangle
case k = 2, the vanishing of cokernel is equivalent to n; > —1 for all i.

For k > 3 the deformation of the holomorphic polygons is governed instead by the
extended Cauchy—Riemann equation, since the punctured Riemann surface structure on X
is allowed to vary. The dualized cokernel of the extended Cauchy—Riemann operator, is
the subspace of the dualized cokernel of the ordinary Cauchy—Riemann operator, which
pairs trivially with Jx o du o p for any p representing some tangent vector of the Stasheff
associahedron.

Hamiltonian deformations and transversality. We now consider the parametrized mod-
uli space of holomorphic curves over the infinite-dimensional space of Hamiltonian defor-
mations for the Lagrangian L. Infinitesimally around a holomorphic curve X, we have a
Hamiltonian vector field Xy defined by w(Xpg,-) = dH, viewed as a T X -valued vector
field over X. We are interested in whether the Hamiltonian deformation kills the cokernel
of the ordinary Cauchy—Riemann operator. This question was first addressed by Oh [65].
The following account follows a similar strategy but differs in details.

Recall that the ordinary Cauchy—Riemann operator maps W12(X, u*TX, u*TL) to
L2(Z,u*TX @ T*(19 %), The effect of Hamiltonian deformation is to enlarge the domain
of the 9 operator, by including the vector fields Xz for all the allowed Hamiltonians H .
The question is to analyze the pairing of 39Xy with the dualized cokernel elements.
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Proposition 3.20. Let u: X — X be a holomorphic disc which is immersed near some
point zo € 0X with the boundary injectivity property u |521; (u(z0)) = {zo}. Let n be a non-
zero dualized cokernel element for the ordinary linearized Cauchy—Riemann operator.
Then there is a Hamiltonian H supported in any prescribed small ball on X containing
u(zp), such that

/<5XHAn>7éo.
>

Proof. Since 7 is a holomorphic 1-form valued in u*7T* X, Stokes’ theorem gives

L@XH/\??) Z/BE(XHJ?),

where () stands for the pairing between TX and 7T*X. On 0%, we can write
n=w(-,Y)ds

for some vector field Y valued in u*7X, and s is any local coordinate on dX. The cokernel
element condition implies w(v, Y) = 0 for any v € u*TL, so Y must in fact be valued in
the Lagrangian subbundle u*T L. Thus,

/aE(XH,n) = /axw(XH’Y)ds :/ade(Y)ds.

We suppose for contradiction, that this pairing vanishes identically for any H supported
in the prescribed ball.

By the holomorphicity of 7, its zeros are isolated, so without loss of generality Y
does not vanish in the local portion of 3% where u is injective and immersed. Suppose
first that Y is not tangent to the image of X. Then we find some local function 4 on a
small ball in X with dh(Y) = 1 and & = 0 on the local portion of 3%, and another cutoff
function h, > 0 with dh,(Y) = 0 along 0%, supported in a small ball. Taking H = hh,,
then

/aEdH(Y)ds=/azh2ds¢o.

This contradiction shows Y is tangent to the image of X in the local portion of 3. We
can write Y = fd; for some local function f. Then requiring

/dH(Y)ds:/ fBSHds=—/ Hos f ds
X X b

for any compactly supported local function H, implies that f is constant in the local
portion of dX. Thus up to multiplying by a non-zero constant, locally

ou ou
Y = o= ds. n:a)(-,g)ds. 3.11)

‘We now produce holomorphic vector fields on X. For holomorphic strips or polygons
with k + 1 > 3 corners, we select one input end as p, and call the output ¢ as usual, and
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represent X as a strip with k — 1 boundary punctures. This perspective provides a natural
translation vector field g—’s‘, which have exponential decay along the p, g ends, but may not
be L? near the other k — 1 ends. Instead, by thinking about the k — 1 ends as the origin in
the upper half plane model, we see

ou _ .
N 0(z1*™"), o =min{¢1/7.....¢n/7}
for the characterizing angles ¢, . . ., ¢, at the Lagrangian intersection point. The 7' (1:9) X
part of 2Jx %—’s‘ is
J ou n T du
X s ds

Contracting this with the 7*(L0 X ® T*(1.O'S part of 5 yields a 1-form on X:

§=7}(JX(3—:+\/—_13—Z),

which is also holomorphic with boundary value along X:
ad a a
;=w(JX—”+«/—1—”,Y)ds=w(JX—”,Y) ds. (3.12)
s as as

Here w(g—'s‘, Y) = 0 since both vectors satisfy the 7L boundary condition. Notably, the
boundary condition of { is real valued. In the upper half plane model, the Schwartz reflec-
tion principle allows us to extend ¢ meromorphically over CP!.

At any of the k — 1 ends, since n € L2, we know by holomorphicity || = O(|z|%),
so ¢ = O(|z|**7!) in the upper half plane model, hence has no pole. At the p, g ends, by
the decay of the holomorphic g—'s‘ and 7, we likewise infer that ¢ has no pole in the upper
half plane model. In conclusion, the extension of ¢ over CPP! has no pole, so must in fact
vanish. However, by (3.11) and (3.12), on a local portion of %, we have

This contradiction proves the Proposition in the k > 1 case.

Finally, for the teardrop curve case k = 0, we replace the holomorphic vector field g—'s‘
by the Mobius vector fields vanishing at the corner, and the rest of the arguments are
entirely similar. ]

The upshot is that by the Sard—Smale theorem, provided we can always ensure ‘some-
where boundary injectivity’ for any holomorphic disc in a given moduli space, then gen-
eric Hamiltonian perturbation would be able to achieve regularity for the moduli space.

Remark 3.9. In the exact setting, there is no closed holomorphic curve. The failure of
‘somewhere boundary injectivity’ is often associated with multiple cover issues, namely
u: ¥ — X may decompose into several domain components, each of which factorizes
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through a somewhere boundary injective holomorphic disc (see the paper [51] for the case
of Lagrangian boundary with no corners).

In the simplest case, if u factorizes through another disc, then the corner points would
be repeated several times on dX. This phenomenon does not happen for the curves appear-
ing in the bordism current €, which involve only one corner at CF 0 (L, L") and one corner
at CF O(L’ , L). Nor does this occur for teardrop curves, which have only one corner
at a degree two self intersection point. This raises hope that the failure of ‘somewhere
boundary injectivity’ may be highly non-generic, or in certain situations can be ruled out
altogether.

Further comments on automatic transversality. We now comment on the gap between
what we have proved and the (weak version of) automatic transversality that we will later
assume.

(1) Proposition 3.8, Lemma 3.5 and Corollary 3.6 establish the dichotomy for holo-
morphic discs u: £ — X arising in virtual dimension n — 1 moduli spaces, that either u is
automatically transverse, or Q(-,vy,.. ., v,—1) vanishes for any (n — 1) first order deform-
ation vectors. This argument does not establish unperturbed regularity for the lower-
dimensional moduli spaces, so it is not completely clear if complex structure perturbations
can be removed in the arguments for € = L — L’ in Section 3.1.2.

(2) For the bad curves, Q(-,vq, ..., v,—1) vanishes identically as a 1-form on X, so
at any point on the boundary, vy, ..., v,—; and the tangent vector to 0% are R-linearly
dependent. Suppose for the moment that the moduli spaces are regular, then the bound-
ary evaluation to L U L’ for the bad curves arise in Hausdorff dimension at most n — 1.
Moreover, since the Solomon functional is defined through

/A/\Q,
e

and €2 vanishes around the bad curves, smoothness assumptions imply that the bad curves
cannot contribute.

When regularity assumptions are dropped, one needs to appeal to virtual techniques,
so these conclusions require further justification. One problem is that the standard virtual
perturbation techniques based on Kuranishi structures do not necessarily produce virtual
cycles inside the original moduli spaces, but only inside their small neighbourhoods. This
perturbation step destroys the identical vanishing of €2, by a small amount corresponding
to the size of the perturbation. As one shrinks the size of the perturbations, one needs uni-
form mass bound on the virtual chains to justify that the integral contribution to f‘c AAQ
from the bad curves actually converges to zero.

(3) Alternatively, one can hope to replace Lagrangians by arbitrarily small Hamilton-
ian perturbations to achieve transversality. This is mostly adequate for our purpose, except
that one needs to justify the ‘somewhere boundary injectivity’ property (see Remark 3.9).
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3.4. Positivity condition

The (n — 1)-dimensional moduli spaces contributing to the bordism current come with
orientation signs and weighting factors. The positivity condition (i.e., no cancellation of
signs) means that around any automatically transverse curves, if the first order deform-
ations vy, ..., v,—; form an oriented basis of the moduli space, and vy be a clockwise
ordered vector field on 0%, then upon boundary evaluation vy A --- A,—; agrees with the
orientation of L — L’. For the other holomorphic curves, the question of orientation does
not arise, because the boundary evaluation maps have degenerate differentials everywhere
on d0X.

The positivity condition forbids two curves passing through a generic point with the
evaluation maps contributing opposite signs. Such a requirement is geometric rather than
homological, and if we go beyond the almost calibrated case, it also depends on the choice
of the generators a € CFO(L, L") and B € CF°(L’, L), rather than only their classes
in HF°.

Question 5. Let L, L’ be two unobstructed Lagrangian objects which are isomorphic
in D? Fuk(X). When can we make gauge choices for the local systems and the bounding
cochain data, and choices of the Floer cohomology group generators, such that the bordism
current € produced from the universal family of holomorphic curves satisfies the positivity
condition?

The positivity condition will arise in the applications as follows. We will write vari-
ous quantities as integrals over the (n — 1)-dimensional moduli spaces of holomorphic
curves, and the positivity condition would in each case imply the pointwise positivity of the
integrand. In the mirror analogy, this corresponds to the pointwise positivity of curvature
integrands, which features for instance in the proof that the Hermitian Yang—Mills equa-
tion implies the semistability of bundles (see Section 2.5).

Morse theory analogy. The intuition of the positivity condition can be explained through
the following analogy with Morse theory. Given a compact oriented manifold M with a
Morse—-Smale function H, then

(i) the degree zero (resp. n) elements in the Morse cochain complex are generated by
the local maxima (resp. local minima) of H whose unstable submanifolds (resp. stable
submanifolds) have preferred orientations;

(i) the fundamental class 1 € H°®(M) is represented by the sum of the local maxima
with the preferred orientation. Similarly with the generator of H" (M);

(iii) a generic point on M lies on exactly one Morse flowlines which starts with one
local maximum point and ends on one local minimum point. More formally, if we con-
struct the universal family of Morse flowlines that start with some local maximum and
ends on some local minimum, the evaluation map would sweep out the fundamental cycle
of M as an n-dimensional current, without any cancellation effect.
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For simplicity, if we start with an embedded Lagrangian brane L, and perform a small
generic Hamiltonian deformation ¢z (L), then the Floer cohomology H F* (L, ¢y (L)) is
computed as the Morse cohomology, so the Morse theory statements above would imply
the positivity condition at least in such special cases. The intuition is that if the Lagrang-
ian L’ (together with its brane structure) is a sufficiently small deformation of L, then we
expect the positivity condition to hold for the bordism current between L and L’.

Positivity for individual moduli spaces. In general the bordism current € receives con-
tributions from many (n — 1)-dimensional moduli spaces of holomorphic curves. We
now focus on one moduli space by fixing the choice of the Lagrangian intersections
P1,-- -, Pk»q and the homotopy type of u: ¥ — X, and consider a connected open subset
of the moduli space which contains only automatically transverse curves. We make the
following observations:

(i) For a fixed automatically transverse holomorphic curve u: ¥ — X, along 9% bet-
ween any two successive corners, by the nowhere vanishing of Q(-, vy, ..., v,), the
Jacobian of the boundary evaluation map cannot change sign. That is, either the orienta-
tion of the universal family agrees with the orientation of L (resp. —L') along u: 0% — L
at every point along the boundary portion of 9%, or the two orientations disagree at every
point.

(i) The Lagrangians are graded by assumption, and the orientations are canonically
determined by e*?Q. The corner behaviour (see Remark 3.8) implies that at the degree
one self intersections, e *?Q(-, vy, ..., v,_1) does not change sign. On the other hand, at
the CFO(L, L") and the CF°(L’, L) ends along 9%, the 1-form e ¢ Q (-, vy,..., vp_1)
changes orientation sign. Thus at a fixed automatically transverse curve, the orientation
of the universal family and L — L’ either completely agree along every point of 9%, or
completely disagree.

(iii) As we deform among automatically transverse curves, the orientation signs can-
not change. Thus either all these holomorphic curves contribute positively to d€, or they
all contribute negatively.

The above discussion also suggests the limitation of the positivity condition: if we
encounter a holomorphic curve in the moduli space, which is not automatically transverse,
then it is possible to switch orientation signs. For arbitrary exact immersed Lagrangians,
it seems unreasonable to expect the positivity condition, and it is conceivable that counter-
examples may arise from A-principle constructions. Whether counterexamples occur for
more restrictive Lagrangians seems less clear, and we leave the following sample ques-
tions as food for thought.

Question 6. How does the positivity condition behave under exact isotopy with surgery?

Question 7. Are there examples of exact Calabi—Yau manifolds such that the positivity
condition is satisfied for bordism currents between all exact, almost calibrated, unobstruc-



Thomas—Yau conjecture and holomorphic curves 63

ted immersed Lagrangians equipped with suitable brane structures? What if the Lagrangi-
ans are quantitatively almost calibrated (see (2.1))?

Remark 3.10. If the Fukaya category is defined over Z, we can require all holonomy
factors to be integer valued. The positivity condition requires all the contributions to
0€ = L — L’ to have the same orientation sign. This has the amusing consequence that all
holonomy factors associated with (n — 1)-dimensional moduli spaces contributing to €,
must in fact all be +1. Intuitively, this means there is a unique such holomorphic curve
through any generic point of L, and the boundary evaluation of universal family to L is
transverse.

3.5. Floer theoretic obstructions

General features of obstruction conditions. Our goal is to look for obstructions to the
existence of special Lagrangians within given D? Fuk(X) classes, which is the ‘easy
direction’ of the conjectural stability condition. Before specializing to a technically over-
simplified setup, we first explain the features we expect from these obstructions, which
may hold in much more general contexts. The mirror analogy (see our discussion on the
Ju-stability in Section 2.5) suggests that:

» the obstructions are associated to certain positivity of signs, which essentially depend
on the integrability of Kihler geometry;

* the quantity involved in the obstruction can be expressed as an integral over a moduli
space of worldsheet instantons (i.e., holomorphic curves), and its sign comes from a
pointwise positivity of the integrand on the moduli space;

» the input from Floer theory is associated to a distinguished triangle in D® Fuk(X), or
possible generalizations to several Lagrangians;

* the role of the holomorphic volume form enters via cohomological integrals;

» there is no need for the complex Monge—Ampere equation. Only the almost Calabi—
Yau condition is needed.

Furthermore, out of the many moduli spaces that may arise in Floer theory, we will
only make use of certain (n — 1)-dimensional moduli spaces of holomorphic curves,
whose associated (n + 1)-dimensional universal family provides bordism currents bet-
ween the n-dimensional Lagrangians. Here are some a priori reasons why we restrict
attention to these:

(i) The holomorphic volume form is naturally integrated over n-cycles. This explains
the dimension.

(i) We need bordism currents canonically associated to the distinguished triangles.
In Floer theory, the Aoo-structure only becomes an invariant when considered as a whole,
and individual A, products are not invariants, so invariance constrains how moduli spaces
can enter into stability conditions. As mentioned in Section 3.1, the existence of the bor-
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dism current is the geometric manifestation of linear relations in the zeroth Hochschild
homology H H\ of the Fukaya category, which contains important invariant information.

(iii) From a variational viewpoint which will be discussed more fully in Section 5,
it is desirable to extend Floer theory to Lagrangians with much weaker regularity, in the
varifold and current sense. We shall explain there that most of Floer cohomologies and
Ao products cannot be expected to pass to the limit when the Lagrangians degenerate
in such weak topologies, and we hope that the bordism currents we use are among the
few pieces of Floer theory that may be well behaved under rather severe degenerations of
Lagrangians.

These requirements are very stringent. We notice two other features:
(iv) We shall crucially rely on the almost calibrated condition.

(v) When we test the stability of L via the distinguished triangle
Ly — L — L, — Lq[1],

we do not wish to assume L or L, is special Lagrangian. In our view, stability conditions
should be expressed in Floer theoretic terms, without a priori knowledge of what special
Lagrangians there are inside a given almost Calabi—Yau manifold.

The Floer theoretic obstruction condition. The following Floer theoretic obstruction
will crucially require complex integrability and the almost calibrated condition. Assume

Li—L— L, 5 L[]

to be a distinguished triangle of unobstructed exact immersed Lagrangian branes with
bounding cochains, such that L, L, L, are all almost calibrated, and all intersections are
transverse. In other words, the Lagrangian brane L is isomorphic in D? Fuk(X) to the
immersed Lagrangian corresponding to the twisted complex (see Sections 3.1 and A.2)

I~ (L27b2)
L _( 14 (Ll,bl))'

We obtain a bordism current € with 0€ = L — L’ = L — L1 — L. In our generality, the
domains of L1, L, L may have many connected components.

Theorem 3.21 (Floer theoretic obstruction). Assume the automatic transversality and the
positivity condition hold for the bordism current €. Assume the destabilizing condition

élzmg/ Q>§2=arg[ Q.
L] L2

Then the Lagrangian phase angle of L has a lower bound on its oscillation:

supf, > 0;, inf6 < 0,, (3.13)
L L
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and moreover the J-volume of L (see Section 2.9) has a non-trivial lower bound

/Q‘+/ Q' (3.14)
L, Ly

Proof. At a holomorphic polygon ¥ in the universal family €, denote vy, ..., v,—; as the
first order deformation vector fields representing an oriented basis of tangent vectors to
the moduli space. In the special case of holomorphic strips, the moduli space refers to the
R-translation quotient. We noted in Section 3.3 that (-, vy, ..., v,—1) restricts to a holo-
morphic 1-form on X, so can be written as the differential of a holomorphic function F
by the simply connectedness of X:

VolJ(L):/e_mQ >
L

dF = Q(-,v1,...,Un_1). (3.15)

The corners on X are arranged in clockwise order with the following possibilities:

(1) In the primary case, we encounter some degree one self intersections on L from
bounding cochains, a corner p € CF O(L, L,), some degree one self intersections on L, a
corner r fromy € CF 1 (L2, L1), some degree one self intersections on L1, and a corner at
qeCF O(Ll, L). Notice the Lagrangian boundary follows L, L,, L1 in clockwise order,
and we cannot go reversely from L; to L, instead.

(ii) In the secondary cases, the boundary data may miss either L or L,. For instance,
we may encounter some degree one intersections on L, a corner p € CF°(L, L,), some
degree one intersections on L and a corner at ¢ € CF°(L,, L). The Lagrangian bound-
ary follows L, L, in clockwise order. The alternative possibility of Lagrangian boundary
along L and L; is entirely similar.

In all cases, there is precisely one corner p at CF%(L,L’) and a corner g at CF°(L’,L).
We can normalize F(¢) = O to fix the constant. In the primary case, there is a corner r €
CF'(L,, L), which is absent in the secondary cases. In general, the bordism current €
receives contributions from many moduli spaces, and all three cases may arise depending
on the generators of HF(L,L’) and HF°(L', L).

We can now define complex valued volume forms on the (n — 1)-dimensional moduli
spaces of holomorphic curves. Recall vy, ..., v,—; represent the tangent vectors to the
moduli spaces, and the holomorphic function F' depends on v; A - -+ A v,—;. In the primary
case, we define

Qr(v1,...,vn—1) = F(p),
Qr,(v1,...,vn1) = F(r),
Qr,(v1,...,vn—1) = F(p) — F(r).

In the secondary cases, if the Lagrangian boundary lies on L and L1, then
QL(UI» s Up—1) = F(p),

Qr,(v1,...,vn—1) = F(p),
§2L2(U1,...,Un_1) =0.
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If the Lagrangian boundary lies on L and L, then

QrL(v1....,vn—1) = F(p),
szl(Ul,...,Un_l) =0,
szz(Ul»"-»vn—l) = F(p)

The values of F should be understood as the integral of d F' on the appropriate portions
of dX. The key point is that since 0€ sweeps out the cycle L — L — Lo, we can write
the period integrals as integrals on the (n — 1)-dimensional moduli spaces of holomorphic

/QZ/QL, /QZ/QLi,i=1,2,
L M L; M

where M is a shorthand for the weighted sum over contributions from all the (n — 1)-
dimensional moduli spaces involved in the construction of €, see Section A.2.

Recall the positivity condition means that if v stands for a clockwise oriented tangent
vector on 0%, then vy A V1 A -+ A v,—1 agrees with the orientation on L, and is opposite
to the orientation on L’. The non-vanishing of vy A v1 A -+ A V,—1 is a consequence of the
immersion property from the automatic transversality (see Corollary 3.6, Proposition 3.8).
The almost calibrated condition implies that Re 2 > 0 on the Lagrangians with respect to
the orientation on L and L’. Thus we make the following claim.

curves:

Claim 3.22 (Monotonicity). Clockwise along 0%, the function Re F is increasing on
the L boundary portion, but decreasing on the L’ = L1 U L, boundary portion. In partic-
ular,

0=Re F(q) <ReF <ReF(p).

More intrinsically, the real part of the complex volume forms on the moduli spaces are
non-negative.

The holomorphic function F maps X into a bounded region in the complex plane.
The behaviour at the corners is specified in Remark 3.8. Since each vertical line intersects
dF (%) C C at < 2 points by the monotonicity claim above, the boundary and corner local
behaviours imply the following.

Claim 3.23 (Image curve). The image F(X) C C lies above its L’ boundary portion, and
below its L boundary portion.

We turn to the proof of the Lagrangian phase angle inequality (3.13). For each curve
that contributes non-trivially to €27, by the monotonicity claim we can find a unique
point 7’ on the L boundary of 0%, such that

Re F(r') =Re F(r),  primary case,
r'=gq, secondary case, boundary on L and L,

r'=p, secondary case, boundary on L and L;.
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From the image curve claim, we always have Im F(r’) > Im F(r) in the primary case.
Integrating over the moduli space of holomorphic curves, we obtain

Re/ F(r’):Re/ §~2L1=Re/ Q, Im/ F(r’)zlm/ §L1=Im Q.
M M L, M M L,

‘We now introduce two almost everywhere defined functions y4,, y4, on L. The recipe
is that at any generic point P € L, if an automatically transverse holomorphic curve in the
universal family passes through P on the boundary portion of 9% joining ¢ to r’ (resp. r’
to p), then it gives an additive contribution to y 4, (P) (resp. x4, (P)) equal to the weight-
ing factor of the curve. Intuitively y4,, x4, should be understood as the characteristic
functions of weighted subsets A1, A, C L. The positivity condition gives y4, > 0, and
0€ = L — L' gives y4, + x4, = 1. Intuitively A;, A, give a (weighted) partition of L.

The moduli space integrals now have target space interpretations:

/M F(r’):/LXmQ::/;hQ, /MF(p)—F(r’):/LXAzﬁ ::[429.

Since L is homologous to L + Lj, we have [; Q = le Q4+ sz Q. Whence, we make
the following claim.

Claim 3.24. There is a weighted partition L = A; + A such that

Re/Q:Re/Q>O, Im Q <Im Q, Im Q >1Im Q.
A; L; Ay Ly Ay L,

Consequently,

argf Qfarg/ Q:é\z and arg[ Qzarg/ Q:é\l,
Ar Ly Aq L,

so in particular infz, 67, < 6, and sup; 6, > 6;.

Finally, we deal with the J -volume lower bound (3.14). By the triangle inequality,

/e—iesz:/|sz|= el + [ 192 / sz‘+/sz'
L L Ay Ap A Az

The right-hand side is at least | | L, 21+ /, 1, $2, due to an elementary numerical fact.

Lemma 3.25. Let z, w be complex numbers, with fixed real parts 0 < Re(z) < Re(w).
Then as a function of Im(z), the function |z| 4+ |w — z| is decreasing when argz < arg w,
and increasing when arg z > arg w.

This concludes the proof of (3.14). ]

A few remarks are in order to clarify the relevance to special Lagrangian geometry.
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Remark 3.11. Recall that for L to be a special Lagrangian, then its phase angle is con-

Stant, and 1ts J'\/()lume 1S
L L,

using the triangle inequality, the homological relation [L] = [L; + L3] € H,(X) and the
assumption that 6; > 6,. Thus the conclusion of the theorem is a quantitative obstruction

<

)

Vol,(L)z'/Lsz

for L to be special Lagrangian. In Section 3.6 we will discuss the relation to Joyce’s
LMCEF program and the Bridgeland stability condition.

Remark 3.12. If L, L, are actually special Lagrangians, then the phase angle bounds
given in (3.13) would be evident from the Floer degree formula (A.1) applied to the inter-
section points L N L’. One main feature of the theorem is that we do not need a priori
knowledge on the existence of special Lagrangians, and the holomorphic volume form
enters the obstruction criterion only through cohomological information.

Variant: Twisted complex case. The Floer theoretic obstruction for distinguished tri-
angles can be easily generalized to involve many Lagrangians. Let L’ be an exact imm-
ersed Lagrangian with bounding cochain built from the data of a twisted complex (3.1).
We assume L is isomorphic to L’ in D? Fuk(X), so we obtain a bordism current € with
0€=L-L =L-— Zf’ L;. As before, all Lagrangians are assumed to be almost calib-
rated, and all intersections are transverse.

Theorem 3.26 (Floer theoretic obstruction, multiple Lagrangian case). Assume the auto-
matic transversality and the positivity condition hold for the bordism current €. Assume
the destabilizing condition

§1>§2>--->§N, éi:arg/ Q.
L;
Then the Lagrangian phase angle of L has a lower bound on its oscillation:
sup 6z, > 0y, inf . < Oy, (3.16)
L

and moreover the J-volume of L has a non-trivial lower bound

N
Vol,(L)sze—ieszzZ/L Q‘ (3.17)
1 i

Proof. Since most parts of the proof are identical to the distinguished triangle case, we
will only sketch the main difference.

The Lagrangian boundaries on 0% are arranged in the clockwise order as L, Ly,
Ly—1,..., L. We construct the holomorphic function F as in (3.15), and use it to pro-
duce complex valued volume forms on the (n — 1)-dimensional moduli spaces, such that
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foranym =1,..., N, we have

/Q:/ Qr, /Q:/ Qr,.i=12,....N.
L M L; M

As before, the real part of these complex volume forms are all non-negative, as a con-
sequence of the positivity condition. The claim on the image curve F(X) holds verbatim.
Similarly to the distinguished triangle case, we produce non-negatively weighted subsets
Aq,...,Ay C L with L =) A;, such that

m m N
Re/ Q:Re/ Q2 >0, Im /Qzlm /Q, /Q: [Q

This implies
arg/Qiarg/ Q, arg/ Qfarg/ Q,
A Ly AN Ly

whence the phase inequality (3.16).
The J-volume can be bounded below by

v = [1o1=3 [ e1=3][ o[z3|[ o
1 t 1 i i

The last step uses the purely numerical Lemma 3.27 below. ]

1

Lemma 3.27. Let zy,...,zN be complex numbers, and ay, ...,an be fixed complex
numbers with positive real parts, such that arga, > arga, > --- > argay. Assume

m m N N
Re(z;) = Re(a;), ImZZ,‘ > ImZai, Zzi = Zai.
1 1 1 1

Then Y7 |zi] = 7 lail.

Proof. We argue by induction. The N = 2 case is implied by Lemma 3.25. In general, we
view lev |z; | as a function of the imaginary parts of z1, ..., zx subject to the constraints.
Clearly, this function achieves its minimum for some (z;). If z; = a1, then we can con-
clude by induction. Otherwise, Imz; > Ima,. If argz, < arg zq, then we can fix z; + z»
and decrease Zf |z;| by Lemma 3.25, which would contradict minimality. Proceeding
with this argument, we are forced to have

argzy < argzpy <---<argzy,
whence

N N
argZz,- >argzy > arga; > argZai,
1 1

which contradicts YV z; = YV 4;. L]
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What if we relax the positivity condition? We now discuss a weaker version that does
not require the positivity condition on holomorphic curves. This amounts to dropping
pointwise positivity of the integrand for the moduli space integral, which breaks some
parts of our mirror analogy.

As in Theorem 3.21, we consider L’ built from two immersed Lagrangians Ly, L,
and L fits into the distinguished triangle. All Lagrangians are almost calibrated, and all
intersections are transverse. We classify the automatically transverse holomorphic curves
(see Corollary 3.6, Proposition 3.8) into % types according to whether the boundary eval-
uation to L agrees with the orientation on L or its opposite. The complex volume forms
Q L; on the moduli space can be split into the sum of two parts according to whether
u: ¥ — X is of &£ types:

QLi = QZ +§Zi, /:M QL,- :/ Q.
L;

In particular, the signed measure Re Q L; 1s decomposed into its positive and negative
parts, and Re [ ,, Qp, < 0. We define

§i+ :arg/ QZ, 51-— =arg(—/ in), i=1,2.
M M

Here éi_ is only defined when | M QZi is non-zero, namely the case not covered already
by the positivity condition.

Theorem 3.28 (Floer theoretic obstruction, relaxing positivity condition). Assume the
automatic transversality holds for the bordism current € between L and L'. Then the
Lagrangian phase angle of L has a lower bound on its oscillation:

sup 0, > max{f;", 67}, iEfQL < min{8;, 65 ).

L
Proof. We will only sketch the modifications. The positivity condition enters through
the Monotonicity Claim 3.22. Once we drop this, we would allow holomorphic discs
u: X — X that sweep out parts of L U L’ with the reversed orientation. For such curves,
Claim 3.22 is modified to the following.

Claim 3.29. Clockwise along 0%, the function Re F is decreasing on the L boundary
portion, but increasing on the L’ = L; U L, boundary portion. In particular,

0=ReF(q) > Re F > Re F(p).

More intrinsically, the real part of the complex volume forms on the moduli spaces at such
u: ¥ — X are non-positive.

The corresponding Claim 3.23 is then modified as follows.

Claim 3.30. The image F(X) C C lies below its L' boundary portion, and above its L
boundary portion.
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At almost every point on L U L’, only automatically transverse holomorphic curves
pass through it, since by assumption the boundary evaluation of the other holomorphic
curves is contained in some subset of L U L’ with Hausdorff dimension < n — 1. Accord-
ing to the &£ types of the automatically transverse curves, we decompose the weighted
characteristic functions y4, on L into its positive and negative parts y ,+ > 0 and y4- <0.

Then upon integration over the moduli space, l

Re/XA+Q Re/ Q+ >0, Re/XA_—QzRe/ 55.50,
L M
Im/)(A+Q<Im/ Im/XA+QzIm[ Qf
L 1 M 1
Im/XA;QEIm/ sz, Im/XA;QEIm/ QZ].
L M L M

In particular,
arg/LxA;Qféﬂ arg( /XA 9) <05,

and

arg/ XATQ > 51'" arg(—[ XATQ) > 51_
Now y ar = 0 and y4- <0, and the special case where y4- = 0 almost everywhere is
already covered by the positivity condition. The theorem follows. ]

Remark 3.13. In the special case where L, L, are special Lagrangians of phase 51, 52,
then clearly Gii = 0;. The conclusion in this case can be deduced easily from Floer degree
considerations at Lagrangian intersections, similar to Section 2.2.

Remark 3.14. Recall §; = = arg |, 1; §2. The caveat is that max{@i} and mm{@i} do not
quite control 9,, so the above Theorem 3.28 does not imply the phase angle inequal-
ity (3.13). In this sense the conclusion of Theorem 3.28 is weaker than Theorem 3.21,
illustrating the power of the positivity condition.

On the other hand, we will heuristically argue in Section 3.6 that in the Thomas—Yau—
Joyce picture, once we assume the existence of Joyce’s Bridgeland stability condition,
the phase angle inequality (3.13) can be deduced without the positivity condition in The-
orem 3.21.

We think it is very interesting to either prove the positivity condition as a consequence
of the other assumptions, or to find another Floer theoretic argument for (3.13) that requi-
res neither the positivity condition, nor the a priori knowledge of special Lagrangian
representatives.

3.6. Towards a Bridgeland stability condition

Joyce’s proposal and Bridgeland stability condition revisited. We now seek a better
appreciation of the Bridgeland stability aspect of Joyce’s proposal (see Section 2.1). To
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specify the Bridgeland stability condition on D? Fuk(X), we need the central charge

Z(L):/LQ,

and all the subcategories P (¢g < ¢ < ¢1) for any interval (¢o, ¢1). Joyce’s proposal [45]
strongly suggests two claims:

(i) If an unobstructed Lagrangian brane L has phase angle function 6 € (7w¢o, w¢1),
then L defines an object in the subcategory & (¢ < ¢ < ¢1) generated by all stable objects
with ¢ < ¢ < ¢;. This claim is because the infinite time limit of the LMCF should provide
the stable objects which generate L, and by the monotonicity of the Lagrangian angle (see
Section 4.1 below), we can predict a priori 8 € (¢, ;) for all these stable objects.

(i) Any object in P (g9 < ¢ < ¢1) can be generated by unobstructed Lagrangian
branes with phase angle function 8 € (w¢o, TH1).

Thus one can simply define P (¢o < ¢ < ¢1) to be the subcategory of the derived
Fukaya category (suitably enlarged to allow for immersed and singular objects) generated
by all unobstructed Lagrangian branes L with 6 € (w¢g, w¢1), and then reconstruct P (¢’)
as the intersection of all £ (¢g < ¢ < ¢1) for all oy < ¢’ < ¢;. Such a definition would
make the Thomas—Yau proposal nearly tautological, and the difficult part of Joyce’s pro-
posal is to verify this indeed defines a Bridgeland stability. In fact, by the discussions in
Sections 2.1 and 2.2, the only formidable part is the Harder—Narasimhan decomposition,
for which Joyce’s LMCF provides the conjectural mechanism.

There are two primary applications of the Thomas—Yau—Joyce proposal to keep in
mind:

(i) The existence of special Lagrangians is important for geometric measure theory.
A definition of stability conditions along the above lines is too tautological to be useful.

(i1) Defining special Lagrangian DT invariants is important for mirror symmetry (see
Section 2.4). Knowing the existence of a Bridgeland stability condition on D? Fuk(X) is
of great theoretic significance in view of Kontsevich and Soibelman’s framework [47,49],
but without a more Floer theoretic characterization it would lack computability.

Thus even if Joyce’s conjectures can be proved along the lines in [45], it is still desir-
able to have a Floer theoretic characterization of the Bridgeland stability condition. We
first revisit Theorem 3.21 in the light of the Thomas—Yau—Joyce conjectural picture, but
without assuming the automatic transversality and positivity condition.

Conjecture 3.31. Suppose we have almost calibrated exact Lagrangian objects L1, L,
and L, fitting into a distinguished triangle Ly — L — L, — Lq[l], and satisfies the
destabilizing condition

§1=arg[ Q>§2=arg/ Q.
L, L,

Then the phase angle inequality (3.13) follows. In particular, the derived category class
of L admits no special Lagrangian representative.
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Proof (heuristic). Consider the Harder—Narasimhan decomposition (2.2) of L;:
0=8—>& — =&y =1L,
fitting into the distinguished triangles
Ei-1 > & — L, - &_4[1],

where L] represents an object in & (¢;), with ¢; > ¢ > --- > ¢ Since, by assumption,
L is almost calibrated, we have L; € 3)(—% <¢ < %) hence —% < ¢; < % Since the
central charges satisfy

N
Z(Ly) =) Z(L)), argZ(L;) = ¢y,
1

we must have 51 < m¢;. The conjectural description of the Bridgeland stability condi-
tion requires that L} has a special Lagrangian representative with constant Lagrangian
phase m¢;. A weaker requirement which suffices for us is that there exists a representat-
ive L} with Lagrangian angle function GL; satisfying the oscillation bound |9L; —ngi| <e
for any given ¢ > 0. It is expected that this flexibility allows one to assume sufficient
smoothness on the Lagrangian.

By combining the distinguished triangles, we obtain a new distinguished triangle

Ly —>L—L"— L]

Here L’l, L, L” are all almost calibrated. Suppose for contradiction that sup; 01, < 51.
Then sup; 01 < w1, and we can arrange supy 0;, < infz/ 9L’1' The Floer degree for-
mula (A.1) implies CF°(L/, L) = 0, and in particular HF°(L’, L) = 0. The distin-
guished triangle splits:

L" ~Le L[1].

Since L” is almost calibrated, it lies in ﬂ)(—% <¢ < %), and so must L [1]. But L) €
P (¢1) implies L [1] € P(¢1 + 1). Since ¢ + 1 > % we know

{P(¢1+1)ﬂ?(—%<¢<%)=0,

a contradiction. This proves sup; 6 > 51, subject to the conjectural existence of the
Bridgeland stability condition.

A similar argument, beginning with the Harder—Narasimhan decomposition of L,
would show infz, 6, < 6,. .

Remark 3.15. In the above argument, once we achieved CF O(L/ , L) = 0, there is a dif-
ferent way to proceed. We reinterpret the distinguished triangle L} — L — L"” — L/ [1] as
an isomorphism in D® Fuk(X ) between L and a twisted complex built from L U L”. This
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would give rise to a bordism current constructed from the universal family of holomorphic
curves, with 9€ = L — L, — L”. However, CF°(L/;, L) = 0 implies that no holomorphic
curve contributing to € passes from L to L in the clockwise direction of dX. The twis-
ted complex structure on L} U L” forbids the passage from L/ to L” in the clockwise
direction of dX. Thus if the holomorphic curve has any boundary portion on L/, its entire
boundary would lie on L', which cannot happen in the almost calibrated setting.

This motivates the following definition, whose precise meaning depends on the con-
jectural enlargement of the derived Fukaya category by incorporating singular Lagrangian
objects.

Definition 3.32. Let L be an almost calibrated exact Lagrangian brane representing a
class in the (suitably enlarged) derived Fukaya category. Suppose for any almost calibrated
exact Lagrangian objects L, L, fitting into a distinguished triangle

Ly —L— L,— L[l],

we always have

§1=argf Qfézz/ Q, resp.@lzarg/ Q<§2=/ Q,
Ly Ly Ly Ly

then we say L is Thomas—Yau semistable (resp. strictly stable). If L fails to be Thomas—
Yau semistable, we say it is Thomas—Yau unstable.

We have attributed this definition to Thomas—Yau [82,83], since it is in their spirit that
stability conditions should be Floer theoretic conditions to be tested on the distinguished
triangles, and that one should restrict attention only to almost calibrated Lagrangians. We
now argue that if Joyce’s conjectural Bridgeland stability exists with its expected proper-
ties, then its semistable objects should agree with Thomas—Yau semistability.

Conjecture 3.33. An almost calibrated exact Lagrangian brane L defines a semistable
object in D? Fuk(X) under Joyce’s Bridgeland stability, if and only if it is Thomas—Yau
semistable.

Proof (heuristic). If the derived category class of L is semistable in Joyce’s sense, then
we can choose an optimal representative which is a special Lagrangian, or at least has
phase oscillation arbitrarily small. By Conjecture 3.31, we cannot have any destabilizing
distinguished triangle, i.e., L is Thomas—Yau semistable.

Conversely, if L is not a semistable object in Joyce’s sense, then from its Harder—
Narasimhan decomposition we can produce a destabilizing distinguished triangle

L1—>L—>L2—>L1[1]

with almost calibrated L, L,, which violates Thomas—Yau semistability. [
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Having discussed the semistable objects, it is interesting to see what Joyce’s LMCF
picture suggests about the Harder—Narasimhan decomposition.

Conjecture 3.34. Assume further that the Kdhler metric on X is Calabi—Yau. Suppose L
is an almost calibrated exact Lagrangian brane in D? Fuk(X), with Harder—Narasimhan
decomposition (2.2)

0=86—>8&§ —>---—>E&x=1L,

fitting into the distinguished triangles
Si_l —> 8,' e Li — 81'_1[1],

such that L; € P (¢;) with gy > -+ > ¢pn. We have §, = m¢p; = arg fLi Q. Then the phase
angle inequality (3.16) and the volume lower bound (3.17) hold.

Proof (heuristic). InJoyce’s conjectural program, the Harder—Narasimhan decomposition
is constructed by running the LMCF (L;) starting from the unobstructed Lagrangian L,

and take the infinite time limit (2.3) to obtain the limiting special Lagrangians Ly,..., Ly
with angles 6] > 6, > --- > 6y, assuming L1,. .., L y have enough regularity to be admit-

ted as objects of D? Fuk(X). It is expected that L, ..., Ly generate L in D® Fuk(X)
via (2.2).

A basic feature of LMCF in Calabi—Yau manifolds is that the Lagrangian angle satis-
fies a heat equation (see Section 4.1), so supy,, 6 is non-increasing in time (resp. infz,, 0
is non-decreasing). Comparing the initial time with the infinite time limit, this suggests
sup 07, > §1 and inf 07, < §N.

Moreover, if the ambient metric is Calabi—Yau, then LMCEF is a special case of mean
curvature flow, so the volume functional decreases in time. This monotonicity is not
affected by the surgeries in Joyce’s LMCF. Thus,

J.=
L;

Under the Calabi—Yau metric, the volume of the Lagrangian L agrees with the J-volume:

Vol(L)zfe—i"sz:/ 1.
L L

so (3.17) follows. [

N N

N
Vol(L) = Y Vol(Li) = Y [z(Lo| = Y
1

1 1

Remark 3.16. Analogously in the context of HYM connections, if a holomorphic bun-
dle E is unstable, then its Harder—Narasimhan decomposition provides a lower bound
on the Yang—Mills energy of any Chern connection on E compatible with 9z, which
improves the topological energy bound. This type of phenomenon is common in Kahler
geometry, for instance it also happens in the context of K-stability. These topics are
covered in the introduction of [29].
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In conclusion, Joyce’s conjectural picture suggests that if a Lagrangian object is un-
stable, then it satisfies certain angle and volume inequalities which quantitatively forbids
it to be a special Lagrangian, and these obstructions detect the features of the Harder—
Narasimhan decomposition. This should be compared with Theorem 3.26, which contains
the main features of the obstructions, but makes no a priori reference to the LMCF or
special Lagrangian representatives. The cost is that Theorem 3.21 and 3.26 require the
positivity condition as an extra hypothesis.

Almost calibrated case: Categorical predictions of the Joyce picture. A complete
characterization of Bridgeland stability conditions on a triangulated category, known since
the inception of the subject [13, Proposition 5.3], is that P (¢ < ¢ < ¢ + 1) defines an
abelian subcategory (‘the heart of a bounded ¢-structure’), and the central charge function
on this abelian subcategory satisfies the Harder—Narasimhan condition.

In the Thomas—Yau-Joyce picture, (—% <¢ < %) essentially is the same as the sub-
category of almost calibrated Lagrangians, if we assume there is no special Lagrangian of
phase %, which holds as long as the discrete set of values of Q2-periods on H, (X, Z) miss
the phase angle 7. Then this picture would predict almost calibrated Lagrangians to form
an abelian category, which moreover generate the entire derived Fukaya category using
the shift operator. Morally, this is asserting that there are sufficiently many almost calib-
rated Lagrangians, which is evidently very deep since constructing geometric Lagrangian
objects is known to be a difficult problem in symplectic topology. Another deep prediction
of the existence of Bridgeland stability condition [45, Conjecture 3.6], is that the derived
Fukaya category D? Fuk(X) (after incorporating immersed and singular Lagrangians with
local systems) is automatically idempotent complete, so agrees with D™ Fuk(X). These
predictions, if correct, are very interesting structural results on the Fukaya category, but at
the moment they are controversial.

In Section 5, we will set up a variational framework to find special Lagrangian repres-
entatives of D? Fuk(X) classes under the assumption of Thomas—Yau semistability. By
restricting only to the subcategory of almost calibrated Lagrangians, our program evades
these difficult structural claims on the entire D? Fuk(X). It would thus not have the same
strength as the Joyce program, nor is it subject to the same falsification criteria.

3.7. Moduli integral formula for the Solomon functional

3.7.1. Moduli integral formula for the Solomon functional. Assuming automatic trans-
versality, we can rewrite the Solomon functional (3.4) as a moduli space integral in terms
of the notations introduced in Section 3.5. Let u: ¥ — X be a holomorphic polygon, with
first order deformation vector fields vy, ..., v,—1, so we can define a holomorphic func-
tion F via (3.15). In clockwise order on 9%, we encounter the degree one intersections
on L, an intersection p € CF O(L, Ly), the degree one self intersections on Lg, and an
intersection g € CF%(Ly, L). As before, we fix the additive constant by F(g) = 0.
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In the following calculation, we will use the complex orientation on X, and the coun-
terclockwise orientation on d%. The Solomon functional contains a term

—/ A A Im(e‘iéQ).
e

Now — f€ A A € can be expressed as an integral of the following (n — 1)-form over the
(n — 1)-dimensional moduli spaces M of holomorphic curves:

/)L/\Q(-,vl,...,v,,,l)zf)L/\dF.
z z

Notice that since u: ¥ — X is a holomorphic curve and €2 is an (n, 0)-form, adjusting v;
by a vector field tangent to X does not change this integrand, and all v; must hit €2 instead
of the 1-form A. After integration by parts, we have

/A/\dF:/FdA—/ F)L:/Fa)—/ FA.
by by Dy by Iz

The Solomon functional contains another two terms

/fLIm(e_iQQ) and —/ fLOIm(e_mQ).
L Lo

Now [, f1Q can be expressed as an integral of the following (1 — 1)-form over the moduli

spaces M:
—[ fLQ(',Ul,...,Un_l)Z—f deF
d=NL d=NL

The abused notation 3% N L means the part of 9 mapping to L instead of L. Similarly,
-/, Lo 1,2 is the moduli space integral of the (n — 1)-form

[ et == [ jiar

dXNLg dXNLo

The extra minus sign comes from the fact that 9€ sweeps out the cycle — L instead of L.
Combining all the three contributions, the Solomon functional is the moduli space

integral with integrand

I = Im/ e_iéFa) —Im e_iéd(fLF) —Im/ e_iéd(fLoF)
b =ML

dxNL

The last two terms involve total derivatives, so can be integrated along boundary segments
between the corner points, to yield

—Im/ e_”;d(fLF)—Im/ d(fr, ) =Tm Y FfIE, (318)
a=NL dZNLo all corners

where f|* stands for the difference of the potentials f7, — f— at a Lagrangian inter-
section point, such that % moves from L to L_ in the clockwise direction. In the more
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general framework of Floer theory with Novikov coefficients, f|* have the interpretation
as the Novikov exponents of these intersection points. The bounding cochain elements
have f|* >0, while p € CF°(L, L¢),q € CF°(Lo, L) may have negative Novikov
exponents.

Proposition 3.35 (Moduli space integral formula). The Solomon functional §(L) is the
integral of the following complex valued volume form over the (n — 1)-dimensional moduli
spaces of holomorphic curves:

S(L):/ I, Im/ “10 Fey 4 Im > O RF|E. (3.19)
M

all corners

Remark 3.17. The normalization F(g) = 0 is convenient, but changing F by a constant
along X does not affect I, due to the energy identity

[+ X srr=o

all corners

Remark 3.18. We have focused the discussion on the holomorphic curves with boundary
on both L and L, which are the only curves relevant for the bordism current € in the
almost calibrated case. In general we need also curves involving corners at CF~ (L, L)
or CF™1 (Lo, L), and the formula (3.19) takes into account all these contributions.

3.7.2. Change of reference Lagrangians formula revisited. We now revisit Proposi-
tion 3.4 from the moduli space integral perspective, which we expect is better suited for
generalization to compact Calabi—Yau settings. All transversality requirements of moduli
spaces will be assumed, and in this sense the calculations below are formal.

In Remark 3.6 we sketched that under the extra assumption HF ~!(Lg, Lo) = 0, there
is an (n 4 2)-dimensional universal family € over some n-dimensional moduli M, such
that the boundary of C has three (n + 1)-dimensional contributions, corresponding up
to sign to the three bordism currents €;, €,, €3 between Lg, Ly, L, which are in turn the
universal families over the (n — 1)-dimensional moduli spaces M; fori = 1,2, 3. Here M;
can be viewed as certain boundary strata of the compactification of M. The integrand 1
naturally makes sense as an (n — 1)-form on M, and restricts naturally to M;. The change
of reference formula (3.6) amounts to

/ I=/ r+[ I3 (3.20)
M3 My Mo

Our strategy is to use Stokes’ formula on the moduli spaces. As usual, the holonomy
weighting factors will be suppressed in the moduli integral notations. Then (3.20) reduces
to the following two claims.

Claim 3.36. The n-form d I = 0 over the moduli space M.
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Claim 3.37. The Stokes boundary term is

/dI / I+/
My Mo M3

We first explain Claim 3.36. First, we calculate the derivatives of F. Let yq,..., y, be
local coordinates on M, so % can be identified as first order deformations of holomorphic
curves. The local coordinates on X are denoted as s, r. We can write

F=2Fi(—l)i*1dy1A---/\dy,-/\---/\dy,,,
such that along 3,
d d d d
s Fi = (=171 — . — ),
=D (8 VT Ay 3yn)
d 0 d )
By A )

The holomorphic volume form satisfies d 2 = 0, whence

ZBE)F—E)( <ai1 Byn)) ZBBF_E)( <3i1 . %))

Notice Q( %, By ) vanishes at the corners due to the decay of the first order deform-
ation vector fields, and comparing with the additive normalization convention on F, we

find
9 9
§ :a F = Q<3y1 ay,,) 3.21)

9, F; = (—1)"—19(

In particular, at all the corner points Y_; d; F; = 0. The term f'|* at the corners are inde-
pendent of the moduli space parameters, so the only contribution to d I comes from the
Im [y ¢~i% Fe term in formula (3.19).

We calculate

;S/Fa)_/ZBFw+/ZF8w

Here 0; w is the Lie derivative of the symplectic form w with respect to the vector field Biy,
4
which by Cartan’s formula is

o= (0g50)) g do = (o(5))
/EXijFia,»wzf ZFa) /ZdF Ao ay ).

Thus,

1
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Notice that 0% and 3;; are both tangent to the Lagrangian boundary, so the 0% integrand
vanishes. We are left with

n
d
gaiéﬂw:[;;&ﬂw_fz;dﬂ Aw<a>
d ad
0

. 0 /E-)\ ad
+Xi:(—l)’ la)(a—yi,-)/\Q(-,E,...,a—yi,...,a).

Here we used the definition of F; via d; F;, d; F;, and the formula (3.21) for ), 9; F;. We
contract the identity w A 2 = 0 with %, el % When two % hit w, the 2 term will
be contracted only (n — 2) times, which produces a (2, 0)-form vanishing identically on
the holomorphic curve . When at most one % hits w, we obtain the above integrand. In
effect, the integrand vanishes identically:

n
Z 0; / Fio =0,
i=1 J%
which then implies d I = 0.

We next explain Claim 3.37. In general, the compactified moduli space has many
boundary strata corresponding to disc bubbling and disc splitting.

Claim 3.38. Only the boundary strata corresponding to gluing holomorphic curves with
virtual dimension 0 and n — 1, can have non-zero contributions to the Stokes boundary
term.

To see this, we need to understand how I (and notably F) behaves near the bound-
ary of the moduli space. Recall that when the holomorphic disc is degenerating to several
disc components, then under transversality conditions, the cokernel of the extended lin-
earized Cauchy—Riemann operator vanishes, and for small fixed gluing parameters, the
kernel elements (i.e., first order deformations) are up to small perturbation obtained by
gluing the kernel elements from the degenerate disc components. The perturbation effect
tends to zero as we approach the moduli space boundary. Now the kernel elements from
different disc components have essentially disjoint supports, so unless we have at least
(n — 1) kernel elements supported on one disc component such that Q(-, vy, ..., v,-1)
does not vanish identically, we will have d F = 0 for the moduli boundary strata, so that
F = const along ¥, whence I = 0 by Remark 3.17. This shows Claim 3.38. We com-
ment that this phenomenon is closely related to the fact that many moduli boundary strata
do not contribute to the boundary of the bordism current € due to support reasons (see
Section 3.1).

On the boundary strata, the only contributions to the integral I come from the (n — 1)-
dimensional moduli spaces. The role of the holomorphic curves of virtual dimension zero,
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is to provide the counting factors, in a manner entirely analogous to Section 3.1.2. Most
contributions cancel out due to the Maurer—Cartan equation on the bounding cochains, and
the closedness of the H F° generators. The remaining contributions produce the right-hand
side in Claim 3.37.

3.7.3. First variation formula revisited. In this subsection we explain how to semiheur-
istically understand the first variation formula (3.5) as a consequence of Proposition 3.4,
from the perspective of the moduli space integral formula (3.19). We hope this viewpoint
is better suited for generalization to compact Calabi—Yau settings.

Suppose we are given a 1-parameter exact isotopy of unobstructed exact immersed
Lagrangians L;, and we wish to calculate %S L) (L¢) at t = 0. The change of refer-
ence Lagrangian formula (see Proposition 3.4) allows us to replace Sy, (L) by Sr,(L:).
The Lagrangian L, for |¢| < 1 is approximately the graph of tdh in T* Lo (understood
in an immersed sense), for the Hamiltonian function 4 = h;|;=¢ on L. The holomorphic
discs between L; and Lg for |¢| < 1 have small energy of order O(|t|), and are loc-
ally approximated by Morse trajectories of 4. Write X}, as the Hamiltonian vector field,
namely w(Xp, ) = dh, then

d
/Fa):/ Fa)(-,Xh)z—/ Fdh.
t=0Jx» 9XNLo 92NLo

dt
Now we examine >, comers F./ | for very small 7. The Lagrangian intersections come
in two types:

(i) The corners p € CF°(L,, Ly) and g € CF°(Ly, L;) correspond to the local
extrema of the Hamiltonian /.

(i) Any self intersection p; between two local sheets L, L_ of Ly can be paired
with a very nearby self intersection of p! between two sheets L’ , L*. of L,. The
bounding cochain on L, is thus induced from the bounding cochain on L.

At the intersection points p, ¢, we have
{ F15@) = fro(@) = fr.(9) = —th(g) + O@),
FIX() = f1,(p) — fro(p) = th(p) + O(?).

The self intersections are usually not important here, because the smallness of energy
prevents their appearance on 9%, unless f|*(p!) = O(|t]), and f|*(p;) = 0, which is
a rather non-generic situation. When the self intersections do appear, the evolution of the
potential under exact isotopy gives

(i, = i) = (i = i) + [ =)0

= f1T(pi) + th|T(pi) + O(t?),

where 4 keeps track of the Hamiltonian on the different sheets of L. Thus

FIZD = fre(p) = S (p)) = = f1Z(p) = th|Z(pi) + O@?).
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Here we have a tricky sign reversal, because if L1 and L_ are clockwise ordered on 9%,
then Lﬁr and L? are counterclockwise ordered. In summary,

d
dt

o X Eto=ln{-rio+Fip- Y Rt

all corners Lo — self intersection corners

Combining the above, and integrating by parts, we obtain

d +
E 1=0 (/E fe " allgn:ers Ff|(t))
= lim{—Fh Fh(p) — Fhlt(pi) — Fdh}
timd=Ph@) + i)~ S Fueo— [

Lo—corners

= lim{/ hdF}.
1=>0\JaznLy

Observe that for very small ¢, as the holomorphic curves vary in the (n — 1)-dimensional
moduli spaces M, under the counterclockwise sign convention for 3, the boundary eval-
uation of X N L sweeps out the cycle Ly (beware of the sign!), and any generic point
on Lg is swept out precisely once due to the Morse theory limiting description. Con-
sequently, we have the moduli space integral

lim/ {/ hdF} = hQ,
=0/ \JaznL, Lo

hence P
= / /Fa)+ > Fflf(t)) :/ hQ.
dtlr=0 ’M( z all corners Lo
By the moduli integral formula (3.19) of the Solomon functional,
d d 5
—| 8Ly =— I={ himE?Q).
dtli=0 ( 2 dt lt=0 /M Lo m(e )

This recovers the first variation formula (3.5).

3.7.4. Speculations on compact Calabi-Yau manifolds. Floer theoretic foundations are
much more complicated beyond the exact setting, and the foundations concerning the
open-closed string map in the immersed Fukaya category setting are not fully written out
in the literature. Nonetheless, due to the interest of the topic, we shall offer some spec-
ulations about how the Solomon functional formula (3.19) generalizes to the compact
almost Calabi—Yau setting. Our local systems will have coefficients in R, Q, i.e., the par-
allel transport in the local system have only Novikov exponent zero components. This
convention is somewhat more restrictive than [4,67, 68].

Remark 3.19. In Joyce’s LMCEF, bounding cochains and local systems can be created ex
nihilo during the flow, but in all the mechanisms the author is aware of, the flow preserves
the above class of local systems.
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First, we recall the role of Novikov coefficients in Floer theory. All Floer cochain
spaces CF* are modules over the Novikov field

A= {ZaiTAi A eER AL < Ay <---—>+oo},
i

and a; € Q or R depending on the coefficient field choice.*> There are a few conventions
to define Aoo-operations. Let L be a compact immersed Lagrangian with transverse self
intersections. In the Morse model [67], the self Floer cochain space CF*(L, L) is gener-
ated by the Morse critical points on L, and the ordered self intersections (twisted by local
system hom and orientation factors as usual). The Fukaya A.-algebra is a collection of
Novikov-multilinear operations

me:CF*(L,L)®---® CF*(L,L) — CF*(L, L)[2 — k]

defined by counting holomorphic treed discs u: ¥ — X (see [67, Definition 3.1]), weigh-
ted by the holonomy and orientation factors, and an energy factor T . Very roughly, the
domain ¥ have surface parts (which consist of discs, and spheres attached to them), and
tree parts connecting the disc boundaries. Then u is a holomorphic map with Lagrangian
boundary on the surface parts, and Morse gradient flowlines on the tree parts. The role
of CF* elements is to specify the limiting behaviour of the Morse flowlines, and the
Lagrangian self intersections on dX. The energy E(u) = [y  is the sum of [ u*w on all
the surface parts of X.

A non-trivial fact is that (after complicated perturbation schemes, or virtual tech-
niques) this gives rise to a curved Aso-algebra structure [67]. The most important new
feature, absent in the exact case, is that the disc bubbling can occur at points of L, which
are not necessarily self intersection points. The domain disc splits into two discs, attached
at a boundary node. This phenomenon is compensated by considering two discs joined
by a gradient flowline segment, whose length shrinks to zero, producing the same nodal
discs in the degeneration limit. With the appropriate weights and orientations taken into
account, these two effects would cancel algebraically. On the other hand, the length para-
meter of the tree parts can tend to infinity, causing the Morse gradient flow line to break,
a phenomenon which contributes to the boundary of the 1-dimensional moduli spaces,
reflected algebraically in the A -relations.

Similar to the exact immersed case (see Appendix A.2), the bounding cochains are
b € CF'(L, L) elements satisfying the non-negative Novikov exponent requirement, and
the Maurer—Cartan equation

mo + my(b) + ma(b,b) +--- = 0.

“2We do not know if the Fukaya category can be defined over integers in general. One should not confuse
the coefficients a; with the Novikov exponents A;. Typically a; are rational numbers related to counting,
while A; are real numbers related to the energy.
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Generally speaking, the sum is infinite, but after truncating the Novikov series at any
given high energy, only finitely many terms appear due to Gromov compactness, so the
sum makes formal sense. As usual, the Lagrangian with bounding cochain structures are
called unobstructed.

The framework for setting up the Fukaya algebra of a single immersed Lagrangian,
also assigns meanings to Floer cohomologies between two immersed Lagrangians with
bounding cochain structures. Suppose & € CF°(L, L") and B € CF°(L’, L) represent
elements in HF°(L, L") and HF°(L', L) whose cohomological compositions are the
identities. The «, B are in generally represented by infinite series in the Novikov vari-
able T', where some Novikov exponents may be negative, and may not be bounded above,
but at least they are bounded from below depending on «, 8. We now speculate that there
is a bordism current € with € = L — L’, constructed from the universal families of
treed holomorphic discs over the (n — 1)-dimensional moduli spaces M. The monomial
summands of «, f and the bounding cochain elements prescribe the corners of the treed
holomorphic discs, and monomials with different Novikov exponents are viewed as inde-
pendent contributions to M and €. Beyond the almost calibrated case, one would also
need to incorporate degree —1 self intersections as usual. We think the moduli spaces that
contribute to € would satisfy the Novikov exponent condition

/ ®+ Y Novikov exponent = 0. (3.22)
)

all corners

Here the corners include the monomial summands of &, 8 (or the degree —1 self intersec-
tions as appropriate), and the bounding cochains at the degree one self intersections/Morse
critical points of L, L’. Since all Novikov exponents at the bounding cochains are non-
negative (not so at «, 8, and the degree —1 self intersections!), this condition would impose
an energy upper bound on the holomorphic treed discs depending on «, 8, whence only
finitely many moduli spaces contribute to the bordism current.

Remark 3.20. The Novikov exponents correspond to f| in the exact case. While in the
exact case (3.22) is an automatic consequence of the energy identity (A.4), in general it is
an extra condition on the moduli spaces. It sits well with the fact that the geometric unit
has zero Novikov exponent.

Now the moduli space integral formula (3.19) formally makes sense almost verbatim,
ignoring all virtual perturbation nuances. For first order deformations vy, ..., v,—; of
the holomorphic treed discs, we can define F on the domain ¥ via the 1-form dF =
Q(-,v1,...,v,—1). On the surface parts of X, we would obtain a holomorphic function F
by complex integrability as usual (which must be constant on the holomorphic sphere
components by the Liouville theorem), while on the tree parts, there is no obstruction for
the 1-form to be exact. Next, we replace the appearance of f | in (3.19) by the Novikov
exponents of the monomial summands at the corners, to define the moduli integrand I.
The term | 5, Fo is understood to only involve integration on the surface parts of 3. The
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Solomon functional $(L) still has the form | w 1. Notice that adding a constant to F
would not change the moduli integrand I, thanks to (3.22).

In the absence of the Lagrangian potential, the Novikov exponents of ¢, 8 are no longer
canonically fixed. Suppose we replace @ by T*«, and B by T8, for some pu € R. This
would affect the moduli integrand I, by the amount

wim{e " (F(p) — F(q))).

where p, ¢ stand for the components of «, 5. By analogy with the exact case, we expect

Im(e_i§/ F(p)— F(q)) = Im(e_’@/ Q) =0,
M L

whence $ (L) is independent of p.
Once the foundations are in place, we expect the following result.

Conjecture 3.39. Fix a compact almost Calabi—Yau manifold X . The Solomon functional
is well defined for graded immersed unobstructed Lagrangians in the same D® Fuk(X)
class of a reference Lagrangian L, satisfying that

* the change of reference Lagrangian formula (3.6) holds;
* gauge equivalent bounding cochains give rise to the same functional;
s cohomologous choices of HF generators a, B give rise to the same functional;

* the first variation formula (3.5) holds for any 1-parameter exact isotopy of unobstruc-
ted Lagrangians.

The slogan is that Floer theory should fix the multi-valuedness problem of the Solomon
functional (see Section 2.8). As a more technical observation, once the change of refer-
ence Lagrangian formula (3.6) is established, one can remove the assumption for L to be
transverse to L, using a perturbation L, of L.

3.8. More applications of moduli space integrals

We collect a number of further topics involving the moduli space integral technique. Sec-
tions 3.8.2 and 3.8.3 are applications of the moduli integral formula (3.19) for the Solomon
functional.

3.8.1. Lotay-Pacini convexity. Lotay and Pacini proved the convexity of their J-func-
tional (see Proposition 2.13) through rather heavy calculations, so it is instructive to see
that in the Calabi—Yau case, this result has a much simpler conceptual argument.

We interpret their ‘geodesic’ as a bordism current € between two Lagrangians L, L',
constructed from universal families of holomorphic curves, such that automatic transvers-
ality and the positivity condition hold. In their highly idealized setting, only holomorphic
strips ¥ ~ Ry x [0, 1]; appear in the construction of €. We define the holomorphic func-
tion F as usual. The l-parameter family of totally real submanifolds is given by the
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constant 7-coordinate slices €; of €, whose J-volume functional is expressible through
moduli space integrals

v01,(a)=/ |sz|=/ /
f[ M Rsx{t}

Since F is holomorphic, so is %—I;, whence |%—€| is subharmonic, which combined with the

exponential decay at s — oo implies the convexity of the function in ¢:

/]Rsx{t}

Thus Vol (€;) is convex as a function of ¢, as Lotay and Pacini observed.

%—i‘ds.

3.8.2. Lower bound of the Solomon functional. The theme of Section 5 will be on the
variational approach to find special Lagrangians by minimizing the Solomon functional
in a fixed derived category class. As an important motivation, special Lagrangians are
formal local minimizers of the Solomon functional under Hamiltonian deformations (see
Section 2.8). In fact, we can do better under the automatic transversality and the positivity
condition.

Proposition 3.40 (Special Lagrangians are minimizers). Suppose that L is an exact imm-
ersed special Lagrangian of phase 6 e (=%, %) with unobstructed bounding cochain
structure. We let L be an almost calibrated, exact, immersed Lagrangian in the same
Db Fuk(X) class, which intersects L transversely. Suppose the bordism current € with
0€ = L — Ly satisfies automatic transversality and the positivity condition. Then, we

have that S(L) > §(Ly).

Proof. The incline angle of the tangent vector to F(0X) C C is equal to the Lagrang-
ian angle modulo wZ. Since Ly is a special Lagrangian, along the Lo boundary portion
arg F = 8. Thus Im(e % F) = 0 at p, ¢ and the self intersections on Lg. The Solomon
functional integrand simplifies to

Im/ e Fw+ Z Im(e_ieF)lelL.
z L-self intersections on 02

By the almost calibrated assumption on L, L, and the positivity condition, we obtain
Claim 3.23, namely F(X) lies above its L boundary,

Im(e_igF) >0 onX.

Moreover, the Novikov positivity requirement for the bounding cochain on L says that
fLIT > 0 at the degree one self intersections on 9% N L. Thus the Solomon functional
integrand is non-negative, which implies S (L) > 0 = §(Lo). |

Remark 3.21. Suppose we drop the positivity condition, then the key step Im(e g )<0
would break down, so the above proof of Proposition 3.40 would be invalidated. However,
the conclusion may still be true (see Section 5.7.1).
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3.8.3. Bounded part of the Solomon functional. Let L, L be both exact, immersed
Lagrangians with unobstructed bounding cochain structures, lying in the same D? Fuk(X)
class, such that all intersections are transverse. Assume the bordism current € with € =
L — L satisfies automatic transversality and the positivity condition. We consider L as
a fixed reference Lagrangian, while L can vary. We wish to find uniform a priori bound
on certain parts of the Solomon functional, under natural conditions on L.

We shall assume the following conditions.

Quantitative almost calibratedness. Both L and L, have Lagrangian phase angles with-
in [-7 + &, 5 — ¢] for some fixed small constant &.

Potential clustering. (See Lemma A.3.) The immersed Lagrangian L can be represented
by a twisted complex (3.1) built from the immersed Lagrangians Ly, ..., Ly, such that
the oscillation of the Lagrangian potentials have uniform bounds

sup fr, —inf f1, < A,
L; L;
while for any i > j,
sup fr; <inf f1,.
L; L;
Without loss of generality, we also assume

sup fLo - inffLo <A
Lo Lo

for the fixed Lagrangian L.

Proposition 3.41 (Uniform energy bound). Under the potential clustering assumption,
all holomorphic polygons u: ¥ — X with boundary on L and L contributing to € have
uniformly bounded energy independent of L:

E(u) = [Zu*a) < A(N +1),

and along 0% the degree one self intersections of Lo, L1, ..., Ly arising from the bound-
ing cochains satisfy a uniform bound

SO Sl ) < AN + ).

i b

Proof. We consider holomorphic polygons whose boundary 9% encounters in the clock-
wise order intersections in

pN—1 € CF'(Ly,Ly-1),...,p1 € CF'(La, Ly),
po € CF°(Ly, Lo). pn € CF°(Lo. Ly).
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juxtaposed possibly by more degree one self intersections b; of L;. The notation here
does not constrain the number of self intersections of L; that can occur on dX. The topo-
logical energy formula (A.4) expresses E(u) in terms of the Lagrangian potentials at the
intersections

N—-1
E@) + Y Y flt®) = fuy(pn) = fro(pw) + Y (fri = fLi) (i)
i b i=0

N
= fLo(po) = fLo(pw) + Y (fL:(pi) = fr:(pi-1))

i=1
< (N + DA.

By the Novikov positivity requirement of the bounding cochains fz,|T (b;) > 0, and the
energy of the holomorphic curve is also positive, so they are individually bounded.

More generally, the polygons may miss some of the Lagrangians in Ly, ..., Ly, but
cannot reverse the order of the Lagrangians. This amounts to using a smaller effective
value N, and the same argument implies the energy bound. ]

We now consider the holomorphic function F as before. Recall by Claim 3.22 we have
0 < Re(F) < Re F(p), where p is the intersection point in CF°(L, Ly). In fact, F(X)
must be contained in a triangular region determined by Re F(p).

Lemma 3.42 (Wedge region bound). Under the quantitative almost calibrated hypo-
thesis, we have | arg F| < 7 — &, or equivalently | Im(F)| < (cote) Re(F). In particular,
|F| = ——ReF = ——Re F(p).

sine sine
Proof. The incline angle of the tangent vector of F(dX) is equal to the Lagrangian angle
mod 7 Z. Together with Claim 3.22 this implies | arg /| < 7 — & on the 9%, whence the
same bound holds on ¥ by the maximum principle for holomorphic functions. |

We now introduce an elementary functional

N ) ~
_ 3 B —if
S(L) = Im(;(szp fi)e /L,- Q) (szlg) fLo)Im(e /Lo Q)

As in Section 3.5, we introduce complex valued volume form Q L; on the (n — 1)-dimen-
sional moduli spaces of holomorphic curves, whose core properties are

Re;, >0, / Qr, :/ Q, i=0.1,....N.
M L;
Thus the elementary functional is also a moduli space integral, with integrand
N ~ ~
Im Z(e‘ieﬁL_i) sup f1; — Im(e™9Qp,) sup fr,- (3.23)
1

We decompose the Solomon functional into (L) and S(L) — S (L).
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Theorem 3.43 (Bounded part of the Solomon functional). Under the quantitative almost
calibratedness and the potential clustering assumption, and all the standing assumptions
of this section, there is a uniform a priori bound independent of L,

— AA4N +2
S()— Sy < A4V D [ pog.
s & Lo

Proof. We analyze the moduli space integrand (3.19) of the Solomon functional. Applying
the uniform energy bound and the wedge region bound, the first term is bounded by

‘Im / 0 po| < [ Flo < REFG) [ Re(F(p)
z z

sin & s sing
More intrinsically F(p) defines the complex valued volume form Q L, on the moduli

space, hence
'Im [

The other two terms in (3.19) are rewritten as a sum of contributions from intersec-
tion points in (3.18). As in Proposition 3.41, we consider holomorphic polygons whose
boundary 0¥ encounters in the clockwise order

AN +1).

< i—A(N + 1)Re(2r,). (3.24)

pN-1 € CFY(Ly,Ly-1),....p1 € CF'(La. Ly),
p=po€CF°Ly,Lo), q=pn€CF°Lo. Ly)
juxtaposed possibly by more degree one self intersections b; of L;. (The other cases,
where 0¥ misses some Lagrangians, can be handled completely similarly.) We first deal

with these extra self intersections. Using the wedge region bound and the Novikov posit-
ivity requirement, we obtain

‘Imzze—fﬁmit
i b

< ZDF(biM.fL,»E(bi)

< RC(F(P)) sz I (by).

sin g

By Lemma 3.41, we have
‘Im DY e OFfL I i)
i b

We are left with the contributions of pyg, p1,..., py to (3.18):

1 ~
< — AN + DRe(8y,). (3.25)
sSin &

N-1
Im Z eOF(fre — f1,)(P))-
0
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If we replace fr; by its supremum value sup, . fr, foralli =0,1,..., N, the new expres-
sion would be
N-1
Im > " e " F(p;)(sup f;,, —sup fz;)
0

N
=Im) e " sup fr;(F(pj—1) — F(p;)) — Im(e ™" F(p) sup f1,).
1
which is more intrinsically the integrand (3.23) of the elementary functional. Using the
potential clustering assumption and the wedge region bound lemma, the error of replacing
the potentials by sup L; JfL; can be bounded by

N

24" F(py)| < 24y REWD _ 24N
1

: —— Re(Qr,). (3.26)
sSin & sin &€

Now (3.24), (3.25), (3.26) are upper bounds on the three contributions to the difference
between the Solomon functional integrand (3.19) and the elementary functional integrand.
Their sum is bounded by

AM4N +2)
sine
so after integration on the moduli space,

Re(Qr,).

AN +2)

IS(L) = S(L)| < sne ),

Re 2,

as required. ]

Remark 3.22. In Section 5.2 below we will deduce the potential clustering and an upper
bound on N as consequences of almost quantitative calibratedness, and very mild con-
ditions on the ambient manifold X. In Section 5.5 the boundedness of |§ — §| will be
essential for relating the asymptote of the Solomon functional to stability conditions.

Remark 3.23. In Kihler geometry, it is often useful to decompose natural functionals
into two parts. For instance, the K-energy functional can be decomposed into an entropy
part and a pluripotential part [17, Section 2.4], which is important in the study of constant
scalar curvature Kihler metrics.

Remark 3.24. We suggested in Section 2.10 that the Solomon functional is essentially
the logarithm of the tunnelling amplitude between Lagrangian branes. Pushing forth with
this physics analogy, we may regard the elementary functional as a semiclassical approx-
imation,” and § — § as quantum fluctuation effects. Our main assertion then becomes that

“3The elementary functional is proportional to the period integrals over the cycles L;, which may be
regarded as coming from integration over the moduli of constant maps. Such integrals are regarded as more
classical than those involving non-trivial holomorphic curves.
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quantitative almost calibratedness with some extra hypotheses imply the a priori bound
on the quantum fluctuation effects. The author is not aware of previous suggestions in the
physics literature, but Jake Solomon’s formal Riemannian picture in Section 2.8 may offer
partial explanations for the relevance of the almost calibrated condition.

What if we relax the positivity condition? Suppose we drop the positivity condition on
the bordism current, but keep all the other assumptions. Then the key difference is that
for holomorphic curves contributing negatively to d€, we need to replace Claim 3.22 by
Claim 3.29, and Claim 3.23 by Claim 3.30. Correspondingly, all appearance of Re F(p)
is replaced by its absolute value. Then the conclusion in Theorem 3.43 is replaced by

= AM4N 42
s -5 = 25D [ red |

The problem is that the right-hand side is no longer a manifestedly a priori bounded quant-
ity.

4. Continuity, LMCF and variational method

We now proceed to the more analytic aspects of the problem of finding special Lag-
rangians. There are three principal methods for existence theorems in geometric analysis:
continuity method, parabolic flows, and the calculus of variations. Generally speaking,
continuity or flow methods are often closely related as the elliptic and parabolic cousins
of each other, and allow one to work with a priori reasonably smooth objects, but finding
a good continuity path or proving the long time existence of the flow may be difficult
in a particular problem; the variational approach, on the other hand, operates with the
space of a priori less regular objects to achieve some weak compactness, and then attempt
to improve the smoothness via regularity theorems. Each approach contains substantial
outstanding difficulties. We will try to maintain some equipoise, and compare the main
difficulties in each approach. The sections on the flow and the continuity method borrow
largely from various writings of Joyce with some new contents; the variational approach
is essentially original, and will be presented in Section 5.

4.1. Lagrangian mean curvature flow

LMCF basics. We now return to some analytic aspects of Joyce’s proposal [45] related
to the Lagrangian mean curvature flow (LMCF) inside a Calabi—Yau manifold. Recall a
smooth mean curvature flow means a family of immersions ¢;: L — M parametrized by
time ¢ € [0, T'), such that the velocity is equal to the mean curvature

8tf=H

The starting point of LMCF is an early observation of Smoczyk, which justifies the name.
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Proposition 4.1 ([76, Section 4.2]). Let (L;) be a smooth and compact mean curvature
flow inside a Kdhler—Einstein manifold, then the Lagrangian condition is preserved by
the flow.

Remark 4.1. In more general Kihler settings, the Lagrangian condition is still preserved
provided one couples the mean curvature flow to the Kéhler—Ricci flow (see [58]). Joyce’s
program may have natural extensions to the almost Calabi—Yau setting. Indeed the gener-
alization of the flow may even be advantageous for achieving certain genericity conditions,
as in the work of Woodward and Palmer [67, 68].

Assuming (L;) is a smooth and compact LMCF inside a Calabi—Yau ambient mani-
fold, then if the initial Lagrangian is graded, i.e., the Lagrangian angle is well defined as
a real valued function on the Lagrangian, then so is L;. The grading is highly desirable,
because of the foundational fact that the Lagrangian angle function L; — R satisfies the
heat equation

(3 — AL)6; =0, @.1)

which among many other things, implies that sup, 6; can only decrease in time, and
infz,, 6, can only increase in time, and in particular the almost calibrated condition would
be preserved by the flow. Inside a Calabi—Yau manifold, the mean curvature of L; is
related to the Lagrangian angle 6; by an appealing formula

ITI - JV@;,
where V@ stands for the gradient of 6 along L;. Along the LMCF
w(3;%,) =w(H,") = o(JV;,") = —db,,

so the Lagrangians evolve by the local Hamiltonian function —6; up to an additive con-
stant.

Mean curvature flow in codimension greater than one does not satisfy the avoid-
ance principle. As such embedded Lagrangians can become immersed during the flow,
so the program should at least include immersed Lagrangians. Joyce further suggests that
certain ‘stable Lagrangian singularities’ should be admitted. For instance, inside Calabi—
Yau 3-folds one should allow Lagrangians with local conical singularity modelled on the
Harvey—Lawson 7'2-cone [45, Example 2.7]. The adjective ‘stable’ here means that the
flow should preserve this class of singularities at least for a short amount of time, even if
one makes a generic perturbation of the initial data.

Finite time singularity, and prototypical bad behaviours. The central difficulty of the
subject is that finite time singularities are in general inevitable, starting from complex
dimension two. Indeed, a theorem of Neves [64, Theorem 6.1] says that for any embedded
Lagrangian submanifold inside a Calabi—Yau surface, there exists a Lagrangian within the
same Hamiltonian isotopy class, such that the LMCF with this initial data forms finite
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time singularity.** There is also a good geometric reason why singularities must occur
in Joyce’s program: the Thomas—Yau uniqueness theorem applies to Lagrangians within
the same derived Fukaya category class, which may include several Hamiltonian isotopy
classes, at most one of which can have special Lagrangian representatives. In order for an
initial Lagrangian in the wrong Hamiltonian isotopy class to find its way back to the right
class along the LMCEF, it must undergo a sequence of surgeries.

Now there is a substantial theory of weak solutions of mean curvature flows in the
context of varifolds and currents, known as ‘Brakke flows’ [12], which exist under very
general conditions. The problem is that such solutions are too weak to guarantee unique-
ness of the flow, and the total mass of the varifold may jump down at discrete time. Even
more fatally for our purpose, once the smoothness of the flow is dropped, the Lagrangian
condition may not be preserved any more. It is instructive to look at the prototypical bad
behaviours.

Example 4.2. Schoen and Wolfson [69] found area minimizers within certain Lagrangian
isotopy classes, which are not minimal surfaces.*’ The Brakke flow with such initial data
further decreases mass in time, so must cease to be Lagrangian. However, these examples
are not graded, so do not contradict Joyce’s program. A possible lesson is that non-graded
Lagrangians are bad.

Example 4.3. Consider a figure eight curve inside R2,*® whose two looms have unequal
areas. Along the mean curvature flow (known as the ‘curve shortening flow’ in this con-
text) one loom shrinks first to zero size. At the moment of singularity, the Lagrangian
angle at the self intersection point has a jump. From a more generalizable perspective,
one notices that each loom encloses a holomorphic disc, and this singularity is associated
with one holomorphic disc shrinking to zero size and disappearing. The general lesson is
that the shrinking down of small area holomorphic discs messes up the grading, so it is
desirable to exclude them if possible.*’

Example 4.4. Consider any compact Lagrangian inside the unit ball of C”. By an easy
maximum principle argument, during the flow L; remains inside the shrinking ball

{Z|Zi|2 =1 —2nt},

so must develop a finite time singularity at some ¢ < ﬁ From the Floer theoretic per-

spective, since such Lagrangians can always be displaced off itself by the Hamiltonian

#“Whether the same holds for almost calibrated initial data is an interesting open problem.

“There is no contradiction: area minimization among Lagrangians by no means guarantees area sta-
tionarity among submanifolds.

46Recall that curves in R? are automatically Lagrangian.

“TIndeed, one important ingredient in Neves’s proof of singularity formation [64] is the destruction of
grading related to shrinking enclosed 2-dimensional areas. Although it is not explicit in Neves’s work, these
areas seem related to holomorphic discs.
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isotopy corresponding to translations in C”, its Floer cohomology is either obstructed or
zero. As such, a compact Lagrangian supported in a small coordinate ball is invisible to
the derived Fukaya category. From a different perspective, since such Lagrangians have
zero homology class, they are excluded in the almost calibrated case.

Joyce’s LMCEF proposal. With this background in mind, one may better appreciate the
upshot of Joyce’s perspective: LMCF should be better behaved if the Lagrangians support
unobstructed brane structures, namely the bad singularities that would spell ruin in a more
general context do not actually occur in his program. The moral reasons are as follows:

* The Lagrangian branes are always assumed to be graded.

* Unobstructed Lagrangian branes cannot bound holomorphic curves with very small
areas unless their Floer theoretic contributions exactly balance out, for otherwise cer-
tain positivity requirements in the Novikov ring will be violated. (See the figure eight
example [45, Example 3.24] for a concrete instance.)

* Assume the Lagrangian decomposes into two pieces, one of which is contained inside
a small coordinate ball. Since this piece only contributes a zero object in D? Fuk(X),
discarding this piece does not affect the D? Fuk(X) class of the Lagrangian.

This gain comes at the burdensome cost of carrying the brane structure along the
flow, which leads to somewhat counterintuitive prescriptions such as surgeries before the
Lagrangian itself reaches a singularity, so that the unobstructed brane structure may not be
lost prematurely. Joyce describes a number of singularities and surgeries that are expected
to occur generically in his program.

Opening up the neck. The Lagrangian brane can develop new self intersection points,
and may flow from unobstructed to obstructed at t = #¢ through the shrinking of cer-
tain holomorphic curves with boundary on L, even through the underlying Lagrangian
remains smooth. The Floer theoretic mechanism causing the obstruction (to do with pos-
itivity conditions in the Novikov ring) precisely ensures an angle condition at certain self
intersection points of Ly,, so that a Joyce-Lee—Tsui Lagrangian expander [46] can be
glued into L, to continue the LMCF. Woodward and Palmer [67, 68] have performed
substantial checks that suitable brane structures can be assigned to such surgeries so
that L; remains unobstructed, and the Floer cohomology remains continuous throughout
the surgery.

Neck pinching. In some sense converse to the above process, the LMCF L; may contain
a local region modelled on a Lawlor neck with small length scale parameters £(¢), which
shrinks ‘slowly’ in time, and &(¢) — 0 at time ¢ — #9.** In some cases this may cause the
domain of the immersed Lagrangian to become disconnected.

48 A gluing construction of neck pinching examples is in working progress with T. Collins. There is how-
ever a crucial sign difference concerning Lagrangian angles, between our work and the Joyce prediction,
which may have rather disconcerting consequences for Joyce’s program.
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Collapsing zero objects. After a number of surgeries, the Lagrangian L; may be decom-
posed into several disconnected pieces, some of which are zero objects in D? Fuk(X),
so in particular have homology class zero. A typical situation is that the zero objects are
contained in small coordinate balls.*” We simply discard these pieces and continue the
flow for the remaining pieces.

Stable singularities. As mentioned above, one may need to include Lagrangians with
certain local singularities, since generic perturbations cannot remove such singularities.
How such singularities can form dynamically starting with smooth initial data is less clear,
but Joyce offers some analogy with the setting of U(1)-invariant special Lagrangians in C3
(see [45, Example 2.8]), where Harvey—Lawson 7T'2-cone singularities can appear and
disappear in pairs within a 1-parameter family of deformations, and in particular smooth
objects can be continuously deformed to such singular objects.

The Joyce program of LMCF with surgery contains a number of potentially counter-
intuitive phenomena.

Example 4.5 ([45, Example 3.15]). After incorporating the surgery of the brane struc-
tures, Joyce’s LMCEF is no longer identical to the LMCF of the underlying Lagrangian.
The most extreme case is to start with the union L of two unobstructed special Lagrang-
ians L1, L, with phase angles 0., < 0L,, with an intersection point b € CF!(L,, Ly)
defining a closed morphism. We regard L as an immersed Lagrangian with bounding
cochain b. This fits into the distinguished triangle

Ly — L — L, — Lq[1],

which is not destabilizing for L. This configuration is stationary in ordinary LMCF. How-
ever, under Joyce’s LMCEF, the bounding cochain b evolves in time, and loses positivity
in the Novikov ring in finite time, after which one is supposed to ‘open up the neck’ to
continue the flow in a non-trivial fashion.

Example 4.6 ([45, Section 3.4]). Joyce’s LMCF in general needs to incorporate non-
trivial rank one local systems. Even if the initial brane structure has trivial local system, it
is possible for surgeries to create non-trivial local systems from the bounding cochain data
at self intersection points. One may imagine such bounding cochain data to be a holonomy
contribution concentrated at points, which can be converted into a smeared out holonomy
contribution from a non-trivial local system.

Example 4.7. The ‘opening-up the neck’ surgery is governed by the Novikov positiv-
ity requirement of the bounding cochain, which depends on the choice of the bounding
cochain, not just the underlying Lagrangian submanifold. The same underlying Lagrang-
ian with different bounding cochains may therefore flow to different infinite time limits.

“Joyce suggests plausibly that Neves’s example [64] exhibits this behaviour by splitting off a small
Whitney sphere, although this is not proven.
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In summary, the main difficulty of Joyce’s LMCF program is that there is a huge gap
between the general Brakke flow framework, and the kind of regularity control required
for the long time existence of the LMCF. It would represent very substantial progress™’
if one can classify possible singularity types under suitable genericity assumptions, say for
almost calibrated Lagrangians inside Calabi—Yau 3-folds. A large list of problems, from

routine level up to the impossible, can be found in Joyce’s excellent original paper [45].

Infinite time limit and its difficulties. Provided one can prove long time existence of
LMCF, the total mass of L; will be uniformly bounded since it decreases during the flow.
Under mild conditions to ensure L, does not escape to spatial infinity (e.g., if the ambient
Calabi—Yau manifold is compact), one can extract the infinite time subsequential limits
of L; as currents. From the heat equation (4.1) on the Lagrangian angle 6, we obtain

@, — AL)IO? = —2|VO|> = —2|H .

If the Lagrangians remain sufficiently smooth, then an integration by part calculation

shows
r - 1
/ / |H|2dvolLt dt < —(/ |9|2alvolL0 —/ |9|2dvolLT).
o JL, 2\JL, Ly

Even if the volume mass can jump down at discrete time, such as during the collapsing of
zero objects, we still expect

T
- 1
/ / |H|? dvolg, dt < —/ 16 dvolp, < oo, VYT >0. “4.2)
o JL, 2 JL,
In particular, we can find a sequence of time #; — oo, with

/ |VO|? dvol — 0.
Ly

This strongly suggests that the subsequential limit is a union of special Lagrangian cur-
rents with multiplicities.

In the heuristic logic of Thomas—Yau—Joyce program, the infinite time limit sup-
posedly provides the Harder—Narasimhan decomposition. In general one cannot expect
the special Lagrangian currents to be smooth, so this raises the question how to make
sense of singular Lagrangians as representatives of D? Fuk(X) classes, or whether we
should use some weaker equivalence class. Another interesting open problem is whether
the limiting current is unique. In order to run the Thomas—Yau argument, one presumably
also needs Floer theory for singular Lagrangians.

NJoyce [45] assesses the difficulty of his program in the Calabi—Yau 3-fold case to be comparable to
Perelman’s breakthrough on the Poincaré conjecture. Indeed, ruling out the cigar solution in the context of
the Ricci flow is in itself already a major achievement of Perelman.
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Joyce [45] already observed that it is not obvious how singular Lagrangians can carry
brane structures, and it is logically possible for some Floer theoretic information to be lost
in the infinite time limit. The suggestion is that hopefully the Lagrangian L, at large but
finite time ¢ >> 1, can serve as a substitute for the infinite time limit, which presumably has
better smoothness properties [45]. There is however no known justification (and probably
false) that the surgeries terminate after some finite time, and L, decomposes into the union
of several Lagrangian objects, in order to provide a Harder—Narasimhan decomposition.

We think Floer theory for singular Lagrangians is one of the foundational open ques-
tions necessary for an adequate solution of the Thomas—Yau conjecture. See Section 5.4
for further discussion.

4.2. Continuity method

The continuity path. The general idea of the continuity method is to work with a 1-par-
ameter family of PDEs, and attempt to deform from an initial given solution, to a solution
of the final PDE, provided the deformation encounters no obstruction, and satisfies suit-
able compactness properties. The hope that the continuity method may be useful here,
is based on the foundational fact that compact special Lagrangian submanifolds inside
almost Calabi—Yau manifolds have unobstructed deformation theory, before taking brane
structures into account.

However, problems immediately ramp up once one attempts to set up a continuity path.
The most naive suggestion, based on the analogy with the HYM equation, is to prescribe
the Lagrangian angle as a function on the domain of L. This however breaks the domain
parametrization invariance of (: L — X, and the author knows no satisfactory way to
make general sense of this approach beyond graphical Lagrangians. Instead, we fix @ and
allow €2 to vary in an infinite-dimensional parameter space subject to the almost Calabi—
Yau condition. In non-compact almost Calabi—Yau manifolds, we need to also keep the
metric asymptote fixed at infinity. The continuity path is a generic 1-parameter family
of Q. This setup strongly resemble the wall crossing phenomenon studied by Joyce [42]
in the context of special Lagrangian enumerative invariants, and indeed the rest of this

section liberally borrows from the ideas therein.’’

Two main obstacles. There are two fundamental obstacles:
* How can one find the initial special Lagrangian?
* How can one guarantee compactness?

How to find an initial special Lagrangian. The question about finding the initial spe-
cial Lagrangian is specific to the continuity method, and does not appear in the LMCF

31To the author’s awareness, the continuity method for the Thomas—Yau conjecture has not appeared in
the literature, except for the wall crossing ideas sketched in [42]. An unpublished program to develop the
Thomas—Yau conjecture in complex dimension two via the continuity method is mentioned in the talks of
Joyce.
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approach. A natural suggestion is to look for special Lagrangians near certain degenerate
limits, and our relaxation of the complex Monge—Ampere equation ought to give much
more flexibility. For instance, conifold degenerations are known to give rise to special
Lagrangian spheres appearing as vanishing cycles [38].°> Another general source is to
work near a suitable large complex structure limit, so that the Kéhler metric can be made
almost toric outside a small region, such that the torus fibres are much smaller compared
to the characteristic length scale of the base. We can then attempt to find special Lagrang-
ians via adiabatic limits, in close analogy with the standard procedure to find holomorphic
curves via tropical degenerations [55].>® The most accessible special Lagrangians in this
approach, should be obtainable by small perturbations of the torus fibres.”* The next can-
didate suggested by the Leray filtration of the torus fibration is already much harder.

Question 8. Construct special Lagrangians whose toric projection to the base are small
thickenings of certain 1-dimensional graphs.

One would expect that locally along an edge these Lagrangians are perturbations of
T ! x R, with T"~! contained in the torus fibre direction, so that we obtain (n — 1)
locally defined closed 1-forms || g1 @ on the base corresponding to the cycles S Lecrr-t
and the edge is to leading approximation given by requiring these 1-forms to vanish. The
local model for the junction where three edges meet,”> may have the following topolo-
gical description. In the n = 2 case, we have a ‘pair of pants’ inside 72 x R? with three
asymptotic ends S! x R; topologically this is the same as algebraic surface

{Zl+22=1}C<C*X(C*.

In higher dimensions, we take a product of the pair of pants with 772,

In the next order of perturbation, we expect the deformation of the Lagrangian in the
base direction to be at least comparable to the length scale of the fibre, and presumably is
fixed by the ‘special condition’ Im |y = 0.

Remark 4.2. From the viewpoint of the Thomas—Yau—Joyce picture, there is an additional
problem to assign unobstructed brane structures to the initial special Lagrangian.

Compactness and genericity. The question about compactness largely reflects prob-
lems we already encountered in the LMCF approach. The essential issue is that without
any further condition on the Kihler metric, special Lagrangians may be too singular, so

32While Hein and Sun’s result is highly non-trivial, the entire difficulty goes into understanding the
Calabi—Yau metric near the conifold point. If we are given the license to prescribe arbitrary Kéhler metrics,
the problem of finding special Lagrangian vanishing spheres near the conifold point becomes easy.

33The large complex structure limit is supposed to correspond to the large volume limit in the mirror,
which is related to the jt-stability, thus offering the hope of a mirror calculation of counting invariants.

34The difficulty in [54] to construct SYZ special Lagrangian fibrations again comes from the Calabi—
Yau metrics. If one can freely prescribe Kéhler metrics, then finding a special Lagrangian torus is not
difficult.

33This is conceptually related to Matessi’s ‘Lagrangian pair of pants’ [59].
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that the McLean deformation theory [60] for special Lagrangians may fail. The natural
answer, closely related to the LMCF viewpoint, is that we should only work with gen-
eric Kihler structures, and 1-parameter families thereof. According to the philosophy
advocated by Joyce [42], the importance of singularities are ranked according to their
genericity. For special Lagrangians with first Betti number k, the moduli space of deform-
ations is k-dimensional, so in a generic 1-parameter family of Kéhler structures, one
expects to encounter singularities with genericity index up to k + 1, and those singu-
larities of index 0, 1 are the most important.’® Before one can seriously pursue the rest
of this strategy, it is necessary to have a classification of index 0, 1 special Lagrangian
singularities in complex dimension 7.

Question 9. In complex dimension 3, classify all special Lagrangian singularities of
index 0 and 1, namely all singularities that can occur in a generic 1-parameter family
of special Lagrangians when o is fixed and €2 varies.

Example 4.8. The Harvey—Lawson T?-cone is a special Lagrangian cone inside C3 with
link 72, invariant under the diagonal 72 C SU(3). Explicitly,

Ly ={(z1,22,23) € C3: |z1| = |z2] = |z3|, Im(z12223) = 0, Re(z12223) > 0}.

Haskins [36, Theorem 1] proved that up to unitary transformations, this is the only strictly
stable’” special Lagrangian cone with smooth embedded link diffeomorphic to 72.

The Harvey—Lawson cone admits three distinct 1-parameter deformations into smooth
embedded special Lagrangians L!, L2, L3 for s > 0. Here

L; = {(z1,22,23) € C3: |21|2 —5 = |22|2 = |Z3|2, Im(z12z223) = 0, Re(z12223) > 0},

and L?, Lg arise via cyclic permutations of z1, z5, z3. Notably, there is a holomorphic
disc D} of area s with boundary on L} (and similarly for L2, L3),

D} ={(z1,0,0) : |z1]* < s}.

In particular, L for a = 1,2, 3 cannot be exact Lagrangians, but have non-zero Lagrang-
ian flux. The s — 0 limit corresponds to the holomorphic discs shrinking to zero area, or
equivalently the Lagrangian flux tends to zero.

Now on a compact special Lagrangian inside an almost Calabi—Yau manifold, the
Harvey-Lawson cone can arise as a local model for conical singularities. The gluing
results of Joyce [43, Section 10] shows that when certain homological conditions are sat-
isfied, then there exist desingularization families of special Lagrangians locally modelled

36Understanding the moduli space of special Lagrangians requires singularities up to index k + 1, but
if we restrict to Lagrangian deformations with zero Lagrangian flux, then index < 1 may suffice in the
optimistic view.

Strict stability here is a condition on the Laplacian spectrum of the link. Unfortunately, the word
‘stable’ is overloaded with many standard meanings in the literature.
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on L%, such that the singular special Lagrangians carrying the T?-cone singularity arise
in codimension one, so in this case the 7>-cone is an index one singularity in Joyce’s
sense.’® This gluing result is not sensitive to varying €. On the other hand, if one restricts
to deformations with Lagrangian flux zero, which can be regarded as the analogue of exact
isotopies in the mildly singular case, then an isolated local 7"2-cone singularity cannot be
desingularized, but instead keeps the singularity as it deforms.

Wall crossing. Some of the generic singularities in the LMCF are expected to have
elliptic analogues in the continuity method approach. We fix w and consider a generic
1-parameter family of €2, and we follow the Lagrangian flux zero deformations of a given
special Lagrangian.

Under exact isotopy, immersed Lagrangians may lose the unobstructed condition.
One expects the surgery of the brane structure suggested by Joyce has an elliptic ana-
logue, involving the same ingredients as the ‘Maslov flow’ studied by Woodward and
Palmer [67, 68].

As already discussed in Section 2.7, the Lawlor neck is responsible for the gluing
of two immersed special Lagrangians. This corresponds to the ‘Lawlor neck pinching’
singularity, as well as the ‘opening the neck’ surgery in the LMCF.

(Stable singularity.) Joyce suggests from his work on U(1)-invariant special Lagrang-
ians in C3 ([45, Example 2.8]), that in a continuous 1-parameter family, isolated singular
points of special Lagrangian 3-folds with local 72-cone singularities can appear and dis-
appear in pairs, by making the two T2-cone singularities collide with each other and
then smooth out. This is the main motivation for admitting the T2-cone singularity in the
LMCE, and it seems likely to be a generic singularity in the continuity method as well.

Remark 4.3. The phenomenon of ‘collapsing zero object’ in Joyce’s LMCF has no ana-
logue in the continuity approach, since the special Lagrangian condition forbids any hom-
ologically trivial component.

What’s the role of the brane structure? As Bridgeland observed [13, Theorem 1.2],
the central charge map gives a local homeomorphism between the space of Bridgeland
stability conditions, and the hom space from the numerical Grothendieck group to C. The
Thomas—Yau—Joyce philosophy then suggests that for fixed w and small deformations
of 2, the stability condition only depends on the cohomology class [£2].

A possible geometric interpretation consistent with the wall crossing picture, is that in
a generic 1-parameter family of deformations of the almost Calabi—Yau structure fixing @
and [€2], the special Lagrangian may undergo surgeries, such that the topology and the
Hamiltonian isotopy class may change, but when equipped with the brane structures, the

BJoyce’s gluing result is quite subtle. Under certain homological conditions, the smoothing can be
forbidden, in which case the T'2-cone is an index zero singularity. In other cases, due to some linear depend-
ence of certain homology classes, two T2-cone singularity may not behave independently, but together
behave like an index one singularity. See [43, Section 10].
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D? Fuk(X) class (or possibly some weaker equivalence class) remains constant. As in the
LMCEF approach, the role of the unobstructed brane structure is morally to prevent holo-
morphic discs from having very small area. However, the troubles caused by shrinking
discs may be less severe in the continuity method than in the LMCF method, since the
continuity method only deals with special Lagrangians, and cannot lose grading in a pro-
cess like Example 4.3. Instead, a significant amount of difficulty in the continuity method
is absorbed into the problem of finding the initial special Lagrangians.

Comparison with LMCF. To summarize the pros and cons compared to the LMCF
approach, in the continuity method finding an initial special Lagrangian is a significant
new difficulty. However, we no longer need to confront the extremely difficult task of
long time existence for the flow. On a slightly more technical level, provided one has a
classification for low index singularities, the genericity assumption is likely to be easier to
use in the continuity method than it is in the LMCF framework.

5. Variational method

We begin by significantly narrowing the scope as follows.

(i) We only consider exact Lagrangians inside Calabi—Yau Stein manifolds. The Stein
assumption is meant to simplify Floer theory, at the cost of non-compactness of the
ambient space. In particular, H,+1(X,Z) = 0 and H, (X, Z) has no torsion, since Stein
manifolds have the topological type of CW complexes of dimension < n. The com-
plex Monge—-Ampere equation of the Calabi—Yau metric ensures special Lagrangians are
area minimizing currents, at the cost of losing genericity. The author thinks the complex
Monge—Ampere equation is convenient but not completely indispensable to the Thomas—
Yau conjecture.

(ii)) We impose another mild condition on the Calabi—Yau metric, namely that the reg-
ularity scale grows to infinity asymptotically (see Section 5.2). Its main goal is to prevent
the Lagrangians from escaping to infinity.

(iii)) We only consider graded Lagrangians whose phase angle function satisfies a
quantitative almost calibrated condition —7/2 + ¢ < 6 < /2 — e. An alternative char-
acterization is that & Im Q2 < (cot &) Re © when restricted to L, whence the quantitative
almost calibrated condition is preserved under weak limits of currents.

The main question we wish to examine from a variational viewpoint is the following.

Question 10. Fix a D? Fuk(X) class in the exact Calabi—Yau manifold (X, w, ), rep-
resented by some non-trivial unobstructed exact Lagrangian brane Lo with phase function
—n/24+¢e <0 < m/2—¢. Denote

é\zmg/;oﬂe(—%+s,%—8>.
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When does there exist a possibly singular special Lagrangian representative L of phase 6,
in the same derived Fukaya category class (or under some weaker equivalence relation)?

Remark 5.1. Making sense of the derived Fukaya category for Lagrangians with weak reg-
ularity is part of the question, which seems highly non-trivial. As a basic meta-principle,
any two Lagrangian branes in the same derived category class must lie in the same homo-
logy class in H, (X), so the homology class is fixed. This still leaves open some ambiguity
on the choice of local system (see Remark A.8), and the question of which singular
Lagrangians to include (see Sections 5.3 and 5.4).

One possible interpretation of the Thomas—Yau conjecture is as follows.

Conjecture 5.1 (Thomas—Yau existence). Assume the derived Fukaya class of the quant-
itatively almost calibrated Lagrangian brane L is Thomas—Yau semistable (see Defini-
tion 3.32). Then there is a special Lagrangian representative in the same D® Fuk(X) class
(or some weaker S -equivalence relation, see Remark 5.29).

Our limited goal is not to prove this conjecture completely, but to clear up enough
easier obstacles in order to pinpoint the deeper issues that need to be resolved. Whenever
we make difficult claims that we are yet unable to prove, we will try to at least provide
some heuristic reasons.

5.1. Compactness and regularity

5.1.1. Standard geometric measure theory. We will use the standard language of geo-
metric measure theory, see Federer [32] or Morgan [61] for the terminologies. The starting
point of the variational approach is that there are foundational compactness theorems in
geometric measure theory.

Theorem 5.2 (Federer—Fleming compactness theorem [32]). Let L; be a sequence of
m-dimensional integral currents in a complete Riemannian manifold X, all supported in
a fixed bounded subset, with uniform bounds

Mass(L;) < C and Mass(dL;) <C.

Then up to subsequence L; converges weakly in the current topology to an m-dimensional
integral current L with the same bounds.

Remark 5.2. While compactness in the current topology is elementary, the claim that the
limit is also an integral current is non-trivial, and can be viewed as a regularity result.
The same holds with the Allard compactness theorem below. For our applications, we will
always work with closed integral currents, namely dL; = 0, which implies dL = 0 in the
limit. To such currents one can associate a homology class.

Remark 5.3. A more technical version of Federer—Fleming compactness replaces the
current topology by the flat norm topology, which is a slightly stronger topology. The flat
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norm of an integral current 7" is
|7 ||gat = inf{Mass(A) + Mass(B) | T = A + 0B, A, B are integral currents},

and the convergence 7; — T in this topology simply means |7 — T;||fac — O.

Theorem 5.3 (Allard compactness [5]). Let L; be a sequence of m-dimensional integer
rectifiable varifolds in a complete Riemannian manifold X, all supported in a fixed boun-
ded subset, with a uniform volume upper bound Mass(L;) < C and a uniform bound
on the first variation [, L |H | < C. Then up to subsequence, L; converges to an m-dim-
ensional integer rectifiable varifold L with the same bounds.

Remark 5.4. Federer—Fleming and Allard are somewhat complementary. Integral cur-
rents are a special kind of distribution valued forms, while varifolds are a special kind of
measures on the real Grassmannian bundle Gr(7X, m) over X whose fibres parametrize
m-dimensional planes in the tangent spaces of X. One key advantage of currents is that
they know about orientations, while varifolds do not. The integral current L recovers the
underlying rectifiable subset supp(L) with multiplicity, so can be canonically associated
with a varifold L"*". On the other hand, the natural topology on varifolds (i.e., the topo-
logy as measures on Gr(7' X, m)) remembers tangent plane information, which can be lost
under the flat norm convergence of integral currents. Moreover, assuming all the varifolds
in the sequence are contained in a bounded region, then the total volume mass converges
under varifold convergence, but not necessarily so under flat norm convergence. The intu-
ition is that morally the varifold topology detects one more derivative than the flat norm
topology. This explains why Allard requires some integral control on the mean curvature,
while Federer—Fleming does not.

We shall later use the informal terminology of ‘varifold/current topology’ to refer to
convergence simultaneously in the varifold topology and the flat norm topology on integral
currents.

Example 5.4. Inside S] x R with the standard Euclidean metric, take Ly as the graph
over S! of the function % sin(kx). Then Lj are Lagrangian currents, which converge
to S as currents, but due to the high oscillation,

lim inf Mass(Lg) > Mass(S1),

and Ly do not converge to S in the varifold sense. The Lagrangian angle of Ly is pre-
scribed by tan 8 = cos(kx), which converges to zero in the current sense, but not strongly
in L,

One of the best regularity theorems in geometric measure theory is the following.

Theorem 5.5 (Almgren’s big regularity theorem [6]). Let L be a compactly supported
m-dimensional closed integral current inside a complete Riemannian manifold, which
minimizes the volume among all closed integral currents in the same homology class, then
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away from a closed subset S C supp(L)with Hausdorff dimension at most m — 2, the
rectifiable subset supp(L) \ S is a smooth submanifold.

Remark 5.5. Real codimension two singularity is the optimal result, as easily seen from
the examples of singular algebraic curves in CIP2, which are automatically area minim-
izers in their homology classes.

Remark 5.6. Almgren’s big regularity theorem is well known for its monumental size
of around 1000 pages. The recent works of Delellis et al. have somewhat simplified the
proof, which still remains very non-trivial (see [23] for some introduction).

Remark 5.7. For almost Calabi—Yau ambient structures, with
w_n - (_l)n(n—1)<_v_l)ne2p9 AD
n! 2 ’
the n-form Re(e_igem) has pointwise norm < 1, situated precisely by special Lagrangian
tangent planes of phase 6. Spolaor [80] calls this a semicalibration form (which needs not
be closed), and proved that the semicalibrated integral currents (i.e., special Lagrangians
in our case) satisfy the same regularity as in Almgren’s big theorem.

A standard way to apply these theorems, for instance inside a compact ambient space,
is to fix the homology class, and minimize the volume among all the integral currents
therein. The compactness theorem guarantees the existence of an absolute volume minim-
izer, and the regularity theorem then improves its regularity to be more like submanifolds.
This strategy is highly effective in producing minimal surfaces, but there is no useful
criterion®” to guarantee the volume minimizers to be special Lagrangians, which is why
producing special Lagrangians is a highly non-trivial problem in geometric measure the-
ory.

5.1.2. Exact Lagrangians under weak regularity. We need to ensure the class of Lag-
rangians in the variational setup is closed under the varifold/current topology. We shall
say an integral current L is Lagrangian, if its tangent space is a Lagrangian subspace a.e

on L, or equivalently
/ woAn=0,
L

for any smooth and compactly supported (n — 2)-form 7.
A trivial observation is the following.

Lemma 5.6. Let L; be closed Lagrangian integral currents, and suppose L; — L in the
current topology, then the Lagrangian/quantitative almost calibratedness conditions pass
to the limit.

STf there is at least one special Lagrangian within the given homology class, then all absolute minim-
izers must be special Lagrangians, by an easy calibration argument. This however does not answer how to
find the special Lagrangian in the first place.
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Let L be a closed Lagrangian integral current, and f7, be an L function on L. We
say the exact condition A = df7, holds in the weak sense if for any compactly supported
test (n — 1)-form y, we have

/)L/\)(:—/de)(. 5.1
L L

To make sense of the right-hand-side, notice the rectifiability of L allows the integration
of the L°°-valued n-form f7 dy. Equivalently, the normal current f7, L has distributional
derivative y — [; x A L.

Remark 5.8. The examples of immersed Lagrangians show that we cannot require f7, to
have a continuous extension to X, so L°°-regularity is the best we can impose on f7 .

Lemma 5.7. All Lagrangians are assumed to be contained in a fixed bounded region
of X, homologous to Lo, and are quantitatively almost calibrated. If L; is a sequence of
exact Lagrangians with potential fi,, such that f1, are uniformly bounded in L*°. Then
up to subsequence, there is a Lagrangian L with potential f1, such that L; — L and
Jr;Li = fLL as currents.

Proof. By Lemma 2.1 the volume mass is uniformly upper bounded. By Federer—Fleming
compactness, subsequentially L; — L in the flat topology for some Lagrangian integral
current L homologous to L. This implies that

/ gReQ—)/gReQ
Ly L

for any C*° test function g, even though liminf; Mass(L;) may be strictly greater than
Mass(L), as we do not assume varifold convergence.
We focus on a coordinate ball. The n-currents f7, Lx can be viewed as a collection

2n\ o:
of (°") signed measures

gH/ kagdxil/\"'/\dxin.
Li
Each of these measures are bounded by the measure
C
g+ (supll fr,llz=) =— | gRe,
sine Jp,
whose total mass is uniformly bounded for all k. By the weak compactness of measures,

subsequentially these signed measures converge, and the limiting signed measures have
L Radon-Nykodim derivatives a;, .. ;, (x) with respect to the measure g — f 1 & ReQ:

/ Jr.gdxi Ao Ndx;, — / gai,,..i, Re Q.
Ly L
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Thus inside the coordinate ball, the currents f;, L converge to limg f7, Lg:

ne= /L Z r](ail VANRERIVAN ain)ail’m’in Re Q,

i <ipg<-<ip

where 7 is any test n-form.

Now L is an integral current, so #"-a.e. y € supp(L) there is a well defined tangent
space T, L and a local integer multiplicity ®(y). Recall a blow-up limit of an n-current N
at a point y € X refers to a subsequential limit of the currents on 7}, X as r — O:

X . . .
n / rescale’y" , 1, rescaley, ,:x — — in the geodesic coordinates around y.
N ' r

For a.e. y € supp(L), there is a unique blow-up limit for the current limy fz, L, which is

whose (2n") component signed measures are just constant multiples of the Lebesgue meas-
ureon Ty X.
Observe that the weak formulation (5.1) passes to the limit

[ 37 x==tim i, L.
L k

Thus the blow-up limit of limg f7, Ly at a.e. y € supp(L) is in fact a closed current.
Consequently, the polyvector

i1 <ip<-<ip

must be a pure tensor lying in A"T),L C A"T), X . Hence,
lilzn JuoLle = fLL

for some L*°-function fr . L]

Continuity of the Solomon functional. Inside Stein manifolds, the Solomon functional
can be defined for any Lagrangian L with potential which is homologous to L, without
further Floer theoretic inputs: the formula (3.4) makes sense after choosing any bordism
current € with d€ = L — L in the sense of currents, and the choice does not matter.

Lemma 5.8 (Continuity of the Solomon functional). All Lagrangians are assumed to be
contained in a fixed bounded region of X, homologous to L, and are quantitatively almost
calibrated. Suppose L; is a sequence of Lagrangian integral currents with potential fr,,
such that L; — L in the flat norm, and f1,L; converge to fir L as currents, then the
Solomon functionals converge: S(L;) — S(L).
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Proof. Since fr,L; converges to f7 L as currents, then

[fLiQ—>/fLQ.
L; L
//\AQ—)/A/\Q,
o €

where 0€; = L; — Ly, and 0€ = L — L.

Now the flat norm convergence gives L; — L = A; + dB; for some integral currents
A;, Bi, with Mass(A4;) + Mass(B;) — 0. Since [L;] = [L] = [Lo] € Hn(X), the homology
class of A; is zero. A version of the isoperimetric theorem (see Proposition 5.11 below)
then says A; = 0B with Mass(B]) < C Mass(A;)#+1D/" _ 0. Without loss of generality
we absorb B into B;. Then we can simply choose €; = € + B;, which is legitimate since
it satisfies d€¢; = L; — L. The claim follows by

/ ANASRQ
B;

Robustness of potential clustering. We revisit the potential clustering property (see Sec-
tion 3.8.3) from the geometric measure theory perspective. Assume as always that the
Lagrangian integral current L is quantitatively almost calibrated, homologous to Lg, and
equipped with Lagrangian potential f7. Given constants N € N, 4 € Ry, we say L sat-
isfies (N, A)-potential clustering, if

It suffices to justify

< C Mass(B;) — 0. |

N N
L=Y L, fil=)_ fulL:
1 1

for quantitatively almost calibrated, closed Lagrangian integral currents L; with poten-
tial f,, contained inside the support of L, such that the oscillation of the Lagrangian
potentials have uniform bounds

sup fr, —inf fz, < A,
L; L;
while for any i > j,
sup fr; <inf f1,.
L; L;
Without loss of generality, we assume sup;, fL, —infL, fL, < A for the fixed Lagrang-
ian Lg.

Remark 5.9. Here we allow L; to have overlapping supports. For instance, it is possible
for Ly = L, as currents, but f7, and fz,, differ by a constant.

We will later be interested in uniform upper bounds on N, A. For now, we observe the
robustness under limits.
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Corollary 5.9. Fix the choice of N, A. Suppose we are given a sequence of Lagrang-
ians LY with potential satisfying (N, A)-potential clustering, and assume L(J ) L;as
currents for 1 <i < N, all fL(]) have uniform L™ bounds, and f, (J)L ) fr;Li as
currents. Then the limit

L=>"L

1

with its potential f1 also satisfies (N, A)-potential clustering.

Proof. Notice a potential bound such as f; > ¢ can be characterized by the positivity of
the measure

g~ /(fL —c)gRe Q.
L
This characterization is robust under current convergence, SO

sup fz; < limsup supf (), inf fz, > liminf inf fL(_;),
L; J L(]) ’ L; J L(]) i

i

hence the potential clustering bounds pass to the limit. |

5.2. Quantitative almost calibratedness

One major advantage of the quantitative almost calibrated condition is that within a fixed
homology class of Lagrangians, it guarantees an a priori volume upper bound (see Lem-
ma 2.1). We shall explain that, under very mild asymptotic conditions on the ambient
Calabi—Yau manifolds, it also guarantees that the Lagrangian remains within a bounded
region. As such, the Federer—Fleming compactness applies automatically, and Allard com-
pactness applies under the additional hypothesis of a uniform bound on [, |ITI |. We also
discuss a number of instructive but not particularly difficult consequences of quantitative
almost calibratedness.

Remark 5.10. The arguments in this section are adaptions of Neves [63]. They can also
be easily adapted to the almost Calabi—Yau setting under mild conditions on the volume
density.

As a preliminary, we will say the regularity scale near a given point P on the Calabi—
Yau manifold is at least O(R), if P is contained in a complex coordinate ball with
Euclidean radius at least R, on which @ = f dzy A-++ A dz,, and®

1
C™l8y < g7 = Clyj, g5l SCRRT™, |/ =1 <5, [0°/1=CR™. (52

%OWe will actually only use the metric uniform equivalence. But for Calabi—Yau metrics, the higher
derivative estimates are in any event implied by metric equivalence, after shrinking the balls slightly, by
Evans—Krylov theory.
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From now on we will assume the regularity scale tends to infinity for P — oo. This is a
very mild condition on the Calabi—Yau manifold, for instance satisfied by asymptotically
conical Calabi—Yaus.

Remark 5.11. This asymptotic condition is essentially the weakest that can prevent the
almost calibrated Lagrangian in a given homology class from escaping to infinity. For
instance, if L is a special Lagrangian in X, then L x S! is a special Lagrangian in the
product X x T*S!, which can obviously be translated in the R direction to escape to
infinity, albeit not preserving the D? Fuk(X) class. One can still hope to obstruct escaping
to infinity using Floer theory, but then incorporating singular Lagrangians requires more
foundational work.

Isoperimetric inequality.

Lemma 5.10 (Isoperimetric inequality [63, Lemma 3.10]). Let L be a closed Lagrangian
integral current in (X, w, ), and consider a Euclidean coordinate ball Bog on which
the regularity scale is at least O(R). Assume the quantitative almost calibrated condition
cos 0 > sine. Then there is a universal constant C depending only on g, n and the metric
uniform equivalence constant in (5.2), so that

Mass(4)"~V/" < C Mass(9A)

for all closed subsets A of supp(L) N Br with rectifiable boundary. Here the Hausdorff
measures are computed using the Calabi—Yau metric.

Proof. The isoperimetric theorem [73, Theorem 6.1] guarantees the existence of an integ-
ral current A’ supported in Bg such that dA” = dA and for which

Mass(4")#~D/" < C Mass(3A).

Notice the metric uniform equivalence means we do not need to be careful to distinguish
the Hausdorff measure for the Euclidean metric and the Calabi—Yau metric. Let 7" denote
the cone over the current A — A’, then T = A — A’, and thus by the quantitative calibrated
condition, we have

1 1 1
Mass(A) < — | Re2 = — | ReQ2 4+ — Re
sine Jy sine J sine Jyr

1 1 1
< —— Mass(4)) + —/ d Re 2 < ——C Mass(34)"/ =D,
sine sine Jr sine
which is the isoperimetric inequality. ]

Remark 5.12. The standard isoperimetric theorem inside the Euclidean space [73, The-
orem 6.1] does not state supp(A4’) C Bg. Once we have found some A’ with d4" = 0A
with mass control, we can pushforward by a Lipschitz retraction map F:R?" — By:

X, X € Bpg,
F) = Rx  x e R2" \ Br.

Txl
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Replacing A’ by F, A’, the mass cannot increase, and 0F, (A") = F.(04") = F«(0A) = 04,
and we have ensured the support is contained in Bg.

The following version of the isoperimetric theorem should be well known to experts,
but for lack of a reference we include a proof below.

Proposition 5.11 (Isoperimetric theorem on complete manifolds). Let X be a complete
Riemannian manifold, and 0A be an m-dimensional exact integral current supported in
a fixed bounded open subset U C X. Then there is an integral current A’ supported in a
fixed large bounded subset of X, with 0A = dA’ and

Mass(A4’) < const - min{Mass(34)TD/™ Mass(dA)}.

Proof. We first isometrically embed X into an ambient Euclidean space R¥, so A can be
regarded as an integral current compactly supported in X . Fix a small number pg > 0 such
that over U the po-neighbourhood in R¥ is isomorphic to the normal bundle, so there is
a smooth retraction map F back to U. The Lipschitz norm of F is approximately one.

Applying the deformation theorem for RY [73, Section 5.3] to the current 94, with a
parameter p < pg to be fixed, we can write

0A = P + 0R,

where P, R are integral currents inside RY, supported in the O(p) neighbourhood of
supp(dA), with

Mass(R) < CpMass(dA), Mass(P) < C Mass(dA),

where the constant C depends only on N, m. Moreover, P is an integral linear sum of
m-dimensional faces in the standard grid decomposition of RY with cube size p. We now
push forward via F':

FyP + 0FR = F((0A) = 04,

since 04 C U C X is fixed by F. Note that Fx P, Fx R both live inside U, and their mass
bounds are essentially the same as P, R respectively.
Suppose first that Mass(dA) < 1. If P is non-zero, then by the grid description of P,

o™ < Mass(P) < C Mass(0A).

So by choosing p = 2(C Mass(aA))l/m in the above, we force P = 0, so 04 = 0F«R,

with mass bound Mass(Fx R) < const Mass(94)™+t1D/m o it suffices to take A’ = Fy R.
Now suppose Mass(dA) = 1, then we choose p = pg. Without loss of generality, we

can replace dA by F P, and pretend R = 0. We know that

* P is an integral linear combination of grid cube faces, where all the cubes lie in a
bounded region of a fixed grid;

e F.P isanexactcurrent on X.
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The set of all such P form a finitely generated abelian group, which by classification is
isomorphic to the direct sum of @} Ze; and a finite abelian group. For any given element

P = Z a;e; + finite group part,
the linear coefficients a; of e; fori = 1, ..., r are bounded by
lai] < Mass(P) < Mass(dA4).

Each e; gives rise to an exact simplicial chain Fye; inside X, which is the boundary of a
finite mass integral current Q;. Thus

Mass (ZaiQi) < Z |a;| Mass(Q;) < const-Mass(dA).
1 1

The finite group part gives rise to another simplicial chain inside X which is the boundary
of some finite mass integral current. Thus we have produced an integral current A" with
04’ = 0A, and mass bound

Mass(A") < C(Mass(dA)) + C < const Mass(dA)

since we are in the Mass(dA) = 1 case. |
Volume monotonicity and lower bound.

Corollary 5.12 (Volume lower bound). If P is in the support of L, then there is a uniform
lower bound on the volume of L inside Euclidean coordinate balls of radius less than R:

Volg (L N B(P,r)) > C~ " Vr <R. (5.3)

Proof. Let f(r) = #"(L N B(r)) > 0, then f is increasing in r, and fora.e. 0 <r < R,
by the coarea formula,

1
1) = / il |dJ€”_1 > CT " @B(ryn L) = C7 ()Y,
dB(r)NL VT

The last inequality is the isoperimetric inequality. Thus % fYn > C~1 whence we have
the volume lower bound f(r)'/" > C~1r. |

Remark 5.13. Volume lower bounds like (5.3) are familiar in minimal surface theory, but
usually require some integral bound on the mean curvature. Notably, here we need no such
assumption; the quantitative almost calibrated condition only concerns the antiderivative 6
of H=JV6.
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No escape to spatial infinity.

Corollary 5.13. Assume near the infinity of X, the regularity scale grows to infinity. Fix
the homology class of the quantitatively almost calibrated Lagrangian L. Then L is con-
tained in a fixed compact subset of X .

Proof. From Lemma 2.1 there is an a priori volume bound Vol(L) < C. Butif P is in the
support of L, then the regularity scale of X near P is bounded by

R" < CVol(L N B(R)) <C,
whence P must remain in a fixed compact subset. ]

Non-triviality of homology classes.

Corollary 5.14 (Non-triviality of homology classes). There is a lower bound

/ReQ >C™!
L

depending only on the ambient Calabi—Yau and the almost calibratedness constant e. Here
we do not a priori specify the homology class of L.

Proof. The asymptotic hypothesis on the regularity scale implies in particular that the reg-
ularity scale has a global lower bound on X . This gives a uniform lower bound on Vol(L),
which by the quantitative almost calibratedness gives a lower bound on the homological
integral [; Re Q2. ]

The significance is that in a variational setup to find special Lagrangians among certain
Lagrangian currents in the fixed homology class [Lg], it may happen that the Lagrangian
breaks into several connected components, each given by a closed Lagrangian current L;

with
Z/ ReQ:/ReQ.
i L; L

The non-triviality of each homology class then puts an upper bound on the number of
connected components. Moreover, each L; would inherit a volume upper bound from L.
Since all Lagrangians are contained in a fixed compact region, Poincaré duality easily
gives an upper bound on the homology classes of L;:

ILill&, ) < € Vol(Li) < C.

Combining the above, only finitely many homology classes, multiplicities, and number of
components can appear in a given variational problem.
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5.2.1. Intrinsic distance bound and potential clustering. Suppose L is a smooth imm-
ersed Lagrangian, then it inherits a Riemannian metric from the restriction of the Calabi—
Yau metric, so we can speak of the intrinsic distance function on L. Instead of extrinsic
balls such as B(P, r), we can talk about intrinsic balls B (P, r). A key distinction is that
intrinsic distance does not need to extend to a continuous function on X x X, the pro-
totypical example being the union of two embedded Lagrangians, whose domains are
disjoint, but whose images in X intersect. Clearly, the intrinsic distance bounds extrinsic
geodesic distance, so B (P, r) is always contained in an extrinsic geodesic ball of radius r,
but the converse is far from true. The intrinsic distance between two distinct connected
components would simply be infinity. One can think of intrinsic distance as a quantitative
measurement of connectedness.

As usual, the regularity scale on X grows to infinity asymptotically by assumption, so
the regularity scale has a global lower bound. The following lemma has the same proof as
Corollary 5.12. (The essence of this argument also appears in Neves [63, Lemma 3.9].)

Lemma 5.15 (Intrinsic ball volume lower bound). Let L be a smooth immersed compact
Lagrangian in X, satisfying the quantitative almost calibrated condition. For any P in the
support of L, there is a uniform bound

Vol(B(P,r)yNL)>C7'r", r<1.

Corollary 5.16 (Intrinsic diameter bound). Assume further that the smooth, quantitat-
ively almost calibrated compact Lagrangian L has connected domain. Then within a fixed
homology class, the intrinsic distance of L has a uniform upper bound.

Proof. Letd = dist(P, P’) > N = [d] be the intrinsic diameter of L. By connectedness,
we can find Pq,..., Py withdist(P, P;) = i. Now the intrinsic balls B (P;, %) are disjoint,
but each takes up a non-trivial amount of volume > C~!. Thus

1
C™'N <Vol(L) < —/ Re(Q) < C,
sme Jr,

so there is an a priori bound on N, hence on d. [

Corollary 5.17 (Potential oscillation bound). Assume L is an exact, immersed, compact
Lagrangian, satisfying the almost calibrated condition, such that the Lagrangian poten-
tial f1 has connected range. Then the potential f has an a priori bound

sup fr, —inf f < C.
L L

Proof. Given any P, P’ on L, we write the potential as a line integral of the Liouville
1-form

P
fu(P) — fu(P) = /P R = Ao dist(P. P,
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Thus the intrinsic ball volume lower bound implies that if @ lies in the range of f7, then

VOl({|fL —al < %}) >Cc L

The range of f; is by assumption a closed interval. If the interval has length > N, then
we can find N distinct values of a with disjoint {| f7 — a| < %}, SO

1
CIN <Vol(L) < —/ Re(Q) < C.
sme Jr

This provides an a priori bound on N, hence on the potential oscillation. ]

Corollary 5.18. Assume L is an exact, immersed, compact Lagrangian, satisfying the
almost calibrated condition, then it satisfies (N, A)-potential clustering (see Section 5.1.2)
for some N, A with uniform bounds. Moreover, if L carries an unobstructed brane struc-
ture, then the potential clustering property is consistent with the twisted complex inter-
pretation.

Proof. By Lemma A.3, a general immersed Lagrangian can be decomposed into a union
of Lagrangians L; such that the ranges of the potentials fz, are connected, and any bound-
ing cochain structure naturally produces a twisted complex. The oscillation of each L; is
bounded in terms of the quantitative almost calibration condition, and the ambient features
of X. Moreover, the number of Lagrangian components is also a priori bounded. ]

As a notable consequence, we obtain the uniform energy bound on the holomorphic
curves (see Proposition 3.41).

Remark 5.14. Although it is unclear how to make sense of the intrinsic distance on a
general Lagrangian integral current, mildly singular Lagrangians (for instance with local
conical singularities) do have a sensible notion of intrinsic distance, and the arguments in
this section extend practically to all non-pathological examples, covering all Lagrangians
that appear in Joyce’s LMCF program. Furthermore, the potential clustering is robust
under limits (see Corollary 5.9). As such, we believe it holds for all Lagrangians relevant
to our variational program (see the class &£ in Section 5.3 below).

5.2.2. Bounded part of the Solomon functional revisited. In Section 3.8.3, we dis-
cussed a Floer theoretic method to bound the difference between the Solomon functional
and the elementary functional. The following alternative method is based on the homolo-
gical nature of the Solomon functional (3.4), and has a more geometric measure theory
flavour. Holomorphic curves do not feature in this approach, so the automatic transvers-
ality and the positivity conditions are not needed, and in fact the discussion works in the
weak setting of varifolds and currents. It is vital to this approach that H,1(X) = 0 for
Stein manifolds, so no homological ambiguity can arise for the bordism current.
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Proposition 5.19. Assume the Lagrangian L with potential fr is quantitatively almost
calibrated, homologous to Ly, and satisfies (N, A)-potential clustering. The elementary
functional (3.23) makes sense verbatim, with no smoothness assumptions. Then

S(L) = S(L)|
has a uniform upper bound independent of L.

Proof. We know L — Ly is homologous to zero in X, and contained in a bounded subset
of X by Corollary 5.13. By a version of the isoperimetric theorem (see Proposition 5.11),
we can find some compactly supported integral current € with € = L — L, with mass
bound

Mass(€) < const-min{Mass(L — Lo)®+ /" Mass(L — Lo)}.

This € has no relation to holomorphic curves. The quantitative almost calibratedness
implies a volume bound on L (see Lemma 2.1), hence Mass(€) is a priori bounded. The
homological nature of the Solomon functional (3.4) gives

S(L) = / fL Im(e_’@SZ) - [ Lo Im(e_’@Q) - Im/ Ane 0.
L Lo e
The mass bound then implies

/ AA e_i§Q
€

Here since L is contained in a bounded region, the terms A and 2 are bounded. Finally,
using the potential clustering bound,

< ClAMcoll2]|co Mass(€) < const.

‘/}: fr Im(e_iéﬂ) - /Lo Jro Im(e_ieﬂ) - S(L)
A /;|Im(e_i§§2)\ -i-LO |Im(€_i§Q)|)

24
< A(Mass(L) + Mass(Lo)) < — Re Q.
sine Jr,

IA

Combining the above shows the a priori bound on |S (L) — S (L)]. |

5.3. Variational strategy

The variational strategy to find special Lagrangians is the following:

(1) Find a suitable subset £ among all the quantitatively almost calibrated, exact
Lagrangian integral currents homologous to L. The class &£ is closed in the varifold/
current topology. It is very desirable to ensure Allard compactness and Federer—Fleming
compactness both apply to £.
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(i) Extend enough of Floer theory from the smooth setting to Lagrangian currents.
Morally, the class &£ consists of those Lagrangians that can be equipped with unobstructed
brane structures in some weak sense, all isomorphic to Lg in Db Fuk(X).

(iii) When the Lagrangian is equipped with the potential f7, the additive constant
freedom of f7 is a source of non-compactness, which affects §. We need to ultimately
match up the asymptotic behaviour of § with the Floer theoretic obstructions. In other
words, the role of stability conditions is to ensure the properness of the Solomon func-
tional.

(iv) Once the Solomon functional is proper, we will follow the direct minimization
strategy to find its minimum. We need to justify that the minimum L must be a special
Lagrangian closed integral current, and then Almgren regularity will be able to ensure
smoothness away from codimension two. Furthermore, we need a sufficiently robust ver-
sion of the Thomas—Yau uniqueness argument to prove that the special Lagrangian rep-
resentative is unique.

The class &£ is a balance between two requirements: the approximability by sufficiently
smooth objects, and the existence of sufficiently many competitors. A moral definition of &£
is as follows:

* Among all the quantitatively almost calibrated, exact Lagrangian integral currents
homologous to L, we include all sufficiently smooth Lagrangians (e.g., immersed,
T?-cones singularities, etc.) which admit unobstructed brane structures isomorphic
to Lo in D? Fuk(X).

* Then take the closure under the varifold/current topology.

Remark 5.15. Joyce’s LMCEF is expected to preserve the exactness, the quantitative al-
most calibrated condition, and the unobstructedness of the brane structure, so sufficiently
smooth objects in &£ should remain in £ under Joyce’s LMCF. It is interesting to ask when
the flow also preserves the positivity condition on the bordism current.

While at present several ingredients are missing, if this program can indeed be carried
through, it would prove the existence of special Lagrangians under the assumption of
Thomas—Yau semistability (see Definition 3.32).

LP?-Smoothing property and Joyce’s LMCF. Allard compactness requires an a priori
bound |, I |IjI | < C, which cannot be implied by the quantitative almost calibrated con-
dition, since the mean curvature involves one more derivative than the Lagrangian angle.
However, for the purpose of our variational strategy, it is enough to ensure any minimiza-
tion sequence of § can be replaced by a sequence with || L |I-7 | <C.

Conjecture 5.20 (L?-smoothing property). There exists p > 1 and a uniform constant C,
such that for any L € £, we can find L' € £ with S(L') < S(L), and [;,|H|? < C.

Remark 5.16. This is called a ‘smoothing property’ because L’ quantitatively improves
the regularity of L. It does not suggest L’ is smooth, and indeed we expect the special
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Lagrangians which minimize § may have codimension two singularities. Since the volume
is a priori bounded, the Holder inequality shows the L”-smoothing property is stronger
for bigger p, and in particular L2-smoothing implies L!-smoothing.

We think the smoothing property may be quite deep, and our limited attempt here is to
explain how it relates to Joyce’s LMCF program, which suggests the smoothing property
may hold with p = 2. Recall the defining feature of the Solomon functional is its variation
property under exact isotopies among unobstructed objects:

88 :/hlm(e_i'gQ),
L

which holds under sufficient smoothness assumptions. Under a sufficiently smooth LMCF
(L;) in a Calabi—Yau manifold, the Lagrangians evolve by the local Hamiltonian func-
tion —6; up to an inconsequential additive constant (see Section 4.1), so § evolves by

0,5 =—| (6, —0)Im(e?Q)
L;
=— [ (6 = 8) Im(e"®D) dvol,,
L,
= —/ (6, — ) sin(6, — ) dvoly,. (5.4)
L,

If L, is almost calibrated, then — < 6 — 0 < 7,50 0;S <0. We conclude that the Solomon
Jfunctional decreases in time along Joyce’s LMCF under the almost calibrated assumption,
at least for the time between the surgeries. It is plausible § is either continuous or jumps
downwards at the surgeries in Joyce’s LMCF,°' which would then imply the Solomon
functional is monotone decreasing for all time.

Now recall that the heat equation on the Lagrangian angle implies an integral bound
on the mean curvature (4.2). In particular, if the LMCF can be run for a definite amount of
time T, then there exists some t < 7', with

/ |H[?dvoly, < T—lf 6% dvoly,_, <CT™",

L; Li=o

where crucially the a priori constant C does not depend on any quantitative smooth-
ness assumption on the initial Lagrangian, provided it is quantitatively almost calibrated.
Such L; would be a good candidate for L', subject to the hypothesis that Joyce’s LMCF
remains within the class of Lagrangians £.

61 A somewhat analogous phenomenon in the Brakke flow is that the total volume mass is either con-
tinuous or can only jump downwards in time. The mass loss is typically related to the disappearance of a
component of the evolving varifold, which is conceptually similar to ‘collapsing zero objects’ in Joyce’s
LMCEF. This is ruled out by the almost calibrated condition, so optimistically one can even hope for the
continuity of the Solomon functional in the almost calibrated setting.
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Morally the class £ arises as varifold/current limits of those Lagrangians admissible
in Joyce’s program. Under the plausible assumption that Joyce’s LMCF can be passed
to the varifold/current limit, then the L2-smoothing property can be well explained. The
S(L’) < $(L) condition comes from the decrease of the Solomon functional along the
flow, and the [}, |ﬁ |2 dvoly, < C condition would follow if Joyce’s LMCF can be run
for a uniform amount of time 7. If T can be taken arbitrarily large, then we can demand
further that the L2 mean curvature is arbitrarily small.

Remark 5.17. In minimal surface theory, the ability to approximate an unknown object
by objects with quantitative derivative controls, is frequently the key of the regularity the-
ory. Notable examples include the Lipschitz and harmonic approximations that lie at the
core of De Giorgi’s e-regularity theorem, and the centre manifolds at the core of Almgren’s
big regularity theorem. An excellent survey is [24]. While there are plenty of techniques
for constructing area competitors in geometric measure theory, we lack useful ways to
construct competitors within the Lagrangian world. Developing such techniques is essen-
tial to the L?-smoothing property, and possibly also to the Floer theoretic aspects of the
variational program.

5.4. Floer theory under weak regularity

The variational program must incorporate singular Lagrangians as objects of D? Fuk(X),
which naturally raises many Floer theoretic questions, such as the following:

* Suppose a sequence of (exact, quantitatively almost calibrated, smooth) Lagrangians
converge in the varifold/current topology to some singular Lagrangian, then what Floer
theoretic information can be passed to the limit?

*  What does it mean for two Lagrangian currents to lie in the same derived Fukaya
category class?

* Does it still make sense to talk about Floer theoretic obstructions in the weak regularity
setting?
In this section we will offer some general remarks and speculations about the nature
of these problems, but will not solve them in any definitive way.

Remark 5.18. There is a field called C°-symplectic topology [66], which studies prop-
erties stable with respect to convergence of Lagrangians under C °-Hamiltonian isotopies,
especially spectral-type invariants. This is morally related to our concerns here, but as
far as the author understands, Floer theory for Lagrangian varifolds/currents is not yet
explicitly treated in this field.

Floer theoretic difficulties. If one wishes to build Floer theory for Lagrangian currents
by mimicking the smooth case constructions, then one immediately runs into a large num-
ber of severe difficulties.

(i) Forexactembedded Lagrangians, the self Floer cohomology of a Lagrangian is iso-
morphic to the singular cohomology: HF*(L, L)~ H*(L). Now in the light of Almgren’s
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big regularity theorem, our best hope is that in the variational argument we only encounter
codimension two singularities in the Lagrangian. We have no right to assume the topology
of the Lagrangian is fixed in the variational framework. The homology groups H,,—, (L)
for m > 1 are highly unstable under varifold/current convergence if codimension two
singularities can form, so for m > 1 we do not expect a direct geometric definition of
HF™(L, L) for Lagrangian currents, that possesses any reasonable continuity property
under convergence.

(i) The standard way to set up Floer theory between two Lagrangians is to consider
the transverse intersection points as the generators of the Floer complex, and counts of
holomorphic strips as differentials between generators. This viewpoint depends heavily
on the differential topology of the Lagrangians, which runs into troubles for Lagrangian
currents, where tangent spaces only need to exist almost everywhere in a measure theoretic
sense.

(iii) Once Lagrangian intersections are not well behaved, we cannot define the bound-
ing cochains supported at intersection points in the usual way.

(iv) Parallel transport along local systems may break down.
(v) TItis unclear how to define (relative) spin structures on Lagrangian currents.

(vi) Standard Floer theory depends heavily on transversality arguments based on dif-
ferential topology, which is lost on Lagrangian currents.

In short, a direct geometric construction of the A, structure is unlikely for Lagrangian
currents.

Formal limit perspective. One natural idea is that we only develop Floer theory for suf-
ficiently smooth Lagrangians (e.g., immersed Lagrangians, isolated 7'2-cones, etc), and
formally treat Lagrangian currents using approximation by smooth objects. Suppose L;
are sufficiently smooth Lagrangian branes in the same D? Fuk(X) class, and L; — L in
the varifold/current topology, and assume the brane structures provide a Cauchy sequence
in some appropriate sense, then one formally declare the Lagrangian current L as carrying
an object in the same D? Fuk(X) class. A weak Lagrangian brane would then tautologic-
ally be an equivalence class of Cauchy sequences. The same Lagrangian current may in
principle support many different formal brane structures, not necessarily all in the same
derived category class.

In this perspective, weak Lagrangian branes are indirect constructions, whose prop-
erties amount to quantitative properties of sufficiently smooth Lagrangians that can be
bounded in terms of a priori quantities such as the distance on the branes, the flat norm on
the currents, the Hausdorff distance between the Lagrangians, etc.

Question 11. Is there a notion of distance between two Lagrangian branes L, L’ in
the same D? Fuk(X) class, that has precompactness property modulo gauge under vari-
fold/current topology, in the setting of exact, quantitative almost calibrated Lagrangians
with bounded Lagrangian potential?



Y. Li 120

One concrete notion of distance is as follows (see [34, Definition 2.2] and [10, Sec-
tion 5]). We can look for the «, B representing generators in HF (L, L") and HF°(L', L)
with cohomological compositions equal to the identity; in the almost calibrated case
CF~Y(L,L') = 0, so , 8 are unique up to scaling. Since all bounding cochains and A,
products have non-negative Novikov exponents, and the sum of Novikov exponents add
up to zero, we must have some negative Novikov exponent for o or 8. In our context,
the Novikov exponent amounts to (f7 — fz/)(p) at p € CFO(L, L") and (fzr — f1)(q)
atq € CF°(L’, L). The quantity

— min{Novikov exponents among all intersection points of «, 5}

provides a candidate notion of distance d(L, L") between Lagrangian branes. Notice this
distance bounds the energy of the holomorphic discs with boundary on L, L’. Given three
objects L, L', L”, by considering the composition of the generators, it is easy to deduce

d(L,L"y <d(L,L'y+d(L,L").

Does this notion of distance have any precompactness property? Namely, given a
sequence of sufficiently smooth Lagrangian objects L; € &£, (e.g., a minimizing sequence
for the Solomon functional), and assuming the Lagrangian potentials are uniformly boun-
ded, then up to making gauge equivalent choices of local systems and bounding cochains,
when can we extract a Cauchy subsequence?

Remark 5.19. As an illustration of the subtlety, consider immersed Lagrangians L built
as the cone of L, KA L1[1]. Replacing y by cy for ¢ > 0 results in new bounding cochain
structures on L; U L,, but the distance between these brane structures is zero. The limit
¢ — 0 however belongs to a different D? Fuk(X) class. This suggests our formulation of
weak Lagrangian branes is probably not sufficient to distinguish between several derived
category classes.

One may also ask if the weak Lagrangian branes agree with ordinary Lagrangian
branes in the case of smooth immersed Lagrangians.

Question 12. Suppose L; is a sequence of immersed Lagrangian branes, all in the same
DP® Fuk(X) class, and is a Cauchy sequence with respect to the distance on the branes.
Suppose L is an immersed Lagrangian, and L; — L in the varifold/current topology. Then
does there exist a suitable brane structure on L so that L; — L with respect to the distance
on the branes?

Geometric perspective: Bordism currents and triangulated categories. It is interest-
ing to ask if any Floer theoretic geometric construction may be performed on Lagrangian
currents at all. While the A,-category structure on the Fukaya category may not neces-
sarily be robust under varifold/current convergence of Lagrangians, only a subset of the
structures are essential to the Thomas—Yau conjecture:

* The notion of derived Fukaya category classes.
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» The notion of distinguished triangles, within the class of Lagrangians &£. This is the
categorical shadow of the phenomenon that Lagrangians can be broken into several
components under weak limits.

* The central charge function.

The central charge is of numerical nature, and is continuous under convergence in the
current topology. A key feature of L, L’ lying in the same derived category class is that
there is a bordism current € constructed from holomorphic curves, such that 0€ =L — L.
Likewise for distinguished triangles Ly — L — L, — L[1] in the weak regularity set-
ting, a key expected property is that there should be a bordism current between L and
Ly + L5, constructed from families of holomorphic curves.

Question 13. Let L;, L] be unobstructed (sufficiently smooth) exact Lagrangians, all in
the same derived category class. Assume convergence L; — L and L} — L’ in the vari-
fold/current topology. Can we assign an (n + 1)-bordism current € between L and L',
constructed from the moduli space of holomorphic curves with boundary on L and L’?

The basic idea is to take the bordism current €; with d€; = L; — L/, constructed
from the universal family of holomorphic curves, and attempt to extract the limit as cur-
rents. This could be morally viewed as a version of Gromov compactness for families. As
rather strong evidence, in the quantitatively almost calibrated setting we derived uniform
energy bound for holomorphic curves contributing to €;, by proving the potential cluster-
ing property (see Section 5.2.1, and Proposition 3.41). If we work with Fukaya category
over the integers, the bordism currents €; would be integral currents, and we can hope
to extract limit by some compactness argument. The problem is that we do not know €;
have uniform mass upper bounds. Moreover, it is an interesting question how to formulate
the parametrized family structure of the bordism current in the geometric measure theory
language.

Remark 5.20. We note that Question 13 is formulated without any smoothness assump-
tion on L and L'. In the light of the conjectural L?-smoothing property (see Section 5.3),
one may be able to assume some a priori L2-bound on the mean curvature.

While Lagrangian intersections, bounding cochains, spin structures, local systems etc.
do not make sense directly on Lagrangian currents, the bordism current has a chance to
make sense, and encodes substantial information. For instance, the orientations of the
moduli spaces reflect the spin structures, and the weighting factors for the moduli spaces
encode the combined effect of bounding cochain elements and the parallel transport along
the local system.

Remark 5.21. As mentioned in Section 3.5, the mere requirement for the Floer theoretic
obstruction criterion (i.e., the stability condition) to make sense for Lagrangian currents
is already very constraining. Most statements are simply impossible to make without con-
cepts that need at least C !-regularity, and the bordism currents between integration cycles
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are among the rare exceptions. This was one of the heuristic arguments in Section 3.5 that
obstructions must come from bordism currents.

Question 14. How much of the triangulated category structure works for weak regular-
ity exact Lagrangians? How much of Floer theory can be developed upon the notion of
bordism currents? Is it possible to encode weak Lagrangian branes a 1a the formal limit
perspective, in terms of bordism currents?

We mentioned in Remark 3.6 that when more than two Lagrangians are present,
Floer theory would also produce (rn 4 2)-dimensional currents whose boundary exhibit
homological relations between the (n + 1)-dimensional bordism currents. Such ‘bordisms
between bordisms’ may encode further information about the triangulated category.

Privileged role of HF°. We consider quantitative almost calibrated Lagrangians. We
mentioned above that HF™(L, L) for m > 1 is problematic, by analogy with singu-
lar cohomology. On the other hand, H°(L) ~ H,(L) is much more robust compared
to higher cohomologies, in the sense that the fundamental cycle of L can deform in a
continuous way, under topological changes such as the shrinking of a codimension two
cycle. Continuing with the analogy, we expect the geometric information in H F° behaves
more continuously under current/varifold limits than the higher degree Floer groups. This
is compatible with the fact that the bordism current € between L, L’ encodes the com-
positions@ o B = 1y and Boa = 1y, witha € HF°(L, L") and B € HF°(L', L), and
we expect bordism currents have some continuity properties under varifold/current con-
vergence.

Remark 5.22. This privileged role of HF? is reflected in the usual Thomas—Yau argu-
ment (see Section 2.2), which only makes use of H F°, not the higher Floer cohomologies,
nor full set of higher A, products.

Remark 5.23. In the passage from the Fukaya category to the derived category, the
morphism space only retains HF°, not the full HF*. The usual way the derived cat-
egory remembers higher Floer cohomology is via the shift operator [m]. However, in the
Thomas—Yau—Joyce picture, working with the almost calibrated setting means conjectur-
ally that we are picking out an abelian subcategory, which breaks the shift symmetry of
the derived category. This gives a categorical explanation why H F® may behave very
differently from the higher Floer groups.

Multiplicity issues. The same underlying geometric Lagrangian can conceivably sup-
port many different objects in the Fukaya category. A possible source of this problem is a
sequence of immersed Lagrangians L; converging to a multiple of a Lagrangian current L.
The underlying Lagrangian current contains only the support information and the multipli-
city, which can be imagined as the number of sheets in L;. Much geometric information,
however, is not captured this way

Take two Lagrangians L1, L, which are both C*° close to a given immersed Lagrang-
ian L', but whose Lagrangian potentials differ by approximately a constant. In the limit
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L1 U Ly — 2L’ as currents, but the potential information is lost. On the other hand, the
potential clustering property can restore this information.

Immersed Lagrangians may be non-trivial (branched) covers over other immersed La-
grangians. When this happens, the monodromy information is not remembered by the
underlying current. On the other hand, it is conceivable that some (generalized) local sys-
tem data can restore this information.

Let Q be a closed smooth manifold. Abouzaid [2] showed that the wrapped Fukaya
category of the cotangent bundle 7*Q is generated by any cotangent fibre 7,7 Q, and
the wrapped Floer cochain complex of 7,7 Q is Asc-equivalent to C_.(€24Q) for the
based loop space 2,0. In particular, for any (compact, embedded, exact) Lagrangian
L C T*Q, the Floer cohomologies HW*(T;Q, L) and HF*(L, L) are representations
of H_4(24 Q). This cotangent bundle case can be viewed as the local model of Lagrang-
ians contained in a small neighbourhood of a given embedded Lagrangian.

It is interesting to ask how much of such information can still make sense for Lagrang-
ian currents.

Remark 5.24. Multiple covers of Lagrangians may be related to the following problem
of the Fukaya category. Given a class in the Grothendieck group of D? Fuk(X) repres-
ented by a Lagrangian, one may ask if the primitive of this class is also represented by a
Lagrangian. Such questions are related to the idempotent closure problem of D? Fuk(X)
in Joyce’s program, which seems very delicate.

Remark 5.25. Construction of special Lagrangian branched multiple covers over given
special Lagrangians is currently studied by Donaldson [30] and He [37] among others.

Remark 5.26. A holomorphic vector bundle analogue for multiply covered Lagrangians
is the (multiple) extension of the bundle by itself, such as the E’ fitting into a short exact
sequence 0 - E — E’ — E — 0. In the HYM setting these are prototypical sources of
semistable but not stable bundles, and it would not be surprising if similar phenomenon
happens in the Thomas—Yau program.

5.5. Asymptotes of the Solomon functional

We have emphasized that the Solomon functional depends not only on L, but also the
potential f7, and that the freedom of additive constants causes the space of (L, f) to be
non-compact, even though the space of Lagrangians £ is more or less compact under the
varifold/current topology. We now wish to explain why the asymptotic behaviour of the
Solomon functional should be controlled by Thomas—Yau semistability. The key tool is
an a priori bound on the difference between the Solomon functional and the elementary
functional, for which we gave sufficient conditions in Sections 3.8.3 and 5.2.2.

In the setup of (N, A)-potential clustering (see Corollary 5.9, Section 5.2.1), we will
rewrite the elementary functional S (see (3.23)). Recall we have a Lagrangian L built from
Ly, ..., Ly;in the unobstructed immersed Lagrangian context, this structure comes from
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a twisted complex (see Section 3.8.3). We introduce the new Lagrangian currents
gk:Ll+L2+"'+Lka k=071523"'5Na

which in the immersed context corresponds to the twisted complex (3.2). In particular,
&n = L, which is homologous to L. Thus

s=im( Y ) ([ 2= [ 9))-tanam( [ o)

N-1

=1Im ( Z(sup fL; — sup fLiH)e_"g/& Q)

1 i Liy:
+ (sup fLy — sup fLO)Im(e_iH/ Q)
Ly Lo Lo

But we chose in the beginning § = arg Jr, . Thus Im(ef"é Jr, @) =0and

i Lit

N-1
S = Z(sup S, — sup fLiH)Im(e_w/ Q) (5.5)
1 L; &;
As part of the potential clustering property, we have

sup fr, <sup fL, <--- <sup fLy-
Ly Ly Ly

We arrive at the following key dichotomy:
In the unstable case, there exists some 1 < k < N — 1, such that

Im(e‘i§/ Q) > 0,
Ek

arg/ Q> 0.
&k

Notice L fits into a distinguished triangle

or equivalently

&k = L — Uispy1Li — E[1],

We explained in Theorem 3.21 under the extra hypotheses of automatic transversality
and the positivity condition, that this leads to a Floer theoretic obstruction. In Con-
jecture 3.31 we heuristically argued that even without these extra hypotheses, the Floer
theoretic obstruction should follow from the Thomas—Yau—Joyce program.

From a different perspective, we can add an arbitrarily large positive number a > 0 to
the Lagrangian potential on Lg 41, ..., Ly. This is compatible with the Novikov positivity
condition, so L stays unobstructed, but S changes by an unbounded amount

—a Im(e_’ﬁ/ Q) < 0.
&;

We conclude that in the unstable case, the elementary functional is unbounded from below.
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In the semistable case, for any L in the class £ that can be written in the twisted
complex form as above, we always have

Im(e—"§/ 9)50 Vk=12.....N—1. (5.6)
&k

Then the elementary functional (5.5) is non-negative.

In Section 5.2 we argued that since the homology class of L is prescribed a priori,
subject to the quantitative almost calibrated assumption, only finitely many possibilities
of homology classes can arise for L; in any decomposition. Thus the stronger condition

Im(e—i§/ Q) <0 Vk=1.2.....N—1
2

would be equivalent to a uniform bound: for some small ¢ > 0,
Im(e—i§/ sz) <—c<0 Vk=12,...,N—1.
&k

This holds when the class £ is strictly stable (see Definition 3.32). Together with potential
clustering, it implies
S(L) > c(sup f1 —iEffL + A).
L

Therefore, if the Lagrangian potential oscillation becomes unbounded, then the element-
ary functional goes to positive infinity. The geometric intuition is the properness of the
Solomon functional modulo a global additive constant for f7,.

Since the Solomon functional and the elementary functional only differ by a bounded
amount, the above conclusions transfer to the Solomon functional. Thus the Solomon func-
tional is bounded below in the semistable case, and unbounded from below in the unstable
case. A key slogan here is that the asymptotic behaviour of the Solomon functional is
governed by Floer theory. This is analogous to the partially conjectural picture in the vari-
ational approach to the HYM equation, where the asymptotic behaviour of the Donaldson
functional is governed by algebraic geometry (see Section 2.5).

Remark 5.27. In Definition 3.32, the Thomas—Yau semistability makes use of distingui-
shed triangles for all almost calibrated Lagrangian objects, not just those with |0] < 5 — e.
This makes the Thomas—Yau semistability a priori stronger than the semistable situation of
the above dichotomy. We expect from the Thomas—Yau—-Joyce picture that both stability
notions are actually equivalent under our initial assumption that there is a representat-
ive Lo with |#] < Z — &. But for our main purpose, that Thomas—Yau semistability implies
the existence of special Lagrangians, we do not mind Thomas—Yau semistability being
stronger than necessary.

5.5.1. Thomas-Yau conjecture. The following is our interpretation of the Thomas—Yau
existence conjecture.
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Conjecture 5.21. Suppose Ly is an exact, quantitatively almost calibrated, unobstructed
Lagrangian object in £. Assuming Thomas—Yau semistability for Ly, then the following
(equivalent) statements hold:

(1) There is a special Lagrangian representative in £.
(2) There is no distinguished triangle in £ satisfying the destabilizing condition.
(3) The Solomon functional is bounded from below on £.

(4) The Solomon functional has a minimizer in L.

Here is a glossary of the evidence presented previously.

(2) is tautological from Thomas—Yau semistability (see Remark 5.27).

(1) implies Thomas—Yau semistability; see the Floer theoretic obstructions in Theo-
rem 3.21, Theorem 3.26, Conjecture 3.3 1, where we justified this for immersed Lagrangi-
ans under the automatic transversality and the positivity condition, or alternatively by
assuming Joyce’s program.

(2) < (3). This is a consequence of (N, A)-potential clustering (see Corollary 5.9,
Section 5.2.1), the uniform bound for § — S (see Sections 5.2.2 and 3.8.3), and for-
mula (5.5) for the elementary functional.

(1) = (4). See Proposition 3.40, where we justified this under automatic transvers-
ality and the positivity condition.

(4) = (3). Obvious.

The rest of this section concerns (2) = (4), and the next concerns (4) = (1).
The arguments will rely on several unproven statements, which we consider plausible, but
may involve rather significant difficulties or substantial foundational work. Nevertheless,
we think it is instructive to see heuristically how everything fits together.

Conjecture 5.22. In the semistable case, the Solomon functional has a minimizer.

Proof (heuristic). First, we claim that for a minimizing sequence L®*) of the Solomon
functional, without loss of generality the Lagrangian potential fL(k) is a priori bounded:

szpllfL(") L < C. 57

Consider the potential clustering setup. We can adjust the Lagrangian potentials on L; by
constants separately, and as long as supy,; Jr; <infy, fr, for j <, this process will not
affect the Novikov positivity requirement, so the Lagrangian branes should remain in £.
We view supy | fL,,supy, fL, —Supr, fLy»---»SUPL, fLy —SUPL, , fLy_, asindepend-
ent constants. Adjusting all potentials by a common constant does not affect the Solomon
functional, but allows us to set sup;, | f1, = 0. Decreasing sup;, f, —supy, | fr,_, sub-
ject to the Novikov positivity requirement will decrease the elementary functional (5.5),
crucially because of the semistability condition (5.6). The part § — § is unchanged. Thus
after this adjustment, the sequence is still minimizing for the Solomon functional. We can
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thus achieve
sup fr,_, = inf f1,
Li—y L
for all i. By the potential clustering property, we then have (5.7).

Next we need the compactness from geometric measure theory. As discussed in Sec-
tions 5.1 and 5.2, under quantitative almost calibratedness there is an a priori volume
bound, and the Lagrangians all remain in a fixed bounded subset of X, so Federer—Fleming
compactness (see Theorem 5.2) holds automatically. The uniform potential bound (5.7)
would then justify that the weak limit is an almost calibrated Lagrangian current L with
bounded potential f; (see Lemma 5.7). The continuity of the Solomon functional (see
Lemma 5.8) then shows S(L) = infg .

In Section 5.3 we presented the evidence for the conjectural L2-smoothing property,
which would allow us to assume a uniform a priori bound on the minimizing sequence

/Iﬁlsc.
L

so we can use Allard compactness theorem 5.3. In effect, we can assume the minimizing
sequence converges subsequentially both as currents and as varifolds. By assumption the
class £ is closed under the varifold/current topology of the Lagrangian, so the limit L lies
in £, whence provides a minimizer in &£. [

Remark 5.28. If we demand £ is closed under the flat topology of currents, without requi-
ring varifold convergence, then we would not need the difficult Z2-smoothing property
in the argument. However, this would allow the pathological behaviour in Example 5.4,
which would increase the difficulty of Floer theory for weak regularity Lagrangians.

Remark 5.29. For the geometric measure theoretic purpose of finding special Lagrangi-
ans, the existence of a minimizer as a Lagrangian current L is probably sufficient. How-
ever, for applications to the Fukaya category, it is highly desirable to know that L carries
a formal brane structure (see Section 5.4), which likely requires resolving Question 11.
Some analogies suggest the question may be subtle:

In geometric invariant theory (GIT), there are niceties concerning semistable, poly-
stable and stable objects. If we take a sequence of semistable objects in a fixed reductive
group orbit, the limit may jump outside the orbit, so that the orbit does not admit a
polystable representative. Several semistable orbits may be ‘S-equivalent’, and each S-
equivalence class contains a unique polystable orbit.

In the gauge theory of holomorphic bundles, likewise a sequence of connections in
the same complexified gauge orbit may jump outside the orbit in the limit; algebro-
geometrically, this jumping of bundle structure is usually related to bundle extensions.

One motivation for the Thomas—Yau program is to form the moduli space of (semi)-
stable Lagrangian branes. The Hausdorff property of the moduli space is a delicate ques-
tion.
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For these reasons, as well as Remark 5.19, we are not certain if the Lagrangian minim-
izer should be interpreted as a representative in the chosen D? Fuk(X) class, or if several
semistable D? Fuk(X) classes should be identified under some suitable S -equivalence
relation. We think this question requires further developments in Floer theory. The ques-
tion is also reflected in the delicacy of the infinite time limit in Joyce’s Bridgeland stability
proposal.

5.6. Minimizers and special Lagrangians

Conjecture 5.23. A minimizer L of the Solomon functional inside £ is a special Lagrang-
ian of phase 6.

We will give several heuristic reasons. The essential issue is that there should be
enough Lagrangian competitors within the class £.

LMCF viewpoint. In Section 5.3 we discussed that the Solomon functional should be
non-increasing under Joyce’s LMCF. Suppose the flow extends weakly to Lagrangians
in £. The flow starting from a minimizer L must have constant §(L,), but the evolu-
tion (5.4) would then force 6 = ] , namely L is a special Lagrangian, and the flow is in
fact constant.

Hamiltonian variations. If the Lagrangian angle of the minimizer satisfies

—ﬂ/2+8<igf9 <supf < m/2—c¢,
L

then we have a more elliptic argument. Given any compactly supported global C *° Hamil-
tonian function H on X, we can associate a 1-parameter family of symplectomorph-
isms ¢; by exponentiating the Hamiltonian vector field. Since d¢; only moves the tan-
gent planes by O(|t|) for small |¢| <« 1, the Lagrangian angle of ¢, (L) is still within
(—7/2 + e, /2 — &), namely the quantitatively almost calibrated condition is preserved.

Under global Hamiltonian deformations, the first variation of the Solomon functional
is

d 5
IS(H) = L 5@Llimo = [ Him(e 7).

We need another ingredient which is expected to hold once the Floer theory is sufficiently
developed in the weak regularity setting:

e The class of unobstructed exact Lagrangian objects is preserved by Hamiltonian iso-
topies. As such ¢, (L) should remain inside the class &£.

These would imply that the minimizer L satisfies

/ HIm(e7?Q) = 0.
L

for any compactly supported C*° function on X. This means Im(e_’ﬁQ) = 0 as currents,
which is equivalent to § = 6 under the almost calibrated setting.
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Remark 5.30. The assumption that —7/2 + ¢ < infy, 6 < sup; 0 < 7/2 — ¢ for the
minimizer is not innocent, but represents a principal gap in our program to find special
Lagrangian currents. The problem is that if on the minimizer sup; 6 = 7 — ¢, and a
priori L has no regularity assumption (e.g., the Lagrangian angle may a priori be highly
oscillatory), then we lack techniques to construct Lagrangian competitors which remain
quantitatively almost calibrated.

5.7. Thomas-Yau uniqueness revisited

The Thomas—Yau uniqueness argument has a conceptually rather mysterious aspect: from
local computations of Floer degrees, one arrives at the global conclusion that the two
special Lagrangians share the same support. We shall now present a different argument,
which is not completely rigorous, but unlike the standard arguments, it could potentially
work on Lagrangians with mild singularities.

Conjecture 5.24 (Thomas—Yau uniqueness in the weak setting). Suppose L, L' are two
special Lagrangian integral currents L, L' with the same phase angle 0, equipped with
suitable unobstructed brane structures, such that L ~ L' in D? Fuk(X). Then L = L’ as
currents.

Proof (heuristic). In general, we expect there is an (n 4 1)-dimensional rectifiable cur-
rent € with € = L — L’ constructed from universal families of holomorphic curves with
boundary on L and L’. The holomorphic curves u: ¥ — X can appear in three types:

(i) Automatically transverse holomorphic curves: there exist first order deformations
V1,...,Vp—1 such that dF = Q(-,vy,...,v,—1) does not vanish identically as a 1-form
on X (see Section 3.3).

(ii) Non-constant holomorphic curves, which are not automatically transverse. We
expect their boundary evaluation to be contained in a Hausdorff dimension < n — 1 subset
of supp(L) U supp(L’) (see Section 3.3).

(iii) Constant holomorphic maps u: X — supp(L) N supp(L’). These would only arise
if L and L’ have some overlapping support, so did not appear in our previous discussions.
For dimensional reasons, these cannot contribute to the (n + 1)-dimensional current €.

The key difference from the second case is that at interior points of supp(L) Nsupp(L'),
there are n linearly independent first order deformations, such that vy, ..., v, span TL
upon boundary evaluation. This behaviour can only be compatible with d F = 0 for con-
stant curves.

We now impose the special Lagrangian condition, and consider the automatically
transverse case. Along 0%, the counterclockwise directional derivative of F has argu-
ment equal to the constant Lagrangian angle 6 modulo 7Z. As such we expect F(0X)
to be contained in a line segment with incline angle 6. By the maximum principle on the
holomorphic function F, the entire F(X) C C is contained in a line segment. However,
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the open mapping theorem in complex analysis then implies F is constant, which rules
out the automatically transverse curves.

Now the only contributions to € would come from the non-constant, not automatically
transverse curves. This forces supp(d€) N (supp(L) U supp(L’)) to be contained in a
Hausdorff (n — 1)-dimensional subset. However d€ = L — L’ as integral currents, so the
n-dimensional current L — L’ has support dimension < n — 1, which forces it to vanish.
This shows L = L'. [

Question 15. When can we say furthermore that the formal brane structures on L = L’
are related by some gauge equivalence?

Remark 5.31. In the subsequent work [53], the author proved a weak-strong uniqueness
theorem, which extends the Thomas—Yau uniqueness to certain special Lagrangians which
arise as limits of smooth and unobstructed Lagrangian branes in the varifold topology.

5.7.1. Special Lagrangians are minimizers. We now revisit Proposition 3.40. Our goal
is to suggest that the automatic transversality, positivity condition, and even smoothness
assumptions can be removed in Proposition 3.40, at the cost of assuming the entire force
of the Thomas—Yau conjecture, under the setting of this section.

Conjecture 5.25. If there exists a special Lagrangian L in the class £, then it is a min-
imizer of the Solomon functional.

Proof (heuristic). We begin by noting that the existence of a special Lagrangian represent-
ative should imply Thomas—Yau semistability (see Conjecture 3.31). By the Thomas—Yau
existence Conjecture 5.21 this implies the Solomon functional has a minimizer L', which
must be a special Lagrangian. Then the Thomas—Yau uniqueness Conjecture 5.24 implies
L = L' as currents. [

5.8. Comparison with Joyce’s LMCF program

We have already made extensive comparisons between the variational approach and the
LMCEF program of Joyce, but it may help to summarize a few highlights.

(i) Joyce’s program is much more ambitious in that it tackles the entire derived Fukaya
category, not just the almost calibrated Lagrangians. We feel the quantitative almost calib-
ratedness is so pervasively used in the variational approach that it cannot be removed.
Dropping the almost calibratedness will give rise to significantly more difficulties in
Joyce’s program: the collapsing of zero objects can then happen, and the Solomon func-
tional no longer needs to decrease. Neves’s example of finite time singularity [62] is a
concrete manifestation of the difficulty. The almost calibrated condition is also natural
from the viewpoint of the continuity method (see Section 4.2), which deals with special
Lagrangians inside varying ambient almost Calabi—Yau structures.

(i1) Joyce does not specify the Bridgeland stability in a priori Floer theoretic terms. An
a priori guess on the nature of the stability condition is central to the variational method.
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Even though our picture is largely conjectural, it seems to be the most precise description
hitherto of how stability condition comes into the existence questions of special Lagrangi-
ans.

(ii1) Joyce primarily focuses on compact Calabi—Yaus, and mentions the exact case
only as an easier analogue. We have focused on the exact case, although we feel some
parts of our picture may extend to compact Calabi—Yaus, if one is prepared to overcome
(even more) significant Floer theoretic technical hurdles. However, we do not know what
would replace the a priori estimates on the Lagrangian potentials, and notably the potential
clustering condition.

@iv) Joyce’s LMCEF involves objects with a priori higher regularity, although its infinite
time convergence behaviour may well require understanding weak regularity Lagrangians.
The variational method requires working with varifold/current like objects throughout.

(v) Joyce’s LMCF needs to make essential use of genericity conditions. This in partic-
ular requires extremely precise classification of all possible generic singularities in order
to perform surgeries, a task that becomes overwhelmingly difficult for complex dimen-
sion > 3. Our variational program is less sensitive to such arguments. On the other hand,
we still potentially need to understand some generic singularities, so that the class &£ con-
tains enough competitors, to enable the proof of the L”-smoothing property for some
p > 1, and Conjecture 5.23.

(vi) Although time and again we appealed to Joyce’s LMCEF to heuristically justify
certain claims, it is only because we lack other ways of constructing Lagrangian compet-
itors with sufficient control, and the basic logical framework of the variational approach is
independent of the LMCEF. It seems desirable (on account of the extraordinary difficulty of
Joyce’s program) to keep this logical independence manifest in the program to rigourize
our variational proposal.

(vii) Joyce’s program has a number of highly non-trivial categorical predictions dis-
cussed in Section 3.6, such as the idempotent closedness of D® Fuk(X). Even if these
predictions turn out to be false, it would not affect the validity of the variational method.

A. The Fukaya category

This appendix is a brief reminder about Floer theory in the exact setting. There exist both
excellent surveys on the Fukaya category of embedded Lagrangians, such as Auroux [9]
and Smith [75], and many in depth treatments such as Seidel [71], Akaho—Joyce [4] and
Fukaya—Oh—-Ohta—Ono [35]. Our very limited goal is to recall some key notions prevalent
in the main text, and explain some basic intuitions, but we will not get into the more
technical aspects, such as the details of perturbation schemes, which are treated carefully
in these standard references.

For the Thomas—Yau—Joyce program, one needs to incorporate immersed Lagrang-
ians. The canonical reference is Akaho—Joyce [4] for a treatment using virtual techniques,
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and Woodward et al. [67, 68] which avoids virtual counting by using stabilizing divisors.
The exact assumption affords some technical simplifications, for which a sketchy account
is found in [45, Section 4.1]. Another technical treatment in the exact setting, not allowing
certain teardrop curves, is in Alston—Bao [7].

A.1. Fukaya category for embedded exact Lagrangians

Floer cohomology and A o -structure with mod 2 coefficients. Let (X, w, J) be a Stein
manifold, namely a Kiihler manifold with w = +/—1 85(]) for a plurisubharmonic exhaus-
tion function ¢. In particular, X is an exact symplectic manifold, meaning w = dA,
where A is the Liouville 1-form. All almost complex structure perturbations are assumed
to agree with the fixed complex structure outside some compact set.

Given two transversely intersecting exact embedded®” Lagrangians L, L’ with poten-
tial fr, fr/, namely dfy = A|p and df;, = A|r’, and some extra brane data, one can
associate an algebraic invariant called the Floer cohomology. A general feature of Floer
theory, is that the constructions depend on many auxiliary choices, but the invariants
depend on only a small number of data, and should always be invariant under global
Hamiltonian isotopies.

We assume ¢1(7X) = 0 and let 2 be a complex volume form on 77X . We shall always
assume the Lagrangians to be graded, namely the phase function § = arg Q|z: L — S!
lifts to a real valued function. The grading is part of the brane data. Working first with
Z, coefficients, the Floer cohomology can be defined as the cohomology of a complex
(CF*(L,L"),d).Here CF*(L, L’) is generated by the transverse intersection points p €
L N L', whose degrees are given by

1
7

L) = —(D¢i +6L(p) — 6u(p)). (A1)
where we put the tangent planes of L, L’ inside T, X ~ C” into the standard form
T,L=R"CC" T,L =(?,.. . %R"CC" 0<¢; <.

Notice if we reverse the roles of L, L', then we can regard p € CF*(L’, L), but this
affects the degree by pur,,1/(p) =n — ./, (p). For alternative formulations of the degree
in terms of Lagrangian Grassmannians, see [70].

Remark A.1. The degree convention ji7, ;s here follows Joyce [45], which corresponds
to wr,r in [9,71,75]. The advantage of this convention is its compatibility with the central
charge formula Z(L) = [, 1, 2 in the Bridgeland stability. If instead one uses the convention
of [9,71,75], then adding = to the Lagrangian phase would correspond to the shift [—1]
in D? Fuk(X), so the central charge would be Z(L) = fL Q.

2In our terminology, embedded Lagrangians are always connected, while immersed Lagrangians can
have disconnected domains.
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Remark A.2. For almost calibrated Lagrangians —7 < 01, — 6, < 7, whence —1 <
nr,(p) <n+ 1. Since the degrees are always integers, we must have 0 < uz, 1/ (p) < n.

We consider the moduli space M(p, q; J, [u]) of finite energy holomorphic strips with
ends at p, ¢ and boundary on L, L’, in the homotopy class [u] € w2 (X, L U L'):
w=Rx[0,1] - X, u(s,0 €L, u(s,1)el, lim u = p, lim u =g,

§—>—00

s—>—+00

dsu + J(t,u)d,u =0, E(u)z[u*w:/ |0u/ds|* ds dt < oo.

Index theory of the Cauchy—Riemann operator with Lagrangian boundary conditions im-
plies this moduli space has virtual dimension deg g — deg p. The holomorphic strip equa-
tion is invariant under domain translation in the R direction. Using generic domain depen-
dent almost complex structures which are fixed outside a large compact set, one can
achieve suitable zransversality on the moduli spaces, and in particular M(p, ¢; J, [u])/R
are isolated points for deg g — deg p = 1. A key advantage of the exact setting is that the
energy can be computed a priori by the topological formula

/z”*“’ - /32 A= f: dfi, /_: dfi = (f = fi)@) — (f = fu)(p). (A2)

By Gromov compactness, the number of isolated points is finite, and only finitely many
homotopy classes [u] admit holomorphic strips. To save some notations, we sometimes
write

Mp.g)= )  Mp.g:J.[u]).
[ulen(M,LUL")

Remark A.3. The role of convexity assumptions at the infinity of X (such as the existence
of a plurisubharmonic exhaustion function) is to ensure that for a finite given collection of
Lagrangians, all holomorphic curves remain inside a fixed bounded region. This is needed
to apply Gromov compactness.

Remark A.4. More generally, one can add a Hamiltonian term in the Cauchy—Riemann
equation, and replace transverse intersection points by Hamiltonian chords. The Cauchy—
Riemann equation then gets modified to the Floer equation

dgu + J(t,u)(du — Xg) =0, (A.3)

where X g is a Hamiltonian vector field. This perturbation is not needed for Floer theoretic
transversality statements if L and L’ are already transverse, but is an essential ingredient
in showing the Hamiltonian invariance of Floer cohomology.

Remark A.5. We generally distinguish between the s — —oo end, and the s — +o0 end.
The main difference is the ordering of the Lagrangians at the intersection point. Here we
are following the Joyce convention [45], which is opposite to Auroux [9]. This is dic-
tated by compatibility with the degree formula (A.1). Similarly, later the A, product also
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requires the Lagrangian boundaries to be ordered clockwise, as opposed to the counter-
clockwise convention in Auroux [9].

The Floer differential d: CF*(L, L") — CF**Y(L, L") isdp = Y _np4q, where np 4
is the mod 2 count of M(p, q)/R. The key fact of Floer theory is that d?> = 0. For this,
one considers the holomorphic strips between p, r with degr — deg p = 2, modulo the
translation invariance R direction. This moduli space M (p, r)/R is 1-dimensional. Gen-
erally in Floer theory, the boundary of the compactified moduli spaces comes from disc
breaking and disc and sphere bubbling. The latter is ruled out for energy reasons by the
exactness assumption, and the former gives

I(M(p.r)/R) = M(p.q)/R x M(q.r)/R.
q

In terms of mod 2 counts, } | np gngr = 0, namely d 2 = 0. This fact allows one to take
the cohomology, which is HF*(L, L'). Although suppressed in this notation, the homo-
topy classes of discs are additive under disc breaking. This fact allows one to introduce
some extra weighting factors involving energy and holonomy of local systems.

The general strategy to show the Floer cohomology is independent of the choices of
almost complex structures and Hamiltonian perturbations, is to consider continuity equa-
tions, whose counts define chain maps at the level of CF*, so descend to comparison
maps between Floer cohomologies defined by different auxiliary data (see Auroux [8, Sec-
tion 1.5]).

Floer cohomology admits rich algebraic structures, but the deeper structure is better set
up at the chain level CF*(L, L"). We temporarily avoid the issue of signs and self Floer
cohomology. The Fukaya category can be seen as the generalization of Floer cohomology
in two directions:

(i) We allow the interplay of many (transverse) Lagrangians. Each Lagrangian is lab-
elled by an object in the Fukaya category. This labelling is the main difference between
an algebra and a category.

(i) The holomorphic strips are replaced by holomorphic polygons, with boundary
segments mapped to a clockwise ordered sequence of at least three Lagrangians Lg, L1,

..., Ly, and clockwise ordered boundary marked points xg, X1, ..., Xy mapped to the
Lagrangian intersection points ¢ € Lo N Ly, py € Lo N Ly, ..., px € Lx—1 N Li. We
distinguish xg as the output, and regard x1, ..., Xg as inputs. The marked points xg, X1, X2

on the boundary of the domain disc are fixed, while the other kX — 2 marked points are
allowed to move freely preserving their cyclic ordering.

The moduli spaces of such polygons (with suitably domain dependent perturbations)
are denoted as M(py, ..., Pk, q). Moduli spaces with at least three marked points do not
have the domain translation invariance, so there is no need to divide by R.

Remark A.6. From the viewpoint of gluing theory, it is convenient to regard the bound-
ary marked points of the holomorphic polygons as punctures, where the Riemann surface
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structure is locally modelled on strip like ends. The moduli of abstract holomorphic poly-
gons with k + 1 marked points has a compactification known as the Stasheff associahed-
ron ﬁk+1~ On account of the geometric picture of polygons in R?, we often refer to the
strip like ends as corners.

The energy formula (A.2) generalizes to the holomorphic polygon case:

k
/E W0 = (fro— fr)@ — > fros — f1)(pi). (Ad)
1

The virtual dimension formula is

k
vdim M(p1, ..., px.q) = degq —Zdegpi +k—2.
1

Here degg — Z]f deg p; comes from the index theory of the Cauchy—Riemann operator,
and k — 2 comes from the freedom to move the marked points on the boundary. Under
suitable domain dependent perturbation schemes, in this exact setting one can ensure
transversality, so that the moduli space is smooth. For setting up the Fukaya category, the
zero-dimensional moduli spaces are particularly important, since counting points give rise
to operations, and 1-dimensional moduli spaces are important for producing A -relations.
In the main text, we have also given considerable attention to (n — 1)-dimensional moduli
spaces, since these are relevant for producing bordism currents.

Within the exact setting, disc and sphere bubbling is impossible. After compactifica-
tion, the moduli space of holomorphic polygons can have two kinds of boundaries, due to
two kinds of disc breaking:

Disc breaking at the corners. The disc may break at L; N L; ;. The polygons near the
breaking limit are obtained from gluing polygons with corners mapped to py,..., pi—1,
r, Di+1,---,q, and strips with boundary on L;_;, L; and two ends mapped to p;, r.
(Of course, disc breaking can also happen at the outgoing corner ¢.)

Disc splitting at the edges. When there are at least 4 Lagrangians, the domain disc can
split into two discs with / + 1 > 3 and k + 1 — [ > 3 marked points. The edges of

one disc map to Lg,..., Lj, Ljyy,..., Lk, with cyclically marked points mapping to
Pt,-..,pj, "t € Ly N Liyj, piyjt1,..., pk and q. The edges of the other disc map
to Lj, ..., L;y;, with marked points mapping to pj+1,...,pi+;andr € Ly N L ;.

When disc breaking and disc splitting are taken into account, the moduli spaces can
be compactified into M(py, ..., px,q). We then have

8M(p1""’pkvq) = UM(p[,V)/R XM(Pl,---,Pl—l,r7Pl+lv~-ka"])
U Uﬂ(pl,...,pj,r,p1+j+1,...,pk,q) X M(pj+1,...,pl+j,r). (A.5)

In particular, the (virtual) dimensions of both sides are equal, which constrains deg r.
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Remark A.7. More generally, disc breaking and disc splitting can happen in a bubble
tree fashion. Such multiple splitting/breaking do not concern us, because under sufficient
transversality conditions, they occur only in codimension at least two in the moduli space.
To set up Fukaya categories in the exact setting, only zero and 1-dimensional moduli
spaces are needed, so the multiple bubble trees do not occur. When we make use of higher-
dimensional moduli spaces in the main text, the bubble trees do occur, but the codimension
two condition means the deeper boundary strata do not contribute to the boundary of the
bordism current, in the sense of currents.

The Aso-structure is the algebraization of the disc breaking/splitting phenomenon. It
consists of multilinear maps

my: CF*(Lg—1, Lk) ® -+ ® CF*(L1, L2) ® CF*(Lo, L1) — CF*(Lo, Ly)[2 — k]

satisfying the Ao-relation
k k-l

Z Z tmpp1-1(Pk-- - Pjviv1.m1(Pjgts - Pj+1)s Pjs oo P1) = 0.
I=1j=0

Here m is the degree one Floer differential d, and for k > 2 the operation my, is defined
by counting holomorphic polygons in moduli spaces of virtual dimension zero:

mi(ps . p1) = Y_#M(p1. ..., pr.q)q.
q

Virtual dimension zero requires deg g = Zlf deg p; + 2 — k, which explains the degree
of my. The Axo-relation is the direct translation of (A.5), with disc breaking at corners
contributing the m; terms, and disc splitting contributing the other terms.

The first few Ao-relations have clear geometric meanings:

» The Floer differential squares to zero.

* The Floer product m, satisfies the Leibniz rule. As such m, descends to a product
structure on the mod 2 coefficient Floer cohomology

HF*(Ll, Lz) ® HF*(L(), Ll) — HF*(L(), Lz).

* The m, is associative up to a homotopy given by the m3 terms. In particular, the Floer
product is associative on cohomology.

The higher structures naturally lead to the Fukaya category of embedded exact Lag-
rangians. This requires some discussion on signs, brane structures, and self Floer cohomo-
logies.

Self Floer cohomology. It is desirable to take Floer cohomology of L with itself. One
major feature of HF*(L, L) is that it contains units, at least at cohomological level.

One challenge to implement self Floer cohomology is that L is not transverse to
itself, so the Cauchy—Riemann equation needs perturbation. There are many frameworks
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to address this problem, and one idea dating back to Floer is to use the Hamiltonian invari-
ance of Floer cohomology, to think of self Floer cohomology via

HF*(L,L) ~ HF*(L, ¢.r (L)),

where ¢, g is the time one flow of the small generic Hamiltonian e H [9, Section 1.6]. For
& < 1, the Lagrangian ¢,z (L) can be identified as a graph over L inside 7* L, the trans-
verse intersection L N ¢ g (L) are the critical points of H |, and a suitable setup of the
Floer trajectories (A.3) can be identified as Morse flowlines of H. Thus HF*(L, L) is iso-
morphic to the Morse cohomology of L, so HF*(L, L) >~ H*(L). In the exact case, the
ring structure on HF*(L, L) defined from perturbed holomorphic triangles agrees with
the cup product ring structure on H *(L). The unit can be represented by the Morse gen-
erator of H°(L), or more non-perturbatively via the Piunikhin-Salamon—Schwarz map.

It takes some effort to promote the self Floer cohomology to the Fukaya category
framework, and ensure the consistency in the perturbation schemes (see Auroux [9, Sec-
tion 2.1] for a sketch and Seidel [71] for details). In applications it is often more convenient
to avoid Hamiltonian perturbations as much as possible.

Example A.1 (Floer products involving the identity). We wish to heuristically explain a
special case relevant to Joyce-Imagi—Santos (see Section 2.3), concerning the geometric
interpretation of the Floer product mod 2

HF%L',Ly® HF°(L,L") — HF°(L,L).

Here L, L’ are assumed to be transverse. Hamiltonian invariance means we can alternat-
ively think of

HF°(L', ¢ (L)) @ HF°(L,L") — HF°(L, ¢ (L)).

This is defined by the count of holomorphic triangles with input corners at CF(L, L),
CF°(L’, ¢ (L)), and an output corner at CF(L, ¢popr(L)). We may assume that the
Morse function H |p, has only one maximum point 7 on L, which represents the unit of
HF*(L,L). When ¢ — 0, then L and ¢,y (L) coincide, and the holomorphic triangles
become holomorphic strips with ends at CF(L, L"), CF°(L’, L) (alternatively seen as
a degree n output) and passing through the point r € L. This last incidence condition
is independent of the position of r on L, since we can choose H to have its maximum
at any generic prescribed point. Notice in this strip interpretation, there is no longer any
Hamiltonian perturbation. This interpretation featured in Lemma 2.7.

Sign issues and brane structures. To go beyond mod 2 coefficients, we need to orient
moduli spaces. Good references can be found in Seidel’s book [71] and Abouzaid [2,
Appendix]. All Lagrangians are assumed to be graded, with second Stiefel-Whitney class
equal to the restriction of a fixed class in H?(X,Z/2), and we equip the Lagrangians with
relative spin structures. At any transverse Lagrangian intersection point p € L4 N L_,
there is a unique up to homotopy path A, of Lagrangian planes in 7, X ~ C" with graded
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lift interpolating 7L and T'L_. We fix a relative spin structure on A,, compatible with
the relative spin structure on L. We can associate a vector space o, as the determinant
line of the Cauchy—Riemann operator D, on the upper half plane with boundary data A .
The dual of 0, is denoted 0;, namely 0, ® 0;,’ =~ R canonically. The orientation line |0, |
is the free abelian group generated by the two possible orientations of 0, with the relation
that their sum vanishes. Furthermore, we equip the Lagrangians L with (rank one) local
systems E, and write the Floer cochain complex as the graded vector space

CF*(L,L") = ®pernr Hom(E|p, E'|,) ® |op|.

Remark A.8. There are some variants on the coefficient ring/field of the local system. The
simplest case is the trivial local system, in which case we simply delete the Hom factor.
Other popular choices have parallel transport in Q*, R*, C*, or the units in the Novikov
ring.® Different choices could in principle lead to slightly different versions of the derived
Fukaya category. The smaller the coefficient ring/field, the more stringent is the notion of
derived isomorphism of objects. For the purpose of extending the Solomon functional (see
Section 3.4) to be real valued, we require all coefficients to be at least contained in R, so
we will usually work simultaneously with R, QQ and Z local systems. On the other hand, it
is claimed in [67, Remark 4.5] that in the exact setting the immersed Fukaya algebras can
be defined over the integers. The specific advantage of working over integers, as discussed
in the main text, is primarily that the bordism current € between Lagrangians is then an
integral current, rather than R-linear combinations of integral currents.

Given a holomorphic polygon u: ¥ — X, with inputs xq, ..., xx and output x¢ map-
ping to pi,..., px and q, the det line of the linearized Cauchy—Riemann operator D,, can
be computed from gluing kernel and cokernels:

det(Dy#Dp, ... #Dp,) ~ det(Dy) @ 0p, @ -+ ® 0p,.

The role of the relative spin structure, is to specify a homotopically unique choice of
isotopy between the glued operator Dy #Dy,, ... #Dy, and Dy, (i.e., an isotopy between
Lagrangian boundary conditions), hence a preferred isomorphism

det Dy ~ 04 ® 0, ®---® o0, .

The tangent space of the moduli space of holomorphic polygons M(p1, ..., pk,q) inv-
olves not only the linearized Cauchy—Riemann operator, but also the variation of the
complex structure of the domain of the polygon, controlled by the Stasheff associahed-
ron Ry 1. Denote A°P(V) as the top wedge product of a vector space V. Then there are
preferred isomorphisms depending on the relative spin structure choice

AP(TM(prs- s Pk ) = AP (Rpy1) ®0g R0y ®--® 0, . (A.6)

©The U(1)-local systems are popular in the physics literature, but appear rarely in Floer theory.
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Remark A.9. Fix an orientation on L, then CF°(L, L’) is naturally dual to CF"(L’, L).
The local system factor Hom(E, E’) is naturally dual to Hom(E’, E). Given a Lagrangian
path A, associated to a Lagrangian intersection p, the reverse path is also associated with
a determinant line bundle, which can be identified with 0; ® A(TL), since the two half
planes with Lagrangian boundaries can be glued to a disc, such that the det line of the
Cauchy-Riemann operator is canonically isomorphic to A(T'L).

For k > 2, when the moduli spaces are zero-dimensional, so carry canonical orienta-
tions, then a universal orientation choice for A'P(Ry 1) determines an operator

leul: [op, | @ -+ & op, | — |og].

In our degree conventions the corners xg, X1, X2, . . . , X; on the domain disc boundary are
ordered clockwise, so a natural orientation on the Stasheff associahedron can be obtained
by fixing xo, x1, x> and allowing the other corner points to move in the clockwise orient-
ation. The parallel transports along the local systems contribute another factor

Hom(Ex—1, Ex)lp, ® --- ® Hom(E1, E2)|p, ® Hom(Eo, E1)|p; — Hom(Eo, Ex)lg.
Each pseudoholomorphic polygon contributes to the operation
m:CF*(Lg—1, L) ® ---® CF*(Lo, L1) — CF*(Lo, Ly)[2 — k]

via the tensor product of the orientation factor |c, | and the local system factor, multiplied
by another sign factor depending only on the degrees (see [71, equation (12.24)])

(_l)deg p1+2deg pat-tk deg p
In the case of holomorphic strips, we have a natural isomorphism

TM(p.q) = R(—d;5) & T(M(p.q)/R), (A7)

where —d; denotes the translation vector field pointing towards the input point. When
M(p, q)/R consists of isolated points, it carries canonical orientations, whence by (A.6)
we obtain

leul:lop| = log].

The local system parallel transport produces another factor
Hom(Ey, E1)|p, — Hom(Eo, E1)l4.
Each pseudoholomorphic strip contributes to the Floer differential
d:CF*(Ly,L;) - CF**(Ly,L;)
by the product of these two factors. We write

my:CF*(Lo, L1) > CF**' (Lo, Ly), my = (=1)*P4d.
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When the signs and local system weighting factors are taken into account, the A -relation
reads

k k-l

S D i (pie - pivisrmi(pigis o pj+1)s Py p1) =0,
I1=1,=0

where T = j + deg p1 + --- 4+ deg p;. The Fukaya category for the compact embedded
Lagrangians comprises the following data:

* The objects are embedded Lagrangians (with additional brane data, such as grading,
Lagrangian potential, orientation, relative spin structure, and local system).

» The morphisms Hom* (L, L’) are the vector spaces CF*(L, L") (where L can coincide
with L').
* The A.-composition maps are the multilinear maps my satisfying the A relations.

The Fukaya category is an example of an A.-category.

In particular, the Floer differential squares to zero, so we can define the Floer cohomo-
logy groups HF*(L, L) for embedded exact Lagrangian branes. The Floer product on
cohomology is given by

[p2] o [p1] = (=1)*EP my(pa. p1).
which is associative.

Example A.2. (Floer products involving the identity, continued) In the context of Exam-
ple A.1, the orientation isomorphism (A.6) for the holomorphic triangle is determined
by whether the isotopy of the Lagrangian boundary conditions respects the relative spin
structure. Since the relative spin structure on ¢, g (L) is induced from L, this problem is
equivalent to the corresponding isotopy problem for the limiting holomorphic strip. The
holonomy factor of the local systems for the holomorphic triangle, is also reduced to that
of the limiting strip.

In the simplest case when we are given closed elements & € CF°(L,L’) and B €
CFO(L’, L) each involving only one intersection point, the local systems are trivial, and
only one holomorphic curve contributes to the Floer product, then

Boa =1, € HF°(L,L)

means that for the holomorphic strip from « to B passing through a generically chosen
point r € L, the Lagrangian boundary condition on the disc obtained by gluing 7L, TL’
and the two Lagrangian paths at the two strip like ends, can be contracted to constant,
respecting the prescribed relative spin structures on L, L” and the two ends. More gener-
ally, many intersections points and holomorphic strips may contribute to the Floer product,
and Boa =17 € HF°(L, L) means a weighted signed count of holomorphic strips is
equal to one.



Thomas—Yau conjecture and holomorphic curves 141

Under sufficient transversality assumptions, we can form the (n — 1)-dimensional
moduli space of holomorphic strips from « to 8, and thereby produce an (n + 1)-dim-
ensional universal family €, as in the main text in Section 3.1. Using the relative spin
structures on L, L’ and the Lagrangian paths associated with the ends, we use (A.6), (A.7)
and Remark A.9 to induce a canonical orientation on the moduli space from

B®aeCFY L L) CFO(L, L.

Using the complex orientation on the holomorphic curve X, and inserting an extra minus
sign, we obtain an orientation on €. This tricky minus sign accounts for the difference
between the counterclockwise orientation of 9% compatible with the complex orientation,
and the clockwise orientation of %X compatible on the L-boundary with the translation
vector field —d,. Putting everything together, B oo = 1, € HF°(L, L) means in the
sense of weighted counts, that € passes once through a generic point r € L in the same
orientation as A(7T'L). In other words, the L-boundary evaluation of d€ sweeps out the
oriented cycle L.
The same argument says that if

aof =1, € HFO(L' L),

then the moduli space of holomorphic strips from S to « produces a universal family €’,
whose L’-boundary evaluation map sweeps out the oriented cycle L’. The subtle point is
that due to the reversal of the R-translation vector fields, €’ has the reverse orientation
as €. Therefore, the L’-boundary evaluation of € sweeps out the oriented cycle —L’
instead of L’. Here ends the example.

Twisted complexes, distinguished triangles, derived category. A fundamental prob-
lem of the embedded Fukaya category is that it lacks enough geometric objects. Morally,
Fukaya category is a construction that inputs the symplectic geometry of Lagrangian
branes, and outputs the representation theory of an A,-category. Now the general fea-
ture of A..-module categories is that one can take cones and idempotent summands, two
properties which are useful for classifying such categories, and desirable for mirror sym-
metry. The problem is that cones and idempotent summands are not obviously represented
by embedded Lagrangian objects under the Yoneda embedding. The common solution is
to sideline this issue by the formal algebraic construction of twisted complexes and idem-
potent completions. This is not quite adequate for the Thomas—Yau conjecture. However,
we will discuss how the introduction of immersed Lagrangian objects geometrizes the
twisted complexes (see Section A.2). The geometric meaning of idempotents is an open
problem.

The formal algebraic constructions are well explained in [9, Section 3] and [75, Sec-
tion 4], to which we refer the reader for more details. Given objects L1, ..., Ly of the
Fukaya category +4, a twisted complex (L, by,) consists of

» the formal shifted direct sum L = EB{V Li[k;] with k; € Z formally keeping track of
degrees (the geometric meaning of the shift [1] is to add a constant 7 to the Lagrangian
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phase, which reverses the orientation of the Lagrangian, with a corresponding twist to
the spin structure);

» astrictly triangular differential b; € End(L), i.e., a collection of maps
bij € Hom* ~%i+1(L; L)

fori > j,%

satisfying the equation

> mp(br.....b) =0,

k>1

Z Z mk(bikqik""’bioil) = 0.

k>1i=ig>->ix=j

that is,

Notice the strict triangularity implies the sum is finite. One can define morphisms between
these twisted complexes, and assign Aso-structures to make twisted complexes into an
Aso-category T woA, into which +4 naturally embeds fully faithfully. Using the Aoo-struc-
ture, it makes sense to talk about closed morphisms and cohomologies, similar to the
construction of Floer cohomology.

Given twisted complexes A = (L,br), B = (L', br') € Twe, and a closed morphism
f € Hom®((L,br), (L', by')), the abstract mapping cone of f is the twisted complex

Cone(f) = (L[l] oL (b]f b(i))

Generally, a mapping cone of f is an object of Tw A quasi-isomorphic to Cone( /). This
gives rise to a distinguished triangle

A—>B—>Cone(f)ﬂ>A.

This illustrates the advantage of introducing twisted complexes: Tw is a triangulated
category.

The cohomological category of 7w is commonly denoted D? Fuk(X). This has the
same objects as 7w, but the Floer cochain spaces are replaced by their H°, namely we
remember the Floer cohomology.

Under the Yoneda embedding, 7w embeds into its module category. The idem-
potent closure 7w” +# is obtained by formally adding the direct summands of the Yoneda
image of twisted complexes in Tw. The cohomological category of Tw”™ 4 is com-
monly denoted D Fuk(X). In the variant setting of compact X, it is usually D" Fuk(X)
instead of D? Fuk(X) that shows up in mirror symmetry, since the derived category of
coherent sheaves is automatically idempotent closed.

%In most symplectic references such as [9] the morphisms b;;j go in the opposite direction i < j.
This just amounts to reversing the ordering of Ly, ..., L . We find our reversed convention a little more
convenient for the Harder—Narasimhan decomposition.
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Remark A.10. Once immersed Lagrangians are admitted as objects of Fukaya categories,
the twisted complexes are largely redundant. Joyce claims that by including immersed
and singular Lagrangians with rank one local systems, then D? Fuk(X) is automatically
idempotent closed, so there is no difference between D? Fuk(X) and D” Fuk(X) (see [45,
Conjecture 3.6]). However, it is highly non-obvious why direct summands are Yoneda
represented by geometric Lagrangian objects,® so this claim is regarded by many experts
as a weakness of Joyce’s proposal. For this reason, in our more restrictive proposal we
stick with the more geometric D? Fuk(X) (including immersed and singular objects, but
not formal idempotent summands) in favour of D™ Fuk(X), and the idempotent closure
problem does not falsify our program.

A.2. Immersed exact Lagrangians

According to Joyce’s LMCF program, immersed Lagrangians are a necessary part of any
Fukaya category adequate for the Thomas—Yau conjecture. As far as the author is aware,
only immersed Floer cohomology [4], rather than the full categorical framework, has been
written down in the literature, although in the exact setting this is commonly believed to
be a relatively routine matter, as sketched in [45, Section 4.1]. Our limited goal is to
highlight the main difference with the embedded case, namely the issues of obstructions
and bounding cochains. Once these two issues are taken into account, what works in the
embedded case will also work in the immersed case.

Teardrop curves and obstructions. The assumptions on (X, ) are as in the previous
section. Immersed Lagrangians are immersions ¢: L — X with |y = 0, and all self inter-
sections are transverse. The domain of L is allowed to be disconnected, so the union of
finitely many transversely intersecting embedded Lagrangians are examples of immersed
Lagrangians. Each self intersection point of two local sheets L, L_ corresponds to two
different points x4+ on the domain of L. It is important to distinguish x and x_, because
for the boundary of the holomorphic curve to pass through x4 in the clockwise direction
means crossing from L4 to L_, and x_ signifies the opposite crossing.

We say L is exact, if there is a function f7, on the domain of L, such that df;, agrees
with the Liouville 1-form restricted to L. For energy reasons, this forbids non-trivial holo-
morphic discs with boundary on L which never change local sheets at any boundary point.
The caveat is that the relative homology class [w] € H,(X, L) may still be non-zero.
The brane structures on L are as in the embedded case. The construction of CF*(L, L)
depends on the approach, but a common feature is that it includes

CFae(L, L) = @ CF*(Ly,L.)® CF*(L_,Ly)

self intersection p

%5There exist some wild speculations, such as incorporating coisotropic branes into the Fukaya category
in order to have more geometric objects.
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generated by the local system factor Hom(E4, E_)|, (resp. Hom(E£_, E4)|,) tensored
with the orientation line.

The Gromov compactness discussion is largely similar to the embedded case. A new
phenomenon is the teardrop curves, namely the holomorphic curves with boundary on L
and a single output corner at a self intersection point r € CF*(Ly, L_). Of particular
importance is the case with

ML, ,L_(r)=2.
The number 2 is intuitively explained by the two degrees of freedom of the domain Mdbius
transforms fixing the corner point Aut(D?, 1), modulo which such teardrop curves occur
in dimension zero moduli spaces.

Now if we attempt to run the usual argument for d? = 0 in Floer cohomology, we
would consider the moduli space of holomorphic strips between p, g with

degg —deg p = 2,

modulo the translation R. However, in addition to the usual strip breaking, the holo-
morphic strips can also break into a holomorphic triangle with inputs p, r and output ¢,
and a teardrop curve with corner at r. In summary, teardrop curves with corner at a
degree 2 intersection point obstruct Floer cohomology.

The automorphism group Aut(D?, 1) forbids the naive domain dependent perturba-
tion schemes, which in turn causes transversality problems. In the literature there are two
approaches to solve this problem: Joyce and Akaho [4] use virtual perturbation techniques
for bordered Riemann surfaces, while Woodward et al. [67,68] circumvent the virtual per-
turbations by utilizing stabilizing divisors. Both approaches assign curved Ao, algebra
structures (mg, my, ...) to the Floer cochain spaces CF*(L, L) of immersed Lagrangi-
ans. In the exact setting, the mo € C Fsilf(L, L) term amounts to a count of teardrop curves
with corner at degree 2 self intersection points, with weighting factors coming from the
holonomy of the local system. Since in the main text the emphasis is on the automatic
transversality assumption, we shall not dwell on the details of perturbation schemes, but
only identify a few simplifications in the exact setting.

Remark A.11. The rough idea of Woodward et al. is to introduce interior marked points,
constrained to lie on a Donaldson divisor D disjoint from the Lagrangians. The virtual
dimension is not affected by these divisor constraints, since each interior marked point
increases it by 2, while each divisor constraint decreases it by 2. One needs to arrange D
to be of sufficiently high degree, so that each non-trivial pseudoholomorphic disc with
boundary on the Lagrangians has at least one intersection with D. On a teardrop curve,
imposing the divisor constraint at interior marked points kills the domain automorphisms
Aut(D?2, 1), so one can then introduce domain dependent perturbation of almost complex
structures compatible with D to achieve sufficient transversality to make sense of counts.
The appealing feature of this approach, is that adding marked points does not alter the
geometric interpretation of the holomorphic curves, so stays closer to geometry than the
virtual approach.



Thomas—Yau conjecture and holomorphic curves 145

The framework of Woodward et al. [67,68] is not restricted to exact settings, and works
also for compact symplectic manifolds with rational [w] € H?(X). Producing the Donald-
son divisor with the intersection properties is easier if [w] € H,(X, L) is a rational class,
although the methods in [14, Section 3.1] allows one to largely relax this assumption.

In exact manifolds, as mentioned in [67, Remark 4.5], one can avoid the spherical
components of the treed discs. In the exact Lagrangian setting, the only bubbling happens
at the self intersection points. These afford significant simplifications to the construction,
and allows one to think of the treed discs in [14,15,67,68] in terms of a tree of holomorphic
polygons connected at the self intersection points. By avoiding the troublesome sphere
bubbles, one can also relax the restriction of moduli spaces of dimension at most one.

Remark A.12. A very technical aspect of Akaho—Joyce [4] is that the Ao, structure is not
constructed directly, but through a sequence of approximations involving energy cutoff
scales. In the exact setting, the topological energy formula implies a priori energy bounds,
so this complication would not arise.

Cancellation of obstructions. To make sense of Floer cohomology one needs to cancel
the obstructions by introducing bounding cochains b € CF (L, L), which represents a
formal sum of b, € Hom(E 4, E_)|, ® |o,| associated to degree one intersection points
p € CFY(L4,L_). We require

 the Novikov positivity condition fz, (p) > fr_(p) for each of the intersection points
appearing in b;
* the Maurer—Cartan equation

mb = mo 4 my(b) + ma(b,b) +--- =0 € CF(L, L).

Geometrically, the coefficients of ¢ € C Fsﬁlf(L, L) in the my (b, ..., b) term repres-
ent the zero-dimensional counts of holomorphic polygons with the inputs at the sum-
mands b, of b, and the output at g, weighted by the holonomy and orientation factors.
Using the Novikov positivity requirement of the bounding cochain, the topological energy
formula (A.4) for the polygon then implies

/Z © < fi (@)~ fi. (@),

where the boundary of X passes from Ly to L_ at g in the clockwise direction. By
Gromov compactness, this uniform energy bound implies there are only finitely many
terms involved in the Maurer—Cartan equation. When such a bounding cochain b exists,
we say (L, b) defines an unobstructed Lagrangian brane. In this case, both the Akaho-
Joyce and the Woodward—Palmer approaches assign self Floer cohomology groups

HF*((L,b),(L,b)),
defined as the cohomology of a degree one operator

my:CF*(L.L) - CF**'(L.L). m{(x)= Y myypry1(b.....b.x.b,....b).
k,k'>0 k' k
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This cohomology is invariant under global Hamiltonian deformations. Two bounding
cochains b, b’ on L are said to be gauge equivalent, if there is h € CFO(L, L) satisfy-
ing the Novikov positivity condition, such that

b—b'= " mipppa (... b hb.....b).
k,k'>0

Gauge equivalent bounding cochains give rise to isomorphic Floer cohomology.

Remark A.13. In the embedded case, there are no self intersections, so the Maurer—
Cartan equation is vacuous, and the Lagrangian is automatically unobstructed, with zero
bounding cochain. The unobstructed condition is not automatic in general for immersed
Lagrangians, and a significant aspect of the Joyce program in [45] is that unobstructed
Lagrangians ought to be better behaved in the LMCF.

Now suppose (L, b) and (L, b") are two unobstructed Lagrangian branes, intersecting
transversally avoiding the self intersections of L and L’. Then we can define the Floer
cohomology HF*((L,b), (L', b")). The Floer cochain space CF*(L, L’) is the same as
in the embedded case, generated by the local system factor tensored with the orientation
factor, associated to the transverse intersection points. The Floer differential is

b,b’
my? (p) =Y migr1(®.... b p.b....D),
k,k'>0

where the sum has &’ insertions of »’, and k insertions of b. The coefficient of g €
CF**1(L, L') are morally defined by the weighted count of holomorphic polygons with
boundary marked points mapping to the summands of b, ..., p,b’, ..., q, arranged in
clockwise order. A similar a priori energy bound argument shows the sum is finite.

It is instructive to see why (mll”b/)2 = 0. We consider the breaking of 1-dimensional
moduli spaces, associated with p,r € CF*(L, L") with degr — deg p = 2. There are
several mechanisms for disc bubbling and disc splittings:

* The polygon breaks into two parts, connected at a nodal point mapping to some g €
CF*(L, L") with degq — deg p = 1. The sum of all such contributions give rise to
(mll”b (p), q)(m?’b (g),r), and summing over ¢, r produces (m?’b )2(p).

* The polygon bubbles off a teardrop curve at a self intersection point ¢ of degree 2 on
either L or L.

* The polygon splits into two parts, connected at a node mapping to a degree 2 self
intersection point ¢ on either L or L'.

The combined effect of the last two contributions, is a sum of the weighted counts
of polygons with boundary mapping to b, b, ..., p,b’,...,q,b’, ..., r multiplied by the
coefficient of ¢ in

ml =mo +mi(b') +---+ € CF2

sel

f(L/7 L/)



Thomas—Yau conjecture and holomorphic curves 147

in the case of ¢ € CF2(L', L") (the case with g € CF2(L, L) gives an entirely similar
contribution related to mg € CF2,(L, L)). By the unobstructed assumption,

b _ b _
myg=0 and mg =0,

so these contributions vanish. But the grand sum of all contributions from all boundaries
of the moduli spaces should be zero, which implies (mlf’b/)2 =0.

The generalization to many Lagrangians is a matter of bookkeeping. We have the Ao
compositions

P CF*(Li—y, Li) ® -+ ® CF*(Lo, L1) — CF* (Lo, Li)[2 — k]
and

(P p1)
= Zml(bk""7bk?pk’bk—1""*pk—lv‘°"plab0’-~~7b0)' (AS)

In particular, this induces a product structure on Floer cohomology
HF*(Ll, Lz) X HF*(L(), Ll) — HF*(L(), L2)
(with bounding cochains suppressed in the notation),

[B] o [a] = (—1)%%mB P02 (8 ).

We say two unobstructed Lagrangian branes L, L’ are isomorphic in D? Fuk(X), if there
exist [¢] € HF°(L, L') and [B] € HF°(L', L), such that their compositions are the
cohomological units: [8] o [@] = 1 € HF°(L, L) and [@] o [8] = 1o € HF(L', L").

The union of several components. In our convention an immersed Lagrangian can have
several components. Of particular interest is the case where L is the union of transverse
immersed Lagrangians L1, ..., Ly with bounding cochains b1, ..., by respectively, and
we have morphisms b;; € CFY((L;, b;), (L;,b;)) fori > j. The key assumption here is
that the morphisms only go in one direction from L; to L;, not vice versa. We assume that

b= Zbi + Zbij
i>j

is a bounding cochain for the immersed Lagrangian L, and in particular all intersection
points in b;; satisfy the Novikov positivity condition f, > f1;. We can write out the
Maurer—Cartan equation

mo + my(b) + ma(b.b) + - = 0

in component form: for any i > j,

ZZ Z ml(bik"-"bikvbikqik’-"’bil’--"bil»bioil»biov""bio)=O‘

k<l i=ip>->ip=j



Y. Li 148

The key observation is that this is precisely how one would define twisted complexes built
onLi,...,Ly,inthe presence of the bounding cochains by, . . ., by and the data b;;, when
no further degree shifts are involved (see the exact setting in Section A.1). In this sense,
we say that ‘immersed Lagrangians geometrize twisted complexes’. In other words, if the
unobstructed immersed Lagrangians are admitted into the Fukaya category, then there is
no need to formally add twisted complexes.

Lemma A.3 (Blocking together connected components based on potential clustering).
Assume L is the finite union of transversely intersecting immersed Lagrangians, with a
bounding cochain b. Then L can be decomposed as a twisted complex built from some
Ly, ..., Ly, such thatinfy,; fr, > supg; JL; whenever i > j, and the Lagrangian poten-
tial f1, has connected range for each L; .

Proof. The decomposition can continue as long as there exists a real number c, such that
the Lagrangian components can be partitioned into two types, with Lagrangian potential
strictly smaller than ¢ (resp. greater than c). As long as infz, f7, > sup L; fL; whenever
i > j,the Novikov positivity condition on the Lagrangian intersection points would imply
that the entries b;; € CF!(L;, L;) of b can only go in the direction i > j and not vice
versa, so the immersed Lagrangian L is necessarily of the twisted complex form. This
algorithm stops in finitely many steps since there are only finitely many components
involved. ]

Orientation signs on bordism currents. In Sections 3.1 and 3.1.2 we encountered the
(n — 1)-dimensional moduli spaces such as M(b,...,b,a,b’,...,8)and M(b,...,b,y).
The special case of holomorphic strips was already mentioned in Example A.2.

We now consider the moduli M(pq, ..., px) of polygons with at least 3 corners
P1s---» Pk all regarded as inputs, arranged in clockwise order on 9%, each carrying
the local system factors Hom(E 1, E_)|p, and the orientation factors |0, |. The clockwise
composition of the local system hom factors and the parallel transport along 9%, produces
a holonomy factor around 9%, which is a number in Q, R, Z depending on the coefficient
ring choice. Using (A.6) and Remark A.9, as well as the clockwise orientation convention

on the Stasheff associahedron, we acquire a (naive) orientation on 7 M(p1, ..., pr). To
assign orientation and weighting factors to M(p1, ..., px), we take the product of the
holonomy factor, the naive orientation on 7 M(p1, ..., pr), and another universal sign
factor

(_l)deg p1+2deg pa+-+kdeg pr (_1)deg Pi_

The appearance of this universal sign adjustment is a familiar convention in the open-
closed map, see [1, equation (5.24)]. The notation M is a shorthand for the weighted sum
of all the (n — 1)-dimensional moduli spaces involved in the construction of the bordism
current.

We equip the domain ¥ with the complex orientation, and together with an extra
minus sign, the orientation on M induces the orientation on €. This minus sign arises
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for the same reason as in Example A.2, namely the discrepancy between our clockwise
convention on 0%, with the standard complex orientation on X.
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