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From pure braid groups to hyperbolic groups
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Abstract. In this note we show that any homomorphism from a pure surface braid group to a
torsion-free hyperbolic group either has a cyclic image or factors through a forgetful map. This
extends and gives a new proof of an earlier (2019) result of the author which works only when
the target is a free group or a surface group. We also prove a similar rigidity result for the pure
braid group of the disk.
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1. Introduction

Let Sg;p be a closed surface of genus g with p punctures. Let PConfn.Sg;p/ be
the space of ordered n-tuples of distinct points in Sg;p. The group PBn.Sg;p/ WD
�1.PConfn.Sg;p// is called the surface braid group. For simplicity, we omit p
whenever p D 0. We call a group ƒ hyperbolic if ƒ is finite generated and its
Cayley graph with respect to a finite generating set is ı-hyperbolic for some ı > 0.
Examples of hyperbolic groups include free groups and �1.M/ when M is a closed
hyperbolic manifold. Surface braid groups have many homomorphisms into hyperbolic
groups. Composing the map pi W PBn.Sg;p/ ! �1.Sg;p/ with ˆW �1.Sg;p/ ! ƒ,
where pi is the induced map on the fundamental groups of the natural projection
PConfn.Sg;p/! Sg;p to the i th coordinate and ƒ, a hyperbolic group, is such an
example. We can even obtain surjective homomorphisms fromPBn.Sg;p/ to hyperbolic
groups with respect to a finite generating set as g varies because �1.Sg;p/ has surjective
homomorphisms to any finite generated group as g varies. In this paper, we will classify
all homomorphisms from PBn.Sg;p/ to torsion-free hyperbolic groups.

The result of this paper has a precursor. In [4], we proved that any surjective
homomorphismPBn.Sg/!ƒ, whereƒ is a nonabelian surface group or a nonabelian
free group, factors through the natural projection pi for some i . The following theorem
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generalizes [4] in two ways. First, the target is extended to all torsion-free, non-
elementary hyperbolic groups; and second, the domain is extended to finite index
normal subgroups of PBn.Sg/ whose quotient is an abelian group.

Theorem 1.1 (Classification of homomorphisms for braid groups of closed surfaces).
Let n > 0, g > 1, and let � C PBn.Sg;p/ be a finite index normal subgroup. Let ƒ
be a torsion-free, non-elementary hyperbolic group. If PBn.Sg/=� is abelian, then
any homomorphism � ! ƒ either factors through pi or its image is a cyclic group.

Understanding homomorphisms with cyclic image � ! Z (as we assume that
the target group is torsion-free) is the same as computing H 1.�IQ/. The following
theorem gives us a computation of the first Betti number of � .

Theorem 1.2 (First Betti number of braid groups of closed surfaces). Let n > 0 and
g > 1. Let � C PBn.Sg;p/ be a finite index normal subgroup and let �i WD pi .�/. If
PBn.Sg/=� is abelian, then

H 1.�IQ/ D
M

p�i
�
H 1.�i IQ/

�
:

For the pure braid group of a punctured surface, we obtain a version of Theorem 1.1
for the whole group PBn.Sg;p/ instead of its finite index subgroups. We do not know
if statements in Theorems 1.1 and 1.2 are valid or not for PBn.Sg;p/ when p > 0.

Theorem 1.3 (Classification of homomorphisms for braid groups of punctured
surfaces). Let n > 0 and g > 1, and letƒ be a torsion-free, non-elementary hyperbolic
group. Any homomorphism PBn.Sg;p/! ƒ either factors through pi or its image is
a cyclic group.

We now discuss the same problem for the pure braid group of the disk PBn WD
�1.PConfn.C//, where PConfn.C/ is the space of ordered n-tuples of distinct points
in C. Note that the analogous statement to Theorem 1.3 is not true for PBn.

It is well known that the center of PBn is a cyclic group Zn which is generated
by the Dehn twist about the boundary curve. The quotient group PB3=Z3 is the free
group of rank two F2, which is hyperbolic. Thus, the quotient homomorphism

QWPB3 ! PB3=Z3 Š F2

is a surjective homomorphism to a hyperbolic group that does not factor through
forgetful maps.

Moreover, there is a natural surjective homomorphism between braid groups that
arises from a classical miracle: “resolving the quartic.” Indeed, let

RWPConf4.C/! PConf3.C/
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be the map given by

R.a; b; c; d/ D .ab C cd; ac C bd; ad C bc/:

The induced homomorphism on fundamental groups R�WPB4 ! PB3 is a surjective
homomorphism. Thus, we obtain another natural homomorphism into a torsion-free
hyperbolic group

RQ WD Q ıR�WPB4 ! PB3 ! PB3=Z3 Š F2:

In this paper, we will prove that RQ and Q are the only exceptional homomor-
phisms. We call a map f WPConfn.C/! PConfm.C/ a forgetful map if it is defined as
f .x1; : : : ; xn/D .x�.1/; : : : ; x�.m// where � is a permutation of ¹1; : : : ; nº. For exam-
ple, the map f WPConfn.C/! PConf3.C/ defined by f .x1; : : : ; xn/ D .x2; x1; x3/
is a forgetful map.

Theorem 1.4 (Homomorphism classification for braid groups of the disk). Let
n � 3, ƒ be a torsion-free, non-elementary hyperbolic group and �WPBn ! ƒ be a
homomorphism. Then � satisfies one of the following three cases:

(1) The image �.PBn/ is a cyclic group.
(2) There exists �0W F2 ! ƒ and a forgetful map f3W PBn ! PB3 such that � D

�0 ıQ ı f3.
(3) There exists �0W F2 ! ƒ and a forgetful map f4W PBn ! PB4 such that � D

�0 ıRQ ı f4.

Theorem 1.4 is a generalization of the result [5, Theorem 3.5], in which the authors
proved the same result when ƒ is a free group. We remark that the statement in
Theorem 1.4 is not true when ƒ is a relatively hyperbolic group. Indeed, let Bn.S2/
be the braid group of the two sphere S2, which is the fundamental group of the space
of unordered n-tuples of distinct points in S2. Deligne–Mostow [6] constructed a
homomorphism EWBn.S

2/ ! SU.k; 1/ such that the image is a lattice. We also
know that Bn.S2/ contains PBn�2 as a subgroup and the restriction E to PBn�2 does
not factor through a forgetful map. Our proof does not apply when ƒ is a relatively
hyperbolic group because we strongly use the fact that for hyperbolic groups the
centralizer of any nontrivial element is cyclic. This property does not hold for relatively
hyperbolic groups.

Finally, we ask the following natural question.

Question 1.5. Are theorems 1.1, 1.2 and 1.4 true for all finite index subgroups of
PBn.Sg;p/ and PBn?
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Prior results. Like Theorem 1.1, there are other results in the history that address
actions of the mapping class groups or braid groups on non-positive curved spaces.
For example, [10, Theorem 2] and [1, Theorem D] proved that under certain conditions,
an action of the mapping class group or the braid group by isometries on non-positively
curved spaces always has a global fixed point. Our result deals with free actions and
the action only exists when it factors through a forgetful map.

Theorems 1.1, 1.3 and 2.5 can also be compared with [8, Theorem 1.1] and [12],
where the authors proved that an action of an irreducible uniform lattice inG1� � � � �Gn
on certain non-positively curved spaces without global fixed points always extends to
the Lie group and factors through one of Gi ’s.

Comparing the methods in [4], [5] and the current paper. The results in [4] and [5]
only work for the free group Fm when m > 1 since they use the property that the
H 1.FmIZ/ is an isotropic subspace for the cup product. Since hyperbolic groups can
be perfect, it seems impossible that this idea can be used to prove the results in this paper.
Moreover, in [4], we use the method of F. E. A. Johnson [9] and Salter [14], which
strongly uses a special property of free groups and surface groups: finitely-generated
normal subgroups of either free groups or surface groups are either trivial or have finite
index. This property is certainly not true for general hyperbolic groups. For example,
let M be a 3-dimensional hyperbolic manifold that is a surface bundle over the circle.
Then �1.M/ contains a surface subgroup as a nontrivial finitely-generated, infinite
index normal subgroup. The novelty of this paper is the observation that the rigidity
results such as Theorem 1.1 and Theorem 1.4 are not consequences of the classification
of isotropic subspaces of the first homology, but rather of the rich commuting and
lantern relations of the subgroups of the pure braid groups.

2. Obstructing homomorphisms to hyperbolic groups

In this section, we discuss tools to obstruct homomorphisms to hyperbolic groups.
We discuss the rigidity of homomorphisms to hyperbolic groups from two classes of
groups: the Z-central extensions and the direct product of groups.

2.1. The Euler class of a Z-central extensions. For a Z-central extension

(1) 1! Z! G
p
�! xG ! 1;

we can associate an Euler class Eu.p/ 2H 2. xGIZ/ (see, e.g., [2, Chapter 4]). We know
that the exact sequence (1) splits if and only if Eu.p/ D 0 2 H 2. xGIZ/. On the other
hand, Eu.p/ ¤ 0 if and only if a nontrivial element of the Z-subgroup of G is a
commutator in G.
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We need the following standard fact about torsion-free, non-elementary hyperbolic
groups.

Fact 2.1. If ƒ is a torsion-free hyperbolic group, then the centralizer of 1 ¤ h 2 ƒ is
a cyclic group.

The following theorem describes the rigidity of homomorphisms from G to
hyperbolic groups.

Lemma 2.2. Letƒ be Z or a torsion-free, non-elementary hyperbolic group andG be
the group as in the exact sequence (1). If Eu.p/ 2 H 2. xGIQ/ is nontrivial, then any
homomorphism �WG ! ƒ factors through p; i.e., we have the diagram

G
�
!

p!

ƒ

xG

! :

Proof. Let ˛ be a generator of the Z-subgroup of G as in (1). Since ˛ is central in G,
we know �.G/ should lie in the centralizer of �.˛/, which is a cyclic group. When
Eu.p/ ¤ 0 2 H 2. xGIQ/, we know that H 1.GIQ/ D H 1. xGIQ/, which implies that
any homomorphism G ! Z factors through p. Another way to see this is that the
centralizer of some power of ˛ is a product of commutators in G, which means that
any homomorphism G ! Z factors through p.

When Q is a finite index subgroup of G, we obtain a similar result for Q.

Corollary 2.3. Let G satisfy the exact sequence (1) and Q < G be a finite index
subgroup. Let ƒ be either Z or a torsion-free, non-elementary hyperbolic group. If
Eu.p/ ¤ 0 2 H 2. xGIQ/, then any homomorphism Q! ƒ factors through p.

Proof. Let Q be a finite index subgroup of G. Then we obtain a Z-central extension

1! Z! Q
p0DpjQ
�����! xQ! 1:

If Eu.p/¤ 0 2H 2. xGIQ/, then Eu.p0/ is nontrivial as well. This follows from the fact
that the map H 2. xGIQ/! H 2. xQIQ/ is injective when xQ is a finite index subgroup
in xG. Then some nontrivial element in the Z-subgroup ofG is also a commutator inQ.
Then the corollary follows from Lemma 2.2.

The above method has been used in the following result of Putman [13, Theorem A]
and Bridson [1, Theorem A], which we recall here. Let Mod.Sg/ be the mapping class
group of Sg ; i.e., the group of connected components of the homeomorphism group
of Sg . See [7] for an introduction on mapping class groups.
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Corollary 2.4 (Putman, Bridson). Let g > 2 and let � < Mod.Sg/ be a finite index
subgroup. Let ƒ be either Z or a torsion-free, non-elementary hyperbolic group. Then
any homomorphism �W� ! ƒ satisfies �.T / D 1 for T 2Mod.Sg/, a power of Dehn
twist that is in � .

Sketch of the proof. The centralizer of a Dehn twist is a Z-central extension of a
short exact sequence where the Euler class is rationally nontrivial. See [13] for more
details.

Notice that Putman proved the result when the target is Z and Bridson proved it for
actions on CAT(0)-space. The above method does not work for h 2 Mod.Sg/ when
hm is not a multi-twist (a product of powers of Dehn twist about disjoint curves) for
some m. This is because if no power of h is a multi-twist, a power of h is a pseudo-
Anosov element on a subsurface of Sg , which is never a product of commutators in its
centralizer.

2.2. Product of groups. We now discuss homomorphisms toƒ from a direct product
of groups, which is an extension of [3, Lemma 5.1].

Theorem 2.5. Let G1; : : : ; Gn be groups and let � < G1 � � � � �Gn be a finite index
subgroup. Let �i W� ! Gi be the i th projection map and let �i be the image of �i .
(1) The following decomposition holds:

H 1.�IQ/ D
M
i

��i .H
1.�i IQ//:

(2) Let ƒ be a torsion-free, non-elementary hyperbolic group. Then any homomor-
phism �W� ! ƒ either factors through �i or its image is a cyclic group.

Proof. We first assume that �i is surjective for all i , otherwise we replace the
group Gi by �i . By induction, all we need is to prove the case when n D 2. Let
K1 WD � \ .G1 � 1/ andK2 WD � \ .1�G2/. We have the following exact sequences

1! K1 ! � ! G2 ! 1;

1! K1 ! G1 ! G1=K1 D G2=K2 D G1 �G2=� ! 1:

Now,

H 1.K1IQ/
G2 DH 1.K1IQ/

�
DH 1.K1IQ/

�1.�/ DH 1.K1IQ/
G1 DH 1.G1IQ/;

which implies H 1.�IQ/ D
L
i �
�
i .H

1.�i IQ// by Leray spectral sequence.
For the second statement, let �W� ! ƒ be a homomorphism. Since Ki is a finite

index subgroup of Gi , it implies that � contains K WD K1 � K2 as a finite index
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subgroup. To prove that � factors through either �1 or �2, we only need to show that
� is trivial on either K1 or K2. If not, suppose that there exists xi 2 Ki such that
�.xi / ¤ 1. Since x1 and x2 commute with each other, their centralizers are the same
cyclic group C . SinceK2 commutes with x1 andK1 commutes with x2, we know that
�.K1 �K2/ lies in C , which is a cyclic group.

Now assume that �.K/ is a cyclic group generated by a 2 ƒ, but �.�/ is not
cyclic. There is an element  2 � such that �./ D b does not commute with a. Thus,
no power of a is in the group generated by b because otherwise they are both in the
centralizer of that power, which should be a cyclic group. However, since K is a finite
index subgroup of � and �.K/ is cyclic, we know that �.�/ is a finite extension of a
cyclic group, which implies that some power of a should lie in the group generated
by b. This is a contradiction.

3. Surface braid groups

In this section, we discuss first Betti numbers of covers of surface braid groups and
their homomorphisms to torsion-free, non-elementary hyperbolic groups.

3.1. The case of the braid group of a closed surface.

Proof of Theorem 1.2 and Theorem 1.1. Let

eWPConfn.Sg/! .Sg/
n

be the natural embedding, where the image is the complement of the diagonal
4� .Sg/

n consisting of points .x1; : : : ; xn/ such that xi D xj for some 1� i < j � n.
By Lefschetz hyperplane theorem, the induced map e� on fundamental group is a
surjection. Furthermore, the kernel K of e� is normally generated by ¹Tij º, which
geometrically is a loop around the diagonal

4ij WD ¹.x1; : : : ; xn/ j xi D xj º � S
n
g :

We will prove a stronger theorem that for any finite index subgroup � < PBn.Sg/
satisfyingK < � , any homomorphism � ! ƒ factors through e� forƒ a torsion-free,
non-elementary hyperbolic group. Then Theorems 1.2 and 1.1 follow from Theorem 2.5,
[4, Lemma 2.1] and the fact that

e�WH
1.PConfn.Sg/IQ/! H 1..Sg/

n
IQ/

is an isomorphism.
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Let �W� ! ƒ be a homomorphism. The goal is to prove that �.gTijg�1/ D 0 for
any g 2 PBn.Sg/ (notice that g may not be in � , but gTijg�1 2 K � �).

Let us consider the centralizer of Tij . The group PBn.Sg/ can also be thought of
as a point-pushing subgroup of the mapping class group Mod.Sg;n/, the connected
component of the group of homeomorphisms of Sg fixing nmarked pointsm1; : : : ;mn
(see, e.g., [7, Chapter 9] for more background on mapping class groups). Under this
interpretation, the element Tij can also be thought as the Dehn twist around a simple
closed curve surrounding points mi and mj . The centralizer of Tij inside PBn.Sg/
satisfies the following short exact sequence:

(2) 1! Z
Tij

��! C.Tij /! PBn�1.Sg/! 1:

LetUSg be the unit circle bundle of the genus g surface. The above short exact sequence
is actually a pull-back of the following exact sequence:

(3) 1! Z! �1.USg/! �1.Sg/! 1

by a forgetful map that forgets all points except the i th and j th points. To check
whether the Euler class of (2) is trivial or not, we only need to compute the pull-
back of the Euler class from (3), which is a multiple of the fundamental class of Sg .
By [4, Lemma 3.1], we see that the pull-back of the fundamental class by any forgetful
map pi is not rationally trivial. This implies that the Euler class of (2) is nontrivial,
which shows that Tij vanish under any homomorphismC.Tij /!ƒ by Proposition 2.2.
The same method applies to all conjugates of Tij as well. Since conjugates of all the Tij
generate K, we know that � is trivial on K.

3.2. The case of the braid group of a closed surface. We now prove Theorem 1.3.
Even though the idea is similar to that of Theorem 1.2, but the proof is more technical.

Proof of Theorem 1.3. For the same reason as in the proof of Theorems 1.2 and 1.1,
we have the following exact sequence:

1! K ! PBn.Sg;p/! �1.Sg;p/ � � � � � �1.Sg;p/! 1:

We now consider PBn.Sg;p/ as a subgroup of Mod.Sg;pCn/. Let ¹m1; : : : ;mnº be the
marked points and ¹q1; : : : ; qpº be the punctures. ThenK is normally generated by Tij ,
which are Dehn twists about curves surrounding the pointsmi andmj for 1 � i; j � n.

The centralizer of Tij satisfies the following exact sequence:

(4) 1! Z
Tij

��! C.Tij /! PBn�1.Sg;p/! 1:
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The only difference between punctured case and closed case is that the Euler class
of (4) is rationally trivial but the Euler class of (2) is rationally nontrivial. So we need
a different strategy.

We now work with the case n D 2 and the case n D 2 implies the rest by induction.
We will show in this case that �.Tij / is trivial. Assume that �.T12/ ¤ 1, where T12 is
the Dehn twist about a simple closed curve c surrounding m1 and m2. We claim
that there exists a simple closed curve c0 surrounding m1 and qk or m2 and qk
for some k such that �.Tc0/ is nontrivial. Otherwise, � is trivial over all of such
simple closed curves; in which case we would know that � factors through PB2.Sg/,
since Dehn twists about all of such simple closed curves generate the kernel of
the natural homomorphism PB2.Sg;p/! PB2.Sg/. Then we conclude the theorem
by Theorem 1.1. Without loss of generality, we assume there exists c0 surrounding
m1 and qk such that �.Tc0/ ¤ 1. We can choose c to intersect c0 only at 2 points
(because all curves surrounding m1; m2 are conjugate by the action of PB2.Sg;p/),
which satisfies �.Tc/ ¤ 1.

For convenience, we introduce the following notations. Let x1 D m1, x2 D m2,
x3 D qk and x4 be the set of the rest of the punctures other than qk , which are schemat-
ically represented by Figure 1 below on a plane P Š R2 � Sg;p . In Figure 1, we call
a simple closed curve ci1:::ij if it surrounds a convex disk with punctures xi1 ; : : : ; xij .
We position the plane P such that c12 D c and c13 D c0. For example, Figure 1 has
c34; c4; c13.

c13

c4

c34

x1

x2

x3

x4

Figure 1
Notation for curves.

We continue to introduce more notations.

� Let A12 be the Dehn twist about c12.
� Let Ai3 be the Dehn twist about ci3 for i 2 ¹1; 2º.
� Let Ai4 be the product of Dehn twist about ci4 and a negative power of Dehn twist

about c4 for i 2 ¹1; 2º.
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� Let A123 be the Dehn twist about c123 and let A124 be the product of Dehn twist
about c124 and a negative power of Dehn twist about c4.

� Let A1234 be the product of Dehn twist about c1234 and a negative power of Dehn
twist about c34.

In defining the above list of elements, we sometimes multiply by a negative power
of Dehn twist about c4 or c34 so that all of A� lie in PB2.Sg;p/. On [7, p. 97]
and [7, p. 119], point-pushing map and disk-pushing map are defined as subgroups
of Mod.Sg;pC2/. The point-pushing map of a loop is the mapping class in the iso-
topy class of pushing a marked point around a loop in Sg;pC1 (the other marked
points are fixed); the disk-pushing map of a loop is the mapping class in the iso-
topy class of pushing the disk with boundary c12 around a loop in Sg;p. The
following relations originate from the point- or disk-pushing map or the lantern
relation (see [7, Chapter 5] for more details about relations in mapping class
groups).

(1) A12A13A23 D A123.

(2) A12A14A24 D A124.

(3) A123A124A�212 D A1234A
�1
12 , which is the disk-pushing of c12 around c34. After

forgettingm1 andm2, the curve c34 is the boundary of a genus g subsurface in Sg;p .
Therefore, A1234A�112 is a commutator in the centralizer of A12.

(4) A12A14A13 D A1234A�1234, which is the point-pushing of x1 around c234. Simi-
larly, A1234A�1234 is a commutator in the centralizer of A234, A23 and A24 because
the point-push of x1 around other curves in the punctured surface do not inter-
sect c234.

(5) A12A23A24 D A1234A
�1
134, which is the point-pushing of x2 around c134 and,

similarly, is a commutator in the centralizer of A134, A13 and A14.

According to the assumption, we know that both �.A12/ and �.A13/ are nontrivial.
Therefore, by (3) of the above and the fact that the centralizer of �.A12/ is cyclic, we
know that

�.A1234A
�1
12 / D �.A123A124A

�2
12 / D 1:

By (5) thatA1234A�1134 is a commutator which commutes withA13 and that �.A13/¤ 1,
we obtain

�.A12A23A24/ D �.A1234A
�1
134/ D 1:

This implies that either �.A23/ ¤ 1 or �.A24/ ¤ 1, which further implies that the
image under � of the commutator in (4) is trivial, as it lies in the centralizers of �.A23/
and �.A24/.
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Therefore, we know that �.A12A14A13/ D 1 in (4). Multiplying (1), (2) and
�.A123A124/ D �.A

2
12/ gives us

�.A13A14A23A24/ D 1:

It contradicts the result of the multiplication of (4) and (5) under �

�.A13A14A23A24A
2
12/ D 1;

which implies that �.A212/ D 1.

4. The pure braid groups of the disk

In the section, we will prove Theorem 1.4. We first introduce a generating set
for PBn. Recall that PBn is the pure mapping class group of the disk with n-marked
points; i.e., �0.Diff.Dn//, where Diff.Dn/ is the group of diffeomorphisms of D fixing
n marked points pointwise. Consider the disk with n marked points Dn in Figure 2.

L1 L2 L3L4 Ln

L

Figure 2
Dn.

U1 U2 U3 U4 Un

U

Figure 3
Dn.

L

Figure 4
a124.

Let L be a line segment below all the marked points x1; : : : ; xn. Let L1; : : : ; Ln
be line segments connecting x1; : : : ; xn to L as in Figure 2. Similarly, let U be a
line segment above all marked points and let U1; : : : ; Un be line segments connecting
x1; : : : ; xn to U as shown in Figure 3.

For ¹i1; : : : ; ikº � ¹1; : : : ; nº, let ai1i2:::ik (resp. a0i1i2:::ik ) be the boundary curve
of the tubular neighborhood of

Sk
mD1Lim [ L (resp.

Sk
mD1 Uim [ U ). Let Ti1i2:::ik

(resp. T 0i1i2:::ik ) be the Dehn twist about ai1i2:::ik (resp. a0i1i2:::ik ). Figure 4 gives an
example of a curve representing a124. The following proposition about generating sets
of PBn is classical and can be found in [11, Theorem 2.3].

Proposition 4.1. Both ¹Tij j 1 � i < j � nº and ¹T 0ij j 1 � i < j � nº are generating
sets for PBn.
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Before proving Theorem 1.4, we analyze the map R�WPB4 ! PB3.

Fact 4.2. The map R� satisfies the following relations:

R�.T12/ D T12; R�.T23/ D T23; R�.T34/ D T12;

R�.T13/ D T13; R�.T24/ D T
�1
12 T

�1
23 T12T13T23; R�.T14/ D T23:

Proof. The “resolving the quartic” map is also a map R0WConf4.C/! Conf3.C/,
where Confn.C/ is the space of unordered n-tuples of points in C. It induces a
homomorphism on the fundamental groupsR0�WB4!B3, whereBn WD�1.Confn.C//
is the braid group.

The above relations can be computed using the map on the braid groupR�WB4!B3.
Let �i be the standard generating set for the braid group Bn. The map R0� satisfies that

R0�.�1/ D �1; R0�.�2/ D �2 and R0�.�3/ D �1:

The restriction of R0� on PBn can be computed from it.

The homomorphism RQ satisfies the following.

Fact 4.3. Let ¹a; bº be the natural generating set of F2. Then the homomorphism RQ

satisfies

RQ.T12/ D a; RQ.T23/ D b; RQ.T34/ D a;

RQ.T13/ D b
�1a�1; RQ.T24/ D a

�1b�1; RQ.T14/ D b:

Proof. The quotient map QWPB3 ! F2 satisfies that Q.T12/ D a and Q.T23/ D b
and Q.T13/ D b�1a�1. Thus, by Fact 4.2, we conclude the proof.

We now start the proof of Theorem 1.4.

Proof of Theorem 1.4. Let ƒ be a torsion-free, non-elementary hyperbolic group and
let �WPBn ! ƒ be a homomorphism such that the image is not a cyclic group. Let
Zn be the generator of the center of PBn, which is the Dehn twist about the boundary
curve. We prove this theorem by induction on n. Firstly, when n D 3, if �.Z3/ ¤ 1,
then �.PB3/ lies in the centralizer of �.Z3/, which is a cyclic group. Thus, we know
that � factors through Q. We assume now that the theorem is true for n � 1.

Since ¹Tij j 1 � i < j � nº is a generating set of PBn, and the fact that �
is not trivial, there is an element Ti;j such that �.Tij / ¤ 1. Observe that there
exists an element g 2 Bn such that gTijg�1 D T12 and therefore, we can assume
that �.T12/ ¤ 1. Since the image of � is not cyclic, we know there exist i; j such
that �.Tij / does not commute with a. It implies that ¹i; j º \ ¹1; 2º ¤ ; because
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otherwise Tij and T12 commute. Observe that there exists an element g 2 Bn such
that g¹Tij ; T12ºg�1 D ¹T12; T23º. Then up to a conjugation by g, we assume that
a WD �.T12/ and b WD �.T23/ do not commute (a conjugation by g is equivalent to a
renaming of punctures).

We split the rest of the proof into two cases depending on whether �.T34/ is trivial
or not.

The case when �.T34/ D 1. By the lantern relation, we have

(5) T123T34T124 D T12T1234:

Since �.T1234/ commutes with both a D �.T12/ and b D �.T23/, we know that
�.T1234/D 1. Similarly, we know that �.T123/D 1. Thus, we have �.T124/D a. Since
�.T14/ commutes with both b D �.T23/ and a D �.T124/, we know that �.T14/ D 1.
Then by the lantern relation, we have

(6) T12T24T14 D T124:

Thus, we have �.T24/ D 1. Since �.T4j / commutes with both a D �.T12/ and
b D �.T23/ for any j > 4, we know that �.T4j / D 1 for j > 4. Observe that
¹T4j j 1 � j ¤ 4 � nº is a generating set of the kernel of the forgetful map that
forgets the fourth point F4WPBn ! PBn�1. Then we know that � factors through F4,
which by induction gives the result.

The case when �.T34/ ¤ 1. We first prove the claim that �.T34/ D a. If not, by
equation (5) and the fact that �.T1234/ D �.T123/ D 1, we know that �.T124/ ¤ 1
and it commutes with a. Since �.T14/ commutes with two independent elements
�.T124/ and �.T23/, we know that �.T14/ D 1. Thus, by equation (6), we know that
�.T24/ ¤ 1 and commutes with a. The element �.T234/ is trivial since it commutes
with two independent elements �.T23/ and �.T34/. This contradicts the lantern relation
T23T34T24 D T234 because �.T34T24/ commutes with a but �.T23/ does not.

We now prove that

�.T14/ D b; �.T13/ D b
�1a�1 and �.T24/ D a

�1b�1:

Since �.T123/ commutes with �.T12/ and �.T23/, we know that �.T123/D 1. Similarly,
we know that �.T234/ D 1. By the lantern relation T12T23T13 D T123, we know that
�.T13/ D b�1a�1. Then by the lantern relation T23T34T24 D T234, we know that
�.T24/ D a

�1b�1. Since �.T124/ commutes with a D �.T12/ and a�1b�1 D �.T24/,
we know that �.T124/ D 1. Now by the lantern relation T12T24T14 D T124 we obtain
that T14 D b. When n D 4, by Fact 4.3, we know that � factors through RQ.
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When n > 4, we claim that �.T 05j /D 1 for 1 � j ¤ 5 � n, which would imply that
� factors through the forgetful map F5WPBn ! PBn�1, since ¹T 05j j 1 � j ¤ 5 � nº
is a generating set of the kernel of F5. The equation �.T 051/ D 1 follows from the
commutativity of �.T 05j / with �.T23/ and �.T34/. The triviality of �.T 05j / for other j
follows from the same reason, and the result follows.
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