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A simple construction of finitely generated
infinite torsion groups
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Abstract. The goal of this note is to provide yet another proof of the following theorem of
Golod: there exists an infinite finitely generated group G such that every element of G has finite
order. Our proof is based on the Nielsen–Schreier index formula and is simple enough to be
included in a standard group theory course.
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1. Introduction

A group G is said to be torsion (or periodic) if every element of G has finite
order. Obviously, every finite group has this property. Infinite torsion groups can be
constructed as direct products of finite groups; however, such groups are not finitely
generated. The following famous problem was posed by William Burnside in 1902 and
served as a catalyst for research in group theory throughout the 20th century.

Problem 1. Is every finitely generated torsion group finite?

It is easy to show that the answer is affirmative for abelian groups. By induction, this
generalizes to all solvable groups. In 1911, Schur proved that every finitely generated
torsion subgroup of GL.n;C/ is finite [24]. The same result holds for linear groups over
arbitrary fields. Indeed, the Burnside problem for such groups can be reduced to the case
of solvable groups by utilizing the well-known Tits alternative: every finitely generated
linear group contains either a solvable subgroup of finite index or a non-cyclic free
subgroup [25].

Despite these positive results, the answer to Burnside’s question turns out to be
negative in general as demonstrated by Golod [5] in 1964.

Theorem 2 (Golod). There exists a finitely generated infinite torsion group.
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The proof of Theorem 2 given in [5] relied on a sufficient condition for certain
graded algebras to be infinite dimensional, known as the Golod–Shafarevich inequal-
ity [6] (for a simplified version of Golod’s argument, see [19]). Numerous other
constructions of infinite finitely generated torsion groups have been discovered since
then. Notable examples include groups generated by finite automata [2], groups of
interval exchange transformations [7], inductive limits of hyperbolic groups [8, 18],
and certain groups of finite exponent. The latter class of examples deserves a more
detailed discussion.

Recall that a group G has exponent n 2 N if every element g 2 G satisfies the
identity

gn
D 1

and n is the smallest natural number with this property. It is well known and easy to
prove that every group of exponent 2 is abelian. Therefore, finitely generated groups of
exponent 2 are finite. Burnside [4] proved that finitely generated groups of exponent
3 are finite. Sanov [22] and Hall [9] obtained the same result for exponents 4 and 6,
respectively. However, it remains an open problem whether a finitely generated group
of exponent 5 can be infinite.

As we move on to larger exponents, we encounter infinite finitely generated groups.
More precisely, let B.m; n/ denote the free group of rank m in the variety of all groups
of exponent n. In a monumental series of papers [14–16], Novikov and Adian showed
that B.m; n/ is infinite for all m � 2 and all odd n � 4381. An improved version of
the original proof for odd n � 665 can be found in the book [1]. In [17], Olshanskii
suggested a much simpler geometric proof of the Novikov–Adian theorem for odd
n > 1010. The question of whether B.m; n/ is infinite for all m � 2 and all sufficiently
large even n remained open until the mid-1990s, when Ivanov [10] and Lysenok [13]
independently gave the affirmative answer.

Despite the progress made, there is still no elementary construction of a finitely
generated, infinite group of finite exponent. The easiest proof, given by Olshanskii
in [17], is approximately 30 pages long and rather technical. On the other hand, the
constructions of Aleshin [2] and Grigorchuk [7], as well as Olshanskii’s version of
Golod’s proof [19], are simple enough to be discussed in a standard group theory
course (in these examples, the groups are not of finite exponent).

The goal of this paper is to provide yet another elementary proof of Golod’s
theorem that only relies on basic properties of finitely generated abelian groups and the
Nielsen–Schreier formula. In one form or another, this proof appeared in [12,20,21,23].
However, the exposition in these papers was “spoiled” by technicalities necessary to
ensure certain additional properties. Here, we present the argument in its simplest
form.
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2. Deficiency of finitely presented groups

To make our paper as self-contained as possible, we review the standard results
about abelian groups involved in the proof. Our primary reference is [11], although
these results can be found in most group theory textbooks.

Recall that every finitely generated abelian group A can be decomposed as a direct
sum of cyclic groups [11, Theorem 8.1.2]. We denote the number of infinite summands
in this decomposition by rk.A/. If A is free abelian, rk.A/ is the usual rank of A.
Clearly, rk.A/ serves as the lower bound on the number of generators of A.

The standard proof of the decomposition theorem for finitely generated abelian
groups goes through establishing the following fact (see [11, Theorem 8.1.1]).

For any finitely generated free abelian group B and any subgroup C � B , there
exist bases ¹b1; : : : ; bnº and ¹c1; : : : ; cmº (m � n) of B and C , respectively, and
positive integers d1; : : : ; dm such that ci D b

di

i for all 1 � i � m.
In this notation, the quotient A D B=C decomposes as A D Zn�m ˚ Z=d1Z˚

� � � ˚ Z=dmZ. In particular, we have

rk.A/ D n �m D rk.B/ � rk.C /:

A group presentation G D hX j Ri is said to be finite if the set of generators X

and the set of relations R are finite. Given two elements x; y of a group G, we write
xy for y�1xy. Given a subset S � G, we denote by hhSiiG the normal closure of S in
G. That is, hhSiiG is the subgroup of G generated by the set ¹sg j s 2 S; g 2 Gº.

Lemma 3. Let G be a group given by a finite presentation hX j Ri and let d D

jX j � jRj. Suppose that d > 0. Then, there exists a surjective homomorphism G!Zd .

Proof. Let F denote the free group with the basis X . The group G D F=hhRiiF

surjects onto the abelian group

A D F
ı
hhRiiF ŒF; F � Š .F=ŒF; F �/

ı�
hhRiiF ŒF; F �=ŒF; F �

�
:

The group B D F=ŒF; F � is free abelian of rank jX j (see [11, page 99]). It is easy to
see that the group C D hhRiiF ŒF; F �=ŒF; F � is generated by the natural image of R

in C . This implies that rk.C / � jRj. Therefore, rk.A/ D rk.B/� rk.C / � d and the
existence of the required surjection follows from the definition of rk.A/.

Corollary 4. For any finitely presented group G, the difference jX j � jRj is uniformly
bounded from above over all finite presentations hX j Ri of G.

Proof. If G can be generated by n elements, then jX j � jRj � n for any finite presen-
tation hX j Ri of G by Lemma 3.
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Corollary 4 allows us to formulate the following.

Definition 5. For a finitely presented group G, the maximum of the difference between
the number of generators and the number of relations over all finite presentations of G

is called the deficiency of G and denoted by def.G/.

Recall that a subset T of a group G is a left (respectively, right) transversal of a
subgroup H � G if G D

F
t2T tH (respectively, G D

F
t2T Ht); clearly, we have

jT j D jG W H j in both cases.

Lemma 6. Let G be a finitely presented group. Every finite-index subgroup H � G is
finitely presented, and we have def.H/ � 1 � .def.G/ � 1/jG W H j:

Proof. Let G D F=R, where F is free of rank r , R D hhR1; : : : ; Rsii
F , and r � s D

def.G/. Let H be a finite-index subgroup of G and K the full preimage of H in F . By
the Nielsen–Schreier formula, K is free of rank .r � 1/j C 1, where j D jF W Kj D

jG W H j.
Let T be a left transversal of K in F . For every element f 2 F , we have f D tk

for some t 2 T and k 2 K. Hence, R
f
i D .Rt

i /
k 2 hhRt

i ii
K for all i D 1; : : : ; s. This

easily implies that

R D
˝®

R
f
i j i D 1; : : : ; s; f 2 F

¯˛
D
˝̋ ®

Rt
i j i D 1; : : : ; s; t 2 T

¯˛̨K
:

Thus, the group H D K=R has a presentation with .r � 1/j C 1 generators and
sjT j D sj relations. Therefore, we have

def.H/ � 1 � .r � 1/j � sj D .r � s � 1/j D .def.G/ � 1/jG W H j:

3. Proof of Golod’s theorem

Let D denote the class of all finitely presented groups that contain a finite-index
normal subgroup of deficiency at least 2. For a group G, we denote by yG the quotient
of G by the intersection of all finite-index subgroups of G.

The idea of the proof of the following proposition is borrowed from [3].

Proposition 7. Let G 2 D . For every g 2 G, there exists m 2 Z such that, for every
` 2 N, the quotient group Q D G=hhg`mii

G belongs to D and the image of g in yQ
has finite order.

Proof. If the image of g in yG already has finite order, we can take m D 0. Henceforth,
we assume that the order of the image of g in yG is infinite. That is, for any i 2 N, there
exists a finite-index subgroups K C G such that jhgiK=Kj > i .



A simple construction of finitely generated infinite torsion groups 211

Let M be a finite-index normal subgroup of G such that def.M/ � 2. By our
assumption, we can find a finite-index subgroup K C G such that jhgiK=Kj> jG=M j.
Let N D K \M C G. Clearly, we have

(1) jhgiN=N j � jhgiK=Kj > jG=M j:

Set mD jhgiN=N j and f D g`m, where ` is an arbitrary natural number. Obviously,
f 2 N . Let T be a right transversal of hgiN in G. Every s 2 G can be written as
s D gknt for some k 2 Z, n 2 N , and t 2 T . In this notation, we have

f s
D f gknt

D f nt
D .f t /nt

2 hhf t
ii

N

since nt 2 N . This easily implies that hhf iiG D hh¹f t j t 2 T ºiiN . Using Lemma 6
and (1), we obtain

def
�
N=hhf iiG

�
� def.N / � jT j � 1C .def.M/ � 1/jM=N j � jT j

� 1C jM=N j

�
def.M/ � 1 �

jG W hgiN j

jM=N j

�
� 1C jM=N j

�
def.M/ � 1 �

jG=N j

jhgiN=N j � jM=N j

�
� 1C jM=N j

�
def.M/ � 1 �

jG=M j

jhgiN=N j

�
> 1:

Therefore, def.N=hhf iiG/ � 2 and G=hhf iiG 2 D .

Proof of Theorem 2. Let F denote a finitely generated free group of rank at least 2.
We enumerate all elements of F D ¹g0 D 1; g1; g2; : : :º and construct a sequence of
quotients G0;G1; : : : of F and normal subgroups Mi C Gi fitting into the commutative
diagram with surjective arrows

(2)
G0 �! G1 �! G2 �! � � �

# # #

G0=M0  � G1=M1  � G2=M2  � � � � ;

by the following inductive procedure.
Let M0 D G0 D F . Suppose that for some k � 0, we have already constructed a

group Gk and a subgroup Mk C Gk such that the following conditions hold (note that
G0 and M0 obviously satisfy these conditions):

(a) Gk 2 D ;

(b) the natural image of gk in yGk has finite order;

(c) 1 > jGk=Mkj > k.
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By (a) and Lemma 3, Gk contains subgroups of arbitrarily large finite index. In
particular, we can find a subgroup Lk C Gk such that Lk �Mk and1 > jGk=Lkj >

k C 1. Let g denote the image of gkC1 in Gk and let ` D jGk=Lkj. By Proposition 7,
there exists m 2 Z such that

GkC1 D Gk=hhg`m
ii

Gk 2 D

and the image of g in yGkC1 has finite order. Let MkC1 denote the image of Lk in
GkC1. Note that

GkC1=MkC1 Š Gk=Lk

since g`m 2 Lk . Therefore,

jGkC1=MkC1j D jGk=Lkj > k C 1

and GkC1=MkC1 naturally surjects onto Gk=Mk since Lk �Mk .
Thus, we obtain the commutative diagram (2), where all horizontal arrows are

surjective and all vertical arrows are natural homomorphisms. Let G be the direct limit
of the first row of (2). That is, G D G0=

S
k2N Nk , where Nk is the kernel of the

homomorphism G0 ! Gk obtained by composing the first k maps in the first row of
(2). By (b), the image of gk has finite order in yGk for each k. Since every yGk naturally
surjects onto yG, the group yG is torsion. On the other hand, yG surjects onto Gk=Mk

for all k. Combining this with (c), we obtain that yG is infinite.
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