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Manhattan geodesics and the boundary of the space of
metric structures on hyperbolic groups

Stephen Cantrell and Eduardo Reyes

Abstract. For any non-elementary hyperbolic group � , we find an outer automorphism invari-
ant geodesic bicombing for the space of pseudometric structures on � equipped with a sym-
metrized version of the Thurston metric on Teichmüller space. We construct and study a bound-
ary for this space and show that it contains many well-known pseudometrics. As corollaries we
obtain results regarding continuous extensions of translation length functions to the space of
geodesic currents and settle a conjecture of Bonahon in the negative.

1. Introduction

Let � be a non-elementary hyperbolic group, and let D� denote the set of all left-
invariant, hyperbolic pseudometrics on � that are quasi-isometric to a word metric.
For d 2 D� the stable translation length function is defined as

`d Œx� WD lim
n!1

1

n
d.o; xn/

for x 2 � , where o denotes the identity element and Œx� is the conjugacy class con-
taining x.

Given a pair of pseudometrics d; d� 2 D� , their dilations are given by

Dil.d; d�/ WD sup
Œx�2conj0

`d Œx�

`d� Œx�
and Dil.d�; d / WD sup

Œx�2conj0

`d� Œx�

`d Œx�
;

where conj0 is the set of conjugacy classes of non-torsion elements in � .
The pseudometrics d; d� are quasi-isometric to each other via the identity map

on � . Our first result states that the optimal quasi-isometry constants for this map are
given by the dilations, which refines [33, Lemma 3.4]. The following is a special case
of a more general result which appears as Theorem 3.8 in Section 3.

Mathematics Subject Classification 2020: 20F67 (primary); 20F65, 51F30 (secondary).
Keywords: hyperbolic groups, metric structures, Manhattan curves.

https://creativecommons.org/licenses/by/4.0/


S. Cantrell and E. Reyes 12

Theorem 1.1. For any d; d� 2 D� there exists some C � 0 such that

Dil.d; d�/�1.xjy/o;d � C � .xjy/o;d�
� Dil.d�; d /.xjy/o;d C C (1.1)

for all x; y 2 � .

In the inequality above, .�j�/o;d and .�j�/o;d� denote the corresponding Gromov
products for d and d 0, see Section 2.1. Hyperbolicity of d and d� is crucial to obtain
the inequality (1.1), and in general this is strictly stronger than the analogous inequal-
ity with the distance between two points. Indeed, if d 2 D� and d� is an arbitrary
pseudometric satisfying (1.1) then d must be hyperbolic, see Remark 3.3. On the other
hand, there are non-hyperbolic left-invariant metrics on � that are quasi-isometric to
word metrics, see e.g. [6, Proposition A.11].

As an immediate consequence, we get another proof of (weak) marked length
spectrum rigidity for pseudometrics in D� [20, Theorem 4.1]: if d; d� 2 D� satisfy
`d Œx� D `d� Œx� for all x 2 � , then jd � d�j � C for some constant C � 0. We note
that our more general theorem, Theorem 3.8, can be applied to interesting examples of
distance-like functions that are not necessarily metrics in D� . In Section 3.3 we apply
our Theorem 3.8 to study growth rate constants associated to Anosov representations.

The inequality given in (1.1) might seem innocent at first, but it has interesting
consequences when it comes to the understanding of the space D� . Below we present
applications of Theorem 1.1.

1.1. Geodesics in the space of metric structures

In [33], the second author studied the topological and metric properties of the space
of metric structures on � , denoted by D� . This space is the quotient of D� under the
equivalence relation of rough similarity (see Section 2.1), and is endowed with the
distance

�
�
Œd �; Œd��

�
WD log

�
Dil.d; d�/Dil.d�; d /

�
: (1.2)

Among other properties, it was proven that .D� ; �/ is unbounded and contrac-
tible [33, Theorem 1.3]. Also, D� contains the Teichmüller space T� when � is a
surface group, and the Culler–Vogtmann Outer space CV.�/ in case � is a free group.

As the first application of Theorem 1.1, we prove that the metric space .D� ;�/ is
geodesic. Indeed, every pair of distinct metric structures lie in a bi-infinite geodesic.

Theorem 1.2. For any pair d; d� 2 D� such that Œd � ¤ Œd�� 2 D� , there exists a
continuous, injective map �� D �

d�=d
� WR! D� satisfying:

(i) �0D Œd � and �h.d�/D Œd��, where h.d�/ is the exponential growth rate of d�;
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(ii) �.�r ; �t / D �.�r ; �s/C�.�s; �t / for all r < s < t ; and

(iii) limt!1�.�t ; �h.d�// D limt!�1�.�t ; �0/ D1.

In particular, we get another proof that D� is unbounded. The result above seems
surprising when we contrast it with the case of Outer space, which is not geodesic for
the symmetrized Thurston metric [19, Section 6].

The map �d�=d� in Theorem 1.2 is constructed in such a way that for any t 2 R, any
pseudometric representing �d�=dt is roughly similar to td�C �.t/d , where � D �d�=d
is the parametrization of the Manhattan curve for d; d� (see Section 2.3 and Propo-
sition 4.1). This happens even when t or �.t/ are negative. Intuitively the Manhattan
curve � can be thought of as a scaling factor that fixes exponential growth rate for
linear combinations of d and d�. More precisely, for each t 2 R, �.t/ is the unique
real number such that the sum td� C �.t/d has exponential growth rate 1. There-
fore � helps us to interpolate between metrics whilst keeping exponential growth rate
constant.

For �D Œd � and ��D Œd�� as above, we can consider the arc-length reparametriza-
tion of �d�=d� , denoted by ���=�� , such that ���=�0 D� and ���=�

�.�;��/
D��. Such reparam-

etrization is independent of the representatives d , and d�, so we call it the Manhattan
geodesic of the pair �; ��, see Definition 4.15. In this way, we produce a geodesic
bicombing on D� given by .�; ��/ 7! �

��=�
� , which inherits some of the good behav-

ior of the Manhattan curves, as we will prove in Theorem 4.16.

1.2. Boundary metric structures and the Manhattan boundary

In order to understand the behaviour at infinity of the Manhattan geodesics, we extend
our set D� to allow rough similarity classes of pseudometrics on � that are not nec-
essarily quasi-isometric to a word metric.

Definition 1.3. Let xD� be the set of all the left-invariant pseudometrics d on � such
that its stable translation length function is non-constant and there are some � > 0 and
d0 2 D� such that

.xjy/o;d � �.xjy/o;d0 C � (1.3)

for all x; y 2 � . We also set @MD� WD
xD�nD� .

By Lemma 3.2 and Lemma 6.3, every pseudometric in xD� is roughly geodesic
and hyperbolic. Since hyperbolicity is preserved under quasi-isometry among roughly
geodesic metric spaces, we have that D� �

xD� . Moreover, a pseudometric in xD�

belongs to D� if and only if it is quasi-isometric to a word metric.

Definition 1.4. The Manhattan boundary of D� is @MD� , the quotient of @MD�

under the equivalence relation of rough similarity. Its elements are called boundary
metric structures. The closure of D� is xD� WD D� [ @MD� .



S. Cantrell and E. Reyes 14

As we show in Section 5, the Manhattan boundary is non-empty. Indeed, by The-
orem 1.1 we deduce that for any two pseudometrics d; d� 2 D� that are not roughly
similar, there exist pseudometrics d1; d�1 2 @MD� which are roughly isometric to
Dil.d; d�/d� � d and Dil.d�; d /d � d�, respectively. In addition, if for each t 2 R

we consider dt 2 D� that is roughly isometric to td� C �d�=d .t/d , then we have

`d1 Œx� D lim
t!1

1

��d�=d .t/
`dt Œx� and `d�1 Œx� D lim

t!�1

1

�t
`dt Œx� (1.4)

for every x 2 � , see Proposition 5.1. The rough similarity classes Œd˙1� are indepen-
dent of the representatives d;d� in �D Œd �;��D Œd��, so (1.4) motivates the following
definition.

Definition 1.5. If � D �
��=�
� is the Manhattan geodesic for the pair � D Œd � and

�� D Œd��with �¤ ��, the limit at infinity of � is the unique boundary metric structure
�
��=�
1 2 @MD� such that every pseudometric representing ���=�1 is roughly similar

to Dil.d; d�/d� � d . Analogously, the limit at negative infinity of � is the unique
boundary metric structure ���=��1 whose pseudometric representatives are roughly sim-
ilar to Dil.d�; d /d � d�.

We will see in Section 5 that every boundary metric structure is the limit at infinity
of some Manhattan geodesic. Indeed, we prove in Theorem 5.2 that we can choose
this geodesic containing any given metric structure in D� . In a future project, we plan
to address potential topologies on the spaces @MD� and xD� .

1.3. Examples of boundary metric structures

Many interesting and widely studied isometric actions on hyperbolic spaces induce
pseudometrics in D� , and the same holds for @MD� . We recover pseudometrics on �
by restricting to the orbits of these actions. In Section 6, we prove that the following
actions induce pseudometrics in xD� , and hence metric structures in xD� .

Theorem 1.6. The following actions induce points in xD� .

(1) Natural actions on coned-off Cayley graphs for finite, symmetric generating
sets, where we cone-off a finite number of quasi-convex subgroups of infinite
index.

(2) Non-trivial Bass–Serre tree actions with quasi-convex edge stabilizers of inf-
inite index. More generally, cocompact actions on CAT.0/ cube complexes
with quasi-convex hyperplane stabilizers and without global fixed points.

(3) Small actions on R-trees, when � is a surface group or a free group.
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Our study of xD� therefore provides a unified approach to understanding metrics
coming from various parts of coarse geometry. Also, by item (3) above we deduce
that when � is a surface (resp. free group), the Manhattan boundary is an extension of
the Thurston (resp. Culler–Vogtmann) boundary for Teichmüller (resp. Outer) space,
see Corollaries 6.8 and 6.11. One might ask to what extent items (1) and (2) of the
theorem above can be generalized to arbitrary acylindrical actions, see Question 8.1.

In the case of surface groups, we can say something stronger since we can embed
the space PCurr.�/ of projective geodesic currents into xD� , see Corollary 6.11. This
is done by analyzing the pseudometric d� on H2 for a non-zero geodesic current �,
defined by Burger, Iozzi, Parreau and Pozzetti [13, Section 4]. In a recent paper [18],
Martinez-Granado and de Rosa study the pseudometrics d� in more detail.

In the case of free groups, item (3) above follows since small actions of free groups
on R-trees have bounded backtracking, which was proven by Guirardel [26, Corol-
lary 2]. Indeed, the inequality (1.3) is a generalization of bounded backtracking for
actions on hyperbolic spaces that are not necessarily trees, see Lemma 6.2. In a
forthcoming work [29], Kapovich and Martinez-Granado show that for freely inde-
composable hyperbolic groups, small actions on R-trees have bounded backtracking,
and hence induce pseudometrics in xD� by Proposition 6.7.

1.4. Geodesic currents and a conjecture of Bonahon

Since the seminal work of Bonahon [8], there has been much interest in understand-
ing, in various settings, which metrics admit continuous extensions to the space of
currents. In the article [9], Bonahon made a conjecture about which actions on R-
trees have a corresponding translation length function that extends continuously to the
space of currents. More specifically, Bonahon conjectured that if the stable translation
length function associated to an action on an R-tree admits a continuous extension,
then the action must be small.

Our work allows us to produce a counterexample to this conjecture. To do so,
we first prove the following result which we deduce from the fact that pseudometrics
in @MD� can be represented, in some sense, as linear combinations of pseudometrics
in D� , see Proposition 5.1.

Theorem 1.7. Let � be hyperbolic and virtually torsion-free. Then for any d 2 xD� ,
the stable translation length `d W� ! R continuously extends to Curr.�/.

In a forthcoming preprint of Kapovich and Martinez-Granado, this result is ob-
tained without the torsion-free assumption [29]. Combining Theorem 1.6 and Theo-
rem 1.7, we settle Bonahon’s conjecture in the negative.
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Theorem 1.8. There exist hyperbolic groups � for which there is a minimal, isometric
action of � on an R-tree .T; dT / such that

(1) the action is not small; and,

(2) the stable translation length `T extends continuously to Curr.�/.

We will prove this result in Section 7, where we produce examples of actions as in
the theorem above from any hyperbolic group acting geometrically on a CAT.0/ cube
complex with a non-virtually cyclic hyperplane stabilizer. Theorem 1.8 also suggests
that for hyperbolic groups, the isometric actions on R-trees to look at are not only the
small ones, but also those having quasi-convex interval stabilizers. See Question 8.2.

Organization of the paper. The organization of the paper is as follows. Section 2
covers preliminary material concerning hyperbolic spaces and groups that we will
need thorough the article. In Section 3, we prove Theorem 3.8 from which we deduce
Theorem 1.1. We then apply this result to obtain results regarding optimal growth
rate constants for Anosov representations. Manhattan geodesics are constructed in
Section 4 where we prove Theorem 1.2. In this section, we obtain explicit formulas
for the dilations of pairs of points in Manhattan geodesics and prove some properties
about the geodesic bicombing of the Manhattan geodesics. In Section 5 we charac-
terize the Manhattan boundary as the limits at infinity of Manhattan geodesics, in the
form of Theorem 5.2. In addition, there we prove Proposition 5.6, a criterion for a
pair of points in the Manhattan boundary to be the points at infinity of a Manhat-
tan geodesic. Examples of boundary metric structures are discussed in Section 6. In
the final section we prove Theorem 1.7 and discuss counterexamples to Bonahon’s
conjecture.

2. Preliminaries

2.1. Gromov hyperbolic spaces and groups

Consider a pseudometric space .X; d/. Recall that a pseudometric is a function

d.� ; �/WX2 ! R�0

that satisfies the triangle inequality, is symmetric and has the property that d.x;x/D 0
for all x 2 X . For each z 2 X , the Gromov product .�j�/z WX �X ! R�0 is defined
as

.xjy/z D
1

2

�
d.x; z/C d.z; y/ � d.x; y/

�
for any x;y 2X . When we deal with several pseudometrics onX , we use the notation
.�j�/z;d for the Gromov product with respect to d . We say that .X; d/ is ı-hyperbolic
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if for every x; y; z; w 2 X ,

.xjy/z � min¹.xjw/z; .yjw/zº � ı;

and that .X; d/ is hyperbolic if it is ı-hyperbolic for some ı � 0.
Given pseudometric spaces .X; dX /, .Y; dY /, we say that the function F WX ! Y

is a quasi-isometric embedding if there exist �;C > 0 such that

1

�
dX .x; y/ � C � dY .F x; Fy/ � �dX .x; y/C C

for all x; y 2 X . A quasi-isometric embedding F WX ! Y is a quasi-isometry if in
addition there is some A � 0 such that every point in Y is within A of some point
in F.X/. Two pseudometrics d; d� on the same space X are quasi-isometric if the
identity map .X; d/! .X; d�/ is a quasi-isometry. If there exist �; C > 0 such that

j�d.x; y/ � d�.x; y/j � C (2.1)

for all x; y 2 X , then we say that d and d� are roughly similar, and roughly isometric
if (2.1) holds with � D 1.

A pseudometric d on X is said to be geodesic if every two elements in X can
be joined by an arc isometric to the interval of length equal to the distance between
the two points. Given ˛ � 0, a pseudometric d is said to be ˛-roughly geodesic if for
any x; y 2 X there is a sequence of points x D x0; : : : ; xn D y 2 X such that for
all 0 � i � j � n,

jj � i j � ˛ � d.xi ; xj / � jj � i j C ˛: (2.2)

Such a sequence x0; : : : ; xn 2 X for which (2.2) holds is referred to as an ˛-rough
geodesic, or an .˛; d/-rough geodesic if we want to emphasize the dependence on d .
A pseudometric space is roughly geodesic if it is ˛-rough geodesic for some ˛.

Remark 2.1. By abusing notation, we also extend the definition of rough similarity/
isometry to functions on X � X that are not necessarily pseudometrics. Similarly,
we can talk about non-negative functions on X � X being hyperbolic or roughly
geodesic.

Hyperbolicity can also be characterized using quasi-centers. Given ˛; ı � 0, there
exists � D �.˛; ı/ such that any triple of points x; y; z in the ı-hyperbolic, ˛-rough
geodesic pseudometric space .X; d/ has a �-quasi-center. That is, there is a point
p 2 X such that

max¹.xjy/p;d ; .yjz/p;d ; .zjx/p;d º � �:

We say that p is a .�; d/-quasi-center if we want to make explicit that p is a �-quasi-
center with respect to the pseudometric d .

We will also require the following result [22, Chapter 5, Proposition 15 (i)].
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Proposition 2.2. For all ˛; ı; " � 0 and �1; �2 > 0, there exists some C � 0 such
that the following holds. Let .X; dX /; .Y; dY / be ı-hyperbolic and ˛-rough geodesic
pseudometric spaces, and let F WX ! Y satisfy

1

�1
dX .x; y/ � " � dY .F x; Fy/ � �2dX .x; y/C "

for all x; y 2 X . Then for all x; y;w 2 X ,

1

�1
.xjy/w;dX � C � .F xjFy/Fw;dY � �2.xjy/w;dX C C:

2.2. Hyperbolic groups

Suppose that � is a finitely generated group. Let S � � be a, not necessarily symmet-
ric, set of elements that generates � as a semi-group. From this set we can equip �
with the corresponding word length function j � jS W� ! R�0 that assigns to a group
element x the length of the shortest word(s) that represents x with letters in S , i.e.

jxjS D min¹n 2 Z�0 W x D s1 � � � sn with s1; : : : ; sn 2 Sº

for each x 2� . By convention, the identity is assigned word length 0. The word metric
is the (not necessarily symmetric) distance dS .� ; �/W� � � ! R�0 given by

dS .x; y/ WD jx
�1yjS

for x; y 2 � . We say that � is hyperbolic if for some finite, symmetric generating
set S , .�; dS / is a hyperbolic metric space. All hyperbolic groups we consider will
implicitly be assumed to be non-elementary, i.e. we will assume that they do not
contain a finite index cyclic subgroup. In general, we will say that a pseudometric d
on � is hyperbolic (resp. roughly geodesic) if .X; d/ is a hyperbolic (resp. roughly
geodesic) pseudometric space.

As discussed in the introduction we will be interested in the collection D� of
hyperbolic pseudometrics on � that are quasi-isometric to a word metric and that
are �-invariant: d.hx; hy/ D d.x; y/ for all h; x; y 2 � . Pseudometrics in D� are
necessarily roughly geodesic [6, Theorem 1.10]. We will use the notation h.d/ to
denote the exponential growth rate of d 2 D� ,

h.d/ D lim sup
n!1

1

n
log #¹x 2 � W d.o; x/ < nº

D lim sup
n!1

1

n
log #¹Œx� 2 conj W `d Œx� < nº;

which is always finite and strictly positive.
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Example 2.3. Pseudometrics belonging to D� include: word metrics for finite, sym-
metric generating sets, orbit pseudometrics associated to cocompact, isometric and
properly discontinuous actions on hyperbolic geodesic metric spaces, and Green met-
rics associated to finitely supported symmetric random walks that visit the whole
group [6, Corollary 1.2].

2.3. The Manhattan curve

Consider two pseudometrics d; d� 2 D� . We define the Manhattan curve associated
to this pair to be the boundary of the convex set

CMd�=d D

²
.a; b/ 2 R2 W

X
x2�

e�ad�.o;x/�bd.o;x/ <1

³
:

Convexity of CM
d�=d

follows from Hölder’s inequality. Manhattan curves were first
introduced by Burger for the displacement functions associated to actions on rank 1
symmetric spaces [12]. In the current setting, CM

d�=d
was studied by Cantrell and

Tanaka in [15] and [14] when d; d� are metrics in D� . In these works, regularity
and rigidity results pertaining to these curves were obtained. For example, [14, Theo-
rem 1.1] states that CM

d�=d
is a straight line if and only if d and d� are roughly similar.

The Manhattan curve for d;d� can be parametrized using a function �d�=d WR!R,
which we define in the following way. For each t 2 R, let �d�=d .t/ be the abscissa of
convergence of X

x2�

e�td�.o;x/�sd.o;x/

as s varies and t remains fixed. That is, fixing t and allowing s to vary, the above
series converges for s > �d�=d .t/ and diverges for s < �d�=d .t/.

Remark 2.4. An equivalent way of obtaining the Manhattan curve is to use the stable
translation length functions `d , `d� and to count over conjugacy classes. In particular,
in either of definitions of the Manhattan curve above, either via the set CM

d�=d
or via the

parametrization �d�=d , if one replaces the metrics and counting over group elements
with the stable translation length functions and counting over conjugacy classes, we
obtain the same curve [14, Proposition 3.1].

Convex functions from R to R are continuous and differentiable Lebesgue almost
everywhere. Cantrell and Tanaka showed Manhattan curves have better regularity.

Theorem 2.5 ([14, Theorem 1.1]). Let �d�=d be the Manhattan curve for d; d� 2 D�

as defined above. Then �d�=d is strictly decreasing, convex, and C 1, i.e. it has contin-
uous first derivative.
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Remark 2.6. In fact, for certain pairs of pseudometrics d; d� 2 D� , the associated
Manhattan curve is known to be analytic [15]. This is the case for pairs of word
metrics for example.

Note that in [14] this result was proved for metrics opposed to pseudometrics,
however the same proof applies to the above case. Theorem 2.5 is critical to our
arguments and we will use it implicitly throughout this work.

2.4. Geodesic currents

Let @� denote the Gromov boundary of � , which is an infinite, compact metrizable
space since � is non-elementary. The double boundary is the set @2� of unordered
pairs of distinct points in � , endowed with the expected topology and the diagonal
action of � . A geodesic current on � is a locally finite, �-invariant measure� on @2� ,
meaning that �.K/ is finite for any compact subset K � @2� . We let Curr.�/ denote
the space of geodesic currents equipped with the weak� topology. Geodesic currents
were introduced by Bonahon, first for surface groups [8] and later for general hyper-
bolic groups [9].

The space of geodesic currents can be thought of as a completion of the space
of conjugacy classes of � in the following sense: if Œx� is the conjugacy class of the
non-torsion element x 2 � , then x D yn for y 2 � a primitive element and n ¤ 0. If
y1; y�1 denote the two points in @� that are fixed by y, then the set

AŒy� D ¹¹gy�1; gyC1º W g 2 �º

is a discrete, �-invariant subset of @2� . In this way, the rational current associated
to Œy� is given by

�Œy� D
X

¹p;qº2AŒy�

ı¹p;qº;

and similarly we define �Œx� D jnj�Œy�. The set ¹��Œx�W� > 0; Œx� 2 conj0º turns out to
be dense in Curr.�/ (see [9, Theorem 7]).

By considering PCurr.�/ WD .Curr.�/n¹0º/=RC, where the action of RC is given
by scalar multiplication, we obtain the space of projective geodesic currents, which is
compact and metrizable when equipped with the quotient topology [9, Proposition 6].

3. Optimal quasi-isometry constants

In this section, we prove Theorem 1.1. It will follow from Theorem 3.8, which works
in the more general setting of hyperbolic distance-like functions defined below. We
also apply this result to norm and eigenvalue functions associated to Anosov repre-
sentations in Section 3.3.
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3.1. Hyperbolic distance-like functions

Definition 3.1. By a hyperbolic distance-like function on � , we mean a function
 W� � � ! R satisfying the following:

(1) positivity:  .x; y/ � 0 and  .x; x/ D 0 for all x; y 2 �;

(2) the triangle inequality:  .x; z/ �  .x; y/C  .y; z/ for all x; y; z 2 �;

(3) �-invariance:  .sx; sy/ D  .x; y/ for all x; y; s 2 �; and

(4) for any d0 2D� and C � 0, there existsD � 0 such that the following holds:
if x; y;w 2 � are such that .xjy/w;d0 � C , then their Gromov product for  
satisfies

.xjy/w; WD
. .x;w/C  .w; y/ �  .x; y//

2
� D:

Note that pseudometrics belonging to xD� are hyperbolic distance-like functions.
This is also the case for the logarithm of the norms of Anosov representations of � ,
see Lemma 3.14.

For our purposes, a key property is that hyperbolic distance-like functions are
roughly geodesic, in the sense that they satisfy condition (2.2).

Lemma 3.2. Let � be a non-elementary hyperbolic group. If  W � � � ! R is a
hyperbolic distance-like function, then  is roughly geodesic. In particular, every
pseudometric belonging to xD� is roughly geodesic. Moreover, for every d0 2D� and
˛0 � 0, there is some ˛ � 0 such that if x D z0; : : : ; zm D y is an .˛0; d0/-rough
geodesic, then we can find a non-decreasing subsequence

0 D i.0/ � i.1/ � � � � � i.n/ D m

such that zi.0/; : : : ; zi.n/ is an .˛;  /-rough geodesic.

Remark 3.3. By Lemma 3.2 and the invariance of hyperbolicity under quasi-isometry
among roughly geodesic spaces, we deduce that all symmetric hyperbolic distance-
like functions that are quasi-isometric to a word metric are hyperbolic pseudometrics,
and hence lie in D� . In Corollary 6.4 we will see that in fact every pseudometric
in xD� is hyperbolic.

Lemma 3.2 requires the following simple lemma, the proof of which we leave to
the reader.

Lemma 3.4. Let a0; : : : ; am be a sequence of real numbers and L � 0 be such that
a0 � am and jai � aiC1j � L for 0 � i < m. Assume that

Œa0; am� \ Z D ¹k; k C 1; : : : ; k C nº:
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Then there exists a non-decreasing subsequence 0 D i.0/ � i.1/ � � � � � i.n/ D m
such that j.k C j / � ai.j /j � .LC 2/=2 for all 0 � j � n.

Proof of Lemma 3.2. Let d0 2 D� , and let x D z0; : : : ; zm D y be an .˛0; d0/-rough
geodesic. Let L WD max¹ .o; u/ W d0.o; u/ � 1C ˛0º, which is finite because � is
finitely generated and d0 is proper. Since  is �-invariant and satisfies the trian-
gle inequality, the sequence ai WD  .z0; zi / satisfies the assumptions of Lemma 3.4.
Therefore, for each integer j between 0 and  .o; y/, there exists some xj WD zi.j /
with

j .x; xj / � j j �
LC 2

2
;

and such that i.j / � i.j C 1/ for all j . Let us suppose this sequence is

x D x0; : : : ; xn D y;

which lies in an .˛0; d0/-rough geodesic. We obtain .xjxj /xi ;d0 � 3˛0=2 for 0 � i �
j � n. But  is a hyperbolic distance-like function, implying that .xjxj /xi ; �D for
some D independent of the sequence. This translates to

 .xi ; xj / � 2D C  .x; xj / �  .x; xi / � j � i C 2D C LC 2

for all 0 � i � j � n. On the other hand, by the definition of the xi ’s and the triangle
inequality we have

 .xi ; xj / �  .x; xj / �  .x; xi / � j � i � .LC 2/

for all 0 � i � j � n, so that x0; : : : ; xn is an .˛;  /-rough geodesic with ˛ WD
2D C LC 2.

Another important property of hyperbolic distance-like functions is they can be
coarsely approximated by word metrics. The proof of the next result follows exactly
as in the proof of [33, Lemma 5.1], which shows that pseudometrics in D� can be
approximated by word metrics. We leave the details to the reader.

Lemma 3.5. Let  be a hyperbolic distance-like function that is ˛-roughly geodesic.
For n > ˛C 1, let Sn WD ¹x 2 � j  .o;x/� nº. Then Sn generates � as a semi-group
and for all x 2 � , we have

.n � ˛ � 1/jxjSn � .n � 1/ 6  .o; x/ � njxjSn :

In the lemma above the sets Sn are not necessarily finite since  might not be
proper, i.e. the balls ¹x 2 � W  .o; x/ � Rº are not required to be finite. However,
if  is symmetric and proper, then it is quasi-isometric to a word metric for a finite
generating set, and hence it belongs to D� . This implies the following.
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Corollary 3.6. Let d be a pseudometric in xD� . Then d 2 D� if and only if d is
proper, meaning that the balls ¹x 2 � W d.x; o/ � Rº are finite for all R > 0.

A criterion for properness is given by the following lemma, which will be used in
the proof of Proposition 4.1 and might be of independent interest.

Lemma 3.7. Let � be a non-elementary hyperbolic group and let .dn/n be a sequence
of (not necessarily hyperbolic) left-invariant pseudometrics pointwise converging to
the pseudometric d1. If lim supT!1.log#¹x 2� W dn.o;x/ < T º/=T D 1 for each n,
then d1 is proper.

Proof. We begin with the following observation: if S � � is a finite and symmetric
generating set, then its exponential growth rate hS D h.dS / satisfies

hS � max
x2S

d1.x; o/:

To show this, for " > 0, we consider n large enough so that

max
x2S

dn.x; o/ � max
x2S

d1.x; o/C ":

Then for any x 2 � , we have

dn.x; o/ �
�
max
x2S

d1.x; o/C "
�
dS .x; o/;

and hence hS � maxx2S d1.x; o/C " since the exponential growth rate of dn is 1.
The observation then follows by letting " tend to zero.

Now we start the proof of the lemma and suppose for the sake of a contradiction
that S1 D ¹x 2 � W d1.x; o/ � Rº is infinite for some R > 0. Up to increasing R we
can assume that S1 generates � . We take an infinite nested sequence S1 � S2 � � � � of
finite and symmetric generating subsets of � contained in S1 and such that #Si tends
to infinity. By our previous observation we have hSi � R for all i . On the other hand,
by [3, Theorem 1] there exists ˛ > 0 such that hSi � log.˛.#Si // for all i , which is
our desired contradiction.

3.2. Proof of the main result

Similarly to the case of pseudometrics in D� , for hyperbolic distance-like functions
 ; � on � , we can define the stable translation length function

` Œx� WD lim
n!1

1

n
 .o; xn/

for x 2 � , and the dilation of  and  �:

Dil. ;  �/ WD inf¹� > 0 W ` Œx� � �` � Œx� for all Œx� 2 conjº;
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where we define Dil. ;  �/ D 1 if no such � exists. Our main result states that for
hyperbolic distance-like functions, the dilation is the optimal quasi-isometry constant.

Theorem 3.8. Let � be a non-elementary hyperbolic group and let  ;  � be hyper-
bolic distance-like functions on � such that Dil. �;  / <1. Then there exists some
C � 0 such that for any x; y 2 � ,

 �.x; y/ � Dil. �;  / .x; y/C C:

From this result, we immediately deduce Theorem 1.1 from the introduction.

Proof of Theorem 1.1. Let d;d� 2D� , so that they are hyperbolic distance-like func-
tions satisfying Dil.d;d�/;Dil.d�;d /<1. Then by Theorem 3.8, there is someA� 0
such that

Dil.d; d�/�1d.x; y/ � A � d�.x; y/ � Dil.d�; d /d.x; y/C A

for all x; y 2 � . The conclusion then follows from Proposition 2.2.

For the proof of Theorem 3.8 we fix a finite, symmetric generating set S � �
with word metric dS , and let `S denote the stable translation length for this metric.
Similarly, .�j�/S denotes the Gromov product for dS based at the identity, and j � jS
denotes the word length with respect to S . Let ı be a hyperbolicity constant for dS ,
which we assume is positive. We start with some lemmas.

Lemma 3.9. Let g 2 � and D > 0 satisfy

.g�1jg/S < D and jgjS > 2D C 4ı: (3.1)

Then .g�mjgn/S < D C 2ı for all m; n � 1.

Proof. Let a WD jg2jS � jgjS � 2ı. The inequality .g�1jg/S < D is equivalent to
2jgjS � jg

2jS < 2D, so that

a > jgjS � 2ı � 2D > 2ı > 0

by (3.1). From the proof of [32, Theorem 1.1] and the fact that ı is positive, we deduce
that aC jgnjS � jgnC1jS for all n � 1. In particular, we have

.g�mjg�1/S D
jgmjS C jgjS � jg

m�1jS

2

�
jgjS C a

2
>
jgjS

2
> D C 2ı
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for all m > 1, and similarly .gjgn/S > D C 2ı for all n > 1. But by ı-hyperbolicity
and (3.1), we have

D C 2ı > .g�1jg/S C 2ı � min¹.g�1jg�m/S ; .g�mjgn/S ; .gnjg/Sº;

which implies .g�mjgn/S < D C 2ı for all m; n � 1, as desired.

Lemma 3.10. There exist constants C 0;R0 � 0 such that for any x 2 � , there is some

x 2 � such that dS .x; 
x/ � R0 and

.
�mx j

n
x /S � C

0 for all m; n � 0:

Proof. Let u; v 2 � be a ping pong pair in the sense of [17, Section 2.2.4]. The proof
of [17, Lemma 2.2.6] actually shows the following: if x 2 � satisfies

.x�1jx/S � max¹jujS ; jvjSº C 30ı;

then there exists s 2 ¹u; vº such that�
.xs/�1jxs

�
S
�
1

2
max¹jujS ; jvjSº � 7ı: (3.2)

Now we consider three cases. If

.x�1jx/S < max¹jujS ; jvjSº C 30ı and jxjS > 2max¹jujS ; jvjSº C 64ı;

then Lemma 3.9 applied to g D x, and D D max¹jujS ; jvjSº C 30ı gives us

.x�mjxn/S < max¹jujS ; jvjSº C 32ı

for all m; n � 0, and we choose 
x D x.
Next, if

.x�1jx/S � max¹jujS ; jvjSº C 30ı and jxjS > 2max¹jujS ; jvjSº C 64ı;

let s 2 ¹u; vº satisfy (3.2). Then

jxsjS � jxjS �max¹jujS ; jvjSº > max¹jujS ; jvjSº � 10ı;

and Lemma 3.9 applied to g D xs and D D max¹jujS ; jvjSº=2 � 7ı gives us�
.xs/�mj.xs/n

�
S
<
1

2
max¹jujS ; jvjSº � 5ı

for all m; n � 0. In this case we choose 
x D xs.
Finally, if

jxjS � 2max¹jujS ; jvjSº C 64ı;

then we choose 
x D o. In conclusion, the lemma follows with

R0 D 2C 0 D 2max¹jujS ; jvjSº C 64ı:
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Lemma 3.11. Let 
 W� ! � , x 7! 
x be the assignment from Lemma 3.10. Then for
any hyperbolic distance-like function  on � , there exist C0;R0 � 0 such that for any
x 2 � we have max. .x; 
x/;  .
x; x// � R0 and

.
�mx j

n
x /o; � C0

for all m; n � 0. In particular, we have  .o; 
x/ � ` Œ
x�C 2C0 for all x 2 � .

As before, we are using o 2 � to denote the identity element.

Proof. Let dS 2 D� be a word metric with constants C 0; R0 given by Lemma 3.10.
Then for any x 2 � , we have

dS .x; 
x/ � R
0 and .
�mx j


n
x /S � C

0

for allm;n� 0. If is any hyperbolic distance-like function, letC0� 0 (resp.R0� 0)
be such that .pjq/S �C 0 (resp. .pjq/S �R0) implies .pjq/o; �C0 (resp. .pjq/o; �
R0=2) for all p; q 2 � . Therefore, for all x 2 � , we have

max
�
 .x; 
x/;  .
x; x/

�
� 2.x�1
xjx

�1
x/o; � R0

and
 .o; 
mx /C  .o; 


n
x / �  .o; 


mCn
x /C 2C0 (3.3)

for all m; n � 0, which proves the first assertion of the proposition. For the second
assertion, we apply (3.3) to m D 1 and obtain

 .o; 
x/ �  .o; 

nC1
x / �  .o; 
nx /C 2C0

for all n. By adding these inequalities for 0 � n � k, we get

.k C 1/ .o; 
x/ �  .o; 

kC1
x /C 2.k C 1/C0:

The proof concludes after dividing by .k C 1/ and letting k tend to infinity.

Corollary 3.12. There exists a finite setB �� such that the following holds. Given 
a hyperbolic distance-like function on � , there existsC1 � 0 such that for any x;y 2�
we have

 .x; y/ � max
u2B

` Œx
�1yu�C C1: (3.4)

Remark 3.13. The inequality (3.4) considerably refines [33, Proposition 3.1], where
the maximum on the left-hand side was multiplied by .1 � "/ for arbitrary " 2 .0; 1/,
but the additive error on the right-hand side depended on ".
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Proof. Let R0 � 0 and x 7! 
x be as in Lemma 3.10. Suppose they are induced by
the generating set S � � , and set B WD ¹u 2 �W dS .o; u/ � R0º. If  is a hyperbolic
distance-like function on � and C0; R0 are the constants found in Lemma 3.11, we
set C1 WD 2C0 CR0. Since for all x; y 2 � we have y�1x
x�1y 2 B , we deduce

 .x; y/ D  .o; x�1y/ �  .o; 
x�1y/CR0

� ` Œ
x�1y �C 2C0 CR0 � max
u2B

` Œx
�1yu�C C1:

Proof of Theorem 3.8. Let B � � be the finite set given by Corollary 3.12, and let C1
be the corresponding constant for  �. Then for any x; y 2 � , we get

 �.x; y/ � max
u2B

` � Œx
�1yu�C C1

� Dil. �;  / �max
u2B

` Œx
�1yu�C C1

� Dil. �;  / �  .x; y/C
�
C1 C Dil. �;  / �max

u2B
 .o; u/

�
:

This concludes the proof since the last term on the right-hand side is finite and inde-
pendent of x; y.

3.3. Anosov representations

At the beginning of the section, we introduced hyperbolic distance-like functions. Our
reason for working at this level of generality was so that we could apply our methods
to distance-like functions that are not necessarily pseudometrics in D� . In this section,
we briefly present some applications to Anosov representations.

Let � be a finitely generated group equipped with a generating set S . A represen-
tation �W� ! SLm.R/ is said to be j -dominated for j 2 ¹1; : : : ;m� 1º if there exist
constants C;� > 0 such that

�j .�.x//

�jC1.�.x//
� Ce�jxjS

for all x 2 � . Here, for A 2 SLm.R/,

�1.A/ � �2.A/ � � � � � �m.A/

represent the singular values of A. This condition was studied by Bochi, Potrie and
Sambarino in [7] in which it was shown that being 1-dominated is equivalent to being
projective Anosov as defined by Labourie in [31] and extended to all groups in [25].
Further it is known that for a group to admit a 1-dominated representation, it must be
hyperbolic [7, Theorem 3.2]. As we continue, we will stop using the term 1-dominated
representations and will instead use projective Anosov.

The next lemma follows immediately from [15, Lemma 7.1].
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Lemma 3.14. If �W�! SLm.R/ is a projective Anosov representation, then the func-
tion

 �.x; y/ WD log k�.x�1y/k

defines a hyperbolic distance-like function on � , quasi-isometric to any pseudometric
belonging to D� .

This lemma combined with Theorem 3.8 implies the following results for projec-
tive Anosov representations.

Proposition 3.15. Suppose that � and �� are two projective Anosov representations
(not necessarily of the same dimension). Then there exists C > 0 such that, for every
x 2 � , we have

Dil. �;  ��/
�1 log k�.x/k � C � log k��.x/k � Dil. �� ;  �/ log k�.x/k C C:

Proposition 3.16. Suppose that � W � ! SLm.R/ is projective Anosov and S � �
is any (not necessarily symmetric) finite generating set. Then there exists a constant
C > 0 such that

Dil.dS ;  �/�1jxjS � C � log k�.x/k � Dil. �; dS /jxjS C C

for all x 2 � .

Remark 3.17. It may be possible to prove these results using ideas involving the
semi-simplification representation used by Tsouvalas in [38].

These results show that there is a strong relationship between the eigenvalue
and norm maps associated to Anosov representations. This complements the spec-
tral rigidity results of Bridgeman, Canary, Labourie and Sambarino [10] and Cantrell
and Tanaka [15]. In particular, it was shown, although not explicitly stated in [15]
that if �; �� are projective Anosov representations as above then the following are
equivalent:

(1) there is � > 0 such that log�1.�.x// D � log�1.��.x// for all x 2 �; and

(2) there exist �;C 0 > 0 such that j logk�.x/k� � logk��.x/kj �C 0 for all x 2 � .

Further equivalence statements can be added to this list, see [10]. Proposition 3.15
above implies this result and further shows that the dilations provide uniformly good
upper and lower multiplicative bounds for the comparison between log k�.x/k and
log k��.x/k.

Our work also has applications to Borel Anosov representations: that is, repre-
sentations that are fully dominated, i.e. �W � ! SLm.R/ is j -dominated for every
j D1; : : : ; m�1. Representations arising from higher Teichmüller theory (i.e. Hitchin
representations) are Borel Anosov. Given a representation �W� ! SLm.R/, we will
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use �W SLm.R/! Rm and �W SLm.R/! Rm for the Jordan and singular value pro-
jections. That is, �.�.x// and �.�.x// are given by�

log�1.�.x//; : : : ; log�m.�.x//
�

and
�
log �1.�.x//; : : : ; log �m.�.x//

�
;

respectively, where �j W SLm.R/! R for j D 1; : : : ; m map a matrix to the absolute
value of its j th largest (by modulus) eigenvalue. A representation is Borel Anosov if
and only if each of its exterior power representations is projective Anosov. Therefore,
by Lemma 3.14 we deduce that for a Borel Anosov representation �W � ! SLm.R/
each of the functions  j W� � � ! R,

 j .x; y/ D log �1.�.x�1y//C � � � C log �j .�.x�1y//

is a hyperbolic distance-like function on � for 1 � j � m � 1. This fact combined
with Lemma 3.11 gives us the following.

Proposition 3.18. Suppose that �W � ! SLm.R/ is Borel Anosov. Fix a norm k � k
on Rm and a generating set S for � . Then there exists a constant C0 > 0 such that,
for any x 2 � , there exists y 2 � such that all of

jx�1yjS ; j`S Œy� � jyjS j; k�.�.x// � �.�.y//k; and j�.�.y// � �.�.y//k

are at most C0.

We can use this result to compare the optimal decay constants for the quotients
of singular values and eigenvalues for Borel Anosov representations. Fix a group �
and generating set S . Given C; � > 0, we say that a representation �W� ! SLm.R/
is .C;�/ j -dominated, respectively, .C;�/ j -eigenvalue dominated, if for all x 2 � ,

�jC1.�.x//

�j .�.x//
� Ce��jxjS ; respectively,

�jC1.�.x//

�j .�.x//
� Ce��`S Œx�:

Definition 3.19. Given a Borel Anosov representation � into SLm.R/, we define�sing
j

(for each j D 1; : : : ;m) to be the supremum over the set of all � for which � is .C;�/
j -dominated for some C > 0. We define each �eig

j similarly, but for the eigenvalue
domination constants.

We would like to compare �sing
j and �eig

j for each j . Clearly, if � is .C; �/ j -
dominated, then � is .1; �/ j -eigenvalue dominated. Hence, we necessarily have that

�
sing
j � �

eig
j :

Throughout the following, we let ��j and �Cj be

inf
Œx�2conj0

log�j .�.x// � log�jC1.�.x//
`S Œx�

; sup
Œx�2conj0

log�j .�.x// � log�jC1.�.x//
`S Œx�

;

respectively, for j D 1; : : : ; m � 1. Note that, �˙j D �
˙
d�jC1

for each j .
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Theorem 3.20. Suppose that �W� ! SLm.R/ is Borel Anosov and S is a fixed finite
generating set for � . Then�sing

j D�
eig
j D �

�
j for each j D 1; : : : ;m� 1. Furthermore,

for each j D 1; : : : ; m � 1, there exist C�j ; C
C

j > 0 such that for all x 2 � ,

C�j e
��
j
jxjS �

�j .�.x//

�jC1.�.x//
� CCj e

�
C

j
jxjS :

Proof. We begin by proving that �sing
j D �

eig
j :Given �<�eig

j , we want to show that �
is .C; �/ j -dominated for some C > 0.

Take x 2 � . Then there exists y satisfying the conditions in Proposition 3.18. For
such y we have that

�jC1.�.x//

�j .�.x//
� C1

�jC1.�.y//

�j .�.y//
� C2e

��`S Œy� � C3e
��jyjS � C4e

��jxjS

for all x 2 � where the constants C1; : : : ; C4 are independent of x. This shows the
desired equality. The “furthermore” statement follows similarly to Theorem 3.8.

For Borel Anosov representations we can obtain a version of Proposition 3.16
that holds for all eigenvalue maps (not just the leading one). That is, we can obtain an
optimal growth rate result that compares the eigenvalue maps and translation length
(for a word metric) map at each index. We leave the details to the reader.

4. Manhattan geodesics

In this section we construct the Manhattan geodesics in D� and prove Theorem 1.2.
Let d; d� 2 D� be two pseudometrics, which we assume are not roughly similar. Let
� D �d�=d WR! R be the Manhattan curve for d; d� (which we introduced in Sec-
tion 2.3) and write h.d/; h.d�/ for the exponential growth rates of d; d�, respectively.
By Theorem 2.5, we know that � is strictly decreasing, convex, and continuously
differentiable.

Proposition 4.1. For any t 2 R, there exist a pseudometric dt D d �t 2 D� and con-
stant Ct � 0 such that ˇ̌

dt �
�
td� C �.t/d

�ˇ̌
� Ct :

The constants Ct can be chosen so that

Ct D

8̂̂<̂
:̂
0 if 0 � t � h.d�/;

��.t/C if t > h.d�/;

�tC if t < 0;

where C is a constant depending only on d and d�.
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Remark 4.2. For any t 2 R, the quasi-conformal measures �t;�.t/ from [14, Corol-
lary 2.10] are actually quasi-conformal for dt . That is, there exists D � 1 such that
for every x 2 � and �t;�.t/-a.e. � 2 @� ,

D�1e�ˇt .x;oI�/ �
dx�t;�.t/

d�t;�.t/
.�/ � De�ˇt .x;oI�/;

where ˇt D ˇdt is the Busemann function for dt .

LetDd�;d D Dil.d�; d /,Dd;d� D Dil.d; d�/ and `D `d ; `� D `d� , and for t 2R

define ydt WD td� C �.t/d .

Lemma 4.3. If t > h.d�/, then �.t/Dd;d� C t � 0.

Proof. Suppose that t C �.t/Dd;d� < 0 for some t > h.d�/. Then �.t/ < 0 and there
exists s > 0 small enough such that �.t/C s < 0 and � WD �t � .�.t/C s/Dd;d� is
positive. We also consider " > 0 small enough so that � C ".�.t/C s/ > 0.

By the definition of Dd;d� , there exists Œx"� 2 conj0 such that

.Dd;d� � "/`�Œx"� � `Œx"�:

Since .�.t/C s/ is negative, this implies

.�.t/C s/"`�Œx"� � .�.t/C s/
�
Dd;d�`�Œx"� � `Œx"�

�
:

From this we getX
Œx�2conj0

e�t`�Œx��.�.t/Cs/`Œx� D
X

Œx�2conj0
e�`�Œx�C.�.t/Cs/.Dd;d�`�Œx��`Œx�/

�

X
n�1

e�`�Œx
n
" �C.�.t/Cs/.Dd;d�`�Œx

n
" ��`Œx

n
" �/

D

X
n�1

en.�`�Œx"�C.�.t/Cs/.Dd;d�`�Œx"��`Œx"�//

�

X
n�1

en.�C.�.t/Cs/"/`�Œx"�;

and our choice of " implies that the series
P
Œx�2conj0 e

�t`�Œx��.�.t/Cs/`Œx� diverges. As
this contradicts the definition of �.t/ (see Remark 2.4), the conclusion follows.

Lemma 4.4. There exists a constant C 0 satisfying the following. If t > h.d�/, then
the expression

dt .x; y/ WD

´
ydt .x; y/C 2j�.t/jC

0 if x ¤ y;

0 otherwise;
(4.1)
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defines a �-invariant pseudometric on � with Gromov product satisfying

.xjy/o;dt � t .xjy/o;d� C 2j�.t/jC
0 (4.2)

for all x; y 2 � . In particular, dt is a hyperbolic distance-like function. Moreover,
if t CDd;d��.t/ > 0, then dt 2 D� .

Proof. We use the notation

.�j�/ D .�j�/o;d ; .�j�/� D .�j�/o;d� ; and b.�j�/t D t .�j�/� C �.t/.�j�/
for all t . By Theorem 1.1 there is a constant C 0 � 0 such that

.xjy/ � Dd;d�.xjy/� C C
0

for all x; y 2 � . Therefore, for all x; y 2 � and t > h.d�/, we have

1.xjy/t D t .xjy/� C �.t/.xjy/
D
�
t CDd;d��.t/

�
.xjy/� � �.t/

�
Dd;d�.xjy/� � .xjy/

�
�
�
t CDd;d��.t/

�
.xjy/� � j�.t/jC

0

� �j�.t/jC 0; (4.3)

where in the last inequality we used Lemma 4.3. Since ydt is �-invariant, we have

ydt .x; y/ D
6.x�1yjx�1y/t

for all x;y, and so by (4.3), we get that the function dt defined in (4.1) is non-negative
and satisfies the triangle inequality. Therefore, dt is a �-invariant pseudometric on � .

In addition, if .�j�/t denotes the Gromov product for dt based at the identity ele-
ment, then for all x; y 2 � we have

.xjy/t D
dt .x; o/C dt .o; y/ � dt .x; y/

2

�

ydt .x; o/C ydt .o; y/ � ydt .x; y/C 4j�.t/jC
0

2

D1.xjy/t C 2j�.t/jC 0
D t .xjy/� C �.t/.xjy/C 2j�.t/jC

0

� t .xjy/o;d� C 2j�.t/jC
0;

since �.t/ < 0. This proves (4.2) and implies that dt is a hyperbolic distance-like
function.

Finally, if t CDd;d��.t/ > 0, then from (4.3) we see that dt is quasi-isometric
to d�, and hence to any word metric. By Remark 3.3 this implies that dt is hyperbolic,
so it belongs to D� .

Proof of Proposition 4.1. There are three cases to consider.
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Case 1. If 0 � t � h.d�/, then ydt 2D� by [33, Lemma. 4.1], so we take dt D ydt and
Ct D 0.

Case 2. If t > h.d�/, we let dt be given by Lemma 4.4, which satisfies

jdt � .td� C �.t/d/j � Ct WD j�.t/jC

for some C depending only on d and d�. If t C Dd;d��.t/ > 0, then Lemma 4.4
implies that dt 2D� . Therefore, by Lemma 4.3 it is enough to show that the equation

t CDd;d��.t/ D 0

has no solution for t > h.d�/.
To prove this last assertion, suppose by contradiction that t0 CDd;d��.t0/ D 0

for some minimal t0 > h.d�/. Such a value t0 would exist since �.h.d�// D 0 and �
is continuous. We claim that h.dt /D 1 for h.d�/ < t < t0. Indeed, for any such t , we
have

� 0.t/ � �D�1d;d� < �.t/=t

by the minimality of t0 and the convexity of � , and hence the line ¹y D .�.t/=t/xº is
not tangent to � at .t; �.t//. This implies that .st; s�.t// belongs to the open convex
set CM

d�=d
bounded by the graph of � when s > 1, and that .st; s�.t// does not belong

to the closure of CM
d�=d

when s < 1. This gives us that the critical exponent of

s 7!
X

Œx�2conj0
e�s.t`�Œx�C�.t/`Œx�/

is 1, which equals h.dt / since t`� C �.t/` is the stable translation length function
of dt , see Remark 2.4.

In addition, from (4.1) it easily follows that dt pointwise converges to t0 as t
tends to t0. This fact combined with our claim and Lemma 3.7 implies that dt0 is a
proper hyperbolic distance-like function, which belongs to D� by Corollary 3.6. In
particular, there exists � > 0 such that

`dt0 Œx� D t0`�Œx�C �.t0/`Œx� � �`�Œx�

for all Œx� 2 conj.
To get our desired contradiction, we use the identity t0 CDd;d��.t0/ D 0, which

implies

�`�Œx� � t0`�Œx�C �.t0/`Œx�

D ��.t0/
�
Dd;d�`�Œx� � `Œx�

�
D j�.t0/j

�
Dd;d�`�Œx� � `Œx�

�
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for all Œx� 2 conj. This translates to

`Œx� �
�
Dd;d� � j�.t0/j

�1�
�
`�Œx�

for all Œx� 2 conj, contradicting the definition of Dd;d� and concluding the proof of
the proposition in this case.

Case 3. If t < 0, let  be the Manhattan curve for d�; d . Then  D ��1, t D  .s/
for s D �.t/ > h.d/, and

ydt D td� C �.t/d D sd C  .s/d�;

so the conclusion follows from Case 2 applied to the Manhattan curve  at the value
s D �.t/. In this case we obtain a constant of the form Ct D j .s/jC

0 D jt jC 0 for
some C 0 depending only on d and d�.

From the proof above and the fact that � is positive on .0; h.d�//, we deduce the
following.

Corollary 4.5. For any t > 0, we have t CDd;d��.t/ > 0. Similarly, for all t < h.d�/,
we have Dd�;d t C �.t/ > 0.

Remark 4.6. The conclusion of the corollary above is subtle as it is false for arbitrary
decreasing, strictly convex and continuously differentiable (even analytic) functions
on R. In [14, 15], it is shown that for some pairs of pseudometrics in D� , their
Manhattan curves can be recovered as pressure functions of Hölder potentials on mix-
ing subshifts of finite type. We note that such pressure functions cannot be arbitrary,
see [30].

Remark 4.7. (1) From the proof of Proposition 4.1 and the definition of � , we see
that h.dt / D 1 for all t 2 R.

(2) We also note that for any s < s�, we have that s�.s�/ ¤ s��.s/. Note that if
this equality holds then either s < s� < 0 or h.d�/ < s < s�. Suppose the latter is true,
then there exists � 2 .s; s�/ with � 0.�/ D �.s/=s and �.�/ � �� 0.�/ < 0, but then this
implies that �.t/CD�1

d;d�
t � �.�/� �� 0.�/ < 0, contradicting Lemma 4.3. The case

that s < s� < 0 can be proved similarly.

4.1. Explicit computations

Let d; d� and � be as above, and for t 2 R let �t D ��t D Œdt � 2 D� be the metric
structure induced by the pseudometric dt from Proposition 4.1. Let � D Œd �D �0 and
�� D Œd�� D �h.d�/.
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For the rest of the section, we will use the notation

Ds;t D Dil.ds; dt / and �s;t D �.�s; �t /

for s; t 2R, so that�s;t D log.Ds;tDt;s/, recall equation (1.2). Note that d0 D h.d/d
and dh.d�/ D h.d�/d�. Theorem 1.2 will follow from the following estimates.

Proposition 4.8. For any t 2 R, we have

D0;t D

´
h.d/.tDd�;d C �.t//

�1 if t < 0;

h.d/.tD�1
d;d�
C �.t//�1 if t > 0;

Dt;0 D

´
h.d/�1.tD�1

d;d�
C �.t// if t < 0;

h.d/�1.tDd�;d C �.t// if t > 0;

Dh.d�/;t D

´
h.d�/.�.t/D

�1
d�;d
C t /�1 if t < h.d�/;

h.d�/.�.t/Dd;d� C t /
�1 if t > h.d�/;

Dt;h.d�/ D

´
h.d�/

�1.�.t/Dd;d� C t / if t < h.d�/;

h.d�/
�1.�.t/D�1

d�;d
C t / if t > h.d�/;

and hence

e�t;0 D

8̂<̂
:
�
tD�1
d;d�
C�.t/

tDd�;dC�.t/

�
if t < 0;�

tDd�;dC�.t/

tD�1
d;d�
C�.t/

�
if t > 0;

; e�t;h.d�/ D

8̂<̂
:
�
�.t/Dd;d�Ct

�.t/D�1
d�;d

Ct

�
if t < h.d�/;�

�.t/D�1
d�;d

Ct

�.t/Dd;d�Ct

�
if t > h.d�/:

We begin the proof of Proposition 4.8 with some lemmas. For two functions f; g
on a set X , the notation f . g means that there is some C � 0 such that

f .x/ � g.x/C C

for all x 2 X . We also write f Å g if f . g and g . f .

Lemma 4.9. If t > 0, then

(i) D0;t D h.d/.tD
�1
d;d�
C �.t//�1, and

(ii) Dt;0 D h.d/
�1.tDd�;d C �.t//.

If t < h.d�/, then

(iii) Dt;h.d�/ D h.d�/
�1.�.t/Dd;d� C t /, and

(iv) Dh.d�/;t D h.d�/.�.t/D
�1
d�;d
C t /�1.

Proof. Let t > 0. We have d . Dd;d�d�, and hence

dt Å td� C �.t/d &
�
tD�1d;d� C �.t/

�
d D h.d/�1

�
tD�1d;d� C �.t/

�
d0:
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By Corollary 4.5, tD�1
d;d�
C �.t/ > 0, and so

D0;t � h.d/
�
tD�1d;d� C �.t/

��1
:

The reverse inequality of (i) is similar. From d0 � D0;tdt , we get

d D h.d/�1d0 . h.d/�1
�
D0;t td� CD0;t�.t/d

�
;

and hence �
1 � h.d/�1D0;t�.t/

�
d . h.d/�1D0;t td�: (4.4)

The left-hand side of (4.4) is positive for t � h.d�/, and for 0 < t < h.d�/ we have

h.d/�1
�
1C

t

�.t/
D�1d;d�

�
d0 D

�
1C

t

�.t/
D�1d;d�

�
d . d C

t

�.t/
d� Å �.t/�1dt ,

thus
D0;t � h.d/�.t/

�1
�
1C

t

�.t/
D�1d;d�

��1
< h.d/�.t/�1;

and the left-hand side of (4.4) is positive for any t > 0. This gives

Dd;d� � h.d/
�1D0;t t

�
1 � h.d/�1D0;t�.t/

��1
;

or equivalently D0;t � h.d/.tD�1d;d� C �.t//
�1.

We can prove (ii) in the same way, and identities (iii) and (iv) follow from (i) and
(ii) applied to  D ��1 and s D �.t/. Indeed, if t < h.d�/, then s > 0, and we note
that

Dh.d�/;t D Dil
�
dh.d�/; dt

�
D Dil

�
d
 
0 ; d

 
s

�
;

Dt;h.d�/ D Dil
�
dt ; dh.d�/

�
D Dil

�
d s ; d

 
0

�
for

d
 
0 D  .0/d� D h.d�/d� D dh.d�/; d s Å sd C  .s/d� D �.t/d C td� Å dt :

Here d 0 ; d
 
s are the pseudometrics given by Proposition 4.1 applied to the curve  .

This concludes the proof.

Recall that we are assuming Œd � ¤ Œd��.

Lemma 4.10. If r ¤ t , then the pseudometrics dr and dt are not roughly similar.

Proof. Suppose r < t , but Œdr �D Œdt �. By Remark 4.7 (1), we have h.dr/D h.dt /D 1,
and hence

dr Å dr and rd� C �.r/d Å td� C �.t/d:

This implies .t � r/d� Å .�.r/� �.t//d , contradicting that d and d� are not roughly
similar.
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Lemma 4.11. Take real numbers s < s� and let x� D �ds�=ds be the Manhattan curve
for the pair ds; ds� . Then for each t 2 R we have that �.˛.t// D ˇ.t/, where

˛.t/ D ts� C x�.t/s and ˇ.t/ D t�.s�/C x�.t/�.s/:

Moreover, ˛ and ˇ are bijections on R.

Proof. By the definition of x�a, for all t , we get

d
x�
t Å tds� C

x�.t/ds Å t
�
s�d� C �.s�/d

�
C x�.t/

�
sd� C �.s/d

�
D
�
ts� C x�.t/s

�
d� C

�
t�.s�/C x�.t/�.s/

�
d;

where d x�t is the pseudometric given by Proposition 4.1 applied to x� . Since h.d x�t /D 1
by Remark 4.7 (1), from the definition of � we deduce that

�.˛.t// D �
�
ts� C x�.t/s

�
D t�.s�/C x�.t/�.s/ D ˇ.t/:

To prove the “moreover” statement, we first observe that ˛ and ˇ are C 1 and that
� 0.˛.t//˛0.t/ D ˇ0.t/. We then note that the limits

lim
t!1

˛0.t/ D lim
t!1

˛.t/

t
D s� �D

�1
ds ;ds�

s;

lim
t!1

ˇ0.t/ D lim
t!1

ˇ.t/

t
D �.s�/ �D

�1
ds ;ds�

�.s/

both exist by [14, Corollary 3.3] and that we have similar expressions when t ! �1.
Since � 0.˛.t// 2 Œ�Dd�;d ;�D

�1
d;d�

� for all t , it follows from � 0.˛.t//˛0.t/ D ˇ0.t/

that when t !1, both j˛.t/j ! 1 and jˇ.t/j ! 1 unless

s� �D
�1
ds ;ds�

s D �.s�/ �D
�1
ds ;ds�

�.s/ D 0:

However, this equality would imply s�.s�/ D s��.s/, contradicting Remark 4.7 (2).
A similar argument shows that as t ! �1 both j˛.t/j ! 1 and jˇ.t/j ! 1.

Therefore, to conclude the proof it suffices to show that the derivatives of ˛
and ˇ are never 0 (as they are then strictly monotone and unbounded on .�1; 0/
and .0;1/). Note that ˛0.t/ D 0 if and only if ˇ0.t/ D 0, and if there exists t0 2 R

with ˛0.t0/ D ˇ0.t0/ D 0, then

s�x�
0.t0/C s D �.s�/x�

0.t0/C �.s/ D 0

from which it follows that s�x�.s/ D sx�.s�/. Again, this is impossible due to Rem-
ark 4.7 (2) and the proof is complete.

Lemma 4.12. If r < s < t , then

Dr;t D Dr;s �Ds;t and Dt;r D Dt;s �Ds;r .
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Proof. For the case when r D 0 and t D h.d�/, the conclusion follows easily from
Lemma 4.9. For the general case, let  be the Manhattan curve for dr ; dt , which
belong to D� by Proposition 4.1. By Lemma 4.10, we have Œdr � ¤ Œdt �, and by
Lemma 4.11 we can reparametrize  using the bijection ˛.a/ WD at C  .a/r , so
that

d
 
0 Å dr ; d

 
1 Å dt ;

and in fact d a Å d �
˛.a/

for all a. Since h.dt / D 1, the general case then follows from
the first case applied to  and the value 0 < zs < 1 satisfying ˛.zs/ D s.

Lemma 4.13. If t < 0, then

(i) D0;t D h.d/.tDd�;d C �.t//
�1, and

(ii) Dt;0 D h.d/
�1.tD�1

d;d�
C �.t//.

Also, if t > h.d�/, then

(iii) Dt;h.d�/ D h.d�/
�1.�.t/D�1

d�;d
C t /, and

(iv) Dh.d�/;t D h.d�/.�.t/Dd;d� C t /
�1.

Proof. From Lemmas 4.9 and 4.12, for t < 0, we have

D0;t D Dh.d�/;t=Dh.d�/;0 D h.d/
�
tDd�;d C �.t/

��1
;

Dt;0 D Dt;h.d�/=D0;h.d�/ D h.d/
�1
�
tD�1d;d� C �.t/

�
:

Identities (iii) and (iv) are deduced in an analogous way.

Proof of Proposition 4.8. Lemmas 4.9 and 4.13 imply the result, since from them we
can already verify the formulas for �t;0 and �t;h.d�/.

Proof of Theorem 1.2. For each t 2 R, let �t D Œdt � as above, for which statement (i)
holds by definition and statement (ii) follows from Lemma 4.12. For statement (iii),
we compute

lim
t!1

e�t;h.d�/ D lim
t!1

�
�.t/D�1

d�;d
C t

�.t/Dd;d� C t

�
D lim

t!1

�
1C .�.t/=t/D�1

d�;d

1C .�.t/=t/Dd;d�

�
D1;

where we used limt!1.�.t/=t/ D �D
�1
d;d�

by [14, Corollary 3.3]. Similarly,

lim
t!�1

�t;0 D1:

Finally, note that �0;t and �h.d�/;t are continuous functions on t , so that

lim
s!t

�s;t D 0

for any t . Since Œd � ¤ Œd��, we have Dd;d� �Dd�;d > 1 and from Proposition 4.8 we
deduce that �s;t > 0 for s ¤ t , and hence ��� is continuous and injective.
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Remark 4.14. From Proposition 4.8, we deduce that

0 < tDd�;d C �.t/ � h.d/ for t < 0;

0 < tD�1d;d� C �.t/ � h.d�/D
�1
d;d�

for t > h.d�/:

Therefore,

�.t/ D �tDd�;d CO.1/ and �.�t / D tD�1d;d� CO.1/;

as t ! �1, which generalizes [14, Proposition 4.22] to arbitrary pairs of metrics
d; d� 2 D� .

4.2. The geodesic bicombing

As mentioned in the introduction, by appropriately reparametrizing the curves �d�=d�

given by Theorem 1.2, we can produce a geodesic bicombing on D� by bi-infinite
geodesics.

Definition 4.15. For two distinct metric structures � D Œd �, �� D Œd�� in D� , the
Manhattan geodesic of the pair �; �� is the map ���=�� WR! D� given by the arc-
length reparametrization of the map �d�=d� such that ���=�0 D � and ���=�

�.�;��/
D ��.

More precisely, if � D Œd � and �� D Œd��, then ���=�t equals �d�=d

.t/

, where 
.t/ is
the unique number such that

�
�
�; �
.t/

�
D t and t � 
.t/ � 0: (4.5)

Manhattan geodesics are well defined, since for � and �� as in the preceding defi-
nition, the image �d�=d .R/�D� and the orientation of the curve �d�=d� do not depend
on the representatives d and d�. We end this section by proving some properties of
the geodesic bicombing consisting of the Manhattan geodesics.

Theorem 4.16. The geodesic bicombing .�; ��/ 7! �
��=�
� satisfies the following:

(1) continuity: if �n ! �, �n� ! �� and � ¤ �� in D� , then ��
n
�=�

n

� converges to
�
��=�
� uniformly on compact subsets of R.

(2) Out.�/-invariance: � ı ���=�� D �
�.��/=�.�/
� for any � 2 Out.�/ and � ¤ ��.

(3) consistency: if � ¤ �� and � D ���=�s ; �� D �
��=�
s� for s ¤ s�, then � ��=�t D

�
��=�

T .s;s�;t/
; where

T .s; s�; t / D t �

�
s� � s

js� � sj

�
C s

for each t 2 R.
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In the last point of this theorem, consistency refers to the following property. Sup-
pose that ���=�� is the bi-infinite geodesic joining � and �� that we constructed above.
Then, if we pick two metric structures �; �� lying on ���=�� and construct the bi-
inifinite geodesic joining �; ��, then we obtain the same bi-inifinite geodesic ���=�� up
to reparametrization.

Proof. The bicombing satisfies Out.�/-invariance, since for any d; d� 2 D� and
� 2 Aut.�/, we have

��.d�/=�.d/� D � ı �d�=d� :

To prove continuity, consider sequences �n D Œdn� and �n� D Œdn� � in D� con-
verging to � D Œd � and �� D Œd�� as n tends to infinity, respectively. We can assume
that d; d�; dn, and dn� have exponential growth rates equal to 1 for all n. Under this
assumption, if we let �n D �dn� =dn and � D �d�=d then �n converges to � uniformly on
compact subsets of R, see the proof of [33, Theorem 1.9]. From this we deduce that if
�n� D �

dn� =d
n

� , then �n� converges to �� uniformly on compact subsets of R. Continuity
follows from this property and (4.5).

Finally, consistency follows from the fact that if � D Œd � ¤ �� D Œd�� 2 D� and
� ¤ �� 2 �

��=�
� , then the curves � ��=�� and ���=�� have the same image in D� . To

prove this fact suppose that

� D Œds� D �
d�=d
s and �� D Œds� � D �

d�=d
s�

for some s ¤ s�. Then, as shown in Lemma 4.11 there is a bijection ˛.t/ such that
�
��=�
t D �

��=�

˛.t/
for all t 2 R. This concludes the proof of the fact, and hence the

theorem.

5. The Manhattan boundary

In this section, we discuss the Manhattan boundary of D� and prove Theorem 5.2,
which characterizes its elements as the limits at infinity of Manhattan geodesics.

As in the previous section, let d; d� 2 D� be a pair of non-roughly similar pseu-
dometrics, let � be its Manhattan curve, and t 7! �t D Œdt � be the reparametrization
of the Manhattan geodesic for � D Œd �; �� D Œd�� defined in terms of � . We keep the
notation Dd;d� D Dil.d; d�/ and Dd�;d D Dil.d�; d /.

Proposition 5.1. There are left-invariant pseudometrics d�1 D d ��1 and d1 D d �1
on � and a constant C � 0 such that

jd1 � .Dd;d�d� � d/j � C and jd�1 � .Dd�;dd � d�/j � C: (5.1)
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The pseudometrics d1 and d�1 satisfy:

(1) `1 WD `d1 D limt!1
1
��.t/

`dt and `�1 WD `d�1 D limt!�1
1
�t
`dt ; and

(2) they both belong to @MD� .

Proof. By Theorem 1.1, there is a constant C 0 � 0 such that

D�1d;d�.xjy/o;d �D
�1
d;d�

C 0 � .xjy/o;d� � Dd�;d .xjy/o;d C C
0

for all x; y 2 � . Therefore, as in the proof of Proposition 4.1, the functions

d1.x; y/ WD

´
Dd;d�d�.x; y/ � d.x; y/C 2C

0 if x ¤ y;

0 otherwise;

d�1.x; y/ WD

´
Dd�;dd.x; y/ � d�.x; y/C 2C

0 if x ¤ y;

0 otherwise;

define left-invariant pseudometrics on � verifying (5.1) with C D 2C 0.
Now we check the desired properties for d�1 and d1. First, we compute

lim
t!1

1

��.t/
`dt D lim

t!1

.t`d� C �.t/`d /

��.t/
D Dd;d�`d� � `d ;

where we use limt!1.t=� �.t//DDd;d� by [14, Corollary 3.3]. Similarly, the iden-
tity limt!�1.�.t/= � t / D Dd�;d gives the analogous result for `�1. The functions
`1 and `�1 are non-constant since d and d� are not roughly isometric, and hence d1
and d�1 satisfy (1).

In addition, we have

.xjy/o;d1 � Dd;d�.xjy/o;d� C C; .xjy/o;d�1 � Dd�;d .xjy/o;d C C;

so d1 and d�1 belong to xD� .
Finally, by the definition of Dd;d� there is a sequence xn 2 � such that

`d Œxn� �
�
Dd;d� �

1

n

�
`d� Œxn� > 0

for all n, and hence

`1Œxn� D Dd�;d`d� Œxn� � `d Œxn� �
1

n
`d� Œxn�:

This implies that d1 is not quasi-isometric to d1. Similarly, d�1 is not quasi-
isometric to d0, which proves that d�1; d1 2 @MD� , and hence (2).
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Recall from Definition 1.5 in the introduction that if � is the Manhattan geodesic
for the pair � D Œd �, �� D Œd�� with � ¤ ��, the limit at infinity of � is the bound-
ary metric structure �1 D �

��=�
1 represented by pseudometrics roughly similar to

Dil.d;d�/d� � d . The limit at negative infinity of � , denoted ��1D �
��=�
�1 , is defined

similarly.

Theorem 5.2. For any � 2 D� and �1 2 @MD� , there exists some �� 2 D� such
that �1 D �

��=�
1 . Moreover, if �0� 2D� satisfies �1 D �

�0�=�
1 , then �0� 2 �

��=�.0;1/.

We need a preliminary lemma.

Lemma 5.3. If d 2 D� and d1 2 @MD� , then d C d1 2 D� .

Proof. Clearly d C d1 is a left-invariant pseudometric on � . It also satisfies (1.3) for
some � > 0 and d0 2D� , since d and d1 do. Therefore, d C d1 is roughly geodesic
by Lemma 3.2. It is also quasi-isometric to a word metric since it is bounded below by
d 2D� , so it is hyperbolic by Remark 3.3. This concludes the proof of the lemma.

For the rest of the subsection we use the notation ‘.;Å’ introduced right before
Lemma 4.9.

Proof of Theorem 5.2. Let �1 D Œd1� and � D Œd �. Define d� WD d C d1, which is
a pseudometric in D� by Lemma 5.3. Since d1 2 @MD� , we have that d and d� are
not roughly similar.

We claim that Dil.d; d�/ D 1. Indeed, since d D d� � d1 � d�, we get

Dil.d; d�/ � 1:

In addition, by Theorem 1.1 there is some C � 0 such that�
1 � Dil.d; d�/

�
d� � d� � d C C D d1 C C;

and since d1 is not quasi-isometric to a word metric, we get Dil.d; d�/ � 1.
Therefore, by our claim we deduce

d1 D Dil.d; d�/d� � d;

and �1 D �
��=�
1 for �� D Œd��.

Finally, suppose that �1 D �
z��=�
1 for some Q�� D Œ zd��. Then there exists � > 0

such that
�.d� � d/ D �d1 Å Dil.d; zd�/ zd� � d:

We get

h. zd�/ zd� Å h. zd�/�Dil.d; zd�/�1d� C h. zd�/.1 � �/Dil.d; zd�/�1d;
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and conclude z�� D �
d�=d
t for t D h. zd�/�Dil.d; zd�/�1 > 0, so that z�� 2 ���=�.0;1/.

This completes the proof.

From the proof of Theorem 5.2 we deduce the following result.

Corollary 5.4. For any d1 2 @MD� and d 2 D� , there exists d� 2 D� such that

d1 D Dil.d; d�/d� � d:

We end this section by characterizing when two boundary metric structures are
the positive and negative limits of a Manhattan geodesic.

Definition 5.5. Two boundary metric structures �; �� 2 @MD� are transverse if for
some (any) d 2 � and d� 2 �� we have d C d� 2 D� .

The equivalence of “some” and “any” in the above definition follows from the fact
that if d 2 �; d� 2 �� with d C d� 2 D� , then for any a > b > 0 we have that

ad C bd� D b.d C d�/C .a � b/d

(which belongs to D� ).

Proposition 5.6. The boundary metric structures �;�� 2 @MD� are transverse if and
only if there is a Manhattan geodesic �� such that � D ��1 and �� D �1.

Proof. Suppose first that � D ��1 and �� D �1 for �� D �
��=�
� the Manhattan

geodesic for � D Œd �; �� D Œd��, so that d and d� are not roughly similar and have
exponential growth rate 1. We consider d�1 2 � and d1 2 ��, which up to rescaling,
we can assume satisfy

d1 Å Dil.d; d�/d� � d and d�1 Å Dil.d�; d /d � d�:

In particular, we have

d1 C d�1 Å
�
Dil.d�; d / � 1

�
d C

�
Dil.d; d�/ � 1

�
d�;

and this last pseudometric is quasi-isometric to pseudometrics in D� since

Dil.d; d�/ � Dil.d�; d / > 1 and Dil.d; d�/;Dil.d�; d / � 1

by [33, Lemma 3.6]. By Remark 3.3, this implies that d1 C d�1 2 D� , and hence �
and �� are transverse.

For the reverse implication, suppose that � D Œd�1� and �� D Œd1� in @MD� are
transverse. By assumption, ad1C bd�1 2D� for any a; b > 0, and in particular the
pseudometrics

d WD d1 C 2d�1 and d� WD 2d1 C d�1; (5.2)
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belong to D� . We have that d and d� are not roughly isometric, since otherwise we
would get d Å �d� for some � > 0, and hence .1 � 2�/d1 Å .� � 2/d�1; contra-
dicting d1 C d�1 2 D� .

From (5.2), we get

d D d1 C 2d�1 D d1 C 2.d� � 2d1/ D 2d� � 3d1;

and 2d� � d D 3d1 � 0. This gives d � 2d�, and hence Dil.d; d�/ � 2. But, if
2 D Dil.d; d�/C ˛ for some ˛ > 0, then we would have

3d1 D 2d� � d D
�
Dil.d; d�/C ˛

�
d� � d D ˛d� C

�
Dil.d; d�/d� � d

�
& ˛d�;

contradicting that d1 2 @MD� . We obtain Dil.d; d�/D 2, and by the same argument
we deduce Dil.d�; d / D 2.

To conclude the result, if �� D �
��=�
� is the Manhattan geodesic for � D Œd � and

��D Œd��, then by Proposition 5.1 there are pseudometrics d�
˙1
2 @MD� representing

�˙1 and satisfying

d�1 Å Dil.d; d�/d� � d D 2d� � d D 3d1;

d��1 Å Dil.d�; d /d � d� D 2d � d� D 3d�1:

We get that d�1 is roughly similar to d1 and d��1 is roughly similar to d�1, so that
� D ��1 and �� D �1, as desired.

Corollary 5.7. If Œd1�; Œd�1� 2 @MD� are transverse, then there exist d; d� 2 D�

such that

d1 Å Dil.d; d�/d� � d and d�1 Å Dil.d�; d /d � d�:

6. Examples of boundary pseudometrics

In this section, we provide concrete examples of pseudometrics in xD� and @MD� ,
which include the ones from Theorem 1.6. These pseudometrics will be induced from
actions of � on hyperbolic spaces, according to the following definition.

Definition 6.1. Let .X; dX / be a pseudometric space endowed with an isometric
action of � . By a orbit pseudometric induced by the action of � on X , we mean any
pseudometric on � of the form d

p
X .x; y/D dX .xp; yp/ for x; y 2 � , where p 2 X is

a base point. The rough similarity class �X D Œd
p
X � is independent of the point p, and

when appropriate, we say it is the (boundary) metric structure induced by the action
of � on .X; dX /.
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6.1. Useful criteria

In general, verifying condition (1.3) in Definition 1.3 is not at all direct. Instead, we
will rely on the following criterion, for which similar instances have appeared in the
literature.

Lemma 6.2. A left-invariant pseudometric d on � belongs to xD� if and only if `d is
non-identically zero and additionally:

(i) d is ˛-roughly geodesic for some ˛ � 0; and

(ii) if d0 2 D� is ˛0-roughly geodesic, then there exists some C � 0 such that
if 
 � � is an .˛0; d0/-rough geodesic with endpoints x; y, then 
 is C -
Hausdorff close in d to an .˛; d/-rough geodesic with endpoints x; y.

This lemma follows immediately from the next statement.

Lemma 6.3. Let d0 and d be left-invariant pseudometrics on � , and assume d0 2D�

is ı0-hyperbolic and ˛0-roughly geodesic. Then the following conditions are equiv-
alent:

(1) there exists � > 0 such that

.xjy/w;d � �.xjy/w;d0 C �

for all x; y;w 2 � .

(2) d is ˛-roughly geodesic for some ˛, and there is C > 0 such that for all
x;y 2 � the following holds: if 
 is an .˛0;d0/-rough geodesic with endpoints
x; y, and ˇ is an .˛; d/-rough geodesic with endpoints x; y, then ˇ and 
 are
C -Hausdorff close in the pseudometric d .

Furthermore, if either of the these statements hold then d is hyperbolic.

Proof. Suppose first that d satisfies (1), so that it is ˛-roughly geodesic by Lemma 3.2.
To prove (2), let 
 and ˇ be .˛0; d0/ and .˛; d/-rough geodesics respectively, with
endpoints x; y 2 � . We claim that these geodesics are C -Hausdorff close in d for
some C independent of ˇ and 
 .

To this end, let u 2 
 , so that .xjy/u;d0 � 3˛0=2 and by (1) we get .xjy/u;d �
3�˛0=2 C �. By applying of Lemma 3.4 to the sequence ai D d.x; vi / for vi the
elements in ˇ, we can find some v 2 ˇ such that

jd.x; u/ � d.x; v/j � 3�˛0 C 2�C ˛ C 1; (6.1)

and hence
jd.u; y/ � d.v; y/j � 6�˛0 C 4�C 4˛ C 1: (6.2)
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Also, by ı0 hyperbolicity of d0, we have

min¹.xjv/u;d ; .vjy/u;d º � �.xjy/u;d0 C �ı0 C � � 3�˛0=2C �ı0 C �: (6.3)

Independently of what Gromov product achieves the minimum on the left-hand side
of (6.3), by applying inequalities (6.1) or (6.2) we end up concluding that

d.u; v/ � �.9˛0 C 2ı0 C 6/C 4ı C 1 DW C1:

This implies that 
 is contained in the C1-neighborhood of ˇ with respect to d .
Now take v 2 ˇ, so that .xjy/v;d � 3˛=2. By Lemma 3.2, we can deduce that

there exists D � 0 independent of ˇ and 
 and some u 2 
 such that

max
�
jd.x; u/ � d.x; v/j; jd.u; y/ � d.v; y/j

�
� D:

As before, we can conclude that d.u; v/ � C2 for some uniform C2, and hence ˛
and ˇ are C -Hausdorff close with respect to d for C Dmax.C1;C2/. This proves our
claim and the implication .1/) .2/.

Conversely, suppose d satisfies (2) so that it is ˛-roughly geodesic for some ˛ � 0.
Let x; y; w 2 � , and let p be a .�0; d0/-quasi-center for x; y; w with �0 depending
only on d0. We claim that p is a .z�; d/-quasi-center for x; y; w, with z� independent
of x; y;w.

Let 
1; 
2; 
3 be .˛0; d0/-rough geodesics joining x and y, y and w, and w
and x, respectively. Then there is some D0 depending only on ı0; ˛0 and �0 such
that d0.p; 
i / � D0 for i 2 ¹1; 2; 3º. If ˇ1; ˇ2; ˇ3 are .˛; d/-rough geodesics join-
ing x and y; y and w, and w and x, respectively, then by (2), there is some C � 0
depending only on d0 and d such that ˇi and 
i are C -Hausdorff close in .�; d/.

Also, since d0 is quasi-isometric to a word metric and � is finitely generated, we
can find some �0 > 0 such that d � �0d0 C �0. In particular, we get

d.p; ˇi / � �0D0 C �0 C C

for all i 2 ¹1; 2; 3º, implying

max¹.xjy/p;d ; .yjw/p;d ; .wjx/p;d º � 3˛=2C �0D0 C �0 C C:

Therefore, p is a .z�;d/-quasi-center, with z�D 3˛=2C�0D0C�0CC , which proves
the claim.

From this, we deduce

.xjy/w;d � z� C d.p;w/ � z� C �0d0.p;w/C �0

� z� C �0
�
�0 C .xjy/w;d0

�
C �0

D �0.xjy/w;d0 C �0 C �0�0 C z�;

and d satisfies (1) with � D �0 C �0�0 C z�.
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To finish the proof we need to prove the “furthermore” statement. If d and d0 are
as in the statement of the lemma and .1/ and .2/ hold, then we saw in the proof of
.2/) .1/ that every .�0;d0/-quasi-center for x;y;z is also a .z�;d/-quasi-center, with
z� > 0 independent of x;y; z. This quasi-center will be uniformly close to any uniform
rough geodesic connecting a pair of points among x; y; z. Hence, d is hyperbolic.

As a corollary, we deduce the following aforementioned result.

Corollary 6.4. Every pseudometric d 2 xD� is hyperbolic.

We also need a criterion that guarantees non-triviality of the stable translation
length.

Lemma 6.5. Let d be a left-invariant, ı-hyperbolic, and ˛-roughly geodesic pseudo-
metric on the (non-necessarily hyperbolic) group � . Then `d is non-identically zero
if and only if .�; d/ is unbounded.

Proof. It is enough to prove that if diam.�; d/ � L WD 9˛ C 12ı C 2, then there is
some x 2 � with `d Œx� > 0. To this end, let x 2 � be such that d.x; o/ � L. By our
˛-rough geodesic assumption there is some u 2 � such that if we set v WD u�1x, thenˇ̌̌

d.v; o/ �
d.x; o/

2

ˇ̌̌
�
3˛ C 1

2
and d.u; o/C d.v; o/ � d.x; o/C 3˛:

Also, by [32, Theorem 1.2] applied to f D u; g D v and with base point the identity
element o 2 � , we get

d.x; o/ � max
²
d.u; o/C `d Œv�; d.v; o/C `d Œu�;

d.u; o/C d.v; o/C `d Œx�

2

³
C 6ı:

Therefore, either some of the elements x; u; v have positive stable translation lengths,
or

L � d.x; o/ � max
²
d.u; o/; d.v; o/;

d.u; o/C d.v; o/

2

³
C 6ı

�
d.x; o/

2
C
9˛ C 1

2
C 6ı;

which is a contradiction since L > 9˛ C 1C 12ı.

We also require the following lemma, which states that xD� is closed under equi-
variant quasi-isometry among rough geodesic pseudometrics. It is an immediate con-
sequence of Proposition 2.2 and the invariance of hyperbolicity under quasi-isometry.

Lemma 6.6. Let d 2 xD� , and let zd be a roughly geodesic, left-invariant pseudometric
on � such that the identity map idW .�;d/! .�; zd/ is a quasi-isometry. Then zd 2 xD� ,
and d 2 @MD� if and only if zd 2 @MD� .
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6.2. Bounded backtracking and actions on R-trees

An R-tree is a metric space such that any two points can be joined by a unique embed-
ded arc, whose length coincides with the distance of the given points. Equivalently, an
R-tree is a geodesic, 0-hyperbolic metric space. Some hyperbolic groups act naturally
and non-trivially on R-trees, see for instance [5, 35].

Extending the definition given in [21], we say that the isometric action of the
hyperbolic group � on the R-tree .T; dT / has bounded backtracking if the following
holds: for some (any) finite, symmetric, generating subset S � � and some (any)
p 2 T , there exists C � 0 such that if 
 � � is a geodesic in dS joining o and x,
then 
 � p is C -Hausdorff close to the geodesic in T joining p and xp.

The next proposition relates bounded backtracking and pseudometrics belonging
to xD� .

Proposition 6.7. Suppose � acts isometrically on the R-tree T , so that the action has
no global fixed point. Then the orbit pseudometrics for the action of � on T belong
to xD� if and only if the action has bounded backtracking. In particular, when � is
not virtually free, isometric actions with bounded backtracking induce pseudometrics
belonging to @MD� .

When � D Fn is a finitely generated non-abelian free group, Guirardel showed
that every small, minimal, isometric action of � on an R-tree has bounded backtrack-
ing [26, Corollary 2]. Therefore, Proposition 6.7 implies item (3) of Theorem 1.6 in
the case of free groups. In addition, the Culler–Morgan compactification CV.Fn/ of
the Outer space coincides with the space of (rough similarity) classes of orbit pseu-
dometrics induced by very small isometric actions of � on R-trees [4, Theorem 2.2].
Therefore, from Proposition 6.7 we deduce that CV.Fn/ naturally injects into xDFn .

Corollary 6.8. Let � D Fn be a finitely generated non-abelian free group acting
isometrically on the R-tree T so that the action is small. Then the orbit pseudo-
metrics induced by this action belong to xDFn . In particular, there exists a natural
injective map CV.Fn/ ,! xDFn that sends the Culler–Vogtmann boundary @CV.Fn/

into @MDFn .

For the proof of Proposition 6.7, we need a preliminary lemma.

Lemma 6.9. Let � be a (not necessarily hyperbolic) finitely generated group acting
isometrically on the R-tree .T;dT /. Then for any p 2 T , the pseudometric dpT .x;y/D
dT .xp; yp/ on � is hyperbolic and roughly geodesic.

Proof. Clearly, d is hyperbolic. To show that it is roughly geodesic, let S � � be a
finite, symmetric generating set, and let �WCay.�; S/! T be the unique �-equiv-
ariant map such that �.o/ D p, and each edge from o to s 2 S in Cay.�; S/ is
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linearly mapped to the geodesic in T joining p and sp. Then � is L-Lipschitz with
L D maxs2S dT .p; sp/.

Now, let x;y 2 � , and let Œx;y�T denote the unique geodesic segment in T joining
xp and yp. Since � is continuous, for any geodesic path 
 � Cay.�; S/ joining x
and y, the image �.
/ contains Œx;y�T . Therefore, if xpDp0;p1; : : : ;pnD yp is a 1-
rough geodesic in T , then for any i there is some qi 2 
 such that dT .pi ;�.qi //� 3=2.
Also, for each qi there is some vertex xi 2 � such that dS .qi ; xi / � 1, and hence

dT .pi ; xip/ D dT .pi ; �.xi //

� dT .pi ; �.qi //C dT .�.qi /; �.xi // �
3

2
C
L

2
:

If we choose x0 D x and xn D y, we conclude that the sequence x D x0; x1; : : : ; xn D
y is a .4C L; dpT /-rough geodesic joining x; y 2 � , which completes the proof.

Proof of Proposition 6.7. Let � act on the R-tree .T; dT / as in the statement, and
for p 2 T , consider the pseudometric dpT . This pseudometric has non-constant stable
translation length function since the action has no global fixed point (by Lemma 6.5).
As a consequence of Lemma 6.9, dpT also satisfies property (i) of Lemma 6.2. There-
fore, the theorem follows by Lemma 6.2, since dpT satisfying property (ii) of that
lemma is equivalent to the action having bounded backtracking.

6.3. Liouville embedding of the space of projective geodesic currents

Throughout this section, let � be the fundamental group of a closed orientable surface
of negative Euler characteristic, and fix a free and cocompact isometric action of �
on the hyperbolic plane .H2; dH2/. Also, let

i WCurr.�/ � Curr.�/! R

be Bonahon’s geometric intersection number [8], and for g 2 � , let �Œg� 2 Curr.�/
be the rational geodesic current associated to Œg�. The action of � on H2 induces a
�-equivariant bijection between the set G of geodesics in H2 and @2�=¹˙º, where
in @2� we mod out by the involution .p; q/ $ .q; p/. In this way, we consider
geodesic currents as �-invariant, locally finite measures on G.

Following [13, Section 4], to each � 2 Curr.�/ we construct the pseudometric d�
on H2 as follows: for x; y 2 H2, let Œx; y� denote the closed geodesic interval in H2

joining x and y, and we also define .x; y� D Œx; y�n¹xº and Œx; y/ D Œx; y�n¹yº. If
I � H2 is any subset, we let G?I denote the set of geodesics in H2 intersecting I
exactly once. In this way, the pseudometric d� is given by

d�.x; y/ D
1

2

�
�.G?Œx;y//C �.G

?
.x;y�/

�
:
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In [13, Proposition 4.1] is was proven that d� is indeed a straight pseudometric, mean-
ing that for x; z 2 H2 and z 2 Œx; y� it holds that

d�.x; z/ D d�.x; y/C d�.y; z/:

This fact together with [13, Lemma 4.7] imply that

`d� Œg� D i
�
�; �Œg�

�
(6.4)

for all � 2 Curr.�/ and g 2 � .
From equation (6.4) and the work of Otal [34], we see that two pseudometrics d�

and d�0 on H2 are roughly similar through the identity map on H2 if and only if
�D ��0 for some � > 0. For non-zero geodesic currents, these pseudometrics induce
metric structures in xD� .

Proposition 6.10. Let � be a surface group acting geometrically on H2. Then for
any non-zero geodesic current � 2 Curr.�/, the orbit pseudometrics induced by the
action of � on .H2; d�/ belong to xD� , and they belong to D� if and only if � is
filling.

Corollary 6.11. The assignment � 7! �.H2;d�/ induces an injective map from the
space PCurr.�/ of projective geodesic currents into xD� . This map sends the Thurs-
ton boundary @T� into @MD� .

We begin the proof of Proposition 6.10, so we fix � 2 Curr.�/.

Lemma 6.12. There exists �0 > 0 such that

d�.x; y/ � �0dH2.x; y/C �0 for all x; y 2 H2.

Proof. Given A � 0, we claim that there exists BA � 0 such that dH2.x; y/ � A

implies d�.x; y/ � BA. Indeed, since the action of � on H2 is cocompact, there
exists a compact set K � H2 such that if dH2.x; y/ � A, then gx; gy 2 K for some
g 2 � . The set GK � G of geodesics intersecting K is compact, so that BA WD �.GK/
is finite. Therefore, if x; y 2 H2 satisfy dH2.x; y/ � A and g is as above, we deduce
that

d�.x; y/ D d�.gx; gy/ � �.GK/ D BA;

which proves the claim.
Let �0 WD B1. If x; y 2 H2 and n D bdH2.x; y/c, let x D x0; x1; : : : ; xn 2 Œx; y�

be such that dH2.x; xi / D i for all 0 � i � n. We get

d�.x; y/ � d�.x0; x1/C � � � C d�.xn�1; xn/C d�.xn; y/

� .nC 1/�0 � �0dH2.x; y/C �0;

as desired.
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Proof of Proposition 6.10. Let � 2 Curr.�/ be non-zero, and let �0 be the constant
from Lemma 6.12. We claim that there exists �1 > 0 such that

.xjy/w;d� � �1.xjy/w;dH2
C �1 (6.5)

for all x; y; w 2 H2. To this end, let p be a .�; dH2/-quasi-center for x; y; w, with �
independent of this triple. If q is the point in Œx; y� closest to p, then

dH2.p; q/ � .xjy/p;H2 � �;

so that d�.p; q/ � �0� C �0. Since d� is straight, we also have

d�.x; p/C d�.p; y/ � 2�0� C 2�0 C d�.x; q/C d�.q; y/

D 2�0� C 2�0 C d�.x; y/;

and hence .xjy/p;d��z� WD �0�C �0. Similarly, we obtain .xjw/p;d� ; .wjy/p;d��z�,
so that p is a .z�; d�/-quasi-center for x; y and w. In particular, we deduce

.xjy/w;d� � d�.w; p/C z� � �0.xjy/w;dH2
C �0 C z� C 2�0�;

which proves the claim with �1 D �0 C z� C 2�0�.
Now take w 2 H2 and let dw� ; d

w
H2

be the corresponding orbit pseudometrics
induced by the action of � on H2. These pseudometrics also satisfy a version of (6.5),
and since dw

H2
2 D� we see that dw� satisfies the inequality (1.3) in Definition 1.3.

Also, since � is non-zero, there exists g 2 � such that i.�;�Œg�/D `d� Œg� > 0, imply-
ing dw� 2 xD� .

Finally, if L 2 Curr.�/ is the Liouville current for the action of � on H2, then
i.L; ˇ/ > 0 for all ˇ 2 Curr.�/n¹0º, and hence the function ˆW PCurr.�/! R�0
given by

Œˇ� 7!
i.�; ˇ/

i.L; ˇ/

is well defined, continuous, and positive. Since PCurr.�/ is compact and

i.L; �Œg�/ D `dH2
Œg�

for all g 2 � , we deduce that � is filling if and only if there exists A > 0 such that
`d� Œg� � A`dH2

Œg� for all g 2 � , which happens if and only if dw� 2 D� .

By Skora’s theorem [37], the Thurston boundary of @T� can be described as the
space of (rough similarity) classes of orbit pseudometrics induced by small isometric
actions of � on R-trees. Therefore, Proposition 6.7 and Corollary 6.11 imply that if �
is a surface group, then every small action of � on an R-tree induces pseudometrics
in xD� . This proves item (3) of Theorem 1.6 in the case of surface groups.
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6.4. Combinatorial examples

In this section we prove Propositions 6.14 and 6.15, which correspond to items (1)
and (2) of Theorem 1.6, respectively. We start with a connected graph X with simpli-
cial metric dX , and let KD ¹Xj ºj2J be a family of subsets of vertices ofX . From this
data, we construct the connected graph XK obtained by adding to X the new edges
ex;y;j with endpoints x; y whenever j 2 J and x; y are vertices of Xj (thus X is a
subgraph ofXK). Let dX;K be the simplicial metric onXK. The following result is due
to Kapovich and Rafi [28, Proposition 2.6], and will be used along with Lemma 6.2
to find examples of pseudometrics in xD� :

Proposition 6.13. Let X be a connected graph such that the simplicial metric dX
is hyperbolic, and let K be a family of uniformly quasi-convex subsets of vertices
of X . Then .XK; dX;K/ is also hyperbolic, and there is a constant C � 0 such that
whenever x; y 2 X .0/, Œx; y�X is a dX -geodesic from x to y in X and Œx; y�X;K is a
dX;K-geodesic from x to y in XK, then Œx; y�X and Œx; y�X;K are C -Hausdorff close
in .XK; dX;K/.

Now, let S � � be a finite, symmetric generating set with the Cayley graph
.Cay.�; S/; dS /. If H is a set of subgroups of � , we define the coned-off Cayley
graph .Cay.�; S;H/; dS;H/ as follows. Let X D .Cay.�; S/; dS / and take K to be
the collection of all left cosets xH forH 2H and x 2 � . Then .Cay.�;S;H/; dS;H/
is defined to be the graph .XK; dX;K/ introduced above.

When we cone-off finitely many quasi-convex subgroups, the orbit pseudometrics
induced by the action of � on the corresponding coned-off Cayley graphs will belong
to xD� .

Proposition 6.14. Let H be a finite set of quasi-convex subgroups of � , and for
a finite, symmetric generating set S � � , we consider the coned-off Cayley graph
Cay.�; S;H/. If all the subgroups in H are infinite index in � , then the orbit pseudo-
metrics induced by the action of � on Cay.�; S;H/ belong to xD� . In addition, these
pseudometrics belong to @MD� if and only if some subgroup in H is infinite.

Proof. We apply Proposition 6.13 to X D Cay.�; S/ and K D ¹xH Wx 2 �;H 2Hº,
so that the inclusion

Cay.�; S/! XK D Cay.�; S;H/

maps geodesics in Cay.�; S/ uniformly close to geodesics in Cay.�; S;H/. Since
Cay.�; S;H/ is geodesic by construction, any orbit pseudometric from the isometric
action of � on .Cay.�; S;H/; dS;H/ will be roughly geodesic, and hence will satisfy
properties (i) and (ii) of Lemma 6.2. By that lemma, to conclude that orbit pseudo-
metrics induced by Cay.�; S;H/ belong to xD� we are left to show that the action
of � on Cay.�; S;H/ has at least one loxodromic element, which we now explain.
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By [1, Corollary 6.15], a non-torsion element x 2 � acts loxodromically on the
graph Cay.�; S;H/ if and only if no power of x lies in a conjugate of some subgroup
in H. That corollary applies when H consists of a single quasi-convex subgroup,
but the same argument works in the general case if we replace [1, Theorem 3.2] by
the fact that any finite collection of quasi-convex subgroups has finite height (see
e.g. [23, Main Theorem]). Since we are assuming that each member of H is infinite
index in � , such an element x exists, and an argument for this is as follows. If we
fix a visual metric on @� and " > 0 small enough, by [23, Corollary 2.5] the set H"

of conjugates of groups in H with limit set having diameter at least " is finite. Also,
the pairs of fixed points of loxodromic elements are dense in @2� , so by our infinite
index assumption we can find a loxodromic x with fixed points in @� at distance at
least " but not contained in any limit set of a group in H". Finally, it is clear that these
pseudometrics belong to D� if and only if all the subgroups in H are finite.

A CAT.0/ cube complex is a simply connected, metric polyhedral complex in
which all polyhedra are unit-length Euclidean cubes, and satisfies Gromov’s link con-
dition: the link of each vertex is a flag complex. For references about the geometry of
CAT.0/ cube complexes, see [11, 36].

We can apply the proposition above to show that cocompact actions on CAT.0/
cube complexes induce pseudometrics in xD� , as long as the hyperplane stabilizers are
quasi-convex.

Proposition 6.15. Let .X; dX/ be a CAT.0/ cube complex with combinatorial met-
ric dX, and assume � acts cocompactly on X by simplicial isometries. Also, suppose
that

(1) hyperplane stabilizers are quasi-convex; and

(2) the action has no global fixed point.

Then the orbit pseudometrics for the action of � on X belong to xD� . In addition, they
belong to @MD� if and only if some vertex stabilizer is infinite.

Specializing the proposition above to 1-dimensional CAT.0/ cube complexes, we
obtain that Bass–Serre tree actions with quasi-convex edge groups induce pseudomet-
rics in xD� .

Corollary 6.16. Let T be a Bass–Serre tree for a finite graphs of groups decomposi-
tion of � . Suppose this action satisfies

(1) the edge subgroups are quasi-convex in �; and

(2) the vertex subgroups are infinite index in � .

Then the orbit pseudometrics for the action of � on T belong to xD� . In addition, they
belong to @MD� if and only if some vertex stabilizer is infinite.
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Proof of Proposition 6.15. Let H be a complete set of representatives of the conju-
gacy classes of vertex stabilizers for the action of � on .X; dX/. This set is finite, and
since hyperplane stabilizers are quasi-convex, by [24, Theorem A] all the subgroups
in H are quasi-convex. Also, since the action of � on .X; dX/ is cocompact and has
no global fixed point, it has unbounded orbits with respect to the CAT.0/metric on X,
which is quasi-isometric to dX. This implies that the action on .X; dX/ has unbounded
orbits, so all the subgroups in H are infinite index in � . Therefore, Proposition 6.14
applies to H, and hence the orbit pseudometrics induced by the action of � on the
coned-off Cayley graph Cay.�; S;H/ belong to xD� .

To conclude the result, by [16, Theorem 5.1], .X; dX/ is �-equivariantly quasi-
isometric to Cay.�; S;H/, and the first conclusion follows from Lemma 6.6. The
second conclusion follows from the cocompactness of the action, since in this case,
properness is equivalent to finiteness of all the vertex stabilizers.

Remark 6.17. So far, most of the examples of pseudometrics d in @MD� that we
have exhibited satisfy `d Œx�D 0 for some non-torsion element x. By contrast, in [27],
Kapovich constructed an example of a hyperbolic graph .Y; dY / and an isometric
action of the rank-2 free group F2 on Y satisfying `Y Œx� � 1=7 for any non-trivial
x 2 F2. In addition, he proved that orbit pseudometrics induced by this action are
not quasi-isometric to a word metric, but that they satisfy conditions (i) and (ii) of
Lemma 6.2. Consequently, the action on Y induces a purely loxodromic boundary
metric structure in @MDF2 .

7. Extension of stable translation length to Curr.�/ and a conjecture
of Bonahon

In this section, we study the extension of the stable translation length functions to the
space of geodesic currents. First, we prove Theorem 1.7.

Proof of Theorem 1.7. Given d0 2 D� , by Corollary 5.4 there exists d1 2 D� such
that

`d D Dil.d0; d1/`d1 � `d0 :

If � is torsion-free, by [33, Corollary 5.2], the stable translation lengths `d0 and `d1
can be extended continuously to Curr.�/, so the same holds for `d . In the general case
that � contains the torsion-free group �0 as a finite index subgroup, the conclusion
follows since every geodesic current on � is a geodesic current on �0.

In 1988, Bonahon conjectured that the only isometric actions of a hyperbolic
group � on real trees whose stable translation length continuously extends to Curr.�/
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are those with virtually cyclic interval/edge stabilizers [9, p. 164]. However, accord-
ing to Corollary 6.16 and Proposition 1.7, such a continuous extension exists for
every Bass–Serre tree action with quasi-convex edge subgroups. As we can produce
examples of splittings over quasi-convex, non-virtually cyclic subgroups, we deduce
Theorem 1.8 from the introduction which disproves Bonahon’s conjecture.

Example 7.1. If M0 is any closed, hyperbolic 3-manifold, there exists a finite cover
M ofM0 and an embedded, incompressible connected, 2-sided closed surface S�M0

such that H D �1.S/ is quasi-convex in � D �1.M/ (this follows from the virtual
Haken theorem [2]). Cutting M along S gives a splitting of � over H , and the sta-
ble translation length of the Bass–Serre tree corresponding to this splitting extends
continuously to Curr.�/ by quasi-convexity of H . The action of � on this tree is not
small.

Example 7.2. Generalizing the example above, let � be any hyperbolic group acting
properly and cocompactly by simplicial isometries on the CAT.0/ cube complex X.
Suppose also that there exists a non-virtually cyclic hyperplane stabilizer H < � ,
which is infinite index in � and stabilizes the hyperplane H. By Agol’s theorem [2],
there exists a finite index subgroup �0 < � such that if H0 WD H \ �0, then �0nX is
a non-positively curved cube complex and H0nH is an embedded, two-sided hyper-
plane of �0nX that does not self-osculates. This implies that �0 splits over H0, and
since H0 is non-virtually cyclic, the action of �0 on the corresponding Bass–Serre
tree gives another counterexample to Bonahon’s conjecture.

8. Some questions

In this final section we list some open questions related to xD� . Our first two questions
were mentioned in the introduction and are concerning which actions give rise to
points in xD� .

Question 8.1. If � is non-elementary hyperbolic, does any cobounded acylindrical
action of � on a geodesic hyperbolic space induce a point in xD�?

Question 8.2. Suppose � is non-elementary hyperbolic and acts minimally on an
R-tree with infinite index quasi-convex interval stabilizers. Does this action induce a
point in xD�?

Question 8.3. Given two finite, symmetric, admissible probability measures �; ��
on � their associated Green metrics d� and d�� belong to D� [6, Corollary 1.2]. We
can find two points at infinity �1 and ��1 in the Manhattan boundary corresponding
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to the endpoints of the bi-infinite Manhattan geodesic joining Œd�� and Œd�� �. Is there
any meaning for �1 and ��1 in terms of � and ��?

The next question follows naturally from the work of Cantrell and Tanaka [14].

Question 8.4. Are the Manhattan curves �d�=d for d; d� 2 D� real analytic?

We can also ask for generalizations of xD� and xD� to groups that are not neces-
sarily hyperbolic.

Question 8.5. Is there a nice theory of metric structures for relatively hyperbolic
groups? In this case, we could consider cusp uniform actions on roughly geodesic
hyperbolic spaces.

For an arbitrary finitely generated group � we can consider the space D� of left-
invariant, roughly geodesic pseudometrics on � that are quasi-isometric to a word
metric for a finite generating set. This is consistent with our definition of D� when �
is hyperbolic. In this more general setting, the expression � in formula (1.2) only
defines a pseudometric on the quotient D� of D� under rough similarity.

Question 8.6. Is there a non-virtually cyclic group � for which the pseudometric
space .D� ; �/ has zero diameter?

Question 8.7. Let � be such that .D� ;�/ is a metric space. Is this space connected?
Is it contractible?
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