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Residually finite non-linear hyperbolic groups

Nicolas Tholozan and Konstantinos Tsouvalas

Abstract. We exhibit the first examples of residually finite non-linear Gromov hyperbolic
groups. Our examples are constructed as amalgamated products of torsion-free cocompact lat-
tices in the rank 1 Lie group Sp.d; 1/, d > 2, along maximal cyclic subgroups.

1. Introduction

Recall that a group G is called residually finite if for every element g 2 G X ¹1º
there exists a finite group F and a group homomorphism �WG ! F with �.g/ ¤ 1.
A long standing open question of Gromov [10] asks whether every hyperbolic group
is residually finite. Since every finitely generated linear group is residually finite by
Malcev’s theorem, a negative answer to Gromov’s question should be considered
among non-linear hyperbolic groups. Using the superrigidity theorems of Corlette [6]
and Gromov–Schoen [11], M. Kapovich constructed in [12] the first examples of non-
linear hyperbolic groups as quotients of cocompact lattices in the simple rank 1 Lie
group Sp.d; 1/, d > 2. Other examples of non-linear hyperbolic groups were con-
structed by Canary, Stover and the second author in [4] and by the authors of this
note in [20], as amalgamated products or HNN extensions of quaternionic superrigid
lattices along infinite cyclic or quasiconvex free subgroups of rank at least two.

In the light of the previous discussion, it is natural to ask which of these classes
of non-linear hyperbolic groups can be shown to be residually finite. Unfortunately,
this question is difficult in most cases, and deeply connected to other well-known
problems in geometric group theory. For instance, if the congruence subgroup con-
jecture holds true for quaternionic lattices, then Kapovich’s examples would be non-
residually finite groups, see [15, §4]. Similarly, residual finiteness of amalgamated
products along quasiconvex malnormal subgroups is related to the separability of
these subgroups in the ambient lattice, see [14, §2] and [1]. In view of these dif-
ficulties, most of these non-linear examples actually provide good candidates for
non-residually finite hyperbolic groups.
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Nonetheless, in this note we show that one of our constructions in [20] provides
hyperbolic non-linear residually finite groups. These groups are the first proven exam-
ples1. They are constructed as amalgamated products of cocompact lattices in Sp.d;1/,
d > 2, along maximal cyclic subgroups, hence they are also CAT.0/ groups.

Theorem 1.1. Let �1 and �2 be two cocompact lattices in Sp.d;1/, d > 2. There exist
finite-index subgroups � 01 of �1 and � 02 of �2 such that for every non-trivial primitive2

elements 
1 2� 01 and 
2 2� 02 with different translation lengths in the symmetric space
of Sp.d; 1/, the amalgamated product

� 01 �
1D
2
� 02

is a residually finite non-linear Gromov hyperbolic group.

Note that there are several known examples of finitely generated residually finite
non-linear groups. These examples include one-relator ascending HNN extensions
of free groups exhibited by Drutu–Sapir in [7], the automorphism groups Aut.Fn/,
n > 3, (see [8]), Grigorchuk’s groups of intermediate growth [9] and residually finite
groups containing infinite torsion p and q-subgroups for two distinct primes p; q (see
e.g. [16, Remark 3.4]). More recently, Chong–Wise [5] constructed an uncountable
family of finitely generated residually finite groups. However, none of these examples
are hyperbolic. Most of them are also not linear, since there are only countably many
finitely generated linear groups, as Sami Douba pointed out to us. We would also
like to thank the referee for providing an alternative explanation for this fact. Indeed,
there are only countably many isomorphism classes of finitely generated groups with
solvable word problem, and in particular, of finitely generated linear groups [13, 19].

Let us now provide some details on our construction. The non-linearity of the
amalgamated product

�.
1; 
2/
def
D �1 �
1D
2

�2

is proved in [20] following the point of view of the constructions in [4], and relies
on the superigidity theorems of Corlette [6] and Gromov–Schoen [11]. We sketch the
proof in Section 2 for completeness.

In order to prove the residual finiteness of �.
1; 
2/, one needs to construct finite
quotients of �1 and �2 in which 
1 and 
2 have the same arbitrarily large order. To
guarantee this property, we appeal to a theorem of Platonov [17] saying that every

1See M. Sapir’s answer to this MathOverflow question: httpsW//mathoverflow.net/questions/
396895/examples-of-nonlinear-residually-finite-hyperbolic-groups.

2An element g 2 � is called primitive if whenever g D hm for some m 2 N, then m D 1.

https://mathoverflow.net/questions/396895/examples-of-nonlinear-residually-finite-hyperbolic-groups
https://mathoverflow.net/questions/396895/examples-of-nonlinear-residually-finite-hyperbolic-groups
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finitely generated linear group admits an abundance of descending sequences of nor-
mal finite-index subgroups, where quotients between successive terms are p-groups
for some primes p 2 N. We deduce the following residual finiteness result.

Theorem 1.2. Let �1 and �2 be non-elementary Gromov hyperbolic groups which
are linear over characteristic zero. There exist finite-index subgroups � 01 of �1 and
� 02 of �2 with the property that for every 
1 2 � 01 and 
2 2 � 02 primitive elements, the
amalgamated product

� 01 �
1D
2
� 02

is a residually finite Gromov hyperbolic group.

2. Non-linear amalgamated products of superrigid lattices

We recall here the construction of non-linear hyperbolic groups from [20] that will
answer Theorem 1.1.

Theorem 2.1 ([20, Theorem 1.3]). Let �1 and �2 be two lattices in Sp.d; 1/, d > 2.
Assume that 
1 2 �1 and 
2 2 �2 are two infinite order elements with different trans-
lation lengths in the symmetric space of Sp.d; 1/. Then for every field k and r 2 N,
every representation �W�1 �
1D
2

�2 ! GLr.k/ maps �1 and �2 to a finite group. In
particular, the amalgamated product �1 �
1D
2

�2 is not linear.

Let us sketch the proof here for completeness. The details are in [20, §5]. The
cornerstone of the proof is the superrigidity theorem of Corlette [6] and Gromov–
Schoen [11], which say that a linear representation of a Sp.d; 1/ lattice with infinite
image essentially extends to Sp.d; 1/. The other ingredient comes from the represent-
ation theory of Sp.d; 1/: there is a constant c such that, for every proximal continuous
homomorphism  W Sp.d; 1/! GLr.C/ and every g 2 Sp.d; 1/, we have

log
�1
�
 .g//

�2. .g//
D c � `HHd .g/;

where �1. .g// > �2. .g// > � � � > �r. .g// are the moduli of the eigenvalues
of  .g/ and `HHd .g/ denotes the translation length of g 2 Sp.d; 1/ acting on the
quaternionic hyperbolic space HHd . In the context of Theorem 2.1, the superrigidity
of �1 and �2 and the fact that 
1;
2 2 Sp.d;1/ have distinct translation lengths implies
that two linear representations of �i of �i with infinite image cannot satisfy

�1.
1/ D �2.
2/:

Thus the amalgamated product does not admit a faithful linear representation.
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3. Residual finiteness of amalgamated products

There are certain ways of proving the residual finiteness of amalgamated products of
residually finite groups, as soon as compatibility conditions hold for the amalgamated
subgroups, see for example [2, Proposition 1]. We give here the following refinement
of Baumslag’s proposition for Gromov hyperbolic groups.

Lemma 3.1. Let �1 and �2 be two torsion-free Gromov hyperbolic groups and let

1 2 �1 and 
2 2 �2 be two primitive elements. Suppose that there exist decreasing
sequences .�1;n/1nD1 and .�2;n/1nD1 of finite-index normal subgroups of �1 and �2
respectively with the following properties:

(i)
T1
nD1 �i;n D ¹1º for i 2 ¹1; 2º;

(ii) Œh
1i W h
1i \ �1;n� D Œh
2i W h
2i \ �2;n� for every n 2 N.

Then the amalgamated product �1 �
1D
2
�2 is residually finite.

The difference between the previous lemma and Baumslag’s proposition [2, Pro-
position 1] is that the former requires additionally, for i D 1; 2, that

1\
iD1

h
i i�i;n D h
i i:

In our setting, this is implied by the following observation that maximal cyclic sub-
groups of residually finite torsion-free hyperbolic groups are separable.

Proposition 3.2. Let � be a countable group. Suppose that
�
�n
�1
nD1

is a decreasing
sequence of finite-index normal subgroups of � with

T1
nD1 �n D ¹1º. Let 
 2 � be

an element whose centraliser in � is the cyclic group h
i. Then

1\
nD1

h
i�n D h
i:

Proof. Let us set H def
D
T1
nD1h
i�n. Let h 2 H , fix n 2 N and write h D �n
 sn for

some sn 2 N and �n 2 �n. Observe that Œh; 
� D �n
�
�1
n 


�1 2 �n since �n is a
normal subgroup of � . We thus have

Œh; 
� 2

1\
nD1

�n D ¹1º:

Hence, H centralizes the cyclic group h
i and by assumption we have that H D h
i,
concluding the proof.
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Proposition 3.2 applies in the case where � is a torsion-free hyperbolic group and

 2 � is a primitive element, since the centraliser of 
 2 � is the cyclic group h
i,
see [10].

In the light of Proposition 3.2, the proof of Lemma 3.1 is quite standard. We
provide a proof for the reader’s convenience.

Proof of Lemma 3.1. Let us set�D�1 �
1D
2
�2. For every g 2�, we shall exhibit a

finite-index normal subgroupN of�with g 2�XN . First, let us assume that g does
not lie in a conjugate of �1 or �2. Up to conjugation, we may write gDw1�1 � � �ws�s ,
where w1; : : : ; ws 2 �1 X h
1i and �1; : : : ; �s 2 �2 X h
2i.

By assumption (i) and Proposition 3.2, there exists m 2 N large enough such that
w1; : : : ;ws 2 �1 X h
1i�1;m and �1; : : : ; �s 2 �2 X h
2i�2;m. By assumption (ii), we
have

Œh
1i W h
1i \ �1;m� D Œh
2i W h
2i \ �2;m�;

so hx
1i and hx
2i are finite cyclic groups of �1=�1;m and �2=�2;m of the same order.
Thus there exists a surjective homomorphism

� W�! �1=�1;m �x
1Dx
2
�2=�2;m

restricting to the quotient morphism �i ! �i=�i;m for i 2 ¹1; 2º. By construction,
�.w1/; : : : ; �.ws/ 2 �1=�1;m X hx
1i and �.�1/; : : : ; �.�s/ 2 �2=�2;m X hx
2i, and
we conclude that

�.g/ D �.w1/�.�1/ � � ��.ws/�.�s/ ¤ 1:

Now, an amalgamated product of finite groups is virtually free (see for instance [18])
hence residually finite, so there exists a finite group F and a surjective group homo-
morphism

'W�1=�1;m �x
1Dx
2
�2=�2;m ! F

with '.�.g// ¤ 1. In particular, g 2 � X ker.� ı '/.
In the case where g D whw�1 for some w 2 � and h 2 �1 (resp. h 2 �2) we

choose n 2 N large enough such that h 2 �1 X �1;n (resp. h 2 �2 X �2;n). We obtain
a surjective group homomorphism

� W�! �1=�1;n �x
1Dx
2
�2=�2;n

with �.h/ ¤ 1, hence �.g/ ¤ 1. Again, since �1=�1;n �x
1Dx
2
�2=�2;n is residually

finite, g survives in a finite quotient of �.
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4. Platonov’s theorem

By Lemma 3.1, in order to prove residual finiteness of our amalgamated hyperbolic
groups, we need to construct sufficiently many quotients of these groups in which
the amalgamated cyclic subgroups have the same order. These will be given by the
following theorem of Platonov [17] which shows that linear finitely generated groups
are residually p-finite for some p (i.e. every non-trivial element survives in a finite
quotient which is a p-group).

Theorem 4.1 (Platonov [17]). Let k be a field of characteristic zero and � be a
finitely generated subgroup of GLr.k/. Then, for all but finitely many primes p 2 N,
there exists a decreasing sequence of finite-index normal subgroups .�.pn//1nD1 of �
with the following properties:

(i)
T1
nD1 �.p

n/ D ¹1º;

(ii) for n 2N, every non-trivial element of �.pn/=�.pnC1/ has order equal to p.

In particular, � is virtually residually p-finite for all but finitely many primes p.

The sequence .�.pn//1nD1 is constructed in the following way: letA be the domain
generated by the matrix entries of elements of (a finite generating set of) � and let
I � A be a maximal ideal such that A=I is a finite field of characteristic p. The finite
index normal subgroup �.pn/ is then defined as the kernel of the morphism

� � GLr.A/! GLr.A=I n/:

A detailed proof of Platonov’s theorem is given in [16, Theorem 3.1].

5. Proof of the theorems

We now have all the tools to conclude the proof of Theorem 1.2 and Theorem 1.1.

Proof of Theorem 1.2. Note first that, by Malcev’s theorem, �1 and �2 are resid-
ually finite, and by Selberg’s lemma, up to passing to finite-index subgroups, we may
assume that �1 and �2 are torsion-free. By Theorem 4.1 there exists a prime p 2 N

and descending sequences ¹�1.pn/º1nD1 and ¹�2.pn/º1nD1 of finite-index normal sub-
groups of �1 and �2 respectively such that:

(i)
T1
nD1 �1.p

n/ D ¹1º and
T1
nD1 �2.p

n/ D ¹1º;

(ii) for n > 1 and i 2 ¹1; 2º, every non-trivial element of �i .pn/=�i .pnC1/ has
order equal to p.



Residually finite non-linear hyperbolic groups 7

Let us set � 01D�1.p/ and � 02D�2.p/. Let 
1 2� 01 and 
2 2� 02 be two non-trivial
primitive elements. We claim that the amalgamated product

�.
1; 
2/
def
D � 01 �
1D
2

� 02

is a residually finite hyperbolic group.
Since �i is torsion-free for i 2 ¹1; 2º, h
i i is malnormal in �i .p/ and the hyper-

bolicity of �.
1; 
2/ follows immediately by the Bestvina–Feighn combination the-
orem [3].

Observe that for every n 2 N and i 2 ¹1; 2º the order of x
i in �i=�i .pn/ is a
power of p since 
i 2 �i .p/ and �i .p/=�i .pn/ is a finite p-group. For every n 2 N

and i 2 ¹1; 2º, define ai .n/ as the integer such that x
i has order pai .n/ in �i=�i .pn/.
Since �i .pn/ is a decreasing sequence of normal subgroups with

1\
nD1

�i .p
n/D¹1º;

the sequence ai .n/ is increasing and unbounded. Furthermore, by property (ii) of
Platonov’s theorem, 
p

ai .n/

i 2 �i .p
n/ has order 1 or p in �i .pn/=�i .pnC1/, which

implies that ai .nC 1/ � ai .n/ 2 ¹0; 1º for i 2 ¹1; 2º. We conclude that ai WN ! N

is surjective for i 2 ¹1; 2º.
Let .kn/1nD1 and .ln/1nD1 be increasing sequences such that

a1.kn/ D a2.ln/ D n:

Finally, set � 01;n D �1.p
kn/ and � 02;n D �2.p

ln/. By the definition of kn and ln, the
order of x
i in � 0i=�

0
i;n is pn for i 2 ¹1; 2º. Since .kn/ and .ln/ are unbounded, we

have
1\
nD1

�i;n D ¹1º:

The decreasing sequences of subgroups
�
� 0i;n

�1
nD1

satisfy hypotheses (i) and (ii) of
Lemma 3.1 and we conclude that �.
1; 
2/ is residually finite.

Now Theorem 1.1 follows straightforwardly from Theorem 1.2 and Theorem 2.1.

Proof of Theorem 1.1. Let �1 and �2 be two cocompact lattices of Sp.d; 1/, d > 2.
Since �1 and �2 are linear over R, by Theorem 1.2 there exist finite-index subgroups
� 01 and � 02 of �1 and �2 respectively such that for every 
1 2 � 01 and 
2 2 � 02 primitive
elements, the group �.
1; 
2/ is a residually finite Gromov hyperbolic group. On the
other hand, when the translation lengths of 
1 and 
2 2 Sp.d; 1/ are different, the
group �.
1; 
2/ is non-linear by Theorem 2.1.
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