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Unstable minimal surfaces in R” and in products of hyperbolic
surfaces

Vladimir Markovié, Nathaniel Sagman, and Peter Smillie

Abstract. We prove that every unstable equivariant minimal surface in R” produces a max-

imal representation of a surface group into [[/_; PSL(2, R) together with an unstable minimal

surface in the corresponding product of closed hyperbolic surfaces. To do so, we lift the sur-
face in R” to a surface in a product of R-trees, then deform to a surface in a product of closed
hyperbolic surfaces. We show that instability in one context implies instability in the other two.

1. Introduction

1.1. Minimal surfaces in products of hyperbolic surfaces

Let X, denote a closed surface of genus g > 2 and let T be the Teichmiiller space
of marked complex structures on X,. Let (X, d) be the hyperbolic plane, an R-tree,
or product thereof with an action o: w1 (X¢) — Isom(X, d). For every Riemann sur-
face structure S on X, with universal cover S, and o-equivariant Lipschitz map
/:§ = (X.d), there is a well-defined notion of Dirichlet energy &(S, f) (see Sec-
tion 2 for details). For admissible o, there is an essentially unique o-equivariant
harmonic map 4: S — (X, d), which satisfies

§(S.h) = inf&(S. /).

This gives a function E;: Tg — R, by E;(S) = &(S, h). When § is a critical point
of Ey, we say that / is minimal; if X is a manifold and % is an immersion, this is
equivalent to /2(.S) being a minimal surface.

One case of interest is when o is a product of Fuchsian representations into
PSL(2, R)" (also called a maximal representation), in which case each component
of the harmonic map is a diffeomorphism, and critical points correspond to genuine
minimal surfaces in a product of hyperbolic surfaces. The work of Schoen—Yau [24]
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implies that in this case, E, is proper, and therefore admits a global minimum, which
is a stable critical point. For n = 2, Schoen proved that this is the unique critical point
of E; [23].

However, the first author proved in [17] that uniqueness fails when n > 3, assum-
ing the genus g is large enough. See also the paper [16], which provides a strengthen-
ing of Schoen’s result for n = 2. The main goal of this paper is to show that unstable
equivariant minimal surfaces in R” yield unstable minimal surfaces in products of
hyperbolic surfaces. In particular, this strengthens the result from [17], while provid-
ing a simpler and more revealing proof. When n > 3, there are many unstable equivari-
ant minimal surfaces in R”; most notably, unstable minimal surfaces in tori, which
Meeks [19], Hass—Pitts—Rubenstein [8], and Traizet [25] have shown to be abundant,
lift to unstable equivariant minimal surfaces in R”.

We say that a critical point of E, is unstable if there exists a C 2 path in T, starting
at the point and at which the second derivative of E, along the path is negative.

Theorem A. Let n > 3. For every genus g > 2, there exists a maximal representa-
tion o:1(Zg) — [17=1 PSL(2, R) such that Eq: Tg — (0, 00) admits an unstable
critical point. In particular, there are at least two minimal surfaces in the product of
hyperbolic surfaces determined by o.

Labourie conjectured that for a Hitchin representation into a simple split real Lie
group G of non-compact type, there exists a unique equivariant minimal surface in the
corresponding symmetric space. Labourie proves existence in general [13], and that
uniqueness holds when the rank of G is 2 [14] (see also [1], where Collier—Tholozan—
Toulisse prove the analogous statement for maximal representations into Hermitian
Lie groups of rank 2). Building on the ideas in this work, the second two authors
disprove Labourie’s conjecture in rank at least 3 in [22].

The key idea of the proof of Theorem A is to reduce it to finding unstable minimal
surfaces in products of R-trees (Theorem B2 below). The unstable minimal surfaces
are provided by Theorems C and D. We explain in the forthcoming subsections.

1.2. Minimal surfaces in products of R-trees

We give the definitions about harmonic maps to R-trees in Section 2.2. Through-
out the paper, let S be a Riemann surface structure on X, and QD(S) the space of
holomorphic quadratic differentials on S. The Riemann surface structure S lifts to a
Riemann surface structure on the universal cover of ¥, which we denote S. Given a
non-zero ¢ € Q D(S), there are two natural ways of producing an equivariant harmonic
map. First, the leaf space of the vertical singular foliation of the lift 5 to S is an R-tree
(Tg.d). The action of 71 (Xg¢) on S descends to an action p:m1(Xg) — Isom(Ty, d)
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by isometries. The quotient map 7: § — (T, d) is harmonic and p-equivariant, with
Hopf differential ¢ /4.

On the other hand, it is proved independently by Hitchin [9], Wan [26], and
Wolf [28] that there is a unique hyperbolic structure My on X, such that the identity
map from § to My is harmonic with Hopf differential ¢. Moreover, Wolf shows that
ast — 0o, M;4 converges in a certain sense to the rescaled tree (7, 2d) (see [29] for
the precise statement).

Now let ¢1, . .., ¢, be n non-zero holomorphic quadratic differentials on the same
surface S, and let X be the product of the R-trees (T, , 2d;) arising from the construc-
tion above. Let p: 71 (X4) — Isom(X) be the product of the actions p; on each factor.
The energy function E, on T, associated to p is then the sum of the energy func-
tions E,, associated to each component. Also for each positive > 0, let M/ be the
hyperbolic structures associated to 7¢;. We set EZ to be the energy functional for the
product of Fuchsian representations associated to the M.

The surface § is a critical point for E, if and only if it is a critical point for E;)
for every ¢t > 0. In other words, minimality of the harmonic map into the product
of surfaces is equivalent to the minimality of the equivariant harmonic map into the
product of R-trees. The condition occurs precisely when Y ', ¢; = 0.

Letn >2.Fori =1,...,n,let ¢; be non-zero holomorphic quadratic differentials
on the Riemann surface S such that > ;_; ¢; = 0.

Theorem B1. The Riemann surface S is not a (local) minimum for E,, if and only if
there exists t > 0 such that S is not a (local) minimum for Ei). In this case, for all
s > t, S is not a (local) minimum for Ef).

Remark 1.1. If n = 2, Schoen’s result shows that the only critical point of E; is a
minimum, and so by Theorem B1, the same is true of E,. This was first proved by
Wentworth who showed that, provided existence, the equivariant minimal surface in
a product of two R-trees is unique [27, Theorem 1.6].

Remark 1.2. It appears to be unknown whether the energy functional on Teichmiiller
space for harmonic maps to R-trees is C2. It is always C!, and real analytic near a
Riemann surface such that the Hopf differential of the harmonic map has only simple
zeros (this is a generic condition) [18].

Theorem B1 can give critical points of E;) that are not minima, but this is not
quite strong enough to prove Theorem A, which is about unstable critical points. To
that end, we give a notion of instability in products of R-trees that will be suitable for
our purposes. Let S be a critical point for E, with harmonic map & = (rq, ..., 7).
Given C vector fields Vy,...,V,on S, letr — f,..., f,/: S — S be their flows,
and construct the map m, = (w0 f{,...,m, o f]). For any C* path of Riemann
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surfaces r — S, there is a Beltrami form p representing a vector in 75T, that is
tangent to our path at r = 0.

Definition 1.3. We define the self-map stability form of (S, ) to be the quadratic
form L: Ts Ty x H?(S,TS)" — R by

d2

L, V1,.... V) = —

8 (Sr ’ T[r)a
0
where r + S, is any path tangent to yu at r = 0.
The self-maps index of S for E, is the maximal dimension of Ts T x HO(S,TS)"
on which L is negative definite. If the index is positive, we say that S is unstable.

We explain that L is well defined in Section 2.2. Note that L is positive semi-
definite on {0} x H°(S, T'S)", and hence if L is negative definite on a subspace
U C TsTg x HO(S, TS)", then U projects injectively to TsT, x {0}. Moreover,
for any variations r — S, and r — m,, we have E,(S,) < &(S;, 7;), and hence if
L(w, Vi....,Vp) <0, then E;(S;) < E,(S) for small . See Remark 3.4 below for
more motivation for the definition of L.

Theorem B2. The index of Efo at S is non-decreasing with t, and converges to the
self-maps index of S for E, as t — oo. Consequently, S is unstable for E, if and only
if it is unstable for EX, for t sufficiently large.

Toward the proof of Theorem A, we only need the “only if” direction of The-
orem B2. We include the “if” direction and Theorem B1 because they show that
R-trees are really at the heart of the result. High energy minimal maps into symmet-
ric spaces converge in an appropriate sense to minimal maps into buildings, although
the theory has a number of additional complications (see [11]). This is the higher
rank generalization of [29]. If our results extend to this setting, then this would sug-
gest that all counterexamples to the Labourie conjecture would have to come from
unstable minimal maps into buildings.

1.3. Equivariant minimal surfaces in R”

In order to use Theorem B2 to prove Theorem A, we construct unstable surfaces in
products of R-trees. We start by looking in a more familiar place: Euclidean space R”.

Fori =1,...,n, let o; be a non-zero holomorphic 1-form on the Riemann sur-
face S. Lifting to 1-forms &; on a universal cover S gives the data of a harmonic map
to R” by integrating the real parts:

z

h=(hi,....hn), hi(z) =Re/ &,

0
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unique up to translation. The map £ intertwines the action of m;(Z,) on S with a
non-trivial homomorphism y: 7;(X,) — R” coming from the cohomology classes
of the one-forms Re(a;). The Hopf differential of /; is the square ¢; = o7, which
descends to a holomorphic quadratic differential on S, by the equivariance property.
Observe that / is weakly conformal if and only if Y 7_, ¢; = 0, which is equivalent
to h being minimal.

By the construction of Section 1.2, the Hopf differentials ¢; also define an action p
of 1(X4) on a product X of R-trees and a p-equivariant minimal map 7. The map /
naturally factors through 7. Let E, and E,, be the corresponding energy functionals
on Teichmiiller space. In the end we prove the following near-equivalence.

Theorem C. Forn > 2 andi = 1,...,n, let a; be non-zero holomorphic 1-forms
on S such that Yy ;_, o} = 0. Let p, and x be as above.

(1) If S is not a (local) minimum for E,, then it is not a (local) minimum for E,.

(2) Theindex of Ey at S is equal to the self-maps index of E, for S. In particular,
if S is unstable for E,, then S is unstable for E,,.

Remark 1.4. As in both Theorems B1 and B2, the statement is not so interesting
when n = 2 since every critical point is a stable minimum.

Remark 1.5. Instability for E, at § is equivalent to instability for the (equivariant)
area functional on the space of all equivariant maps. The second variations for both
functionals have the same index (see [4, Theorem 3.4]).

The final ingredient needed to prove Theorem A is an example of an unstable
equivariant minimal surface in R”. Fortunately, these are not so hard to find: when
n = 3, every non-planar equivariant minimal surface in R3 is unstable, since a con-
stant section of the normal bundle is destabilizing. Consequently, for any three 1-
forms on S whose squares sum to zero, as long as they span a two-dimensional space,
S will be an unstable point of E, (we explain the details in Section 5.3).

The most natural example is the lift of a minimal surface in a flat 3-torus; there are
many classical examples, such as the Schwarz P-surface of genus 3 (see [19]). In fact,
for every g > 3, every flat 3-torus contains infinitely many distinct unstable minimal
surfaces of genus g in the same homotopy class (see [8, 19,25]).

By inclusion, this gives examples for every n > 3, as long as g > 3. We can also
perturb these examples to give even more. When g = 2, then the only triples of 1-
forms whose squares sum to zero are scalar multiples of one another, so in this case
we cannot directly apply Theorem C to prove Theorem A.
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1.4. A generalization of Theorem C, and the case g = 2

In the general setting where we start with n quadratic differentials summing to zero
that are not necessarily squares of abelian differentials, we may have to lift to a
branched covering of S in order to get a harmonic map to R”. Replacing 71 (%)
with the Deck group of this branched covering, and y with the corresponding repres-
entation of this group, we prove that an analog of statement (2) from Theorem C still
holds.

When n = 3, non-planarness of the minimal surface in R3 arising from a branched
cover is no longer enough to make it equivariantly unstable for its energy functional,
because the normal bundle is not necessarily equivariantly trivial with respect to the
action of the Deck group of the branched covering. Still, we find a condition on the
quadratic differentials that guarantees that the bundle is equivariantly trivial, which
then yields the following theorem.

Theorem D. Let ¢1, ¢2, ¢p3 be holomorphic quadratic differentials on S that are
not colinear and such that ¢p1¢>¢3 is the square of a cubic differential. Then the
corresponding equivariant minimal surface in the product of R-trees is unstable via
self-maps for its energy functional.

We show that the moduli space of solutions to this problem has dimension at least
3g — 3 for every genus (Proposition 5.8). In particular, this gives us unstable minimal
surfaces in genus 2, and hence allows us to complete the proof of Theorem A.

2. Preliminaries

2.1. Harmonic maps to manifolds

Let v be a smooth metric on S compatible with the complex structure. Let (M, o) be
a closed Riemannian manifold, and #: S — M a C? map. The energy density is the
function

1
e(h) = 3 trace, h*o, (1

and the total energy is

&(S, h) = /Se(h) dA, )

where dA is the area form of v. We comment here that the energy density 2-form
e(h) dA does not depend on the choice of compatible metric v, but only on the
complex structure. & is said to be harmonic if it is a critical point for the energy
h — &(S, h). The Hopf differential is the quadratic differential on S defined in a
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local holomorphic coordinate z by

J 0d

b)) = ho (- o) () d=2, 3

and it is holomorphic provided that /& is harmonic. We also consider maps from
S — (M, o) that are equivariant with respect to a representation p: S — Isom(M, v).
Since p is acting by isometries, the energy density is invariant under the 1 (X4 ) action
onS by deck transformations, and hence descends to a function on S. In this way, we
can define a total energy exactly as in (2), and discuss harmonic maps. Similarly, the
Hopf differential descends to a holomorphic quadratic differential on S.

We give special attention to surfaces and the real line. When the target (M, o) is
a surface with conformal metric o, then in holomorphic coordinates z on S and w
on M, we write v = v(z)| dz|?, 0 = o(w)|dw|?, and h as a complex-valued func-
tion &(z). The energy density takes the form

o(h(2))
v(2)

Considering equivariant maps to the real line, again in local coordinates,

e(h)(z) =

(1h:1 + 1hzP)(2), ¢ ()(2) = o (h(2))h(hz) dz>.

e(h)(z) = 2v(z) ' |ho %, ¢(h) = h?dz>.

For a harmonic map to a product space, the definitions (1) and (3) shows that
the energy density and the Hopf differential are the sum of the energy densities and
the Hopf differentials respectively of the component maps. So for a mapping h =
(h1,...,hy) into a product of Riemann surfaces, or an equivariant mapping into R”,
the Hopf differential is the sum

¢ = p(hi). )

i=1

The mapping % is minimal if ¢ = 0.

If (M, 0) is a negatively curved surface, it is well known that there is a unique
harmonic map 4: S — (M, o) in the homotopy class of the identity (see [3] for exist-
ence, and [7, Theorem H] for uniqueness). If we work on a different Riemann surface
structure S’ on X, we get a harmonic map from S” — (M, o) in the class of the iden-
tity, and the total energy depends only on the class of S’ in Teichmiiller space. Thus,
we get a functional E: T, — (0, 00), where E(S’) is the total energy of the harmonic
map from S’ — (M, ). For a map into a product of surfaces, the energy functional
is the sum of the energy functionals of the component mappings.
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2.2. Harmonic maps to R-trees

Definition 2.1. An R-tree is a length space (7, d) such that any two points are con-
nected by a unique arc, and every arc is a geodesic, isometric to a segment in R.

A point x € T is a vertex if the complement 7\ {x} has greater than two compon-
ents. Otherwise it is said to lie on an edge.

Let S be a closed Riemann surface of genus g > 2. The vertical (resp. horizontal)
foliation of a holomorphic quadratic differential ¢ on S is the singular foliation whose
non-singular leaves are the integral curves of the line field on S\¢~!(0) on which ¢
is a negative (resp. positive) real number. The singularities are standard prongs at the
zeros. Both foliations come equipped with transverse measures | Im /@] and | Re /9|
respectively (see [6, Exposé 5] for precise definitions).

In this paper, we work with the vertical foliation, unless specified otherwise. Lift-
ing to a singular measured foliation on a universal cover S, we define an equivalence
relation under which two points x, y € S are equivalent if they lie on the same leaf.
The quotient space is denoted 7', and we can push the transverse measure down via
the projection : § — T to form a distance function d such that (7, d) is an R-tree,
with an induced action p: 71 (S) — Isom(7, d).

According to Korevaar—Schoen, for Lipschitz maps f from S to complete and
non-positively curved (NPC) length spaces such as (7, d), there is a well-defined L'
directional energy tensor g;; = g;;(f) that generalizes the pullback metric (see [12,
Theorem 2.3.2]). In this way, one can define a measurable energy density function by

e(f) = %tracev gij (f). Q)

For an equivariant Lipschitz map /%, the energy density e (k) is invariant under the
group, and we define a total energy as in the smooth setting by

&(S,h) = /Se(h) dA.

Definition 2.2. We say that a p-equivariant map 4: S — (T, d) is harmonic if, among
other p-equivariant maps, it is a critical point for the energy h +— & (S, h).

For the projection map 7, we can describe the energy density explicitly. At a
pointon p € S on which ¢(p) # 0, the map locally isometrically factors through a
segment in R. In a small enough neighbourhood around that point, e(r) is equal to
the energy density of the locally defined map to R, which is computed as usual via the
formula (1). From this, we see that the energy density has a continuous representative
that is equal to v™!|¢|/2 everywhere.
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The Hopf differential is well defined for maps f from S to NPC spaces as above:
in local coordinates, it is given by

1100 — 20N~ 2ign()() d= ©

The projection map 7 : S — (T, d) is p-equivariant and harmonic, with Hopf dif-
ferential ¢ /4. Instead of the equation (6), one can also see this by using the local
isometric factoring. As in the case of maps to surfaces, a harmonic mapping into a
product of trees is called minimal if the Hopf differential — which splits as a sum as
in (4) — vanishes.

Given (T, d) as above, we always rescale the metric to 2d, which makes it so that
the Hopf differential of 77: S — (T, 2d) is ¢. For any other Riemann surface S’ repres-
enting a point in T, there is a unique p-equivariant harmonic map from S — (T,2d)
(see [30]). Again like the surface case, the representation p then defines an energy
functional on Teichmiiller space. The same holds for products of R-trees with admiss-
ible actions.

Let us now address the quadratic form L: TgT, x H 0(S, TS)* — R. Given a
C*° path of Riemann surfaces and a flow r — f,., we consider

r>&(Sp, o fr).

As the directional energy tensor is integrable and the metric on S is varying smoothly
in r, the total energy &(S,, w o f,) also varies smoothly in r. The quadratic form L
is the second derivative of a sum of terms like this for each factor. We remark that L.
depends only on the tangent vectors and not the specific path of Riemann surfaces and
flow of maps, because a minimal map is a critical point for the two-variable energy.

3. Minimal surfaces in products of R-trees

We first prove Theorem B2, and then Theorem B1.

3.1. The Reich-Strebel energy formula

Reich-Strebel computed a formula for the difference of energies of quasiconformal
maps ([20, equation (1.1)]). Let h: S — M and f:S — S’ be quasiconformal maps
between Riemann surfaces, with a conformal metric on M. Let u be the Beltrami
form of f, and ¢ the Hopf differential of &, which need not be holomorphic. Then,

2
6(S".ho fT1)y—6(S.h) = —4Re/ b - a > +2/ e(h)~L2dA. (7
s 1—|ul s 1—|u
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The computation goes through just the same when & maps S equivariantly into an
R-tree. For a map / to a tree (T, d) with Hopf differential v, the energy density
satisfies e(h) = 2v~!||. We obtain the proposition below.

Proposition 3.1. Let h: S — (T, d) be an equivariant harmonic map to an R-tree
with Hopf differential ¥, and f:S — S’ a quasiconformal map. Then the following
formula holds:

2
E(S" ho Y)Y —&(S,h) = —4Re/\/f /|xp| |“| (8)

In the formula above, f is the lift to S and [ is the Beltrami form.

3.2. Proof of Theorem B2

Letp € QD(S) — {0}. For t > 0, let M, be the hyperbolic structure with hyperbolic
metric o, such that the identity map &,: S — M, is harmonic with Hopf differen-
tial 1¢, let & lt, be the two-variable energy functional for M;, and £ ; the corresponding
energy functional on Teichmiiller space. Similarly, let &, and E, be the energies for
the R-tree (7, 2d) determined by ¢ (with a rescaled metric).

The main step in the proof of Theorem B2 is Lemma 3.2. If we rescale o; by 1,
then for any Riemann surface structure S’ and C? map f: S’ — M,, the energy with
respect to the target metric t~'o; is 7' €,(S’, f). Let r = S, be a path of Riemann
surfaces and r — f, a flow starting at the identity map. Lemma 3.2 shows that the
second derivative in r of the energy of /; o f, on S, with respect to the target metric
t~1o, converges as t — oo to the second derivative of the energy of

wo f:S, — (T,2d).

Lemma 3.2. Fors > t,

1 d2 ¢ 1 d2 s d2 B
1 dr? r=089(5r’ht o fr) > ) rzogp(SrshS o fr) > 2 r=08p(Sr,7t o fp),
and
. 1d? . d? -
Jm | ESnheo )= gl Ex(Srmo fo).

Toward the proof, we first record the lemma below about the growth of the energy
density.

Lemma 3.3. Let e(h;) be the energy density of h; with respect to the target metric oy.
Then for s > t,
elh) _ e(hs)

tr s

. €))
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and the inequality is strict away from the zeros of ¢. Moreover,

li e(hy)
im —— =

t—00 t

2071 (10

Proof. Let u; and ug be the Beltrami forms of /; and Ay, respectively. It is proved
in [28, Proposition 4.3] that away from the zeros of ¢ (at which |u;| = O for every 7),
|/4¢| monotonically increases to 1 as # — co. A simple computation gives

|¢|

=

e(h) = coshlog |u,

and likewise for s. Therefore, (9) is equivalent to the inequality
coshlog s, |~ > coshlog ||~ an

Since |u;| < 1 everywhere, the inequality (11) follows. Using the limiting behaviour
of ||, we take t — oo to obtain (10). [

Proof of Lemma 3.2. Let (1, V) € TsTg x H?(S, TS), and let r > f, be the flow
of V. Let i1, be the Beltrami form of £,~!, and & the C®° (1, —1)-form and f the C*®
function on § described by

dz 14r (2) d> |ur (2)]?
oz _— z) = — _
()= ol —Inr(2)? Az) dr?|,_o1— | (2)]?
We use the Reich—Strebel formula (7). For each ¢ > 0,
1 d? ‘ ‘
rar), Pt )
1 d? t t —1,—1 t t
= | (6 0 U™ - €)(5.0)
d? e(ht) I/’Lr|2 )
= 4Re +2 . dA
dr?|,_ 0( /¢ 1_|/‘Lr|2 /S to 1= ]pl?

=—4Re/S¢-a+2/Se(ht) -BdA.

On the other hand, by the same computation, but using (8),

2

ar

EZp(Sr,noﬁ) = —4Re/k;¢-05+4/:g lp(h)| - B.

r=0

By Lemma 3.3, for s > ¢,

e(h") e(h’)
/S Z -ﬁdA>/S - BdA,
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sothat L;/t > Lg/s. By Lemma 3.3 again and the dominated convergence theorem,

[L2 pan—2[1016

in a strictly decreasing fashion as t — oo. The result follows. ]

Moving onto the proof of Theorem B2, we resume the notation from the intro-
duction: fori = 1,...,n, ¢; are non-zero holomorphic quadratic differentials on S
summing to 0. The product of R-trees (7, 2d;), which we denote by X, comes
equipped with the action p = (p; X -+ x p,). For each positive 1 > 0, M/ is the
hyperbolic structure such that the identity map h}: S — M/ is harmonic and has Hopf
differential 7¢;. The energy functionals are denoted &, and E, for the trees and &)
and EJ, for the surfaces.

We define L;: T, T x H%(S,TS)" — R for the harmonic map h, = (h*, ..., h,)
in the same way as L: if r > S, is a path of Riemann surfaces tangent to a Beltrami

form patr =0, and V1,..., V, are vector fields giving rise to flows — f/",...., f,,
then we set
d2 t r
Lt(,u, Vl,...,Vn)= ﬁ gp(Sr,ht),
r=0

where i} = (b o f,... h% o fT).

Remark 3.4. We note that the two-variable energy for [];_, M/ is defined on T, x
17—, Maps(S, Mit ). Since any small perturbation of the identity map is a diffeo-
morphism, the space on which L; acts is canonically isomorphic to the tangent space
of Tg x [[/_; Maps(S, M}) at S x [];_, id.

Remark 3.5. Since S is a critical point for the two-variables energies & ;, and &, the
second order derivatives L; and L. depend only on the first order data w, V1,...,V,
(this is not true for the second variations of each component harmonic map).

Proposition 3.6. Fors > t,

L L
A L,
t N
and lim;_,»(L;/t) = L
Proof. We invoke Lemma 3.2 n times. ]

Lemma 3.7. The index of L; is equal to the index of Efo.

Proof. Letr — S, be a path of Riemann surfaces, tangent to the Beltrami form pu at
r = 0, and suppose there exists (V1, ..., V,) € H°(S, TS)" such that

L,(1t, Vi....,Vy) <O0.
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For each fixed ¢ > 0, the maps r > EZ(S,) and r — Sg(Sr, h%) have zero first vari-
ation at r = 0. By the minimizing property for harmonic maps, EJ,(S,) < &,(S;, h})
for every r, and it follows that

1 d? 1 d? 1

- E.(S,) < —— (S, hY) = —L;(u, Vy,...,Vy) <O.
t dr2 r—o p( = rdr? o p( r z) : (1, V1 )
So, the index of EL is at least that of L;.

For the other direction, assume r +— S, lowers Ei) to second order, and for each
r>0,letk = (kj,....kL):S, — []i—; M} be the harmonic map in the class of
the identity. All h}’s and k] ’s are orientation-preserving diffeomorphisms. Set f; =
(h)~! o kI and let V; be the infinitesimal generator of the flow r > f;". Then

1 d?

1
-L,(u,V1,....Vp) = ——
¢ t(/’l/ 1 n) Zdr2 o

EL(S,) <0,

which gives the result. ]
We now deduce Theorem B2.

Proof of Theorem B2. Proposition 3.6 implies that the index of L; is non-decreasing
with ¢, and converges to the self-maps index of S for E,. We then apply Lemma 3.7
to obtain the same statement for the index of E;) at §. |

3.3. Proof of Theorem B1

The proof of Theorem B1 is similar to that of Theorem B2, so we do not go through
every detail. The main difference is that we replace Lemma 3.2 with Lemma 3.8
below.

As above, let M; be the hyperbolic structure on X, with hyperbolic metric o;
such that the identity map has Hopf differential 7¢), with energy functional E?, and
let E, be the energy functional for the R-tree (7, 2d) for ¢.

Lemma 3.8. For all Riemann surfaces S’,

EL (S’
lim p(5)

t—>00 t

= E,(S").

In order to prove the lemma, we recall some facts about the Thurston compac-
tification of Teichmiiller space. Let § be the set of homotopically non-trivial simple
closed curves on X, and RS the product space with the weak topology. There is an
embedding

T, xRT — RS
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that associates the data of a hyperbolic metric o and s € R™ to the set of lengths of
geodesic representatives of curves in § with respect to the metric so. Every singular
measured foliation (¥, 1) on S also defines a point in RS, by taking j-transverse
measures of simple closed curves. Furthermore, there is an injective map

B: OD(S) —» RS

that takes a quadratic differential to its vertical foliation, and then to RS. Note that
both £ and 8 are homogeneous with exponent 1/2.

According to Thurston and Hubbard—Masur (see [6] and [10]), both £ and § are
homeomorphisms onto their images, and £(Tg x R™) U B(QD(S)) is homeomorphic
to a cone over a closed ball, which we call € (the cone over the Thurston compacti-
fication of Teichmiiller space). The following result can be gleaned from the results
of [28].

Theorem 3.9. For any Riemann surface S, let Es: Tg x Rt U QD(S) — R™T be
the function that associates to each point in Tg X R the energy of the unique har-
monic map isotopic to the identity from S, and to each point of QD(S) the energy
of the unique equivariant harmonic map to the corresponding R-tree. Then Eg is
continuous with respect to the natural topology on €.

We now explain how to deduce this theorem from the paper [28]. The first ingredi-
ent is a de-projectivized version of Lemma 4.7 of that paper, whose proof is identical
to the proof of the lemma in the paper.

Lemma 3.10. Suppose (An)5>, C Tg leaves all compact subsets of the Teichmiiller
space, and let ¢, be the Hopf differential of the harmonic map from S to (S, A,).
Suppose (an)7>, C (RS is a chosen sequence. Then £(A,, ay) converges in RS if
and only if B(an¢y) does, and in the case of convergence, the two sequences have the
same limit.

The second ingredient is the following computation (in which each term is linear
in the scalars a,, so the factors of a, are superfluous).

Lemma 3.11 ([28, Lemma 3.2]). In the notation of the previous lemma,

landnllLisy < Es(andn) < andullpicsy + anlx(Zg)l.

Proof of Theorem 3.9. For brevity, write E = Eg. First, E is continuous on Ty x R*
and for ¢ € QD(S), we have E(¢) = [|¢]|.1(s), Which is certainly continuous on
OD(S). To show that E is continuous on all of €, we just need to show that if
L(An,an) — B(¢), then E(ay,rAn) — E(¢). By Lemma 3.10, B(an¢n) — B(¢p) (where
as above ¢, is the Hopf differential of the harmonic map to A,), and since j is a
homeomorphism onto its image, a,¢, — ¢ as well, so E(a,¢,) — E(¢). Finally,
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since a, must tend to zero in order for the sequence a, A, to converge in RS, Lem-
ma 3.11 shows that E(a,¢,) and E(a,A,) have the same limit. [

Now the proof of Lemma 3.8 is easy.

Proof of Lemma 3.8. By definition, E(S") = Es/(0), and E,(S") = Es/(¢), so by
the continuity of Eg/ and its homogeneity, we just need to show that £(o;/t) — B(¢)
in €. To prove this, we use Lemma 3.10 applied to the surface S. Indeed, the Hopf
differential of the harmonic map from S to 0/t is ¢ by construction, and since the
constant sequence at ¢ trivially converges to ¢», Lemma 3.10 implies that £(o;/¢) does
as well. ]

Preparations aside, we prove Theorem B1. We return to all of the notation from
the introduction and the proof of Theorem B2. We do not recall it in full, but just
record here that the energy functionals are E, for the product of R-trees and E; for
the product of surfaces. The proof is quite similar to that of Theorem B2, so we leave
the details of the computations to the reader.

Proof of Theorem B1. Starting with a Riemann surface S’ such that E,(S”) < E,(S),
applying Lemma 3.8 n times yields that E;(S N < E;(S ) for sufficiently large ¢.
Conversely, suppose that there exists ¢ > 0 such that E;)(S N < Efo(S ), and let

n
k= (ki.....kb):S" > M/

i=1

be the n-tuple of harmonic diffeomorphisms with lower energy. Let hﬁ be the ith
component of the harmonic map 4, and set f} = (hﬁ)_1 o kf. Arguing similarly to
the proof of Lemma 3.2, Reich—Strebel formulas (7) and (8) and the monotonicity on
the level of energy densities from Lemma 3.3 show that for s > ¢,

Ej(S") —Ej(S) _ Yoy E5(S" ko 1) — E(S)
t t
_ i 858" o [ ~Ej(S)

N

> 88" o fi) —E,(S).

i=1
It follows from the minimizing property that
E)(S) ~Ep(S) _ E}(S) ~Ej(S)

t s
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and EL(S’ EL(S
M > E,(S) — E,(S),

and hence the result follows. [

4. Unstable equivariant minimal surfaces in R”

We recall the setup of Theorem C. Forn > 2 and i = 1,...,n, let ; be non-zero
holomorphic 1-forms on S such that Y ;_; o = 0. Let y be the action of 7(S)
on R” corresponding to the 1-forms «;, and let p be the action of 71 () on a product
X = [1;(T;.2d;) of trees corresponding to the quadratic differentials ¢; = a:?. We
write &, and &, for the associated two-variable energies, and E, and E,, for the energy
functionals on Teichmiiller space. Let i = (hy,...,h,) and 7 = (7y, ..., 7,) be the
x- and p- equivariant minimal maps, respectively.

4.1. Isometric folding

We begin with statement (1) from Theorem C. The result is a consequence of the
proposition below.

Proposition 4.1. E, > E,, with equality at S.

The key is that there is a natural map F: X — R” intertwining p and y. To see why,
let us focus on a single tree 7;. Along a curve parametrizing a non-singular leaf for the
vertical singular foliation of ¢;, o; evaluates the tangent vectors to purely imaginary
numbers. Since dh; = Re(&@; ), we deduce that #; is constant along the singular vertical
foliation of (z,-. Hence, h; descends to a map F;: T; — R, which we call the folding
map of the tree. The map F = (F1y,..., Fy) has the required equivariance.

Lemma 4.2. If S’ is any point of Ty, and 7| the unique p;-equivariant harmonic
map from S’ to (T;,2d;), then the energy density of m] is pointwise equal to the
energy density of F; o m].

Proof. Let y; be the Hopf differential of 7/. As discussed in Section 2, for any point p
at which v; (p) # 0, there exists a neighbourhood 2 of p, an open interval I C R, a
map 7/: 2 — I, and an isometric inclusion ¢: I — (T, 2d;) such that in ,

’r A~/
7Tl' —[OT[i.

By construction, the restriction of F;|,(): t(/) — R is an isometric embedding. It
follows by continuity of the energy density that the energy densities are equal every-
where. |
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Proof of Proposition 4.1. For any S” € Ty, let 7’ be the p-equivariant harmonic map
to the product of trees. The map F o i’ is a y-equivariant Lipschitz map to R”. By
the minimizing property for harmonic maps,

E, (S") < &,(S',F o).
By the lemma above, &,(S’, F o ') = E,(S’), so we have
E, >E,.
Working on the Riemann surface S, h; = F; o 7; for every i, so
E((S) = &,(S. F o).
and we have equality. ]

Remark 4.3. Maps of the form F; o 7] above are subtle. They are harmonic apart
from some preimages under 7/ of the vertices in (7, 2d; ), which are typically disjoint
arcs or connected sums of disjoint arcs. Even though they have finite total energy, a
Weyl lemma cannot be applied because they fail to be twice weakly differentiable on
these lines. The map x — |x| on R exhibits this type of behaviour.

We see immediately from Proposition 4.1 that if S is not a global (resp. local)
minimum of E,, then it is not a global (resp. local) minimum of E,. So Theorem C
part (1) is proved. Furthermore, we are very close to proving one direction of (2),
once we recall the definition of the self-maps index, and its basic properties. We do
this after collecting some standard facts about minimal surfaces in R”.

4.2. Energy and area

Let f be any smooth y-equivariant map from % ¢ to R". The differential of f des-
cends to a closed R”-valued 1-form 6 on Xg, and the cohomology class of 6 is
prescribed by the representation y. The map f also defines a 1 (X )-invariant area
form dAy = /det(9T 6), and the area of f, which we write A(f), is defined to be
the integral of this form over X,. If S is a Riemann surface structure on X, then

Ex(S. ) = A(S).

with equality if and only if f is minimal (both statements are even true pointwise).
Now suppose we are in the setting of Theorem C, so that 4 is a non-constant
minimal y-equivariant map from S to R”. Let B be the branch locus of /2 on S.

Lemma 4.4. Let h, be a smooth x-equivariant variation of h such that h, = h in a
neighbourhood of B. Then for r small enough, there is a smooth variation of Riemann
surface structures Sy such that h, is weakly conformal with respect to Sy.
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Proof. For r sufficiently small, the map /4, is still an immersion away from B, and
hence uniquely defines a new conformal structure on S — B. Since /&, = h in a neigh-
bourhood of B, this conformal structure patches to the conformal structure of S
near B, and defines a new conformal structure S, on S, with respect to which /4,
is weakly conformal. |

We say that a smooth R"-valued vector field W on S supported on S — B is
a normal variation of A if it is perpendicular to the image of dh at each point of
S — B. For any such W, let W be the pullback to S ; then the family h, = h + rW
is a y-equivariant deformation of 4 equal to & on a neighbourhood of B. Taking the
derivative of the corresponding S, at r = 0 defines a linear map from the space of
normal variations supported on S — B to the tangent space of Teichmiiller space at S'.
Let V' be the graph of this map, viewed as a subspace of TsT, x ThMapX(i > R™).
We have shown that restricted to V', the Hessian of &, at the critical point (S, &) is
equal to the Hessian of A at the critical point /. The latter has the following formula.

Proposition 4.5 ([15, Theorem 32]). If W is a normal variation supported in S — B,
the second derivative of the area of any equivariant variation h, with derivative W
at r = 0 is given by the quadratic form

oW) = /S AWV — (kW) P (12)

where (dW)N is the component of dW normal to the image of dh, k is the vector-
valued second fundamental form of h(S), and the second term is interpreted as the
square norm of the scalar-valued 2-tensor (k, W).

4.3. Lifting to R-trees via self-maps

In this section, we study energy and area in the context of the p-equivariant har-
monic maps to products of R-trees. Specifically, we relate Q to the quadratic form
L:TsTg x H 0(8:TS )* — R defined in the introduction, which defines the self-maps
index for E,. Let H2(S — B, T'S) be the subspace of H°(S, T'S) of smooth vector
fields supported on S — B.

The key to the proof of the second part of Theorem C is the result below.

Lemma 4.6. Suppose that W is a normal variation of S with support in S — B, and
such that Q(W) < 0. Then there exists a harmonic Beltrami form p on S and vector
fields Vy,...,V, € HCO(S — B, TS)" such that

L(u, Vi.....Vy) <O0.
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Proof. Denote the coefficients of W by W'. Foreachi = 1,...,n, let V; be the vector
field which vanishes on B and is equal to W!Vx'/|Vx;|?> on S — B, where Vx' is
the gradient of the coordinate function x’ on S, which is non-vanishing on S — B.
We point out that V; has compact support on S — B.

Let fiW: R x § — S be flow of 1, so that fiW(r, -) = f;(-). Then the family

H:Rx§ —R"
defined by H; (r, p) = h; o f;"(p) has derivative W at time zero. Moreover, the family

R x § — [[(73.24))
1

defined by IT;(r, p) = m; o f"(p) satisfies F; o I1; = H;, where F; is the folding
map from 7; to R. Let 7, be the map (my o f],...,m, 0 f7). By Lemma 4.4, there
exists a C* variation of conformal structures r +— S, along which &,(S,, 7,) =
&y (Sr, hy) = A(h,), and we set u to be the Beltrami form in 75T, tangent to this
path at time zero. If Q(W) < 0, then taking the second variation of r — &,(S,, 7,)
yields

L(u,V1,...,.Vy) = Q(W) <0. [

4.4. Log cutoff

In order to construct destabilizing variations for Q, it is helpful to do away with the
condition that W is supported on S — B. First, we need to say what it means for W to
be a normal variation over all of S. The map S — B — CP"~!, which sends p to the
(one-dimensional) image of («q,...,a,) at p, extends holomorphically to all of S
by clearing denominators. Thus, the normal bundle also extends analytically to all
of S. The quadratic form @ is still finite for normal variations that are not necessarily
supported on S — B.

For normal variations W, which are not necessarily supported on S — B, we will
need to show that one can replace them with variations that are supported on S — B
without changing the value of Q too much. This is the log cut-off trick. If r is the
radial coordinate in C then the function log(r)/log(8~') + 2, defined between r = §
and r = §2, is equal to 1 for = § and O for r = §2 and has Dirichlet energy

1/8 2 _ b4 (13)
2 Js2 rlog(6=1)2 ~ log(8~1)

The point is this tends to zero as § goes to zero. A good picture is that log r is the
height coordinate on a cylinder conformal to the punctured disk, so our function
is an affine function of the height of the cylinder, and its derivative is small. The
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extension of this function by 0 and 1 is Lipschitz. For very minor reasons, it will
be convenient to use a smooth cutoff function, so we let [5(r) be a perturbation of
log(r)/log(8~1) + 2 which extends smoothly by 0 and 1 and has Dirichlet energy no
more than 27/ log(§™1).

We use this model to define a cut-off function as follows. For each point p; of B,
fix a holomorphic coordinate z; with z;(p;) = 0. Then, for any value of § small
enough that each z; is defined on the ball of radius 6 around p; and these balls do
not overlap, let s be the function on S defined by

o ns(p) = Is(|zi]) if 82 < |zi(p)| < & for some i;
s ns(p) =0if |z;(p)| < §? for some i;
e 1ns(p) = 1 otherwise.

The standard log cut-off trick amounts to the following lemma.

Lemma 4.7. Suppose that W is normal variation of h on S. Then given any & > 0,
there is a constant d(g, Q(W), sup |W|) such that for all § < d,

1QmsW) — Q(W)| <e.

Proof. For § to be determined, we compute Q(nsW). We first treat the normal term
in the formula (12) applied to the variation ngW':

/I(d(nsW))N|2=/ s dW)HN + (Wdns)N|?
= z

= [, @Y s e [ @,

where Wdns is the R”*-valued 1-form W ® dns. Hence,
1Q(msW) — QW)

<[ i@y s owan e+

82<|z|<8 \

z|<é

@) P 4 [ =W Pk
— [ lm@wyY s+ wan) VP + 0@,

82<lz|<8
since 1 — n% is supported in |z| < §. By Cauchy—Schwarz and (13),

Qs W) — QW)
< [ W W) P 2 PO+ 0

= 0@ + 0(10g18—1) - 0(log15—1)'

Thus, we can choose § > 0 so that the difference of second variations is at most &. =
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A consequence is that we can speak without ambiguity of the index of Q.

Proposition 4.8. The index of Q on the space of all normal variations is equal to the
index of Q on the subspace of normal variations supported in S — B.

Proof. We just need to show that if there is a k-dimensional space of normal vari-
ations on which Q is negative definite, then there is another k-dimensional space of
normal variations supported in S — B on which Q is still negative definite. Let V/
be a k-dimensional space of normal variations on which Q is negative definite. Let
S(V) be the unit sphere in V' with respect to any metric on V. Then for § small
enough, Q(nsW) < 0 for every W € S(V). Since this implies ns W # 0, the space
{nsW | W € V}is ak-dimensional subspace of normal variations supported in S — B
on which @ is negative definite. ]

We may now finish the proof of Theorem C.

Proof of Theorem C (2). Let k be the index of E,, and let V' C TsTg be a k-dimen-
sional subspace on which the second variation is negative definite. By the implicit
function theorem, the unique harmonic 1-form in a given cohomology class varies
smoothly with the conformal structure of S. We can integrate this smoothly-varying
1-form to give a smooth equivariant variation of the harmonic map 4 for each vector
in V. Projecting the variation onto the normal bundle gives a linear map T: V — W
to a subspace W of the space of normal variations of %, with the property that the
second derivative of E, at v € V is equal to Q(T'v). Since the second derivative of E,,
is assumed to be negative definite, T is injective and so W is still k-dimensional.

By Proposition 4.8, we can replace W with a k-dimensional subspace of normal
variations supported on S — B on which Q is still negative definite. Then by Lem-
ma 4.6, there is a k-dimensional subspace of

TsTg x HY(S — B, TS)"

on which L is negative definite, and so the index of E, by self-maps is at least k.
In the other direction, suppose W' is a k-dimensional subspace of

TsTy x H(S, TS)"

on which L is negative definite. Since L is positive semidefinite on {0} x H°(S, TS)",
the projection of W’ to TsT, is still k-dimensional. For maps to manifolds, the pos-
itive semidefinite property follows from the computation [7, Theorem H], and we get
the same result in our setting by repeating the computation but using the measurable
energy density with the characterization (5). Since E,, is an infimum over all maps, we
get an upper bound for E, near S by a smooth function with negative definite Hessian
at S. Recall that Proposition 4.1 says that E,, < E,, and so the index of E, at S is at
least k. ]
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S. The general case

In this section, we generalize Theorem C to the situation in which the quadratic dif-
ferentials are not necessarily squares of abelian differentials. We then specialize to
dimension 3 and give the proof of Theorem D.

5.1. The cameral curve

Let Sp be a point of T, and let ¢1, ..., ¢, be non-zero holomorphic quadratic dif-
ferentials on Sy summing to zero. Following the terminology of [2] we associate to
this data a cameral curve. By this, we mean a branched covering S of Sy and abelian
differentials o; on S that square to the pullback of ¢;, which is terminal in the sense
that if the «; lift to squares on some other branched cover R — Sy, then this factors
through a branched covering from R — S. It is always a 2"-fold branched covering
of Sy, but may be disconnected, for instance if any ¢; is already a square. By uni-
versality, S has n holomorphic involutions 7;, each of which negates «; and fixes o;
for j #i.

We let p be the action of 771 (Sp) on the product X of the R-trees (7;,2d;) corres-
ponding to the quadratic differentials ¢;, and 7 the canonical equivariant map from So
to X.

Since S has n abelian differentials whose squares sum to zero, the theory of the
previous section applies. For instance, we can integrate Re(@;) on a simply connected
covering space to get a harmonic map 4 to R”, equivariant under a representation y
of the Deck group, and well defined up to a constant on each component of S. The
energy density of this map descends not only to S, but all the way to Sp, where it is
equal to the energy density of 7.

In the spirit of Proposition 4.8, we want to compare the index of E, through self-
maps at Sy to the index of the quadratic form Q associated to /. But to get the right
comparison, we need to restrict Q to the subspace of equivariant normal variations.
Let G =~ (Z/27Z)" be the group generated by the 7;. Let o be the action of G on R”
such that each 7; acts by reflection in the ith coordinate hyperplane. Let N V7 be the
space of normal variations of / that are o-equivariant.

Proposition 5.1. The index of E,, by self-maps is equal to the index of Q on NV°.

Proof. Let k be the index of Q on N V7. The first thing we want to do is use Propos-
ition 4.8 to find a k-dimensional space of o-equivariant normal variations on S — B
on which Q is still negative definite. This works fine if we choose our cutoff func-
tion ng to be t;-invariant. For instance, we can define ns to be the pullback to S of
the similarly-defined function on Sy; then the dependence of the energy of ns with &
is the same up to a factor of 2 coming from the relation log(|/z|) = log(|z|)/2.
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Next, for every W in this space, we get n tangential vector fields
Vi = WiVx'/|Vxi|?

on S, as in Proposition 4.6. Since both W' and dx’ transform the same way under

each t;, we have
T (Vi) = £ W (£Vx)/|Vx')?,

where each sign is + if i # j and — if i = j. Hence, each V; descends to a vector
field on Sy — B, which we still call V;.

For each i, let fiW:]R xS =S, fiW(r, ) = f;"(-) be the flow of V;. Let h; be
the component functions of &, h] = h; o f;, and h, = (h7],..., h}). The conformal
structures S, for which each £, is conformal are still G-invariant, hence descend to
conformal structures (Sp), on Xg. Let 7/ = 7 o f;". Even though the tree 7; no
longer folds to R, the energy density of 7 on (So), is still pointwise equal to the
energy density of 47 on S’; indeed, both are equal to |(f;")* Re(e;)|?. Therefore, the
second derivative of &, is equal to O on this k-dimensional space so the index of E,,
by self-maps is at least k.

The other inequality is easier. If the index of E, by self-maps is k, then we can
use the log-cutoff trick to find a k-dimensional space of vector fields V; supported
on Sy — B and variations p; of conformal structure on which L is negative def-
inite. Lifting everything to S and differentiating the coordinate functions, we get
a k-dimensional space of equivariant variations of 4 for which the second derivat-
ive of energy is negative definite. Taking the normal components of these variations,
and using that energy dominates area, we get a k-dimensional subspace of NV on
which Q is negative definite. |

5.2. Unstable minimal surfaces in R”

In order to finish the proof of Theorem A, we need to construct for each g > 2 and
n > 3, either an unstable equivariant minimal surface S of genus g in R”, or a sur-
face Sy of genus g whose cameral curve is a (Z/27)" -equivariantly unstable minimal
surface in R”.

If g > 3, then as we discuss in the next section, there are plenty of equivariant
minimal surfaces of genus g in R”. They are not always unstable; for instance, if
the minimal map is holomorphic with respect to some complex structure on a linear
subspace of R”, then it is calibrated by the Kéhler form, and hence stable. In general,
it is not straightforward to decide if a minimal surface in a flat space is unstable.

A special case is when the equivariant minimal surface is contained in a real 2-
plane, and hence is stable. We call such a minimal surface flat. These at least are easy
to identify.
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Proposition 5.2. Let ¢y, ..., ¢, € QD(Sy) sum to 0, giving a y-equivariant map
h: S — R" as before. The vector valued second fundamental form k of h(S) vanishes
identically if and only if the quadratic differentials ¢; are all complex multiples of one
another.

Proof. Lethy, ..., h, denote the coordinate functions of /. Since ¢; = ((h;),)*dz?,
the quadratic differentials are all complex multiples of one another if and only if the
functions (%;), are. In one direction, assume (4;), = a; f(z) for some function f(z)
and some complex constants a;. Then the image of the R”-valued 1-form d# is con-
tained in a two-dimensional subspace, and by integrating, we see that image of / is
contained in an affine subspace of R”. In particular, it is totally geodesic, so the second
fundamental form is zero. Conversely, if the second fundamental form is zero, then the
image of dh is contained in some two-dimensional linear subspace, and so the image
of &, is contained in the complexification of that subspace, which is two-dimensional.
As h is weakly conformal, (h,, h,;) = 0; since the inner product is non-degenerate
on the complexification of any real two-dimensional subspace, this shows that % is
contained in a complex line (we use analyticity to deduce this as well at the branch
points), and so the functions (/;), are all complex multiples of one another. |

For the remaining section, we restrict to n = 3. For n > 3, any isometric inclu-
sion of R3 into R” gives examples in R”. Let M, be the moduli space of Riemann
surfaces of genus g, and let £” be the total space of the bundle over Mg consisting
of n-tuples of quadratic differentials that sum to 0. Instability of the corresponding
equivariant minimal surfaces in R” is an open condition on E”, so by perturbing the
three-dimensional examples we get many more.

5.3. Equivariant minimal surfaces in R3

Every non-flat orientable equivariant minimal surface in R3 is unstable. Indeed, in
dimension 3, the expression |(k, W)|? in the formula for Q (W) is equal to 2| K| |W|?,
where K is the Gauss curvature of the equivariant minimal surface. The normal bundle
to the minimal surface h(§ ) is a real line bundle on S. Since S is always orientable,
the normal bundle is as well, and hence it is equivariantly trivial. If N is a unit normal
section, and 7 is any function on S, then the second variation formula (12) takes the
form

00(nN) = /E V2 — 21K | |-

As long as the curvature K is anywhere non-zero, a constant section of N will there-
fore be destabilizing: for n = 1,

0o(N) = /Z K| <.
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When g > 3, the moduli space of (S, &1, &2, @3), where S is a Riemann surface
of genus g and «; are abelian differentials on S whose squares sum to zero, but are
not all multiples of one another, is non-empty and has complex dimension 3g (in [5,
Section 6] it is shown that the quotient by the natural free actions of C* and SO(3, C)
has dimension 3g — 4). This proves Theorem A for g > 3.

Remark 5.3. In fact, in [21, Theorem 16], Ros proves that every non-flat minimally
immersed surface of genus g in a 3-torus has index at least 2g /3 — 1. The result easily
generalizes to any non-flat equivariant minimal immersion for any representation, but
we note that it applies only to immersed surfaces.

Unfortunately, there are no non-flat equivariant minimal surfaces of genus 2 in R3,
stable or not. This is because the canonical map lands in P!, so the canonical curve
cannot be contained in a rank 3 quadric (or see the comment after Proposition 5.6).
Therefore, we are forced to study o-equivariant deformations of the cameral curve.
The key that makes this work is that the normal bundle of the cameral curve S of
(So, ¢1, P2, P3) can be equivariantly trivial even if the ¢; are not all squares.

Proposition 5.4. Suppose that the sextic differential ¢1$o¢3 is the square of a cubic
differential c. Then there is a o-equivariant deformation of S of constant length 1.

Proof. The cubic differential ¢ distinguishes two components of S; one on which
o003 = ¢, and one on which it is equal to —c. Each 7; interchanges the two com-
ponents of S. The subgroup I' < (Z/27)3 preserving the components acts on R3 in
an orientation-preserving way. Indeed, for each element y € I', the determinant of
the matrix describing the product of hyperplane reflections is equal to the product of
the monodromies of the «; under the action of . We can use the orientation of R3,
together with the orientation of the component of S, to equivariantly orient the nor-
mal bundle. Since the normal bundle is a line bundle, it therefore has an equivariant
section of constant length. ]

Remark 5.5. If each ¢; is the square of an abelian differential ¢;, then clearly

P13 = c*
with ¢ = ajar3.

If the quadratic differentials ¢; are not complex multiples of one another, then
neither are their lifts ¢; to the cameral curve. Hence, the minimal map from the lift
of the cameral curve is non-flat, so any o-equivariant deformation of constant length
will be destabilizing.

The final step is to show that there are non-flat solutions even in genus 2 to the
equations ¢1¢,¢3 = ¢ and ¢1 + ¢ + ¢3 = 0. For any g > 2, let , be the moduli
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space of genus g Riemann surfaces S together with a triple of quadratic differen-
tials ¢»; summing to zero whose product is a square and which are not all complex
multiples of one another.

Proposition 5.6. The moduli space P, has dimension 3.

Proof. Consider the three-dimensional family of algebraic curves
w?=z(z—-1)(z—a)(iz—b)(z—c)

for (0, 1, a, b, ¢) distinct complex numbers. This is a finite covering of the moduli
space of genus 2 Riemann surfaces. Every holomorphic quadratic differential on a
curve in this family is of the form p(z)(dz)?/w? for p(z) a polynomial of degree
at most 2. If the roots of p(z) are branch points of the curve, then the quadratic
differential vanishes to order two at the corresponding point of the curve. For arbitrary
a and b, and c¢ to be determined, let
2
br=z2-1
w
2
b2 = (b —a)
w
where p(a,b) = —b(b —1)/(b — a) is chosen so that ¢; + ¢, vanishes at b (equival-
ently, that the corresponding quadratic polynomial vanishes at b). A short computation
shows that the other root of the polynomial for ¢y + ¢, is at a(b — 1)/(b — a), so
if this happens to be the value of ¢, then the sextic differential ¢;¢o¢3 vanishes to
order two at each of the six branch points of the curve (including co). Hence it is
the square of the cubic differential dz3/w?, which vanishes to order one at each of
these points. Including a parameter rescaling ¢1, ¢, and ¢3, this shows that 5, has
dimension 3. ]

For example we could take a = —1,b =i, and ¢ = —i to get a solution on the

5

hyperelliptic curve w? = z° — z. This suffices for the proof of Theorem A.

Remark 5.7. Note that the triples of quadratic differentials in genus 2 are squares of
abelian differentials since the polynomials z(z — 1), etc., are not squares. However,
they still have even order zeros.

Together with [5, Section 6] and the Remark 5.5, this shows the following.

Proposition 5.8. For every genus g > 2, P4 is non-empty and every component has
complex dimension at least 3g — 3.

We give a self-contained proof of this proposition, since it is very brief in the
reference.
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Proof. We have already proved this for genus 2. The canonical map of a hyperelliptic
curve of genus 3 is the vanishing locus of a non-degenerate quadric on CP?; diag-
onalizing this quadric gives three abelian differentials whose squares sum to zero on
the curve. By Remark 5.5, these give points in #3. Since the hyperelliptic locus has
dimension 5, we get a sixth dimension from rescaling the abelian differentials. This
proves the result for g = 3.

In general, taking unramified coverings of a point in %, shows that &, is non-
empty for every g. To get the bound on dimension, we observe that &g is, up to
a double cover, the intersection in the total space of the bundle H°(K?3) over M,
(dimension 14(g — 1)) of the sextic differentials that are squares of cubic differentials
(dimension 8(g — 1)) and those that are the product of three independent quadratic
differentials summing to zero (dimension 9(g — 1)). This gives a lower bound on the
dimension of 8(g — 1) +9(g — 1) — 14(g — 1) =3(g — 1). [
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