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Relations between dynamical degrees, Weil’s Riemann
hypothesis and the standard conjectures

Tuyen Trung Truong

Abstract. Let K be an algebraically closed field, X a smooth projective variety over K and
f:X — X a dominant regular morphism. Let N?(X) be the group of algebraic cycles, of
codimension i, modulo numerical equivalence. Let y( f) be the spectral radius of the pullback
f* H*(X,Q;) > H*(X,Qy) on [-adic cohomology groups, and A(f) the spectral radius
of the pullback f™: N*(X) — N™(X). We prove in this paper, by using consequences of
Deligne’s proof of Weil’s Riemann hypothesis, that y( f) = A(f). This answers affirmatively
a question posed by Esnault and Srinivas. Consequently, the algebraic entropy log y(f) of
an endomorphism is both a birational invariant and étale invariant. More general results are
proven if either K = Fp or the Standard Conjecture D holds (this applies specially to Abelian
varieties). Among other results in the paper, we show that if some properties of dynamical
degrees, known in the case K = C, hold in positive characteristics, then simple proofs of Weil’s
Riemann hypothesis follow. More generally, the analogy in positive characteristic of Serre’s
famous result on polarized endomorphisms of compact Kéhler manifolds also follows.

1. Introduction

The proof of Weil’s conjectures by Deligne is one of the major achievements of
mathematics in the 20th century. Through the visions of Weil and Grothendieck and
many others, the question about counting the number of points in finite fields [ »
(also, asymptotically as n — o0), on a smooth projective variety Xo defined on [F,
is translated to the question about the eigenvalues of the pullbacks (Fr”)* on étale
cohomology groups H*(X, Q;). Here X is the base change of X, to an algebraic
closure I, of I, and Fr is the Frobenius map. Bombieri and Grothendieck thought of
solving Weil’s Riemann hypothesis via the famous standard conjectures [22], but the
proof by Deligne [7, 8] was totally different and surprising. For some good historical
accounts about this, see for example [27], and also see [29] for more modern updates.
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The current paper serves two purposes. First, we use either Weil’s Riemann hypo-
thesis or the Standard Conjecture D (that modulo torsions numerical and homolo-
gical equivalences coincide on algebraic cycles) to extend several known results on
dynamical degrees from complex dynamics to the case of base fields of positive char-
acteristic. Conversely, the second purpose is to point out that if some stronger results
on dynamical degrees (which are known when the base field is K = C) hold for
base fields of positive characteristic, then we obtain natural generalisations of Weil’s
Riemann hypothesis. Thus, it is demonstrated here that there is a curious relation
between algebraic dynamics and Weil’s cohomology theories. While results on endo-
morphisms already have abundantly arithmetic applications, there are new situations
where a more general setting - to rational maps and even correspondences - as con-
sidered here may be more useful. For example, in an approach towards the Riemann
hypothesis proposed by Christopher Deninger since about 2 decades ago, analogues
of Weil’s Riemann hypothesis for singular foliations — closer to rational maps and
correspondences than to endomorphisms — are needed (see e.g. [9] and references
therein). Also, our new viewpoint allows natural generalisations to varieties and maps
(or correspondences) defined over an arbitrary field of positive characteristic, not just
finite fields.

This paper was inspired by the results of Esnault and Srinivas [18] on automorph-
isms of surfaces. In the remaining of this introduction, we pose some questions to be
studied in the paper and then state the main results. To make the presentation concise,
we collect some background materials on correspondences and dynamical degrees in
Section 2.

Remark. This paper is a slight revision of [38], in response to some comments
from readers. In the time between, there have been some new papers — including
the author’s joint work — which support the conjectures in this paper, and shed new
lights on relations between the line of the conjectures and the standard conjectures (in
particular, the Standard Conjecture D), and point to a more doable way than the stand-
ard conjectures to solve the positive characteristic analogue of Serre’s famous result
on polarized endomorphisms of compact Kédhler manifolds [34] (which has been the
inspiration for the standard conjectures) — see Question 2 below — as well as a general-
isation of semi-simplicity conjecture to all polarized endomorphisms. In a subsequent
joint paper [25], we showed that this effective version of Standard Conjecture C — for
graphs of polarized endomorphisms — is a consequence of the standard conjectures.
Our new approach is unconditionally applicable for example to Kummer surfaces, for
which the approach through standard conjectures is not yet known to be realisable.
(See the next subsection on Question 2 and other questions, and a discussion on their
current situation.) However, to preserve the history, we keep the change as minimum
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as possible, mostly only add more explicit pointers from references to the arguments
in the arXiv version and restructure the organisation for to help better understanding.

1.1. Questions

Let K be an algebraically closed field of arbitrary characteristic, X a smooth project-
ive variety over K and f: X — X a correspondence. A correspondence is roughly an
algebraic cycle of X x X whose dimension is exactly dim(X). Examples of interest
include regular morphisms, rational maps and a convex combination of such. The lat-
ter means algebraic cycles of the form ) ,.; a;T;, where [ is a finite set, I'; is the
graph of an endomorphism, and g; is a positive integer. See Section 2 for a precise
definition. Weil’s Riemann hypothesis can be stated in terms of the following num-
bers A; and y;, see Theorem 1.5 and Section 4 for more details.

We first consider the groups N (X) of algebraic cycles of codimension i modulo
numerical equivalence, with Z coefficients. These are free Abelian groups of finite
ranks (see [20, Chapter 19] or [18, Section 6.2]). We let N (X)r = N (X) ®z R be
regarded as a real vector space. We define A; (/) to be the numbers

Ai(f) := limsup [|(F™)* i e I
n—oo

where we fix any norm on the finite-dimensional vector space N’(X)gr. We recall
here that if A: M — N is a linear map between two real vector spaces, with given
norms |.||as and ||.||x, then

JAll = sup [ Av]y.
lvllar=1
In [39] (recalled in Section 2 below), we showed that in fact the limsup can be
replaced by lim, and all numbers A;( f) are finite. Why A; (/) is independent of the
choice of the norm on N?(X)g can be easily seen as follows. Since N’ (X ) is finite-
dimensional, any two norms on it are equivalent, see [16, Section IV.3.1, Lemma 1].
That is, let ||.||; and ||.||> be two norms on N’(X)g, then there is a constant C > 0
such that
C7'vlly < vz < Cllv|2

forall v € N*(X)R. This implies that there is a constant D > 0 such that foralln € N,
we have

D_1||(fn)*|Ni(X)R”1 = ||(fn)*|N"(X)R||2 = D”(fn)*|Ni(X)R”1’

and hence by taking the nth roots and limit when n — oo we see that the limit is
independent of the choice of the norm, as asserted. Moreover, if &£ is an ample divisor
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on X, then we can compute A, (/) as follows (this is because a fixed multiple ¢ £ will
bound the classes of algebraic cycles whose norm is < 1):

A-p(f) — nli)n,olo((fn)*(ip).idim()()—p)l/n. (1.1)
Also, we define y;(f) to be the numbers

Xxi (f) = limsup [|(F™)* i x.op I
n—oo

here we fix any norm on the finite-dimensional vector space H’(X, Q;). In contrast to
the A;(f)’s, the finiteness of y; (f)’s is not obvious, although by definition we have
x2i (f) = A; (f). We also do not know whether the lim sup in the definition for y; ()
can be replaced by lim.

We may call the number

log7(f) :=log _ max  xi(f).

the algebraic entropy.

These numbers A;( f) and y;(f) have been extensively studied when K = C in
the context of complex dynamics. They are called dynamical degrees in that setting
and are important to the dynamical properties of f, see Section 2 for more details.
The known results in the case K = C (see Section 2) and recent results of Esnault and
Srinivas [18] on automorphisms of surfaces over positive characteristic inspire us to
study the following questions.

Question 1. Is y; (f) finite foralli = 0,...,2dim(X)?
Question 2. Is y2;(f) = A; (f) forall i?

Question 3 (Product formula). Let f: X — X, g:Y — Y be dominant rational maps
and r: X — Y be a dominant rational map so that 7 o f = g o . Is it true that we
can define the relative dynamical degrees y»;( f'|r) which satisfy the relations

12p(f) = 0 DX 12i (&) x20p—iy (f|),
0<p—i<dim(X)—dim(Y)

forall p =0,...,dim(X)?
Question 4 (Dinh’s inequality). Is y; (f)? < maxptq4=i Ap(f)A4(f)?

The following weaker version of Question 4 is enough for applications to dynam-
ics (cf. Gromov—Yomdin’s theorem and Gromov—Dinh-Sibony’s inequality in Sec-
tion 2.2).

Question 4. Is max;—o,... 24im(x) Xi (f) = max;=o,..dim(x) i (f)?
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Question 5. Are y,;(f) birational invariants? This means that if f: X — X and
g:Y — Y are dominant rational maps, and 7: X — Y is a birational map such that
f =m0 goum,then we should have y2;(f) = x2i(g) foralli.

Remarks. Here we provide an overview of the current situation (December 2022) of
the above questions.

First, a general remark: Note that all of these questions have affirmative answers
when K = C, see Section 2. A crucial advantage in working with C is that we have
positivity notions, induced from positive closed forms and currents, on cohomology
classes. More precisely, if X is a compact Kihler manifold and w is a Kéhler form
on X, and « is an arbitrary smooth real form of degree 2i on X, then there is a constant
C > 0 such that Co' — « is a positive form. As a consequence, if f: X — X is a
dominant meromorphic map, then || /*|g2i (x| is comparable to ||f*(a)i)||H2i(X).
These positivity notions are not yet available on fields of positive characteristics.

Second, another general remark: Because of properties of dynamical degrees [39],
an affirmative answer to Question 2 automatically yields affirmative answers to Ques-
tions 4" and 5, and part of Question 1 for y,;’s. Likewise, if both Question 2 and
Question 4 have affirmative answers, then Question 1 has an affirmative answer also
for yzi+1’s.

Third, yet another general remark: In [24], it is now shown that an effective ver-
sion of Standard Conjecture C for graphs of polarized endomorphisms is enough to
solve Question 2 for polarized endomorphisms, and a combination of the mentioned
effective version of Standard Conjecture C (again, for graphs of polarized endomorph-
isms) and Standard Conjecture D are enough to solve Questions 1, 2, 4, 4’ and 5, as
well as a semi-simplicity property.

For Question 1. 1t is trivially solved in the affirmative when f is a regular morphism,
otherwise the question is still widely open. Some special cases when it is (partly)
solved in the affirmative:

(i) when Question 2 (or both Question 2 and Question 4) has an affirmative
answer;

(ii) if X is an Abelian variety defined over a finite field and / is an appropriate
chosen prime number, see the discussion after the statement of Theorem 1.1;

(iii) X is a Kummer surface, see [24].

For Question 2. Theorem 1.4 solves Question 2 in affirmative for a large class of cor-
respondences of surfaces. Hu [23] solves in the affirmative Question 2 for endomorph-
isms of Abelian varieties. More recently, [24] solves in the affirmative Question 2 for
more general correspondences of Abelian varieties and Kummer surfaces.
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For Question 3. Note that here we do not know that whether the relative dynamical
degrees y2;(f|m) — which are more general than the dynamical degrees — can be
defined on /-adic cohomology groups, hence the question mark. If it would be, the
idea is to mimic the definition in the case of base field C in [11] or in the case of
base field of arbitrary characteristic but only on the groups N’(X)g in [39]. Since
the actual definition of these numbers are complicated, we refer the readers to the
mentioned papers. In this paper, we do not need a precise definition of the relat-
ive dynamical degrees, but mainly only need the above relation (product formula)
between dynamical degrees of f, dynamical degree of g and the relative dynamical
degrees, as well as the fact that the relative dynamical degrees should be 1 when &
has finite degree.

For Question 4. Hu-Truong [24] solve Question 4 in the affirmative in two cases:
(i) X is an Abelian variety and / is an appropriate chosen prime number;

(i1) X is a Kummer surface.

For Question 4. Theorem 1.1 solves Question 4’ in two cases:

(i) f is a regular morphism (a different proof exploring the poles of zeta func-
tions was presented later in [35]);

(i) X is an Abelian variety defined over a finite field and / is an appropriate
chosen prime number, see the discussion after the statement of Theorem 1.1.
Hu-Truong [24] solve Question 4’ for Kummer surfaces.

For Question 5. Hu—Truong [24] solve Question 5 in the affirmative in some cases:

@ x20/):

(ii) for general y,;(f)’s if X is an Abelian variety defined over a finite field
and / is an appropriate chosen prime number;

(ii1) X is a Kummer surface.

1.2. Main results

Here we state main results of the paper. We recall that we work on an algebraically
closed field K of arbitrary characteristic. We use the convention that a variety is irre-
ducible.

We mention a relevant standard conjecture on algebraic cycles. We will denote
by Z! (X) the set of algebraic cycles on X of codimension i whose image in

hom

H?(X,Q) is 0; and by Z! _(X) the set of algebraic cycles on X of codimension i
which are 0 under the numerical equivalence, that is those cycles V' for which the

intersection product V.W = 0 for all algebraic cycles W of dimension i; see [20] for
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detail. The following weaker version of the Standard Conjecture D is sufficient for
our purpose.

The numerical-homological equivalences condition. Given a smooth projective
variety Z of even dimension 2k’, we say that NH(Z) holds if

zZE (Z2)®Q=2F (Z)®Q

for the middle-degree cohomology group H2K'(Z, Q).
The first result answers Questions 1 and 4’.

Theorem 1.1. The following statements hold.
(1) Assume that NH(X x X) holds. Then, Questions 1 and 4’ have affirmative

answers. More precisely, if f: X — X is a dominant correspondence, then

xi(f) <  max (X))tp(f),

p=0,...,dim

foralli =0,...,2dim(X).

(2) Assume that f: X — X is a regular morphism. Then Questions 1 and 4" have
affirmative answers.

Part (2) of the theorem answers affirmatively a question posed in [18, Section 6.3].
Here, we do not need the “dominant” assumption, which is only needed in the case of
rational maps or correspondences in order to be able to compose f with itself many
times. By [4], NH(X x X) holds if X is an Abelian variety defined over a finite field
and / is a prime number appropriately chosen, hence part (1) applies. A different proof
of part (2) exploring the poles of zeta functions was presented later in [35].

In the case X is defined over a finite field, a weaker version of part (1) of The-
orem 1.1 holds unconditionally as well.

Theorem 1.2. Let K = Fp, the algebraic closure of a finite field Fp. Let X be a
smooth projective variety over K, and f:bX — X a correspondence. Denote by
sp((/™")* i (x,0,)) the spectral radius of the pullback

(f"* H (X, Q) - H (X, Q).

Then,

limsup s Y i n max A
m sup p((f ™) i x.0p) s M »(f)

foralli =0,...,2dim(X).

As a consequence of Theorem 1.1, the algebraic entropy log y(f) of surjective
endomorphisms is both a birational invariant and €tale invariant. This means that
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if f:X - X andg:Y — Y are surjective endomorphisms, and 7: X — Y is a dom-
inant rational map of finite degree such that 7 o f = g o 7, then

log x(f) = log x(g).

If 7 is a regular morphism, then one does not need the assumption that f and g are
surjective (this assumption is only needed to define compositions of the concerned
maps). More generally, we have the following result, which is an analogue of a clas-
sical result of Bowen on topological entropy of continuous dynamical systems on
compact metric spaces ([3, Theorem 17]). By the proof of the consequence, provided
the Standard Conjecture D holds, the same conclusion holds for rational maps and a
slightly weaker conclusion holds for all correspondences.

Corollary 1.3. Let X,Y be smooth projective varieties over K of the same dimen-
sion, f:X — X and g:Y — Y dominant regular morphisms. Assume that there is
a dominant rational map (necessarily has generic finite fibres) m: X — Y, so that
mwo f =gomn. Then

max i = max i .
i=0. maim(x) X! () i=0. maim(x) X! &)

Proof. This follows from the corresponding properties for the geometric dynamical
degrees A; (/) and A;(g) ([39, Theorems 1.1 and 1.3]) and Theorem 1.1 (2) above. =

As another consequence of Theorem 1.1, we answer Question 2 for a large class
of correspondences on surfaces.

Theorem 1.4. Let X be a smooth projective surface over K, and f: X — X a dom-
inant correspondence with A1(f) = max{Ao(f), A2(f)}.

(1) Assume that NH(X x X) holds. Then x2(f) = A1(f). Moreover,

max{y1(f). x3(/)} = A1(f).

(2) Assume that f is a regular morphism. Then x2(f) = A1(f). Moreover,

max{1(f), x3(f)} = A:(f).

If f is an automorphism (or more generally, a birational map), then

Ao(f) =2A2(f) =1 and A(f) =1

Hence, Theorem 1.4 (2) applies. Note that this case, i.e., f is an automorphism of
a surface, was solved by Esnault and Srinivas in [18]. Their proof makes use of the
classification of surfaces and is not purely algebraic (because at some part of the proof,
they need to use the lifting to characteristic 0, and use the known results in that case).
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They also mentioned an algebraic proof of their result, suggested by P. Deligne, under
the assumption that the standard conjectures hold. Another case is Abelian varieties
over finite fields, where it is known that for infinitely many prime numbers / the
conjecture NH (X x X) holds [4]. Thus, we can apply Theorem 1.4 (1). (A very recent
joint paper by Fei Hu and the author [24] proves more general results for Abelian
varieties.)

Remark. By the results in [26], all the above results are valid for any Weil’s cohomo-
logy theory (recall that these theories satisfy the Poincaré duality and Weak Lefschetz
axiom, as required for a “reasonable” cohomology theory in [26], this fact is also
mentioned in the cited paper and in, for example, [27]).

Some other results related to Questions 2 and 3 will be proven in the last section
of this paper. The last main result concerns the relation between the above questions
and Weil’s Riemann hypothesis.

Theorem 1.5. If Question 2 or Question 3 or Question 4 has an affirmative answer,
then Weil’s Riemann hypothesis. More generally, the positive characteristic analogue
of Serre’s result [34] also follows.

This theorem suggests an alternative approach towards solving Weil’s Riemann
hypothesis and its generalisations, such as the positive characteristic analogue of
Serre’s result, which may not need to go through exploring the poles of zeta functions
like in Deligne’s proof. See, e.g., [25] for a further development, which needs weaker
assumptions than the standard conjectures approach by Bombieri and Grothendieck,
where some new cases — results more general than the positive characteristic analogue
of Serre’s result on Abelian varieties and Kummer’s surfaces — are solved.

1.3. Plan of the paper

Some background materials are collected in Section 2. In Section 3 we prove The-
orems 1.1, 1.2 and 1.4. In Section 4 we prove Theorem 1.5. In the last section we
discuss an approach toward solving Questions 2 and 3, the main result in that section
is Theorem 5.2.

Two main ideas are used throughout the paper. The first one is that by working
on X x X, some questions about pulling back of a correspondence f: X — X on
[-adic cohomology groups may be reduced to questions about algebraic cycles only.
The second one is that given a dominant correspondence f: X — X and a dominant
regular morphism with finite fibres 7: X — Y, we can consider the pushforward

&n =7T*(fn):Y —->Y

to study the dynamics of f.
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2. Preliminaries

In this section, we recall some background on correspondences and dynamical deg-
rees, as well as Weil’s Riemann hypothesis.

2.1. A brief summary on correspondences

Let K be a field and X, Y irreducible (not necessarily smooth or projective) varieties.
A correspondence f: X — Y is given by an algebraic cycle

m
Ip=)Y T

i=1
on X x Y, where m is a positive integer and I'; C X x Y are irreducible subvarieties
of dimension exactly dim(X). We do not assume that I'; are distinct, and hence may
write the above sum as ) a;T'j, where I'; are distinct and a; are positive integers.
We will call I's the graph of f, by abusing the usual notation when f is a rational
map.

If f is a correspondence and @ € N, we denote by a f the correspondence whose
graph is al'y. In other words, if I'y = >, I';, then I'yy = >, al';. If T'y = aT,
where I is irreducible and a € N, we say that the correspondence f is irreducible. A
rational map f is an irreducible correspondence, since its graph is irreducible.

A correspondence is dominant if for each i in the sum, the two natural projections
from I'; to X, Y are dominant. Dominant correspondences can be composed and the
resulting correspondence is also dominant. This can be done as follows. Let I': X — Y
and I'": Y — Z be dominant correspondences, which we can assume to be irreducible
(in the general case we can use linearity to define). Let

71,70, M3 X XY XZ >YXxZ,XXxZ, XY

be the canonical projections. There are non-empty Zariski open sets I'y C I' and
Iy C T such that the canonical projection maps I'g — X,Y and ') — Y, Z are
flat. Then we define

IMol:X »> Z

as the Zariski closure in X x Z of the algebraic cycle 75, (73 (Fo) N 77 (). In
case I" and T are the graphs of two dominant rational maps f and f’, then TV o " as
defined above is the same as the graph of the dominant rational map f’ o f.

Given two dominant correspondences f: X — X and g: Y — Y, we say that they
are semi-conjugate if there is a dominant rational map w: X — Y such that w o f =
g o . We will simply write 7: (X, f) — (Y, g) to mean that 7 is a dominant rational
map semi-conjugating (X, f) and (Y, g).
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Let w: X — Y be a dominant regular morphism with finite fibres, f: X — X
and g: Y — Y dominant correspondences. We define 7*(g) to be the correspondence
on X whose graph is (7 x 7)*(I'y), and define 74 ( f') to be the correspondence on Y
whose graph is (7 x 7)«(I'y).

Remarks. If f: X — X is a correspondence, and X is smooth projective, then we
can define pullback and pushforward of algebraic cycles and cohomology classes in
the following way. Let pry, pry: X X X — X be the projections (recall that they are
both proper and smooth, given the assumption on X). Then for an algebraic cycle «:

I (@) == (pry)«[pr3 (@).I].
Jx(@) = (pry)«[pry(@).Iy].

Note that (in contrast to a more common use of correspondences in Algebraic Geo-
metry), the definition of compositions of dominant correspondences in this paper is
modelled after that of the compositions of rational maps. Therefore, in general we
have (f2)* # (f*)?, and so on. This phenomenon of non-compatibility between
pullback and iteration was first studied on projective spaces in [19], under the name
of algebraic instability. One simple example is that of the standard Cremona map
f:P? — P2 given by the formula

S X0, x1,x2] = [x1X2 1 X2X0 : XoX1].

Then it can be easily computed that f o f = id, and hence (f o f)* = the multipli-
city by 1 on cohomology classes. On the other hand, f* is the multiplicity by 2 on
H?(P?), and hence f* o f* is the multiplicity by 4 on H?(P?).

2.2. Relative dynamical degrees on complex projective varieties and compact
Kahler manifolds

One of the main advantages when working in dynamics over the complex field C
is the existence of positive closed forms and currents, and consequently a positivity
notion for cohomological classes.

We recall that a meromorphic map between two complex manifolds X and Y,
written f: X --> Y, is a holomorphic map f: X\I/(f) — Y, where I(f) is a proper
analytic subvariety of X. If the image of f is dense in ¥ we say that the map is
dominant. If X = Y we say that the map is a selfmap. One important tool in Com-
plex Dynamics is dynamical degrees for dominant meromorphic selfmaps. They are
bimeromorphic invariants of a meromorphic selfmap f: X — X of a compact Kihler
manifold X. The pth dynamical degree A,(f) is the exponential growth rate of the
spectral radii of the pullbacks ( f”)* on the Dolbeault cohomology group H ?:?(X).
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For a surjective holomorphic map f, the dynamical degree A, (/) is simply the spec-
tral radius sp(f*|gr.»(x)) of f*: HP"P(X) — HPP(X). Recall that for a linear
map L on a complex vector space, the spectral radius sp(L) is the maximum of the
absolute values of eigenvalues of L. Fundamental results of Gromov [21] and Yom-
din [42] expressed the topological entropy of a surjective holomorphic map in terms
of its dynamical degrees
hop(f) =log | _max  Ap(f).

Since then, dynamical degrees have played a more and more important role in dynam-
ics of meromorphic maps. In many results and conjectures in Complex Dynamics in
higher dimensions, dynamical degrees play a central role.

Let X be a compact Kihler manifold of dimension k with a Kahler form wy, and
let f: X — X be a dominant meromorphic map. For 0 < p < k, the pth dynamical
degree A, (f) of f is defined as follows (we use the same notation as before, because
indeed if X is a complex projective manifold, then this dynamical degree is the same
as defined before using algebraic cycles via equation (1.1), since the cohomological
class of a very ample divisor represents a Kihler form)

1/n
() = tim ([ @praak ) e

The existence of the limit in the above expression is non-trivial and has been proven
by Russakovskii and Shiffman [33] when X = Pk and by Dinh and Sibony [13, 14]
when X is compact Kihler. Both of these results use regularisation of positive closed
currents. The limit in (2.1) is important in showing that dynamical degrees are bira-
tional invariants. The dynamical degrees satisfy the log-concavity

Ai(ig2(f) < Xig1(f)?

foralli =0,...,dim(X). This is a consequence of the mixed Hodge-Riemann the-
orem. For a dominant meromorphic map, Ao(f) = 1, while A (f) is its topological
degree (i.e. the number of preimages under f of a generic point). The first dynamical
degree A1(f) was used earlier to study Green currents in complex dynamics (first
introduced by N. Sibony), see e.g. [1] for surfaces and [19] for higher dimensions.
In recent work [6], it is shown that these dynamical degrees can be calculated as the
spectral radius of some linear operator on an infinitely-dimensional Banach space
constructed from divisors on all birational models of the concerned variety X .

For meromorphic maps of compact Kéhler manifolds with invariant fibrations,
a more general notion called relative dynamical degrees has been defined by Dinh
and Nguyen in [11]. (Here, by a fibration we simply mean a dominant rational map,
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without any additional requirements.) The “product formulas™ (see the next subsec-
tion) provide a very useful tool to check whether a meromorphic map is primitive
(i.e. has no invariant fibrations over a base which is of smaller dimension and not a
point, see [43]). In another direction, when K = C, Dinh and Sibony [15] defined
dynamical degrees and topological entropy for meromorphic correspondences over
irreducible varieties (the definition of correspondences in the analytic setting is sim-
ilar to that in the algebraic setting, the only difference is one uses analytic varieties
instead). For any dominant correspondence f (in the analytic category) of a compact
Kihler manifold, the following Gromov—Dinh—-Sibony’s inequality holds:

h <lo max A .
wl(f) <log _max  dp(f)

Computations of dynamical degrees of so-called Hurwitz correspondences of the
moduli spaces Mo y were given in [32], wherein a proof that dynamical degrees of
correspondences (over K = C, and for irreducible varieties) are birational invariants
was also given.

2.2.1. Product formula. Let f/: X — X and g: Y — Y be dominant rational maps,
where X and Y are smooth complex projective varieties. Assume also that there is
a dominant rational map 7: X — Y so that w o f = g o w. Dinh and Nguyen [11]
defined relative dynamical degrees A; (f|x) fori =0, ...,dim(X) — dim(Y), which
are birational invariants. In case ¥ = a point, these relative dynamical degrees are the
same as the dynamical degrees mentioned above. Moreover, they also defined relative
dynamical degrees in the Kihler setting. Roughly speaking, the idea is to consider
not the growth of the pullback map on the whole cohomology group H?*(X), but the
growth relative to the fibres of the map w. The actual definition is quite involved so
we refer the readers to the cited papers, and discuss in the following only some special
cases which are enough for the applications in this paper. They proved the following
result in the algebraic setting.

Product formula. Forall p =0, ...,dim(X), we have

Ap(f) = “max Ai(@)Ap-i(flm).
0<i<dim(Y),
0<p—i<dim(X)—dim(Y)

The product formula in the Kéhler setting for meromorphic maps was proven
in [12]. For meromorphic maps, the definition of the relative dynamical degrees is
rather more involved than for rational maps, so we refer the readers to the cited papers.
We describe how to compute them in the following three special cases, which are
enough for applications in this paper. (Here, the results are valid in both algebraic and
analytic categories.)
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Casel. X =Y xZ, f =gxhisaproduct map,and 7: X =Y x Z — Y is the
projection onto Y. In this case,

Aj(flm) = A;(h)
for all j. Proving the product formula in this case is, via the Kunneth’s formula,
reduced to simple properties of the eigenvalues of a tensor product of linear maps.

Case 2. Assume that y° € Y is a “good” periodic point of order m of g (meaning
that it is a periodic point of g, and it lies outside a proper Zariski closed set explicitly
constructed in terms of g and m, see [11] for detail). Then

L (F1) = 4 (™ em150) ™

This explains the use of the notation and also the intuitive meaning that relative
dynamical degrees are the dynamical degrees of the restriction of f on the fibres
of .

Case 3. dim(X) = dim(Y') (equi-dimensional). In this case A; (f) = A;(g) for all j,
and the only relative dynamical degree is Ao(f|7r) = 1. This follows from the fact
that

Ao(f) = Ao(g)Ao(f )
(by the product formula) and

Ao(f) = Ao(g) =1

(property of dynamical degrees of rational maps).

2.2.2. Dinh’s inequality. In the analytic setting, we define
i (f) = limsup [|(f™)*| g .oy "™
n—>oo

Here, we can choose any norm on the finite-dimensional vector space H'(X, C).
From the results mentioned above (i.e., (2.1)),

x2i (f) = Ai(f),

and in this case lim sup can be replaced by lim. However, when i is an odd number,
we do not know whether lim sup in the definition of y;(f) can be replaced by lim.
Dinh [10] showed the following inequality, by using weakly positive closed smooth
forms

xi()? < max A,(f)Ag(f).
ptg=i



Dynamical degrees, Weil’s Riemann hypothesis and the standard conjectures 75

2.3. Relative dynamical degrees in positive characteristics

One main difficulty in extending the results in the previous section to the positive
characteristic case is that there is not yet a suitable notion of positivity on /-adic
cohomology groups.

Recently, research on birational maps of surfaces over an algebraically closed
field of arbitrary characteristic has been increased significantly. As some examples,
we refer the reader to [2, 17, 18,30,41]. In these results, (relative) dynamical degrees
also play an important role.

In the case of positive characteristic, positivity notions are not yet available on /-
adic cohomology groups. This lets open the question of how to define cohomological
dynamical degrees in the case of positive characteristic. In contrast, in [39, The-
orem 1.1 (1)] we established the formula (1.1), for every correspondence f. While not
used in this paper, we note that the definition can also be adapted to the case where X
is singular or not irreducible, by using de Jong’s alterations and pullbacks of corres-
pondences by equi-dimensional dominant rational maps, see [39]. Hence it is justified
to call these the geometric dynamical degrees. These geometric dynamical degrees
are again birational invariants ([39, Theorem 1.1 (2)]). The “product formula” is also
proven in [39, Theorem 1.1 (4)] in the setting of correspondences. For some pos-
sible applications of these to topological entropy, in particular the Gromov—Yomdin’s
theorem, see [40]. (After sending out an earlier version of [39], we were informed by
Charles Favre that Nguyen-Bac Dang had been developing an alternative approach for
(relative) geometric dynamical degrees of rational maps on normal projective variet-
ies, see [5].)

For a regular morphism f, one can check that y; (/) = the spectral radius of the
linear map f*: H' (X, Q;) — H'(X, Q). Here we use any fixed embedding of Q;
into C. This is because if f is a regular morphism then for the pullback on cohomo-
logy we have (f")* = (f*)" for all n, and hence by basic results in Linear Algebra,
we have

1™ * i o IV™ = 1) i o 1™

is exactly the spectral radius of f*|gi (x)-.

lim lim
n—>oo n—>oo

Remark. As a consequence of the Riemann hypothesis for positive characteristic,
which was the last and crucial part of Weil’s conjectures and proven by Deligne, this
xi (f) is independent of the embedding of QQ;. However, we will not assume this in
what follows.

Computing the y;(f) for the [-adic cohomology, even on surfaces, is quite a
challenging task in practice. In contrast, as mentioned above, the geometric dynam-
ical degrees A;(f) have some good functorial properties which make computations
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easier. For example (see Section 4 for more details), computing the geometric dynam-
ical degrees of the Frobenius map on any smooth projective variety X can be done by
applying the product formula to a dominant regular morphism 7: X — PP¥ with finite
fibres, utilising the fact that the dynamical degrees of a regular morphism of P* are
very easy to describe.

For a general correspondence, taking the clues from the case K = C, we may
proceed as follows. Let y; () be defined as before. We may call the number

log x(f):=log  max _ xi(f),
i=0,...,2dim(X)

the algebraic entropy.

Note that we always have y2; () > A; (f), but the finiteness of the above numbers
xi(f) is not obvious. The main reason is that we have the cycle map assigning a
cohomology class to algebraic cycles, which is compatible with intersection products
and pullback by maps or correspondences, see [39] for detail. We expect that known
results for relative dynamical degrees on K = C should be carried out to an arbitrary
field.

2.4. Weil’s Riemann hypothesis

Weil’s Riemann hypothesis is the most difficult part of the well-known Weil’s conjec-
tures, see [22]. For the convenience of the readers, we first recall some backgrounds
about Weil’s Riemann hypothesis. Let X be a smooth projective variety defined over
a finite field ;. Let X be the base change of X, to an algebraic closure Fq. Let
Fry: X — X be the Frobenius morphism. A simple expression of it is as follows. On
a projective space PV,

Frlxo : - txn] = [xg 1o 1 x%].
If X C PV, then Fry is simply the restriction of Fr to X. Weil’s Riemann hypothesis
is then the following statement. It was solved by Pierre Deligne [7, 8] in the 1970s.

Weil’s Riemman hypothesis. If« is an eigenvalue of Fr*: H (X, Q;) — H! (X, Q)),
then |o| = ¢'/2.

Serre [34] proved the following result for polarized endomorphisms of compact
Kihler manifolds.

Theorem 2.1. Let X be a compact Kdhler manifold, and f: X — X an endomorph-
ism. Assume that f is polarized, that is there is a Kéhler class w € H*(X,C) and a
positive integer q so that f*(w) = qw. Then if o is an eigenvalue of f*: H (X,C) —
H(X,C), then |a| = ¢'/?. Here H*(X, C) is the usual singular cohomology with
coefficients in C.
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If the positive characteristic analogue of Theorem 2.1 holds, then Weil’s Riemann
hypothesis follows since Frobenius map is a polarized endomorphism. This positive
characteristic analogue inspired Grothendieck and Bombieri to propose the standard
conjectures [22], however it is still open even for surfaces.

3. Proofs of Theorems 1.1, 1.2 and 1.4

Convention. Strictly speaking, for the arguments below to be extremely rigorous,
we need to use the Tate twists of the /-adic cohomology groups in various places. For
example, a subvariety of codimension ¢ of X has cohomology class in H2¢(X,Q;(c)).
Similarly, we also need to use a twist in the Poincaré duality. However, since

HZC(X, Ql(c)) = HZC(X,Q]) ® Ql(c)

and Qy(c) is a 1-dimensional Q; vector space, the computations and estimates on
H?°(X,Qj(c)) and H?¢(X, Q) are almost identical. For simplicity, the symbols for
the twists are suppressed. (See also [28, Remark 25.5].)

Let Z be a smooth projective variety of even dimension 2k’. Assume that NH (Z)
holds. We then construct a useful decomposition on H2K"(Z, Q;). By Poincaré dual-
ity, the intersection product

(,):H* (Z2,Q) x H*(Z,Q;) — Q,

is symmetric and non-degenerate. Under the assumption that N H(Z) holds, we will
prove that there is a decomposition:

H*(z,Q) = H¥ (z.Q) e HF (Z.Q).

Here Hazlg/(Z, Q) (the algebraic part) is the QQ;-vector subspace generated by the
images of algebraic cycles (under the cycle map) in H2*'(Z,Q;); and H2*' (Z,Qy)
(the transcendental part) is the orthogonal complement of ng/(Z , Q;) under the

intersection product. In other words,

H}(Z2,Q) :={a e H¥(Z,Q)): a.p=0, VB € H'(Z.Q))}.

This decomposition is based on the following lemma, whose proof is standard and
hence is skipped.

Lemma 3.1. Assume that condition NH(Z) holds. Then the intersection product

H3¥(z,.Q) x H3¥ (2,Q) > @

is non-degenerate and symmetric.
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We let oy, . .., ®, be an orthogonal basis for Hzﬁg/(X ,Qy), with respect to the cup
product (which always exists, since the characteristic of QQ; is 0, and the cup product is
symmetric). The non-degeneracy of cup product (Lemma 3.1) implies that «;.o; # O

foralli.If x € H2'(Z,Q,), we define

Then it is easy to check that x’ € ng/(Z, Q). x" € H?*(Z,Q;) and x = x" 4 x".
Moreover, this decomposition of x is unique. Hence, we have the desired decompos-
ition. We denote by t: H*'(Z,Q;) — Hazlg/(Z, Q) the projection to the algebraic
part.

We also present another preliminary result before the proofs of the main results.
Assume that f: X — X is a correspondence. Let a1, . . ., a,, be a basis for H* (X, Q;)
and B1,...,Bm be abasis for H29mX)~I (X Q). Fix arbitrary norms on H* (X, Q;)
and H29mX)~/ (¥ @Q;), and an embedding of Q; into C. We let |.| be the induced
absolute value on Q;. Then there are positive constants C1, C, > 0, independent of f,

such that
Ci Y 1 @Bl = 1 mixopl =C2 Y. 1/* @) Bl B.D)
p.q9=1,...m p.q=1,....m

Indeed, since all norms on a finite-dimensional vector space over a field of charac-
teristic 0 (more precisely, the concerned field is QQ;) are equivalent, see [16, Sec-
tion IV.3.1, Lemma 1], we can work with special norms which are defined next. Since
the intersection product

H' (X, Q) x H*®™ X~ (X Q) — Q

is non-degenerate, the following is a norm on H' (X, Q;): if« € H' (X, Q;), then

m

lall =3 leByl.

q=1

By definition of the operator norm, we then have

1" i xopll = ||Sl||ll—)1 If* @) = sup Y1/ *(@)-Byl-

lal=1 7=

The left-hand side inequality of (3.1) is obvious if we choose

1 m
==X el
L —
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The right-hand side inequality of (3.1) follows provided that if

a= Z xpap and o <1,

then max,—1,...m |Xp| < C for some positive constant C. The latter claim is a simple
consequence of the fact that on a finite-dimensional vector space, any two norms are
equivalent. We then apply this fact to two norms. The first is the norm ||.|| chosen
above. The second is the one

m

loell” := > " Ix,p .

=1
Now we are ready for the proofs of the results.

Proof of Theorem 1.1. (1) Fix an integer i between 0, . .., 2dim(X). It is sufficient to
..... dgim(x) Ai (f), then

Jim ™) s e /A" = 0.

prove that given A > max; —¢

Let a1, ..., a;, be a basis for (X, Q;) and let B1,...,Bm be a basis for
H2dmX)=i (X ;). Then by (3.1), we have

1™ mixaopl € Y. 1™ @p)-Bql.

p.q=1,..m

where C is independent of .
Hence, it is enough to show that for any p,q = 1,...,m,

Tim [(/™)* (@) ql/A" = 0. (3.2)

Letpr;,pry: X x X — X x X be the two projections. Then, under the assumption
that NH (X x X) holds, we have

[(f™) (p).Bql = [Tpn.pry(ep). pri(Bg)l = [Tn.T(pry(ep). pri(Bg))l-

Since t(pr5(tp). pri(By)) is represented by an algebraic cycle of dimension &, it
then follows from the results in [39] that we have the desired result in (3.2). More
precisely, the results we used here are the following. First ([39, Lemma 2.2]), for any
effective algebraic cycle V of codimension k on X x X,

[Trn. V| < Cdeg(I'pn)deg(V),

where deg(.) is the degree of an algebraic cycle in a fixed embedding of X x X into
a projective space, and C > 0 is a positive constant independent of n, f and V.
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Second, let £ be an ample divisor on X. Then prj(£) + prj(£) is an ample
divisor on X. The number deg(I's») can be computed against prj (£) + pr3(&£), and
hence is

E3 % imX
Tpn (prf () + pr3 ()™

dim(X)
> Tpn.pri(eh). pry (£4m0 )
i=0

dim(X)
Y Tpnpry)u pri(£h). 250
i=0

dim(X)
Z (fn)*(ii)‘idim(X)—i )

i=0

deg(I'sn)

By (1.1), for each i, we have
lim ((fn)*(ii).idim(X)—i) 1/n — Ai (f)
n—>oo
It easily follows that

lim deg(Tn)/" = 1i(f). 3.3
im_deg(T'yn) i=0 i (X) (/) G3)

(2) The proof is similar, but here we need to use Weil’s Riemann hypothesis. Let
A > max;—g, . dim(X) 4i (f). Since f is a regular morphism, we obtain

xi(f) = Sp(f*|Hi(X,@l))»

where sp( f*| g (X,0 1)) is the largest absolute value of the eigenvalues of
frHNX, Q) — HY(X. Q).

(Here again the absolute value is induced from the given embedding of Q; into C.)
It suffices to consider the case where X has positive characteristic p. Then, we
may assume that X and f are defined on some finite field IF,. We recall briefly this
well-known “spreading out” and “specialization” argument. By [31, Theorem 3.2.1],
there is (by collecting the coefficients in the defining equations for X and f), a sub-
ring R of K, finitely generated over IF, so that X is the generic fibre of a smooth pro-
jective scheme X over Spec(R) and f is the generic fibre of a morphism F: X — X
over Spec(R) Let X be a special fibre defined over a finite field Fy, and fo = F| Xo-
Define X, and fo to be the base change of Xy and fy to the algebraic closure IF
of IF,. The proper-smooth base change theorem ([28, Chapter 20]) then implies that

Te[(f")*: H (X, Q1) — H (X, Qp)] = Te[(f&)*: H (X0, Q1) — H' (X0, Q)]
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for all n. While X, may have more algebraic cycles than X, the specialisation of
algebraic cycles ([20, Chapter 20]) and (1.1) imply that geometric dynamical degrees
are lower-semicontinuous, and hence A; () > A;( f:)) for all i. Indeed, let L be a
very ample divisor on X whose specialisation to X is denoted by L. Fix a number
0 <i < dim(X). Then ( f™)*(L") is an intersection of nef divisors. If ( f")* (L") spe-
cializes to Z; ,, then Z; ,, — (]%")*(Lg) is a psef class. Since specialisation preserves
intersection product of algebraic cycles, we then have

A’i (f) — nli)nolo((fn)*(Li)-Ldim(X)_i)
. dim(X)—i\1/
- lggo(zi,n‘Lo @ l) !

() (Lh).Lgm O™ = 3 (fo).

1/n

>

> lim
n—oo

Therefore, if we can prove the conclusion for ﬁ): Xo — X, then the conclusion
for f: X — X follows. Thus from now on we assume that X is defined over a finite
field.

Let Fr: X x X — X x X be the map (x, y) — (x,Fr(y)), where Fr: X — X is
the Frobenius map. As a consequence of Deligne’s proof of Weil’s Riemann hypo-
thesis, there is a polynomial p; (15}), so that we have the generalized Lefschetz Trace
Formula:

Trn[pi(F0)*A] = (1) TI[(f* H'(X,Q) — H' (X, Q)] (34)

For more detail see [26, Theorem 2 (1)].

By a cohomological endomorphism, we mean a linear operator from H' (X, Q;)
to itself, where i = 0, ...,dim(X). If f is a correspondence on X, then its pullback
on cohomology is a cohomological endomorphism. Note that p; (Fr*) = p;(Fr)*.
Then, the Lefschetz Trace Formula (see e.g. [29, Theorem 2.1]) can be applied to
the cohomological correspondence (in the usual sense, i.e. a linear map between
cohomological groups, recall that if f is a correspondence then f* is its pullback
on cohomological groups, and hence is a linear map between cohomological groups)

(f")* o pi(Fn)* = (pi(Fr) o f™)*:
[Pi(FD)sTym)].A = (Tppigom)-A = (D Te[(f")* - H (X, Q1) — H'(X.Qp)].
Then (3.4) is obtained by observing that by the projection formula:

[pi (Fr)«Tpn)].A = Tpn.[ pi(Fr)*A].

Since the class of p; (ﬁ)*A is an algebraic cycle (with rational coefficients), the
proof is completed by observing that, similarly to part (1),

limsupirfn.[pi(l?r)*A”/A" =0,
n—>oo
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and that (using (f")* = (f*)" for a regular morphism f')

tim sup| Tr[(/")*: H (X, Q) — H' (X, Q)]|"" = sp(f* i x.0p))-

n—>oo

The last (elementary) equality can be deduced from the following simple claim, which
we leave to the readers to verify.

Claim. Let uy, ..., [tm be complex numbers with |p;| = +-- = |im| = 1. For any
& > 0, there exist infinitely many values of positive integers k such that |,uf.c —1]| <e,
and in particular 9’{(;4.‘) >1—c¢forall j. ]

Remarks 3.2. In the original proof of part (2) above, we used the usual Lefschetz
Trace Formula. Then similarly we can bound the alternating sum

2 dim(X)

Y )T HI(X, Q) — H (X, Q)]
i=0

in terms of the geometric dynamical degrees A; (/). However, there may be some can-
cellations in the alternating sum of the traces which do not quite give us the inequality
we need. We thank Peter O’ Sullivan for pointing this out and for suggesting the cor-
rection which we used here.

There is a subtlety when applying the argument of reduction to finite fields in
the proof of Theorem 1.1 (2) to iterations of correspondences (for example, the finite
fields may increase when we increase the number of iterates). If X is already defined
over a finite field, then such a reduction is not needed. There is still another difficulty
arising from the fact that in general we do not have (f")* = (f*)", and hence the
eigenvalues of (f™)* may not be related to those of f*. However, this can be dealt
with by a modification of the proof, and this gives us a proof of Theorem 1.2. Below
we provide a detailed argument.

Proof of Theorem 1.2. Since K = _p is the closure of a finite field, X is actually
defined over a finite field IF;, where g is a power of p. Then we have (see the proof
of Theorem 1.1 (2)) that the projections p;: H*(X,Q;) — H'(X, Q) are all algeb-
raic, that is p; = p; (Fr*) for some polynomials in the pullback Fr* of the Frobenius
Fr: X — X.Welet Fr: X x X — X x X be the map (x, y) — (x, F(y)). Then, by
the proof of the Lefschetz trace formula (see e.g. [29, Theorem 2.1]), which works for
all cohomological correspondences, for any generalized correspondence ¢: X — X
(allowing components of the graph to have negative coefficients or not project dom-
inantly to X'), we have

Typ.pi (F)*(A) = (=1) Te[¢: H(X. Q) — H'(X.Qp)].

We will use this to prove the following claim.
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Claim. Suppose that f: X — X is a dominant correspondence. Then, for all i =
0,...,2dim(X), we have

sp(f "1 mix,q,)) < C deg(Ty),
where C > 0 is independent of f.

Proof of Claim. For any n, we consider the cohomological correspondence
$n = (f)"H*(X.Qp) - H*(X. Q).

Since ¢y = f* is algebraic, it follows that all ¢, are algebraic. That is, we can write
én = (f,1)* — (f;7)*, where f,F are effective algebraic cycles on X x X, and so ¢,
are generalized correspondences. (However, note that some components of fnjE may
not be dominant over X under the projections my, 5, hence fnjE may not be cor-
respondences in the sense we use in Section 2.) Moreover, an iterated use of [39,
Lemma 2.2] shows that we can arrange to have the estimates

deg(£;F) < (2C)" deg(T'y)",

for all n. Here C > 0 is the constant in [39, Lemma 2.2]. It follows again from this
lemma that

I Te[ ()" H (X.Q)) — H (X, Q]| = |Tt[¢n : H(X. Q) > H'(X. Q]|
= |(f;F = £D)-piE)*(D)]
< C(deg(f,") + deg(f,))
< C(2C)" deg(I's)".

Therefore,
2C deg(Ty) > Timsup|Tr[(£*)": H (X, Q) — H' (X, Qp]|""
n—>00
= sp(f"ui (x.0,)-
Here the constant 2C > 0 is independent of f. Thus the proof of claim is finished. =

Now we continue the proof of the theorem. If x;(f) < 1, there is nothing to
prove. Hence, it is sufficient to consider the case y;(f) > 1. Applying the claim to
iterates f” and using (3.3), we have

. * 1/ . 1/
lim sup sp((f") |Hi(X,Q,)) "< hmsup[C deg(an)] "
n—>oo

n—>oo

= max A . ]
p=0,....dim(X) »(f)
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Proof of Theorem 1.4. (1) Since we assume that NH (X x X) holds, part 1) of The-
orem 1.1 applies. Hence, we have

max{y1(f). x2(/). x3(/)} = max{Ao(f).A1(f).A2(f)}.

The right-hand side in the above inequality is A;( f) by the other assumption in the
theorem. From the obvious inequality y>(f) > A1(f), we obtain the conclusion of
the theorem.

(2) Since we assume that f is a regular morphism, Theorem 1.1 (2) applies. Then
we argue similarly to part (1). ]

4. Dynamical degrees and Weil’s Riemann hypothesis

In this section we deduce Weil’s Riemann hypothesis from properties on dynamical
degrees. More precisely, we provide a proof of Theorem 1.5.

Convention. As in Section 3, for simplicity we suppress all the Tate twists in the
[-adic cohomology groups.

Here are some preliminary reductions of Weil’s Riemann hypothesis ([28, Chap-
ter 28]). The first reduction is that it is enough to solve the conjecture for any finite
extension of ;. The second reduction is that, in the statement of the conjecture, it is
i/2

enough to show that || < g*/=. In [28], the second reduction was proven by showing

that if o is an eigenvalue of Fr* on H! (X, Q;), then ¢¥™X) /¢ is an eigenvalue of Fr*
on H2dim(X)—i (X, Q).

In terms of the cohomological dynamical degrees, the second reduction is equi-
valent to the statement that y; (Fr) < ¢’/2 for all i = 0,...,2dim(X). By another
elementary reduction (using product of spaces and maps), we obtain the following.

Reduction. Weil’s Riemann hypothesis is equivalent to the statement that
X2i (Fr) < ¢'

foralli =0,...,dim(X).

The proof of Theorem 1.5 follows from the following claims. We provide the proof
for the deduction of Weil’s Riemann hypothesis only, but the proof for the deduction
of the positive characteristic analogue of Serre’s result can be obtained similarly.

Claim 1. Assume that we have the expected equality A;(f) = x2:i(f) holds, for
all smooth projective varieties X and regular morphisms f on X, and for all i =
0,...,dim(X). Then Weil’s Riemann hypothesis holds.
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Proof. Applying the expected equality to iterates of the Frobenius map Fr, we find
that
x2i (Fr) = A; (Fr).

The A; (Fr) is easy to compute, and in this case is g*. (For a fancy proof of this fact,
we can consider a dominant regular morphism 7: X — P¥, and apply the product
formula in [37,39] for the special Case 3 recalled in Section 2.2.1. See the proof of
Claim 2 below for more details.) By definition of y,; (Fr), any eigenvalue of Fr on
H? (X, Q) has the absolute value < g*. By the preliminary reductions mentioned
above, this is enough to prove Weil’s Riemann hypothesis. ]

By Claim 1, the expected equality A; (/) = x2:i(f) (which as noted before, holds
in the case K = C) is a generalisation of Weil’s Riemann hypothesis.

Claim 2. Assume that the product formula holds for the cohomological dynamical
degrees y»;, and where f and g are both regular morphisms semi-conjugated by
a dominant regular morphism with finite fibres 7: X — PX. Then Weil’s Riemann
hypothesis holds.

Proof. Letdim(X) = k. There is always a dominant regular morphism
X —Y =Pk

with finite fibres and which is defined on F,, for example by using Noether’s nor-
malisation theorem [36]. The Frobenius maps have the important property that the
equality 7 o Fry = Fry ox is always satisfied. Since dim(X) = k = dim P, by the
assumptions in Claim 2, we have by using the special Case 3 in Section 2.2.1:

x2i (Frx) = x2:i (Fry) yo(Frx |7) = ¢". 4.1)

This is the conclusion of Weil’s Riemann hypothesis. Here we have used that Weil’s
Riemann hypothesis is true for ¥ = P¥ (because the cohomology group of P* is very
simple and is generated by algebraic cycles) and yo(Fry |7) = 1, see Section 2.2.1
for details. |

By Claim 2, the product formula for cohomological dynamical degrees is also a
generalisation of Weil’s Riemann hypothesis.

Claim 3. Assume that we have Dinh’s inequality y;(f)? < max; 7= A; (A (f)
for all i and regular morphisms in positive characteristic. Then Weil’s Riemann hypo-
thesis holds.
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Proof. The proof is similar to those of the above claims, by observing that applying
Dinh’s inequality to the Frobenius map gives the desired inequality

Xi (Fr)2 < max A;(Fr)A;(Fr) = .max_qqu = qi. n
JHl=i JHl=i

By Claim 3, Dinh’s inequality for cohomological dynamical degrees is yet another
generalisation of Weil’s Riemann hypothesis.

S. An approach to Questions 2 and 3

To Questions 2 and 3 in general, we propose to study the following two statements.

Statement (A). Let X be a smooth projective variety over K. Let f1, f2: X — X
be two correspondences. Assume that f1 > f5, that is there is an effective algebraic
cycle I on X x X so that I'y, = I'y, + I'. Then there is a positive constant C > 0,
independent of the correspondences f1 and f>, such that

CllLA 2 xopll = 15 w2 (x,0p) |
foralli =0,...,dim(X).

Statement (B). Let X and ¥ = P¥ be smooth projective varieties of the same dimen-
sion k. Let m: X — Y be a surjective regular morphism whose all fibres are finife. Let
g:Y — Y be a correspondence, and let f: X — X be the correspondence whose
graph is I'y := (mw x m)*(I'g) (i.e. the algebraic cycle pulled back from I'y by the
map 7 X 7). Then there exists a constant C > 0, independent of g, so that

If* a2 x,opll < Clig* w2 v,

foralli =0,...,k. Here we fix arbitrary norms on the finite-dimensional vector
spaces H? (X, Q;) and H? (Y, Q).

Some remarks are in order.

Remarks 5.1. (1) Statement (A) is true if on H?' (X, Q;) we have a positivity notion
of cohomology classes as in the case K = C, see the end of Section 1.1 for a detailed
discussion.

(2) For any projective variety X of dimension k, there are always (by using gen-
eric projections from linear subspaces of projective spaces containing X ) surjective
regular morphisms with finite fibres w: X — Pk,
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(3) The correspondence f defined in Statement (B) was called the pullback of g
by 7 and was denoted as 7 *(g) in [39, Section 3.2]. In this special case, the cohomo-
logical class of I'y is exactly the same as the pullback under 7 x 7 of the cohomo-
logical class of I'y. For a general dominant regular morphism (more generally, a
dominant rational map) with generically finite fibres w: X — Y, we can still define
the pullback 77*(g) of any correspondence g: Y — Y. However, in the general case,
no relation is expected for the cohomological classes of g and 7*(g).

It can be checked that in Statement (B) that 7 o /" = deg()"g" o m for all n. It
is shown in [39, Theorem 1.1] that we then have A; (f) = deg(w)A;(g) for all i.

The next result concerns Questions 2 and 3.

Theorem 5.2. The following statements hold.
(1) Statement (B) is always true.
(2) If Statement (A) is true, then Question 2 has an affirmative answer.
(3) If Question 2 has an affirmative answer, then in the definition of x2i(f) we
can replace lim sup by lim.

(4) For rational maps, an affirmative answer for Question 2 implies an affirmative
answer for Question 3.

Proof. We first make some preparations. Let r: X — Y = P* be a surjective regular
morphism with finite fibres. Let f: X — X be a correspondence. For any positive
integer n, we define a correspondence g,: Y — Y given by declaring

an = (7[ X N)*(an)

Note that even if f is a regular morphism, g, will rarely be a regular morphism or
even a rational map. Also, in general f” and g, are not semi-conjugate, even up to a
multiplicative constant. We overcome this by defining a correspondence f,: X — X
by declaring

Iy, = (r x71)*(Tg,).

We note that the cohomology groups of ¥ = P¥ are very simple, in particular gener-
ated by algebraic cycles:

H*(Y,Q;) = HX (Y,Q)).

Here are some relations between f”, g, and f,,. First we have f" < f,. Second,
we have A;(f,) = deg(w)Ai(gy) for all n and i (see [39, Theorem 1.1]). Last, we
have

||g:|H2i(Y,Q,)” = C”(fn)*|H2f(X,Q1)”v
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where C > 0 is independent of f and n. In fact, let s be the class of a hyperplane
in Y = PX. Then H? (Y, Q) is generated by 4. Let pr;, pr, denote either the pro-
jections X x X — X or Y xY — Y (the meaning will be clear from the context).
Then

s g2t r.op |l = 15 (h).hE 7| = [Ty, pry (h'). pry (BF)]
= |(7r x 1)« (Tyn). pri (h'). pri (BF )]
= |Tpn.Gr )" (pr3 (h1)- pr ()|
= [Tym. prs ' (h). prf w* (1)
= |(f™*(m* (h')).z* (hF)]
= CI™") 2 x,op ll-
(1) We first observe that if « € H*(X, Q) is such that . («) = 0 in H (Y, Q;),

then f,* () = (fn)«() = 0. We show for example that f,* () = 0. To this end, it
suffices to show that for any 8 € H27(X, Q;) then J.F(@). = 0. In fact, we have

fu (@).p = Ty,.pr5(@). pri(B)
= (7 x n)*(rgn).(pr;(a).pr’f(ﬁ))
= Tg,-(m x 1)« (pr3 (@). pri (B))
= Tg,. pr5 (mxe). pry (7w« f).
The last number is 0 provided m«(er) = 0, as assumed. (Note that it is also O if

+(B) = 0.) Here, we used that under the assumptions on 7, the cohomology class
of I'z, is the same as the cohomology class of (7 x 7)*(I'g, ). We also used that

(7 x 7)x(pr3 (@). pr(B)) = pr5(wx). pri (7« p).

(This can be seen very easily in the case @ and 8 are represented by irreducible sub-
varieties of X, since in this case pr; (). pry (B) is represented by the variety f x « in
X x X, whose image by 7 x 7 is exactly 7(8) x w(«). In the general case, we can
proceed similarly by using the Kunneth’s formula for the /-adic cohomology.)

From the above observation and the decomposition

H*(X, Q) = n*(H*(Y.Q))) ® Ker(ry),

it follows that

’

||fn*|Hi(X,Q,)|| = ||fn*|n*(Hi(Y,@,))|| = deg(”)2||gn|Hf(Y,@,)

provided that the norm on 7*(H' (Y, Q;) is induced from the norm on H'(Y, Q;).
This completes the proof.
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(2) Assume that Statement (A) is true. Then, from f,, > f” for all n, we have

ClIl ()" 2 xopll = 1) [ m2i (x.0p) |-
Hence, from the inequalities obtained above, we get
1™ 2 xaapll = [P (70D )] = llgn g2 rop |
1 1
= Sl i xenl = E||(fn)*|H2i(X,Q,)”-

By (1.1), we obtain

1/n

li’:risolip|(f”)*(ﬂ*(hi))~ﬂ*(hk_i)| < Ai(f).

The proof is thus completed.

(3) This easily follows from similar arguments.

(4) This follows from the results in [39, Theorem 1.1] for the dynamical deg-
rees A;. This completes the proof of Theorem 5.2. ]
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