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Continuity of the stabilizer map and irreducible extensions

Adrien Le Boudec and Todor Tsankov

Abstract. Let G be a locally compact group. For every G-flow X, one can consider the sta-
bilizer map x +— G, from X to the space Sub(G) of closed subgroups of G. This map is not
continuous in general. We prove that if one passes from X to the universal irreducible exten-
sion of X, the stabilizer map becomes continuous. This result provides, in particular, a common
generalization of a theorem of Frolik (that the set of fixed points of a homeomorphism of an
extremally disconnected compact space is open) and a theorem of Veech (that the action of a
locally compact group on its greatest ambit is free). It also allows to naturally associate to every
G-flow X a stabilizer G-flow S (X) in the space Sub(G), which generalizes the notion of sta-
bilizer uniformly recurrent subgroup associated to a minimal G-flow introduced by Glasner and
Weiss.

1. Introduction

Let G be a topological group. Recall that a G-flow is a continuous action G ~, X on
a compact space X (all our compact spaces are Hausdorff). A G-flow is minimal if
every orbit is dense. A continuous, G-equivariant map 7: ¥ — X between G-flows is
called a G-map. If 7 is surjective, we also say that Y is an extension of X, or that X
is a factor of Y.

A map w:Y — X between compact spaces is called irreducible if every non-
empty open U C Y contains the fiber 771 ({x}) for some x € X, or, equivalently,
if the image of any proper closed subset of Y is a proper subset of X. Irreducible
maps were studied by Gleason [13], who proved that to every compact space X, one
can associate an extremally disconnected compact space X, the Stone space of the
Boolean algebra RO(X) of regular open subsets of X, with an irreducible map X—>X
which is universal with respect to irreducible maps ¥ — X. Recall that a space is
extremally disconnected if the closure of every open subset is clopen.

An extension 7: Y — X between G-flows is called irreducible if m is irreducible
as a map between topological spaces. The extension m is called highly proximal
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if one can compress any fiber of m to a point by applying elements of G; more
precisely, if for every x € X there exists a net (g;) of elements of G such that
gi - m1({x}) converges to a singleton in the Vietoris topology on the closed sub-
sets of Y. These notions were studied by Auslander and Glasner in [1] where it was
proved that they are equivalent if X and Y are minimal. However, they are different
if Y is not minimal (cf. Example 2.1) and in this paper, we will mostly be interested
in the notion of an irreducible extension. Irreducible extensions are thought as being
rather small extensions and they preserve many dynamical properties such as mini-
mality, proximality, strong proximality, and disjointness. When the spaces ¥ and X
are metrizable, an extension 7: Y — X is irreducible iff it is almost one-to-one (i.e.,
theset{y € Y : #~1({n(y)}) = {y}}is dense in Y). Almost one-to-one extensions are
an important tool in topological dynamics (used, for example to construct symbolic
representations of continuous systems), and the notion of an irreducible extension is
the appropriate generalization that allows the existence of universal objects and the
development of a general theory.

For every G-flow X, there exists a G-flow X, ¢ and an irreducible extension given
by mx: X 6 — X with the following universal property: for every irreducible exten-
sion 7: Y — X, there exists a G-map p: )/(\G — Y such that ¥ o p = mx. Moreover,
Xg is unique up to isomorphism. It is called the universal irreducible extension of X .
For minimal flows, the existence and uniqueness of X, 6 were established in [1] and the
general case is due to Zucker [24]. In [24], following the terminology of [1] for mini-
mal flows, this extension was called the universal highly proximal extension; however,
in view of the non-equivalence of high proximality and irreducibility for extensions of
non-minimal flows and the fact that an irreducible extension is not necessarily prox-
imal (for example, for actions of the trivial group), we prefer to use different names
for the two notions.

The universal irreducible extension can be viewed as a type of completion (cf.
Section 2), so we call a G-flow X Gleason complete if Xg = X. Equivalently, X is
Gleason complete if X admits no non-trivial irreducible extensions. The correspon-
dence X > X ¢ 1s idempotent and its image is the class of Gleason complete G-flows.
Thus the class of G-flows is partitioned into equivalence classes, where X and Y
are equivalent if they admit a common irreducible extension; or equivalently if X, G
and ?G are isomorphic. Each class contains a unique representative that is Gleason
complete.

If X is minimal, being Gleason complete is equivalent to being maximally highly
proximal in the sense of [1]. In [24], the term maximally highly proximal, or MHP
(cf. [24, Proposition 3.5]) is used even for non-minimal flows with the same meaning
as our Gleason complete.

For discrete groups, the construction of X, ¢ reduces to the one by Gleason, and
we have that X G = X (see [13, Theorem 3.2]). In this setting, a G-flow X is Gleason
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complete iff it is extremally disconnected. This depends only on the topology of X,
and not on G. This is no longer true for non-discrete groups. Examples of Gleason
complete flows that arise in the non-discrete setting are X = G/H, where H is a
closed, cocompact subgroup of G, and G acts on X by left translations. Gleason
complete flows of Polish groups were extensively studied by Zucker (under the name
of MHP flows) in [24], where many more interesting examples can be found. More
general topological groups were considered by Basso and Zucker in [2].

The equivalence relation of having the same universal irreducible extension and
the notion of Gleason complete flow are useful to express certain rigidity proper-
ties among G-flows. An instance of this is a theorem of Rubin that asserts that any
two G-flows that are faithful and micro-supported have a common irreducible exten-
sion [21]. Combined with [6, Proposition 2.3], this implies that every group G that
admits a faithful micro-supported G-flow admits exactly one faithful micro-supported
G-flow that is Gleason complete. For certain non-discrete, totally disconnected locally
compact groups, this flow is the Stone space of the centralizer lattice of G, a Boolean
algebra constructed from the local structure of the group ([7, Theorem II], [6]). See
the references above for the definition of a “micro-supported” action and more details.

The main result. In certain contexts, Gleason complete flows are better behaved than
general flows. The main result of this paper is an illustration of such a situation. For
the remainder of the introduction, we suppose that G is a locally compact group,
and we denote by Sub(G) the space of closed subgroups of G. Endowed with the
Chabauty topology, the space Sub(G) is compact, and the action of G on Sub(G) by
conjugation is continuous. To every G-flow X, we can associate the stabilizer map
X — Sub(G), x — Gy, which is G-equivariant. The stabilizer map is always upper
semi-continuous (see, e.g., [10]), but fails to be continuous in general. This lack of
continuity is not just a technical issue, but is an intrinsic property of the flow. For
instance, it witnesses the difference between free and topologically free actions (see
below). We show that for Gleason complete flows, this defect disappears.

Theorem 1.1. Let G be a locally compact group and let X be a Gleason complete
G-flow. Then the stabilizer map X — Sub(G), x — Gy, is continuous.

If X is any G-flow, the theorem applies to the Gleason complete flow X, G, and
shows that taking an irreducible extension of X is enough to resolve the continuity
issue of the stabilizer map on X.

As mentioned above, when G is a discrete group, X is Gleason complete if and
only if X is extremally disconnected. In that case, Theorem 1.1 is equivalent to saying
that the set of fixed points in X of every element g € G is an open subset of X. This
is a theorem of Frolik [9].
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Another special case of Theorem 1.1 is a well-known theorem of Veech that the
action of a locally compact group on its greatest ambit Sa(G) is free. One can apply
Theorem 1.1 because the greatest ambit is a Gleason complete flow and the free left
translation action G ~, G embeds into it densely (cf. Corollary 5.8). A relativized
version of Veech’s theorem was considered by Matte Bon and Tsankov in [20], where
it was proved that the stabilizer map for the flow Sa(G/H) (the Samuel compactifi-
cation of G/H), where H is a closed subgroup of G, is continuous. This is again a
special case of Theorem 1.1 because the flow Sa(G/H ) is also Gleason complete [24].

As Theorem 1.1 is a common generalization of Frolik’s and Veech’s theorem, it is
perhaps not surprising that its proof mixes ideas from the proofs of both. We also rely
on the topometric structure on Gleason complete flows introduced by Zucker [24]
(extending a construction of [4] for Sa(G)), which while being rather simple for
locally compact groups, is still useful for us.

Freeness vs topological freeness. Recall that G ~ X is free if Gy is trivial for
every x € X, and G ~ X is called topologically free if for every compact K C G
with 1g ¢ K, the closed set {x € X : x € K - x} has empty interior. (When G is sec-
ond countable, topological freeness is equivalent to saying that there is a dense set of
points x € X such that Gy is trivial.) The difference between freeness and topological
freeness is detected by the failure of continuity of the stabilizer map: a topologically
free action is free if and only if the stabilizer map is continuous. Also, the property of
being topologically free is preserved under irreducible extensions in both directions.
Hence the following is a consequence of Theorem 1.1.

Corollary 1.2. Let G be a locally compact group, and let X be a G-flow. Then the
following are equivalent:

(i) X is topologically free;
(>i1) X G is free.
In particular, a Gleason complete flow is topologically free if and only if it is free.

This has the following application. Recall that a G-flow is called strongly proxi-
mal if the closure of the G-orbit of every Borel probability measure on X contains a
Dirac measure. The flow X is called a boundary if X is minimal and strongly prox-
imal. Every group G admits a boundary d G, unique up to isomorphism, such that
every boundary is a factor of dz G (see [12, Section III]). It is called the Furstenberg
boundary of G. By [11, Lemma 5.2] and [12, Lemma 4.1], the flow d 7 G is Gleason
complete.

Corollary 1.3. For every locally compact group G, the stabilizer map is continuous
on Op G. In particular, the following are equivalent:
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(i) G admits a topologically free boundary;
(i1) G acts freely on 0 G.

Proof. The first assertion follows from the fact that d G is Gleason complete and
Theorem 1.1. For the second assertion, if G admits a topologically free boundary
G ~ X, then the action of G ~, drG is also topologically free since there is a
factor map dpG — X. Since dr G is Gleason complete, Corollary 1.2 implies that
G ~ 0 G is free. The other direction is clear. [ ]

When G is a discrete group, the equivalence in Corollary 1.3 was already known
as it follows from [9]. Whether this property holds true in a given group G was
recently shown to be equivalent to the simplicity of the reduced C*-algebra of G [15].
It is not known if this equivalence holds more generally for locally compact groups.
See [5, Section 6] for a discussion of this problem (where the points of d 7 G where
the stabilizer map is continuous are also considered).

Stabilizer flows. Theorem 1.1 is interesting beyond the case of topologically free ac-
tions. Recall that a uniformly recurrent subgroup (URS) of a locally compact group G
is a minimal closed, G-invariant subset of Sub(G) [10]. Every minimal G-flow X
gives rise to a URS of G, called the stabilizer URS associated to X, defined as the
unique minimal closed G-invariant subset of the closure of the image of the stabilizer
map in Sub(G) (Glasner—Weiss [10]). (Although [10] makes the standing assumption
that G is second countable, this fact holds for every locally compact group and every
minimal G-flow, see Section 5 for details.)

Theorem 1.1 allows us to associate a stabilizer flow to any G-flow X, without a
minimality assumption: we consider the Gleason complete flow X, G, and simply take
the image of X G in Sub(G) by the stabilizer map (cf. Definition 5.1). By definition,
the stabilizer flow is an invariant under taking irreducible extensions. In Section 5, we
prove some of its basic properties. We show, in particular, that when X is minimal,
the stabilizer flow and the stabilizer URS are equal.

Corollary 1.4. Let G be a locally compact group, and let X be a minimal G-flow.
Then the stabilizer URS of X is equal to {G, : z € Xg}.

In the special case where X = Xg = Sa(G/H) for some closed subgroup H < G
belonging to an URS of G, Corollary 1.4 is equivalent to [20, Proposition 2.8], which
was used there to prove that every URS of G can be realized as the stabilizer URS of
some minimal flow.
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2. The universal irreducible extension of a G -flow

In this section, we give a new construction of the universal irreducible extension of
a G-flow G ~ X, where G is an arbitrary topological group. The existence of such
an extension was proved by Auslander and Glasner [1] for minimal flows using an
abstract argument and a construction without a minimality assumption, in terms of
near-ultrafilters, was given by Zucker [23] for Polish groups and Basso and Zucker [2]
for arbitrary topological groups. Our construction is in some sense dual to theirs:
instead of constructing the points of Xg directly, we describe the lattice of continuous
functions C ()? ¢) and use an appropriate duality theorem to recover the space.

Before describing the construction, we give an example which illustrates that irre-
ducible and highly proximal extensions are distinct notions, even when the target flow
is minimal.

Example 2.1. Consider the irrational rotation R: T — T given by R(x) = x + o. We
construct an extension by doubling the orbit of 0 as follows. Let X =T U {a, : n € Z}
and define a metric d on X by setting the distance d(a,,no) = 27! and extending
it to all of X by taking the shortest path metric, i.e.,

d(am, an) = |no — ma| + 2711 4 27Iml

for m # n, and
d(an,x) = |na — x| + 27"

for x € T. Then (X, d) is a compact metric space and the map R extends to a homeo-
morphism of X by setting R(a,) = a,+1 for all n € Z. The extension map X — T is
given by the identity on T and a, + no. Then one easily checks that this extension is
highly proximal but of course it is not irreducible because the points a,, are isolated.

2.1. The non-archimedean case

A Boolean algebra is called complete if it admits suprema (and infima) of arbitrary
subsets. A Boolean algebra 8B is complete iff its Stone space S(B) is extremally dis-
connected, i.e., for every open U C S(B), the set U is also open. If {4; }; 7 is a family
of clopen sets in S(B), their supremum in B is the clopen set | J; 4;.

An open subset U of a topological space X is called regular if U = IntU. The
collection RO(X) of regular open subsets of X forms a complete Boolean alge-
bra with the meet operation A given by the intersection, and complement given by
=U = Int(X \ U). If X is Baire, RO(X) can also be viewed as the quotient of
the Boolean algebra of Baire measurable subsets of X by the ideal of meager sets.
See [16, Section 8]. We denote by X the Stone space of the algebra RO(X). If X is
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compact, there is a natural surjective, continuous map £y : X>X given by

tx(py = 0.

Uep

where p is viewed as an ultrafilter on RO(X).

The construction X > X only depends on the topology of X, so if G is a group
acting on X by homeomorphisms, it also acts on X.If G is a discrete group and
G ~ X is a G-flow, then G ~, X is also a G-flow and it is the universal irreducible
extension of G ~, X. In particular, if G is discrete, a G-flow X is Gleason complete
iff X is zero-dimensional and the Boolean algebra of clopen subsets of X is complete.
This follows from the results of Gleason [13].

The problem when G has non-trivial topology is that the action G ~, X is not
necessarily continuous even if the original action of G on X is. In the case where G
is non-archimedean, this is easy to fix. Recall that a topological group G is called
non-archimedean if it admits a basis at 1 consisting of open subgroups. For locally
compact groups, by a well-known theorem of van Dantzig, being non-archimedean is
equivalent to being totally disconnected (or tdlc, for short).

If B is a Boolean algebra on which G acts and V' < G, we will denote by By
the subalgebra of B of elements fixed by V. Note that if B is complete, then By is
complete, too.

If X is a G-flow, we let

RO(G, X) = U{ROV(X) : V open subgroup of G}

and note that, as a direct limit of Boolean algebras, RO(G, X) is also a Boolean alge-
bra but that it is not necessarily complete. Note also that RO(G, X) is invariant under
the action of G and that the action G ~, RO(G, X) is continuous (where RO(G, X)
is taken to be discrete).

Lemma 2.2. Let G be a non-archimedean group and let G ~, X be a G-flow. Then
the elements of RO(G, X) form a basis for the topology of X.

Proof. By regularity of X, it suffices to see that for every x € U € RO(X) there exists
U’ € RO(G, X) such that x € U’ C U. By continuity of the action, there exists an
open subgroup V of G and an open subset U; € U with x € Uy such that VU; C U.
Then U’ = Int VU, works, because U’ is V-invariant and U’ € IntU = U, since U
is regular. |

We denote by X(; the Stone space of RO(G, X). The action of G on X is contin-
uous. Note that X, being the Stone space of a Boolean algebra, is zero-dimensional.

Proposition 2.3. Let G be a non-archimedean group and let G ~, X be a G-flow.
Then G ~ X is the universal irreducible extension of X.
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Proof. We denote by x: XX ¢ the dual map of the inclusion RO(G, X') € RO(X)
and note that 7 is continuous and G-equivariant. By Lemma 2.2, if two elements of X
have the same image by , then they have the same image under the map £: X > X.
Hence there is a continuous G-equivariant map {G: X5 — X such that {g o 7w = £.
The map £g: X — X is irreducible because £ is. If Y — X is an irreducible extension
of X, then ¥ = X. Thus RO(X) = RO(Y) and RO(G, X) = RO(G, Y). In particular,
Y is afactorof X, = Y. ]

By continuity of the G-action on X, we have Clopen(X) € RO(G, X), where
Clopen(X) is the subalgebra of RO(X) consisting of clopen subsets of X. That this
inclusion is an equality actually characterizes Gleason complete flows for non-archi-
medean groups.

Corollary 2.4. Let G be a non-archimedean group and let G ~, X be a G-flow. Then
the following are equivalent:

(i) X is Gleason complete;

(ii) RO(G, X) = Clopen(X).

Proof. (i) = (ii) follows from Proposition 2.3. Note that (ii) implies that X is zero-
dimensional in view of Lemma 2.2, so the implication (ii) = (i) also follows from
Proposition 2.3. |

2.2. The general case

When G is a general topological group, one cannot hope to construct the universal
irreducible extension as the Stone space of a Boolean algebra: for example, if G is
connected, then all of its minimal flows are connected and have no non-trivial clopen
sets. So for the general case, we employ Riesz spaces instead of Boolean algebras.

Recall that a Riesz space is an ordered real vector space, which is a lattice for the
ordering, i.e., all pairs of elements a, b have a least upper bound a Vv b and a greatest
lower bound a A b. A Riesz space £ is called archimedean if there exists aunit 1 € £
such that for every a € £, there exists n € N with @ < n1. A unit also naturally defines
the uniform norm:

lla]| = inf{r e R: |a| < r1},

where, as usual, |a| = a V (—a).

A natural example of an archimedean Riesz space is the collection of real-valued
continuous functions C(X) on a compact space X with the usual lattice operations
and unit the constant function 1. Then the uniform norm coincides with the sup norm.
The Yosida representation theorem, which we recall below, states that in fact every
archimedean Riesz space complete in the uniform norm is of this form.
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For every archimedean Riesz space &£ with a unit 1 (and equipped with the uni-
form norm), we can consider its spectrum:

S(£)={xe&L*:x(avb)=x(a)Vvx()foralla,b € £ and x(1) = 1}.

The spectrum S(&£) is a compact space if equipped with the weak™ topology and we
have amap I': £ — C(S(&£)) defined by

I'@a)(x) = x(a).

The map T is clearly a contractive homomorphism and, in fact, it is an isometric
isomorphism (see [8, Section 13]).

Let G be a topological group, let E be a Banach space and let G ~, E be an action
by isometric isomorphisms. We will say that an element ¢ € E is G-continuous if the
map G — E, g — g - ¢ is norm-continuous.

Lemma 2.5. Let G be a topological group, let X be a compact space and let G ~, X
be an action by homeomorphisms. Then the following are equivalent:

(i) G ~ X is a G-flow (that is, the action is jointly continuous);

(ii) Every function ¢ € C(X) is G-continuous for the induced action G ~, C(X).

Proof. (i) = (ii). This is obvious.

(i) = (). Let U € X be open and let xy € U. Our goal is to find an open V' > 15
and an open W > xg such that V- W C U. Let W 3 x¢ be open such that | 774 cU.
By Urysohn’s lemma, there exists ¢ € C(X) with ¢| = 1 and ¢|x\uv = 0. As ¢ is
G-continuous, there exists V' 3 1¢ such that forevery v € V, |[v™! - ¢ — ¢|| < 1/2.
This implies that V- W C U. [

Next we will describe the universal irreducible extension of a G-flow G ~, X . Let
B(X) denote the Riesz space of bounded Borel functions on X with unit the constant
function 1 and let M be the ideal given by

M= {¢p e B(X):{x € X :¢(x)# 0} is meager}.
The ideal M allows us to define the essential supremum seminorm on B(X) by
lpllae = inf{r eR:{xeX:|p(x)|>r}is meager}.

Denote B(X) := 8B(X)/M and note that ||-|| 4 descends to a norm on B(X). Let X
be the spectrum of B(X). It can naturally be identified with the Stone space of the
Boolean algebra RO(X) (see [8, Section 14]). The space B(X) has also been consid-
ered before in a dynamical context by Keynes and Robertson in [17].
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We let Bg(X) denote the set of G-continuous elements of B(X). We note that
B (X) is a closed subspace of B(X) which is also closed under the lattice opera-
tions, so we can define Xg := S(Bg(X)). Because C(Xg) = Bg(X), it follows from
Lemma 2.5 that G ~, Xg is a G-flow. There is a natural injective map C(X) — B(X),
whose image is, by virtue of Lemma 2.5, contained in Bg(X). Slightly abusing
notation, we will identify C(X) with its image in Bg(X). The inclusions C(X) C
Bg(X) € B(X) translate to factor maps X — Xg — X. We have the following.

Proposition 2.6. Let G be a topological group and let G ~, X be a G-flow. Then the
flow G ~ Xg is the universal irreducible extension of G ~, X. In particular, X is
Gleason complete if and only if the natural injection C(X) — Bg(X) is a bijection.

Proof. First, as X G 1s a factor of )? it is clear that the extension X, G — X 1is irre-
ducible. If G ~, Y is an irreducible extension of G ~, X, then by the universal
property of X, there exists an embedding ¢: C(Y) — C (X ) = B(X) (see above).
It follows from Lemma 2.5 that every ¢ € C(Y) is G-continuous, so ((¢) is also G-
continuous. Therefore, :(C(Y)) € Bg(X) and this gives a factor map X¢g—>Y. =

Corollary 2.7. Let G be a topological group and let L be an open subgroup of G.
If G ~ X is a G-flow, then X is Gleason complete as a G-flow if and only if it is
Gleason complete as an L-flow.

Proof. We have Bg(X) = Br(X) since L is open, so the statement follows from
Proposition 2.6. ]

It is proved in [1] that for minimal flows X, the correspondence X +— )’(\G is
functorial. Our description of X, G suggests the correct formulation of this result for
general flows. Recall that a continuous map ¢: X — Y is called category-preserving
if $71(A) is nowhere dense for any nowhere dense A C Y. Every homomorphism
between minimal flows is category-preserving. Indeed, if ¢: X — Y is a factor map
between minimal flows and U C X is open, non-empty, then finitely many translates
of ¢(U) cover Y, so ¢(U) must be somewhere dense. Also, every irreducible map
between compact spaces is category-preserving.

Proposition 2.8. The correspondence X — X, G Is a functor from the category of
G -flows with morphisms category-preserving G-maps to the category of Gleason
complete flows.

Proof. Let ¢: X — Y be a category-preserving homomorphism of G-flows. Then
¢~ 1(A) is meager for every meager set A C Y, so we obtain a dual homomorphism
of Riesz spaces ¢*: B(Y) — B(X) given by ¢*([f]) = [f o ¢], where f € B(Y)
and [ f] denotes its equivalence class in B(Y). The image of Bg(Y) is contained
in Bg(X), so by the duality theorem, this gives us a map Xg — Ye. ]
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3. Characterizations of Gleason complete flows

Starting from this section, G will denote a locally compact group. A pseudo-norm
on G is a continuous function ||-||: G — Ry satisfying:

* gl =0
* lg7'Il=ligl forall g € G;
* lighll = llgll + [I2]| for all g. 2 € G.

We denote by B, the set of elements g € G such that ||g|| < r, and we also let B,
be the set of elements g € G such that || g|| < r. We say that |-| is proper if B, is
compact for all ». We say that a pseudo-norm ||-|| is a norm if it satisfies that the only
element g with ||g|| = 0is 1g. A norm is called compatible if it induces the topology
of G. Note that any group G that admits a proper pseudo-norm must be o-compact
(because G = |, ex Bn)-

Every pseudo-norm induces a right-invariant pseudo-metric d, on G defined by

dr(g.h) = llgh™|.

We will say that a pseudo-norm ||-|| is normal if for every g € G, the conjugation
by g is a uniformly continuous map of the pseudo-metric space (G, d,). In particular,
the kernel {g € G : ||g|| = O} of a normal pseudo-norm is a normal subgroup of G.

Proposition 3.1. Let G be a o-compact locally compact group, and let V' be an open
neighborhood of 1. Then there exists a proper, normal pseudo-norm on G and r > 0
such that B, C V.

Proof. Choose and open neighborhood W of 1 such that W2 C V. Since G is o-
compact, theorems of Kakutani—Kodaira ([14, Theorem 8.7]) and Struble [22] ensure
that there exists a compact normal subgroup K of G with K € W such that G/K
admits a compatible and proper norm ||-||g/k. If we let ||g|| = ||gK |G,k then ||-|| is
a pseudo-norm on G that is proper. Moreover, since the image of W in G/K is an
open neighborhood of the identity in G/K and |[|-||g,/x is compatible, there is r > 0
such that || gK||g/x < r implies gK € WK. Hence, || g|| <r implies g € V. Normality
is clear since ||-|g,x induces the topology on G/ K. ]

Let ||-|| be some fixed proper pseudo-norm on G. If G ~, X is a G-flow, we can
define a pseudo-metric d on X by

d(x,y) =inf{|gll: g€ G, g-x = y}. (3.1)

If x and y are not in the same orbit, then d(x, y) = oo.
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Note that since ||-|| is proper, 0 is always lower semi-continuous for the com-
pact topology 7 on X. Recall that a real-valued function f is called lower semi-
continuous (Isc) if for every real number r the set {f > r} is open. It is upper
semi-continuous (usc) if { f < r} is open.

When G is metrizable, we can work throughout with a fixed compatible, proper
norm on G, and then 0 is a metric on X that refines the topology 7, i.e., (X, 7, d)
is a compact topometric space in the sense of [3]. In general, one can work with
a topouniform spaces as is done in [2], but we will not need this here. In the case
where G is Polish, locally compact, the topometric space above is the same as the one
considered by Zucker [24]. The metric d also provides a convenient way to express
G -continuity: a function f: X — R is G-continuous iff it is uniformly continuous as
a function on the metric space (X, d).

The following characterization of Gleason complete flows is the main theorem
of this section. Note that because every locally compact group admits an open, o-
compact subgroup (for example, the subgroup generated by any compact neighbor-
hood of the identity), the condition in the theorem is not restrictive. If G is already
o-compact, one can simply take L = G below.

Theorem 3.2. Let G be a locally compact group and let L be a o-compact, open
subgroup of G. If G ~ X is a G-flow, the following are equivalent:

(i) X is Gleason complete;
(i) VU is open for every open neighborhood V of 1g and open subset U of X ;

(iii) For every proper pseudo-norm on L (with the associated pseudo-metric 0
for the action L ~, X ) and for every open subset U of X, the function X —
R U {oc0}, x > d(x, U), is continuous.

When G is a tdlc group, these are also equivalent to:
@iv) RO(G, X) = Clopen(X);

(v) X is zero-dimensional and for every compact open subgroup V of G, the
Boolean algebra Clopeny, (X) is complete.

Before going further, we make a few comments. First note that it follows in par-
ticular that statement (iii) holds for some L iff it holds for every L. The equivalence
between (i) and (ii) is already contained in [24] (up to the observation that when G is
locally compact, Definition 3.1 from [24] can be restated as in (ii)). Here we provide
an alternative proof of that equivalence. The proof of (ii)) = (i) follows arguments
close to [13], while the proof of the converse (which goes through (iii)) uses the char-
acterization of Gleason complete flows given in Proposition 2.6.

We need some preliminaries.
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Lemma 3.3. Let G be a locally compact, o-compact group with a proper pseudo-
norm ||-||. Let G ~ X be a G-flow and let d be defined as above. Then the following
hold:

(i) If F C X is closed, the function x — 9d(x, F) is Isc;
(i) If U C X is open, the function x — 9d(x, U) is usc.

Proof. (i) Let A = {x : d(x, F) <r}. Let x be a limit point of A and let (x;, &;); be
anetin A x R converging to (x,0). Let y; € F be such that d(x;, y;) < r + &;. By
passing to a subnet, we may assume that y; — y € F. Then taking limits and using
the fact that 9 is Isc, we obtain that d(x, y) < r.

(i1) Let r > 0, and let V' be the open ball around 15 of radius r. Then

Ix,U)y<r <= V.xNnU #4,
which is an open condition. |

Remark 3.4. In fact, Lemma 3.3 does not need G to be locally compact (with the
appropriate definition of d in the general case, see [24]). The proof of (i) works as
above and (ii) is [24, Theorem 4.8] and it is harder.

Lemma 3.5. Let X be a G-flow. Then X satisfies condition (i1) of Theorem 3.2 if and
only if for every open neighborhood V > 1g and open subset U C X, there exists an
open neighborhood V' 3 1 with V' C V such that V'U is open.

Proof. We only have to prove the implication from right to left. Suppose that the
property in the statement holds, and let U be an open subset of X and V' an open
neighborhood of 1¢. For every g in V' one can find V; an open neighborhood of 1
such that gV is contained in V" and VU is open. Writing V = (J, ¢ V{. we then
have VU = UgeV VéU, which is this thus open. n

Lemma 3.6. Let X be a G-flow that satisfies condition (ii) of Theorem 3.2. Then for
all open subsets Uy, Uy € X, we have Uy N Uy # @ if and only if VU, N U, # @ for
every open neighborhood V > 1.

Proof. Suppose U; N U, # @, and let V be an open neighborhood of 1. Then clearly
VU, N U, # @. Since VU is open, this implies that VU, N U, # @. That condi-
tion is equivalent to U; N V~'U, # @, and hence implies that U; N V~1U, # 0.
So VU, N U, # @, as desired. The reverse implication is a general fact that follows
from continuity of the G-action. |

Recall that a subalgebra A of a Boolean algebra B is dense if for every non-zero
element in B there is a non-zero element in A that is smaller. We recall the following
(see [18, Theorem 4.19]).
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Lemma 3.7. Let A be a dense subalgebra of a Boolean algebra B. If A is complete,
then A = B.

Before starting the proof of Theorem 3.2, we also introduce some notation. If
m:Y — X is a continuous map between topological spaces and U C Y is open, we
denote by 74 (U) the fiber image of U:

ms(U)={xeX 77 (x)CU.

If the space Y is compact, the set 7. (U) is always open, and if 7 is irreducible, 7+ (U)
is non-empty for any non-empty U'.

Proof of Theorem 3.2. (ii) = (i). Let m: Y — X be an irreducible extension. We
shall prove that 7 is injective. Suppose for a contradiction that there exist distinct
points yq, ¥, in Y with the same image x in X. Then one can find an open V' > 1 and
open subsets O, O, C Y such that y; € Oy, y» € O, and VO; N O, = @. The irre-
ducibility of 7= implies that 7(O) C 74 (0O) for any open O C Y. Indeed, if not, there
is y € O and an open W 3 7(y) disjoint from 74 ( Q). By irreducibility, 7=} (W) N O
contains a fiber, whose image must be in 774 (O), contradiction. Thus the sets 77,(O1)

and 74(0O3) both contain x. Hence by the assumption (ii) and Lemma 3.6, we have
Ve (01) N mx(O03) # @. Since Vi (01) = m4(VO1), we deduce that VO, and O,
intersect each other, which is a contradiction.

(ii1)) = (ii). Let V' be an open neighborhood of 1, and U an open subset of X.
By Lemma 3.5, upon replacing V by V' N L we can assume that V' is contained
in L. Applying Proposition 3.1, we can find a continuous proper pseudo-norm on L
and r > 0 such that B, is contained in V. If 9 is the pseudo-metric on X associ-
ated to this pseudo-norm, by assumption, the function f(x) := d(x, U) is continuous.
So B,U = {f < r}isopen. Since B, C V and V was arbitrary, Lemma 3.5 ensures
that (ii) holds.

(i) = (iii). Fix a continuous proper pseudo-norm on L, and an open subset U
of X. Let ¢po(x) = d(x,U) and ¢ (x) = d(x, U). We have that ¢y is Isc and ¢, is usc
by Lemma 3.3. Moreover, ¢ < ¢, and both ¢ and ¢; are d-contractive (meaning
that |¢; (x) — ¢; (¥)| < d(x, y) for all x, y). First we show that the set {¢g < ¢} is
meager. Note that

o<y = |J {do<aq1 <q2 <}

q1<92€Q

and each set in the union is closed. So if {¢9 < ¢b1} is non-meager, there exist ¢; < ¢»
such that {¢9 < g1 < g2 < ¢1} has non-empty interior W. The set {x : d(x, W) < ¢2}
is open and intersects U , so it must intersect U. So there exist x € U, y € W with
d(x,y) < g2, which contradicts the definition of W.
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Now for r > 0, set ¢p9, = min(¢o, ) and ¢, = min(¢y, r). The functions ¢,
¢1,r are bounded and remain d-contractive (hence L-continuous). As X is Gleason
complete as a G-flow by assumption, it is also Gleason complete as a L-flow by
Corollary 2.7. So by Proposition 2.6, there exists a continuous function 8 on X such
that ¢o,» = ¢1,» = 0 on a comeager set. As the sets {6 < ¢o,} and {8 > ¢ ,} are
open, they must be empty, and we must have that ¢9 » < 6 < ¢; .. We claim that 0 is
d-contractive. If not, there exist x € X and g € L such that |6(x) — 0(g - x)| > | gl
However, the set {x : |6(x) — (g - x)| > ||g]|l} is open, so as 6 = ¢, on a comeager
set, there exists x such that

|¢0,r(x) —o,r(g- x)| > gl

a contradiction. Note that 6~1(0) D U, so by continuity, #71(0) D U. As 6 is -
contractive and 8 = 0 on U, for every x € X, we have

6(x) < inf d(x, y) = d(x. T) = do(x).
yeU

’

Since 6 < r, this shows that 6 < ¢y, and hence 8 = ¢y . So ¢, is continuous.
Since r is arbitrary, it follows that ¢ is continuous.

We now assume G is a tdlc group. The equivalence between (i) and (iv) follows
from Corollary 2.4. Recall in particular that these imply that X is zero-dimensional.
Hence the fact that (iv) implies (v) is clear since ROy (X) is always complete. It
remains to see that (v) implies (iv). To that end, let V' be a compact open subgroup
of G. We want to see that ROy (X) = Clopeny, (X). We claim that Clopeny, (X) is a
dense subalgebra of ROy (X). Indeed, if U is a non-empty element of ROy (X), then
we can find a non-empty clopen subset U; inside U since X is zero-dimensional.
Since V' is compact and open, the stabilizer of U; has finite index in V, so that VU,
is a union of finitely many clopen subsets, and hence is clopen. Moreover, VU; C U
since U is V-invariant. Hence Clopeny, (X) is dense in ROy (G, X). Since we make
the assumption that Clopeny, (X) is complete, Lemma 3.7 implies that ROy (X) =
Clopeny, (X), as desired. [

Compare the next corollary with [4, Lemma 2.4].

Corollary 3.8. Let G be a locally compact, o-compact group equipped with a proper
,and let G ~, X be a Gleason complete flow. Then for Uy, Uy € X

pseudo-norm |-
open,
(U1, Uz) = (U, U2).

Proof. Suppose that d(U,, Us) < r. Consider the set {x : (x, U;) < r}. By Theo-
rem 3.2, it is open and it intersects U, so it intersects Uy. Let W C {x : d(x, U,) < r}
be open, non-empty with W C Uj. Then by continuity of the function d(-, W), there
exists x € U, with d(x, W) < r. So, d(U;, Up) <r. [ ]



A. Le Boudec and T. Tsankov 138
4. Continuity of the stabilizer map

Let Y be a locally compact space and let 2¥ denote the space of closed subsets of Y.
The Chabauty topology on 2Y is given by the subbasis of sets of the form

Ok ={Fe2Y :FNK=0) and OV ={Fe2Y:FNU # 0}

with K € Y compact and U C Y open. The space 2¥ equipped with this topology is
compact. A map ¢: X — 2Y is upper semi-continuous if $~1(Ox) is open for every
compact subset K of Y and it is lower semi-continuous if $~'(OY) is open for every
open subset U of Y.

If G is alocally compact group, the set Sub(G) of closed subgroups of G is closed
in 26, and hence, a compact space. Moreover, the conjugation action of G on Sub(G)
is continuous.

Definition 4.1. Let X be a G-flow. For x € X, let G, denote the stabilizer of x.
The map Stab: X — Sub(G) defined by Stab(x) = Gy is called the stabilizer map
associated to the flow X.

It is easy to see that for every G-flow, the stabilizer map is G-equivariant and
upper semi-continuous (see, e.g., [10]). It is also well known that in general it is not
continuous. The main theorem of the paper is the following.

Theorem 4.2. Let G be a locally compact group and let X be a Gleason complete
G -flow. Then the stabilizer map X — Sub(G), x — Gy is continuous.

The rest of this section is devoted to the proof of the theorem. Let |-||: G — R4
be a pseudo-norm on G. We recall that B, denotes the set of elements g € G such
that ||g|| < r; we also let B, be the set of elements g € G such that ||g|| < r. Recall
that if X is a G-flow, we associated, by the equation (3.1), a pseudo-metric d on X.
The following is the main lemma.

Lemma 4.3. Let G be a locally compact, o-compact group and let ||| be a contin-
uous, proper, normal pseudo-norm on G. Let X be a Gleason complete G-flow, let
g € G and r > 0. Then there exist n > 1 and a continuous function ¢: X — R” such
that for all x € X,

Wg-x,x)>r = |lPp(g-x) =)o = 7/3. 4.1

Proof. Since ||-|| is normal, g and g~! are uniformly continuous as self-maps of (X, 9).
Solet§ < r/3 and &’ be such that

Vx,yeX adx,y) <8 = dg-x,g-y)<r/3;
Vx,yeX dg-x,g-y)<8 = d(x,y) < 8.
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Since ||-|| is continuous and proper, one can find gy, ..., g¢ such that B, is
contained in Uf=1 gi Bs/>. By the pigeonhole principle, this implies that a ball of
radius 2r in (X, d) cannot contain more than £ points which are pairwise at least
8 apart. That is, for every x, x1, ..., Xg+1 € X such that d(x, x;) < 2r for all i,
there are i # j such that d(x;, x;) < d. Similarly, there is k € N such that for all
X,X1,...,Xk+1 € X such that d(x, x;) < 2r for all i, there are i # j such that
d(xi,xj) <&.Setn =k + £+ 1.

Set M, = {x :d(g - x, x) > r}. We will construct open sets Uy, ..., U, € X with
the following properties:

(i) the closure of | J; BsU; contains M, ;

(i) 3(U;, Uy) = 8 fori # j;

(iii) d(g-U;,U;) > r foralli.

Once the construction is completed, we finish the proof as follows. We set
¢i(x) = min(d(x, U;), r)

and ¢ = (¢;);. By Theorem 3.2, ¢ is continuous. To see that ¢ satisfies the conclusion,
in view of (i) it is enough to see that

¢(g-x) =)o = 7/3

for every x in |J; BsU;. So let x € BsU; and let y € U; be such that d(x, y) < 8.
Then d(g - x, g - y) < r/3 and using Corollary 3.8, we obtain

Ng-x.U)>0dg-y.U)—0(g-y.gx)
Z a(g'[jl’ﬁl) _r/3
=d(g-U;,U;)—r/3 >2r/3.

So,
lp(g-x) —P(X)lloo = ¢i(g-x) —Pi(x) =2r/3 -8 =r/3,

and we are done.

Now we proceed with the construction. Using Zorn’s lemma, we find a maximal
(under inclusion) tuple of open sets (U;) satisfying (ii) and (iii) above. We will show
that it must also satisfy (i). If not, there exists xo € M, and an open neighborhood W
of x¢ such that d(Wy, U;) > § for all i. By lower semi-continuity of d, there is an open
neighborhood W of x such that d(Wy, g - Wi) > r. Suppose that there exists j < n
such that

 0d(g-x0.Uj)>r;
M a(xo,g-Uj)>r.
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Since both conditions are open, there exists an open neighborhood W, of x such that
0(W>,g-Uj) > r,and d(g - W, U;) > r. This implies that if we set

W =WonN Wy N W,,

we can add W to U; without violating (ii) or (iii), thus contradicting the maximality
of (U;). So our final task in order to obtain a contradiction is to find j satisfying the
two conditions above. First, note that |{i : d(g - xo, U;) < r}| < £. Indeed, suppose to
the contrary that there exist y;, € Uj,, ..., yi, € U, with (y;;, g - xo) < 2r for all
s < £. Then the y; are £ + 1 points in a ball of radius 2r which are pairwise § apart
by (ii), which contradicts the definition of £.
Similarly,
i : 0(x0, 8- Ui) < r}l <k,

because if there exist y;, € Ui, ..., yi, € U, with d(xo, g - yi;) < 2r for all s, then
by the choice of k, there exist s # ¢ with (g - yi,, g - yi,) < &’. Now the choice of §’
implies that d(y;,, ¥;,) < §, contradicting (ii). Now by the choice of n, there exists j
as desired. ]

Proof of Theorem 4.2. 1t is a general fact that the stabilizer map is upper semi-contin-
uous, so we only have to prove lower semi-continuity. So for every open subset O
of G, we have to prove that

Xgo ={xeX:G,NO # 0}

is an open subset of X. Clearly it is enough to do this for every relatively compact
open subset O.

Let L be the subgroup of G generated by O. The subgroup L is open, so the
L-flow X is also Gleason complete (by Corollary 2.7). Moreover, L is compactly gen-
erated, so, in particular, o-compact. Since Xg,0 = X1 0, it follows that it is enough
to prove the desired conclusion under the assumption that the group is o-compact.
From now on, we make this assumption.

We fix xo € Xg,0. Let g € O be such that g - xog = xo and let V > 1 be
open such that Vg € O. Now we find a neighborhood Uy of x¢ that is contained
in Xg,vg € Xg,0. Since G is o-compact, by Proposition 3.1, there are r > 0 and a
continuous, proper, normal pseudo-norm || - || on G such that B, C V. If ¢: X — R”
is a continuous function as given by Lemma 4.3, then we have

Upi={x € X : $(g-¥) = $(¥)llow < r/3} S {x € X : (g - x.x) < 1)
C{xeX:x€Byg x}C Xgvg.

So Uy is an open neighborhood of x¢ that has the desired property. |
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Remark 4.4. If G is second countable and the flow G ~, X is metrizable, then it
is also possible to obtain a metrizable irreducible extension X’ of X for which the
stabilizer map is continuous. For this, it is enough to apply Lemma 4.3 to some fixed
proper norm ||-|| on G, a countable, dense subset of g € G and all rational numbers r
to obtain a countable collection of ¢ € C (}? ¢ ) that will witness the continuity of Stab.
Then one can take X’ to be the spectrum of the (separable) closed, G-invariant sub-
lattice of C ()? ) generated by C(X) and this countable collection and the proof of
the theorem goes through. (The reason is that the functions ¢ that we construct are
1-Lipschitz with respect to 9, so that if ¢ is a witness for some g € G, then it is also a
witness for all g’ sufficiently close to g with constants in (4.1) perhaps slightly worse
than r and r/3.)

5. Stabilizer flows

Throughout this section, let G be a locally compact group. The continuity of the
stabilizer map allows us to associate to any Gleason complete flow X a subflow of
Sub(G), namely, the image of the stabilizer map. As every flow has a unique universal
irreducible extension, this leads us to the following definition.

Definition 5.1. Let G be locally compact and let G ~ X be a G-flow. The stabilizer
Sflow Sg(X) of X is the subflow of Sub(G) given by

Sg(X) := Stab(Xg) = {G, : z € Xg).
We have the following general facts about the stabilizer flow.

Proposition 5.2. Let G ~ X be a G-flow and let : X, G — X be the universal irre-
ducible extension of X. Then the following hold:

(i) Forany compact K C G, the set
Dk ={z€Xg:z ¢ K-zandn(z) € K-7w(2)}
is nowhere dense in X G
(ii) For any dense subset X' C X, we have that Sg(X) C Stab(X’);
(iii) If x € X is a point of continuity of Stab, then Gy € Sg(X),
@iv) If the set Xo € X of continuity points of Stab is dense in X, then

Sg(X) = Stab(Xo).

Proof. (i) Let U C X, ¢ be non-empty, open. We will find a non-empty, open subset
of U disjoint from Dg. Let zog € U N Dk (if there is no such zy, we are done). The
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set {(z,z) € )?é :z ¢ K-z'} is open and (zg, zg) belongs to it, so there exists a
neighborhood U’ of zg, U’ C U, such that K - U’ N U’ = @. By irreducibility of ,
the set 4 (U’) is non-empty and for any x € 74(U’), we have that x ¢ K - x. Thus
the open set 7~ (4 (U’)) C U’ is disjoint from Dg.

(ii) Let zo € X and let
U={HeSub(G): HN O, #0,....HN O, #0,HN K = @},

where O1,..., O, € G are open and K C G is compact, be a neighborhood of G,
in Sub(G). Our goalisto find x € X' with G, € U.LetU = {z € Xg:G, € U} and
note that by continuity of the stabilizer map, U is open. By (i), the open set U \ D
is non-empty. We claim that any x € 7,(U \ Dg) N X’ works. Indeed, fix such an x
and let z € X¢ be such that m(z) = x. As z ¢ Dg, we have that Gy N K = @ and
as G, < Gy, we also have that G, N O; # @ forall i, so Gx € U.

(iii) Let x be a point of continuity of Stab and let
U={HeSuw(G): HNO1 #0,....HN O, #0,HN K = 0@}

be a neighborhood of G, where each O; € G is open and K € G is compact. Let
O] € G be open, relatively compact with 5{ C O; such that G, € U, where

U :={H eSub(G): HN Oy #9,..., HN O, # 0, HN K = @}.

By the continuity of Stab at x, there is an open W > x with Stab(W) C U'. By (i),
the set | J; D5/ is nowhere dense, so there exists z € 7~} (W) \ |J; D /. Then

z€0!-2C0;-z

for every i and G; N K = @ (because n(z) € W and G; < Gy(z)). Thus G, € U.
As U was arbitrary and Sg (X) is closed, this implies that G, € Sg(X).

(iv) follows from (ii) and (iii). [ ]

The following is well known and follows from [19, Theorem VII]. We include a
short proof for completeness.

Lemma 5.3. Let X be a compact space, Y a locally compact space, and let ¢p: X —2Y
be upper semi-continuous. Let (U;)ic; be a basis for the topology on Y such that
each Uj is relatively compact. Fori € I, we let

Xi={xeX :¢(x)NU; #0).

Then ¢ is continuous at each point of the set ();(X \ 0X;). In particular, if Y is
second countable, then the set of continuity points of ¢ is comeager.
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Proof. Let x € ();(X \ 0X;), and let (x,) be a net in X converging to x and such
that (¢(x,)) converges to F. By upper semi-continuity, we know that F C ¢(x),
and we want to prove equality. Let i such that ¢(x) N U; # @, i.e., x € X;. Since x
is in X \ 0X; by assumption, x must be in the interior of X;. Since (x,) converges
to x, eventually x, € X;, that is, ¢(x4) N U; # @. Since U; is compact, this implies
FnNU; # 0. So whenever ¢ (x) intersects U;, so does F. Since (U;)ier is a basis for
the topology on Y, this shows that ¢ (x) C F, as desired.

Note that X; is always closed by upper semi-continuity, so X \ dX; is a dense
open subset. In case Y is second countable, (U;);ey can be chosen to be countable,
and hence the domain of continuity of ¢ is comeager. ]

Corollary 5.4. Let G be second countable and let G ~, X be a G-flow. Then the set
Xo € X of continuity points of Stab is dense Gg in X and we have

Sg(X) = Stab(Xo).

Proof. The first claim follows from the upper semi-continuity of the stabilizer map
and Lemma 5.3, and the second claim follows from (iv) of Proposition 5.2. [ ]

Remark 5.5. When G is not second countable, it is no longer true that there exists
x € X such that G, € Sg(X). Indeed, consider the group G = SO(3, R), equipped
with the discrete topology, acting on the 2-dimensional sphere X = S2. Then G, #
{lg} for all x € X. On the other hand, every non-identity element has only two fixed
points in X, so the action is topologically free, which means that Sg(X) = {{lg}}
(see Corollary 5.7). Here the set of continuity points of Stab is empty.

In the case where X is minimal, stabilizer flows have already been considered in
the literature under the name of stabilizer URSs. Recall that a uniformly recurrent
subgroup (URS) of G is a minimal subflow of Sub(G). Glasner and Weiss [10] asso-
ciated to every minimal G-flow its stabilizer URS as follows. Upper semi-continuity
of the stabilizer map implies that Stab(X) has a unique minimal subflow (see [1,
Lemma 1.1] or [10, Proposition 1.2]). Then the stabilizer URS of X is simply defined
to be this minimal subflow. Proposition 5.2 implies that for minimal flows, our defini-
tion and theirs coincide.

Corollary 5.6. Let X be a minimal G-flow. Then its stabilizer URS is equal to Sg (X).

Proof. Proposition 5.2 (ii) tells us that Sg(X) C Stab(X). As X is minimal, Xg is
also minimal and so is its factor Sg(X). Now the conclusion follows from the fact
that Stab(X) has a unique minimal subflow. ]

Corollary 5.4 was also known for minimal X: see [10, Proposition 1.2].
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Recall that a flow G ~, X is called topologically free if for every compact K C G
that does not contain 1¢, the closed set {x € X : x € K - x} has empty interior. A point
x € X is called free if the orbit map G — G - x, g — g - x is injective. A flow is called
free if all points are free. It is clear that a flow for which the free points are dense is
topologically free, and a simple Baire category argument shows that the converse is
also true if G is second countable.

Corollary 5.7. Let G ~ X be a G-flow. Then the following are equivalent:
(i) X is topologically free;
(i1) X G is free;
(iii) S¢(X) = {{lg}}-

In particular, topologically free Gleason complete flows are free.
Proof. The equivalence of (ii) and (iii) follows from the definition of S (X).

(1) = (ii). As X G — X isirreducible, the assumption that X is topologically free
implies that X isalso topologically free. Let g € G, g # 1g. Let V C G be an open,
relatively compact subset with g € V and 1 ¢ V. Then the set {z € Xg:zeV- z}
is open by Theorem 4.2, and has empty interior by topological freeness, so it must be
empty. So we conclude that g - z £ z for all z.

(i) = (i). Suppose, towards a contradiction, that there is a compact K € G with
1g ¢ K such that the set {x € X : x € K - x} has non-empty interior W. By Proposi-
tion 5.2 (i), the set 7—1 (W) \ Dg is non-empty and for any z in this set, we have that
z € K - z, contradicting the freeness of X, G- ]

From this, it is not hard to deduce a well-known theorem of Veech.
Corollary 5.8 (Veech). Every locally compact group admits a free flow.

Proof. Let G be a locally compact group and let Sa(G) denote its Samuel compacti-
fication, i.e., the spectrum of the Riesz space of right uniformly continuous bounded
functions on G. Then G ~, Sa(G) is a G-flow and G embeds densely in Sa(G) as
point evaluations. Also, the flow Sa(G) is Gleason complete by [24, Section 3.2.1]
(alternatively, it is not difficult to verify condition (iii) of Theorem 3.2). As the left
translation action G ~, G is free, Corollary 5.7 tells us that the flow Sa(G) is also
free. |
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