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Infinite metacyclic subgroups of the mapping class group

Pankaj Kapari, Kashyap Rajeevsarathy, and Apeksha Sanghi

Abstract. For g � 2, let Mod.Sg / be the mapping class group of the closed orientable surface
Sg of genus g. In this paper, we provide necessary and sufficient conditions for a pair of elements
in Mod.Sg / to generate an infinite metacyclic subgroup. In particular, we provide necessary and
sufficient conditions under which a pseudo-Anosov mapping class generates an infinite metacyclic
subgroup of Mod.Sg / with a nontrivial periodic mapping class. As applications of our main results,
we establish the existence of infinite metacyclic subgroups of Mod.Sg / isomorphic to Z Ì Zm,
Zn Ì Z, and Z Ì Z. Furthermore, we derive bounds on the order of a nontrivial periodic generator of
an infinite metacyclic subgroup of Mod.Sg / that are realized. Finally, we show that the centralizer
of an irreducible periodic mapping class F is either hF i or hF i � hii, where i is a hyperelliptic
involution.

1. Introduction

Let Mod.Sg/ be the mapping class group of the closed orientable surface Sg of genus
g � 2. A metacyclic group is an extension of a cyclic group by a cyclic group. Given
F;G 2Mod.Sg/, it is natural to ask the following question: Can one derive necessary and
sufficient conditions under which F and G generate a metacyclic subgroup of Mod.Sg/?
Ivanov (see [14, Theorem 7.5A]) derived necessary and sufficient conditions under which
two pure mapping classes commute in Mod.Sg/. Subsequently, the finite abelian sub-
groups of Mod.Sg/ have been extensively studied [4, 11, 21]. Furthermore, in [5, 6, 30],
the question (posed earlier) has been answered in the affirmative for finite metacyclic sub-
groups of Mod.Sg/ up to conjugacy of their generators. Moreover, it was shown in [6]
that for g � 5, Mod.Sg/ has an infinite metacyclic subgroup generated by a bounding pair
map and an involution. Taking inspiration from these works, in this paper, we settle this
question for infinite metacyclic subgroups of Mod.Sg/.

A multicurve in Sg is a nonempty collection of isotopy classes of pairwise disjoint
essential simple closed curves. A left-handed (or positive) Dehn twist about a simple
closed curve c will be denoted by Tc . Given a multicurve C D ¹c1; c2; : : : ; c`º in Sg
and nonzero integers qi , for 1 � i � `, a mapping class of the form T

q1
c1 T

q2
c2 � � � T

q`
c` is

said to be a multitwist about C . The Nielsen–Thurston classification [33] asserts that each
mapping class in Mod.Sg/ is either periodic, reducible, or pseudo-Anosov. Furthermore,

Mathematics Subject Classification 2020: 57M60 (primary); 57K20 (secondary).
Keywords: surface, pseudo-periodic mapping class, pseudo-Anosov mapping class, metacyclic group.

https://creativecommons.org/licenses/by/4.0/


P. Kapari, K. Rajeevsarathy, and A. Sanghi 282

a pseudo-Anosov mapping class is neither periodic nor reducible. The intersection of all
maximal reduction systems of a reducible mapping class F is called its canonical reduc-
tion system, which we denote by C.F /.

Let F 2 Mod.Sg/ be an infinite order reducible mapping class. Let C.F / D ¹c1; c2;

: : : ; c`º be the canonical reduction system forF andN anF-invariant closed regular neigh-
borhood of C.F /. Let n be the least positive integer such that F n fixes each path compo-
nent of Sg nN [N . Then, as a consequence of the Nielsen–Thurston classification [33],
there exist s 2 N [ ¹0º and qi 2 Z n ¹0º such that

F n D T q1c1 T
q2
c2
� � �T q`c` �1.F1/�2.F2/ � � � �s.Fs/ (1)

with Fi 2Mod.Ri / is either periodic or pseudo-Anosov, where Ri is a path component of
Sg nN and �i W Mod.Ri /! Mod.Sg/ is the natural inclusion map. For 1 � j � s, Fj ’s
(or �j .Fj /’s) will be called the canonical components of F . The product T q1c1 T

q2
c2 � � � T

q`
c`

appearing in (1) will be called the multitwist component of F . The decomposition of the
form (1) will be called the canonical decomposition (or the Nielsen decomposition) of F .
Without loss of generality, we assume that F1; F2; : : : ; Fs0 are periodic canonical com-
ponents, where s0 � s. The integer n � lcm.jF1j; jF2j; : : : ; jFs0 j/ will be called the degree
of F . For a multicurve C , the cut surface obtained by capping the boundary components
of Sg nN by marked disks will be denoted by Sg.C /, where N is a closed regular neigh-
borhood of C .

Suppose that F;G 2 Mod.Sg/ generate an infinite metacyclic subgroup of Mod.Sg/
such that hF iC hF;Gi. Then it follows that F and G satisfy the relation G�1FG D F k ,
for some nonzero integer k. Hence, the group hF;Gi is a semidirect product of hF i and
hGi and will be denoted by hF i Ìk hGi. In Section 3, we derive the main results of this
paper. To begin with, in Section 3.1, we derive necessary and sufficient conditions for
the existence of infinite metacyclic subgroups of Mod.Sg/ with a pseudo-Anosov gener-
ator depending upon the Nielsen–Thurston type of the other generator (see Theorem 3.1).
We achieve this by analyzing its invariant foliations and the dilatation homomorphism
(see [23]). In particular, we have given necessary and sufficient conditions under which
a pseudo-Anosov mapping class F forms an infinite metacyclic subgroup hF; Gi with a
nontrivial periodic mapping classG such that hF iC hF;Gi. Furthermore, for other types
of G, we have the following main result.

Theorem 1. For g � 2, consider nontrivial mapping classes F;G 2Mod.Sg/. Let hF;Gi
be metacyclic with hF i C hF;Gi. Then the following statements hold.

(i) If F is a pseudo-Anosov, then G cannot be an infinite order reducible mapping
class.

(ii) If F and G are pseudo-Anosov, then hF; Gi is abelian. Furthermore, either
hF;Gi Š Z or hF;Gi Š Zn � Z for some n 2 N.

(iii) LetG be pseudo-Anosov and hF;Gi is non-abelian. Then F is a reducible map-
ping class of finite order.
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In Section 3.2, by decomposing each reducible generator into its canonical compo-
nents, we obtain necessary and sufficient conditions under which two reducible elements
of Mod.Sg/ form an infinite metacyclic subgroup. In this direction, we have our second
main result (see Theorem 3.12) which generalizes a result of Ivanov (see [14, Theo-
rem 7.5A]).

Theorem 2. For g � 2, let F;G 2Mod.Sg/ be two nontrivial mapping classes such that
at least one of F or G is of infinite order and neither F nor G is pseudo-Anosov. Assume
that F;G have degrees n;m, with multitwist components

T q1c1 T
q2
c2
� � �T q`c` and T

q01
c01
T
q02
c02
� � �T

q0
`0

c0
`0
;

respectively, where qi ;q0i 2Z n ¹0º, C.F /D¹c1; c2; : : : ; c`º, and C.G/D¹c01; c
0
2; : : : ; c

0
`0
º.

Then hF;Gi is an infinite metacyclic subgroup with hF i C hF;Gi if and only if the fol-
lowing conditions hold.

(i) C.F / [ C.G/ is a multicurve.

(ii) If F is periodic with G�1FG D F k , then km � 1 .mod n/.

(iii) Define Ai WD ¹cj 2 C.F / j qj D qiº, Bi WD ¹cj 2 C.F / j qj D kqiº, and Ci WD
¹c0j 2 C.G/ j q0j D q

0
iº. Then G.Ai / D Bi , G.Bi / D Ai , and F.Ci / D Ci for

every i .

(iv) For every path component R of Sg.C.F / [ C.G//, then G�1r FrGr D F k
pr

r ,
where Gr ; Fr 2Mod.R/ are induced by G;F , respectively, and pr is the size of
orbit of R under G.

(v) For two path components R;S of Sg.C.F /[ C.G// such that G.R/D S , then
F kr is conjugate to Fs , where Fr 2 Mod.R/; Fs 2 Mod.S/ are induced by F .

The following result is a direct consequence of Theorem 2.

Corollary 1. For g � 2, let F; G 2 Mod.Sg/ be two nontrivial mapping classes such
that at least one of F or G is of infinite order and neither F nor G is pseudo-Anosov.
Let hF;Gi be an infinite metacyclic subgroup of Mod.Sg/ with hF i C hF;Gi. Then the
following statements hold.

(i) F and G are reducible mapping classes.

(ii) If F;G are of infinite order such that G is of odd degree, then hF;Gi is abelian.

(iii) If G is of infinite order of degree 1, then hF;Gi is abelian.

By applying our main theorems, we have shown that infinite metacyclic subgroups of
Mod.Sg/ are abundant. In general, we have established that Mod.Sg/ has infinite meta-
cyclic subgroups isomorphic to Zn Ìk Z, Z Ìk Zn, and Z Ìk Z. We have constructed
several explicit examples (see Sections 3–4) of such subgroups.

In Section 4, we derive several other applications of our main results. In Section 4.1,
we obtain the following characterization of the infinite metacyclic subgroups of level m
subgroups Mod.Sg/Œm� of Mod.Sg/ for m � 3.
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Proposition 1. For g � 2 andm � 3, let F;G 2Mod.Sg/Œm� be two nontrivial mapping
classes. Then hF;Gi is metacyclic with hF i C hF;Gi if and only if the following hold.

(i) F and G are infinite order reducible mapping classes that commute.

(ii) C.F / [ C.G/ is a multicurve.

(iii) The nontrivial canonical components of F and G are pseudo-Anosov mapping
classes.

(iv) The nontrivial canonical components of F and G with the same support gener-
ate a cyclic group.

Moreover, when g � 3, we show the existence of non-abelian infinite metacyclic sub-
groups in Mod.Sg/Œ2�. The following construction is motivated by a family of Penner-type
pseudo-Anosov mapping classes described in [2].

Corollary 2. For g � 3, there is an infinite metacyclic subgroup of hF;Gi <Mod.Sg/Œ2�
isomorphic to Z Ì�1 Z2, where F is a Penner-type pseudo-Anosov and G is a hyperellip-
tic involution.

In Section 4.2, we have derived bounds on the order of a nontrivial periodic generator
of an infinite metacyclic subgroup of Mod.Sg/ that are realized (see Propsosition 4.5). In
particular, we have the following result.

Proposition 2. For g � 2, let F;G 2 Mod.Sg/ be two nontrivial mapping classes such
that hF;Gi is an infinite metacyclic subgroup with hF i C hF;Gi.

(i) Let F be a pseudo-Anosov mapping class and G a periodic mapping class.

(a) If hF;Gi is abelian, then 2 � jGj � 2g.

(b) If hF;Gi is non-abelian, then 2 � jGj � 4g.

(ii) Let F be a reducible mapping class of infinite order and G a periodic mapping
class.

(a) If hF;Gi is abelian, then 2 � jGj � 2g C 2.

(b) If hF;Gi is non-abelian, then 2 � jGj � 2g.

(iii) If F is periodic and hF;Gi is non-abelian, then 3 � jF j � 2g C 2.

Moreover, all of the above bounds are realized.

In Section 4.3, we describe pseudo-Anosovs in Mod.Sg/ which can be written as a
product of two nontrivial periodic mapping classes of the same order.

Corollary 3. Let hF;Gi < Mod.Sg/ be a non-abelian infinite metacyclic subgroup with
hF i C hF;Gi, where F is a pseudo-Anosov and G is nontrivial periodic. Then, for inte-
gers i; j such that i is odd and j is even, GiF j is conjugate to Gi . In particular, GF 2 is
conjugate to G, and therefore, F 2 can be written as a product of two nontrivial periodic
mapping classes of the same order.
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As a final application to our theory, in Section 4.4, we analyze the centralizers of
irreducible periodic mapping classes in Mod.Sg/ (see Proposition 4.13). In particular, we
have the following result.

Corollary 4. Let F 2 Mod.Sg/ be an irreducible periodic mapping class. Then the cen-
tralizer of F in Mod.Sg/ is either hF i or hF i � hii, where i is a hyperelliptic involution.

2. Preliminaries

For g� 2, let Sg be the connected closed orientable surface of genus g. The mapping class
group of Sg is the group of path components of HomeoC.Sg/, and it will be denoted by
Mod.Sg/. The elements of Mod.Sg/ are called mapping classes. The Nielsen–Thurston
classification [33] asserts that each mapping class in Mod.Sg/ is either periodic, reducible,
or pseudo-Anosov.

2.1. Periodic mapping classes

In view of the Nielsen–Kerckhoff theorem [18], a periodic mapping class F 2 Mod.Sg/
of order n has a representative F of the same order (known as a Nielsen representative)
which induces a Zn-action on Sg via isometries. The corresponding orbifold of F is
the quotient orbifold OF WD Sg=hF i (see [32, Chapter 13]), which is homeomorphic
to Sg0 , where g0 is the orbifold genus of OF . The Zn-action induces a branched covering
p W Sg!OF with k branch points (or cone points) x1; : : : ; xk in OF of orders n1; : : : ; nk ,
respectively. The order of a cone point xi is the order of the stabilizer subgroup of any
point in the preimage of xi . From orbifold covering space theory, the branch covering
p W Sg ! OF corresponds to an exact sequence

1! �1.Sg/
p�
�! �orb

1 .OF /
�
�! Zn ! 1:

Moreover, �orb
1 .OF / is a Fuchsian group [17, 20] that has the following presentation:�

˛1; ˇ1; : : : ; ˛g0 ; ˇg0 ; 1; : : : ; k j 
n1
1 D � � � D 

nk
k
D

kY
iD1

i

g0Y
iD1

Œ˛i ; ˇi � D 1

�
:

The epimomorphism � W �orb
1 .OF /! Zn (classically known as a surface kernel map) is

order-preserving on torsion elements and is given by �.i /DF .n=ni /di , where gcd.di ;ni /
D 1, for 1 � i � k. The tuple .g0I n1; : : : ; nk/ is called the signature of the quotient
orbifold OF which we denote by �.OF /. Each cone point xi of order ni in OF lifts under
p to an orbit of size n=ni on Sg and the local rotation induced by Zn-action in this orbit
is given by 2�d�1i =ni , where gcd.di ; ni /D 1. Thus, the orbit data of a cyclic action along
with the structure of its corresponding orbifold can be compactly encoded as a tuple of
integers.
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Definition 2.1. For n� 2, g0 � 0, and 0� r � n� 1, a cyclic data set of degree n, denoted
by n.D/, is a tuple of the form

D D
�
n; g0; r I .d1; n1/; : : : ; .dk ; nk/

�
with the following conditions.

(i) r > 0 if and only if k D 0, and when r > 0, then gcd.r; n/ D 1.

(ii) ni � 2, ni j n, gcd.di ; ni / D 1, for all i .

(iii) lcm.n1; : : : ; bni ; : : : ; nk/ D lcm.n1; : : : ; nk/, for all i .

(iv) If g0 D 0, then lcm.n1; : : : ; nk/ D n.

(v)
Pk
iD1

n
ni
di � 0 .mod n/.

(vi) 2g�2
n
D 2g0 � 2C

Pk
iD1.1 �

1
ni
/ (Riemann-Hurwitz equation).

The number g determined by the Riemann–Hurwitz equation is the genus of the data set
and will be denoted by g.D/.

The quantity r (in Definition 2.1) will be nonzero if and only if D represents a free
rotation of Sg by 2�r=n. We will not include r in the notation of a data set, whenever
r D 0. The significance of the cyclic data set is given in the following proposition due to
Nielsen [25] (see also [31, Theorem 3.9]).

Proposition 2.2. Cyclic data sets of degree n and genus g are in one-to-one correspon-
dence with conjugacy classes of periodic mapping classes of order n in Mod.Sg/.

From here on, a periodic mapping class F and its associated cyclic action F up to
conjugacy will be represented by its corresponding data set, which we denote by DF and
DF , respectively. The corresponding orbifold of F will also be denoted by OF .

We now state some results concerning nontrivial periodic mapping classes which will
be used later. The following result due to Gilman [10] characterizes irreducible periodic
mapping classes F 2 Mod.Sg/ based on the corresponding orbifold OF .

Theorem 2.3. For g � 2, let F 2Mod.Sg/ be a nontrivial periodic mapping class. Then
F is irreducible if and only if OF is a sphere with 3 cone points.

We will now state a useful lemma [16, Theorem 4.1] due to Kasahara.

Lemma 2.4. For g � 2, let F 2 Mod.Sg/ be a nontrivial reducible periodic mapping
class. Then jF j � 2g C 2. The upper bound is realized if and only if g is even and
�.OF / D .0I 2; 2; g C 1; g C 1/. Furthermore, when jF j < 2g C 2, we have jF j � 2g.
Equivalently, if either jF j D 2g C 1 or jF j > 2g C 2, then F is irreducible.

Finally, we state the following assertion which follows from a result of Kulkarni [19].

Lemma 2.5. There are no periodic mapping classes of order 4g C 1 in Mod.Sg/.
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.3; 5/

.3; 5/
D

c

(a) The sum of local rotation angles about the two fixed points of cyclic action D D .5; 0I .4; 5/;

.3; 5/; .3; 5// associated with the pair .3; 5/ is �2�=5 modulo 2� . Hence, the action of D can be extended
to a pseudo-periodic mapping class F 2Mod.S3/ such that F 5 D T �1c , where c is a non-separating curve.

.7; 8/
.1; 10/D1 D2c

(b) The sum of local rotation angles about the fixed points of cyclic actionsD1 D .8; 0I .1; 2/; .5; 8/; .7; 8//
and D2 D .10; 0I .1; 2/; .2; 5/; .1; 10// associated with the pairs .7; 8/ and .1; 10/, respectively, is �2�=40
modulo 2� . Since lcm.8; 10/ D 40, a pseudo-periodic F 2 Mod.S4/ can be constructed from D1 and D2
such that F 40 D T �1c , where c is a separating curve.

Figure 1. Construction of pseudo-periodic mapping classes.

2.2. Pseudo-periodic mapping classes

Let F 2Mod.Sg/ be an infinite order reducible mapping class. From here on, we will use
the notions of canonical decomposition and the degree of F as defined in Section 1. A
mapping class is said to be pseudo-periodic if it is either a nontrivial periodic or of infi-
nite order reducible with only periodic canonical components. Thus, a nontrivial periodic
mapping class F will be considered as pseudo-periodic with C.F / D ;, degree jF j, and
multitwist component equal to identity. We observe that multitwists are pseudo-periodic
mapping classes having trivial periodic canonical components.

In the following example, we construct some infinite order pseudo-periodic mapping
classes whose power is a Dehn twist about a simple closed curve.

Example 2.6. Let F 2Mod.Sg/ be a pseudo-periodic mapping class such that F n D Tc .
Then F is represented by an F 2 HomeoC.Sg/ such that F .N / D N , where N is a
closed annular neighborhood of c. Thus, F induces a Zn-action on Sg.c/ with two fixed
points. Moreover, the sum of induced rotation angles about these fixed points is 2�=n
modulo 2� . Conversely, given nontrivial periodic mapping classes having a (two, in case
c is nonseparating) distinguished fixed point such that the sum of induced rotation angles
about these fixed points is 2�=n modulo 2� , one can reverse this process to recover F .
(We refer the reader to [24, 28, 29, 31] for details.) We illustrate this construction of roots
of Dehn twists in Figure 1.

The angle sum condition in Example 2.6 (in the construction of pseudo-periodic) gen-
eralizes to a formal “compatibility condition” between pairs of orbits of one or more cyclic
actions (see [15] for more details).
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Definition 2.7. For i D 1; 2, let Oi be an orbit of cyclic actionDi such that jO1j D jO2j.
Let k be an integer such that 0 � jkj � n=2, where n D lcm.n.D1/; n.D2//.

(i) We say that O1 and O2 are trivially n-compatible if jO1j D jO2j D n (in this
case n.D1/ D n.D2/).

(ii) Let the pair .di ; ni / correspond to the orbit Oi in the data set Di , where we
assume that .di ; ni /D .0; 1/ if jOi j D n.Di /. We say that the orbitsO1 andO2
are jOi j-compatible with twist factor k if

2�d�11
n1

C
2�d�12
n2

�
2�k

n
.mod 2�/: (2)

When the twist factor associated with the compatibility of the Di is 0, we simply say that
the Di are jOi j-compatible.

2.3. Metacyclic groups

A group H is said to be a metacyclic group if there is a short exact sequence

1! N ! H ! L! 1; (3)

where N and L are cyclic groups. If a metacyclic group H fits into an exact sequence as
in (3) that splits, then we say thatH is a split metacyclic group. Thus, the split metacyclic
group H is isomorphic to the semidirect product N ÌL. Given integers u; n 2 N, a finite
metacyclic group H of order u � n admits the following presentation:

H D hF ;G j F n
D 1; F r

D G u; G�1F G D F k
i; (4)

where r 2 N, k 2 Z�n such that r j n, ku � 1 .mod n/, and r.k � 1/ � 0 .mod n/. For
integersm;n 2N and k 2 Z�n , a split metacyclic group admits the following presentation:

H D hF ;G j F n
D 1; Gm D 1; G�1F G D F k

i Š Zn Ìk Zm:

Metacyclic groups have been completely classified by Hempel in [12].
An infinite metacyclic group is a metacyclic group of infinite order. It is known [12,

Chapter 7] that an infinite metacyclic group admits exactly one of the following presenta-
tions:

hF ;G j G�1F G D F k
i Š Z Ìk Z; for k D ˙1;

hF ;G j G 2m D 1; G�1F G D F k
i Š Z Ìk Z2m; for k D �1; m 2 N;

hF ;G j F n
D 1; G�1F G D F k

i Š Zn Ìk Z; for k 2 Z�n ; n 2 N:

(5)

Throughout this paper, we will only consider non-cyclic (i.e., two-generator) infinite meta-
cyclic groups. As a consequence of the relation G�1F G D F k in a metacyclic group
H D hF ;G i, we have the following elementary lemma.
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Lemma 2.8. LetH D hF ;G i be a metacyclic group, where G�1F G D F k . For integers
i; j , we have

(i) F iG j D G jF ikj and

(ii) .G iF j /` D G i`F j.1CkiCk2iC���Cki.`�2/Cki.`�1//.

2.4. Induced orbifold automorphisms

Let hF ; G i be a metacyclic subgroup of HomeoC.Sg/, where F has finite order. Each
cone point Œx� 2 OF corresponds to a unique pair of the form .cx ; nx/ in the data set DF

corresponding to F . If Œx� 2 OF is not a cone point, then we take .cx ; nx/ D .0; 1/. As
hF iCH , it is known [34] that G would induce a xG 2HomeoC.OF / that preserves the set
of cone points in OF along with their orders. We will call xG , the induced automorphism
on OF by G , and we formalize this notion in the following definition.

Definition 2.9. Let F 2 HomeoC.Sg/ be a finite order map such that jF j D n. We say a
xG 2 HomeoC.OF / is an automorphism of OF if for Œx�; Œy� 2 OF , k 2 Z�n , and xG .Œx�/D
Œy�, we have

(i) nx D ny ,

(ii) cx D kcy .

We denote the group of automorphisms of OF by Autk.OF /. When k D 1, we sim-
ply write Aut.OF / instead of Aut1.OF /. In the following lemma, we state some basic
properties of induced automorphisms.

Lemma 2.10 ([6, Lemma 2.9]). Let F 2 HomeoC.Sg/ be a map of order n and G 2

HomeoC.Sg/ a map such that G�1F G D F k . Then G induces a xG 2 Autk.OF / such
that

OF =h xG i D Sg=hF ;G i:

Furthermore, G has infinite order if and only if xG has infinite order. If jG j D m, then

(i) j xG j divides jG j, and

(ii) j xG j < m if and only if F r D G u, for some 0 < r < n and 0 < u < m.

We refer the reader to [5, 6] for further details on induced orbifold automorphisms.

2.5. Pseudo-Anosov mapping classes

For g � 2, let F 2 Mod.Sg/ be pseudo-Anosov mapping class. We will now describe a
well-known construction of pseudo-Anosov mapping classes due to Penner [27, Theo-
rem 3.1].

Theorem 2.11. Let AD ¹a1; a2; : : : ; amº and B D ¹b1; b2; : : : ; bnº be multicurves in Sg
such thatA[B fills Sg . Any product of positive powers of Tai and negative powers of Tbj ,
where each ai and each bj appear at least once, is a pseudo-Anosov mapping class.
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Note that a collection of simple closed curves C in Sg is said to fill Sg if Sg n C is
a union of closed disks. Let F; G 2 Mod.Sg/ be nontrivial mapping classes, where F
is pseudo-Anosov with stretch factor � > 1 satisfying the relation G�1FG D F k . Let
.Fs; �s/ and .Fu; �u/ be the stable and unstable singular measured foliations of F . We
will require the following result due to McCarthy [23, Lemma 1] in proving our results.

Lemma 2.12. Let F;G 2 Mod.Sg/ such that F is a pseudo-Anosov mapping class sat-
isfying G�1FG D F k . Then k D ˙1 and there exists a positive real number � such that
the following conditions hold:

(i) if k D 1, then G.Fs; �s/ D .Fs; �
�1�s/ and G.Fu; �u/ D .Fu; ��u/,

(ii) if k D �1, then G.Fs; �s/ D .Fu; �
�1�u/ and G.Fu; �u/ D .Fs; ��s/.

Remark 2.13. Let H D ¹G 2 Mod.Sg/ W G.Fs/ D Fs and G.Fu/ D Fuº and let RC
be the group of positive real numbers under multiplication. There is a homomorphism
� W H ! RC such that �.G/ D �G with G.Fu; �u/ D .Fu; �G�u/ and G.Fs; �s/ D

.Fs; �
�1
G �s/ (see [23]). This homomorphism is known as the dilatation homomorphism.

For a singular point p of Fu, let Hp be the subgroup of H consisting of mapping
classes that fix p. Let Lp be the set of all singular leaves of Fu originating at the singular
point p. The action of Hp on Lp induces a homomorphism �p W Hp ! †jLp j, where
†jLp j is the permutation group on jLpj letters.

The image and kernel of the dilatation homomorphism � have also been described in
[23, Lemmas 2-3].

Lemma 2.14. For the dilatation homomorphism � W H ! RC, we have that �.H / is
infinite cyclic and ker� is a finite group.

3. Infinite metacyclic subgroups of mapping class group

For g � 2 and two nontrivial periodic mapping classes F; G 2 Mod.Sg/, the necessary
and sufficient number-theoretic conditions under which conjugates F 0; G0 (of F;G resp.)
generate a finite metacyclic group have been derived in [5, 6, 30]. In this section, we ana-
lyze the infinite metacyclic subgroups of Mod.Sg/. From here on, for F;G 2 Mod.Sg/,
we will assume that if hF; Gi is a metacyclic group, then hF i C hF; Gi, which implies
that G�1FG D F k for some nonzero integer k.

3.1. Metacyclic subgroups with pseudo-Anosov generators

Let F 2 Mod.Sg/ be a pseudo-Anosov mapping class with stretch factor � > 1. Let
.Fs; �s/ and .Fu; �u/ be the stable and unstable singular measured foliations for F ,
respectively. We will now prove our first main result concerning infinite metacyclic sub-
groups of Mod.Sg/ with at least one pseudo-Anosov generator. The homomorphism �p
in the statement of the following theorem has been defined in Remark 2.13.
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Theorem 3.1 (Main Theorem 1). For g � 2, consider nontrivial mapping classes F;G 2
Mod.Sg/.

(i) Let hF;Gi be metacyclic with hF iChF;Gi. Then the following statements hold.

(a) If F is a pseudo-Anosov, then G cannot be an infinite order reducible map-
ping class.

(b) If F andG are pseudo-Anosov, then hF;Gi is abelian. Furthermore, either
hF;Gi Š Z or hF;Gi Š Zn � Z for some n 2 N.

(c) Let G be pseudo-Anosov and hF;Gi is non-abelian. Then F is a reducible
mapping class of finite order.

(ii) Let F be pseudo-Anosov and G is either periodic or pseudo-Anosov. Then
hF;Gi is an abelian metacyclic subgroup if and only if

(a) G.Fu; �u/ D .Fu; �G�u/, G.Fs; �s/ D .Fs; �G
�1�s/, and

(b) there exists a singular point p of Fu such that G�1FGF �1 2 ker�p .

(iii) Let F be pseudo-Anosov and let G be periodic. Then hF; Gi is a non-abelian
metacyclic subgroup with hF i C hF;Gi if and only if

(a) G.Fu; �u/ D .Fs; �s/, G.Fs; �s/ D .Fu; �u/, and

(b) there exists a singular point p of Fu such that G�1FGF 2 ker�p .

Proof. Let F be a pseudo-Anosov mapping class with .Fu;�u/ and .Fs;�s/ as its unsta-
ble and stable invariant singular measured foliations, respectively.

To begin with, we consider the case when hF; Gi is metacyclic with hF i C hF; Gi.
Let F be pseudo-Anosov and G an infinite order reducible mapping class. Consider the
dilatation homomorphism � W H ! RC (see Remark 2.13). Since G�1FG D F k , where
k D ˙1, G2 commutes with F . By Lemma 2.12, G2 2 H , and since G is not pseudo-
Anosov, G2 2 ker�. This is impossible since ker� is finite and G2 has infinite order.

Next, we consider the case when F;G are pseudo-Anosov and hF;Gi is a non-abelian
metacyclic subgroup. If G�1FG D F �1, then G2 commutes with F . By Lemma 2.12,
it follows that G2 preserves .Fu; �u/ and .Fs; �s/. Thus, F and G keep .Fu; �u/ and
.Fs; �s/ invariant, which contradicts Lemma 2.12. Therefore, hF;Gi is abelian, and from
Lemma 2.12, we have hF;Gi � H . Since ker� is a finite group, if ker�

ˇ̌
hF;Gi

¤ 1, then
hF;Gi Š Zn � Z for some n 2 N. Furthermore, if ker�

ˇ̌
hF;Gi

D 1, then hF;Gi Š Z.
Next, we assume that G is a pseudo-Anosov mapping class and hF;Gi is non-abelian

metacyclic subgroup. As discussed above, F can not be pseudo-Anosov. Let F be an infi-
nite order reducible mapping class. Since C.G�1FG/ D G�1.C.F //, C.F �1/ D C.F /

and G�1FG D F �1, it follows that G.C.F // D C.F /. But as C.F / ¤ ; and G is
irreducible, this contradicts our assumption. Now, assume that F is periodic. If F is irre-
ducible, then, by Theorem 2.3, OF � S0;3. Since GFG�1 D F k , G induces an infinite
order mapping class in Mod.S0;3/ which is not possible. Hence, F must be reducible
periodic.
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Finally, we consider the case when F is pseudo-Anosov and G is either periodic or
pseudo-Anosov. Consider the homomorphism �p defined in Remark 2.13. From Lemma
2.12, if G�1FG D F , then G.Fu; �u/ D .Fu; �G�u/ and G.Fs; �s/ D .Fs; �G

�1�s/.
Furthermore, it is apparent that

G�1FGF �1 2 ker�p:

Conversely, we assume that G.Fu; �u/ D .Fu; �G�u/, G.Fs; �s/ D .Fs; �G
�1�s/, and

G�1FGF �1 2 ker �p for some singular point p of Fu. Let F and G be representatives
of F and G, respectively. Since G�1FGF �1 2 ker �p , we have G�1F GF �1.L/ D L,
where L is a leaf of Fu originating at the singular point p. Since �.G�1F GF �1/ D 1,
G�1F GF �1 fixes L pointwise. Since L is dense in Sg [8, Theorem 9.6], we must have
G�1F GF �1 D 1, and hence G�1FG D F . By a similar argument, (iii) follows.

We address the case when G is a pseudo-Anosov mapping class and F is a nontrivial
periodic mapping class in the following remark.

Remark 3.2. For g � 2, let F;G 2Mod.Sg/ be such thatG is a pseudo-Anosov mapping
class and F is a nontrivial periodic mapping class. By Birman–Hilden theory [3, 22], it
follows that hF;Gi is metacyclic with hF i C hF;Gi if and only if there exists a pseudo-
Anosov mapping class xG 2 Mod.OF / such that xG lifts to G under the branched cover
p W Sg ! OF . By removing branch points and their preimages, p can be considered an
unbranched cover between punctured surfaces. Since p is an abelian cover, a xG lifts under
p if and only if the induced isomorphism xG# 2 Aut.H1.OF ;Z// leaves the subgroup of
H1.OF ;Z/ corresponding to the cover p invariant. This homological criterion is often
straightforward to compute (see [1, 9]).

Now, we construct several infinite metacyclic subgroups of Mod.Sg/ with a pseudo-
Anosov generator. In the following example, we describe a non-abelian infinite metacyclic
subgroup having a nontrivial periodic and a pseudo-Anosov generator.

Example 3.3. For g � 1, let G be a rotation of S4g by 2�=4 as shown in Figure 2. By
considering the multicurves A D ¹a1; a2; : : : ; a4gC1º and B D ¹b1; b2; : : : ; b4gC1º, we
see that the curves in A [ B fill S4g . From Theorem 2.11, it follows that

F D

4gC1Y
iD1

Tai

4gC1Y
jD1

T �1bj

is a pseudo-Anosov mapping class. For 1� i � 3g and 1� i 0 � g, we haveG.ai /D bgCi ,
G.bi /D agCi ,G.a3gCi 0/D bi 0 ,G.b3gCi 0/D ai 0 , andG exchanges the curves a4gC1 and
b4gC1. Therefore, G�1FG D F �1, and so we have hF;Gi Š Z Ì�1 Z4. We observe that

hF;G2i Š Z � Z2:

Note that the construction described in Example 3.3 generalizes to any even integer
n� 4, where n is the order of the periodic generator. For even genera, we will now provide
an example of a metacyclic subgroup of Mod.Sg/ isomorphic to Z Ì�1 Z2.
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2�
4

Figure 2. Realization of an infinite metacyclic subgroup hF;Gi < Mod.S4g / isomorphic to Z Ì�1
Z4 generated by a periodic mapping class G of order 4 and a pseudo-Anosov mapping class F .

b1

b2 bh�1
bh

bhC1

bhC2 b2ha1 ah�1 ah
ahC1 ahC2 a2h�1

a2h

c

d

�

G

Figure 3. An infinite metacyclic subgroup hF;Gi <Mod.S2h/ isomorphic to Z Ì�1 Z2, generated
by an involution G and a pseudo-Anosov F .

Example 3.4. For an integer h�1, letAD¹a1;a2; : : : ;a2h;dº andBD¹b1;b2; : : : ;b2h; cº
be two multicurves in S2h, and let G 2 Mod.S2h/ be an involution, as shown in Figure 3.
Since A [ B fills S2h, by Theorem 2.11, the mapping class

F D

2hY
iD1

TaiTd

2hY
jD1

T �1bj T
�1
c

is pseudo-Anosov. For 1 � i � 2h, G maps ai to b2hC1�i , bi to a2hC1�i , and c to d .
Therefore, we haveG�1FG D F �1, and so it follows that hF;Gi <Mod.S2h/ is isomor-
phic to Z Ì�1 Z2.

Examples 3.3–3.4 together generalize to the following corollary.
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Figure 4. Realization of an infinite metacyclic subgroup hF; Gi < Mod.S4gC1/ isomorphic to
Z�Z4 generated by a periodic mapping classG of order 4 and a pseudo-Anosov mapping class F .

Corollary 3.5. For an even positive integer n j g, there is an infinite metacyclic subgroup
of hF;Gi < Mod.Sg/ isomorphic to Z Ì�1 Zn, where F is a Penner-type pseudo-Anosov
and G is periodic with DG D .n; g=nI .1; n/; .n � 1; n//.

For positive integerm, let hF;G jG2mD 1;G�1FG DF �1i be an infinite metacyclic
subgroup of Mod.Sg/, where F is a pseudo-Anosov mapping class and G is a periodic
mapping class. Then it is easily seen that hF;G2i is abelian (as in Example 3.3). However,
a natural question is whether every infinite abelian metacyclic subgroup of Mod.Sg/ arises
this way. The following example shows that this is not true in general.

Example 3.6. For g � 1, let G be a free rotation of S4gC1 by 2�=4 as shown in Figure 4.
We observe that the multicurves A D ¹a1; a2; : : : ; a4gC1º and B D ¹b1; b2; : : : ; b4gC4º
fill S4gC1. From Theorem 2.11, the mapping class

F D

4gC1Y
iD1

Tai

4gC4Y
jD1

T �1bj

is pseudo-Anosov. For 1 � i � 3g, 1 � i 0 � g, and 1 � j � 3, we have that G.ai / D
aiCg ,G.bi /D biCg ,G.a3gCi 0/D ai 0 ,G.b3gCi 0/D bi 0 ,G.a4gC1/D a4gC1,G.b4gCj /D
b4gCjC1, andG.b4gC4/D b4gC1. By construction, we haveGF D FG, and so it follows
that hF;Gi Š Z � Z4.
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Figure 5. Realization of an infinite metacyclic subgroup hF;Gi<Mod.S4g / isomorphic to Z�Z4
generated by a periodic mapping class G of order 4 and a pseudo-Anosov mapping class F .

For g D 1, assume that hF; Gi is a subgroup of a non-abelian infinite metacyclic
subgroup hF;G0i, where .G0/2 DG. It follows from [5, Corollary 5.7] thatG is primitive.
Therefore, such a G0 cannot exist.

In Example 3.6, the periodic generator was represented by a nontrivial free rotation,
but in the following example, the periodic generator is represented by a nontrivial non-free
rotation.

Example 3.7. For g � 1, let G be a rotation of S4g by 2�=4 as shown in Figure 5. We
observe that the multicurves AD ¹a1; a2; : : : ; a4gC1º and B D ¹b1; b2; : : : ; b4gº fill S4g .
From Theorem 2.11, the mapping class

F D

4gC1Y
iD1

Tai

4gY
jD1

T �1bj

is pseudo-Anosov. For 1 � i � 3g, 1 � i 0 � g, and 1 � j � 3, we have that G.ai / D
aiCg , G.bi / D biCg , G.a3gCi 0/ D ai 0 , G.b3gCi 0/ D bi 0 , and G.a4gC1/ D a4gC1. By
construction, we have GF D FG, and so it follows that hF;Gi Š Z � Z4.

Examples 3.6–3.7 can be generalized to the following.

Corollary 3.8. For any positive integer n � 2 such that n j g (resp. n j g � 1), there is
an infinite metacyclic subgroup of hF;Gi < Mod.Sg/ isomorphic to Z � Zn, where F is
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a Penner-type pseudo-Anosov and G is periodic with DG D .n; g=nI .1; n/; .n � 1; n//
(resp. DG D .n; .g C n � 1/=n; 1I �/).

Remark 3.9. An infinite metacyclic subgroup of hF; Gi < Mod.Sg/ generated by a
Penner-type pseudo-Anosov mapping class F can also have pseudo-Anosovs of non-
Penner-type. In Examples 3.3 and 3.6, it can be seen that every pseudo-Anosov mapping
class in hF;Gi which is not a power of F is a non-Penner-type pseudo-Anosov. In fact, F
can also be replaced with a non-Penner-type pseudo-Anosov generator. In Example 3.6,
for i 6� 0 .mod jGj/ and j ¤ 0, the mapping class GiF j is a non-Penner-type pseudo-
Anosov, while in Example 3.3, GiF j , where i is an even positive integer such that i 6� 0
.mod jGj/ and j ¤ 0, is a non-Penner-type pseudo-Anosov. Furthermore, in each case,
taking j D ˙1 would yield elements that are possible generators of hF;Gi in place of F .

Remark 3.10. LetF be a pseudo-Anosov generator of a metacyclic subgroup of Mod.Sg/.
Then there is no upper bound on the stretch factor �.F / of F . This follows from the simple
fact that if hF;Gi is a metacyclic subgroup of Mod.Sg/, then hF n;Gi is also a metacyclic
subgroup for all n > 1, where �.F n/ D �.F /n.

3.2. Metacyclic subgroups with reducible generators of infinite order

We begin this subsection with the following lemma which provides necessary and suffi-
cient conditions under which two multitwists are equal.

Lemma 3.11 ([7, Lemma 3.17]). Let A D ¹a1; : : : ; anº and B D ¹b1; : : : ; bmº be two
multicurves in Sg . Let pi and qi be nonzero integers. If

T p1a1 � � �T
pn
an
D T

q1
b1
� � �T

qm
bm

in Mod.Sg/, then m D n and the sets ¹T piai º, ¹T
qi
bi
º are equal.

We will now establish our second main result that gives necessary and sufficient con-
ditions under which two mapping classes which are not pseudo-Anosov form an infinite
metacyclic subgroup of Mod.Sg/.

Theorem 3.12 (Main Theorem 2). For g � 2, let F; G 2 Mod.Sg/ be two nontrivial
mapping classes such that at least one of F or G is of infinite order and neither F nor G
is pseudo-Anosov. Assume that F;G have degrees n;m, with multitwist components

T q1c1 T
q2
c2
� � �T q`c` and T

q01
c01
T
q02
c02
� � �T

q0
`0

c0
`0
;

respectively, where qi ;q0i 2Z n ¹0º, C.F /D¹c1; c2; : : : ; c`º, and C.G/D¹c01; c
0
2; : : : ; c

0
`0
º.

Then hF;Gi is an infinite metacyclic subgroup with hF i C hF;Gi if and only if the fol-
lowing conditions hold.

(i) C.F / [ C.G/ is a multicurve.

(ii) If F is periodic with G�1FG D F k , then km � 1 .mod n/.
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(iii) Define Ai WD ¹cj 2 C.F / j qj D qiº, Bi WD ¹cj 2 C.F / j qj D kqiº, and Ci WD
¹c0j 2 C.G/ j q0j D q

0
iº. Then G.Ai / D Bi , G.Bi / D Ai , and F.Ci / D Ci for

every i .

(iv) For every path component R of Sg.C.F / [ C.G//, G�1r FrGr D F
kpr
r , where

Gr ; Fr 2 Mod.R/ are induced by G;F , respectively, and pr is the size of orbit
of R under G.

(v) For two path components R; S of Sg.C.F / [ C.G// such that G.R/ D S , F kr
is conjugate to Fs , where Fr 2 Mod.R/, Fs 2 Mod.S/ are induced by F .

Proof. Let hF;Gi be an infinite metacyclic subgroup of Mod.Sg/. First, we assume that
F has infinite order. Since G�1FG D F k , where k D ˙1, we have G�1F nG D F kn,
and so their multitwist components are equal; that is,

T
q1
G�1.c1/

T
q2
G�1.c2/

� � �T
q`
G�1.c`/

D T kq1c1
T kq2c2

� � �T kq`c`
:

By Lemma 3.11, it follows that

¹T
qi
G�1.ci /

j 1 � i � `º D ¹T
kqj
cj j 1 � j � `º;

and soG.Ai /DBi andG.Bi /DAi for every i . Hence,G.C.F //DC.F /. Since kD˙1,
G2 commutes with F . By comparing the multitwist components in FG2F �1 D G2, we
have F.Ci /D Ci for every i . As C.G/ is the intersection of all maximal reduction system
of G, C.G/ is contained in the maximal reduction system of G containing C.F /. There-
fore, it follows that C.F /[ C.G/ is a multicurve. The same conclusion holds trivially for
the case when F is periodic.

Suppose that G has infinite order and F is periodic. Since G�1FG D F k , we have
G�maFGma D F k

ma
D F , where a D jkj. By comparing the multitwist components in

FGmaF �1 D Gma, it follows that

T
aq01
F.c01/

T
aq02
F.c02/

� � �T
aq0
`0

F.c0
`0
/
D T

aq01
c01

T
aq02
c02
� � �T

aq0
`0

c0
`0
:

By Lemma 3.11, we have F.Ci / D Ci for each i , and so F.C.G// D C.G/. Since
F.C.G// D C.G/ and G�m.FGmF �1/ D F k

m�1, it follows that F k
m�1 D 1. There-

fore, km � 1 .mod n/, and we have established (i)–(iii).
Restricting the relation G�1FG D F k to a path component R of Sg.C.F / [ C.G//

gives .G�prFGpr /jR D F k
pr
jR, where pr is the size of the orbit of R under G. There-

fore, G�1r FrGr D F
kpr
r , where Gr ; Fr 2Mod.R/ are induced by G;F , respectively. For

two distinct path components R; S of Sg.C.F / [ C.G// such that G.R/ D S , restrict-
ing the relation G�1FG D F k to R, it follows that Fs is conjugate to F kr , where Fr 2
Mod.R/; Fs 2 Mod.S/ are induced by F . This completes the argument for (iv)–(v).

Conversely, we assume that F and G satisfies (i)–(v). Since the relation G�1r FrGr D

F k
pr

r holds in Mod.R/ for every path componentR of Sg.C.F /[C.G//, it follows from
conditions (i)–(iii), (v) that the relation G�1FG D F k holds in Mod.Sg/. Hence, hF;Gi
is an infinite metacyclic subgroup.
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Figure 6. Realization of an infinite metacyclic subgroup hF;Gi < Mod.S3/ isomorphic to Z � Z2
generated by F such that F 3 D Tc and a free involution G.

We have the following direct consequence of Theorem 3.12.

Corollary 3.13. For g � 2, let F;G 2 Mod.Sg/ be two nontrivial mapping classes such
that at least one of F or G is of infinite order and neither F nor G is pseudo-Anosov.
Let hF;Gi be an infinite metacyclic subgroup of Mod.Sg/ with hF i C hF;Gi. Then the
following statements hold.

(i) F and G are reducible mapping classes.

(ii) If F;G are of infinite order such that G is of odd degree, then hF;Gi is abelian.

(iii) If G is of infinite order of degree 1, then hF;Gi is abelian.

Proof. By Theorem 3.12 (i), (iii), F andG preserve the multicurve C.F /[C.G/. There-
fore, F and G are reducible mapping classes. Let n; m denote the degrees of F; G,
respectively, where m is odd, and assume that F; G are of infinite order. Since C.F / [

C.G/ is a multicurve, comparing the multitwist components in G�mF nGm D F nk
m

, it
follows that km D 1. As m is odd, k D 1, which implies that hF; Gi is abelian. Finally,
when F is periodic and G is an infinite order reducible mapping class of degree 1, by
Theorem 3.12 (ii), we have that hF;Gi is abelian.

Now, we give several examples of infinite metacyclic subgroups of Mod.Sg/ involv-
ing reducible generators. In the following example, we use the n-compatibility of cyclic
actions to construct an infinite metacyclic subgroup of Mod.Sg/ generated by a nontrivial
periodic and a pseudo-periodic mapping class of infinite order.

Example 3.14. Let zF ; zG 2 Mod.S2/ be periodic mapping classes with

D zF D
�
3; 0I .1; 3/; .1; 3/; .2; 3/1; .2; 3/1

�
and D zG D

�
2; 1I .1; 2/2; .1; 2/2

�
;

respectively, as in Figure 6. From the theory developed in [5], there exist conjugates F 0

and G0 of zF and zG, respectively, that commute in Mod.Sg/. We observe that the orbits
corresponding to the cone points ofD zF (resp.D zG) with the same suffix are 1-compatible
with twist factor 1 (resp. 1-compatible). Hence, F 0 and G0 extend to a pseudo-periodic
F and a periodic G (represented by G ), respectively, in Mod.S3/ such that F 3 D Tc
and DG D .2; 2; 1I �/. Since hF 0; G0i is abelian, from Theorem 3.12, it follows that
hF;Gi Š Z � Z2.
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a

b

.1; 2g C 1/

.g; 2g C 1/

.g; 2g C 1/ .g C 1; 2g C 1/

.g C 1; 2g C 1/

.2g; 2g C 1/

� G 0

Figure 7. Realization of an infinite metacylic subgroup hF; Gi < Mod.S2gC1/ isomorphic to
Z2gC1 Ì�1 Z generated by a periodic mapping class F of order 2g C 1 and G such that
G2 D T 2a T

�2
b

.

The following corollary is a direct generalization of Example 3.14.

Corollary 3.15. For g � 2, let F 2Mod.Sg/ be a nontrivial periodic mapping class with

DF D
�
n; g0I .a; n/; .b; n/; .c1; n1/; : : : ; .c`; n`/

�
:

For 1 < m < n and m j n such that gcd.m; n=m/ D 1, there is an infinite metacyclic
subgroup of Mod.SgC1/ isomorphic to Z � Zm if the following conditions hold.

(i) aC b � 0 .mod m/.

(ii) a�1 C b�1 � k .mod n=m/, where k 2 Zn=m n ¹0º.

In the following example, we construct a non-abelian infinite metacyclic subgroup
hF;Gi, where F is a nontrivial reducible periodic mapping class.

Example 3.16. For g � 1, let F1; F2 2 Mod.Sg/ be two periodic mapping classes (see
Figure 7) with

DF1 D
�
2g C 1; 0I .1; 2g C 1/; .g; 2g C 1/1; .g; 2g C 1/2

�
;

DF2 D
�
2g C 1; 0I .2g; 2g C 1/; .g C 1; 2g C 1/1; .g C 1; 2g C 1/2

�
:

Since the orbits corresponding to the cone points with the same suffix are 1-compatible, a
periodic mapping class F 2 Mod.S2gC1/ can be constructed from F1; F2 with

DF D
�
2g C 1; 1I .1; 2g C 1/; .2g; 2g C 1/

�
:

Let G0 2 Mod.S2gC1/ be an involution represented by G 0 as shown in the figure with
DG0 D .2; g C 1; 1I �/. From the theory developed in [6], we have G0�1FG0 D F �1.
Now, considerG 2Mod.S2gC1/ such thatG DG0TaT �1b . Since F.a/D a and F.b/D b,
it follows that G�1FG D F �1. Hence, hF;Gi Š Z2gC1 Ì�1 Z.

In [6, Example 4.19], an infinite metacyclic subgroup hF; Gi < Mod.Sg/ was con-
structed, where F was an infinite-order pseudo-periodic and G was a nontrivial periodic
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a

b

.g; 2g C 1/

.g; 2g C 1/

.1; 2g C 1/ .g C 1; 2g C 1/

.2g; 2g C 1/

.g C 1; 2g C 1/

� G

Figure 8. Realization of an infinite metacyclic subgroup hF; Gi < Mod.S2gC1/ isomorphic to
Z Ì�1 Z2 generated by an F such that F 2gC1 D T 3a T

�3
b

and an involution G.

mapping class such that hG i acted non-transitively on the path components of Sg.C.F //.
We now provide an example in which the action of hG i on Sg.C.F // is transitive.

Example 3.17. For g � 2, let F1; F2 2 Mod.Sg/ be periodic mapping classes (see Fig-
ure 8) with

DF1 D
�
2g C 1; 0I .g; 2g C 1/1; .1; 2g C 1/2; .g; 2g C 1/

�
;

DF2 D
�
2g C 1; 0I .2g; 2g C 1/1; .g C 1; 2g C 1/2; .g C 1; 2g C 1/

�
:

Here, the orbits corresponding to cone points with the same suffix are 1-compatible with
twist factor˙3. Thus, there exists a pseudo-periodic F 2 Mod.S2gC1/ with F1; F2 as its
canonical components such that

F 2gC1 D T 3a T
�3
b ;

where C.F / D ¹a; bº is a bounding pair. Let G 2 Mod.S2gC1/ be represented by a free
involution G as shown in the figure with DG D .2; g C 1; 1I �/. From Theorem 3.12, it
follows that GFG�1 D F �1, and hence, hF;Gi Š Z Ì�1 Z2.

The constructions in Examples 3.16 and 3.17 easily generalize to the following.

Corollary 3.18. For g � 2, let F 2 Mod.Sg/ be a periodic mapping class with

DF D
�
n; g0I .a; n/; .b; n/; .c1; n1/; : : : ; .c`; n`/

�
; where 3 � n � 4g:

Then the following statements hold.

(i) If a D b, then there is an infinite metacyclic subgroup of Mod.S2gC1/ isomor-
phic to Zn Ì�1 Z.

(ii) If a ¤ b, then there is an infinite metacyclic subgroup of Mod.S2gC1/ isomor-
phic to Z Ì�1 Z2.

So far, we have only constructed infinite metacyclic subgroups with nontrivial periodic
elements. In the next couple of examples, we construct infinite metacyclic subgroups that
do not have any nontrivial periodic element.
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a f

e b

c

�

G1

�

G2

Figure 9. Realization of an infinite metacyclic subgroup hF;Gi < Mod.Sg / isomorphic to Z � Z
and Z Ì�1 Z generated by two pseudo-periodic mapping classes F and G.

a f

e b

c d

�

G1

�

G2

Figure 10. Realization of an infinite metacyclic subgroup hF;Gi < Mod.Sg / isomorphic to Z �Z
and Z Ì�1 Z generated by two pseudo-periodic mapping classes F and G.

Example 3.19. For an odd integer g > 1, let G1; G2 2Mod.Sg/ be represented by a free
involution G1 and a hyperelliptic involution G2 as in Figure 9. We observe that G1 and G2
commute. Consider F1; F2; G 2 Mod.Sg/ such that

F1 D G2TaTb; F2 D G2TaT
�1
b TeT

�1
f ; and G D G1Tc :

Since G2 D T 2c , F 21 D TaTbTeTf , and F 22 D T
2
a T
�2
b
T 2e T

�2
f

, F1, F2, and G are pseudo-
periodic mapping classes. Now, it can be verified that G�1F1G D F1 and G�1F2G D
F �12 . Thus, we have hF1; Gi Š Z � Z and hF2; Gi Š Z Ì�1 Z.

Example 3.20. For an even integer g > 2, let G1; G2 2 Mod.Sg/ be represented by an
involution G1 and a hyperelliptic involution G2 as in Figure 10. We observe thatG1 andG2
commute. Consider F;G 2 Mod.Sg/ such that F D G2TcT �1d and G D G1TaTe . Since
F 2 D T 2c T

�2
d

and G2 D TaTbTeTf , F and G are pseudo-periodic mapping classes. It
can be verified that G�1FG D F �1, and hence we have hF;Gi Š Z Ì�1 Z. Considering
F 0 2 Mod.Sg/ such that F 0 D G2TcTd , it can be seen that hF 0; Gi Š Z � Z.

Taking inspiration from [6, Example 4.20], where a non-abelian infinite metacyclic
subgroup was constructed with a nontrivial periodic generator, we will now describe an
example where both generators are pseudo-periodics of infinite order.

Example 3.21. Let F;G0 2Mod.S13/ such that F 3D Tc1T
�1
c2
Tc3T

�1
c4

andG0 represented
by G 0 with DG 0 D .4; 4; 1I �/ (see Figure 11). In [6, Example 4.20], it was shown that
G0FG0�1 D F �1, and therefore hF; G0i Š Z Ì�1 Z4 < Mod.S13/. Now, we consider
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G 0

�
2

.1; 3/

.1; 3/.1; 3/

.2; 3/

.2; 3/
.2; 3/

.1; 3/

.1; 3/

.1; 3/.2; 3/

.2; 3/

.2; 3/

c1
c2

c3
c4

.1; 3/

.1; 3/

.1; 3/

.2; 3/

.2; 3/

.2; 3/

.1; 3/

.1; 3/
.1; 3/

.2; 3/

.2; 3/

.2; 3/

Figure 11. Realization of an infinite metacyclic subgroup of Mod.S13/ isomorphic to Z Ì�1 Z.

G 2Mod.S13/ such thatG DG0Tc1 . SinceG4 D Tc1Tc2Tc3Tc4 , theG is pseudo-periodic
of degree 4. As F.c1/ D c1 and

G�1FG D T �1c1 G
0�1FG0Tc1 D T

�1
c1
F �1Tc1 D F

�1;

we have hF;Gi Š Z Ì�1 Z.

In the preceding examples, we saw infinite metacyclic subgroups with pseudo-periodic
generators. In the following examples, we construct infinite metacyclic subgroups with an
infinite order reducible generator with canonical components that are nontrivial periodic
and pseudo-Anosov.

Example 3.22. For g � 3, consider the collection of curves as shown in Figure 12 and
the mapping class

F D Tb1Tb2T
�1
a1
T �1a2 Tb3

gY
iD3

TaiTbiC1 :

Since F.b3/ D b3, F is a reducible mapping class of infinite order with pseudo-Anosov
canonical component Tb1Tb2T

�1
a1
T �1a2 and periodic canonical component

Qg
iD3 TaiTbiC1 .

LetG be the hyperelliptic involution as shown in the figure. SinceG�1FG D F , we have
hF;Gi Š Z � Z2.
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b1

b2

b3

b4 bg

bgC1

a1 a2 a3 ag

G

�

Figure 12. Realization of an infinite metacyclic subgroup hF;Gi<Mod.Sg / isomorphic to Z�Z2
generated by a hyperelliptic involution G and a reducible mapping class F of infinite order.

b1

b2 b3 b5 b6 b7
a1

a3

a4

a6

c1

c2

c3

c4d1

d2

�

G

Figure 13. Realization of an infinite metacyclic subgroup hF;Gi < Mod.S6/ isomorphic to Z Ì�1
Z2 generated by an involution G and a reducible mapping class F of infinite order.

The construction in Example 3.22 generalizes to the following assertion.

Corollary 3.23. For g � 2, there is an infinite metacyclic subgroup hF;Gi < Mod.Sg/
isomorphic to Z �Z2 generated by a hyperelliptic involution G and a reducible mapping
class of infinite order containing at least one pseudo-Anosov and one nontrivial periodic
canonical component.

Example 3.24. Consider the collection of curves in S6 as shown in Figure 13 and the
mapping class

F D .Tb1Ta1Tb2/.Tc1T
�1
c2
/.Tb3Td1Ta4T

�1
a3
T �1d2 T

�1
b5
/.Tc3T

�1
c4
/.T �1b6 T

�1
a6
T �1b7 /:

Since F.¹c1; c2; c3; c4º/D ¹c1; c2; c3; c4º, F is a reducible mapping class of infinite order
with two nontrivial periodic canonical components and one pseudo-Anosov canonical
component. Let G 2 Mod.S6/ be an involution as shown in the figure. Since G�1FG D
F �1, hF;Gi Š Z Ì�1 Z2.

A direct generalization of Example 3.24 is the following result.

Corollary 3.25. For an even integer g � 4, there is an infinite metacyclic subgroup
hF; Gi < Mod.Sg/ isomorphic to Z Ì�1 Z2 generated by an involution G with DG D
.2; g=2I .1; 2/; .1; 2// and a reducible mapping class of infinite order containing at least
one pseudo-Anosov and one nontrivial periodic canonical component.

4. Applications

In this section, we derive some applications of the theory developed in this paper.
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4.1. Infinite metacyclic subgroups of the level m subgroup of Mod.Sg/

The action of Mod.Sg/ on H1.Sg ;Z/ affords a surjective representation [7, Chapter 6]
‰ W Mod.Sg/ ! Sp.2g;Z/. The subgroup ker‰ is known as the Torelli group and is
denoted by 	.Sg/. Further, for an integer m � 2, the level m congruence subgroup is the
kernel of the composition

Mod.Sg/! Sp.2g;Z/! Sp.2g;Zm/;

denoted by Mod.Sg/Œm�. By definition 	.Sg/�Mod.Sg/Œm� for everym. Form� 3, it is
known [7, Chapter 6] that Mod.Sg/Œm� is torsion-free and that an infinite order reducible
in Mod.Sg/Œm� has degree 1 [13, Corollary 1.8]. The only torsion elements of Mod.Sg/Œ2�
are the hyperelliptic involutions. The following result follows immediately from Theorems
3.1, 3.12, and Corollary 3.13.

Proposition 4.1. For g� 2 andm� 3, let F;G 2Mod.Sg/Œm� be two nontrivial mapping
classes. Then hF;Gi is metacyclic with hF i C hF;Gi if and only if the following hold.

(i) F and G are infinite order reducible mapping classes that commute.

(ii) C.F / [ C.G/ is a multicurve.

(iii) The nontrivial canonical components of F and G are pseudo-Anosov mapping
classes.

(iv) The nontrivial canonical components of F and G with the same support gener-
ate a cyclic group.

In the following examples, we construct infinite metacyclic subgroups of Mod.Sg/Œ2�
with a pseudo-Anosov generator. Since the hyperelliptic involution of Mod.S2/ lies in the
center, we will assume g � 3.

Example 4.2. Consider the multicurvesAD ¹a1; a2; : : : ; agº andB D ¹b1; b2; : : : ; bgC1º
as shown in Figure 14. Since the curves of A [ B fill Sg , by Theorem 2.11, the mapping
class

F D

gY
iD1

T 2ai

gC1Y
iDi

T �2bi

is pseudo-Anosov. Let G be the hyperelliptic involution as shown in Figure 14. Since
G.c/D c for every c 2 A[B , we have G�1FG D F . As F;G 2Mod.Sg/Œ2�, hF;Gi <
Mod.Sg/Œ2� isomorphic to Z � Z2.

The following example draws inspiration from a familyof Penner-type pseudo-Anosov
mapping classes described in [2].

Example 4.3. For g � 3, we construct a non-abelian metacyclic subgroup of Mod.Sg/Œ2�
generated by a pseudo-Anosov element in 	.Sg/. First we describe a filling collection
of curves C in Sg which is a disjoint union of two multicurves A and B . Consider the
surfaces S , S 0, and S 00 with curves and arcs as shown in Figure 15. We construct a closed
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b1

b2 b3 b4 bg

bgC1

a1 a2 a3 ag

G

�

Figure 14. Realization of an infinite metacyclic subgroup hF; Gi < Mod.Sg /Œ2� isomorphic to
Z � Z2 generated by a hyperelliptic involution G and a pseudo-Anosov F .

Figure 15. The surface S 00 on the left, S in center, and S 0 on the right used to construct a filling
system of curves in Sg .

G

�

Figure 16. A filling system of curves in S4 and S7 D S C S 0 C S .

surface by combining multiple copies of S , S 0, and S 00 as follows. For Xi 2 ¹S; S 0; S 00º,
we write X1 CX2 � � � CXn for the surface obtained by gluing Xi end to end and capping
the remaining boundary components after gluing. For m � 1, we write mS for S C S C
� � � C S . For m � 1, we can write Sg D mS if g D 3m, Sg D S C S 0 C mS if g D
3mC 4, Sg D S C S 0 CmS C S 0 C S if g D 3mC 8, S5 D S 00, and S8 D S 00 C S 0. The
multicurves A and B are drawn with red and blue color, respectively.

Let F be a product of positive (left-handed) Dehn twists about the curves in A and
negative Dehn twists about the curves in B , where each Dehn twist is taken exactly once.
We observe that for each curve a 2 A, there exist a unique curve b 2 B such that ¹a; bº
bounds a subsurface of Sg and vice-versa. Since A [ B fills Sg , by Theorem 2.11, F is
a pseudo-Anosov. It can be seen that F 2 	.Sg/. Let G be the hyperelliptic involution
shown in Figure 16. Since G exchanges multicurves A and B , we have

G�1FG D F �1:

Hence, hF;Gi < Mod.Sg/Œ2� is isomorphic to Z Ì�1 Z2.

4.2. Bounds on the order of a periodic generator of an infinite metacyclic group

In this subsection, we derive bounds on the order of a nontrivial periodic generator of an
infinite metacyclic subgroup of Mod.Sg/which are realized. We will require the following
remark.



P. Kapari, K. Rajeevsarathy, and A. Sanghi 306

Remark 4.4. For an even integer g, let F 2 Mod.Sg/ be a nontrivial reducible periodic
mapping class of order 2gC 2. From the theory developed in [26], it follows that F arises
as a 1-compatibility between fixed points of F 0 and F 0�1, where F 0 2 Mod.Sg=2/ is a
periodic mapping class of order 4.g=2/C 2 D 2g C 2. Hence, F has a unique maximal
reduction system containing a single separating curve.

In the following proposition, we obtain bounds on the order of a nontrivial periodic
generator which are realized.

Proposition 4.5. For g � 2, let F;G 2Mod.Sg/ be two nontrivial mapping classes such
that hF;Gi is an infinite metacyclic subgroup with hF i C hF;Gi.

(i) Let F be a pseudo-Anosov mapping class and G a periodic mapping class.

(a) If hF;Gi is non-abelian, then 2 � jGj � 4g.

(b) If hF;Gi is abelian, then 2 � jGj � 2g.

(ii) Let F be a reducible mapping class of infinite order and G a periodic mapping
class.

(a) If hF;Gi is abelian, then 2 � jGj � 2g C 2.

(b) If hF;Gi is non-abelian, then 2 � jGj � 2g.

(iii) If F is periodic and hF;Gi is non-abelian, then 3 � jF j � 2g C 2.

Moreover, all of the above bounds are realized.

Proof. (i) Suppose that hF;Gi is non-abelian. Example 4.6 shows that an order 4g peri-
odic mapping class can form a non-abelian metacyclic subgroup with F . Since it is
known that jGj � 4g C 2 [11] and there is no periodic mapping class of order 4g C 1
(Lemma 2.5), it suffices to show that jGj ¤ 4gC 2. If jGj D 4gC 2, then by Lemma 2.4,
G2 is irreducible. Furthermore, from Theorem 2.3, it follows that OG2 � S0;3. Since G2

commutes with F , by Lemma 2.10, F induces an infinite order mapping class in the finite
group Mod.S0;3/, which is impossible. Thus, it follows that jGj � 4g.

Next, we consider the case when hF;Gi is abelian. The preceding argument shows that
G is a reducible mapping class. By Lemma 2.4, it follows that jGj � 2g C 2. Moreover,
Example 4.6 shows that an order 2g periodic mapping class can form an infinite abelian
metacyclic subgroup with F . Since G is reducible, it suffices to show that jGj ¤ 2g C 2.
Let G be a reducible periodic mapping class of order 2g C 2 that commutes with F . By
Remark 4.4, G has a unique maximal reduction system containing a single separating
curve, say, c. Since GF D FG, we have GF.c/ D F.c/, and so F.c/ D c, which is not
possible as F is irreducible. Thus, it follows that jGj � 2g. Examples 4.2–4.3 show that
the lower bounds are realized.

(ii) Let hF; Gi be abelian. From Corollary 3.13, it follows that G is reducible, and
from Lemma 2.4, we have jGj � 2g C 2. As before, a periodic mapping class of order
2gC 2 has a unique maximal reduction system ¹cº. Taking F D Tc , we haveG commutes
with F . This shows that the upper bound 2g C 2 is realized when hF;Gi is abelian.
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a1

a2

a3

a4
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a2

a3

a4
c1

c2

c3

c4c1

c2

c3

c4

G
2�
8

Figure 17. Realization of an infinite metacyclic subgroup hF;Gi < Mod.S2/ isomorphic to Z Ì�1
Z8 generated by an irreducible periodic mapping class G of order 8 and a pseudo-Anosov mapping
class F .

Let hF;Gi be non-abelian. If jGj D 2g C 2, then from Theorem 3.12, it follows that
G.C.F // D C.F /. Since G has a unique maximal reduction system ¹cº, it follows that
C.F / D ¹cº (as C.F / ¤ ;). Therefore, the multitwist component of F n is T qc , for some
n 2 N and q 2 Z n ¹0º. By comparing multitwist components in G�1F nG D F �n, we
have G�1T qc G D T

�q
c . This is impossible since G commutes with Tc . Hence, jGj � 2g

and Example 4.7 shows that this upper bound is realized. Examples 3.17 and 4.7 show
that the lower bounds are realized.

(iii) Since hF; Gi is non-abelian and hF i C hF; Gi, we have k 2 Z�n n ¹1º, where
n D jF j. Hence, n � 3, and by Theorem 3.1 and Corollary 3.13, F is reducible. From
Lemma 2.4, we have n � 2gC 2. Thus, the assertion follows, and by Corollaries 3.18 and
4.9, it follows that the bounds are realized.

We will now provide examples demonstrating that the upper bound on the order of the
periodic generator G of the group hF;Gi obtained in Proposition 4.5 is realized.

Example 4.6. For g � 2, let G 2 Mod.Sg/ be a periodic mapping class of order 4g
realized as 2�=4g-rotation of a 4g-gon with side-pairing a1a2 � � � a2ga�11 a�12 � � � a

�1
2g as

shown in Figure 17 (for g D 2). For 1 � i � 2g � 1, let ci D aiaiC1, c2g D a2ga
�1
1 ,

A D ¹c1; c3; : : : ; c2g�1º, and B D ¹c2; c4; : : : ; c2gº. We note that ci is homotopic to the
concatenation of ai and aiC1. We observe that A and B are multicurves such that the
curves in A [ B fill Sg . By Theorem 2.11, the mapping class

F D

gY
kD1

Tc2k�1

gY
kD1

T �1c2k

is pseudo-Anosov. Since G.ci /D ciC1, where 1 � i � 2g � 1 and G.c2g/D c1, we have
G�1FG D F �1. Hence, hF; Gi Š Z Ì�1 Z4g . Furthermore, since G�2FG2 D F , we
have hF;G2i Š Z � Z2g .
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.5; 6/

.2; 3/

.2; 3/

.1; 2/

.1; 2/

.1; 2/
.1; 6/

.1; 3/

.1; 3/

.1; 2/

.1; 2/

.1; 2/

�

G 0

c

Figure 18. An infinite metacyclic subgroup hF;Gi < Mod.S2/ isomorphic to Z6 Ì�1 Z generated
by an order 6 mapping class F and a pseudo-periodic mapping class G.

Example 4.7. For even integer g � 2, letG 2Mod.Sg/ be a periodic of order 2g realized
as the square of 2�=4g-rotation of a 4g-gon with side-pairing a1a2 � � �a2ga�11 a�12 � � �a

�1
2g

as shown in Figure 17 (for g D 2). Consider the multicurve C D ¹c2i�1 WD a2i�1a2i j

1 � i � gº, where c2i�1 is homotopic to the concatenation of a2i�1 and a2i . Define the
multitwist

F D

g=2Y
iD1

Tc4i�3T
�1
c4i�1

:

For 1� i � g � 1, asG.c2i�1/D c2iC1 andG.c2g�1/D c1, we haveG�1FG D F �1 and
G�gFGg D F . Therefore, it follows that hF;Gi Š Z Ì�1 Z2g and hF;Ggi Š Z � Z2.

The following example shows that the upper bound on the order of the periodic gener-
ator F of a non-abelian metacyclic subgroup hF;Gi obtained in Proposition 4.5 is realized
when G is reducible of infinite order.

Example 4.8. Let F1; F2 2 Mod.S1/ be periodic with

DF1 D
�
6; 0I .1; 2/; .1; 3/; .1; 6/1/ and DF2 D .6; 0I .1; 2/; .2; 3/; .5; 6/1

�
:

Since the orbits corresponding to cone points with the same suffix are 1-compatible, a
periodic mapping class F 2 Mod.S2/ can be constructed from F1; F2 with

DF D
�
6; 0I .1; 2/; .1; 2/; .1; 3/; .2; 3/

�
:

Let G0 2 Mod.S2/ be an involution represented by G 0 as shown in Figure 18 with DG0 D
.2; 1I .1; 2/; .1; 2//. From the theory developed in [6], it follows that G0�1FG0 D F �1.
Now, consider G 2 Mod.S2/ such that G D G0Tc . Since F.c/ D c, we have G�1FG D
T �1c G0�1FG0Tc D F

�1, and hence, hF;Gi Š Z6 Ì�1 Z.

Example 4.8 generalizes to the following corollary.

Corollary 4.9. For an even integer g�2, there is an infinite metacyclic subgroup hF;Gi<
Mod.Sg/ isomorphic to Z2gC2 Ì�1 Z, where F is a nontrivial periodic mapping class
and G is a pseudo-periodic mapping class of infinite order.
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4.3. Types of elements in an infinite metacyclic group

Let hF; Gi < Mod.Sg/ be an infinite metacyclic subgroup with hF i C hF; Gi. In this
subsection, we determine the Nielsen–Thurston type of the elements in hF;Gi depending
upon the Nielsen–Thurston type of F;G.

Lemma 4.10. For g � 2, consider a (non-cyclic) metacyclic subgroup hF;Gi<Mod.Sg/
that admits the presentation hF;G jG�1FGDF ki, where kD˙1. Then every nontrivial
element of hF;Gi is a reducible mapping class of infinite order.

Proof. From Lemma 2.8, F iGj D GjF ik
j
, so every element of hF; Gi is of the form

GiF j for some integers i; j . For GiF j 2 hF;Gi, from Lemma 2.8, we have

.GiF j /` D Gi`F j.1Ck
iCk2iC���Cki.`�2/Cki.`�1//:

It follows that every nontrivial elementGiF j 2 hF;Gi has infinite order. Furthermore, by
Theorem 3.1, neitherG nor F can be pseudo-Anosov mapping classes. WhenG and F are
infinite order reducibles, from Theorem 3.12, it follows that every nontrivial element of
hF;Gi preserves the multicurve C.F /[C.G/ and hence is a reducible mapping class.

Lemma 4.11. For g � 2, consider a metacyclic subgroup hF;Gi <Mod.Sg/ that admits
the presentation hF;G j F n D 1;G�1FG D F ki, where n � 3 and k 2 Z�n n ¹1º. Every
nontrivial element of hF; Gi, except the powers of F , is of the same Nielsen–Thurston
type as G.

Proof. We note that G can be either pseudo-Anosov or reducible of infinite order. When
G is reducible, from Theorem 3.12, we have F.C.G// D C.G/. Moreover, for i ¤ 0, we
consider GiF j 2 hF;Gi and set ` D jF jjkj. Then from Lemma 2.8, we have

.GiF j /` D Gi`F j.1Ck
iCk2iC���Cki.`�2/Cki.`�1//

D Gi`F j jF j.1Ck
iCk2iC���Cki.jkj�2/Cki.jkj�1//

D Gi`:

Hence, every nontrivial element of hF;Gi, except the powers of F , has the same Nielsen–
Thurston type as G.

Lemma 4.12. For g; m � 2, consider a metacyclic subgroup hF; Gi < Mod.Sg/ that
admits the presentation hF; G j Gm D 1; G�1FG D F ki, k D ˙1 (for k D �1, m is
even).

(i) If hF;Gi is abelian, then every nontrivial element of hF;Gi, except the powers
of G, has the same Nielsen–Thurston type as F .

(ii) If hF; Gi is non-abelian, then for integers i; j , where j ¤ 0, GiF j has the
same Nielsen–Thurston type as F if i is even, and GiF j is periodic of order
jGi j when i is odd. Furthermore, for i odd and j even, GiF j is conjugate
to Gi .
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Proof. When hF;Gi is abelian, it follows that every nontrivial element of hF;Gi, except
the powers of G, is of infinite order of the same Nielsen–Thurston type as of F . We now
consider the case when hF; Gi is non-abelian. Since G2 commutes with F , G2iF j has
the same Nielsen–Thurston type as F , where j ¤ 0. By Lemma 2.8,

.GiF j /2 D G2iF .1C.�1/
i /
D G2i

if and only if i is odd. Thus, it follows that, for j ¤ 0, GiF j is periodic of order jGi j
if and only if i is odd. When j is even and i is odd, we have F j=2.GiF j /F �j=2 D
F j=2GiF j=2 D GiF .j Œ1C.�1/

i �/=2 D Gi . Therefore, GiF j is conjugate to Gi .

4.4. Centralizers of irreducible periodic mapping classes

In this subsection, we describe the centralizers of irreducible periodic mapping classes in
Mod.Sg/.

Proposition 4.13. For g � 2, let F 2Mod.Sg/ be an irreducible periodic mapping class
with DF D .n; 0I .c1; n1/; .c2; n2/; .c3; n3//. Let H be the centralizer of F in Mod.Sg/.

(i) If either n > 2gC 2, or the .ci ; ni / are all distinct for i D 1;2; 3, thenH D hF i.

(ii) If n � 2g C 2 and .ci ; ni / D .cj ; nj / for some i; j 2 ¹1; 2; 3º and i ¤ j , then
H D hF i � hii, where i is a hyperelliptic involution.

Proof. Since F is irreducible, by Theorem 2.3, OF � S0;3. By Definition 2.1 (vi), we
have n � 2g C 1. For G 2 H n hF i, by Lemma 2.10, there exists xG 2 Aut.OF / induced
by G . Since Mod.S0;3/ Š †3 (where †3 is the permutation group on three letters), it
follows that jGj D 2 or 3.

First, we consider the case when jGj D 3. Since xG 2 Aut.OF /, xG permutes the three
cone points of OF , which implies that .ci ; ni / D .cj ; nj / for all i; j 2 ¹1; 2; 3º. By Defi-
nition 2.1 (iv), we have .ci ; ni / D .c1; n/ for every i . Moreover, by Definition 2.1 (v), we
have 3c1 � 0 .mod n/, which is impossible (as n � 4).

We now consider the case when jGj D 2. Since xG 2 Aut.OF /, xG permutes two cone
points of OF and fixes the third one. By Definition 2.1 (iv), we have .ci ; ni / D .cj ; nj / D
.ci ; n/, for some i; j 2 ¹1; 2; 3º and i ¤ j . We note that such a xG 2 †3 is uniquely
determined. Since G 2 H , we have hF;Gi Š Zn �Z2. By a result of Maclachlan [21], it
follows that jhF;Gij � 4g C 4, and this implies that n � 2g C 2. Thus, (i ) follows.

When n D 2g C 1, by Definition 2.1 (vi), we have ni D 2g C 1 for every i . Since
�.Sg=hF ;G i/ D .0I 2; 2gC 1; 4gC 2/, it follows that hF ;G i is cyclic. From the theory
developed in [5], it follows that G is a hyperelliptic involution. When n D 2g C 2, by
Definition 2.1 (vi), we have �.OF / D .0IgC 1; 2gC 2; 2gC 2/. Since xG 2 Aut.OF /, it
follows that �.Sg=hF ; G i/ D .0I 2; 2g C 2; 2g C 2/. Again, from the theory developed
in [5], the possible data sets for G are

(a) DG1 D .2; 0I .1; 2/; .1; 2/; : : : ; .1; 2/„ ƒ‚ …
.2gC2/ times

/,
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(b) DG2 D .2; g=2I .1; 2/; .1; 2// when g is even, and

(c) DG3 D .2; .g C 1/=2; 1I �/ when g is odd.

Furthermore, it can be shown that F gC1G1 is conjugate to G2 (resp. G3) when g is even
(resp. odd). Further, we note that lifts of xG are GF j , where 1 � j � n. This concludes
our argument for (ii).
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