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A quantified local-to-global principle
for Morse quasigeodesics

J. Maxwell Riestenberg

Abstract. Kapovich, Leeb and Porti (2014) gave several new characterizations of Anosov repre-
sentations � ! G, including one where geodesics in the word hyperbolic group � map to “Morse
quasigeodesics” in the associated symmetric space G=K. In analogy with the negative curvature
setting, they prove a local-to-global principle for Morse quasigeodesics and describe an algorithm
which can verify the Anosov property of a given representation in finite time. However, some parts
of their proof involve non-constructive compactness and limiting arguments, so their theorem does
not explicitly quantify the size of the local neighborhoods one needs to examine to guarantee global
Morse behavior. In this paper, we supplement their work with estimates in the symmetric space to
obtain the first explicit criteria for their local-to-global principle. This makes their algorithm for
verifying the Anosov property effective. As an application, we demonstrate how to compute explicit
perturbation neighborhoods of Anosov representations with two examples.
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1. Introduction

Anosov representations were introduced by Labourie and defined in general by Guichard
and Wienhard [11,25]. An Anosov representation is a homomorphism from a word hyper-
bolic group � to a semisimple Lie groupG satisfying a strong dynamical condition. These
representations have come to be widely studied as an interesting source of infinite covol-
ume discrete subgroups of higher-rank semisimple Lie groups (see the surveys [15, 22]).
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This paper is concerned with certifying the Anosov property of a given representation. For
some well-studied examples of Anosov representations, such as Hitchin representations
and maximal representations of surface groups, the Anosov property can be certified via
coarse topological invariants [6]. However, in the most general setting, deciding whether
a given representation is Anosov is difficult. Building on the work of Kapovich, Leeb and
Porti in [19], we give here the first explicit, finite criteria that certify the Anosov property
for a general representation.

One important property of Anosov representations is stability: Any sufficiently small
perturbation of an Anosov representation remains Anosov. It can happen that a connected
component of the representation space consists entirely of Anosov representations, such
as the Hitchin component, or the components consisting of maximal representations of
surface groups (see also [12, 31]). In these cases, the Anosov condition is closed: Every
deformation of such a representation remains Anosov. However, the Anosov condition is
not closed in general. For instance, given an Anosov representation of a free group, or the
representations of surface groups studied by Barbot in [2], it is unclear how large to expect
Anosov neighborhoods to be. As an application of our main result, we demonstrate how to
construct explicit perturbation neighborhoods of a given Anosov representation with two
examples (see Theorems 1.2 and 1.3).

Anosov representations have come to be viewed as the appropriate generalization to
higher-rank semisimple Lie groups of convex cocompact actions on rank 1 symmetric
spaces. Indeed, when G has real rank 1, a representation of a finitely generated group
is Anosov if and only if it has finite kernel and the image is convex cocompact, that is,
acts cocompactly on a nonempty convex subset of the associated negatively curved sym-
metric space. A finitely generated group of isometries of a negatively curved symmetric
space is convex cocompact if and only if it is undistorted, that is, any orbit map is a
quasi-isometric embedding. By the Morse lemma in hyperbolic geometry, geodesics in �
then map within uniformly bounded neighborhoods of geodesics in the symmetric space.
Moreover, the Morse lemma implies a local-to-global principle for quasigeodesics, allow-
ing one to establish finite criteria for a finitely generated group to be undistorted. One can
then exhaust the group by balls in the Cayley graph and if any such ball passes a finite
check then the subgroup is undistorted. This is a semi-decidable algorithm to verify undis-
tortion: If the subgroup is undistorted, this algorithm will eventually terminate and certify
so; otherwise, it will run on forever.

The naive generalization of convex cocompactness to higher rank turns out to be too
restrictive. For example, the work of Kleiner and Leeb and independently Quint implies
that a Zariski dense, discrete subgroup of a higher-rank simple Lie group which acts
cocompactly on a convex subset of the associated symmetric space is a uniform lat-
tice [23, 29]. On the other hand, the naive generalization of undistortion to higher rank
turns out to be too loose: In his thesis, Guichard described an example of an undistorted
subgroup in SL.2;R/ � SL.2;R/ which is unstable, in the sense that representations
arbitrarily close to the inclusion fail to have discrete image [10] (see also [9]). More-
over, Kapovich, Leeb and Porti describe an example of a discrete undistorted subgroup of
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SL.2;R/ � SL.2;R/ which is finitely generated but not finitely presentable [19], using
work Baumslag and Roseblade [3]. The Anosov property strikes a balance between these
two naive generalizations to give a large class of representations that still exhibit good
behavior. We will be concerned with a newer characterization that directly strengthens the
undistortion condition.

In [19], Kapovich, Leeb and Porti gave several new characterizations of Anosov
representations generalizing some of the many characterizations of convex cocompact
subgroups. We will use their characterization, called Morse actions, that strengthens the
undistortion condition by requiring geodesics in � to map to Morse quasigeodesics,
described below. They prove a suitable generalization of the local-to-global principle
for Morse quasigeodesics in higher-rank symmetric spaces (see Theorem 1.1). They then
show the Anosov property is semi-decidable by describing an algorithm which can certify
the Anosov property of a given representation of a word hyperbolic group in finite time.
However, some parts of their proof involve non-constructive compactness and limiting
arguments, so their theorem does not explicitly quantify the size of the local neighbor-
hoods one needs to examine to guarantee global Morse behavior. In order to implement
their algorithm, one needs a quantified version of the local-to-global principle as we give
here.

Roughly speaking, a quasigeodesic is Morse if every finite consecutive subsequence
is uniformly close to a diamond, which plays the role of a geodesic segment in rank 1.
These diamonds are intersections of Weyl cones (see Sections 3.8 and 5.1) and may also
be characterized as unions of Finsler geodesic segments (see [16, 17]). An infinite Morse
quasiray stays within a uniformly bounded neighborhood of a Weyl cone, which plays
the role of a geodesic ray in rank 1, and a bi-infinite Morse quasigeodesic stays within
a uniformly bounded neighborhood of a parallel set, which plays the role of a geodesic
line in rank 1 (see Section 3.12). The precise definition of Morse quasigeodesic is given
in Section 5.

The main result of this paper is a quantified version of the following theorem due to
Kapovich, Leeb and Porti. We let X denote a symmetric space of noncompact type.

Theorem 1.1 ([19, Theorem 7.18]). For any ‚ < ‚0; D; c1; c2; c3; c4, there exists a
scale L so that every L-local .‚; �mod; D/-Morse .c1; c2; c3; c4/-quasigeodesic in X is a
.‚0; �mod;D

0/-Morse .c01; c
0
2; c
0
3; c
0
4/-quasigeodesic.

We reprove Theorem 1.1 and obtain the first explicit estimate of L. This appears in
Theorem 5.8, which depends on Theorems 5.1 and 5.5. The theorem statements involve
several auxiliary parameters and inequalities, so they are too cumbersome to give here. In
order to apply our quantified version of the local-to-global principle and obtain an explicit
scale L, one must produce auxiliary parameters satisfying these inequalities; this process
is tedious but easy, as we discuss in Section 6. Versions of Theorems 5.1 and 5.5 without
explicit conditions are also proved in [19].
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As a demonstration of our techniques, we compute explicit perturbation neighbor-
hoods of two Anosov representations into SL.3;R/. To quantify the distance between
linear representations, we use the Frobenius norm on the generators: For a matrix A, let
jAj2Fr D trace.ATA/. In both cases, we control the orbit map at a basepoint; the Frobenius
norm is closely related to distances to that basepoint (see Section 6.3). The first example
is a neighborhood of Anosov representations of a free group.

Theorem 1.2. Let �1 be the subgroup of SL.3;R/ generated by

g D

24et 0 0

0 1 0

0 0 e�t

35 ; h D

24cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

35 ;
with tanh t D 0:75. If � 01 is generated by g0; h0 where max¹jg � g0jFr; jh � h

0jFrº �

10�15;309, then � 01 is Anosov.

The second example is a neighborhood of Anosov representations of a closed surface
group. Let �2 be the subgroup of SL.3;R/ generated by

S D

8<:
24 cos � 0 sin �

0 1 0

� sin � 0 cos �

3524� 0 0

0 1 0

0 0 ��1

3524cos � 0 � sin �
0 1 0

sin � 0 cos �

35 ˇ̌̌̌ˇ � 2
²
0;
�

8
;
�

4
;
3�

8

³9=;
for log�D cosh�1.cot �

8
/. This group is isomorphic to the fundamental group of a closed

surface of genus 2 (see Section 6.3). In the statement of Theorem 1.3, we control the per-
turbed representation on a larger generating set S 0 D ¹ 2 �2 j

p
6jlog  jFr � 9:5º. The

finite set S 0 contains the standard generating set S and consists of the elements of �2
which move a basepoint p in the symmetric space associated with SL.3;R/ by a distance
of at most 9:5. This basepoint is the point stabilized by SO.3/. Using this larger generating
set allows us to perturb the initial representation farther.

Theorem 1.3. If �W �2 ! SL.3;R/ is a representation satisfying the condition j�.s/ �
sjFr � 10

�3;698;433 for all s 2 S 0, then � is Anosov.

We briefly sketch the proof of Theorems 1.2 and 1.3. Let � denote either �1 or �2.
In either case the group � acts cocompactly on a closed convex subset of a copy of the
hyperbolic plane embedded totally geodesically in the symmetric space associated with
SL.3;R/. We find explicit quasi-isometry constants and by the classical Morse lemma,
there exists R > 0 such that the orbit of any geodesic in � is within R of a geodesic.
We slightly relax the Morse quasi-isometric parameters of � and apply the local-to-global
principle (Theorem 5.8). This provides a lower bound on k such that any 2k-local Morse
quasigeodesic is a global Morse quasigeodesic. We control the perturbation of words of
length k in terms of the perturbation of the generators, completing the proof.
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We emphasize that our approach is completely general, in the following sense. Let
�W � ! G be any Anosov representation such that the orbit map at p 2 X has known
Morse quasi-isometry parameters with respect to a finite symmetric generating set S for � .
We may then easily produce explicit parameters k; � such that if any other representation
�0W� ! G satisfies d.�./p; �0./p/ � � for all  2 � of word length at most k, then �0

is Anosov. Moreover, for linear groups we explicitly bound d.�./p; �0./p/ in terms of
the word length of  , the Frobenius norms j�.s/jFr and j�.s/ � �0.s/jFr, so we obtain a
condition on �0 just in terms of the generators.

The bulk of the paper is devoted to a proof of Theorem 1.1. We supply a number of esti-
mates in Section 4 related to the geometry of the symmetric space X. An important tool is
the �-angle ∠�p , a StabG.p/-invariant metric on Flag.�mod/ introduced by Kapovich, Leeb
and Porti in [19] (see Section 3.13 for the definition). In Lemma 4.8, we obtain explicit
control on ∠�p.x;y/ in terms of the Riemannian angle ∠p.x;y/. The proof uses an explicit
bound for the Hessian of a Morse function on Flag.�mod/ (see Proposition 3.8 and Corol-
lary 3.15). A crucial step in the proof of the local-to-global principle is controlling the
distance from the midpoint of a long regular segment to a nearby diamond. The existence
of such a bound is demonstrated in the proof of Proposition 7.16 of [19] via a limit-
ing argument. To achieve explicit control, we consider the lengths of certain curves in X
which are images of curves in G under the orbit map (see Lemma 4.9). In Lemma 4.10,
the curve in G is required to lie in a maximal compact subgroup. In Lemma 4.11, the
curve is required to lie in a unipotent horocyclic subgroup. We combine these in Corol-
lary 4.13 to obtain explicit, arbitrary control for the distance of midpoints to nearby Weyl
cones (and hence diamonds). Kapovich, Leeb and Porti show that distance from a point
x 2 X to the parallel set P.��; �C/ controls the �-angle ∠�x.��; �C/ and vice versa via a
compactness argument [19, Section 2.4.5]. We give an explicit bound for ∠�x.��; �C/ in
terms of d.x; P.��; �C// in Corollary 4.16. This follows from Lemma 4.14, whose proof
relies on controlling the Lie derivative LXgradf� where X is a Killing vector field and f�
is a Busemann function. Similarly, we obtain an explicit bound for d.x;P.��; �C// terms
of ∠�x.��; �C/ in Lemma 4.17 by controlling iterated derivatives of Busemann functions.
In particular, we obtain an explicit uniform bound for the third derivative of the restriction
of a Busemann function to a geodesic.

As in [19], the proof of Theorem 1.1 is essentially broken into two parts: Theorems 5.1
and 5.5. Theorem 5.1 guarantees that a sequence .xn/with sufficiently spaced points form-
ing �-angles sufficiently close to � is a Morse quasigeodesic. It is a quantified version of
[19, Theorem 7.2] and shares the same outline. One first shows that the property of “mov-
ing away” from a simplex propagates along the sequence (see Section 5.1). This implies
that we can extract a simplex �� that the sequence .xn/ moves away from (resp. towards)
as n increases (resp. decreases), and a simplex �C that the sequence .xn/ moves away
from (resp. towards) as n decreases (resp. increases). One then verifies that the simplices
��; �C are opposite and that the projections to the parallel set P.��; �C/ define suitable
diamonds, making .xn/ a Morse quasigeodesic.
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Theorem 5.5 is a quantified version of [19, Proposition 7.16]. It states that sufficiently
spaced points on Morse quasigeodesics have straight and spaced midpoint sequences. A
crucial ingredient is Corollary 4.13, which allows us to force the midpoints to be arbitrar-
ily close to the parallel sets in terms of the Morse and spacing parameters. This guarantees
that they appear in nested Weyl cones, and makes the �-angles arbitrarily straight.

Armed with Theorems 5.1 and 5.5, the proof of Theorem 5.8 is similar to the proof
of Theorem 7.18 in [19]. We start with an L-local Morse quasigeodesic where L is large
enough to satisfy several explicit inequalities. We then replace our Morse quasigeodesic
with a coarsification and take the midpoint sequence. Our assumptions together with The-
orem 5.5 shows that this coarse midpoint sequence is sufficiently straight and spaced (see
Section 5.1). An application of Theorem 5.1 shows that the midpoint sequence is a Morse
quasigeodesic, and since it is a coarse approximation of the original sequence, the original
sequence is also a Morse quasigeodesic, completing the proof.

The usual proof of the local-to-global principle in hyperbolic geometry depends on
the classical Morse lemma. A higher-rank version of the Morse lemma was proved by
Kapovich, Leeb and Porti in [21]. In particular, they prove that the orbit map � ! X of
a finitely generated group is a coarsely uniformly regular quasi-isometric embedding if
and only if � is word hyperbolic and the orbit map is a Morse quasi-isometric embed-
ding. It would be interesting to quantify their higher-rank Morse lemma by producing an
explicit Morse parameter for (coarsely) uniformly regular quasi-isometric embeddings,
but we do not do this here. In the special case of the symmetric space associated with
SL.d;R/, another proof of the higher-rank Morse lemma appears in [4]. There, Bochi,
Potrie and Sambarino give yet another characterization of Anosov representations in terms
of cone-types and dominated splittings.

The organization of the paper is as follows. In Section 2, we fix some notation we
use throughout the paper. In Section 3, we review some background of symmetric spaces.
Much of this section is classical and may be skipped by experts on symmetric spaces,
but we point the reader to our definition of regularity in Definition 3.12 and the defi-
nition of �-angle in Definition 3.22. The notion of regularity here is slightly different,
but equivalent to, that in [19] (see Proposition 3.17). The bulk of the work is in Section 4
where we give several estimates related to the geometry of symmetric spaces. In Section 5,
we supplement the proof of the local-to-global principle in [19] with our estimates from
Section 4, reproving Theorem 1.1 with explicit bounds. Together with some standard geo-
metric group theory, elementary hyperbolic geometry, and linear algebra in Section 6, this
allows us to prove Theorems 1.2 and 1.3.

2. Notation

We establish our notational conventions in this paper. When possible, we have tried to
keep notation consistent with [8, 19, 20].



A quantified local-to-global principle for Morse quasigeodesics 43

(1) XD G=K will denote a symmetric space of noncompact type. LetG be the con-
nected component of the isometry group of X, and K be a maximal compact
subgroup of G (see Section 3).

(2) We let p; q; r; c denote points or curves in X. We let g; h; u; a denote elements
or curves in G. An element or curve in K may be denoted by k.

(3) The Lie algebra of G is denoted g. The Lie algebra of K is denoted k. When
a point p is given, K is the stabilizer of p in G. Usually U; V; W; X; Y; Z will
denote elements of g.

(4) The orbit map orbpWG ! X, given by orbp.g/ D gp, has differential evpW g!
Tp X at the identity (see Section 3).

(5) The Cartan decomposition induced by p 2 X is g D k˚ p. It corresponds to a
Cartan involution #pWg! g (see Section 3.1).

(6) The Killing form on g is denoted B . Each point p 2 X induces an inner product
Bp on g defined by Bp.X; Y / D �B.#pX; Y / (see Section 3.1).

(7) We assume that the Riemannian metric h�; �i on X is the one induced by the
Killing form (see equation (3.2)).

(8) The sectional curvature � of X has image Œ��20 ; 0� (see Section 3.3). Note that �0
is the maximal norm of a restricted root vector (see Proposition 3.3).

(9) A maximal abelian subspace of p will be denoted a. The associated restricted
roots are denoted by ƒ � a�. A choice of simple roots is denoted by � (see
Section 3.2).

(10) Each maximal abelian subspace a has an action by the Weyl group and
decomposition into Euclidean Weyl chambers denoted V (see Section 3.5).

(11) There is a vector-valued distance function Ed WX �X ! Vmod with image the
model Euclidean Weyl chamber (see equation (3.4)). In [19, 20], this map is
denoted �, and they let � denote the model Euclidean Weyl chamber we call
Vmod. In this paper, � denotes a choice of simple roots.

(12) A spherical Weyl chamber � corresponds to a set of simple roots �. For a face �
of � , we have

�� D ¹˛ 2 � j ˛.�/ D 0º; �C� D ¹˛ 2 � j ˛.int �/ > 0º;

see equation (3.6). We have

� D � \
\
˛ 2��

ker˛; int� � D¹X 2 � j 8˛ 2 �C� ; ˛.X/ > 0º; @�� D � \
[
˛2�C�

ker˛:

(13) The visual boundary of X is denoted @X (see Section 3.8). We let �; � denote a
spherical simplex/chamber in a or an ideal simplex/chamber in @X.

(14) There is a type projection � W @ X ! �mod with image the model ideal Weyl
chamber (see Section 3.8).
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(15) A face of �mod is called a model simplex and denoted �mod. There is a
decomposition �mod D int�mod �mod t @�mod�mod (see Section 3.9).

(16) The definitions of .˛0; �/-regular and .˛0; �/-spanning vectors and geodesics are
given in Section 3.12. These notions are extended to ideal points in Section 3.9.

(17) We let Flag.�mod/ denote the set of ideal simplices in @X of type �mod (see
Section 3.8). Flag.�mod/ is naturally a partial flag manifold of G.

(18) The definitions of Weyl cones V.x; st.�/; ˛0/; V .x; ost.�// and Weyl sectors
V.x; �/ are given in Section 3.9.

(19) The subgroups A� and N� and the generalized Iwasawa decomposition G D
N�A�K are described in Section 3.11.

(20) A parallel set is denoted P.��; �C/ for opposite simplices ��; �C 2 Flag.�mod/. A
horocycle is denoted H.p; �/ (see Section 3.12). A diamond is denoted }.p; q/
and a truncated diamond is denoted }˛0.p; q/ (see Section 5.1).

(21) For p 2 X and x; y 2 X n ¹pº, ∠p.x; y/ denotes the Riemannian angle
at p between x and y. For �; �0 2 @ X, we let ∠Tits.�; �

0/ denote their Tits
angle. If px and py are �mod-regular and �; � 0 2 Flag.�mod/ then we have
∠�p.�; � 0/;∠

�
p.�; y/;∠p.�.�/; �.py// denote the �-angles (see Section 3.13).

(22) The auxiliary model ideal point �mod 2 int.�mod/ is discussed in Section 3.13.
When �mod is a minimal �-invariant face of �mod, the regularity parameter �0 D
min¹˛.�mod/ j ˛ 2 �

C
�mod
º is computed in Section 3.10.

(23) A .c1; c2; c3; c4/-quasigeodesic is a sequence .xn/ (possibly finite, infinite or
bi-infinite) in X such that

1

c1
jN j � c2 � d.xn; xnCN / � jN jc3 C c4:

A quasigeodesic is .˛0; �mod; D/-Morse if for all xn; xm there exists a dia-
mond } D }˛0.p; q/ such that d.p; xn/; d.q; xm/ � D and for all n � i � m,
d.xi ;}/ � D (see Section 5).

3. Background on symmetric spaces

We begin with some background on the structure of symmetric spaces of noncompact
type. Experts on symmetric spaces can skip this section, but should note that we assume
that the metric is induced by the Killing form (see equation (3.2)), quantify the regular-
ity of geodesics in Definition 3.12, and define the �-angle in Definition 3.22. A constant
�0, relevant for estimates involving �-angles, is computed for minimal �-invariant faces in
Section 3.10. A constant �0, related to the lower curvature bound of X, is discussed and
computed in Section 3.3. For detailed references on symmetric spaces, see [8, 13, 14].
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A symmetric space is a connected Riemannian manifold X such that for each point
p 2X, there exists a geodesic symmetry SpWX!X, an isometry fixing p whose differen-
tial at p is .dSp/p D � idTp X. A symmetric space is necessarily complete with transitive
isometry group. Simply connected Riemannian manifolds admit a de Rham decomposi-
tion into metric factors. If X is a simply connected nonpositively curved symmetric space
with no Euclidean de Rham factors, X is called a symmetric space of noncompact type.
Throughout the paper, X refers to any fixed symmetric space of noncompact type.

The isometry group of X is a semisimple Lie group, and we let G be the identity com-
ponent of the isometry group. For each point p 2 X, the stabilizer K D Gp D ¹g 2 G j
gp D pº is a maximal compact subgroup of G. Hence, X is diffeomorphic to G=K by the
orbit-stabilizer theorem for Lie groups and homogeneous spaces. We let g denote the Lie
algebra of left-invariant vector fields on G.

A Killing vector field on a Riemannian manifold is vector field whose induced flow is
by isometries. There is a natural linear isomorphism from g to the space of Killing vector
fields on X by defining for X 2 g the vector field X� given by

X�p WD
d
dt
etXpjtD0: (3.1)

The Lie bracket of two Killing vector fields is again a Killing vector field, but the map
X 7! X� is a Lie algebra anti-homomorphism: ŒX; Y �� D �ŒX�; Y ��.

3.1. Cartan decomposition

Each point p 2 X induces a Cartan decomposition in the following way. The geodesic
symmetry SpWX! X induces an involution of G by

g 7! Sp ı g ı Sp:

The differential is a Lie algebra involution #pWg! g, so we may write

g D k˚p;

where k D ¹X 2 g j #pX D Xº and p D ¹X 2 g j #pX D �Xº. Since #p preserves
brackets, we have

Œk; k� � k; Œk;p� � p; Œp;p� � k :

We denote the orbit map g 7! gp by orbpWG ! X. The differential .d orbp/1Wg! Tp X
has kernel precisely k. Moreover, k is the Lie algebra of K D Gp . The restriction
.d orbp/1Wp! Tp X is a vector space isomorphism. For any X 2 g, .d orbp/1X D X�p DW
evpX , see equation (3.1), so we use the less cumbersome notation evp D .d orbp/1W g!
Tp X throughout the paper (read as “evaluation at p”).

Let B denote the Killing form on g and let h�; �i denote the Riemannian metric on X.
We will assume that for all X; Y 2 p,

B.X; Y / D hevpX; evpY ip; (3.2)
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that is, that the Riemannian metric on X is induced by the Killing form. Any other G-
invariant Riemannian metrics on X only differs from this one by scaling by a global
constant on each de Rham factor of X.

Under the identification of p with Tp X, the Riemannian exponential map p ! X
is given by X 7! eXp. In particular, the constant speed geodesics at p are given by
c.t/ D etXp for X 2 p.

The point p 2 X induces an inner product Bp on g defined by

Bp.X; Y / WD �B.#pX; Y /: (3.3)

On p, Bp is just the restriction of the Killing form B , and we have required that the identi-
fication of .p;B/ with .Tp X; h; i/ is an isometry. On k, Bp is the negative of the restriction
of B to k. Since k and p are B-orthogonal, it follows that Bp is an inner product on g. For
each X 2 p, adX is symmetric with respect to Bp on g, and likewise for each Y 2 k, adY
is skew-symmetric.

3.2. Restricted root space decomposition

Let a be a maximal abelian subspace of p. Via the adjoint action, a is a commuting vec-
tor space of diagonalizable linear transformations on g. Therefore, g admits a common
diagonalization called the restricted root space decomposition. For each ˛ 2 a�, define

g˛ D ¹X 2 g j 8A 2 a; adA.X/ D ˛.A/Xº:

We obtain a collection of roots

ƒ D ¹˛ 2 a� n¹0º j g˛ ¤ 0º

corresponding to the nonzero root spaces. The restricted root space decomposition is then

g D g0˚
M
˛2ƒ

g˛ :

For each root ˛ 2 ƒ, define the coroot H˛ 2 a by ˛.A/ D B.H˛; A/ for all A 2 a.
This induces an inner product, also denoted B , on a� by defining B.˛;ˇ/ WD B.H˛;Hˇ /.
The set ƒ forms a root system in .a�; B/ (see [8, Proposition 2.9.3]). Note that unlike
the root systems of complex semisimple Lie algebras, the restricted root systems may be
non-reduced, that is, it may not hold that the only multiples of ˛ appearing in ƒ are ˙˛.
For example, the restricted root system of complex hyperbolic space is non-reduced. The
restricted root space decomposition is Bp-orthogonal. A subsetƒC of the roots is positive
if for every ˛ 2 ƒ, exactly one of ˛;�˛ is contained in ƒC and for any ˛; ˇ 2 ƒC such
that ˛ C ˇ is a root, we have ˛ C ˇ 2 ƒC.

The Cartan involution restricts to an isomorphism #pWg˛! g�˛ for each ˛ 2ƒ[ ¹0º.
Thus, we have

p˛ WD p \ g˛ ˚ g�˛ D .id�#p/g˛ D .id�#p/g�˛
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and
k˛ WD k \ g˛ ˚ g�˛ D .idC#p/g˛ D .idC#p/g�˛:

Note that p˛ D p�˛ and likewise k˛ D k�˛ , so for ƒC a set of positive roots, we have the
decomposition

g D a˚ k0 ˚
M
˛2ƒC

p˛ ˚
M
˛2ƒC

k˛

which is both Bp-orthogonal and B-orthogonal. Some authors use the notation m D k0.

3.3. The lower curvature bound �0

Several estimates in Section 5 will rely on precise curvature estimates which we perform
in the present section. These can be expressed in terms of a constant �0 which is closely
related to the lower curvature bound of X.

The curvature tensor R of X may be defined using the Levi-Civita connection r by

R.u; v/ D rurv � rvru � rŒu;v�;

for vector fields u; v on X. In a symmetric space the curvature tensor is related to the
structure of g by the following formula.

Theorem 3.1 ([28, p. 242]). Let X;Y;Z 2 p and write X�; Y �;Z� for the corresponding
Killing vector fields on X. Then

.R.X�; Y �/Z�/p D �evpŒŒX; Y �; Z�:

Our convention is that the sectional curvature of a plane spanned by orthonormal unit
vectors u; v 2 Tp X is

�.Span¹u; vº/ D hR.u; v/v; ui:

The following constant appears frequently throughout the paper.

Definition 3.2. Let gD k˚p and let B denote the Killing form of g. Consider a maximal
abelian subspace a � p and let ƒ be the restricted roots. Define

�0 WD max¹˛.X/ j ˛ 2 ƒ;X 2 a; jX j D 1º:

The presence of the constant �0 is explained by the following proposition. Moreover,
it can be computed using the work of Adeboye, Wang and Wei [1] (see Theorem 3.4).
We let C1 denote the constant appearing in that theorem and we let h_ denote the dual
Coxeter number of the complexification of g (see Table 1).

Proposition 3.3. With �0 defined as above, we have the following:

(1) The image of the sectional curvature of X is Œ��20 ; 0�.

(2) �0 D max¹jH˛j j ˛ 2 ƒº.
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(3) In any symmetric space, �0 � 1p
2

.

(4) We have �0 D C1p
2h_

.

Proof. We first prove item (1). LetX 2 a, Y 2 p and assumeX;Y are orthogonal unit vec-
tors. For any Y 2 p, we may write Y D Y0 C

P
˛2ƒC Y˛ where Y0 2 a and each Y˛ 2 p˛ ,

and recall that this decomposition is B-orthogonal, so we have the lower curvature bound

�.Span¹X�p ; Y
�
p º/ D B.�ŒŒX; Y �; Y �; X/

D B.ŒX; Y �; ŒX; Y �/

D �B.ŒX; ŒX; Y ��; Y /

D �

X
˛2ƒC

B.˛.X/2Y˛; Y /

D �

X
˛;ˇ2ƒC

˛.X/2B.Y˛; Yˇ /

D �

X
˛2ƒC

˛.X/2B.Y˛; Y˛/ � ��
2
0

since �0 is defined to be the maximum of ¹˛.X/ j ˛ 2 ƒ; X 2 a; jX j D 1º. By setting
Y 2 p˛ and X D H˛ , we see that this bound is attained.

Item (2) follows easily from Definition 3.2, �0 WDmax¹˛.X/ j ˛ 2ƒ;X 2 a; jX j D 1º.
Sinceƒ is finite and the unit sphere in a is compact, there exist ˛ 2ƒ and a unit vector X
realizing the maximum. Such an ˛ is maximized in the direction of the root vector H˛ ,
so we have �0 D ˛

�
H˛
jH˛ j

�
D jH˛j. Note that the inner product used to define H˛ and its

norm is the restriction of the Killing form B of g to a.
To see item (3), we have

�0 D ˛

�
H˛

jH˛j

�
D jH˛j

for some ˛. By [8, Proposition 2.14.5], we have for A; A0 2 a that B.A; A0/ DP
ˇ2ƒ.dim gˇ /ˇ.A/ˇ.A

0/, so

1 D B

�
H˛

jH˛j
;
H˛

jH˛j

�
D

X
ˇ2ƒ

�
dim gˇ

�
ˇ

�
H˛

jH˛j

�2
� 2˛

�
H˛

jH˛j

�2
D 2�20 :

We prove item (4) using the work of using the work of Adeboye, Wang and Wei [1].
By [1, equation (4.1)], C1 D max¹˛.X/ j ˛ 2 ƒC; X 2 a; jX jB 0 D 1º. Here, B 0 is a
renormalizing of the Killing form B defined by

B D 2h_B 0;

where h_ is the dual Coxeter number of the complexification gC . In this normalization,
the long roots of gC have norm

p
2. We record the dual Coxeter numbers of complex
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gC h_

An sl.nC 1;C/ nC 1

Bn so.2nC 1;C/ 2n � 1

Cn sp.2n;C/ nC 1

Dn so.2n;C/ 2n � 2

E6 12
E7 18
E8 30
F4 9
G2 4

Table 1. Simple complex Lie algebras and their dual Coxeter numbers h_.

simple Lie algebras in Table 1. When g already admits the structure of a complex simple
Lie algebra, the dual Coxeter number of gC is twice that of g.

For any ˛ 2 ƒ and A 2 a, we have

B 0.HB 0

˛ ; A/ D ˛.A/ D B.H
B
˛ ; A/ D 2h

_B 0.HB
˛ ; A/;

so HB 0

˛ D 2h
_HB

˛ . Moreover, for any A 2 a, jAjB D
p
2h_jAjB 0 .

Since the same root ˛ realizes �0 and C1, we have

�0 D jH
B
˛ jB D

p
2h_jHB

˛ jB 0 D
p
2h_

ˇ̌̌ 1
2h_

HB 0

˛

ˇ̌̌
B 0
D

1
p
2h_

ˇ̌
HB 0

˛

ˇ̌
B 0
D

C1
p
2h_

:

Theorem 3.4 ([1, Theorem 4.5]). Let G=K be a simply connected irreducible symmetric
space of noncompact type. Equip G with the renormalized Killing form B 0. Let C1 be the
constants defined above. Then either C1 D

p
2 or C1 D 1. The latter occurs exactly when

G=K is one of the following:

(1) A rank 1 symmetric space other than H2 or CHn, for n � 2;

(2) SU�.2n/=Sp.n/, n � 2;

(3) Sp.m; n/=.Sp.m/Sp.n//;m � n � 2; or

(4) E6.�26/=F4.

In Helgason’s classification, the irreducible symmetric spaces of noncompact type
with C1 D 1 are of type: AII = SU�.2n/=Sp.n/, n � 2, BII = SO.2n; 1/=SO.2n/; n � 2,
CII = Sp.m;n/=.Sp.m/Sp.n//;m � n � 2, DII = SO.2nC 1; 1/=SO.2nC 1/; n � 1, EIV
= E6.�26/=F4, and FII = F4.�20/=Spin.9/.

Example 3.5. In sl.d;R/, each root ˛ has jH˛j D 1p
d

, so we have �0 D 1p
d

and the
associated symmetric space has lower curvature bound � 1

d
.
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3.4. Copies of hyperbolic planes

In Section 6, we will need to know the curvature of copies of the hyperbolic plane
in X. These correspond to copies of sl.2;R/ in g. Let ˛ 2 ƒ and X˛ 2 g˛ such that
Bp.X˛; X˛/ D

2
jH˛ j2

. Set �˛ WD 2
jH˛ j2

H˛ so that ˛.�˛/ D 2. Set Y˛ WD �#pX˛ 2 g�˛ .
Then

Œ�˛; X˛� D 2X˛; Œ�˛; Y˛� D �2Y˛; and ŒX˛; Y˛� D �˛;

where the last equality follows from considering B.ŒX˛; Y˛�; A/ for A 2 a D RH˛ ˚

ker ˛. Then #p.X˛ C Y˛/ D #pX˛ � #
2
pX˛ D �.Y˛ C X˛/, so X˛ C Y˛ 2 p and

jX˛ C Y˛j
2 D jX˛j

2
Bp
C jY˛j

2
Bp
D

4
jH˛ j2

. So jH˛ j
2
.X˛ C Y˛/ and H˛

jH˛ j
are orthonormal

unit vectors in p, and

�

�
Span

²
jH˛j

2
.X˛ C Y˛/;

H˛

jH˛j

³�
D �˛

�
H˛

jH˛j

�2 ˇ̌̌̌
jH˛j

2
.X˛ C Y˛/

ˇ̌̌̌2
D �
jH˛j

4

jH˛j2
jH˛j

2

4

4

jH˛j2
D �jH˛j

2

by the formula above.

Example 3.6. In the symmetric space associated with sl.d;R/, the root spaces g˛ are
one-dimensional, so the subalgebra sl.2;R/˛ spanned by X˛; Y˛; �˛ is uniquely deter-
mined by ˛ and we denote it by sl.2;R/˛ . The image of RH˛ ˚ p˛ under the Riemannian
exponential map at p is a totally geodesic submanifold H2

˛ isometric to the hyperbolic
plane of curvature � 1

d
.

3.5. Weyl chambers and the Weyl group

In this section, we describe Weyl faces as subsets of maximal abelian subspaces a � p. In
Section 3.8, we will define Weyl faces as subsets of the visual boundary @X, and explain
how the definitions relate.

Let ƒ be the roots of a restricted root space decomposition of a maximal abelian sub-
space a of p. For each ˛ 2 ƒ � a�, the kernel of ˛ is called a wall, and a component C of
the complement of the union of the walls is called an open Euclidean Weyl chamber; C is
open in a. A vector X 2 a is called regular if it lies in an open Euclidean Weyl chamber
and singular otherwise. The closure V of an open Euclidean Weyl chamber is a closed
Euclidean Weyl chamber; V is closed in p (see Figure 1).

For a closed Weyl chamber V , there is an associated set of positive roots

ƒC WD ¹˛ 2 ƒ j 8v 2 V; ˛.v/ � 0º

and simple roots�, that is, those which cannot be written as a sum of two elements ofƒC
(see [8, Proposition 2.9.6]).

We may define

NK.a/ WD ¹k 2 K j Ad.k/.a/ D aº; ZK.a/ WD ¹k 2 K j 8A 2 a;Ad.k/.A/ D Aº:
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(a) The walls of a maximal flat in SL.3;R/=SO.3/. (b) The walls of a maximal flat in SL.4;R/=SO.4/.

Figure 1. The walls of a maximal flat in SL.n;R/=SO.n/ for n D 3; 4.

Since the adjoint action preserves the Killing form, NK.a/ acts by isometries on a with
kernel ZK.a/. We call the image of this action the Weyl group. For each reflection r˛ in a
wall, it is possible to find a k 2K whose action on a agrees with r˛ [8, Proposition 2.9.7].
It is well known that the Weyl group acts simply transitively on the set of Weyl chambers,
which implies it is generated by the reflections in the walls of a chosen Weyl chamber. It is
convenient for us to show this fact in Proposition 3.8, since the same techniques provide
Corollary 3.15.

The Riemannian exponential map identifies maximal abelian subspaces in p isometri-
cally with maximal flats through p. So we can also refer to open/closed Euclidean Weyl
chambers in X as the images of those in some a under this identification. For everyX 2 p,
there exists a maximal abelian subspace a containingX , and in a, there exists some closed
Euclidean Weyl chamber V containing X .

3.6. A Morse function on flag manifolds

In this subsection, we show that the vector-valued distance function Ed on X (denoted d�
in [19, 20], see Definition 3.4) is well defined, and give part of a proof of Theorem 3.10,
an important part of the structure theory of symmetric spaces. Along the way we prove
the Ed -triangle inequality [18–20, 27], and provide an estimate on the Hessian of a cer-
tain Morse function defined on flag manifolds embedded in p (see Proposition 3.8 and
Corollary 3.15).

We will use the following proposition. For A 2 p, let eA be the intersection of all
maximal abelian subspaces containing A.

Proposition 3.7 ([8, Proposition 2.20.18]). Let p in X with Cartan decomposition
g D k ˚ p and let k 2 K and A 2 p. If Ad.k/.A/ D A then for all E 2 eA we have
Ad.k/.E/ D E.
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Note that there is a typo in Eberlein: The word “maximal” is omitted in the definition
of eA. The proof of Proposition 3.7 relies on passing to the compact real form of gC .

In this section, a flag manifold is the orbit of a vector Z 2 p under the adjoint action
of K D StabG.p/. The following proposition is essentially a standard part of the theory
of symmetric spaces; however, we will need to extract a specific estimate, recorded in
Corollary 3.15, in order to prove Lemma 4.8.

Proposition 3.8 (Cf. [14, Lemma 6.3, p. 211] and [7, Proposition 24]). Let X;Z 2 p be
unit vectors. Define

f WK ! R; f .k/ WD B.X;Ad.k/Z/:

(1) If k is a critical point for f , then Ad.k/Z commutes with X .

(2) If k is a local maximum for f , then Ad.k/Z lies in a common closed Weyl
chamber with X .

(3) IfX is regular then the functionB.X; �/WAd.K/Z!R is Morse and has a unique
local maximum.

(4) If X is regular then the distance function d.X; �/WAd.K/Z ! R has a unique
local minimum.

Note that f is the composition of the orbit map K ! Ad.K/Z with the map
B.X; �/WAd.K/Z ! R.

Proof. (1). Let Y 2 k, viewed as a left-invariant vector field on K. If k is a critical point
for f , then

0 D dfk.Y / D
d
dt
f .ketY /jtD0

D
d
dt
B.X;Ad.ketY /Z/jtD0

D B.X;Ad.k/.ad.Y /.Z///

D B.X; ŒY 0; Z0�/ D B.ŒZ0; X�; Y 0/;

where we write Y 0 D Ad.k/Y and Z0 D Ad.k/Z. Since Y 0 is an arbitrary element of k,
ŒX; Z0� 2 k, and B is negative definite on k, we can conclude that ŒX; Z0� D 0, which is
the claim (see Figure 2).

(2). At a critical point k for f , the Hessian of f at k is a symmetric bilinear form on
TkK determined by

Hess.f /.v; v/k D .f ı c/00.0/
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X

Ad.k1/Z

Ad.k2/Z

Ad.k3/Z

Ad.k4/Z

Ad.k5/Z

Ad.k6/Z

Figure 2. The intersection Ad.K/Z \ a.

for any curve c with c.0/ D k and c0.0/ D v. Let Y 2 k, the left-invariant vector fields
on K, and choose c.t/ D ketY . To compute the Hessian of f we only need to compute

d2

dt2
f .ketY /jtD0 D

d
dt
B.X;Ad.ketY /.ad.Y /.Z///jtD0

D B.X;Ad.k/.ŒY; ŒY;Z��//

D B.X; ŒY 0; ŒY 0; Z0��/

D B.ŒX; Y 0�; ŒY 0; Z0�/

D B.ŒZ0; ŒX; Y 0��; Y 0/

D B.ad.Z0/ ad.X/.Y 0/; Y 0/ D B.T Y 0; Y 0/;

where we write T D ad.Z0/ ı ad.X/ as a linear transformation on k. At a critical point X
and Z0 commute by part (1), and we can choose a maximal abelian subspace a containing
both of them, and then consider the corresponding restricted root space decomposition.
For Y˛ 2 k˛ ,

T Y˛ D ˛.Z
0/˛.X/Y˛;

so the transformation T has the eigenvalue ˛.Z0/˛.X/ on its eigenspace k˛ and acts as 0
on k0. Since we assumed k is a local maximum for f , we have

0 �
d2

dt2
f .ketY /jtD0 D B.T Y

0; Y 0/

for all Y 2 k, so for each ˛ 2ƒ, ˛.Z0/˛.X/ � 0, and thereforeX andZ0 lie in a common
closed Weyl chamber.
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(3). We may assume thatZ is a critical point of f by precomposing f with a left trans-
lation ofK. The differential .d orbZ/1W k! Tz Ad.K/Z is given by� adZ and has kernel
kZ DZk.Z/D¹W 2 k j ŒW;Z�D 0ºwith orthogonal complement kZ D

L
˛2ƒW˛.Z/>0 k˛ .

Then k is a critical point for f if and only ifZ.k/DAd.k/Z is a critical point forB.X; �/.
The Hessians satisfy

Hess.B.X; �//..d orbZ/kU; .d orbZ/kV /Ad.k/Z D Hess.f /.U; V /k ;

so by the calculation above the critical points are nondegenerate, occur at Ad.k/Z
when ŒAd.k/Z; X� D 0 and have index the number of positive signs in the collection
˛.X/˛.Ad.k/Z/, (weighted by dim k˛) as ˛ ranges over the roots with ˛.Z/ > 0. These
can only be nonnegative when Ad.k/Z lies in the closed Weyl chamber containing X .

For uniqueness, observe that any two maximizers Z0;Z00 lie in the closed Weyl cham-
ber containing X , and suppose Ad.k/.Z0/ D Z00. The adjoint action takes walls to walls,
so Ad.k/ preserves the facet spanned by Z0; Z00 and hence fixes its soul (i.e., its center of
mass) [8, p. 65]. By Proposition 3.7, Ad.k/ fixes each point of the face, and in particular
Z0 D Z00.

(4). Since .p; B/ is a Euclidean space,

dp.X; Y /
2
D B.X � Y;X � Y / D B.X;X/C B.Y; Y / � 2B.X; Y /

so if X; Y are unit vectors in p

dp.X; Y /
2
D 2.1 � B.X; Y //

and the distance function dp.X; �/ is minimized when B.X; �/ is maximized. Then by
part (3), the distance function is uniquely minimized at the unique Ad.k/Z in the closed
Weyl chamber containing X .

The next two results are part of the standard theory of symmetric spaces. Since we
have already proven Proposition 3.8, it is convenient to give the proofs.

Corollary 3.9 ([8, Section 2.12]). Every K-orbit in the unit sphere S.p/ intersects each
closed spherical Weyl chamber exactly once.

Proof. Let X be a regular vector in a chosen Weyl chamber. The K-orbit of a unit vec-
tor Z is compact and therefore the function dp.X; �/ has a global minimum on Ad.K/Z.
But that function has a unique local minimum which must lie in the chosen closed Weyl
chamber.

For a point p 2 X, maximal abelian subspace a � p and closed Euclidean Weyl
chamber V � a, we call .p; a; V / a point-chamber triple.

Theorem 3.10 ([8, Section 2.12]). For any two point-chamber triples .p;a;V /; .p0;a0;V 0/
there exists an isometry g 2 G taking .p; a; V / to .p0; a0; V 0/. If g stabilizes .p; a; V /,
then it acts trivially on it.
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Proof. The group G acts transitively on X , so we may assume that p0 D p and then show
that an element ofK D StabG.p/ takes .a; V / to .a0; V 0/. Choose any regular unit vectors
X 2 V ,Z 2 V 0. Then Proposition 3.8 implies there is an element k 2K such that Ad.k/Z
is in the same open Weyl chamber as X . Regular vectors lie in unique Weyl chambers in
unique maximal abelian subspaces, so Ad.k/a0 D a and Ad.k/V 0 D V .

If g fixes p and stabilizes .a; V /, then it acts trivially on V by Corollary 3.9.

The above isometry is not necessarily unique. For example, consider hyperbolic space
Hn; n � 3. There a Euclidean Weyl chamber is just a geodesic ray, which has infinite
pointwise stabilizer. However, the action on V is unique.

As a corollary, we may define the vector-valued distance function

Ed WX�X! .X�X/=G DW Vmod (3.4)

to have range a model closed Euclidean Weyl chamber. One could think of Vmod as some
preferred Euclidean Weyl chamber, but it is better to think of it as an abstract Euclidean
cone with no reference to a preferred basepoint, flat or Weyl chamber in X. There is
an “opposition involution” �W Vmod ! Vmod induced by any geodesic symmetry Sp . On a
model pointed flat amod, the composition of � id with the longest element of the Weyl
group restricts to � on the model positive chamber Vmod. Note that � Ed.p; q/ D Ed.q; p/.

The triangle inequality implies that for any p; p0; q; q0 in a metric space,

jd.p; q/ � d.p0; q0/j � d.p; p0/C d.q; q0/:

The next result is the “vector-valued triangle inequality” for symmetric spaces.

Corollary 3.11 (The Ed -triangle inequality [18, 20, 27]). For points p; p0; q; q0 in X,

j Ed.p; q/ � Ed.p0; q0/j � d.p; p0/C d.q; q0/:

Proof. In a moment we will use the proposition to prove that for any p; q; q0 in X,

j Ed.p; q/ � Ed.p; q0/j � d.q; q0/; (3.5)

from which the general inequality follows easily:

j Ed.p; q/ � Ed.p0; q0/j D j Ed.p; q/ � Ed.p; q0/C Ed.p; q0/ � Ed.p0; q0/j

� j Ed.p; q/ � Ed.p; q0/j C j� Ed.q0; p/ � � Ed.q0; p0/j

� d.q; q0/C d.p; p0/:

To prove (3.5), letX;Z 2 p such that eXpD q and eZpD q0. Choose a closed Weyl cham-
ber V containingX and the uniqueZ0 in theK-orbit ofZ in that Weyl chamber. The map
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Ed.p; e.�/p/WV ! Vmod is an isometry. Note that k 7! B.X;Ad.k/Z/ is maximized when
k 7! B.X;Ad.k/Z/=jX jjZj is maximized, so by Proposition 3.8

j Ed.p; q/ � Ed.p; q0/j2 D jX �Z0j2 D jX j2 C jZ0j2 � 2hX;Z0i

� jX j2 C jZj2 � 2hX;Zi

D dp.X;Z/
2
� d.q; q0/2

since the Riemannian exponential map is distance non-decreasing by the nonpositive
curvature of X.

3.7. Regularity in maximal abelian subspaces

A spherical Weyl chamber is the intersection of a Euclidean Weyl chamber with the unit
sphere S in a. A spherical Weyl chamber � is a spherical simplex, and each of its faces � is
called a Weyl face. Each Euclidean (resp. spherical) Weyl face is the intersection of walls
of a (resp. as well as S ). The interior of a face int.�/ is obtained by removing its proper
faces; the interiors of faces are called open simplices. The unit sphere S is a disjoint union
of the open simplices. If � is the smallest simplex containing a unit vectorX in its interior,
we say that � is spanned by X and X is � -spanning.

We will quantify the regularity of tangent vectors using a parameter ˛0 > 0. We will
show in Proposition 3.17 that our definition of regularity is equivalent to the definition
in [19]. A similar definition appears in [21, Definition 2.6].

Definition 3.12 (Regularity). Let p 2 X and X be a closed spherical Weyl chamber and
let � be a face of � . Consider the corresponding maximal abelian subspace a in p and set
of simple roots �. We define

�� D ¹˛ 2 � j ˛.�/ D 0º; �C� D ¹˛ 2 � j ˛.int �/ > 0º: (3.6)

A vector X 2 a is called .˛0; �/-regular if for each ˛ 2 �C� ; ˛.X/ � ˛0jX j. A geodesic c
at p is called .˛0; �/-regular if c0.0/ D evpX for an .˛0; �/-regular vector X 2 a.

It is immediate from the definition that X is .˛0; �/-regular for some ˛0 > 0 and � if
and only if X is regular. We define

ƒ� WD ¹˛ 2 ƒ j ˛.�/ D 0º; ƒC� WD ¹˛ 2 ƒ j ˛.int �/ > 0º: (3.7)

Observe that X is .˛0; �/-regular if and only if for each root ˛ 2 ƒC� we have ˛.X/ �
˛0jX j.

Remark 3.13. The signed distance from a vector A 2 a to the wall ker ˛ is ˛.A/=j˛j �
˛.A/=�0.

Definition 3.14. A unit vector X is .˛0; �/-spanning if it is � -spanning and .˛0; �/-
regular.



A quantified local-to-global principle for Morse quasigeodesics 57

We may now record a mild extension of Proposition 3.8 which will appear in
Lemma 4.8.

Corollary 3.15. Suppose X 2 p is an .˛0; �/-regular unit vector and Z 2 p is a .�0; �/-
spanning unit vector. Then Z is the unique maximum of B.X; �/WAd.K/Z ! R, and for
all U; V 2 TZ Ad.K/Z,

jHess.B.X; �//.U; V /Z j � ˛0�0jBp.U; V /j:

Proof. The proof of Proposition 3.8 goes through in this setting, requiring only the fol-
lowing observation: If X is � -regular and lies in a spherical Weyl chamber � , then � is
a face of � . If U; V 2 TZ Ad.K/Z correspond to U 0; V 0 2 k� under the identification
TZ Ad.K/Z D k� , we showed that Hess.B.X; �//.U; V /Z D B.ad.Z/ ad.X/U 0; V 0/.

3.8. The visual boundary @X

A pair of unit-speed geodesic rays c1; c2 are called asymptotic if there exists a constant
D > 0 such that

d.c1.t/; c2.t// � D

for all t � 0. The asymptote relation is an equivalence relation on unit-speed geodesic
rays and the set of asymptote classes is called the visual boundary of X and denoted by
@X. There is a natural topology on @X called the cone topology, where for each point
p 2 X the map S.Tp X/! @X (which takes a unit tangent vector to the geodesic ray with
that derivative) is a homeomorphism. In fact, the cone topology extends to X WD X[@X,
yielding a space homeomorphic to a unit ball of the same dimension as X.

Lemma 3.16. If c1 and c2 are asymptotic geodesic rays, then for all t � 0,

d.c1.t/; c2.t// � d.c1.0/; c2.0//:

Proof. The left-hand side, being convex [8] and bounded above, is therefore (weakly)
decreasing.

We have a natural action of G on @X: gŒc� D Œg ı c�. For � 2 @X, we denote the
stabilizer

G� WD ¹g 2 G j g� D �º

and call G� the parabolic subgroup fixing �. (Note that in [9, 11], G itself is a parabolic
subgroup, but in this paper a parabolic subgroup is automatically a proper subgroup.)
When � is regular, G� is a minimal parabolic subgroup of G (sometimes called a Borel
subgroup).

Let �; �0 be ideal points in @ X, represented by the geodesics c.t/ D etXp and
c0.t/D etY q. Then sinceG is transitive on point-chamber triples, we can find g 2 G such
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that gq D p and Ad.g/Y lies in a (closed) Euclidean Weyl chamber in common with X .
In particular, every G orbit in @X intersects every spherical Weyl chamber exactly once.

Each unit sphere S.p/ has the structure of a simplicial complex compatible with the
action of G. By Theorem 3.10, this simplicial structure passes to @X, which is in fact
a thick spherical building whose apartments are the ideal boundaries of maximal flats.
In [19, 20], the spherical building structure on @X is used to describe the regularity of
geodesic rays. We have used the restricted roots to define regularity and will show that the
notions are equivalent in Proposition 3.17. When we need to distinguish between simplices
in S.p/ and simplices in @X we call the former spherical and the latter ideal. Compared
to a spherical simplex, an ideal simplex lacks the data of a basepoint p 2 X.

Define the type map to be

� W @X! @X =G DW �mod

with range the model ideal Weyl chamber. The opposition involution �W Vmod ! Vmod

induces an opposition involution �W�mod! �mod; see the discussion after equation (3.4) in
the previous subsection. The faces of �mod are called model simplices. For a model sim-
plex �mod � �mod, we define the flag manifold Flag.�mod/ to be the set of simplices � in @X
such that �.�/ D �mod. If ideal points �; �0 span the same simplex � , then they correspond
to the same parabolic subgroup, so we define G� WD G� . A model simplex corresponds to
the conjugacy class of a parabolic subgroup of G.

3.9. Regularity for ideal points

Theorem 3.10 implies that “model roots” are well defined: If g 2 G takes the point-
chamber triple .p; a; V / to .p0; a0; V 0/ and takes the simplex � � @V to � 0 � @V 0, it
also takes �� to �0� 0 and �C� to �0C� 0 , where � is the simple roots in a� corresponding
to V and �0 is the simple roots in a0 corresponding to V 0.

An ideal point � 2 @X is called .˛0; �/-regular if every geodesic in its asymptote
class is .˛0; �/-regular. As soon as one representative of an ideal point is .˛0; �/-regular,
every representative is. A vector, geodesic or ideal point is .˛0; �mod/-regular if it is
.˛0; �/-regular for some simplex � of type �mod (see Figure 3).

Following [20], the open star of a simplex � , denoted ost.�/, is the union of open sim-
plices � whose closures intersect � . Equivalently, it is the collection of � -regular points
in @X . For a model simplex, int�mod.�mod/ is the collection of �mod-regular ideal points in
�mod. Equivalently, it is �mod n

S
˛2�C�

ker˛.1 We have

� D � \
\
˛2��

ker˛; int� � D ¹� 2 � j 8˛ 2 �C� ; ˛.�/ > 0º; @�� D � \
[
˛2�C�

ker˛:

There is a decomposition �mod D int�mod �mod t @�mod�mod.

1In [19], the notation ost.�mod/ was used for what is called int�mod .�mod/ here and in [20].
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�1

�2

�3

(a) .˛0; �mod/-regular.

�1

�2

�3

(b) .˛0; �13/-regular.

�1 �3

�2

(c) .˛0; �2/-regular.

Figure 3. .˛0; �mod/-regularity for various choices of �mod.

The set of .˛0; �/-regular points is called the “˛0-star of � .” The closed cone on the
˛0-star of � at p is denoted by

V.p; st.�/; ˛0/ WD ¹cpx.t/ j t 2 Œ0;1/; x is .˛0; �/-regularº;

the cone on the open star of � by

V.p; ost.�// WD ¹cpx.t/ j t 2 Œ0;1/; x is � -regularº

and the Euclidean Weyl sector by

V.p; �/ WD ¹cpx.t/ j t 2 Œ0;1/; x is � -spanningº:

It follows from Lemma 3.16 that the Hausdorff distance between V.p; st.�/; ˛0/ and
V.q; st.�/; ˛0/ is bounded above by d.p; q/, and the same holds for the open cones
V.p; ost.�// and V.q; ost.�// and for the Weyl sectors V.p; �/; V .q; �/.

We now describe the notion of regularity used in [19, 20] and show it is equivalent
to our definition. We always work with respect to a fixed type �mod. A subset ‚ � �mod

is called �mod-Weyl convex if its symmetrization W�mod‚ � amod is a convex subset of the
model apartment amod. Here we think of the Weyl groupW as acting on the visual bound-
ary amod of a model flat amod with distinguished Weyl chamber �mod and W�mod is the
subgroup of W stabilizing the simplex �mod. One then quantifies �mod-regular ideal points
by fixing an auxiliary compact �mod-Weyl convex subset ‚ of int�mod.�mod/ � �mod.

An ideal point � is ‚-regular if �.�/ 2 ‚. It is easy to see that the notions of
‚-regularity and .˛0; �mod/-regularity are equivalent.

Proposition 3.17. Let ��mod � � be the model simple roots corresponding to a simplex
�mod � �mod. Then

(1) If ‚ is a compact subset of int�mod.�mod/ then every ‚-regular ideal point is
.˛0; �mod/-regular for ˛0 D min˛2�C�mod

˛.‚/.
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(2) Every .˛0; �mod/-regular ideal point is ‚-regular for ‚ D ¹� 2 �mod j 8˛ 2

�C�mod
; ˛.�/ � ˛0º.

Proof. We first prove (1). Since ‚ is a compact subset of �mod n
S
˛2�C�mod

ker ˛, the

quantity min¹˛.�/ j ˛ 2 �C�mod
; � 2 ‚º exists and is positive.

We now prove (2). The subset‚D¹� 2 �mod j 8˛ 2�
C
�mod
;˛.�/� ˛0º has symmetriza-

tion W�mod‚ D ¹� 2 amod j 8˛ 2 �
C
�mod
; ˛.�/ � ˛0º which is an intersection of finitely

many half-spaces together with the unit sphere, so it is compact and convex. Furthermore,
‚ D �mod \W�mod‚ is a compact subset of int�mod.�mod/ \ �mod.

3.10. Choosing �mod and computing �0

Throughout the paper it will be essential to choose an auxiliary �-invariant model ideal
point �mod 2 int.�mod/. The regularity parameter �0 of �mod will appear in many estimates
below. In this subsection, we explain how to compute �0 when �mod is a minimal �-invariant
face of �mod. In this case, there is a unique choice of �mod. In Subsection 3.10.1, we com-
pute e�0, which agrees with the regularity parameter �0 up to renormalizing the longest
simple restricted root to have

p
2. These numbers are presented in Table 3. In the present

subsection, we explain how to compute the renormalizing constant.

Proposition 3.18. Let B 0 be the renormalized Killing form B D 2h_B 0. If the restricted
root system is reduced, then the longest norm of a simple root with respect to B 0 is C1. In
the two rank 1 non-reduced restricted root systems, the longest norm of a simple root with
respect to B 0 is C1

2
. In the four remaining cases, which are AIIIa, CIIa, DIIb and EIIIa,

the longest norm of a simple root with respect to B 0 is C1p
2

.

Proof. If the restricted root system is reduced, then every restricted root is in the Weyl
group orbit of a simple root.

The non-reduced cases can be analyzed by consulting [13, Table VI, Ch. X].
According to this table, there are six cases of non-reduced restricted root systems.

The cases of AIV and FII have real rank 1, so there is a unique simple restricted
root � and this root is non-reduced. Then 2� is a restricted root of maximal length, so
C1 D j2�jB 0 .

The remaining non-reduced cases are AIIIa, CIIa, DIIb and EIIIa. In each of these
cases, there is a unique non-reduced simple restricted root �. Moreover, the root � is the
unique short simple restricted root, and there exists at least one strictly longer simple
restricted root. Since the long restricted roots are reduced, C1 D j2�jB 0 , and in each case
the long simple roots have norm

p
2j�jB 0 D

p
2C1.

To give a succinct description of �0 in each case, we introduce the constant C3 (see
Table 2). We are avoiding the notation C2 since this constant appears in [1], but we do not
need it here. We set C3 to be 1 in all cases except the non-reduced restricted root systems.
For non-reduced restricted root systems, we set C3 to be 2 for the rank 1 cases and

p
2

otherwise.
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g Restricted Root System C3

AIV, FII Non-reduced and rank 1 2
AIIIa, CIIa, DIIb, EIIIa Non-reduced and rank � 2

p
2

All others Reduced 1

Table 2. C3 in terms of the restricted root system of g.

Lemma 3.19. Consider a further renormalization of the Killing form

B D
4C 23 h

_

C 21
B 00:

With respect to B 00, the longest norm of a simple restricted root is
p
2.

Proof. For any simple restricted root ˛, we have

C1

2C3
p
h_
jHB 00

˛ jB 00 D jH
B
˛ jB D

1
p
2h_
jHB 0

˛ jB 0 ;

so

jHB 00

˛ jB 00 D

p
2C3

C1
jHB 0

˛ jB 0

which has maximum
p
2 by Proposition 3.18 and the definition of C3.

Proposition 3.20. Let � be the set of simple roots in a restricted root system and let
˛k 2 �. Let �mod be the unique �-invariant unit vector in the face �mod corresponding to
¹˛k ; �.˛k/º. Then �mod is .�0; �mod/-spanning where

�0 D
C1

2C3
p
h_
e�0;

and e�0 is recorded in Table 3. Moreover, the regularity parameter �0 is optimal.

3.10.1. f�0 in standardized root systems. Below we will give a brief description of each
irreducible reduced root system. Each root system is considered to be a subset of the
Euclidean space Rn with the standard basis e1; : : : ; en, standard inner product and dual
basis e1; : : : ; en. We choose a scaling of the roots so that the longest simple root has
norm

p
2. We list the simple roots and describe the opposition involution �. In Table 3,

we depict the Dynkin diagram with labeled nodes. For each minimal �-invariant subset of
simple roots‚, we record e�0 WDmin¹˛.�mod/ j ˛ 2‚ºwhere �mod is the unique �-invariant
unit vector in the face �mod corresponding to ‚. Note that minimal �-invariant subsets are
singletons or pairs, so the corresponding faces are vertices or edges.

In order to give a precise description of �mod, we need a precise description of the ver-
tices of �mod. For this purpose we consider the fundamental weights !i of the root system,
which are uniquely defined by

2
h!i ; j̨ i

h j̨ ; j̨ i
D ıij
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Name Diagram 1=f�0.¹˛k; �.˛k/º/

An
˛1 ˛2 ˛n�1 ˛n

p
2k; 2k < nC 1I

p
nC 1=2; 2k D nC 1:

Bn
˛1 ˛2 ˛n�2 ˛n�1 ˛n

p
k

Cn
˛1 ˛2 ˛n�2 ˛n�1 ˛n

p
2k; k < nIp
n=2; k D n:

Dn
˛1 ˛2 ˛n�3

˛n�2

˛n�1

˛n

p
k; k � n � 2I

2
p
n; k � n � 1; n evenI

p
n � 1; k D n � 1; n odd:

E6
˛1

˛2

˛3 ˛4 ˛5 ˛6

p
34=2; k D 1I

5
p
2=4; k D 2I

p
354=4; k D 3I
p
42=2; k D 4:

E7
˛1

˛2

˛3 ˛4 ˛5 ˛6 ˛7

p
2; k D 1I

p
7=2; k D 2I

p
6; k D 3I 2

p
3; k D 4Ip

15=2; k D 5I 2; k D 6Ip
3=2; k D 7:

E8
˛1

˛2

˛3 ˛4 ˛5 ˛6 ˛7 ˛8

2; k D 1I 2
p
2; k D 2I

p
14; k D 3I

p
30; k D 4I

2
p
5; k D 5I 2

p
3; k D 6I

p
6; k D 7I

p
2; k D 8:

F4
˛1 ˛2 ˛3 ˛4

p
2; k D 1I
p
6; k D 2I

p
12; k D 3I

2; k D 4:

G2
˛1 ˛2

p
2; k D 1I
p
6; k D 2:

Table 3. e�0 for minimal �-invariant subsets of irreducible root systems, normalized so that the longest
simple roots have norm

p
2.
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where the simple roots are�D¹˛iº. Then the dual vectorsH!i 2 a defined by hH!i ;AiD
!i .A/ are proportional to the vertices of �mod. If ˛k is an �-invariant simple root, then we
set �mod D H!k=jH!k j ande�0 D ˛k.H!k=jH!k j/ D j˛kj2=.2j!kj/:
If ˛k is not �-invariant, then we set �mod D .H!k C �.H!k //=jH!k C �.H!k /j ande�0 D ˛k.H!k=jH!k C �.H!k /j/ D j˛kj2=.2jH!k C �.H!k /j/:
The fundamental weights of irreducible root systems can be found, for example, in [24].

• An. E D ¹v 2 RnC1 j hv; e1 C � � � C enC1i D 0º. The simple roots are � D ¹˛iº D
¹ei � eiC1ºniD1. The fundamental weights are !i D e1C � � � C ei , restricted to E. The
opposition involution � takes ˛i to ˛nC1�i .

• Bn. E D Rn. The simple roots are � D ¹ei � eiC1ºn�1iD1 [ ¹e
nº. The fundamental

weights are !i D e1 C � � � C ei for i < n and !n D 1
2
.e1 C � � � C en/. The opposition

involution is trivial.

• Cn. E DRn. The simple roots are�D
®
1p
2
.ei � eiC1/

¯n�1
iD1
[ ¹
p
2enº. For this scal-

ing, the long root has norm
p
2. The fundamental weights are !i D 1p

2
.e1C � � � C ei /

for all i � n. The opposition involution is trivial.

• Dn. E D Rn. The simple roots are � D ¹ei � eiC1ºn�1iD1 [ ¹e
n�1 C enº. The funda-

mental weights are !i D e1C � � � C ei for i � n� 2, !n�1D 1
2
.e1C � � � C en�1 � en/,

!n D
1
2
.e1 C � � � C en/. When n is even, the opposition involution is trivial. When n

is odd, �.˛n/ D ˛n�1, and � fixes the other simple roots.

• E6. E D ¹v 2 R8 j hv; e6 � e7i D hv; e7 C e8i D 0º. The simple roots are

� D
°1
2
.e8 � e7 � e6 � e5 � e4 � e3 � e2 C e1/;

e2 C e1; e2 � e1; e3 � e2; e4 � e3; e5 � e4
±
:

The fundamental weights are

¹.0; 0; 0; 0; 0;�1=6;�7=6; 2=3/; .1=2; 1=2; 1=2; 1=2; 1=2; 1=4;�5=4; 1=2/;

.�1=2; 1=2; 1=2; 1=2; 1=2; 1=6;�11=6; 5=6/; .0; 0; 1; 1; 1; 1=2;�5=2; 1/;

.0; 0; 0; 1; 1; 7=12;�23=12; 2=3/; .0; 0; 0; 0; 1; 2=3;�4=3; 1=3/º:

The opposition involution takes ˛1 to ˛6, ˛3 to ˛5, and fixes ˛2 and ˛4. We havee�0.¹˛1; ˛6º/D 1=j!1 C !6j D 2=p34, e�0.¹˛2º/D 1=j!2j D 4=5p2, e�0.¹˛3; ˛5º/D
1=j!3 C !5j D 4=

p
354 and e�0.¹˛4º/ D 1=j!4j D 2=p42.

• E7. E D ¹v 2 R8 j hv; e7 C e8i D 0º. The simple roots are

� D
°1
2
.e8 � e7 � e6 � e5 � e4 � e3 � e2 C e1/;

e2 C e1; e2 � e1; e3 � e2; e4 � e3; e5 � e4; e6 � e5
±
:
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The opposition involution is trivial. The fundamental weights are°
e8 � e7;

1

2
.e1 C e2 C e3 C e4 C e5 C e6 � 2e7 C 2e8/;

1

2
.�e1 C e2 C e3 C e4 C e5 C e6 � 3e7 C 3e8/;

e3 C e4 C e5 C e6 � 2e7 C 2e8; e4 C e5 C e6 �
3

2
e7 C

3

2
e8;

e5 C e6 � e7 C e8; e6 �
1

2
e7 C

1

2
e8
±
:

Their norms are
p
2;
p
7=2;
p
6; 2
p
3;
p
15=2; 2;

p
3=2.

• E8. E D R8. The simple roots are

� D
°1
2
.e8 � e7 � e6 � e5 � e4 � e3 � e2 C e1/;

e2 C e1; e2 � e1; e3 � e2; e4 � e3; e5 � e4; e6 � e5; e7 � e6
±
:

The opposition involution is trivial. The fundamental weights are°
2e8;

1

2
.e1 C e2 C e3 C e4 C e5 C e6 C e7 C 5e8/;

1

2
.�e1 C e2 C e3 C e4 C e5 C e6 C e7 C 7e8/;

e3 C e4 C e5 C e6 C e7 C 5e8; e4 C e5 C e6 C e7 C 4e8;

e5 C e6 C e7 C 3e8; e6 C e7 C 2e8; e7 C e8
±
:

Their norms are 2; 2
p
2;
p
14;
p
30; 2
p
5; 2
p
3;
p
6;
p
2.

• F4.E DR4. The simple roots are�D ¹e1 � e2; e2 � e3; e3; 1
2
.�e1 � e2 � e3 � e4/º.

The fundamental weights are: !1 D e1 � e4 of norm
p
2, !2 D e1 C e2 � 2e4 of

norm
p
6, !3 D 1

2
.e1 C e2 C e3 � 3e4/ of norm

p
3, and !4 D �e4 of norm 1. The

opposition involution is trivial.

• G2. E D ¹v 2 R3 j hv; e1 C e2 C e3i D 0º. The simple roots are � D 1p
3
¹e1 �

e2; �2e1 C e2 C e3º. For this scaling, the short root has norm
q
2
3

and the long
root has norm

p
2. The fundamental weights are !1 D 1p

3
.�e2 C e3/ and !2 D

1p
3
.�e1 � e2C 2e3/, with norms

q
2
3

and
p
2, respectively. The opposition involution

is trivial.

Example 3.21. In the symmetric space associated with sl.d;R/, the root system is of
type Ad�1 and the opposition involution takes the simple root ˛i to ˛d�i . The subset
¹˛1; ˛d�1º is a minimal �-invariant subset. In this case �mod is given by

�mod D .H!1 CH!d�1/=jH!1 CH!d�1 j
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which may be represented as a diagonal matrix with its first and last entries oppo-
site and all other entries 0. One can compute directly or apply Proposition 3.20 to see
that �0 D 1

2
p
d

. In this case �mod-Anosov subgroups of SL.d;R/ are sometimes called
projective Anosov subgroups.

3.11. Generalized Iwasawa decomposition

Let p be a point in X, � 2 Flag.�mod/ and let X 2 p be � -spanning. Choose a Cartan sub-
space X 2 a � p, with restricted roots ƒ and a choice of simple roots � associated with
� � � . Recalling the notation in (3.7) following Definition 3.12, we define

(1) a� D Z.X/\ p D ¹Y 2 p j ŒX; Y � D 0º and A� D exp.a� /. Note that a� and A�
depend on p.

(2) The (nilpotent) horocyclic subalgebra n� D
L
˛2ƒC�

g˛ and the (unipotent)
horocyclic subgroup N� D exp.n� /.

(3) The generalized Iwasawa decomposition of g is g D k˚ a� ˚n� .

(4) The generalized Iwasawa decomposition of G is G D KA�N� D N�A�K. The
indicated decomposition is unique.

Note that our notation differs from [20], where N� denotes the full horocyclic subgroup
at � and A� is the group of translations of the flat factor of the parallel set defined by p
and � (see Section 3.12). In our notation, N� is the unipotent radical of the parabolic
subgroup G� (see [8, Section 2.17]).

3.12. Antipodal simplices, parallel sets and horocycles

A pair of points �; � in @X are said to be antipodal if there exists a geodesic c with
c.�1/ D � and c.C1/ D �. Equivalently, �; � are antipodal if there exists a geodesic
symmetry Sp taking � to �.

A pair of simplices �˙ are antipodal if there exists some p 2 X such that Sp�� D �C,
or equivalently if there exists a geodesic c with c.�1/ 2 int.��/ and c.C1/ 2 int.�C/.
If a model simplex �mod is �-invariant, then every simplex � of type �mod has the same type
as any of its antipodes.

For antipodal simplices �˙, the parallel set P.��; �C/ is the union of (images of)
geodesics c with c.�1/ 2 �� and c.C1/ 2 �C. Given one such geodesic c, we may
alternatively define P.��; �C/D P.c/ to be the union of geodesics parallel to c, or equiv-
alently to be the union of maximal flats containing c. Antipodal �mod-regular points �; � lie
in the boundary of a unique parallel set P D P.�.�/; �.�//, where �.�/ (resp. �.�/) is the
unique simplex of type �mod in some/every Weyl chamber containing � (resp. �). We say
that P.��; �C/ joins �� and �C. The parallel set joining a pair of antipodal Weyl chambers
is a maximal flat.

The horocycle centered at � 2 Flag.�mod/ through p 2 X is denoted H.p; �/ and
is defined to be the orbit N� � p. For any p 2 X and y� antipodal to � , the horocycle
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H.p; �/ intersects the parallel set P.y�; �/ in exactly one point. A horocycle is the union
of basepoints of strongly asymptotic Weyl sectors/geodesic rays [19, 20].

3.13. The �-angle and Tits angle

We follow [19] in defining the �-angle between two simplices at a point p 2 X. For fixed
p 2 X and �, the �-angle provides a metric on Flag.�mod/ by viewing it as embedded in
the tangent space at p and restricting the angle metric ∠p to the vectors of type �. The
�-angle also makes sense for �mod-regular directions by projecting to Flag.�mod/. To make
this definition, we first fix the auxiliary data of a .�0; �mod/-spanning �-invariant model
ideal point � D �mod 2 int.�mod/. We recall from Definition 3.14 that .�0; �mod/-spanning
means that � is in the interior of �mod and all simple roots ˛ 2�C�mod

positive on the interior
of �mod satisfy ˛.�/ � �0.

Definition 3.22 (�-angle, cf. [19, Definitions 2.3 and 2.4]). For � as above, define:

(1) For a simplex � 2 Flag.�mod/, let �.�/ denote the unique point in int.�/ of type �.

(2) For a �mod-regular ideal point � 2 @X, let �.�/D �.�.�//where �.�/ is the simplex
spanned by �.

(3) Let p 2 X, let �; � 0 be Weyl chambers in @X and let x; y 2 X with px and py
�mod-regular. The �-angle is given by

∠�p.�; �
0/ WD ∠p.�.�/; �.�

0//;

∠�p.�; y/ WD ∠p.�.�/; �.py//;

∠�p.x; y/ WD ∠p.�.px/; �.py//:

Note that there is a typo in the definition of �-angle in [19, Definition 7.5] (see
Figure 4).

For �; � 2 @X, the Tits angle is

∠Tits.�; �/ WD sup
p2X

∠p.�; �/:

Ideal points �; � are antipodal if and only if their Tits angle is � . For p 2 X, �; � 2 @X, the
equality ∠p.�; �/ D ∠Tits.�; �/ holds if and only if there is a maximal flat F containing p

�

(a) � 2 �mod.

�.X/

�.X/

X

�.Y /

�.Y /

Y

(b) The �-angle between X and Y .

Figure 4. �-angles.
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with �; � 2 @F and moreover for any �; � 2 @X, there exists some maximal flat F with
�; � 2 @F [8].

For simplices �; � 0 in Flag.�mod/, we may define

∠�Tits.�; �
0/ WD ∠Tits.�.�/; �.�

0//:

There are only finitely many possible Tits angles between ideal points of fixed type. There-
fore, there exists a bound ".�mod/ such that if ∠�Tits.�; �

0/ > � � ".�mod/ then � and � 0 are
antipodal, as observed in [19, Remark 2.42]. By Remark 3.13, we have

sin
�1
2
".�mod/

�
D min
˛2ƒC�mod

˛.�mod/

j˛j
�
�0

�0
:

By the definition of Tits angle, the same holds if the �-angle at any point is strictly within
".�mod/ of � : The inequality

∠�Tits.�; �
0/ � ∠�p.�; �

0/ > � � ".�mod/

implies that � and � 0 are antipodal. Since �0 � �0 < 2�0 (recall �0 from Definition 3.2),
we have

sin
1

2

�20
�20
�
1

2

�20
�20

<
�0

�0
� sin

1

2
".�mod/;

and we obtain the estimate �20
�20
< ".�mod/. We record this observation in the following

lemma.

Lemma 3.23 (Cf. [19, Remark 2.42]). If the inequality ∠�p.��; �C/ � � �
�20
�20

holds for
some p 2 X, then �� is antipodal to �C. In other words, �

2
0

�20
< ".�mod/.

4. Estimates

This section contains the main contributions of the paper. We prove several explicit esti-
mates in the symmetric space that we will use in Section 5 to give a quantified version
of the local-to-global principle for Morse quasigeodesics. Qualitative versions of these
estimates appear in [19, 20], but there the proofs rely on topological arguments that do
not produce explicit bounds. For example, in Subsection 4.4, Lemma 4.8, we consider
the natural projection from .˛0; �mod/-regular vectors in p to Flag.�mod/. This map is the
restriction of a smooth map to a compact submanifold with boundary, so an abstract proof
of the existence of a Lipschitz constant is not hard. However, that approach is not suitable
for our purposes, so we apply Corollary 3.15 to obtain an explicit local Lipschitz constant.
Note that such an estimate cannot be uniform for all ˛0 > 0 and therefore must depend
on ˛0.

A crucial notion, introduced in [19], is the �-angle, denoted ∠� (see Section 3.13).
Recall that � D �mod is a fixed type in the interior of �mod. Moreover, we assume that � is
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.�0; �mod/-regular and that � and �mod are �-invariant (see Definition 3.14 and Section 3.8).
For fixed p 2X and �, the �-angle provides a metric on Flag.�mod/ by viewing it as embed-
ded in the tangent space at p and restricting the angle metric ∠p to the vectors of type �.
The �-angle also makes sense for �mod-regular directions by projecting to Flag.�mod/.

The organization of the section is as follows. In Subsection 4.1, we relate the
Riemannian metric on X to algebraic data on g, for example, the Killing form B and the
canonical inner product Bp . In Subsection 4.2, we use the vector-valued triangle inequal-
ity to control the regularity of bounded perturbations of long regular geodesic segments.
In Subsection 4.4, we prove Lemma 4.8, which allows us to bound ∠�p.x; y/ in terms of
˛0; �0 and ∠p.x; y/. In Subsection 4.5, we prepare a technique for the subsequent subsec-
tions, where we bound the lengths of certain non-geodesic curves in X which are images
of curves in G under the orbit map. In Subsection 4.6, the curve lies in the subgroup sta-
bilizing a point, and we bound the distance the midpoint of a segment can move when
we move one endpoint a bounded amount, assuming the segment is long enough. Sub-
section 4.7 is roughly similar; there we bound the distance between points far along on
strongly asymptotic geodesic rays (so the curve in G lies in a unipotent horocyclic sub-
group). These combine to yield a crucial estimate in Corollary 4.13, which implies that if
a pair of points are in the D-neighborhood of a diamond, then their midpoint is close to
the diamond; moreover, the distance from the midpoint to the diamond becomes arbitrarily
small as the points move farther apart. In the remaining subsections, we show that distance
to a corresponding parallel set controls the corresponding �-angles (Corollary 4.16) and
vice versa (Lemma 4.17). Along the way we provide some control for the Lie derivatives
of gradients of Busemann functions with respect to Killing vector fields (see the proofs of
Lemmas 4.14 and 4.17).

4.1. Useful properties of the inner product Bp on g

We remind the reader that our convention is that the Riemannian metric on X is the one
induced by the Killing form (see equation (3.2)). Recall that each point p 2 X induces an
inner product Bp on g and the evaluation map evpW g! Tp X (see Section 3.1). We first
relate the inner product Bp , the Killing form B on g and the Riemannian metric h�; �i at p.

Lemma 4.1. For any X; Y 2 g and p 2 X,

2hevpX; evpY i D B.X; Y /C Bp.X; Y /:

In particular, any U in n� or g˛ is ad-nilpotent, so B.U;U / D 0 and jU jBp D
p
2jevpU j

(see Section 3.11).

Recall that #p is a Lie algebra automorphism, so #pŒX; Y � D Œ#pX; #pY � and
B.#pX; #pY / D B.X; Y /.
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Proof. The kernel of evp is the C1-eigenspace for #p , so for any X 2 g, 2evpX D
evp.X � #pX/ and

4hevpX; evpY ip D hevp.X � #pX/; evp.Y � #pY /ip
D B.X � #pX; Y � #pY /

D B.X; Y /C B.#pX; #pY / � B.#pX; Y / � B.X; #pY /

D 2B.X; Y /C 2Bp.X; Y /:

Next we show that the transpose on End g with respect to Bp restricts to �#p on the
image of the adjoint representation.

Lemma 4.2. For X; Y;Z 2 g, Bp.adX.Y /;Z/ D Bp.Y; ad.�#pX/.Z//.

Proof. We have

Bp.adX.Y /;Z/ D �B.#p adX.Y /;Z/

D �B.ad.#pX/.#pY /;Z/

D �B.#pY; ad.�#pX/.Z//

D Bp.Y; ad.�#pX/.Z//;

where we have used that ad#pX is skew-symmetric relative to B .

Third, we bound B.adX.Y /; Z/ by the product of the Bp-norms of X; Y and Z and
bound the operator norm of adX by jX jBp along the way.

Lemma 4.3. Let X; Y;Z 2 g and let p 2 X induce the inner product Bp on g. Consider
the operator norm j�jop and Frobenius norm j�jFr on End g induced by Bp . Then

(1) jadY jop � jadY jFr D jY jBp ,

(2) B.X; adY.Z// � jX jBp jY jBp jZjBp , and

(3) for Y 2 p, jŒY; X�jBp � �0jY jBp jX jBp .

Proof. Recall that the operator norm of a linear transformation is the largest singular
value, while the Frobenius norm is the square root of the sum of the singular values
squared. Therefore,

jadX j2op � jadX j2Fr D traceg.ad.�#pX/ ı adX/ D Bp.X;X/

by Lemma 4.2, proving the first claim. Using this, we have

B.X; adY.Z// D �Bp.#pX; adY.Z//

� j#pX jBp jadY.Z/jBp
� jX jBp jadY jopjZjBp
� jX jBp jY jBp jZjBp :
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If Y 2 p, we may choose a maximal abelian subspace a of p containing Y and decom-
pose X D

P
˛2ƒ[¹0ºX˛ according to the associated restricted root space decomposition,

which is Bp-orthogonal. Therefore,

jŒY; X�j2Bp D

ˇ̌̌̌X
˛2ƒ

˛.Y /X˛

ˇ̌̌̌2
Bp

D

X
˛2ƒ

˛.Y /2jX˛j
2
Bp
� �20 jY j

2
Bp
jX j2Bp ;

where �0 is the maximum of ¹˛.A/ j ˛ 2 ƒ;A 2 a; jAj D 1º (see Definition 3.2).

Fourth, we need to compare the norms induced by p; q 2 X in terms of d.p; q/.

Lemma 4.4. Let p; q 2 X, g 2 G and X 2 g. Then

(1) #gp ı Ad.g/ D Ad.g/ ı #p ,

(2) jX jBp D jAd.g/X jBgp , and

(3) jX jBp � e
�0d.p;q/jX jBq .

Proof. The point stabilizer Ggp is gGpg�1 and it follows that Ad.g/ takes #p to #gp .
This, together with the Ad invariance of the Killing form implies (2). For the last point,
choose a maximal flat F containing p and q, let a � p be the maximal abelian subspace a

of p corresponding to p 2 F , and let g D g0˚
L

g˛ be the corresponding restricted root
space decomposition. There is a unique A 2 a such that eAp D q, and then

jX jBp D je
adAX jBq D

ˇ̌̌̌ X
˛2ƒ[¹0º

e˛.A/X˛

ˇ̌̌̌
Bq

� e�0d.p;q/jX jBq ;

using the restricted root space decomposition of X and the fact that the restricted root
space decomposition is Bq-orthogonal.

4.2. Perturbations of long, regular segments

We will need to control the regularity of bounded perturbations of long regular geodesic
segments. The following lemma is an explicit version of [21, Lemma 3.6]. This assertion
also appears in the proof of Lemma 7.10 in [19].

Lemma 4.5. Suppose xy is an .˛0; �mod/-regular geodesic segment with d.x; y/ � l and
let x0; y0 be points in X satisfying d.x; x0/ � ıx and d.y; y0/ � ıy . If

˛0 �
.ıx C ıy/.˛0 C �0/

l � ıx � ıy
� ˛00;

then x0y0 is .˛00; �mod/-regular.

We will often apply this lemma in the case ıx D ıy D D.
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Proof. We apply Corollary 3.11, the triangle inequality for Ed -distances:ˇ̌
Ed.x; y/ � Ed.x0; y0/

ˇ̌
� d.x; x0/C d.y; y0/ � ıx C ıy :

Similarly, jd.x;y/� d.x0;y0/j � d.x;x0/C d.y;y0/� ıx C ıy , so d.x0;y0/� l � ıx C ıy
and

d.x; y/

d.x0; y0/
� 1 �

ıx C ıy

d.x0; y0/
� 1 �

ıx C ıy

l � ıx � ıy
:

For any ˛ 2 �C�mod
,

˛. Ed.x0; y0//

d.x0; y0/
�
˛0d.x; y/ � ıx�0 � ıy�0

d.x0; y0/

� ˛0

�
1 �

ıx C ıy

l � ıx � ıy

�
�
.ıx C ıy/�0

l � ıx � ıy

D ˛0 �
.ıx C ıy/.˛0 C �0/

l � ıx � ıy
� ˛00:

It is also straightforward to control the regularity of segments in terms of �mod-Weyl
convex subsets ‚ � �mod.

Lemma 4.6. Suppose ‚;‚0 � �mod satisfy NA.‚/ � ‚0 where NA.‚/ denotes the A-
neighborhood of A with respect to the angular metric. Let xy be a ‚-regular geodesic
segment with d.x; y/ � l and suppose x0; y0 satisfy d.x; x0/ � ıx and d.y; y0/ � ıy . If

sin.A/ �
ıx C ıy

l
;

then x0y0 is ‚0-regular.

Proof. As before, we have ˇ̌
Ed.x; y/ � Ed.x0; y0/

ˇ̌
� ıx C ıy

and by assumption d.x; y/ � l , so

sin∠. Ed.x; y/; Ed.x0; y0// �
ıx C ıy

l
:

4.3. Angle comparison to Euclidean space

When p; q; r are points in X such that d.p; q/ is much larger than d.q; r/, we provide
an upper bound for the Riemannian angle ∠p.q; r/ by comparing to Euclidean space. The
following estimate is surely not new, but we could not find a direct reference so we give a
proof.
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Lemma 4.7. Let p; q; r be non-collinear points in X. Then

sin∠p.q; r/ �
d.q; r/

d.p; q/
:

The convenience of this estimate is that the third possible distance d.p; r/ does not
appear.

Proof. LetX;Y 2 p such that eXpD q and eY pD r . Then jX j D d.p;q/ and d.X;Y /�
d.q; r/, and we may assume that d.p; q/ > d.q; r/. In Euclidean space, the comparison
holds: Among vectors Y 0 with d.X;Y 0/� d.X;Y /, the largest angle occurs for a vector Y 0

forming a right triangle with X as hypotenuse. Then

sin∠.X; Y / � sin∠.X; Y 0/ D
d.X; Y 0/

jX j
�
d.q; r/

d.p; q/
:

4.4. Projecting regular vectors to flag manifolds

Recall that we have a fixed type � D �mod which is .�0; �mod/-spanning (see Defini-
tion 3.14). For a �mod-regular X 2 p, define �.X/ to be the unique vector in a com-
mon closed Weyl chamber as X of type �. Note that �.X/ is the unique maximizer for
B.X; �/WAd.K/Z! R where Z 2 p is any vector of type � by Corollary 3.15. In the next
lemma we show that nearby �mod-regular points project to nearby points on Ad.K/Z in
the metric induced by viewing Ad.K/Z as a Riemannian submanifold of p. Note that one
expects a local Lipschitz constant proportional to 1

˛0
by considering vectors near the walls

ker˛ for ˛ 2 �C� .

Lemma 4.8. Let X;X 0 be .˛0; �/-regular unit vectors in p with dp.X; X
0/ � ˛0. Write

Z D �.X/ and Z0 D �.X 0/. Then the Riemannian distance on Ad.K/Z from Z to Z0 is
bounded by the distance in p from X to X 0:

dAd.K/Z.Z;Z
0/ �

1

˛0�0
dp.X;X

0/:

Proof. Let t 7! Xt be a unit-speed line segment from X to X 0 in p. Let ¹X iºdim p
iD1 be

linear coordinates on p, and we may assume that the derivative of t 7! Xt is @
@X1

. Since
dp.X;X

0/ � ˛0 each Xt is
�
˛0
2
; �mod

�
-regular. Write Zt D �.Xt / and note that t 7! Zt is

a smooth curve on Ad.K/Z. To prove the claim we will show that
ˇ̌

d
dZt
t
ˇ̌
�

1
˛0�0

, where
we restrict the inner product on p to a Riemannian metric on Ad.K/Z.

Restricting the domain of B , we write BW p � Ad.K/Z ! R. Near .X0; Z0/ D
.Xt0 ; Zt0/, we have coordinates ¹Zj ºdim Ad.K/Z

jD1 on Ad.K/Z. We may assume that Zt is
an immersion at Z0 because the set

®
t j
ˇ̌

d
dZt
t
ˇ̌
D 0

¯
does not contribute to the arclength

ofZt and furthermore up to a change of coordinates we may assume that d
dZt
t D @

@Z1
. On

this coordinate patch U , we obtain the function Bj Wp�U !R defined by Bj .X 00;Z00/ WD
dB.X 00;Z00/

�
@
@Zj

�
. Along the curve t 7! .Xt ; Zt /, the function Bj is identically 0 (where
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defined) since Zt maximizes B.Xt ; �/ on Ad.K/Z. Differentiating Bj .Xt ; Zt / D 0 in t ,
we obtain

0 D dBj .Xt ;Zt /

�
@

@X1
;
@

@Z1

�
D

@

@Bj
X1 C

@

@Bj
Z1:

Observe that

@

@Bj
Z1.Xt ;Zt / D

�
@

@Z1
@

@Zj
B

�
.Xt ;Zt /

D Hess.B/
�

@

@Z1
;
@

@Zj

�
.Xt ;Zt /

D Hess.B.Xt ; �//
�

@

@Z1
;
@

@Zj

�
Zt

;

so by Corollary 3.15 we haveˇ̌̌̌
@

@Bj
Z1
ˇ̌̌̌
� ˛0�0

ˇ̌̌̌�
@

@Z1
;
@

@Zj

�ˇ̌̌̌
:

In particular, along .Xt ; Zt / and setting j D 1, we have

˛0�0

ˇ̌̌̌
@

@Z1

ˇ̌̌̌2
�

ˇ̌̌̌
@

@B1
X1.Xt ;Zt /

ˇ̌̌̌
D

ˇ̌̌̌
B1

�
@

@X1
; Zt

�ˇ̌̌̌
D

ˇ̌̌̌
B

�
@

@X1
;
@

@Z1

�ˇ̌̌̌
�

ˇ̌̌̌
@

@Z1

ˇ̌̌̌
since @

@X1
is a unit vector. We obtain for all tˇ̌̌̌

@

@Z1

ˇ̌̌̌
�

1

˛0�0

and the claim is proven.

4.5. Projecting curves in G to X

In this subsection, we prepare to estimate the length of curves in X which are images of
curves in G under the orbit map. We begin by comparing the speeds of two such curves
related by right translation. We apply this result in the next section to Lemma 4.10 for a
curve in K, and in the following section to Lemma 4.11 for a curve in the subgroup N� .

For an element g 2 G, we let lG WG ! G; lg.h/ D gh denote left translation and
rg W G ! G; rg.h/ D hg denote right translation. We denote by conjg W G ! G the
conjugation map conjg.h/ D ghg

�1.

Lemma 4.9. Let gWR! G be a curve in G, let h 2 G and let p 2 X. Write qh.s/ D
g.s/hp. If Pg.s/ D .dlg.s//1Xs , then

j Pqh.s/j D jevp Ad.h�1/Xsj:
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Proof. The curve qh.s/D g.s/hp has the same speed as ch.s/D h�1g.s/hp since h�1 is
an isometry. Writing

ch.s/ D p ı conjh�1 ıg.s/

and differentiating with respect to s we have

Pch.s/ D .d orbp/h�1gh ı .d conjh�1/g.s/ ı Pg.s/:

For any a; b 2 G and X 2 T1G, we have

.d conja/b.dlb/1X D .dla/ba�1.dr
�1
a /b.dlb/1X

D .dla/ba�1.dlb/a�1.dl
�1
a /1.dla/a�1.dr

�1
a /1X

D dlaba�1 Ad.a/X:

We also have .d orbp/a.dla/1 D dap.d orbp/1, so if Pg.s/ D dlg.s/Xs , then

Pct .s/ D .d orbp/h�1gh ı .dlh�1gh/1 Ad.h�1/Xs D .dh�1gh/p.d orbp/1 Ad.h�1/Xs :

This implies

j Pqh.s/j D j Pch.s/j D j.d orbp/1 Ad.h�1/Xsj D jevp Ad.h�1/Xsj

and completes the proof.

4.6. Weyl cones forming small angles

In this subsection, we show that if q 2 V.p; st.�/;˛0/ and r 2 V.p; st.� 0/;˛0/with d.p;q/
much larger than d.q; r/, the midpoint of pq is close to V.p; st.� 0/; ˛0/. Recall that the
Weyl cone V.p; st.�/; ˛0/ is defined to be the closed cone at p of the ˛0-star of � (see
Section 3.9).

Lemma 4.10. Let p; q; r 2 X. Suppose that pq is an .˛0; �/-regular geodesic ray with
d.p; q/ � 2l and d.q; r/ �D. LetmD mid.p; q/,K D StabG.p/ and suppose moreover
that

˛0 �
D.�0 C ˛0/

2l �D
� ˛00 > 0

and
1

2

�
e2�0D � 1

�
Œsinh.˛00.2l �D//�

�2
� 3e2�0D :

Then there exists k 2 K such that km 2 V.p; st.�.pr//; ˛0/ and d.m; km/ is at most
2De�0D�˛0l .

The first inequality guarantees that pr is �mod-regular so that �.pr/ is well defined.
The second requirement looks strange and involves an arbitrary choice, but is extremely
mild and serves our purposes well. (When we apply this lemma, we will have a boundedD
and a large l .) Compared to other variations of Lemma 4.10 we could present here, the
given version has a less cumbersome upper bound in the conclusion of the lemma.
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Proof. We may assume that d.p; q/D 2l and d.q; r/DD. Let cW Œ0;D�!X be the unit-
speed geodesic from q to r . We have l large enough that Lemma 4.5 implies that each ray
pc.t/ is .˛00; �mod/-regular and defines a simplex �t WD �.pc.t//. We may decompose

Pc.t/ D Nc.t/ C Tc.t/;

so that Tc.t/ is tangent to Vt WD V.p; ost.�t // and Nc.t/ is normal to Vt . Recall that
for � 2 Flag.�mod/ we let k� denote the infinitesimal stabilizer in k and let k� denote
.k� /

? with respect to the restriction of the Killing form to k. For each t there is a unique
Xt 2 k�t � T1K such that evc.t/Xt D Nc.t/, and we extend each Xt to a right-invariant
vector field on K. We may view this time-dependent vector field as vector field supported
on a compact neighborhood of Œ0; D� � K, so it defines a flow and in particular a curve
kW Œ0;D�! K with k.0/ D 1 and Pk.t/ D .Xt /k.t/ D .drk.t//1Xt .

Viewing k as T1K, it is convenient to set Xt D Ad.k.t//Yt and work with the time-
dependent tangent vector Yt 2 k� . We have Pk.t/ D .dlk.t//1Yt , so we may extend Yt to
the unique left-invariant vector field agreeing with Xt along k.t/.

We may now write c.t/D k.t/v.t/ where v.t/ 2 V.p; st.�/; ˛00/ (see Figure 5). Since
Tc.t/ D .dk.t//v.t/ Pv.t/ we have j Pvj � j Pcj, so

d.k.t/v.0/; k.t/v.t// D d.v.0/; v.t// � t � D:

Setting q.t/D k.t/q, we have j Pq.t/j D jevq Yt j by Lemma 4.9, and by Lemma 4.4 (3) we
have

2jevq Yt j2 � jYt j2B D jYt j
2
Bq
� e2�0t jYt j

2
Bv.t/
D e2�0t .2jevv.t/ Yt j2 � jYt j2B/; (4.1)

where jYt j2B D B.Yt ; Yt / is nonpositive.

p

�D

�t

�

r

m

q

m.D/

q.D/

q.t/m.t/ c.t/

Figure 5. Weyl cones forming a small angle.
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For large l , the evaluation of Yt at v bounds the Killing form norm of Yt : We choose a
maximal flat containing p and v D eAp and, suppressing t , write Yt D

P
˛2ƒC�

Y˛ C Y�˛
with Y˛ 2 g˛ and compute

jevv Yt j2 D jevp Ad.e�A/Yt j2 by Lemma 4.4 (2)

D

X
˛2ƒC�

ˇ̌�
e˛.A/ � e�˛.A/

�
evpY˛

ˇ̌2 since Y˛ C Y�˛ 2 ker evp

D
1

2

X
˛2ƒC�

�
e˛.A/ � e�˛.A/

�2
jY˛j

2
Bp

since the restricted root space
decomposition is Bp-orthogonal

�
1

2

X
˛2ƒC�

�
2 sinh.˛00.2l � t //

�2
jY˛j

2
Bp

since ˛.A/ � ˛00.2l � t /
by regularity

D
1

2

�
2 sinh.˛00.2l � t //

�2 X
˛2ƒC�

jY˛j
2
Bp

D
1

4

�
2 sinh.˛00.2l � t //

�2
.�jY j2B/:

This bound �Œsinh.˛00.2l � t //�
2jYt j

2
B � jevv.t/ Yt j2 together with (4.1) implies

2jevq Yt j2 � e2�0t2jevv.t/ Yt j2 � .e2�0Dt � 1/jYt j2B

� 2jevv.t/ Yt j2
h
e2�0t C

1

2
.e2�0t � 1/Œsinh.˛00.2l � t //�

�2
i
:

We now write m.t/ D k.t/m where m D mid.p; q/ D elW p for W 2 p. For t � 0,
using ˛.W / � ˛0 > 0 for all ˛ 2 ƒC� and Lemma 4.9, we have

j Pm.t/j2 D jevp Ad.e�lW /Yt j2

D
1

2

X
˛2ƒC�

�
el˛.W / � e�l˛.W /

�2
jY˛j

2
Bp

�
1

2

X
˛2ƒC�

��
e2l˛.W / � e�2l˛.W /

�
e�l˛.W /

�2
jY˛j

2
Bp

�
1

2

X
˛2ƒC�

�
e2l˛.W / � e�2l˛.W /

�2
e�2˛0l jY˛j

2
Bp

D e�2˛0l j Pq.t/j2

� e�2˛0l
h
e2�0t C

1

2
.e2�0t � 1/Œsinh.˛00.2l � t //�

�2
i
:
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The length of m is thenZ D

0

j Pm.t/jdt �
Z D

0

e�˛0l

r
e2�0t C

1

2
.e2�0t � 1/Œsinh.˛00.2l � t //��2dt

�

Z D

0

e�˛0l
p
e2�0D C 3e2�0Ddt � 2De�0D�˛0l ;

and k.D/ is the desired isometry.

It is possible to give a slightly stronger upper bound in Lemma 4.10, but the improve-
ment would be inconsequential when we apply this lemma in Section 5 while making the
already cumbersome statements even harder to read.

4.7. Strongly asymptotic geodesics and Weyl cones

The next estimate says that a point far along an .˛0; �/-regular geodesic ray gets arbitrar-
ily close to any given parallel set P.y�; �/. The following lemma is a quantified version of
[19, Lemma 2.39].

Lemma 4.11. Let q 2 X and let � 2 @X be .˛0; �/-regular. Let P D P.y�; �/ be a parallel
set with d.q; P / � D, and let p 2 P be the unique point on the horocycle H.q; �/. Then
for all l � 0 the geodesic rays p� and q� satisfy

d.p�.l/; q�.l// � De�0D�˛0l :

It is possible to prove (a slightly weaker variation of) Lemma 4.11 as a limiting case
of Lemma 4.10, or to construct a curve in N� in a similar way as we constructed a curve
inK in Lemma 4.10. However, we give a direct proof here using the generalized Iwasawa
decomposition (see Section 3.11).

Proof. We may assume that d.q; P / D D. By abuse of notation, let qW Œ0; D� ! X be
the unit-speed geodesic segment from q to its nearest point xq 2 P . Let G D N�A�K be
the generalized Iwasawa decomposition associated with p and � (see Section 3.11). Since
N� � A� ! X; .u; a/ 7! uap is a diffeomorphism, we may write q.s/ D u.s/a.s/p for
unique curves uW Œ0; D� ! N� and aW Œ0; D� ! A� . Note that u.D/ D 1 D a.0/, since
horocycles at � meet parallel sets P.y�; �/ in exactly one point.

Writing ct .s/ D C.s; t/ D u.s/a.t/p we have q.s/ D C.s; s/ D cs.s/, so

Pq.s0/ D
@

@C
sjs0;s0 C

@

@C
t js0;s0 D Pcs0.s0/C

@

@C
t js0;s0

and these vectors are orthogonal, so each has norm bounded by 1. The curve t 7! a.t/p

has speed bounded by 1 since

@

@C
t js0;t0 D du.s0/

d
dt
a.t/pjtDt0 ;
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so d.p; a.t/p/ � t � D. We write Pu.s/ D dlu.s/Us and use Lemmas 4.1, 4.4 and 4.9 to
obtain

j Pc0.s/j D jevpUsj D
1
p
2
jUsjBp �

1
p
2
e�0d.p;a.s/p/jUsjBa.s/p

D e�0d.p;a.s/p/j Pcs.s/j � e
�0s :

We next need to push this horocyclic curve towards � and check that the length
shrinks by at least e�˛0l . Let X 2 p be the unit vector so that q�.t/ D u.0/etXp. By
abuse of notation, define the curve rt .s/ D u.s/etXp from q�.t/ to p�.t/ and note that
rl .0/ D u.0/e

lXp D q�.l/ (see Figure 6). We have shown that the speed of r0 D c0 is at
most e�0s , and we may conclude after we show that

j Prt .s/j � e
�˛0t j Pr0.s/j

in the next paragraph.
Define curves U˛.s/ 2 g˛ by Pu.s/ D .dlu.s//1

P
˛2ƒC�

U˛.s/ and using Lemma 4.9
write

j Prt .s/jTrt .s/ X D

ˇ̌̌̌
evp Ad.e�tX /

X
˛2ƒC�

U˛.s/

ˇ̌̌̌
Tp X

D

ˇ̌̌̌
evp

X
˛2ƒC�

e�t˛.X/U˛.s/

ˇ̌̌̌
Tp X

D
1
p
2

ˇ̌̌̌ X
˛2ƒC�

e�t˛.X/U˛.s/

ˇ̌̌̌
Bp

�
1
p
2
e�˛0t

ˇ̌̌̌ X
˛2ƒC�

U˛.s/

ˇ̌̌̌
Bp

D e�˛0t j Pr0.s/jTc.s/ X:

Integrating this inequality bounds the length of rl by De�0D�˛0l and completes the
proof.

p D c0.D/
� 2 ost.�/

q D q.0/ D c0.0/

q D q.D/

q�.l/ D rl .0/

rl .D/

Figure 6. Strongly asymptotic geodesics get close at an exponential rate.
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It is possible to give a slightly stronger upper bound in Lemma 4.11, but the improve-
ment would be inconsequential when we apply this lemma in Section 5 while making the
already cumbersome statements even harder to read.

The following lemma is a quantified version of [19, Lemma 2.40].

Lemma 4.12. Let p;q;x2X with pq an .˛0; �/-regular geodesic segment and d.p;q/� l
and d.p; x/ � D. If

˛0 �
D.˛0 C �0/

l �D
� ˛00 and

1

˛00�0

D

l
�
�20
�20
;

then
d.q; V .x; st.�/; ˛00// � De

�0D�˛0l :

Proof. Let � 2 ost.�/ such that pq.C1/ D �. Let y be the unique point in the intersec-
tion P.Sx�; �/ \H.p; �/. The point q0 on the image of y� such that Ed.y; q0/ D Ed.p; q/
satisfies d.q; q0/�De�0D�˛0l by Lemma 4.11. We will prove the lemma by showing that
xq0 is .˛00; �/-regular.

Choose chambers �; � 0 so that yq0 2 V.y; �/ and xq0 2 V.x; � 0/. Then there is a
unique (restricted) isometry gWV.y; �/! V.x; � 0/ by Theorem 3.10 and

d.gq0; q0/ D j Ed.x; gq0/ � Ed.x; q0/j D j Ed.y; q0/ � Ed.x; q0/j � d.x; y/ � D:

Now both q0 and gq0 lie in the same Euclidean Weyl cone V.x; � 0/ with d.q0; gq0/ � D
and the geodesic segment from x to gq0 is length at least l and .˛0; �mod/-regular, so
Lemma 4.5 implies that xq0 is .˛00; �mod/-regular.

We conclude by showing that xq0 is � -regular. By Lemmas 4.7 and 4.8, we have that

∠�q0.x;y/�
1

˛00�0

D
l
�
�20
�20

, so ∠�q0.x; �/� � � ".�mod/ by Lemma 3.23. Since Sx� D Sq0� is

the unique antipode of � in the boundary of P.Sx�; �/, it follows that xq0 is � -regular.

4.8. Projecting midpoints to Weyl cones

We combine the previous Lemmas 4.10, 4.11 and 4.12 to show that a long regular geodesic
segment in a bounded neighborhood of a Weyl cone has its midpoint arbitrarily close to
the Weyl cone.

Corollary 4.13. Let p;q;x 2X with pq an .˛0; �mod/-regular geodesic segment with mid-
pointm, let � 2 Flag.�mod/ and let V DV.x; st.�//. Assume that d.p;x/�D;d.q;V /�D
and d.p; q/ � 2l . Suppose that

(1)

˛0 �
2D.˛0 C �0/

l � 2D
� ˛00 > 0;

(2)
1

2
.e4�0D � 1/Œsinh.˛00.2l � 2D//�

�2
� 3e4�0D; and
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(3)
2

˛00�0

D

l
�
�20
�20

then
d.m; V .x; st.�/; ˛00// � 5De

2�0D�˛0l :

Proof. Since d.q;V /�D and the Hausdorff distance from V to V.p; st.�// is at mostD,
we have d.q; V .p; st.�/// � 2D. We may now apply Lemma 4.10 together with assump-
tions (1) and (2) to see that there existsm0 2 V.p; st.�/;˛0/with d.m;m0/� 4De2�0D�˛0l

and d.p;m0/ D d.p;m/ � l .
By assumption (1) and (3), the bound d.m0; V .x; st.�/; ˛00// � De

�0D�˛0l follows
from Lemma 4.12. By the triangle inequality,

d.m; V .x; st.�/; ˛00// � d.m;m
0/C d.m0; V .x; st.�/; ˛00//

� 4De2�0D�˛0l CDe�0D�˛0l � 5De2�0D�˛0l :

4.9. Simplex displacement after a short flow

Recall that we have fixed a model type � D �mod spanning �mod (see Definition 3.14 and
Section 3.9).

Lemma 4.14. For any point p 2X, simplex � 2 Flag.�mod/ and transvection vectorX 2 p,
it holds that

sin
1

2
∠�p.�; e

X�/ �
�0

2
jX jBp :

Proof. Denote by f� the Busemann function associated with the ray from p to �.�/ and
write gradf� for its gradient (see Figure 7). Then

∠�p.�; e
X�/ D ∠p.gradf� ; gradfeX � /

and
sin

1

2
∠p.gradf� ; gradfeX � / D

1

2
dTp X.gradf� ; gradfeX � /:

Let Z 2 p be the unit vector so that evpZ D .gradf� /p . Decompose X D U C Y

according to the generalized Iwasawa decomposition gD kCa�Cn� so that flowing by Y
fixes � and therefore commutes with gradf� , and flowing by U fixes p (see Section 3.11).
We may write X D A C

P
˛2ƒC.�X˛ C #pX˛/ and U D

P
˛2ƒC.X˛ C #pX˛/, so
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p

�

eX�

gradf�
gradfetX �

Figure 7. Simplex displacement.

jKjBp � jX jBp . At p we have

d
dt
.gradfetX � /pjtD0 D

d
dt

��
etX

�
�
gradf�

�
p
jtD0

D .L�X�gradf� /p
D Œ�X�; gradf� �p
D Œ.�X C Y /�; gradf� �p
D Œ�U �; gradf� �p
D .L�U �gradf� /p

D lim
t!0

.detU /.gradf� /e�tUp � .gradf� /p
t

D lim
t!0

.detU /.gradf� /p � .gradf� /p
t

D lim
t!0

.detU /evpZ � evpZ
t

D lim
t!0

evp Ad.etU /Z � evpZ
t

D evpŒU;Z�g:

Since we assumed nothing about the relationship of X and � , we see that for all t 0 2 Œ0; 1�,ˇ̌̌ d
dt
.gradfetX � /pjtDt 0

ˇ̌̌
D

ˇ̌̌ d
dt
..etX /�gradfet 0X � /pjtD0

ˇ̌̌
� jŒU;Z�jBp � �0jU jBp � �0jX jBp ;
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where we used Lemma 4.3 in the second inequality. Finally, we obtain

jgradf� � gradfeX � jTp X �

Z 1

0

ˇ̌̌ d
dt

gradfetX �
ˇ̌̌
Tp X

dt � �0jX jBp ;

which completes the proof.

4.10. The distance to a parallel set bounds the �-angle

Corollary 4.15. Let p; q be points X and �; � 0 2 Flag.�mod/. If d.p; q/ � 2
�0

, then

j∠�p.�; �
0/ � ∠�q.�; �

0/j � 4 sin�1
��0
2
d.p; q/

�
:

Proof. Write q D e�Xp for X 2 p. We use that �-angles are G-invariant, the triangle
inequality for quadruples in .Flag.�mod/;∠

�
p/ and the simplex displacement estimate given

by Lemma 4.14:ˇ̌
∠�p.�; �

0/ � ∠�q.�; �
0/
ˇ̌
D
ˇ̌
∠�p.�; �

0/ � ∠�p.e
X�; eX� 0/

ˇ̌
� ∠�p.�; e

X�/C ∠�p.�
0; eX� 0/ � 4 sin�1

��0
2
jX jBp

�
:

Since jX jBp D d.p; q/, we are done.

We will often apply Corollary 4.15 in the following form. This result is a quantified
version of [19, Lemma 2.43 (i)].

Corollary 4.16. Let �C; �� be antipodal simplices in Flag.�mod/ and let P D P.��; �C/
be the parallel set joining them. Let p be any point in X such that d.p; P / � 2

�0
. Then

∠�p.��; �C/ � � � 4 sin�1
��0
2
d.p; P /

�
:

Proof. Since ∠�q.��; �C/ D � for any q 2 P , and in particular the projection of p to P ,
the assertion follows immediately from Corollary 4.15.

4.11. The �-angle bounds the distance to the parallel set

We continue to work with a fixed .�0; �mod/-spanning type � D �mod and from now on
assume that � is �-invariant (see the discussion after Theorem 3.10). The next lemma com-
plements Corollary 4.16: When the �-angle at q 2 X between simplices �˙ 2 Flag.�mod/

is near � , the point q is near the parallel set P.��; �C/. In the proof we use the fact that a
vector field X is Killing (if and) only if for all vector fields V;W on X, we have

XhV;W i D hŒX; V �;W i C hV; ŒX;W �i;

see [26, Proposition 9.25]. The result in the following lemma is a quantified version of
[19, Lemma 2.43 (ii)].
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Lemma 4.17. Let �˙ 2 Flag.�mod/ and let q 2 X. If ı � �20
2�20

and ∠�q.��; �C/ � � � ı,

then �˙ are antipodal and d.q; P.��; �C// � ı=�0.

Proof. Since ∠�q.��; �C/ � � �
�20
2�20

> � �
�20
�20

, Lemma 3.23 implies that the simplices
��; �C are antipodal.

Write �˙ for the unique ideal points �˙ of type �, and choose Busemann functions f˙
at �˙. For all p 2 X we have cos∠�p.��; �C/D cos∠p.��; �C/D hgradf�;gradfCip . Let
xq 2 P D P.��; �C/ be the nearest point on P to q, and let X 2 pxq such that c.t/ D etX xq
is the unit-speed geodesic from xq to q (see Figure 8). Either ∠q.��; xq/ �

�
2
�

ı
2

or
∠q.xq; �C/ �

�
2
�
ı
2

, so without loss of generality we may assume the second inequal-
ity holds. Let f W .�1;1/! Œ�1; 1� be defined by f .s/ D h�X�; gradfCic.s/ and note
that f .s/ D cos∠c.s/.xq; �C/ for all s > 0. We first show that f 0.s/ � 0 for all s, so f is
(weakly) monotonic.

At the point c.s/, we have X 2 pc.s/ since X is a transvection along c. The point c.s/
together with a fixed choice of chamber containing �C allows us to decompose X accord-
ing to the restricted root space decomposition. Suppressing the dependence on s, we have
X D A C

P
˛2ƒC �X˛ C #X˛ . Then for U D

P
˛2ƒC X˛ C #X˛ and the unit vector

Z 2 pc.s/ pointing to �C, we see that

f 0.s/ D X�h�X�; gradfCic.s/
D h�X�; ŒX�; gradfC�ic.s/
D h�X�; ŒU;Z��ic.s/

D B.�X;�ŒU;Z�g/

D B.AC
X
ˇ2ƒC

�Xˇ C #Xˇ ;
X
˛2ƒC

˛.Z/.X˛ � #X˛//

D

X
˛2ƒC

˛.Z/B.X˛ � #X˛; X˛ � #X˛/

� �0
X
˛2ƒC�

j�X˛ C #X˛j
2
B :

∠�q.��; �C/

q

P D P.��; �C/

�C 2 int.�C/�� 2 int.��/

q

∠c.s/.q; �C/

c.s/

Figure 8. The �-angle at q bounds the distance to P .
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The third line follows from the reasoning in the proof of Lemma 4.14. This calculation
shows that f 0.s/ � 0 for all s. Moreover, since X� is orthogonal to P.xq; �/ at s D 0, we
have 1 D jX�

xq j
2 D

P
˛2ƒC�

j�X˛ C #X˛j
2
B , so f 0.0/ � �0.

We next bound the norm of

f 00.s/ D X�.X�h�X�; gradfCi/c.s/
D h�X�; ŒX�; ŒX�; gradfC��ic.s/
D h�X�; ŒX�; ŒU �; gradfC��ic.s/
D h�X�; ŒU �; ŒX�; gradfC��ic.s/ � hX�; ŒŒU �; X��; gradfC�ic.s/
D h�X�; ŒU �; ŒU �; gradfC��ic.s/ C hX�; ŒU 0�; gradfC�ic.s/
D Bc.s/.�X; ŒU; ŒU;Z��/C Bc.s/.X; ŒU

0; Z�/

D Bc.s/.ŒU;X�; ŒU;Z�/C Bc.s/.ŒX;Z�; U
0/;

where ŒU;X� D U 0 CA0 CN 0 according to the KAN decomposition for c.s/ and �C. We
get the bound

jf 00.s/j D jBc.s/.ŒU;X�; ŒU;Z�/C Bc.s/.ŒX;Z�; U
0/j

� jBc.s/.ŒU;X�; ŒU;Z�/j C jBc.s/.ŒX;Z�; U
0/j

� jŒU;X�jBc.s/ jŒU;Z�jBc.s/ C jŒX;Z�jBc.s/ jU
0
jBc.s/

� 2�20

by applying Lemma 4.3.
Since f 0.0/ � �0 and jf 00.s/j � 2�20 , we have f .s/ � s�0 � �20s

2. Since f is mono-

tonic, if s � �0
2�20

then f .s/ � f
�
�0
2�20

�
�

�20
4�20

. On the other hand, if s � �0
2�20

we have

f .s/ � �0s � �
2
0

�
�0
2�20

�
s � 1

2
�0s. This implies

1

2
�0d.q; P / � f .d.q; P // D cos∠�q.xq; �C/ � cos

��
2
�
ı

2

�
D sin

� ı
2

�
�
ı

2

unless d.q; P / > �0
2�20

, which yields �20
2�20

< ı and contradicts our assumption.

5. Quantified local-to-global principle

In this section, we augment the theorems of [19, Section 7] with quantitative estimates. We
obtain a precise version of the local-to-global principle which allows us to perturb known
Anosov representations by a definite amount, producing new Anosov representations in
Section 6.

In rank 1, local quasigeodesics of sufficiently good quality are global quasigeodesics.
This naive version of the local-to-global principle fails in the Euclidean plane, hence in
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higher rank, so we must use Morse quasigeodesics as defined in [19]. The strategy here,
as in [19], is to show that local Morse quasigeodesics of sufficiently good quality have
straight and spaced midpoint sequences which are then globally Morse quasigeodesics.
First we give an explicit local criterion for a sequence to be a Morse quasigeodesic.

5.1. Sufficiently straight and spaced sequences are Morse quasigeodesics

We recall some definitions from [19]. A sequence of points .xn/ in X is .˛0; �mod; �/-
straight if each geodesic segment xnxnC1 is .˛0; �mod/-regular and if

∠�xn.xn�1; xnC1/ � � � �

for all n. The sequence is s-spaced if d.xn; xnC1/ � s for all n. A sequence .xn/ is said
to move �-away from a simplex � if for all n

∠�xn.�; xnC1/ � � � �:

In this paper, we are only interested in discrete sequences of points in X. For us, a
.c1; c2; c3; c4/-quasigeodesic is a sequence .xn/ (possibly finite, infinite or bi-infinite)
such that

1

c1
jN j � c2 � d.xn; xnCN / � jN jc3 C c4:

A sequence .xn/ is .c1; c2/-coarsely spaced (or lower-quasigeodesic) if

1

c1
jN j � c2 � d.xn; xnCN /:

Likewise, .xn/ is .c3; c4/-coarsely Lipschitz (or upper-quasigeodesic) if

d.xn; xnCN / � jN jc3 C c4:

For an .˛0; �mod/-regular segment pq, the .˛0; �mod/-diamond is the intersection

}˛0.p; q/ WD V.p; st.�.pq//; ˛0/ \ V.q; st.�.qp//; ˛0/:

A quasigeodesic is .˛0; �mod; D/-Morse if for all xn; xm there exists a diamond
} D }˛0.p; q/ such that d.p; xn/; d.q; xm/ � D and for all n � i � m, d.xi ;}/ � D
(see Figure 9). In rank 1, quasigeodesics are automatically Morse by the Morse lemma.
In higher-rank symmetric spaces of noncompact type, the following theorem allows us to
establish the Morse property for sufficiently straight and spaced sequences.

There are a few variations of the precise definition of Morse quasigeodesic in the
literature. The definition of Morse quasigeodesic here is the same as that given in [20,
Definition 5.50], except that we keep track of more constants in the definition of quasi-
geodesic. This is the same as [19, Definition 7.14] except that we work with sequences
rather than paths. Likewise, [17, Definition 6.13] defines paths to be Morse quasigeodesics
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p q

V.q; st.�.qp//; ˛0/ V .p; st.�.pq//; ˛0/

}˛0.p; q/

Figure 9. The .˛0; �mod/-diamond with endpoints p and q.

when they satisfy a similar and equivalent, but not identical, property as the one we have
given here (the constants will be different).

Define the constant
c0 WD

X
˛2ƒC�mod

dim g˛;

equal to the codimension of any parallel set of type �mod. The inequality c0 � 1 always
holds. Theorem 5.1 is a quantified version of [19, Theorem 7.2]. The constant �0 is
defined and computed in Section 3.3. Any choice of �mod has some regularity parame-
ter �0 D min¹˛.�mod/ j ˛ 2 �

C
�mod
º. For minimal �-invariant faces �mod these are computed

in Section 3.10.

Theorem 5.1. Fix ˛new < ˛0; ı and assume � is small and s is large. Precisely, we assume
that:

(1) 5� � �20
2�20

, so that we may apply the angle-to-distance estimate in Lemma 4.17;

(2)
��0

�0
e2�0�=�0�˛0s � sin

� �
4

�
so that we may apply the distance-to-angle estimate in Lemma 4.16;

(3)
5�

�0
� ı

to control the distance from the sequence to the parallel set;

(4)

˛0 �
2ı.˛0 C �0/

s � 2ı
� ˛new

so that certain projections are .˛new; �mod/-regular by Lemma 4.5;
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(5)

2� C sin�1
� 2ı

˛0�0s

�
< ".�/

so that certain simplices are antipodal (see Section 3.13).

Then every .˛0; �mod; �/-straight s-spaced sequence .xn/ in X is ı-close to a parallel
set P.��; �C/ such that

xn˙m 2 V.xn; st.�˙/; ˛new/

for all n and m � 1. It follows that the sequence is coarsely spaced:

d.xn; xn˙m/ � 2˛new�0c0.s � 2ı/m � 2ı;

and if .xn/ is coarsely Lipschitz it is then an .˛new; �mod; ı/-Morse quasigeodesic.

Our proof closely follows [19, Section 7], who prove the same theorem without the
explicit assumptions (1) through (5) and without the explicit estimates we obtained in
Section 4. Note that the resulting sequence will always be �0

2�20
-close to the parallel set,

even if ı is chosen larger than that quantity.

Proof. Step 1. Propagation, cf. [19, Lemma 7.6]. For sufficiently straight and spaced
sequences, the property of moving away from a simplex propagates along the sequence.

Assume that for some simplex � in Flag.�mod/ we have ∠�x0.�; x1/ � � � 2�. Since

2� <
�20
2�20

by assumption (1), Lemma 3.23 implies that the simplex �01 containing
x0x1.C1/ is antipodal to � and together they define a parallel set P D P.�; �01/ (see
Figure 10). Moreover, assumption (1) and our angle-to-distance estimate, Lemma 4.17,
imply that d.x0; P / � 2�

�0
. By Lemma 4.11, the geodesic ray from x0 through x1 gets

arbitrarily close to P and in particular

d.x1; P / �
2�

�0
e2�0�=�0�˛0s;

and by assumption (2) and the distance-to-angle estimate, Corollary 4.16, we have

∠�x1.�; �01/ � � � 4 sin�1
���0
�0
e2�0�=�0�˛0s

�
� � � �;

P D P.�; �01/

x0

�.x0x1/ 2 �01�

x1

Figure 10. “Moving away from �” propagates along the sequence.
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which then implies that ∠�x1.�;x0/D � �∠�x1.�; �01/� �. Straightness and an application
of the triangle inequality for .S.Tx1 X/;∠x1/ imply ∠�x1.�; x2/ � � � 2�. By induction,
we have that ∠�xn.�; xnC1/ � � � 2� for all n � 1.

Step 2. Extraction, cf. [19, Lemma 7.7]. We extract antipodal simplices that the sequence
moves away/towards. It follows that the sequence stays near the corresponding parallel
set.2

For each n, define the compact subsets C˙n � Flag.�mod/:

C˙n WD ¹�˙ j ∠
�
xn
.�˙; xn�1/ � � � 2�º:

Each of these is nonempty since ∠�xn.xn�1xn; xn�1/ D � implies �.xn�1xn/ 2 C˙n . By
Step 1,C�n �C

�
nC1 so there exists �� 2

T
nC
�
n . Similarly, there exists some �C 2

T
nC
C
n .

Straightness and the triangle inequality imply ∠�xn.��; �C/ � � � 5�, and by assump-

tion (1) we have 5� � �20
2�20

. Therefore, the angle-to-distance estimate, Lemma 4.17, implies
that �˙ are antipodal and define the parallel set P D P.��; �C/ and moreover

d.xn; P / �
5�

�0
� ı

with the last inequality from assumption (3).

Step 3. Morseness, cf. [19, Lemmas 7.9 and 7.10, Corollary 7.13]. We verify that the
sequence is a Morse quasigeodesic. We have already shown the angles are straight enough
to guarantee that the distance to P is bounded. We show that projected rays land in nested
cones; it follows that projecting further to the �-ray yields a monotonic sequence which
makes progress bounded away from zero.

By assumption (4), and Lemma 4.5, we have that the projections .xn/ to P are
.˛new; �mod/-regular. Let � be the ideal point corresponding to the ray xnxnC1 (see
Figure 11). Since the rays xn� and xn� are asymptotic, their Hausdorff distance is at
most d.xn; xn/ � ı, so xnC1 is at most 2ı from xn� . Then

∠�Tits.��; �/ � ∠�xn.��; �/ � ∠�xn.��; xnC1/ � ∠�xn.xnC1; �/

� � � 2� � ∠�xn.xnC1; �/:

By Lemmas 4.7 and 4.8, we may guarantee that

sin∠�xn.xnC1; �/ �
1

˛0�0

2ı

s
;

so by assumption (5) this Tits angle is within ".�/ of � , so �.��/ is antipodal to �.�/, but
the only simplex in @P antipodal to �� is �C, so �.�/ D �C and

∠�xn.��; xnC1/ D ∠�xn.��; �/ D �:

2The simplices are unique when the sequence is bi-infinite (see [19, Lemmas 5.15 and 7.19]), but this
theorem also applies when the sequence is finite or a Morse quasiray.
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P D P.��; �C/

xn

�

�.xnxnC1/xn xnC1

xnC1 �.xnxnC1/

Figure 11. The projection xnC1 lands in the Weyl cone V.xn; st.�C/; ˛new/.

We know that xnxnC1 is .˛new; �mod/-regular and ∠�xn.��; �/ D � and these two proper-
ties are equivalent to xnC1 2 V.xn; st.�C/; ˛new/. Using the convexity of Weyl cones and
induction, we get that for all n and all m � 1

xn˙m 2 V.xn; st.�˙/; ˛new/:

Finally, we want to show the sequence is coarsely spaced. The bound

d.xn; xnCm/ � 2˛new�0c0.s � 2ı/m � 2ı

will follow from
d.xn; xnCm/ � 2˛new�0c0.s � 2ı/m:

Indeed, the sequence .xn/ in P is .s � 2ı/-spaced and has a monotonic projection .xn/
to the geodesic line xn�.�C/ for any n by the nestedness of Weyl cones (see Figure 12).
By [8, Proposition 2.14.5],

B.�; Ed.xn; xnC1// D
X
˛2ƒ

˛.�/˛. Ed.xn; xnC1// dim g˛

� 2˛new�0d.xn; xnC1/
X
˛2ƒC�

dim g˛

D 2˛new�0c0d.xn; xnC1/:

It follows that the projection xnC1 lies at least 2˛new�0c0.s � 2ı/ along the ray xn�.

In the final step of the proof we used the regularity of the projections to obtain the
linear lower-quasigeodesic constant. When the angular radius of �mod with respect to � is
strictly less than �=2, the linear lower-quasigeodesic bound can be chosen independent
of the regularity. By [16, Lemma 5.8], this happens exactly when � is not contained in
a factor of a nontrivial spherical join decomposition of �mod. In particular, this is always
possible when X is irreducible.



J. M. Riestenberg 90

P D P.��; �C/

x1
x2

x3
x4

x1

x2

x3

x4

x2

x3 x4

Figure 12. Sufficiently straight and spaced sequences have monotonic projections to a geodesic ray.

Remark 5.2. To provide suitable auxiliary parameters to apply Theorem 5.1, we may first
choose � small enough to satisfy assumptions (1) and (3) subsequently, we can choose s
large enough to satisfy assumptions (2), (4) and (5). When we apply Theorem 5.1 in
Section 6, we will choose ı D �0

2�20
and � D �20

10�20
and then find a large enough parameter s

to satisfy the conditions of Theorem 5.1.

Remark 5.3. Theorem 5.1 can be modified to deal with arbitrary �mod-Weyl convex
subsets ‚; ‚0 as well. Let ˛0 D min¹˛.‚/ j ˛ 2 �C�mod

º and suppose that a ‚-regular
sequence satisfies the hypotheses of Theorem 5.1. If in addition it holds that ‚0 is con-
tained in the sin�1

�
2ı
s

�
-neighborhood of ‚, then Lemma 4.6 implies that the sequence is

.‚0; ı/-Morse.

5.2. Morse quasigeodesics have straight and spaced midpoints

In this section, we show that Morse quasigeodesics of sufficiently good quality have
straight and spaced midpoint sequences.

Definition 5.4 (Cf. [19, Definition 7.14]). For points p; q in X we let mid.p; q/ denote
the midpoint of the geodesic segment pq. A sequence .pn/

nDtmax
nDt0

in X satisfies the
.˛0; �mod; �; s;k/-quadruple condition if for all t1; t2; t3; t4 2 Œt0; tmax�\Z with t2 � t1; t3 �
t2; t4 � t3 � k the triple of midpoints

.mid.p1; p2/;mid.p2; p3/;mid.p3; p4//

is .˛0; �mod; �/-straight and s-spaced. (Here p.ti / D pi .)

Our next theorem says that sufficiently spaced points on Morse quasigeodesics have
straight and spaced midpoint sequences. In an effort to make Theorem 5.5 readable, we
have given up some control over the required spacing. For example, we use only one aux-
iliary parameter ˛aux to control the regularity as well as the crude estimate sin�1.x/ � �

2
x

for 0 � x � 1 (this follows from the fact that sin�1 is convex). The following result is a
quantified version of [19, Proposition 7.16].
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Theorem 5.5. Assume that k is large enough in terms of ˛new < ˛0; D; �; c1; c2 and s.
To make this precise, we use auxiliary constants l; ı; ˛aux and make the following
assumptions.

(1) Let k be large enough in terms of the quasigeodesic parameters so that if jN j � k
then d.xn; xnCN / � 2l . Precisely, let k � c1.2l C c2/. Our requirements on k
will manifest as requirements on l .

(2)

1 � 6 sinh.˛aux.2l � 2D//
2;

1

˛aux�0

D

l
�
�20
�20

and 5De2�0D�˛auxl � ı

so that midpoints are ı-close to diamonds by Lemma 4.13.

(3) We assume that 2˛aux
�0

�
l � ı �D

�
� s to ensure that the midpoints are appropri-

ately spaced.

(4) We use an auxiliary parameter ˛aux such that ˛new < ˛aux < ˛0,

˛0ı C 3˛0D C 2�0D

l � ı � 2D
� ˛0 � ˛aux

and
2�0ı.˛aux C �0/

2˛aux.l � ı �D/ � 2�0ı
� ˛aux � ˛new;

so that certain perturbations of regular segments are regular by Lemma 4.5.

(5) We assume that

1

˛aux�0

D

l
C

1

˛new�0

�0ı

2˛aux.l � ı �D/ � ı�0

C
1

2˛aux�0

ı

l �D
C

1

2˛new�0

ı

l � ı
C 2�0ı �

�

�

to ensure that the midpoint sequence is straight.

Every .˛0; �mod;D/-Morse .c1; c2/-lower-quasigeodesic satisfies the .˛new; �mod; �; s; k
0/-

quadruple condition for every k0 � k.

Note that in assumption (5), we have in particular assumed 2��0ı < �, so the ı which
appears in the proof is quite small. Our proof follows [19, Proposition 7.16] closely.

Proof. Let .qn/
nDtmax
nDt0

be an .˛0; �mod; D/-Morse quasigeodesic and let t1; t2; t3; t4 2
Œt0; tmax� \ Z such that t2 � t1; t3 � t2; t4 � t3 � k. We abbreviate pi WD qti and mi WD
mid.pi ; piC1/. We have d.pi ; piC1/ � 2l , d.mi ; pi / � l and d.mi ; piC1/ � l .

To show that the midpoint sequence is .˛new; �mod; �/-straight, it suffices to show
that the segment m2m1 is .˛new; �mod/-regular and that ∠�m2.p2; m1/ � �=2 under our
assumptions on k.
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The Morse property implies the existence of a diamond }˛0.x1; x3/ such that
d.x1; p1/; d.x3; p3/ � D and p2 is in the D-neighborhood of }˛0.x1; x3/. The diamond
spans a unique parallel set P D P.��; �C/. We denote by pi andmi the projections of pi
and mi to P .

We begin by observing that m1 is ı-close to P as determined by the midpoint pro-
jection estimate Lemma 4.13: We have d.p1; x1/ � D, d.p2; V .x1; ost.�.x1x3//// �
d.p2;}˛0.x1; x3// � D and p1p2 is .˛aux; �mod/-regular with d.p1; p2/ � 2l and l large
enough by assumptions (2) and (4):

d.m1; P / � 5De
2�0D�˛auxl � ı:

Next we look at the directions of the segments m2m1 and m2p2 and show that they
have the same � -direction. Let x2 be a point in }˛0.x1; x3/ within D of p2. We have

d.p2; V .p1; st.�C/; ˛0// � d.p2; V .p1; st.�C/; ˛0//

� d.p2; x2/C d.x2; V .p1; st.�C/; ˛0// � 2D

since projecting to a closed convex subset is distance-non-increasing. If c1 is the geodesic
from p1 through p2, the function t 7! d.c1.t/;V .p1; st.�C/;˛0// is convex, which implies
m1 is 2D-close to V.p1; st.�C/; ˛0/. We have d.m1; p1/ � l � ı �D, so by using the
point in V.p1; st.�C/; ˛0/ within 2D of m1 and Lemma 4.5 in the presence of assump-
tion (4), we obtain that m1 2 V.p1; st.�C/; ˛aux/. Similar arguments show that m1 2
V.p2; st.��/; ˛aux/, or equivalently (by using the geodesic symmetry at mid.p1; p2/) that
p2 2 V.m1; st.�C/; ˛aux/. By the nestedness of Weyl cones, p1 2 V.p2; st.��/; ˛aux/ and
p2 2 V.p1; st.�C/;˛aux/. Similarly,m2 2 V.p2; st.�C/;˛aux/ and p2 2 V.m2; st.��/;˛aux/

(see Figure 13). The convexity of Weyl cones implies that also m1 2 V.m2; st.��/; ˛aux/.
In particular, ∠�m2.p2; m1/ D 0.

It is convenient to show that the midpoint sequence is appropriately spaced at this point
in the proof, so that we can use the resulting estimate to control the regularity parameters
˛aux and ˛new and the straightness parameter �. The inclusions m1 2 V.p2; st.��/; ˛aux/

and m2 2 V.p2; st.�C/; ˛aux/ imply that d.m1; m2/ � ˛aux
�0
.d.m1; p2/ C d.p2; m1//.

P D P.��; �C/

p1 p2 p3

x1

x3

m1 m2

m1

p2
m2

Figure 13. The projections satisfy p2 2 V.m1; st.�C/; ˛aux/ and m2 2 V.p2; st.�C/; ˛aux/.
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Therefore by assumption (3), the midpoint sequence is appropriately spaced:

d.m1; m2/ � d.m1; m2/ �
˛aux

�0
.d.m1; p2/C d.p2; m1// �

2˛aux

�0
.l � ı �D/ � s:

Using the previous estimate, Lemma 4.5 and assumption (4), we see that m2m1 and
m2m1 are .˛new; �mod/-regular and m2p2 is .˛aux; �mod/-regular.

We may now demonstrate the bound ∠�m2.p2; m1/ � �=2. We have

∠�m2.p2; m1/ D j∠
�
m2
.p2; m1/ � ∠�m2.p2; m1/j

� j∠�m2.p2; m1/ � ∠�m2.p2; m1/j

C j∠�m2.p2; m1/ � ∠�m2
�
�.m2p2/; �.m2m1/

�
j

C j∠�m2
�
�.m2p2/; �.m2m1/

�
� ∠�m2.p2; m1/j:

By the triangle inequality for quadruples (in the metric space .Flag.�mod/;∠
�
m2/), we

haveˇ̌
∠�m2.p2; m1/ � ∠�m2.p2; m1/

ˇ̌
� ∠�m2.p2; p2/C ∠�m2.m1; m1/

D 2 sin�1
�1
2
dp.Z1; Z2/

�
C 2 sin�1

�1
2
dp.Z3; Z4/

�
;

where Z1; Z2; Z3; Z4 are the unit vectors at m2 in the directions �.m2p2/, �.m2p2/,
�.m2m1/, �.m2m1/, respectively. Let X1; X2; X3; X4 be the unit vectors at m2 which in
the directions p2; p2;m1;m1, respectively. Then by Lemma 4.8 and the angle comparison
to Euclidean space Lemma 4.7, we have

d.Z1; Z2/ �
1

˛aux�0
d.X1; X2/ D

2

˛aux�0
sin

1

2
∠m2.p2; p2/ �

1

˛aux�0

D

l
:

Similarly,

d.Z3; Z4/ �
1

˛new�0
d.X3; X4/ D

2

˛new�0
sin

1

2
∠m2.m1; m1/

�
1

˛new�0

�0ı

2˛aux.l � ı �D/ � ı�0
:

Again by the triangle inequality on .Flag.�mod/;∠
�
m2/,ˇ̌

∠�m2.p2; m1/ � ∠�m2.�.m2p2/; �.m2m1//
ˇ̌

� ∠�m2.p2; �.m2p2//C ∠�m2.m1; �.m2m1//:

Asymptotic geodesic rays are bounded by the distance of their tips, so if we let c2 be
the geodesic ray from m2 to m2p2.C1/ we may use Lemma 4.8 to obtain

sin
1

2
∠�m2.p2; �.m2p2// �

1

2˛aux�0

d.p2; im c2/

d.m2; p2/
�

1

2˛aux�0

ı

l �D
:
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Similarly, by considering the geodesic ray c3 from m2 through m1,

sin
1

2
∠�m2.m1; �.m2m1// �

1

2˛new�0

d.m1; im c3/

d.m2; m1/
�

1

2˛new�0

ı

l � ı
:

Write � D �.m2p2/ and � 0 D �.m2m1/. By the distance-to-angle estimate Corol-
lary 4.15,ˇ̌

∠�m2.�.m2p2/; �.m2m1// � ∠�m2.p2; m1/
ˇ̌

D
ˇ̌
∠�m2.�; �

0/ � ∠�m2.�; �
0/
ˇ̌
� 4 sin�1

��0
2
d.m2; m2/

�
� 4 sin�1

��0ı
2

�
:

Combining these estimates with the fact that sin�1.x/ � �
2
x for 0 � x � 1 yields

∠�m2.p2; m1/ �
�

2

h 1

˛aux�0

D

l
C

1

˛new�0

�0ı

2˛aux.l � ı �D/ � ı�0

C
1

2˛aux�0

ı

l �D
C

1

2˛new�0

ı

l � ı
C 2�0ı

i
�
�

2

by assumption (5). For similar reasons ∠�m2.p3; m3/ �
�
2

, so ∠�m2.m1; m3/ � � � � as
desired. We have already shown that m2m1 is .˛new; �mod/-regular and s-spaced. For
similar reasons the same holds for m2m3. This concludes the proof.

Remark 5.6. To provide suitable auxiliary parameters to apply Theorem 5.5, we may first
choose any ı < �

2��0
and any ˛new < ˛aux < ˛0. Then we may choose l large enough to

satisfy assumptions (2) through (5), which provides a suitable k via assumption (1). When
we apply Theorem 5.5 in Section 6, we set ı D �

20��0
and ˛aux D 0:8˛0 C 0:2˛new.

Remark 5.7. Theorem 5.5 can be modified to deal with arbitrary �mod-Weyl convex
subsets as well. Let ˛0 D min¹˛.‚/ j ˛ 2 �C�mod

º and suppose that .xn/ is a .‚; D/-
Morse .c1; c2/-lower-quasigeodesic. Let ‚aux and ‚new be �mod-Weyl convex subsets
with ˛aux D min¹˛.‚aux/ j ˛ 2 �

C
�mod
º and ˛new D min¹˛.‚new/ j ˛ 2 �

C
�mod
º such that

‚aux is contained in the sin�1
�

2D
l�ı�D

�
-neighborhood of ‚ and ‚new is contained in

the sin�1
�

�0ı
˛aux.l�ı�D/

�
-neighborhood of ‚. If in addition .xn/ satisfies the hypotheses

of Theorem 5.5, then Lemma 4.6 implies that it satisfies the .‚new; �; s; k
0/-quadruple

condition.

5.3. Local-to-global principle for Morse quasigeodesics

An L-local .˛0; �mod; D/-Morse .c1; c2; c3; c4/-quasigeodesic is a sequence .xn/
nDtmax
nDt0

in X such that for t0 � t1 � t2 � tmax with t2 � t1 � L, the subsequence .xn/
nDt2
nDt1

is an
.˛0; �mod;D/-Morse .c1; c2; c3; c4/-quasigeodesic.

We now come to the main result of the paper. The following result is a quantified
local-to-global principle for Morse quasigeodesics. Theorem 5.8 says that for any fixed
quality of Morse quasigeodesic, there exists a large enough scale so that a local Morse
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quasigeodesic of that scale and quality is a global Morse quasigeodesic. It is a quanti-
fied version of [19, Theorem 7.18], stated as Theorem 1.1 in the introduction. We will
apply Theorems 5.1 and 5.5. While these theorems have cumbersome statements, finding
auxiliary parameters which satisfy the required inequalities is easy, as we discussed in
Remarks 5.2 and 5.6, and as we demonstrate in the next section.

Theorem 5.8. For any ˛new < ˛0;D; c1; c2; c3; c4, there exists a scale L so that every L-
local .˛0; �mod;D/-Morse .c1; c2; c3; c4/-quasigeodesic in X is an .˛new; �mod;D

0/-Morse
.c01; c

0
2; c
0
3; c
0
4/-quasigeodesic. Precisely, L D 3k is large enough if auxiliary parameters

˛aux; k; ı; s; � satisfy:

(1) � is small enough and s is large enough to satisfy the conditions of Theorem 5.1
for ˛new < ˛aux; ı,

(2) k is large enough in terms of ˛aux < ˛0;D; �; c1; c2 and s to satisfy the conditions
of Theorem 5.5,

and the sequence has global Morse parameters

(1) D0 D c3k C 3
2
c4 C ı,

(2) .c01/
�1 D 2˛new�0c0.s � 2ı/k

�1,

(3) c02 D 2˛new�0c0.s � 2ı/C 2ı C 2c3k C 3c4,

(4) c03 D c3 C
c4
L

,

(5) c04 D c4.

Proof. Let .xn/nDC1nD�1 be an L-local .˛0; �mod; D/-Morse .c1; c2; c3; c4/-quasigeodesic.
Theorem 5.5 and assumption (2) imply that each subsequence .xn/

nDt0C3k
nDt0

satisfies
the .˛aux; �mod; �; s; k/-quadruple condition. In particular, the coarse midpoint sequence
mn D mid.xnk ; xnkCk/ is .˛0; �mod; �/-straight and s-spaced. By Theorem 5.1 and
assumption (1), the midpoint sequence .mn/ is an .˛new; �mod; ı/-Morse ..2˛new�0c0.s �

2ı//�1; 2ı/-lower-quasigeodesic. We now use the midpoint sequence as a coarse approx-
imation of the original sequence to show that .xn/ is a global Morse quasigeodesic.

The subsequences xnk ; xnkC1; : : : ; xnkCk�1; xnkCk are .c3; c4/-upper-quasigeodesics
(because L � k), so they lie in uniform neighborhoods of each mn: If jt � nkj � k

2
, then

d.mn; xt / � d.mn; xnk/C d.xnk ; xt /

�
d.xnk ; xnkCk/

2
C d.xnk ; xt /

�
c3

2
k C

c4

2
C c3

k

2
C c4 D c3k C

3

2
c4:

In particular, .xn/ is .˛new; �mod; D
0/-Morse for D0 D c3k C

3
2
c4 C ı. The midpoint

sequence is coarsely spaced:

d.mn; mnCN / � 2˛new�0c0.s � 2ı/jN j � 2ı;
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so the original sequence is also coarsely spaced:

d.xt ; xt 0/ � d.mn; mn0/ � d.mn; xt / � d.mn0 ; xt 0/

� 2˛new�0c0.s � 2ı/jn � n
0
j � 2ı � 2c3k � 3c4

� 2˛new�0c0.s � 2ı/k
�1
jt � t 0j � 2˛new�0c0.s � 2ı/ � 2ı � 2c3k � 3c4:

Finally, if a sequence is .c3; c4/-coarsely Lipschitz on intervals of lengthL, it then satisfies
d.xn; xnCN / � jN j.c3 C

c4
L
/C c4 and is .c3 C c4

L
; c4/-coarsely Lipschitz.

6. Applications of the local-to-global principle

In this section, we give two applications of the main result (Theorem 5.8). We describe
two explicit neighborhoods of Anosov representations in SL.3;R/, one for free groups and
another for closed surface groups. Each of them is constructed by perturbing a group act-
ing cocompactly on a convex subset of a totally geodesic hyperbolic plane in the associated
symmetric space.

We will need some further estimates in order to quantify these neighborhoods. First
we recall a standard proof of the Milnor–Schwarz lemma so that we may use the explicit
quasi-isometry constants it produces. We then give a version of the classical Morse lemma
that will be used in Section 6.3. In Section 6.1.3, we use elementary linear algebra to
control the perturbations of long words in a linear group that results from perturbing
the generators. We also relate the Frobenius norm on d � d matrices to the distance
in the symmetric space associated with SL.d;R/. In the final two sections, we apply
the local-to-global principle, Theorem 5.8, to describe explicit neighborhoods of Anosov
representations.

As one might expect, straightforward applications of Theorem 5.8 as we have done
here will yield only very small perturbations. This is partially explained by the following
geometric difficulty. The Morse condition implies that the image of each geodesic in the
Cayley graph fellow-travels a unique parallel set. After perturbing the representation, one
expects the image of the geodesic to fellow-travel a new parallel set. For geodesics through
the identity, our techniques merely bound the distance from the perturbed geodesic to its
previous parallel set, so for it to fellow-travel for a long time, the perturbation has to
be extremely small. If we could identify the new parallel set it fellow-travels and bound
the distance to that parallel set, we expect that the perturbation bounds would improve
significantly.

6.1. Preliminary estimates

6.1.1. The Milnor–Schwarz lemma. In this subsection, we state and prove a standard
result in geometric group theory called the Milnor–Schwarz lemma. It is a source of con-
crete quasi-isometry parameters for nice enough actions of finitely generated groups, such
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as those we consider in Sections 6.2 and 6.3. The proof given here is taken directly from
Sisto’s lecture notes [30].

Lemma 6.1 (Milnor–Schwarz lemma). LetG be a group acting properly discontinuously,
cocompactly and by isometries on a proper geodesic space X . Choose any p 2 X . Then
the group G has a finite generating set S so that the orbit map at p is a quasi-isometry
from G with the word metric induced by S . In fact,

wl.g/ � d.p; gp/C 1; and d.p; gp/ � max
s2S
¹d.p; sp/ºwl.g/:

Proof. Since the action is cocompact, there exists a constant R so that the G-translates of
BR.p/ coverX . Let S WD ¹g 2G j d.p;gp/� 2RC 1º. SinceX is proper, the closed ball
of radius RC 1

2
centered at p is compact, and since the action is properly discontinuous,

S D¹g 2G jBRC 1
2
.p/\BRC 1

2
.gp/º is finite. Now let g 2G. Choose a minimal geodesic

from p to gp, and subdivide it with points pi so that p D p0; p1; p2; : : : ; pn�1; pn D gp
occur monotonically and for i D 0; 1; 2; : : : ; n � 2, we have d.pi ; piC1/ D 1 and
d.pn�1; pn/ � 1. For each 1 � i � n � 1 choose gi 2 G so that d.gip; pi / � R and
set g0 D id and gn D g. Then for all 0 � i � n � 1, we have

d.gip; giC1p/ � d.gip; pi /C d.pi ; piC1/C d.piC1; giC1p/ � 2RC 1;

which implies that there exists siC1 2 S so that giC1D gisiC1. For all 1� i � n, it follows
that gi D s1s2s3 � � � si . Therefore, g can be written as a product of n elements of S , with
n � 1 � d.p; gp/. It follows that S is a finite generating set for G and the word length
of g with respect to S is bounded above by d.p; gp/C 1.

We have shown that S is a finite generating set forG. Write g D g1 � � �gn with gi 2 S .
Then

d.p; g1g2g3 � � �gnp/ � d.p; g1 � � �gn�1p/C d.g1 � � �gn�1p; g1 � � �gn�1gnp/

D d.p; g1 � � �gn�1p/C d.p; gnp/

� d.p; g1p/C � � � C d.p; gnp/

� max
s2S
¹d.p; sp/ºn;

so the orbit map at p is maxs2S¹d.p; sp/º-Lipschitz with respect to the generating set S .
Note that by the definition of S , maxs2S¹d.p; sp/º � 2RC 1.

The previous lemma provides quasi-isometry constants in terms of only the constantR
so that the image of an R-ball covers the quotient. In return, we give up control over the
generating set. In particular, when we apply Lemma 6.1 to an action of a closed surface
group on the hyperbolic plane in Section 6.3, we will give quasi-isometry parameters with
a nonstandard generating set for the Cayley graph. We will need to control the Frobenius
norm of the matrices in our generating set by using Lemma 6.7.
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6.1.2. The classical Morse lemma. In Section 6.3, we will use the following version of
the classical Morse lemma to provide Morse quasi-isometry parameters for the orbit map
of a surface group acting on a copy of the hyperbolic plane. The following proof is adapted
from Bridson–Haefliger [5].

Theorem 6.2 (Classical Morse lemma, cf. [5, Theorem III.H.1.7]). Let D0 be an upper
bound for

¹D j D � 1 � ıjlog2.2D C 2M
2l C 6DMl C aM/jº

and set R D D0 C lMD0 C lM 2 C
a
2

. Then:
If .yi /iDNiD0 is a sequence in a ı-hyperbolic geodesic space Y with

d.yi ; yj / �M jj � i j and jj � i j � ld.yi ; yj /C a

then for all 0 � n � N , the distance from yn to a geodesic segment from y0 to yN is
bounded above by R.

Proof. Let cW Œ0; N � ! Y be the piecewise geodesic curve with c.i/ D yi . Let D be
minimal so that the closed D-neighborhood of im c covers the geodesic from p D y0 to
q D yN . Choose a point x0 on pq realizing D, and choose y; z on pq at distance 2D
from x0 so that y; x0; z occurs in order (if x0 is too close to p, use p for y, and likewise
for z). Choose y0 on im c within D of y, and choose z0 similarly. Choose i; j so that y0 is
on yiyiC1 and z0 is on yj�1yj . If c.t/ D y0 and c.t 0/ D z0, then the length of c restricted
to the Œt; t 0� is at most

length.cjŒt;t 0�/ � length.cjŒi;j �/ �M jj � i j �MŒld.yi ; yj /C a�:

Also,

d.yi ; yj / � d.yi ; y
0/C d.y0; y/C d.y; z/C d.z; z0/C d.z0; yj / � 2M C 6D;

and it follows that the curve c0 formed by following a geodesic segment from y to y0 then
along c to z0 then along a geodesic segment to z has length at most 2D CMŒl.2M C

6D/ C a�. Proposition III.H.1.6 in [5] bounds D in terms of the length of c0 and ı. In
particular,

D � 1 � ıjlog2.2D C 2M
2l C 6DMl C aM/j;

which implies an upper bound D0 on D.
Now suppose that .yn/nDb

0

nDa0 is a maximal (consecutive) subsequence outside the D0-
neighborhood of pq. There exist s; s0 such that 0 � s � a0 and b0 � s0 � N within D0 of
the same point on pq, so d.c.s/; c.s0// � 2D0. As before, by choosing m; n so that c.s/
lies on ymymC1 and c.s0/ lies on ynynC1, we have that

length.cjŒs;s0�/ � length.cjŒm;n�/ �M jm � nj �M.ld.ym; yn/C a/
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and

d.ym; yn/ � d.ym; c.s//C d.c.s/; c.s
0//C d.c.s0/; yn/ � 2M C 2D0;

so we obtain
length cjŒs;s0� �MŒl.2D0 C 2M/C a�:

It follows that R D D0 CMŒl.D0 CM/C a
2
� is an upper bound for the distance from

any yn to pq.

6.1.3. Matrix estimates. In this subsection, we establish a few elementary estimates
related to the symmetric space associated with SL.d;R/. We will control perturbations of
long words in a generating set in terms of the Frobenius norm of the generators. As noted
above, we use a nonstandard generating set for the closed surface group, so we also pre-
pare to control the Frobenius norm of the generators in that case. In Sections 6.2 and 6.3,
we combine these estimates with the local-to-global principle Theorem 5.8 to guaran-
tee that the Morse subgroups under consideration remain Morse after certain explicit
perturbations.

In the rest of the paper, we identify the symmetric space associated with SL.d;R/
with the space of real, symmetric, positive-definite matrices of determinant 1. We remind
the reader that we take the Riemannian metric to be induced by the Killing form, so
at the identity matrix, the Riemannian metric is 2d times the Frobenius inner product
hX; Y iFr D trace.XT Y /.

Lemma 6.3. Let j�j be any submultiplicative norm on d � d matrices. Let w D
g1g2 � � �gk�1gk be a product of k matrices, and let w0 D .g1 C �1/.g2 C �2/ � � � .gk�1 C
�k�1/.gk C �k/ be a product of perturbed matrices. Suppose that for all 1 � i � k,
jgi j � A and j�i j � �. If k � 3 and k�1

2
�
A
� 1, then jw0 � wj � 2kAk�1�.

Proof. We have

jw0 � wj D

ˇ̌̌̌
ˇ kY
iD1

.gi C �i / �

kY
iD1

gi

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ jDkX
1�i1�����ij�k

jD1

g1g2 � � �gi1�1�i1gi1C1 � � �gij�1�ij gijC1 � � �gk

ˇ̌̌̌
ˇ

� kAk�1� C

�
k

2

�
Ak�2�2 C � � � C

�
k

j

�
Ak�j �j C � � � C �k

D Ak
h�
1C

�

A

�k
� 1

i
� 2kAk�1�;

where the last line follows from the Taylor approximation .1 C �
A
/k � 1 � k �

A
C

k.k�1/
2

�
�
A

�2, valid when �
A
� 1.
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We next relate the Riemannian distance in X to the Bp-norm on the space of matrices.
Recall that when p is the identity matrix, Bp is 2d times the Frobenius inner product. We
let Bp be defined on all of gl.d;R/ as 2d times the Frobenius inner product.

Lemma 6.4. Let g 2 SL.d;R/ and p 2 X be the identity matrix. Then

dX.gp; p/ �
p
d.d � 1/jg � 1jBp :

Proof. K D SO.d/ acts on .gl.d;R/; Bp/ by isometries on the left and the right, so
jg � 1jBp D je

A � 1jBp where

A D

0B@�1 : : :

�d

1CA
is the Cartan projection of g. That is, A is the unique diagonal matrix with �1 � �2 �
� � � � �d and �1 C � � � C �d D 0 such that g D keAk0 for some k; k0 2 SO.d/. We have
jAjBp D d.gp; p/. Since ��d � .d � 1/�1 and �21 � .e

�1 � 1/2,

d.gp; p/2 D jAj2Bp D 2d

dX
iD1

�2i

� 2d2.d � 1/2�21

� 2d2.d � 1/2
dX
iD1

.e�i � 1/2

D d.d � 1/2jeA � 1j2Bp

D d.d � 1/2jg � 1j2Bp :

In the following corollary, we control the distance between �0./p and �./p in terms
of the word length of  and the distance between �0.i / and �.i / for a generating set ¹iº.

Corollary 6.5. Let � be a group with symmetric generating set S D ¹1; : : : ; nº and
let � and �0 be two representations of � into SL.d;R/. Assume that

(1) for i 2 ¹1; : : : ; nº, j�.i /jFr � A and j�.i / � �0.i /jFr � �; and

(2) k � 3 and k�1
2

�
A
� 1.

Then for any  2� with dS .;1/� k, it holds that

dX.�
0./p; �./p/�

p
8d.d � 1/kA2k�1�:

Proof. Let gD �./ and g0D �0./ for dS .;1/� k. Since the Frobenius norm is submul-
tiplicative, we have jg�1jFr � A

k and moreover because of the assumptions, Lemma 6.3
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applies and we obtain jg � g0jFr � 2kA
k�1�. We see that

jg�1g0 � 1jFr D jg
�1.g0 � g/jFr

� jg�1jFrjg
0
� gjFr

� Akjg0 � gjFr � 2kA
2k�1�:

Then by applying Lemma 6.4 to g�1g0, we obtain

d.g0p; gp/ D d.g�1g0p; p/ �
p
d.d � 1/jg�1g0 � 1jBp �

p
8d.d � 1/kA2k�1�:

In the next lemma we give a precise, quantitative version of the following statement:
If a representation � induces a Morse quasi-isometric embedding, then its perturbation �0

induces a local Morse quasi-isometric embedding.

Lemma 6.6. Let �; �0W� ! SL.d;R/ be representations and let S be a symmetric gener-
ating set for � . If d.�./p; �0./p/ � � for all dS .; 1/ � k and if the orbit map of � at p
is an .˛0; �mod; D/-Morse .c1; c2; c3; c4/-quasi-isometric embedding then the orbit map
of �0 at p is a 2k-local .˛0; �mod; D C �/-Morse .c1; c2 C �; c3; c4 C �/-quasi-isometric
embedding.

Proof. If d.�./p; �0./p/ � � for all dS .; 1/ � k, then for every geodesic .n/nDknD�k
in

� of length 2k,
d.�0.n/p; �

0.0/p/ D d.�
0.�10 /�0.n/p; p/

is within � of d.�.n/p; �.0/p/. Additionally, if .�.n/p/ is within D of }˛0.q; r/,
then .�0.n/p/ is within D C � of }˛0.�

0.0/�.
�1
0 /q; �0.0/�.

�1
0 /r/. In particular,

if � induces an .˛0; �mod; D/-Morse .c1; c2; c3; c4/-quasi-isometric embedding, then �0

induces a 2k-local .˛0; �mod; D C �/-Morse .c1; c2 C �; c3; c4 C �/-quasi-isometric
embedding.

When we apply the Milnor–Schwarz lemma we use the generating set S D ¹s 2 � j
d.p; sp/ � 2R C 1º, and when we apply Corollary 6.5 we need to bound the size of the
generating set. The following lemma helps us do just that.

Lemma 6.7. Let p be the identity matrix in Xd and let g 2 SL.d;R/ such that d.p;gp/�
2RC 1. Let j�jFr denote the Frobenius norm. Then

jgjFr � exp
�2RC 1
p
2d

�
:

Proof. Combine

jgj2Fr D
ˇ̌
ggT

ˇ̌
Fr D

ˇ̌
exp logggT

ˇ̌
Fr � exp

ˇ̌
logggT

ˇ̌
Fr
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and r
d

2

ˇ̌
logggT

ˇ̌
Fr D

1

2

ˇ̌
logggT

ˇ̌
Bp
D

ˇ̌̌
log

q
ggT

ˇ̌̌
Bp
D d.p; gp/ � 2RC 1

to obtain
jgjFr � exp

1

2

ˇ̌
logggT

ˇ̌
Fr � exp

�2RC 1
p
2d

�
:

6.2. An explicit neighborhood of Anosov free groups

In this subsection, we obtain an explicit nonempty neighborhood of Anosov free groups.
Let �1 be the subgroup of SL.3;R/ generated by

g D

24et 0 0

0 1 0

0 0 e�t

35 ; h D

24cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

35 :
As in Section 6.1.3 we identify the associated symmetric space with the space of real,

symmetric, positive-definite matrices of determinant 1. Let p 2 X be the identity matrix.
Observe that �1 is a subgroup of a reducible copy of SL.2;R/ � SL.3;R/ preserving a
copy of H2

�X containing p of curvature �1
3

(see Section 3.4). We will directly estimate
the Morse quasi-isometry parameters of the orbit map at p on �1.

The points p; gp; hp form an isosceles right triangle:

d.p; gp/ D

ˇ̌̌̌
ˇ̌
24t 0 0

0 0 0

0 0 �t

35ˇ̌̌̌ˇ̌
Bp

D 2
p
3t D

ˇ̌̌̌
ˇ̌
240 0 t

0 0 0

t 0 0

35ˇ̌̌̌ˇ̌
Bp

D d.p; hp/:

Write T D tanh.t/. If
p
2T > 1, then �1 acts cocompactly on a closed convex sub-

set C of H2, with a Dirichlet domain Cp (see Figure 14). The domain Cp is an octagon
with geodesic boundary and neighbors gCp; g�1Cp; hCp; h�1Cp in C . Since C is convex,
the minimum distance between any pair of neighbors is bounded below by the length of
an arc in Cp joining non-adjacent edges. This has lower bound

c�11 D
p
3min

²
t;
1

2
log

�
T 2 C

p
2T 2 � 1

T 2 �
p
2T 2 � 1

�
;
1

2
log

�
1C 2T

p
1 � T 2

1 � 2T
p
1 � T 2

�³
:

We also set c3 D 2
p
3t . The orbit map is a .c1; 0; c3; 0/ quasi-isometry. Set R D

p
3 tanh�1

�p
T �2 � 2C 2T 2

�
. Then C is within the R-neighborhood of �1 � p and the

diameter of Cp is 2R. The orbit map is R-Morse.
We are now in position to prove Theorem 1.2.

Theorem 1.2. Let �1 be the subgroup of SL.3;R/ generated by

g D

24et 0 0

0 1 0

0 0 e�t

35 ; h D

24cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

35 ;
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p
gpg�1p

hp

h�1p

Cp

Figure 14. The Dirichlet domain Cp in the projective model for H2.

with tanh t D 0:75. If � 01 is generated by g0; h0 where max¹jg � g0jFr; jh � h
0jFrº �

10�15;309, then � 01 is Anosov.

Before proceeding to the proof, we discuss how to choose suitable parameters in the
application of Theorem 5.8. There are a number of auxiliary parameters appearing in
Theorems 5.1 and 5.5. We will choose these auxiliary parameters in the same way in
Section 6.3. Because of the large number of auxiliary parameters, it is not clear how to
obtain optimal estimates, even when treating Theorems 5.1, 5.5 and 5.8 as black boxes.
The choices we make here are simply the result of selecting auxiliary parameters in a few
different ways and choosing the best result (smallest k) we achieved. We used a Math-
ematica notebook to verify the system of inequalities for each theorem. Recall that the
constants �0 and �0 have been computed in Examples 3.5 and 3.21.

First we choose auxiliary parameters ı D �0
2�20

and ˛aux WD 0:5˛0 C 0:5˛new. We apply

Theorem 5.1 with ˛aux < ˛0 and ı D �0
2�20

by setting � D �20
10�20

and then choosing s large
enough to satisfy the assumptions of the theorem. In Theorem 5.5, for any choice of
auxiliary parameters ıaux <

�
2��0

and any ˛aux < ˛
0
aux < ˛0, there is a large enough aux-

iliary parameter l to satisfy the assumptions. We select ıaux WD 0:1
�

2��0
D 0:1

�20
20��30

and

˛0aux WD 0:8˛0 C 0:2˛aux.
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Proof. As discussed earlier in this section, the orbit map of �1 is a .�0; �mod; 3:18/-
Morse ..1:28/�1; 0; 3:38; 0/-quasi-isometric embedding. We relax the parameters, ask-
ing the perturbation to induce a 33;602-local .�0; �mod; 3:28/-Morse .1; 0:1; 3:38; 0:1/-
quasi-isometric embedding. According to Theorem 5.8, such an orbit map is a global
.0:95�0I �modI 37;858/-Morse .91I 75;838I 3:38I 0/-quasi-isometric embedding.

If g0; h0 2 SL.3;R/ satisfy jg � g0jFr; jh� h
0jFr � 10

�15;309, then for d�1.w;1/� k D
16;801 we have d.�.w/p; �0.w/p/ � 0:1 by Corollary 6.5, so �0 also induces a 33;602-
local .�0; �mod; 3:28/-Morse .1; 0:1; 3:38; 0:1/-quasi-isometric embedding and therefore
its orbit map at p is a (global) Morse quasi-isometric embedding. In particular, g0; h0

generate an Anosov subgroup of SL.3;R/ and our proof of Theorem 1.2 is complete.

6.3. An explicit neighborhood of Anosov surface groups

Let �2 be the subgroup of SL.3;R/ generated by

S D

8<:
24 cos � 0 sin �

0 1 0

� sin � 0 cos �

3524� 0 0

0 1 0

0 0 ��1

3524cos � 0 � sin �
0 1 0

sin � 0 cos �

35ˇ̌̌̌ˇ� 2 °0; �8 ; �4 ; 3�8 ±
9=;

for log � D cosh�1.cot �
8
/. This group acts cocompactly on a complete, totally geodesic

submanifold of X of constant curvature�1
3

, see Section 3.4, with quotient a closed surface
of genus 2. A fundamental domain for this action is given by a regular octagon in H2 with
center p, the identity matrix in X. This octagon decomposes into 16 triangles with vertices
at the center, the vertices of the octagon and the midpoints of the edges. These triangles
are isosceles with angles �

2
; �
8
; �
8

. By the hyperbolic law of cosines (for curvature �1
3

),

cos  D � cos˛ cosˇ C sin˛ sinˇ cosh
� 1
p
3
c
�
;

we see that the distance from the center p to the vertex isRD
p
3cosh�1

�
cot2 �

8

�
. The �2

translates ofBR.p/ cover H2, so by the Milnor–Schwarz lemma the orbit map orbpW�2!
H2 is a .1; 1; 2RC 1;0/-quasi-isometric embedding. One checks that 2RC 1� 9:5. Here,
we use the symmetric generating set S 0 D ¹ 2 �2 j d.p;p/� 9:5º. Note that the S 0 here
agrees with the one in the introduction because d.p; p/ D

p
6jlog  jFr. Every geodesic

in this copy of H2 is
�
1

2
p
3
; �mod

�
-regular in X. Representations of this form were studied

by Barbot in [2].
We may now prove the following.

Theorem 1.3. If �W�2 ! SL.3;R/ is a representation satisfying

j�.s/ � sjFr � 10
�3;698;433

for all s 2 S 0, then � is Anosov.
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Proof. From the classical Morse lemma (Theorem 6.2), we get a Morse constant of
D D 163. Thus, the orbit map at p is a

�
1

2
p
3
; �mod; 163

�
-Morse .1; 1; 9:5; 0/-quasi-

isometric embedding. We relax the additive parameters by 10 and ask a perturbation to
be a .2:2 � 106/-local

�
1

2
p
3
; �mod; 173

�
-Morse .1; 11; 9:5; 10/-quasi-isometric embed-

ding. By Theorem 5.8, such an orbit map is a global
�
1

4
p
3
; �mod; 6:8 � 10

6
�
-Morse

.108;214I 1:4 � 107I 9:5I 0/-quasi-isometric embedding.
If �W �2 ! SL.3;R/ is another representation such that j�.s/ � sjFr � 10

�3;698;433,
then for dS 0.w; 1/ � k D 1:1 � 106 we have dX.�.w/p; wp/ � 10 by Corollary 6.5
so � also induces a .2:2 � 106/-local

�
1

2
p
3
;�mod; 173

�
-Morse .1; 11; 9:5; 10/-quasi-

isometric embedding. Therefore, the orbit map is a global
�
1

4
p
3
; �mod; 6:8 � 10

6
�
-Morse

.108;214I1:4� 107I9:5I0/-quasi-isometric embedding. In particular, � is Anosov and our
proof of Theorem 1.3 is complete.
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