Corrigendum to "The Ellis semigroup of bijective substitutions"

Johannes Kellendonk and Reem Yassawi

Abstract. This corrigendum corrects the statement and proof of Theorem 3.6 of [Groups Geom. Dyn. 16, 29–73 (2022)].

1. Error in the proof of Theorem 3.6

The proof of Theorem 3.6 of [1] contains an error. More precisely, the phrase "Hence $f := \Phi_{y_0}^y(g)$ acts non-trivially only on the fibres of the *T*-orbit of *y*." is wrong. Instead, it should read "Hence $f := \Phi_{y_0}^y(g)$ acts non-trivially on the fibres of the *T*-orbit of *y*, it acts as the idempotent *e* on the fibres of the *T*-orbit of *y*₀, and trivially on all other fibres". When this is taken into account, the rest of the proof shows the following weaker version of Theorem 3.6.

Theorem 1.1 (Replacement for [1, Theorem 3.6]). Let (X, σ) be a minimal unique singular orbit system. Then $\text{Cov}_{\mathcal{T}}e$ is a subsemigroup of $E^{\text{fib}}e$.

As a consequence, several results of the remaining part of [1, Section 3] have to be formulated with weaker conditions and weaker statements.

Corollary 1.2 (Replacement for [1, Corollary 3.7]). Let (X, σ) be a minimal unique singular orbit system. If $E_{y_0}^{\text{fib}}e = \mathcal{T}_{y_0}e$, then $E^{\text{fib}}e = \text{Cov} e$, and \mathcal{M}^{fib} is topologically isomorphic to $\bigcup_{q \in J(e)} \text{Cov} q$. Here, J(e) denotes the idempotents which are in the same minimal right ideal as e.

Corollary 1.3 (Replacement for [1, Corollary 3.11]). Consider a unique singular orbit system with finite minimal rank. Let $y_0 \in Y$ be singular. The restriction \mathcal{T}_{y_0} of \mathcal{T} to $\pi^{-1}(y_0)$ contains all idempotents of $E_{y_0}^{\text{fib}}$. In particular, if $E_{y_0}^{\text{fib}}e$ is generated by its idempotents, then $E_{y_0}^{\text{fib}}e = \mathcal{T}_{y_0}e$, and consequently,

$$\mathcal{M}^{\mathrm{fib}} \cong \mathcal{M}_{y_0}^{\mathrm{fib}} \times \prod_{\substack{[y] \in Y/T \\ y \neq y_0}} G_{\pi}.$$

Mathematics Subject Classification 2020: 37B10 (primary); 20M10, 54H15 (secondary).

This is a topological isomorphism if we equip the right-hand side with the product topology.

Proposition 3.13 and Corollary 3.14 of [1] remain true even under the weaker assumption that $E^{\text{fib}}e = \text{Cov} e$ (in place of $E^{\text{fib}} = \text{Cov}$).

The remaining results of the paper are not affected by the above modifications.

2. Typos

The first sentence of the proof of Theorem 4.17 of [1] should read $f_z \in G_{\theta}$ (instead of $f_z \in I_{\theta}$). That $f_z \tilde{\Gamma}_{\theta}$ is independent of z can be seen in the following way: We see from the proof of Lemma 4.16 of [1] that σ_z^m is an element of I_{θ}^m ; it depends on z but since I_{θ}^m is a single class modulo $\tilde{\Gamma}_{\theta}$, we have $\sigma_z^m \tilde{\Gamma}_{\theta} = \sigma_{z'}^m \tilde{\Gamma}_{\theta}$. Furthermore, for any $f \in E(X_{\theta}, \mathbb{Z}^+)$ and z, z', there is m such that $\sigma^m(x) = f(x)$ for $x \in \pi^{-1}(z) \cup \pi^{-1}(z')$. Hence, $f_z \tilde{\Gamma}_{\theta} = \sigma_z^m \tilde{\Gamma}_{\theta} = \sigma_{z'}^m \tilde{\Gamma}_{\theta}$.

In [1, Example 6.3], where we describe the set $I_{\theta} = \{\theta_1, \rho\}$, it should read $\rho = \theta_2 \theta_1^{-1}$ in place of $\rho = \theta_1 \theta_2$.

Reference

 J. Kellendonk and R. Yassawi, The Ellis semigroup of bijective substitutions. Groups Geom. Dyn. 16 (2022), no. 1, 29–73 Zbl 1498.37017 MR 4424962

Received 12 November 2023.

Johannes Kellendonk

Institut Camille Jordan, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France; kellendonk@math.univ-lyon1.fr

Reem Yassawi

School of Mathematical Sciences, Queen Mary University of London, Mile End Rd, London E1 4NS, UK; r.yassawi@qmul.ac.uk