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A constructive proof that many groups with non-torsion
2-cohomology are not matricially stable

Forrest Glebe

Abstract. A discrete group is matricially stable if every function from the group to a complex uni-
tary group that is “almost multiplicative” in the point-operator norm topology is “close” to a genuine
unitary representation. It follows from a recent result due to Dadarlat that all amenable groups with
non-torsion integral 2-cohomology are not matricially stable, but the proof does not lead to explicit
examples of asymptotic representations that are not perturbable to genuine representations. The
purpose of this paper is to give an explicit formula, in terms of cohomological data, for asymptotic
representations that are not perturbable to genuine representations for a class of groups that contains
all finitely generated groups with a non-torsion 2-cohomology class that corresponds to a central
extension where the middle group is residually finite. This class includes polycyclic groups with
non-torsion 2-cohomology.

1. Introduction

An asymptotic representation of a discrete group � is a sequence of functions �n W �
! U.kn/ so that for all g;h 2 � , we have k�n.gh/� �n.g/�n.h/k! 0 as n goes to infin-
ity, where k � k is the operator norm. We say an asymptotic representation is perturbable
to a genuine representation if there is a sequence of representations z�n W � ! U.kn/ so
that for all g 2 � , we have k�n.g/� z�n.g/k ! 0 as n goes to infinity. Recall that a count-
able discrete group, � , is matricially stable if every asymptotic representation of � is
perturbable to a genuine representation of � [5].

In [21] Voiculescu shows that Z2 is not matricially stable by constructing an explicit
sequence of pairs of unitaries that commute asymptotically in the operator norm, but
remain far from pairs of unitaries that commute. In [14] Kazhdan independently uses
the same sequence of pairs of unitaries to show that a particular surface group is not Ulam
stable, where Ulam stability is defined similarly to matricial stability, but the pointwise
convergence is replaced by uniform convergence. Kazhdan also connects his argument to
the 2-cohomology of the group. In [5] Eilers, Shulman, and Sørensen give explicit asymp-
totic representations that are not perturbable to genuine representations for non-cyclic
torsion-free finitely generated 2-step nilpotent groups and several other groups.
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In [3] Dadarlat shows that a large class of countable discrete groups with non-vanish
ing rational even cohomology are not matricially stable, including amenable and, hence,
polycyclic groups with non-vanishing rational even cohomology. In [4] he connects this
obstruction on the level of 2-cohomology to the “winding number argument” used by
Kazhdan. However, the proof in [3] uses Voiculescu’s theorem, so it cannot lead to an
explicit construction of an asymptotic representation that is not perturbable to a genuine
representation. In this paper we will give an alternate proof that a group with a 2-homology
class that pairs non-trivially with a 2-cohomology class x satisfying an additional condi-
tion is not matricially stable, and give a formula, in terms of cohomological data. The
following result is what we aim to prove:

Theorem 1.1. Suppose that � is a countable discrete group and x 2H 2.�IZ/ is a coho-
mology class represented as the central extension

e Z z� � e:
�

If x is not in the kernel of the map h W H 2.�IZ/! Hom.H2.�IZ/;Z/ induced by the
Kronecker pairing and there is a sequence of finite index subgroups �n � z� so that �.Z/\T
�n D ¹eº, then � is not matricially stable. The sequence of functions �n we will define

in Proposition 3.17 is an asymptotic representation of � that cannot be perturbed to a
genuine representation. In fact, the asymptotic representation may not be perturbed to
any representation, let alone a unitary one.

In particular, if z� is residually finite and x is not in the kernel of the map h WH 2.�IZ/
! Hom.H2.�IZ/;Z/, then we can create an explicit formula for an asymptotic repre-
sentation that cannot be perturbed to a genuine representation in terms of finite quotients
of � and cocycle representatives of x. If � is finitely generated, the condition that x is not
in the kernel of h is equivalent to the condition that x is non-torsion. In particular, it fol-
lows that any virtually polycyclic group with non-torsion 2-cohomology is not matricially
stable and an explicit formula for the relevant asymptotic representation can be found in
terms of cohomological data.

Our construction is similar to another construction of projective representations of
subgroups of Z2 Ì SL2.Z/ that come from factoring cocycles through finite quotients;
see the proof of [12, Corollary B].

Three virtues of our proof compared to Dadarlat’s broader result are as follows: first,
our proof leads to a formula for asymptotic representations that cannot be perturbed to
genuine representations (Proposition 3.17). We use this formula to construct new exam-
ples of asymptotic representations that cannot be perturbed to genuine representations in
Section 5. Second, our proof is relatively elementary and uses only basic group cohomol-
ogy, instead of employing techniques used in the Novikov conjecture. Third, because we
do not use these techniques, we do not require the existence of a  -element.
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This paper is organized as follows: in Section 2 we will review relevant background
information. In Section 3 we prove the main result (Theorem 1.1), and find that a for-
mula for an asymptotic representation that cannot be perturbed to a genuine representation
for a group satisfies the assumptions of the main theorems (Proposition 3.17). We show
that the main results apply to virtually polycyclic groups with non-torsion 2-cohomology
(Corollary 3.23) and, hence, non-cyclic finitely generated torsion-free nilpotent groups. In
Section 4 we give an alternate proof that non-cyclic torsion-free finitely generated nilpo-
tent groups satisfy the cohomological conditions required for the main result, which is
useful for computing examples. In Section 5 we illustrate our formula for the following
groups: Z2, to show our methods can recover Voiculescu’s matrices; a 3-step nilpotent
group; and the polycyclic group Z2 Ì Z, where the action of Z on Z2 is induced by
“Arnold’s cat map.”

2. Background information

2.1. Group homology and cohomology

There are many ways to characterize group homology and cohomology, but to us the
most useful will be to describe them as the homology and cohomology of an explicit
chain complex, described below. We will only use homology with coefficients in Z and
cohomology with trivial action in this paper. For more about this construction, see [1,
Chapter II.3].

Definition 2.1. Let � be a discrete group. We define Cn.�/ to be the free abelian group
generated by elements of �n. We may write an element of �n as Œa1ja2j � � � jan� with
ai 2 � . We thus write a typical element of Cn.�/ as

c D

NX
iD1

xi Œai1jai2j � � � jain�

with xi 2 Z and aij 2 � . We define the boundary map @n from Cn.�/! Cn�1.�/ by

@nŒa1j � � � jan� D

Œa2j � � � jan�C

n�1X
iD1

.�1/i Œa1j � � � jai�1jaiaiC1jaiC2j � � � jan�C .�1/
nŒa1j � � � jan�1�:

Often we will just write @ where the domain is clear from context. The group homology
of � is the homology group of the chain complex .C�.�/; @�/, that is to say, Hn.�/ WD
ker.@n/= im.@nC1/.

Definition 2.2. If A is any abelian group, then the cohomology of � with coefficients in A
is the cohomology of .C�; @�/ with coefficients1 in A.

1In general, A may be taken to be a left ZŒ�� module, but we will only consider the case where the
action of � on A is trivial here, so we may consider A to only have the structure of an abelian group.
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To be more explicit, we use the notation

C n.�IA/ WD Hom.Cn.�/; A/

and note that this is isomorphic to the group of functions from �n to A. Then, we define
@n W C n.�IA/! C nC1.�IA/ to be the adjoint2 of @nC1, that is,

.@n�/.a1; : : : ; anC1/ D �.a2; : : : ; anC1/

C

nX
iD1

.�1/i�.a1; : : : ; ai�1; aiaiC1; aiC2; : : : ; anC1/C .�1/
nC1�.a1; : : : ; an/:

Then, we define Hn.�IA/ WD ker.@n/= im.@n�1/. As with homology, we will suppress
the n in @n if the dimension is obvious from context.

Suppose that f is a group homomorphism from �1 to �2. This induces a map f#

from Cn.�1/ to Cn.�2/ and a map f� W Hn.�1/! Hn.�2/. Similarly, the adjoint of f#

from C n.�2/! C n.�1/ called f # descends to a well-defined map from f � WH 2.�2IA/

! H 2.�1IA/. Similarly, if g W A1 ! A2 is a homomorphism of abelian groups, there
is a map g# from C n.�IA1/! C n.�IA2/. This map descends to a well-defined map
g� W H

n.�IA1/! Hn.�IA2/. All maps defined in this paragraph are functorial.
Because C n.�IA/ is isomorphic to Hom.Cn.�/; A/, there is a natural bilinear map,

called the Kronecker pairing, from C n.�IA/ � Cn.�/! A defined byD
�;

NX
iD1

xi Œai1j � � � jain�
E
D

NX
iD1

xi�.ai1; : : : ; ain/:

This descends to a well-defined bilinear map from Hn.�IA/ �Hn.�/! A. We will use
the notation h�; �i for both maps.

2.2. 2-cohomology and central extensions

The 2-cohomology has an alternative characterization.

Definition 2.3. If � is a discrete group and A is an abelian group, then a central extension
of � by A is a short exact sequence

e A z� � e;

where the image of A in z� is central in z� . We say two central extensions are equivalent if
we can make a commutative diagram as follows:

e A z�1 � e

e A z�2 � e:

idA ' id�

2Actually, [1] defines the coboundary map to be .�1/nC1 times the adjoint, but this does not change
the image or kernel boundary of the maps, so it leads to an equivalent definition of the cohomology groups.
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Theorem 2.4 ([1, Theorem IV.3.12]). As a set, H 2.�IA/ is in bijection with the equiva-
lence classes of central extensions of � by A.

Given an explicit central extension, we may find a cocycle representative of the cor-
responding element of H 2.�IA/ as follows: pick � to be a set-theoretic section from �

to z� . Then, viewing A as a subset of z� , define

�.g; h/ D �.g/�.h/�.gh/�1 2 A:

By [1, IV (3.3)], this is a cocycle representative of the cohomology class corresponding to
this central extension.

2.3. Polycyclic and nilpotent groups

Definition 2.5. A group � is called polycyclic if there is a sequence of subgroups

� D �1 � �2 � � � � � �m � �mC1 D ¹eº

so that �i F �iC1 and �i=�iC1 is cyclic. A sequence of subgroups obeying this condition
is called a polycyclic sequence of subgroups. We may pick this sequence so that each
quotient is non-trivial. We may pick ai to be a representative of a generator of �i=�iC1.
We call these generators a polycyclic sequence for � , and they generate � .

Definition 2.6. A group is called virtually polycyclic if it has a finite index polycyclic
subgroup.

In this case we may assume that there is a normal finite index polycyclic subgroup.
This may be constructed by intersecting over each conjugate of the subgroup and using the
fact that a subgroup of a polycyclic group is polycyclic (see [20, Proposition 9.3.7]). By
[9, Theorem 3], polycyclic groups are residually finite. From this, it follows that virtually
polycyclic groups are residually finite as well. The following proposition is an elementary
exercise:

Proposition 2.7. Suppose that � is virtually polycyclic, and

e Z z� � e
� '

is an extension of � . Then, z� is virtually polycyclic as well.

By [20, Proposition 9.3.4], all finitely generated nilpotent groups are polycyclic. Let �
be a torsion-free finitely generated nilpotent group.

Definition 2.8. A Mal’cev basis for a torsion-free finitely generated nilpotent group is an
m-tuple of elements .a1; : : : am/ 2 �m that obeys the following conditions:

• For all g 2 � , g can be written uniquely as g D a
x1
1 � � � a

xm
m for some .x1; : : : ; xm/

2 Zm. We call this presentation the canonical form of g.
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• The subgroups �i D hai ; : : : ; ami form a central series for � .

Every finitely generated torsion-free nilpotent group has a Mal’cev basis by [11, Lem
ma 8.23]. It also follows that the �i s make a polycyclic sequence of subgroups.

2.4. Rational 2-cohomology of a torsion-free finitely generated nilpotent group

We will need the following result:

Theorem 2.9 ([2, 19]). Let � be a torsion-free finitely generated nilpotent group that is
neither Z nor the trivial group. Then, H 2.�IQ/ 6' ¹0º.

Proof. By a result of Pickel [19], we have that H �.�IQ/ can be calculated in terms of
the of the cohomology of an associated rational Lie algebra. By a result of Ado explained
on [2, p. 86], the 2-cohomology of the algebra is non-zero.

Corollary 2.10. If � is a torsion-free finitely generated nilpotent group that is neither Z
nor trivial, there is a pair .Œ��; c/ 2 H 2.�IZ/ �H2.�/ so that hŒ��; ci ¤ 0.

Proof. The rational 2-cohomology of � is non-trivial, by Theorem 2.9. By the universal
coefficient theorem [16, Theorem 53.1], we have a sequence

0 Ext.H1.�/;Q/ H 2.�IQ/ Hom.H2.�/;Q/ 0:

Since Hom.�;Q/ is exact, Ext.H1.�/;Q// ' ¹0º. From this, it follows that H2.�/ is
non-torsion. Next we need to show that H2.�/ is finitely generated. First we will show
that Hn.�IZ/ is finitely generated for all n and for all torsion-free finitely generated
nilpotent groups, by induction on the number of elements in the Mal’cev basis. If this
number is zero, this is obvious. For the inductive step, let x1; : : : ; xm be a Mal’cev basis.
Then, by the inductive hypothesis Hn.�=hxmiIZ/ is finitely generated for all n. By [10,
Theorem 5.3], there is an exact sequence

� � �HnC2.�=hxmiIZ/ HnC2.�IZ/ HnC1.�=hxmi/ � � �

which shows thatHn.�IZ/ is finitely generated for n � 2. For nD 0, this is obvious. For
n D 1, this follows from the fact thatH 1.�IZ/ D Hom.H1.�/;Z/ D Hom.�=Œ�; ��;Z/
[1, p. 36]. Next, the fact that the homology is finitely generated as well follows from [8,
Proposition 3F.12]. Because H2.�/ is non-torsion and finitely generated, we know that
Hom.H2.�/;Z/ is non-zero. In particular, there must be a cocycle Œ�� that is not in the
kernel of the map from H 2.�IZ/ to Hom.H2.�/;Z/.

2.5. Log of a matrix

Throughout this article, if m is a matrix, we define log.m/ to be the power series for log
centered at 1, that is,

log.m/ WD
1X
jD1

.�1/j�1
.m � id/n

n
;
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which converges and is continuous for km � idk < 1. We will consider this to be well-
defined when km � idk < 1. By looking at the Jordan form for m, we can see that the
eigenvalues of log.m/ are the logs of eigenvalues of m. This justifies the formula
exp.Tr.log.m// D det.m/.

2.6. Voiculescu’s matrices and the winding number argument

The classical example due to Voiculescu in [21] for an asymptotic representation of Z2

that is not perturbable to a genuine representation comes in the form

�n.a; b/ D u
a
nv
b
n;

where un and vn are n � n matrices such that

unD

2666666664

0 0 � � � 0 0 1

1 0 � � � 0 0 0

0 1 � � � 0 0 0
:::

:::
: : :

:::
:::

:::

0 0 � � � 1 0 0

0 0 � � � 0 1 0

3777777775
; vnD

2666666664

exp
�
2�i
n

�
0 0 � � � 0

0 exp
�
4�i
n

�
0 � � � 0

0 0 exp
�
6�i
n

�
� � � 0

:::
:::

:::
: : :

:::

0 0 0 � � � 1

3777777775
:

The argument that we summarize here was first applied to this problem by Exel and Loring
in [6], and had previously independently been used by Kazhdan in [14]. It can be com-
puted that unvnu�1n v

�1
n D exp.�2�i

n
/ idCn . It is not difficult to show that the fact that this

gets arbitrarily close to idCn in the operator norm implies asymptotic multiplicativity of
the associated representation. A sketch of the argument that this asymptotic representation
cannot be perturbed follows.

The path p.t/ D det.t exp.�2�i
n
/ idCn C.1 � t / idCn/ is a path in C� with winding

number �1. Suppose, towards a contradiction, that un is close enough in the operator
norm to a u0n and vn is close enough to v0n so that v0nu

0
n D u

0
nv
0
n. We make a contradiction

as follows: we define

yun.s/ D sun C .1 � s/u
0
n;

yvn.s/ D svn C .1 � s/v
0
n:

Then,
h.t; s/ D det.t yun.s/yvn.s/yun.s/�1yvn.s/�1 C .1 � t / idCn/:

It can be shown that h.t; s/ ¤ 0 for all s; t 2 Œ0; 1�. It follows that h is a homotopy from
the path p to the trivial loop centered at 1. This is a contradiction, since p has non-zero
winding number.

A more general statement of this type of invariant can be found in [5, Theorem 3.9]
or in [4]. Essentially, the relation unvnu�1n v

�1
n can be replaced with another product of

commutators. Note that the winding number of p could also be computed by calculating
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Tr.log.unvnu�1n v
�1
n //=.2�i/, where log is defined to be a power-series centered at 1. We

will phrase our analogous argument in terms of computing the trace of log instead of
computing the winding number directly, but it is inspired by this more classical argument.
Kazhdan develops this example independently to show that a certain surface group is not
uniformly stable [14]. He develops them as a representation of a central extension of the
group in question, thereby connecting asymptotic representations to 2-cohomology.

3. Main results

In Section 3.1 we prove some analytic lemmas that we use later. In Section 3.2 we develop
a pairing between between almost multiplicative functions from � to Mn and 2-chains
(Definition 3.3). We show that if an almost multiplicative function is close enough to a
genuine unitary representation, its pairing with a 2-cycle is zero (Theorem 3.7). In Sec-
tion 3.3 we introduce a “finite type” condition on cohomology classes (Definition 3.9), and
give some alternate characterizations of the definition (Proposition 3.14). In Section 3.4
we develop a formula for an asymptotic representation (Proposition 3.17), and show that
if the right cohomological conditions hold, it is well-defined and cannot be perturbed to a
genuine representation (Theorem 1.1). We show that polycyclic groups with non-torsion
2-cohomology meet this condition (Corollary 3.23).

3.1. Analytic Lemmas

We will use the following elementary results:

Lemma 3.1. Let A be a C �-algebra. Then, the following hold:

(1) If ai ; bi 2A for i 2 ¹1; : : : ;N º so that for all i , kai � bik< " and kaik;kbik<M ,
we have that  NY

iD1

ai �

NY
iD1

bi

 < NMN�1":

(2) If a 2 A and u is a unitary in A so that ka � uk � 1
2

, we have

ka�1 � u�k � 2ka � uk:

In particular, ka�1k � 2.

Proof. Proof of .1/: We compute

NX
jD1

�j�1Y
iD1

ai

�
.aj � bj /

NY
iDjC1

bi D

NX
jD1

� jY
iD1

ai

� NY
iDjC1

bi �

NX
jD1

�j�1Y
iD1

ai

� NY
iDj

bi

D

NX
jD1

� jY
iD1

ai

� NY
iDjC1

bi �

N�1X
jD0

� jY
iD1

ai

� NY
iDjC1

bi
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D

NY
iD1

ai �

NY
iD1

bi :

Applying the triangle inequality and submultiplicativity to the first term gives us the
desired inequality.

Proof of .2/: Let b D u�a. Note that kb � 1k D ka � uk < 1, so by [17, Theo-
rem 1.2.2], we have that

b�1 D

1X
kD0

.1 � b/k :

Thus,

ka�1 � u�k D ka�1u � 1k D kb�1 � 1k

�

1X
kD1

k1 � bkk D
k1 � bk

1 � k1 � bk
D
ka � uk

1 � ka � uk

� 2ka � uk:

We use that ka � uk � 1
2

in the last step.

Lemma 3.2. Let m1; m2 2 U.n/ so that kmi � idCnk < 1
2

. Then, if log is defined as a
power series centered at 1, we have that

Tr.log.m1m2// D Tr.log.m1//C Tr.log.m2//:

Proof. First note that km1m2 � 1jj < 1
2
� 2 D 1 by Lemma 3.1, so the expression is well-

defined. Then,

exp.Tr.log.m1m2// � Tr.log.m1// � Tr.log.m2// D
det.m1m2/

det.m1/ det.m2/
D 1;

so
Tr.log.m1m2// � Tr.log.m1// � Tr.log.m2// 2 2�iZ:

Then,

Tr.log..m1t C .1 � t / idCn/m2/ � Tr.log.m1t C .1 � t / idCn/ � Tr.log.m2//

is well-defined for all t 2 Œ0; 1� by and in 2�iZ by the same argument above. Because this
expression depends continuously on t , we must have that it is constant in t . Plugging in
t D 0, we must have that the expression is uniquely zero.

3.2. A homological version of the winding number argument

The idea of this section is to find a pairing between maps from � to Mn that are almost
multiplicative and elements of 2-cycles in C2.�/. In general, how “close” a map is to
being multiplicative depends on the specific element of C2.�/ we pair with.
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Definition 3.3. Suppose that c 2 C2.�/ is expressed by the formula

c D

NX
iD1

xi Œai jbi �;

so that .ai ; bi / D .aj ; bj / implies i D j . The support of c is the set of ordered pairs
¹.ai ; bi /º

N
iD1. The boundary support of c is the set of elements of � , ¹ai ; bi ; aibiºNiD1.

Then, we say � W �!Mn.C/ is "-almost multiplicative on the support of c if �.ai /; �.bi /
2 GLn.C/ and

k�.aibi /�.ai /
�1�.bi /

�1
� idCnk < "

for each i . In this case, if additionally " � 1, we define

...�; c/// D
1

2�i

NX
jD1

xj Tr.log.�.aj bj /�.bj /�1�.aj /�1//;

where log is defined as a power series centered at 1.

This is clearly Z-linear in the second entry, in the sense that

...�; c1 ˙ c2/// D ...�; c1///˙ ...�; c2///

when the right side is well-defined. Due to potential cancellation, the support of c1 C c2
may be smaller than the support of c1 union the support of c2. It is also “linear” in the first
entry in the sense that

...�1 ˚ �2; c/// D ...�1; c///C ...�2; c///I

if one side of this equality is well-defined, then so is the other, because

k.�1 ˚ �2/.gh/ � .�1 ˚ �2/.g/.�1 ˚ �2/.h/k D max
i
k�i .gh/ � �i .g/�i .h/k:

Proposition 3.4. If @c D 0, then
...�; c/// 2 Z:

Proof. Let F be the boundary support of c and let C1.F / be the subgroup of C1.�/
spanned by elements of the form Œg�, where g 2 F . Define a homomorphism ' W C1.F /

! C� by taking Œg� 7! det.�.g//. This is well-defined because C1.F / is a free abelian
group and det.�.g// 2 C�, since �.F / � GLn.C/. Then, we see that

exp.2�i...�; c//// D
NY
jD1

det..�.aj bj /�.bj /�1�.aj /�1/xi / D '.�@c/ D '.0/ D 1:

Definition 3.5. If c is a 2-cycle on � with boundary support F and �0 and �1 are maps
from � to GLn.C/ that are 1-almost multiplicative on the support of c, we say that �0
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and �1 are homotopy equivalent on the boundary support of c if the following conditions
are met: there is a family of functions

�t W � !Mn.C/

continuous in t so that �0.g/ D �0.g/ and �1.g/ D �1.g/ for all g 2 F ; and for all t , �t

is 1-almost multiplicative on the support of c.

Proposition 3.6. Let c be a 2-cycle on � and let 0 < " < 1. Let �0 W � ! GLn.C/ be
"-multiplicative on the support of c and �1 W � ! U.n/. Then, the following hold:

(1) If

k�0.g/ � �1.g/k <
1 � "

24

for all g in the boundary support of c, then �0 and �1 are homotopy equivalent in
the boundary support of c and �1 is 1-almost multiplicative on the support of c.

(2) If �0 and �1 are homotopy equivalent in the boundary support of c, then
...�0; c/// D ...�1; c///.

Proof. Proof of .1/: Define �t to be

t�1 C .1 � t /�0:

Then, for each g in the boundary support of c, we must have

k�t .g/ � �0.g/k <
1 � "

24
:

Applying Lemma 3.1.2/, this gives us

k�t .g/�1 � �0.g/
�1
k <

1 � "

12
:

Then, for .ai ; bi / in the support of c, we have

k�t .aibi /�
t .bi /

�1�t .ai /
�1
� 1k

< k�t .aibi /�
t .bi /

�1�t .ai /
�1
� �0.aibi /�0.bi /

�1�0.ai /
�1
k C " � 1:

The last step is using Lemma 3.1.1/ with where the N , M , and " in the statement of the
lemma are 3, 2, and 1�"

12
, respectively. Applying this to t D 1, we get that �1 is 1-almost

multiplicative on the support of c.
Proof of .2/: The function

t 7! ...�t ; c///

is a continuous function from Œ0; 1� to Z, so it must be constant.
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Theorem 3.7. If �0 is a genuine representation, �1 is a function from � to U.n/, c is a
2-cocycle on � , and

k�1.g/ � �0.g/k <
1

24
for all g in the boundary support of c, then �1 is 1-multiplicative on the support of c and
...�1; c/// D 0.

Proof. This follows from Proposition 3.6, taking the limit as "! 0.

This is sufficient for our purposes, but for conceptual clarity it would be nice to show
that this pairing depends only on homology class, not on the choice of cycle representative.
We do not have a result that is quite this strong, but we can show that it is “eventually true”
for asymptotic homomorphisms.

Theorem 3.8. Let c D @d be a 2-boundary in C 2.�/ and let �n W � ! U.Nn/ be an
asymptotic homomorphism. Then, for large enough n, we have ...�n; c/// D 0.

Proof. By linearity, we may reduce the case that c D @Œg1jg2jg3�. In this case we have
that

c D �Œg1jg2�C Œg1jg2g3� � Œg1g2jg3�C Œg2jg3�:

For large enough n, we have that �n is multiplicative enough that we may apply Lem-
ma 3.2. Thus,

2�i...�n; c/// DTr.log.�n.g1/�n.g2/�n.g1g2/�1�n.g1g2/�n.g3/�n.g1g2g3/�1

� �n.g1g2g3/�n.g2g3/
�1�n.g1/

�1�n.g2g3/�n.g3/
�1�n.g2/

�1//

DTr.log.�n.g1/�n.g2/�n.g3/�n.g2g3/�1�n.g1/�1�n.g2g3/�n.g3/�1

� �n.g2/
�1//:

Now, since the complex unitary group is path connected, we can make a path ut W Œ0; 1�
! U.n/ so that u0 D �.g1/ and u1 D idCn . Then,

kut�n.g2/�n.g3/�n.g2g3/
�1u�1t � idCn k D k�n.g2/�n.g3/�n.g2g3/

�1
� u�1t utk

D k�n.g2/�n.g3/�n.g2g3/
�1
� idCNn k:

For large enough n, this will be less than 1, so

log.ut�n.g1/�n.g2/�n.g2g3/�1u�1t �n.g2g3/�n.g3/
�1�n.g2/

�1/

will be well-defined. Moreover, since

det.ut�n.g2/�n.g3/�n.g2g3/�1u�1t �n.g2g3/�n.g3/
�1�n.g2/

�1/ D 1;

we must have that

Tr.log.ut�n.g2/�n.g3/�n.g2g3/�1u�1t �n.g2g3/�n.g3/
�1�n.g2/

�1/ 2 2�iZ:

Because this is a discrete space, the values cannot depend on t . We conclude that

2�i...�n; c/// D Tr.log.�n.g2/�n.g3/�n.g2g3/�1�n.g2g3/�n.g3/�1�n.g2/�1/ D 0:
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3.3. Finite type cohomology

Definition 3.9. Let � be a countable discrete group and Œ�� 2 H 2.�IZ/ be given by the
central extension

e Z z� � e:
� '

We say that Œ�� is of finite type if z� has a sequence of finite index subgroups ¹�kºk2N so
that

�.Z/ \
\
k

�k D ¹eº:

Remark 3.10. Clearly, if z� is residually finite, Œ�� is of finite type.

Remark 3.11. We may assume that the subgroups in Definition 3.9 are normal and de-
creasing. To achieve normality, replace �k with the kernel of the action of z� on z�=�k . To
achieve a decreasing sequence, replace �k with the cumulative intersection of �k .

To develop our formula, we will develop an alternate characterization of finite type
cohomology classes that can be expressed in terms of the cohomology cochain complex.

Let � be a discrete group and let Q be a finite quotient of � . Call q the quotient map
from � to Q and f n the canonical map from Z to Z=nZ. Then, q induces a cochain
map q# from C k.QIZ=nZ/ to C k.�IZ=nZ/ and f induces a map f n# from C k.�IZ/
to C k.�IZ=nZ/. These in turn induce maps q� W H�.QIZ=nZ/! H k.�IZ=nZ/ and
f n� W H

�.�IZ/! H k.�IZ=nZ/.

Definition 3.12. If � is a Z-valued k-cocycle on � , we say that � is of n-Q type if
f n# .�/ D q

#.� 0/ for some Z=nZ-valued k-cocycle on Q, � 0. We say that a cohomology
class Œ�� 2 H k.�IZ/ is n-Q type if there is a cohomology class Œ� 0� 2 H k.QIZ=nZ/ so
that f n� .Œ��/ D q

�.Œ� 0�/. See the below diagram for a picture of f n� and q�.

Œ� 0� 2 H k.QIZ=nZ/

Œ�� 2 H k.�IZ/ H k.�IZ=nZ/:

q�

f n�

Example 3.13. Consider � D Z2 and the cocycle �..x1; x2/; .y1; y2//D x2y2. That this
is a cocycle is easy to check:

@�..x1; x2/; .y1; y2/; .z1; z2// D x2y1 � x2.y1 C z1/C .x2 C y2/z1 � y2z1 D 0:

This is not a coboundary because

c D Œ.0; 1/j.1; 0/� � Œ.1; 0/j.0; 1/�

is a 2-chain such that
h�; ci D 1:
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Then, set Qn D .Z=nZ/2 and let qn W Z2 ! Qn be the obvious quotient map. We have
that � and, hence, Œ�� is of n-Qn type. To show this, note that the same formula used
for � defines a 2-cochain, � 0 2 C 2.QnIZ=nZ/. The same computations that show that �
is a cocycle also show that � 0 is a cocycle and, clearly, q#

n.�/ D f
n

# .�
0/, where f n is the

quotient map from Z to Z=nZ.

Proposition 3.14. Suppose that � is a discrete group and Œ�� 2H 2.�IZ/. Let the central
extension corresponding to Œ�� be as follows:

e Z z� � e:
� '

The following are equivalent:

(1) Œ�� is of finite type;

(2) there are infinitely many n2N so that there is a finite quotient zQn of z� so that �.1/
has order n in the quotient;

(3) there are infinitely many n 2 N so that � has a finite quotient Qn so that Œ�� is of
n-Qn type.

Proof. (1) H) (2): Let �k be a sequence of subgroups as in Definition 3.9 and assume
that they are normal as in Remark 3.11. For ` 2N, pick �k so that �.1/`Š 62 �k . Then, let n
be the order of �.1/ in z�=�k . Call zQn D z�=�k . Note that n > `, so letting `!1 we get
the desired family of subgroups for infinitely many distinct n 2 N.

(2) H) (1): Let �n be the kernel of the map from z� to zQn. Then, for any ` 2 Z n ¹0º,
we can pick n > j`j so that �.1/` 62 �n.

(2) H) (3): By assumption, for infinitely many n, we have the diagram

e Z z� � e

e Z=nZ zQn Qn e:

�

f n zqn

'

qn

'0n

(3.1)

Then, we may factor the vertical maps as follows:

e Z z� � e

e Z=nZ z�=h�.1/ni � e

e Z=nZ zQn Qn e:

�

f n

'

id

id qn

'0n

(3.2)

By [1, Chapter IV.3, Exercise 1], f n� .Œ��/ corresponds to the middle row of diagram (3.2).
Let Œ� 0� be the element of H 2.QnI Z=nZ/ corresponding to the bottom row of dia-
gram (3.2). Again, using [1, Chapter IV.3, Exercise 1], we get that q�n.Œ�

0�/ corresponds to
the middle row as well. It follows that f n� .Œ��/ D q

�
n.Œ�

0�/.
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(3) H) (2): Using [1, Chapter IV.3, Exercise 1] as we did for the other direction, we
get that diagram (3.2) must exist for infinitely many n. Composing the vertical maps, we
get that quotients such as diagram (3.1) must exist for infinitely many n as well.

This theorem motivates a definition that extends the finite type concept to cocycle
representatives of the cohomology class.

Definition 3.15. If � is a Z-valued 2-cocycle on � , we say that � is of finite type if for
infinitely many n 2 N, there is a finite quotient Qn of � so that � is of n-Qn type.

The cocycle defined in Example 3.13 is of finite type. From Proposition 3.14, it follows
that its cohomology class is as well.

Remark 3.16. Obviously, if � is of n-Q type, then so is Œ��. Conversely, if Œ�� 2
H k.�IZ/ is of n-Q type, then there exists some ! 2 Œ�� that is of n-Q type. To show
this, let q W � !Q be the quotient map and let f W Z! Z=nZ be the usual map. We can
take P! 2 f�.Œ��/ so that P! 2 im.q#/. Let P! D @ P̨ C f#.�/, where P̨ 2 C 1.�IZ=nZ/.
Then, find ˛ 2 C 1.�I Z/ so that f#.˛/ D P̨ . Then, letting ! D @˛ C � , we see that
f#.!/ D P! 2 im.q#/. Thus, ! is of n-Q type. However, a finite-type cohomology class
does not obviously have a finite-type representative, because the choice of representative
of Œ�� might depend on n.

3.4. Constructing asymptotic representations from cocycles

We start by defining our formula for an asymptotic representation.

Proposition 3.17. Suppose that � is a discrete group and Œ�� 2 H 2.�IZ/. Let Qn be a
finite quotient of � so that Œ�� is of n-Qn type; this exists by Remark 3.16. Let �n be a
representative of Œ�� so that �n is of n-Qn type. Let ˛n be a 1-cochain so that �n C @˛n
D � . Let y�n.g1;g2/D exp.2�i

n
.˛n.g1/C �n.g1;g2///. Then, define VnD `2.Qn/. Treat xg

as a basis element for Vn, where g 2 � and xg is its image in Qn. Then, there is a well-
defined function �n W � ! U.Vn/ that obeys the formula

�n.g1/xg2 D y�n.g1; g2/xg1xg2:

Proof. We will show that �n is well-defined. Suppose that xg2 D xg02. If we show that

�n.g1; g2/ � �n.g1; g
0
2/ mod n;

we will have shown that �n is well-defined, because y�n only depends on �n up to equiv-
alence mod n. If P�n is �n reduced mod n, then we have by assumption that P�n D q#.� 0n/,
where q is the quotient map from � to Q and � 0n is a 2-cocycle in C 2.QIZ=nZ/. Thus,

P�n.g1; g2/ D �
0
n.xg1; xg2/ D �

0
n.xg1;

xg02/ D P�n.g1; g
0
2/:

Note that �n.g/maps the orthonormal basis ¹h W h2Qnº to another orthonormal basis,
so it is unitary.



F. Glebe 210

Definition 3.18. Suppose � W �! U.k/ and � is an S1-valued 2-cocycle on � . If � obeys
the formula �.gh/�.h/�1�.g/�1 D �.g; h/ idCn , it is called a projective representation
with cocycle �.

We will show that �n is a projective representation in Lemma 3.20.
In the case that ˛n D 0, our formula reduces to what is known as the projective left

regular representation forQn and �n; for example, see [18, p. 2]. The proof of [12, Corol-
lary B] also uses a cohomology class that “behaves well” with respect to finite quotients,
to make projective representations.

We now give an alternate justification for the formula. Suppose that there is a finite
quotient of a central extension of � as follows:

e Z z� � e

e Z=nZ zQn Qn e;

�

f n zqn

'

qn

�

�0 '0n

and a set-theoretic section � of the extension. Let �n be the induced representation of zQn
from the character on �0.Z=nZ/ that takes �0.1/ 7! exp.2�i=n/. Then, �n D �n ı zqn ı � .
Deriving the formula from here is technical.

The discussion at the start of [13, Chapter 3.3] explains how one should expect a
projective representation to come from a splitting and representation of z� as described
above.

Remark 3.19. The existence proof technically only uses the fact that P�.g1; g2/ depends
only on g1 and the reduction of g2 in Qn, rather than the image of both g1 and g2 in Qn.
We will use this fact in examples to reduce the asymptotics of the dimension of the asymp-
totic representation.

Lemma 3.20. Let � , n, � , Qn, and �n be as above. Define �n 2 C 2.�IS1/ by

�n.g1; g2/ D exp
�2�i
n
�.g1; g2/

�
:

Then, �n obeys the formula

�n.g1g2/�n.g2/
�1�n.g1/

�1
D �n.g1; g2/

�1 idVn :

Proof. Define y�n.g1; g2/ D ˛n.g1/C �n.g1; g2/. We compute

�y�n.g1; g2g3/C y�n.g1g2; g3/ � y�n.g2; g3/

D ˛n.g1g2/ � ˛n.g1/ � ˛n.g2/ � �n.g1; g2g3/C �n.g1g2; g3/ � �n.g2; g3/

D �@˛n.g1; g2/ � �n.g1; g2/ D ��.g1; g2/: (3.3)

The second equality follows from the fact that �n is a cocycle. Exponentiating both sides
of (3.3), we get

y�n.g1; g2g3/
�1
y�n.g1g2; g3/y�n.g2; g3/

�1
D �n.g1; g2/

�1: (3.4)
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Next we claim that
�n.g1/

�1
xg2 D y�n.g1; g

�1
1 g2/

�1
xg�11 xg2:

To check this, it suffices to compute that

�n.g1/y�n.g1; g
�1
1 g2/xg

�1
1 xg2 D y�n.g1; g

�1
1 g2/

�1�n.g1/xg
�1
1 xg2

D y�n.g1; g
�1
1 g2/

�1
y�n.g1; g

�1
1 g2/xg2 D xg2:

Using this, we can compute

�n.g1g2/�n.g2/
�1�n.g1/

�1
xg3 D �n.g1g2/�n.g2/

�1
y�n.g1; g

�1
1 g3/

�1
xg�11 xg3

D �n.g2g2/y�n.g2; g
�1
2 g�11 g3/

�1
y�n.g1; g

�1
1 g3/

�1
xg�12 xg

�1
1 xg3

D y�n.g1g2; g
�1
2 g�11 g3/y�n.g2; g

�1
2 g�11 g3/

�1
y�n.g1; g

�1
1 g3/

�1
xg3

D �n.g1; g2/
�1
xg3:

Here the last step follows from (3.4) applied to g1, g2, and g�12 g�12 g3.

Now we are ready to prove Theorem 1.1.

Proof. First note that by Proposition 3.14 and Remark 3.16, there are infinitely many n,
so the formula given in Proposition 3.17 is well-defined.

Now we will show that �n is asymptotically multiplicative. Noting that, since � does
not depend on n, we have that �n.g1; g2/, defined as in Lemma 3.20, goes to 1 as n goes
to infinity. Thus, Lemma 3.20 implies asymptotic multiplicativity.

Now we will show that for large enough n, �n is not close to any genuine representa-
tion of � on a particular finite subset of � . From the fact that Œ�� 62 ker.h/, there is some
2-cycle c 2 C2.�/ written as

c D

NX
iD1

xi Œai jbi �

so that
h�; ci ¤ 0:

Then, we compute that

...�n; c/// D
1

2�i

NX
jD1

xj Tr.log.�n.aj bj /�n.bj /�1�n.aj /�1//

D
1

2�i

NX
jD1

xj Tr.log.�j .aj bj /�1/ idVn/ (by Lemma 3.20)

D �
1

2�i

NX
jD1

xj
2�i

n
�.aj ; bj /Tr.idVn/ D �h�; ci

dim.Vn/
n

¤ 0:

By Theorem 3.7, it follows that �n cannot be within 1
24

of a genuine representation on the
boundary support of c and, thus, cannot be perturbed to a genuine representation.
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Remark 3.21. If � is finitely generated, then pairing non-trivially with a cohomology
class is equivalent to being non-torsion. To see this, note that from the universal coefficient
theorem (see [16, Theorem 53.1]), we have a short exact sequence

0 Ext.H1.�/;Z/ H 2.�IZ/ Hom.H2.�/;Z/ 0:

Clearly, any torsion element cannot fit the condition, since Hom.H2.�/;Z/ is a torsion-
free group. To see the converse, note that since � is finitely generated,H1.�/ ' �=Œ�;��
[1, p. 36] is finitely generated as well. Thus, all elements of Ext.H1.�/;Z// have finite
order by [16, Theorem 52.3] and the table on [16, p. 331].

Remark 3.22. In many examples we will have the stronger condition that there is a
particular cocycle representative � of Œ�� that is of finite type. In this case the formula
simplifies to

�n.g1/xg2 D �n.g1; g2/xg1xg2;

where �n.g1; g2/ D exp.2�i
n
�.g1; g2//.

Corollary 3.23. Suppose that � is a virtually polycyclic group with non-torsion 2-coho-
mology. Then, � meets the conditions of Theorem 1.1 and is thus not matricially stable.

Proof. First we note that if Œ�� is a non-torsion cohomology class, it is not in the kernel of
the map from H 2.�IZ/ to Hom.H2.�/;Z/, by Remark 3.21. Let

e Z z� � e
� '

be the central extension corresponding to Œ��. We have that z� is also virtually polycyclic,
by Proposition 2.7. Now because z� is virtually polycyclic, it is residually finite [9, Theo-
rem 3]. Thus, Œ�� is of finite type.

4. Torsion-free finitely generated nilpotent groups

The purpose of this section is to provide an alternate proof that torsion-free finitely gener-
ated nilpotent groups fit the conditions of Theorem 1.1 (Theorem 4.2). While this follows
from Corollary 3.23, the alternate proof gives rise to a simple formula for the asymptotic
representation.

Proposition 4.1. Suppose that � is a torsion-free finitely generated nilpotent group with
a Mal’cev basis .a1; : : : ; am/ and a central extension given by

e Z z� � e:
� '

Then, if zai is a lift of ai for i 2 ¹1; : : : ;mº and zamC1 D �.1/, .za1; : : : ; zamC1/ is a Mal’cev
basis for z� .
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Proof. Let � be the set-theoretic section for ' defined by �.ax11 � � � a
xm
m / D za

x1
1 � � � za

xm
m .

First, we claim that any element g 2 z� can be written in the form zax11 � � � za
xm
m � za

xmC1
mC1 . To

see this, note that g D .� ı '.g//zaxmC1mC1 . Then, the claim follows from the definition of � .
Next, to show that this is unique, we suppose that zax11 � � � za

xmC1
mC1 D za

y1
1 � � � za

ymC1
mC1 . Noting

that
a
x1
1 � � � a

xm
m D '.za

x1
1 � � � za

xmC1
mC1 / D '.za

y1
1 � � � za

ymC1
mC1 / D a

y1
1 � � � a

ym
m ;

we get that xi D yi for i ¤ mC 1. Then, equality for i D mC 1 follows by canceling
the other terms and noting that zamC1 is non-torsion. Next, we define z�i D hzai ; : : : ; zamC1i
and similarly define �i D hai ; : : : ; ami. By our assumptions, the �i s form a central series
for � . Note that for i � m,

Œz�; z�i � � '
�1.'.Œz�; z�i �// � '

�1.Œ�; �i �/ � '
�1.�iC1/ � hzamC1; z�iC1i D z�iC1:

For i D mC 1, we have Œz�; z�mC1� D ¹eº D z�mC2. This shows that z�i is a central series,
which completes our proof.

Theorem 4.2. Suppose that � is a torsion-free finitely generated nilpotent group that is
not Z or trivial. Then, � has a cohomology class that meets the conditions of Theorem 1.1,
and the asymptotic representation can be expressed as follows: � can be viewed as Zm

with multiplication defined by

x � y D .�1.x; y/; : : : ; �m.x; y//;

where �1; : : : ; �n are rational3 polynomials in x D .x1; : : : ; xm/ and y D .y1; : : : ; ym/.
In addition, we have a non-torsion cocycle �.x; y/ that is also a rational polynomial in
the entries. Then, the underlying vector space is .Cn/˝m. Then, for n co-prime to the
denominators of coefficients in the �i s and � , we have

�n.x/ey1 ˝ ey2 ˝ � � � ˝ eym D exp
�2�i
n
�.x; y/

�
e�1.x;y/ ˝ � � � ˝ e�m.x;y/;

where we have the convention that ejCn D ej .

Proof. By Corollary 2.10, there is a cohomology class Œ�� 2 H 2.�IZ/ which pairs non-
trivially with a homology class. By [1, Theorem IV.3.12], we have the following central
extension corresponding to Œ��:

e Z z� � e:
'

By Proposition 4.1, we have a Mal’cev basis .za1; : : : ; zamC1/ for z� and a Mal’cev basis
.ai ; : : : ; am/ for � where for i ¤ mC 1, we have '.zai / D ai . Any element in z� can be
written uniquely as zax11 � � � za

xmC1
mC1 . It follows that

za
x1
1 � � � za

xmC1
mC1 � za

y1
1 � � � za

ymC1
mC1 D za

z1
1 � � � za

zmC1
mC1 ;

3The polynomials will always take integer values if given integer inputs, but in general the coefficients
may not be integers.
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where zi is a function of x1; : : : ; xmC1; y1; : : : ymC1. Hall has shown that these functions
are rational polynomials [7, Theorem 6.5]. They can be computed by the methods given
in [15]. Then, if we pick a section � W ax11 � � � a

xm
m 7! za

x1
1 � � � za

xm
m , by [1, IV (3.3)], there is

a cocycle � 0 with Œ�� D Œ� 0� so that

�.g/�.h/ D �.gh/za
� 0.g;h/
mC1 :

Since �.gh/ is in canonical form and has no power of zamC1, it follows that � 0.g; h/
must be a rational polynomial of the powers in the canonical forms of g and h. Note
that by writing elements of � in canonical form, we get that � can be viewed as Zm

with multiplication given by polynomial formulas of the entries. Thus, if we take n to
be co-prime to the denominator of each polynomial in the multiplication for � and the
denominator of � 0, we may define a quotient Qn of � by reducing each entry of �
mod n. Then, we may also reduce the formula for � 0 mod n, thus showing that � 0 is
of n-Qn type. To justify the formula, note that `2.Qn/ ' .Cn/˝n and the isomorphism
sends .y1; : : : ; ym/ 7! ey1 ˝ � � � ˝ eym . Then, applying Proposition 3.17, we get the for-
mula mentioned here, with �n D � , and so ˛n D 0.

Remark 4.3. Additionally, we may modify this construction to get an asymptotic repre-
sentation of dimension nm�1 instead of dimension nm. Note that the power of zamC1 in
the product .zax11 � � � za

xm
m /.za

y1
1 � � � za

ym
m / can be computed by using the relations to put all

terms in order. If we leave the zaymm term at the end until the last step, we notice that we
may have to switch the positions of the zam and zamC1, but these commute because the
extension is central. From this, it follows that � does not depend on ym. Thus, we may
replace our quotient Qn with Q0n D Qn=hqn.am/i and by Remark 3.19, we may use the
formula for �n except with Q0n instead of Qn. The rest of the proof for asymptotic mul-
tiplicativity and non-perturbability flows the same way. An alternative explanation is that
because �.x; y/ does not depend on ym, the formula for �n commutes with the projec-
tion rn D idCn ˝ � � � ˝ idCn ˝pn, where pn is defined by the formula pnei D

P
j

1p
n
ej .

Thus, rn�nrn defines an nm�1-dimensional asymptotic representation.

5. Examples

5.1. Z2 Revisited

In this subsection we will apply our results to Z2, the simplest non-trivial example. We
will compare the result of our algorithm to the classical results and show that we get
Voiculescu’s matrices tensored against another representation. Using Remark 4.3, we
obtain Voiculescu’s matrices precisely. In Example 3.13 we have shown that

�..x1; x2/; .y1; y2// D x2y1

is a cocycle on Z2 and
c D Œ.0; 1/j.1; 0/� � Œ.1; 0/j.0; 1/�
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is a 2-chain such that
h�; ci D 1:

Moreover, since � is a polynomial with integer coefficients, it follows that � is Z=nZ-
compatible with .Z=nZ/2. Then, applying Theorem 4.2, we get that �n acts on Vn D
`2..Z=nZ/2/ ' Cn ˝ Cn. Then, pick the basis ¹ej ˝ ekº with ej defined for all j 2 Z
by the formula ejCn D ej . Using the formula for Theorem 4.2, we get that

�n.a; b/ej ˝ ek D exp
�2�i
n
bj
�
eaCj ˝ ebCk :

Note that we may write �n.a; b/ D �1n.a; b/˝ �
2
n.a; b/, where

�1n.a; b/ej D exp
�2�i
n
bj
�
eaCj

and
�2n.a; b/ej D ebCj :

Note that �1n is precisely the asymptotic representation given by Voiculescu’s matrices,
while �2n is a genuine representation. This is unsurprising because Remark 4.3 allows
us to reduce the dimension by “ignoring” the second tensor coordinate and the resulting
formula is precisely �1n.

5.2. A 3-step nilpotent group

Consider the group � generated by a1; : : : ; a5 with the following relations:

a2a1 D a1a2a3;

a3a1 D a1a3a
2
4;

a3a2 D a2a3a5;

aiaj D ajai for all other pairs ¹i; j º.

We first state a simplified version of our formula, then we explain how to compute it. We
first compute the general version, then explain how it simplifies in this case. Our asymp-
totic representation is defined for n co-prime to 6 and sends generators to the following
Cn-spanning ei with i 2 Z and eiCn D ei :

�0n.a1/ej D ejC1;

�0n.a2/ej D exp
�4�i
n

�
j

3

��
ej ;

�0n.a3/ej D exp
�4�i
n

�
j

2

��
ej ;

�0n.a4/ej D exp
�2�i
n
j
�
ej ;

�0n.a5/ D idCn ;
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and sends the element written uniquely in the form a
x1
1 � � � a

x5
5 7! �0n.a1/

x1 � � � �0n.a5/
x5 .

Here
�
j
3

�
is the polynomial 1

6
j.j � 1/.j � 2/. This group can be concretely realized as Z5

with multiplication given by

.x1; : : : ; x5/ � .y1; : : : y5/ D .�1.x; y/; : : : ; �5.x; y//;

where

�1.x; y/ D x1 C y1;
�2.x; y/ D x2 C y2;
�3.x; y/ D x3 C y3 C x2y1;

�4.x; y/ D x4 C y4 C 2x3y1 C 2x2
�
y1

2

�
;

�5.x; y/ D x5 C y5 C y1
�
x2

2

�
C x3y2 C x2y1y2;

by the isomorphism a
x1
1 � � � a

x5
5 7! .x1; : : : ; x5/. In general, these polynomials may be

calculated by the methods given in [15]. We will explain how to verify these polynomials
using a computer. There is a full description of the code in the appendix, but we will
summarize the main steps here.

(1) Verify that the operation “�” defined above is associative.

(2) Calling ai the element with a 1 in the i th entry, and zeroes elsewhere, verify that
a
x1
1 � � � a

x5
5 D .x1; : : : ; x5/ under the operation �.

(3) Use � to compute a�x55 a
�x4
4 � � � a

�x1
1 .

(4) Verify that the formula computed in the previous step is both a left and a right
inverse to .x1; : : : ; x5/.

(5) Verify that a1; : : : ; a5 satisfies the relations of the group.

In order to compute a non-torsion cocycle, we will develop one as a central extension.
We will do this by “blowing up” the relation Œa4;a1�D e. Thus, we get a group z� generated
by za1; : : : ; za6 with the relations

za2za1 D za1za2za3;

za3za1 D za1za3za
2
4;

za3za2 D za2za3za5;

za4za1 D za1za4za6;

zai zaj D zaj zai for all other pairs ¹i; j º.

Remark 5.1. The reader is warned that such an extension cannot be made for any homo-
geneous relation in any torsion-free finitely generated nilpotent group. Consider the
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group ƒ generated by b1; : : : ; b4 with the relations

Œb1; b2� D b3;

Œbi ; bj � D e for all other pairs ¹i; j º.

In this case the relation Œb3; b4� D 1 follows from the other three relations, so we cannot
construct a central extension by “blowing it up.” We will explain why this issue does
not arise in our example below. In general, an algorithm for finding when relations of
this form make a nilpotent group where each “ai” has infinite order is described in [20,
Propositions 9.8.3 and 9.9.1].

Then, z� can be identified with Z6 with multiplication given by

.x1; : : : ; x6/ � .y1; : : : ; y6/ D .1.x; y/; : : : ; 6.x; y//;

where

i .x; y/ D �i .x1; : : : x5; y1; : : : y5/ for i < 6;

6.x; y/ D x6 C y6 C x4y1 C 2x3
�
y1

2

�
C 2x2

�
y1

3

�
:

We have verified the fact that these polynomials give rise to a group operation satisfying
the relations of the group with similar code to what we used to verify these things for � .
Since the element .0; 0; 0; 0; 0; 1/ has infinite order in the group determined by these
polynomials, it follows that za6 has infinite order as well.

From this, it follows that a cocycle corresponding to the central extension is given by

�.x; y/ D x4y1 C 2x3
�
y1

2

�
C 2x2

�
y1

3

�
:

Let c be the 2-cycle

c D Œa1ja4� � Œa4ja1� D Œ.1; 0; 0; 0; 0/j.0; 0; 0; 1; 0/� � Œ.0; 0; 0; 1; 0/j.1; 0; 0; 0; 0/�:

Then, h�; ci D 1.
For any n co-prime to 6, we may define

Qn D .Z=nZ/5

with multiplication given by

.x1; : : : ; xn/ � .y1; : : : ; yn/ D .x�1.x; y/; : : : ; x�5.x; y//;

where x�i is �i with each coefficient reduced mod n.4 Then, reducing each coefficient of
� mod n, we get x� . Note that the fact that x� is a Z=nZ-valued cocycle on Qn implies

4Any 1
2

coefficient will be the corresponding inverse of 2 mod n, which exists since n is co-prime to 6.
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that � is of Qn-n type. Then, we can use the formula from Remark 3.22 to define our
asymptotic representation. Note that `2.Qn/ ' `2.Z=nZ/˝5: Treat ¹eiºiD0;:::;n�1 as a
basis for `2.Z=nZ/. For ease of notation we will extend ei to be well-defined for all i 2 Z
by the formula eiCn D ei . Thus, we get

�n.x1; : : : ;x5/ey1 ˝ ey2 ˝ � � �˝ ey5 D exp
�2�i�.x; y/

n

�
e�1.x;y/˝ e�2.x;y/˝ � � �˝ e�5.x;y/:

Theorem 1.1 guarantees that this formula is well-defined. As in Remark 4.3, we can
“ignore” the last tensor coordinate, since �.x; y/ does not depend on y5 and neither does �i
for i < 5. This gives us an n4-dimensional asymptotic representation. In this particular
case, we may go much further. It turns out that � depends only on x and y1, so we can
ignore every tensor coordinate except the first. This gives us the asymptotic representa-
tion �0n we introduced in the start of the section.

5.3. A polycyclic group

Let � D Z2 Ì Z, where the action of Z on Z2 is given by “Arnold’s Cat Map”

1 7! T D

�
2 1

1 1

�
2 GL2.Z/ D Aut.Z2/:

The generators are a1; a2; a3 with the relations

a2a1 D a1a2;

a3a1 D a
2
1a2a3;

a3a2 D a1a2a3:

A simplified version of our asymptotic representation is given on Cn ˝ Cn with basis
¹ej ˝ ekºj;k2Z and the convention that ejCn D ej . With this notation the generators are
sent to the following operators:

�0n.a1/ej ˝ ek D ejC1 ˝ ek ;

�0n.a2/ej ˝ ek D exp
�2�i
n
j
�
ej ˝ ekC1;

�0n.a3/ej ˝ ek D exp
�2�i
n

�
jk C j 2 C

1

2
k2 � j �

1

2
k
��
e2jCk ˝ ejCk :

As in the last chapter, we will explain how to compute the asymptotic representation
given by Proposition 3.17, then explain how to derive the simpler formula �0n.

We will compute a non-torsion cocycle in H 2.�IZ/. We explain our reasoning about
how to find the cocycle without formal proof, then show formally that it obeys the cocycle
condition. The idea is as in the previous section: to find a central extension of � , compute
the multiplication in the middle group of the central extension. We may consider the fol-
lowing presentation of �: each element in the group can be written uniquely as ax11 a

x2
2 a

x3
3

and this element will be sent to the corresponding product of matrices.
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We may make an extension by “blowing up” the relation Œa1; a2� D 1. Then, we may
consider z� to be the group generated by b1; : : : ; b4 and the relations

b2b1 D b4;

b3b1 D b
2
1b2b3;

b3b2 D b1b2b3;

b4bi D bib4 for all i .

Using these relations, we may write any element of z� uniquely in the form b
x1
1 � � �b

x4
4 with

xi 2 Z. As the reader is warned in Remark 5.1, it is not always the case that “blowing up”
a relation like this leads to a sensible extension. In this case when we verify the cocycle
condition, we will also have verified that this makes a sensible extension.

We will describe an element of � implicitly by a pair .v; k/ with v D .v1; v2/

2 Z2 and k 2 Z, then, by the definition of the semi-direct product, the multiplication
is given implicitly by .v1; k1/ � .v2; k2/ D .v1 C T k1v2; k1 C k2/. Our goal is to implic-
itly describe z� similarly. To that end, we will describe an element of z� as a triple .v; k; d/
with v D .v1; v2/ 2 Z2 and k; d 2 Z. This represents the element bv

1

1 b
v2

2 b
k
3b
d
4 . To that

end, we make the following observations:

bv
2

2 b
v1

1 D b
v1

1 b
v2

2 b
v1v2

3 ; (5.1)

b3a
v1

1 D .b
2
1b2/

v1b3

D b2v
1

1 bv
1

2 b3b
v1.v1�1/
4 ; (5.2)

b3a
v2

2 D .b1b2/
v2b3

D bv
2

1 b
v2

2 b3b
1
2 v
2.v2�1/

4 ; (5.3)

b3b
v1

1 b
v2

2 D b
2v1

1 bv
1

2 b
v2

1 b
v2

2 b3a
v1.v1�1/C 1

2 v
2.v2�1/

4

D b2v
1Cv2

1 bv
1Cv2

2 b3a
v1.v1�1/C 1

2 v
2.v2�1/

4 bv
1v2

4 : (5.4)

These essentially describe the ways we can get “b4 terms.” We will informally refer to
the contributions “(5.1) terms,” “(5.2) terms,” “(5.3) terms,” and “(5.4) terms.” The “(5.4)
terms” will refer to the terms in (5.4) that do not appear in (5.2) or (5.3). In order to capture
these terms, we define ˛; ˇ W Q2 ˝Q2 ! Q and  W Q2 ! Q as follows:

˛.v1 ˝ v2/ D v
1
1v
2
2 ;

ˇ.v1 ˝ v2/ D
1

2
v21v

2
2 C v

1
1v
1
2 ;

.v1/ D v
1
1 C

1

2
v21 :

Thus, we have shown

.v1; 1; 0/ � .v2; 0; 0/ D .v1 C T v2; 1; ˛.v2 ˝ v1 C v2 ˝ v2/C ˇ.v2 ˝ v2/ � .v2//:
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Note that although ˇ and  take rational values in general, ˇ.v2 ˝ v2/ � .v2/ is always
an integer. Here the input to ˛ comes from the (5.1) and (5.4) terms while the inputs to ˇ
and  come from the (5.2) and (5.3) terms. To compute the product in general for positive
values of k1, the steps would look like

.v1; k1; 0/ � .v2; k2; 0/ D .v1; k1 � 1; 0/ � .T v2; k2 C 1; .˛ C ˇ/.v2 ˝ v2/ � .v2//

D .v1; k1 � 2; 0/

� .T 2v2; k2C2; ˛.v2 ˝ v2CT v2 ˝ T v2/�.v2 C T v2//

D .v1; k1 � 3; 0/

� .T 3v2; k2C3; ˛.v2 ˝ v2CT v2 ˝ T v2CT
2v2 ˝ T

2v2/

� .v2 C T v2 C T
2v2//;

and so on. This motivates the definition

Sk D

´Pk�1
jD0.T ˝ T /

j k � 0;

�
P�1
jDkC1.T ˝ T /

j k < 0:

We cannot use the exponential sum formula to get a closed form for Sk , because
T ˝ T � 1 is not invertible. However, T � 1 is invertible, so we may write a closed form
for the analogue of Sk in the linear terms. We have done enough to motivate our definition
of the cocycle. It comes from keeping track of each of the “b3 terms” when computing
multiplications in z� . Note an element of � given by gi D .vi ; ki / D ..v1i ; v

2
i /; ki / so that

vi 2 Z2 represent the element a
v1i
1 a

v2i
2 a

ki
3 . We define

�1..v1; k1/; .v2; k2// D ˛.T
k1v2 ˝ v1/;

�2..v1; k1/; .v2; k2// D ˛..Sk1.v2 ˝ v2//;

�3..v1; k1/; .v2; k2// D ˇ.Sk1.v2 ˝ v2//;

�4..v1; k1/; .v2; k2// D ..T � 1/
�1.T k1 � 1/v2//:

Then, we define our cocycle

� D �1 C �2 C �3 � �4:

Note that �4 is subtracted, unlike the others. Here �1 comes from the (5.1) terms, �2
comes from the (5.4) terms, and �3 � �4 comes from the (5.2) and (5.3) terms. Before we
compute @� , we observe the following identities about Sk :

Sk1Ck2 D Sk1 C .T ˝ T /
k1Sk2 ;

.T ˝ T � 1/Sk D .T ˝ T /
k
� 1:

Now we compute @� piece by piece. We will let gi 2 � be represented as the pair .vi ; ki /.
Then, we compute

@�1.g1; g2; g3/ D ˛.�T
k1v2 ˝ v1 C T

k1.v2 C T
k2v3/˝ v1

� T k1Ck2v3 ˝ .T
k1v2 C v1/C T

k2v3 ˝ v2/
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D ˛.�T k1Ck2v3 ˝ T
k1v2 C T

k2v3 ˝ v2/

D �˛...T ˝ T /k1 � 1/.T k2v3 ˝ v2//

D �˛..T ˝ T � 1/Sk1.T
k2v3 ˝ v2//:

Next

@.�2C�3/.g1; g2; g3/ D .˛Cˇ/.�Sk1.v2 ˝ v2/CSk1..v2CT
k2v3/˝ .v2CT

k2v3//

� Sk1Ck2.v3 ˝ v3/C Sk2.v3 ˝ v3//

D .˛Cˇ/.�Sk1.v2 ˝ v2/CSk1..v2CT
k2v3/˝ .v2CT

k2v3//

� Sk2.v3 ˝ v3/ � Sk1.T
k2v3 ˝ T

k2v3/C Sk2.v3 ˝ v3//

D .˛ C ˇ/.Sk1.v2 ˝ T
k2v3 C T

k2v3 ˝ v2//:

Finally,

@�4.g1; g2; g3/ D ..T � 1/
�1.�.T k1 � 1/v2 C .T

k1 � 1/.T k2v3 C v2/

� .T k1Ck2 � 1/v3 C .T
k2 � 1/v3/ D 0:

Let

Sk1.T
k2v3 ˝ v2/ D

2X
iD1

ui ˝ wi :

Note that since Sk1 commutes with the map u˝ w 7! w ˝ u by construction, we have
that

Sk1.v2 ˝ T
k2v3/ D

2X
iD1

wi ˝ ui :

Now we have

@�.g1; g2; g3/ D

2X
iD1

.˛.�.T ˝ T /.ui ˝ wi /C 2ui ˝ wi C wi ˝ ui /

C ˇ.ui ˝ wi C wi ˝ ui //:

Next we see from the definition of T and ˛ that

˛..T ˝ T /ui ˝ wi / D .2u
1
i C u

2
i /.w

2
i C w

1
i / D 2u

1
i w

1
i C 2u

1
i w

2
i C u

2
i w

1
i C u

2
i w

2
i :

Similarly,

˛.2ui ˝ wi / D 2u
1
i w

2
i ;

˛.wi ˝ ui / D u
2
i w

1
i ;

ˇ.ui ˝ wi C wi ˝ ui / D 2ˇ.ui ˝ wi / D 2u
1
i w

1
i C u

2
i w

2
i :
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Thus, @� D 0. Secondly, we have the 2-chain

c D Œa2ja1� � Œa1ja2� D Œ..0; 1/; 0/j..1; 0/; 0/� � Œ..1; 0/; 0/j..0; 1/; 0/�:

Then, since S0 D 0 and T 0 � 1 D 0, we have that �1 is the only one of the forms to pair
non-trivially with c. Thus, we see that

h�; ci D 1:

We next investigate finite quotients of � . If n; m 2 NC so that the order of T reduced
mod n in GL2.Z=nZ/ divides m, then a finite quotient of � can be of the form

.Z=nZ/2 Ì Z=mZ

with the action described by the reduction of T mod n. Our goal is to find finite quo-
tients Qn of this form so that � is n-Qn compatible. In order to do this, note that the pair
.Sk˙1; T

k˙1/ can be determined from the pair .Sk ; T k/ and the entries of .Sk˙1; T k˙1/
are polynomials in the entries of .Sk ; T k/. These polynomials may be reduced mod n,
so, it follows that if we pick m (depending on n) so that Sm � S0 mod n and Tm � 1
mod n, we have

.Sk ; T
k/ � .SkCm; T

kCm/ mod n

for all k, by induction on jkj. It follows that the order of the order of T reduced mod n in
GL2.Z=nZ/ divides m. Thus, for odd n, we define

Qn D .Z=nZ/ Ì Z=mZ:

Since n is odd, we may express the 1
2

s in the definition of � as the inverse of 2 mod n.
We may reduce the rest of the operations mod n easily and the operators T k and Sk are
m-periodic, so the formula for � determines a cocycle � 0 which defines a cohomology
class inH 2.QnIZ=nZ/. Thus, � is of finite type. Our formula for the representation then
acts on the space Cn ˝ Cn ˝ Cm. We can get a formula from Proposition 3.17, but this
formula is messy, since our definition for � is messy. For that reason we will simply check
what the generators do, as follows:

�n.a1/ej ˝ ek ˝ e` D ejC1 ˝ ek ˝ e`;

�n.a2/ej ˝ ek ˝ e` D exp
�2�i
n
j
�
ej ˝ ekC1 ˝ e`;

�n.a3/ej ˝ ek ˝ e` D exp
�2�i
n

�
jk C j 2 C

1

2
k2 � j �

1

2
k
��
e2jCk ˝ ejCk ˝ e`C1:

We can see that this must be an asymptotic representation tensored against a genuine
representation in the third tensor coordinate. Thus, we can pick a smaller representation by
“ignoring” the e` part. This gives us the list of formulas �0n from the start of the subsection.
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A. Code to check multiplication polynomials

We will show Sage code that verifies these polynomials give rise to an associative relation
that obeys the given presentation of the group, by the isomorphism described above. We
first enter the polynomials, as shown in Figure 1.

Figure 1. Entering the polynomials.

Here the function “Eta” should take in 2 lists of 5 numbers or algebraic expressions
(representing two elements of the group) and apply the 5 polynomials to them, outputting
another list of 5 elements (representing the product of those 2 elements). Next we check
associativity, as shown in Figure 2.

Figure 2. Checking associativity.
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Figure 3. Checking for the existence of inverses.

Figure 4. The first few computations involved in verifying that the relations satisfy the presentation
of the group.
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The first line of code in Figure 2 is needed to make Sage treat z1; : : : ; z6 as alge-
braic expressions. The next two lines compute x � .y � z/ and .x � y/ � z, respectively.
The “for” loop checks that these expressions are equivalent in each coordinate. It is easy
to see by inspecting the polynomials that .1;0;0;0;0/x1 D .x1; 0;0;0;0/, .0;1;0;0;0/x2 D
.0; x2; 0; 0; 0/, and so on. The code in Figure 5 assumes this fact and checks that the rela-
tion .x1; : : : ; x5/ D a

x1
1 � � � a

x5
5 makes sense with ai corresponding to the vector that has

a 1 in the i th place and zeroes elsewhere.

Figure 5. Checking that the relation .x1; : : : ; x5/ D a
x1
1 � � �a

x5
5 makes sense with ai corresponding

to the vector that has a 1 in the i th place and zeroes elsewhere.

Next we must check the existence of inverses; see Figure 3 for the corresponding code.
The first line of code in Figure 3 computes what the inverse of .x1; : : : ; x5/ must

be if it exists. The next two lines verify that this is in fact both a left and right inverse,
respectively. Finally, we need to check that these relations satisfy the presentation of the
group. The first few of the relevant computations are shown in Figure 4.

These lines verify the relations a2a1 D a1a2a3, a3a1 D a1a3a24, and a5a1 D a1a5,
respectively. The rest of the relations may be checked with similar code.
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