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Amenability of quadratic automaton groups

Gideon Amir, Omer Angel, and Bálint Virág

Abstract. We give lower bounds for the electrical resistance between vertices in the Schreier graphs
of the action of the linear (degree 1) and quadratic (degree 2) mother groups on the orbit of the 0-ray.
These bounds, combined with results of Juschenko et al. (2016), show that every quadratic activity
automaton group is amenable. The resistance bounds use an apparently new “weighted” version of
the Nash-Williams criterion which may be of independent interest.

1. Introduction

Automaton groups are a rich family of groups, with a simple definition which exhibit
rich behaviour. They include many groups with interesting properties, including the
Grigorchuk group of intermediate growth, the Basilica group, the Hanoi towers group,
lamplighter groups, and many others.

Consider a finite state automaton. At each state s, it receives an input letter i from
some alphabet Œm�D ¹0; : : : ;m� 1º. It then outputs a letter from Œm� which is determined
by some permutation �s 2 Sm applied to i . The automaton then jumps to a state s0 which
is some function of s and i , before receiving the next input letter. For an initial state s, this
defines an action on the space of sequences in Œm�, where for each n, the first n letter of the
output is determined by the first n letters of the input. This can also be viewed as an action
on the rays of them-ary tree Tm, which is an automorphism of the tree. The corresponding
automaton group is the group generated by the actions corresponding to the states. Many
interesting groups are generated by very small automata.

The action described above yields that automaton groups are certain subgroups of the
automorphism group Aut.Tm/ of the rooted infinitem-ary tree for somem. For any vertex
v 2 Tm, and automorphism g, there is an induced action of g on the sub-tree above v. This
action is called the section of g at v, denoted gv . An action maps a sub-tree to another
sub-tree, but since a sub-tree is isomorphic to the whole tree, a section can be viewed
naturally as an automorphism of the whole tree. In this terminology, automaton groups
are the finitely generated subgroups of Aut.Tm/ with generators for which all sections
are also among the generating set. We refer the reader to, for example, Nekrashevych’s
monograph [13] for detailed definitions and further history.

Mathematics Subject Classification 2020: 05C81 (primary); 20E08, 43A07, 60B15 (secondary).
Keywords: amenability, automaton group, Schreier graph.

https://creativecommons.org/licenses/by/4.0/


G. Amir, O. Angel, and B. Virág 170

The activity of g 2 Aut.Tm/ at level n, denoted an.g/, is the number of v in level n of
the tree such that gv is not the identity. Automaton groups have the property that for any g
the activity sequence an.g/ grows either polynomially or exponentially. An automaton
group � is said to have degree d , if every g 2 � has activity an.g/ D O.nd /. Activity
of g was introduced by Sidki [14] as a measure of the complexity of the action of g, and
the degree of an automaton group as a measure of the complexity of the group.

There exist exponential activity automaton groups that are isomorphic to the free
group, as shown by Glasner and Mozes [9], and separately Vorobets and Vorobets [16].
However, one expects polynomial activity automaton groups to be smaller. In particu-
lar, in contrast to most examples of finitely generated non-amenable groups, Sidki [14]
showed that polynomial activity automaton groups have no free subgroups. This prompted
Sidki [15] to ask the following natural question.

Question 1.1. Are all polynomial activity automaton groups amenable?

This was answered affirmatively for degree 0 in [5] by Bartholdi, Kaimanovich and
Nekrashevych and for degree 1 in [3] by the present authors. These results were also
reproved by Juschenko, Nekrashevych and de la Salle [10] (see the discussion below).
Our main result resolves Sidki’s question for degree 2.

Theorem 1.2. Every automaton group of degree 2 is amenable.

For degrees 0 and 1, the proofs of [3, 5] proceed as follows. First, for each degree d
and m, a certain specific automaton group acting on Tm, called the mother group, is con-
structed. It is then shown that every automaton group � of degree d is isomorphic to a
subgroup of the mother group of degree d for some m0 (see [3, Theorem 5.1]). Next, it
is proved that the mother groups of degrees 0 and 1 are Liouville with respect to a care-
fully chosen random walk on them. Since the Liouville property implies amenability, and
amenability is inherited by subgroups, this implies amenability of all bounded or linear
activity automaton groups.

It is shown by Amir et al. [4] that for d � 3 the mother groups are not Liouville.1 Thus
the method of [5] cannot be extended to degree d > 2. This raises the natural question of
the Liouville property for degree d D 2.

Conjecture 1.3 ([3]). The mother groups of degree 2 are Liouville with respect to some
(or even every) random walk on them. Moreover, the same holds for every automaton
group of degree 2.

The Liouville property of the mother groups is established in the papers above by
showing that a certain random walk on the group has sublinear entropy. By results of

1Except for the case d D 3 and m D 2 which remains open.
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Kaimanovich and Vershik [11], sublinear entropy growth is equivalent to having the
Liouville property (with respect to this random walk). In a sense, entropy bounds can
be thought of quantitative versions of the Liouville property. One should note that – while
amenability is inherited by subgroups – it is not known whether the Liouville property
passes onto subgroups. Consequently, the results of [3, 5] do not imply that all automata
groups of degrees 0 or 1 are Liouville, nor that the mother groups are Liouville with
respect to other generating sets.

The fact that degree 0 automata groups are Liouville with respect to any measure on
them was proved in [2] by giving explicit entropy bounds for random walks on these
groups. These entropy bounds come from resistance lower bounds in the Schreier graphs
associated with the action of the automata group on a ray of the tree. To get such lower
bounds, it is enough to attain lower bounds on the resistance for the Schreier graphs of
the mother groups, since resistance can only increase when going into subgraphs. Thus
resistance estimates on the Schreier graph of the mother groups imply entropy estimates
and the Liouville property for bounded automata. We believe that a similar approach can
be used to show that automata groups of degree 1 also have the Liouville property for any
measure. For higher degree automata groups, the situation is different. In [4], it was shown
that the Schreier graphs for degree 3 and up mother groups are transient. This was used to
show (as noted above) that these groups do not have the Liouville property.

Upper and lower bounds for resistances in the Schreier graphs of the mother groups
were given in [4] and [2], respectively. These bounds are tight for degree 0 mother groups
and were enough to deduce transience for degree 3 and up mother groups. For degrees 1
and 2, there are significant gaps between the upper and lower bounds on resistances. In
particular, these bounds were not enough to deduce recurrence of the Schreier graphs for
degree 2 mother groups.

Since the Liouville property is harder to establish for d D 2 and false for d > 2,
new methods are needed for further progress on Sidki’s conjecture. In [10], Juschenko,
Nekrashevych and de la Salle proved that (under some general conditions), if the action
of a group G on a set X is significant enough, and the Schreier graph of the action is
recurrent, then the group is amenable. In the context of polynomial activity automaton
groups, their method yields a second proof of the amenability of degrees 0 and 1 auto-
mata groups that does not pass via the Liouville property. More precisely, they state the
following (paraphrased).

Theorem 1.4 ([10, Theorem 5.2]). If G is a quadratic activity automaton group and the
Schreier graph of its action on the tree is recurrent, then G is amenable.

Unfortunately, we do not prove recurrence of all components of the Schreier graph, but
just the Schreier graph on the orbit of the 0-ray. However, using the methods of [10], this
is sufficient for our needs, as we now explain. In the proof of [10, Theorem 5.1], they show
that all rays of the tree that are not eventually 0 are not singular (as defined in Theorem 3.1
there). While Theorem 5.1 is stated for degree 1 groups, that part of the proof is written for
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general degree. Therefore, Theorem 3.1 together with the proof of Theorem 5.1 implies
that if the Schreier graph of a quadratic activity automaton group G on the orbit of the
0-ray is recurrent, then G is amenable. In light of this, Theorem 1.2 is a corollary of the
following result.

Theorem 1.5. For any degree 2 automaton group, the Schreier graph of its action on the
0-ray of Tm is recurrent.

The bulk of the work in this paper is actually in a more general context of groups of
automorphisms of a spherically symmetric tree (i.e., a tree where every vertex at distance k
from the root has the same number mk of children). Such groups were used in [1, 4, 7] by
Brieussel, Amir and Virág to construct groups where the random walk has varied speeds
and entropy growth.

1.1. Mother groups on spherically symmetric trees

Let m D .m0; m1; : : :/ be some infinite bounded sequence with mi 2 ¹2; 3; : : :º. We con-
sider the spherically symmetric tree Tm defined as follows. At level 0 there is a single
vertex ; (the root). Each vertex at level i has mi children at level i , so that the size of
level ` is

Q
i<`mi . A vertex at level ` is naturally encoded by a word x` � � � x1x0 where

xi 2 Œmi �D ¹0; 1; : : : ;mi � 1º. Since we will later have a group acting on Tm on the right,
it is more useful to write the digits with x0 on the right. The set of ends of the tree Tm,
denoted E , are the infinite rays in Tm, and are naturally encoded by infinite sequences
(which we again write with x0 on the right) � � �x2x1x0, with xi 2 Œmi �. The subset of ends
with only finitely many non-zero digits is denoted E0.

We remark that the case of m constant is already new and of interest. This case is
of particular significance since the corresponding groups (as defined below) are the auto-
maton groups discussed above. The confused reader may well restrict to the case wherem
is the constant sequence, and the tree is the m-ary tree, without losing much.

We consider automorphisms of the rooted tree (which preserve the root ;, and hence
each level). (For some sequencesm such as .3; 2; 2; 2; : : :/ there are automorphisms which
do not preserve the root, but we do not consider such automorphisms in this work.) An
automorphism acts naturally on the set of ends of the tree, and is determined by this action.
A bijection f of the set of ends with itself corresponds to an automorphism of the tree if
for every i , the ith digit of f .x/ is determined by xi ; : : : ; x0.

Towards defining our groups, we need notation for the locations of non-zero digits in
an end of the tree. For a (finite or infinite) word x, let `�1.x/ D �1, and inductively let

`t .x/ D inf¹n > `t�1.x/ W xn ¤ 0º:

For some fixed degree d , the mother group of degree d , denoted Md;m, is a subgroup of
the automorphism group with the following set of generators. Each generator is specified
by a degree t 2 ¹�1; 0; : : : ; dº, and a sequence .�i /i�maxm, where �i is a permutation in
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the symmetric group Si for each i . For an end x, let k D 1C `t .x/. The generator applies
�mk to the digit xk , and leaves all other digits unchanged. If k D 1 (which happens for
some ends in E0), then x is a fixed point of the generator.

As an example, suppose x D : : : 201300010020. Then `0 D 1, `1 D 4, `2 D 8, etc. If
(for whatever value of m9) �m9 maps 1 to 0, then the corresponding generator with t D 2
will map this x to : : : 200300010020.

Note that the subset E0 of ends is preserved by all actions of generators of the mother
group, and hence by actions of the group. Moreover, E0 is dense in the set of all ends,
and so the action on E0 determines an automorphism of the tree. Finally, we remark that
the mother groups act transitively on E0. (This is not hard but requires some observation
and is also the basis of some mechanical puzzles such as the Chinese rings.) For d D 1; 2,
these groups are referred to as the linear and quadratic mother groups, respectively.

Recall that the Schreier graph for the action of a group G generated by S on a set A is
the graph with vertex set A and an edge .x; xg/ for any x 2 A and generator g 2 S . The
set of infinite rays in the tree is uncountable, and the Schreier graph corresponding to the
action on the full tree is not connected. Instead of considering the entire Schreier graph,
our main object of study in this work is the Schreier graph Gd;m for the action of Md;m

on E0. It is not hard to see that Gd;m is connected, and is the connected component of the
0-ray in the Schreier graph for the action on E . We shall also consider the finite Schreier
graphs for the action on level n of the tree, which will be denoted Gd;m;n.

Note that for any x; y, if there is a generator g with xg D y, then there are many such
generators. This is since the action of g on x only takes into account one of the entries in
one of the permutations defining g. This means that the Schreier graphs we consider all
have many parallel edges. However, the multiplicity of each edge is bounded, and so the
effect of this multiplicity on electrical properties is at most a constant factor. From here on
we ignore multiplicity of edges in the original Schreier graph. Note that in Section 2 we
apply a projection to the Schreier graph which will create parallel edges with unbounded
multiplicity, which has to be taken into account.

1.2. Results for mother groups

Theorem 1.6. For d � 2 and any bounded sequence m, the Schreier graph Gd;m is
recurrent.

We expect other components of the Schreier graph on E to have a very similar geo-
metry to the component on E0, and in particular to also be recurrent. This is not needed for
the application to amenability of the mother groups, and the combinatorial ingredients in
the analysis of the geometry of the graph are easier for E0, and so we restrict our attention
to that component.

In the case d D 0, the Schreier graph has been analysed in [4]. When d D 0 and
mi � 2, the graph is simply the half-line N. (Other components of the Schreier graph
on E in this case are isomorphic to Z.) For general m, it is easily seen to be recurrent as it
contains infinitely many cutsets of bounded size. Resistances in G0;m are studied in [4].
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The following theorems give bounds on the effective resistance between certain sets
in the graphs Gd;m. We assume here the reader has basic familiarity with the theory of
electrical networks, and refer the reader to, for example, [8, 12] for detailed background.
Recall that a graph can be considered as an electrical network with resistors represented
by edges. Electrical properties of the network are intimately related to behaviour of the
random walk on the graph. A fundamental result is that the random walk on a graph is
recurrent if and only if the effective resistance from any vertex (or finite set) to infinity is
infinite, or equivalently, the resistance to some far away set can be made arbitrarily large.

For d D 1; 2, recurrence of Gd;m is a direct consequence of the quantitative estim-
ates in the following theorem, which require some additional notation. In Section 2 we
describe an explicit projection y� W Gd;m!N with the following properties: The only ver-
tex with y�.v/ D 0 is the 0-ray, and each n 2 N has a finite non-empty pre-image. In the
case mi � 2, y� is a bijection.

Theorem 1.7. Fix a bounded sequence m. There exists a constant C , depending only on
supm such the following holds. For any 0 < s < t , the effective resistance in Gd;m satisfies

R.y��1Œ0; 2s/$ y��1Œ2t ;1// �

´
C.t � s/ for d D 1;

C.log t � log s/ for d D 2:

Remark 1.8. Note that by monotonicity, if a < 2s < 2t < b then

R.y��1Œ0; a/$ y��1Œb;1// � R.y��1Œ0; 2s/$ y��1Œ2t ;1//:

Thus Theorem 1.7 implies a similar bound for such resistances (i.e., log.b=a/ and
log log.b=a/ in the two cases, respectively) as long as b � 4a. For b close to a, the res-
ult might fail. Indeed, if b D a C 1, then the resistance can be of order a�ı for some ı
depending on xm, which can be large if xm has large entries.

As mentioned in the introduction, any automaton group of degree d is conjugate to
a subgroup of the mother group of the same degree d , possibly on a larger alphabet [3,
Theorem 5.1]. This was first proved in the degree 0 case by Bartholdi, Kaimanovich and
Nekrashevych [5]. Brieussel used a version of the degree 0 mother groups in spheric-
ally symmetric trees to establish amenability of certain automorphism groups in those
cases [6, Theorem 3.1].

Since resistances in subgraphs are larger than resistances in a graph, we get the
following corollary, which in turn implies amenability of the groups.

Corollary 1.9. The Schreier graph for the natural action of any automaton group of
degree at most 2 on the ends of the regular tree has a recurrent component.

Structure of the paper. In Section 2, we give a combinatorial description of the Schreier
graphs of the mother groups. In Section 3, we give a generalisation of the Nash-Williams
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resistance bound for collections of non-disjoint cutsets. Unlike the Nash-Williams bound,
the generalised version always achieves the actual resistance if the correct cutsets and
weights are used. While this generalisation is not difficult, we have not found a reference
for it, and it is of some independent interest. Finally, in Section 4 we define a collection
of cutsets in Gd;m, assign them weights and deduce Theorem 1.7.

2. Combinatorial description of the graphs

In this section we give a more explicit description of the Schreier graphs Gd;m and Gd;m;n.
Recall that a vertex x of Gd;m is an end in E0 of Tm, and so is naturally described by a
sequence .xi /i�0 where xi 2 Œmi � such that eventually xi D 0. For Gd;m;n, the vertices are
finite sequences xn�1 � � � x1x0.

We write x � y to denote that x, y are connected by an edge. Edges are of d C 2
different types, denoted by t 2 ¹�1; 0; : : : ; dº, corresponding to the types of the generator
associated with the edge. In all cases, an edge connects vertices x and y which differ only
in a single coordinate (though not all such pairs are connected). We denote that coordinate
by k D k.x; y/, so that xk ¤ yk , and xi D yi for all i ¤ k. For such a pair x; y, we have
that

• .x; y/ is an edge of type �1 if k D 0.

• .x; y/ is an edge of type t � 0 if k > 0, and xk�1 D yk�1 ¤ 0, and moreover there
are precisely t indices i < k � 1 for which xi ¤ 0.

• Otherwise, .x; y/ is not an edge.

For example, xD 0340020 is connected to yD 0140020 by an edge of type 1 (here kD 5),
since x1 and x4 are non-zero. The same x is not adjacent to z D 0320020, since xk�1 D 0.
See Figure 1 for some small examples.

Clearly the graphs Gd;m;n are monotone in d; mi ; n: Reducing any mi restricts to a
subset of the vertices, while reducing d to d 0 removes all edges of type t > d 0. Extending
a vertex of Gd;m;n by 0s gives a vertex of Gd;m;n0 for any n0 > n. Extending by infinitely
many 0s gives a vertex of Gd;m. This gives a canonical embedding of Gd;m;n in the graphs
for larger n and in Gd;m.

Clearly for each i , the graphs Gd;m and Gd;m;n are also invariant to permuting the
letters ¹1; : : : ; mi � 1º. Consider two vertices x; y to be equivalent if they have the
same non-zero coordinates, that is, ¹i W xi ¤ 0º D ¹i W yi ¤ 0º. From each such equi-
valence class we take as representative the vertex in ¹0; 1ºn. The hamming weight of a
vertex x, denoted jxj, is the number of non-zero coordinates. The equivalence class of x
has

Q
i Wxi¤0

.mi � 1/ vertices. The projection from Gd;m;n to ¹0; 1ºn is denoted by � . In
the limit n!1, this projection extends to a projection from Gd;m to

L
i2N¹0;1º, namely

the set of ¹0; 1º sequences with finitely many ones. Since these are the vertices of Gd;2;n
(or Gd;2), we can see � as a map from Gd;m;n to Gd;2;n, which preserves much of the graph
structure.
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Figure 1. Top and middle rows: The graphs Gd;2;n for d D 1 and n D 1; 2; 3; 4. Bottom row: The
graph G1;3;2 and its quotient G1;2;2 with multiple edges and self-loops. Edge colour denotes its
type: Black for t D �1, red for t D 0 and blue for t D 1. The bold loop on the bottom right has
multiplicity 4, not all of the same type, but of course has no effect on resistances. Vertices are laid
out according to the linear order yx from left to right.

The resistances we shall consider are between sets that are themselves invariant to
such permutations, and thus can be studied by looking at resistances on the quotient
graph. Many edges become self-loops under this projection, and do not affect the res-
istance. If .x; y/ is an edge where xk D 0 and yk ¤ 0, then the edge x; y is projected
onto a proper edge of Gd;2;n. If .x; y/ is an edge where xk ; yk ¤ 0, then the edge x; y
is projected onto a self-loop. Thus � maps Gd;m;n to Gd;2;n with self-loops. Each edge
of Gd;2;n can have multiple pre-images under � . The number of pre-images of an edge
.x; y/ is

Q
i Wyi¤0

.mi � 1/ (assuming xk D 0 and yk ¤ 0). We will therefore consider the
graph Gd;2;n where edges have conductance given by this multiplicity. We remark thatQ
i Wxi¤0

.mi � 1/ and
Q
i Wyi¤0

.mi � 1/ differ by a bounded factor of mj � 1 for some j ,
so up to constant factors either can be used for the conductance of the edge. The same
holds for the projection from Gd;m to Gd;2. We will work below primarily with the graphs
Gd;2;n and Gd;2 with edge conductances coming from these multiple pre-images.

The graphs in the case d D 0 are particularly simple. Each vertex of G0;2;n is incident
to one edge of type �1 and one edge of type 0, except for the root o D 00 � � � 0 and one
other vertex o0 D 10 � � �0 which have degree 1. It is not hard to verify that the graph G0;2;n
is a path of length 2n � 1 from o to o0. Since increasing d does not remove any edges, this
path is contained in Gd;2;n for any d . It will be useful to keep track of the position of a
vertex x along this path, which shall be denoted yx 2 Œ0; 2n � 1/.

Given a finite binary string x D xnxn�1 � � � x0, we can represent its linear position as
yxnyxn�1 � � � yx0 by yxk D

Pn
iDk xi .mod 2/. Note that this map is a bijection from ¹0; 1ºn

to itself, and the inverse transform is given by xk D yxk C yxkC1 .mod 2/. This extends to
infinite sequences x 2

L
i2N¹0; 1º, since the infinite sum contains finitely many ones. We

also define the projection y� on Gd;m and Gd;m;n by composing this transformation with the
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projection � , namely y�.x/ D b�.x/. For example, if x D 0340020, then �.x/ D 0110010
and y�.x/ D 0100011.

We remark that
L
i2N¹0; 1º is naturally in bijection with N, where any integer cor-

responds to its binary expansion. This gives a natural order on Gd;2 and a partial order on
Gd;m, where x < y if y�.x/ < y�.y/ as integers. The root is the unique minimal vertex,
mapped to yo D 0.

Recall that for a vertex x we denote by `i .x/ the position of the .i C 1/th non-zero
digit in i from the right, and we let `�1.x/ D �1. Thus for an edge e D .x; y/ of type t
we have `i .x/ D `i .y/ for all i � t . We denote the part of x (or y) strictly to the left of
position k D k.x; y/ by z.x; y/. When x and y are fixed, we shorten notation and denote
the above simply by k, `i and z. We shall make use of the following description of edges
in terms of the linear order on vertices.

Remark 2.1. Edges of type �1 and 0 always connect adjacent points in the linear order.
That is, 0 is connected to 1 by an edge of type �1, and every other x 2 ¹0; 1º� yx is con-
nected to yx ˙ 1 by edges of types �1 and 0. The edge types alternate along the resulting
path (see Figure 1).

3. Weighted Nash-Williams

In this section we give a generalisation of the classical Nash-Williams bound on res-
istances in electrical networks, which applies for collections of not-necessarily disjoint
cutsets. This generalisation, which is also of some independent interest, will be used to
give lower bounds on resistances in the Schreier graphs of the mother groups.

As noted, we assume here a basic familiarity with the theory of electrical networks, and
refer the reader to, for example, [8,12] for detailed background. We recall the notations we
use below. An electrical network is a graphGD .V;E/with edge weights or conductances
Ce 2 RC. The resistance of an edge is denoted Re D C�1e . An unweighted graph is seen
as a network with Ce � 1. We denote the resulting effective resistance between vertices
a; b by R.a$ b/. This is extended to resistance between sets A;B , denoted R.A$ B/.

Recall the classical Nash-Williams inequality: In any graph G with vertices a; b, if
¹Siºi2I are disjoint edge cutsets (i.e., Si separates a from b), then R.a$ b/ �

P
jSi j
�1.

This extends in the natural way to the resistance between sets A;B , as well as to electrical
networks, where jSi j is replaced by the total conductance of Si . In general networks, there
is no collection of disjoint cutsets for which this bound achieves the actual resistance. For
example, in the triangle ¹a; b; cº there can only be one cutset of degree 2 between a; b,
giving a bound of 1=2, to the actual value R.a$ b/ D 2=3. There is not even a bound on
how far from R.A$ B/ the optimal collection of cutsets might be: If a single edge e of
a long cycle has re much larger than the other edges, the Nash-Williams bound will be far
from the actual effective resistance. However, it turns out that there is a weighted version
of Nash-Williams that can achieve the resistance on any graph, which we describe below.
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Let ¹Siºi2I be some collection of cutsets (not necessarily disjoint). A resistance alloc-
ation is an assignment, where each edge splits its resistance between the cutsets containing
it. More explicitly, for each edge e and i 2 I , we have partial resistances Re;i � 0 which
satisfy

P
i Re;i � Re so that Re;i D 0 if e 62 Si . Define the split conductance of Si by

C.Si / D
P
Si
R�1e;i .

The following is the generalisation of Nash-Williams to non-disjoint cutsets. While it
is fairly simple to prove, we are not aware of a reference for it in the literature.

Proposition 3.1. With the above notations, for any collection of cutsets and resistance
allocation we have R.A$B/�

P
i C.Si /

�1. Moreover, in any finite graph, R.A$B/ is
the maximum of

P
i C.Si /

�1 over all resistance allocations on some collection of cutsets.

Remark 3.2. In an infinite graph, the supremum of
P
i C.Si /

�1 is the free effective res-
istance between A; B . This follows from the above, by applying the proposition to the
restriction of G to a large set ƒ and taking a limit as ƒ exhausts the graph.

A particular way of allocating resistances is to assign each cutset Si a weight Ki � 0
and allocate resistances in proportion to these weights. Formally this means to set Re;i D
ReKiP
j We2Sj

Kj
. Plugging this in yields the following bound.

Corollary 3.3. For any collection ¹Siºi2I of cutsets between A;B , and any non-negative
weights .Ki /, we have

R.A$ B/ �
X
i

 X
e2Si

P
j We2Sj

Kj

ReKi

!�1
:

Remark 3.4. If the graph is infinite, the weighted cutset method still gives a lower
bound on the resistances. If we consider the resistance from a vertex (or set) to infin-
ity, R.A$1/ is a limit of the resistance to the complement of an arbitrary exhaustion
Gn. It follows that R.A$ 1/ is again the supremum over weighted cutsets as above.
In particular, a graph is recurrent if and only if there exist a collection of cutsets Si and
resistance allocations Re;i such that

P
C.Si /

�1 D1. We omit further details.

Proof of Proposition 3.1. Assume first that there are only finitely many cutsets Si in the
collection. Given a resistance allocation, we construct a new network G0 from G, where
each edge e is replaced by several edges in series, with resistances ¹Re;iºi2I . (The order of
these edges in the series is arbitrary.) Since

P
i Re;i � Re , effective resistances in G0 are

all smaller than inG. InG0 we can construct a collection of disjoint cutset: For each i take
the edges of resistance Re;i . The classical Nash-Williams applied to these disjoint cutsets
gives the claimed bound. If there are infinitely many cutsets, just note that any finite partial
sum gives a finite resistance allocation, and thus gives a lower bound on R.A$ B/.

To see that some weighted cutsets achieve the resistance, we give an explicit construc-
tion. Consider the induced equilibrium voltage with V D 0 onA and V D 1 onB , and let f
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be the equilibrium flow from a to b, so that f .x; y/ D Vy�Vx
Rxy

. Let 0 D a0 < a1 < � � � <
am D 1 be the different values taken by V . For each i � m, let Ui D ¹x 2 G W Vx < aiº,
so that A � Ui and B � U ci . Define the cutsets Si of edges x; y with x 2 Ui and y 62 Ui .

We use the weighted resistance allocation as defined above. Assign Si weight Ki D
ai � ai�1, so that

P
Ki D VB � VA D 1. For an edge e D .x; y/ with Vx < Vy , we have

that X
j We2Sj

Kj D Vy � Vx ;

and therefore R�1e;i D R�1e
Vy�Vx
Ki
D f .e/=Ki . Since the flow is always in the direction

of increasing voltage, the total flow across any cutset Si is exactly 1=R.A$ B/. Thus
C.Si /

�1 D KiR.A$ B/. Summing over i we get the claim.

4. Cutsets in G

We now use the linear order on vertices of G D Gd;2;n or Gd;2 to define a collection of
cutsets. We remind that we work here with the graphs resulting from projecting Gd;m;n
so that edges have unequal conductances. The conductance of an edge .x; y/ is eitherQ
i WxiD1

.mi � 1/ or the corresponding product for y. The two are equivalent up to a
bounded multiplicative factor.

For ya 2 N, we let Sa be the set of all edges .x; y/ with yx < ya � yy. Note that these
cutsets are not disjoint for d > 0. (If d D 0, then G is a path, and each of these cutsets is a
single edge.) As with x, each ya is associated with a sequence a 2 ¹0; 1º�. Note that even
for general sequences m we take a 2 ¹0; 1º�.

For our analysis, it will be convenient to enlarge these cutsets slightly. Edges of type
�1 and 0 will not be added to the cutsets. However, to some cutsets we will add an edge
of type 1 and possibly several edges of type 2, as described below. The enlarged cutsets
will be denoted xSa, and are defined formally after the proof of Lemma 4.1.

For a sequence q D .qi /, we denote ˇq WD
Q
i ˇ

qi
i , where ˇi D 1=.mi � 1/. An

integer a 2 N is interpreted as a sequence using its binary representation, so we can write
ˇa WD

Q
i WaiD1

ˇi . To a cutset xSa we associate weight ˇa. We also use below the nota-
tion ˇ�a D 1=ˇa. We then allocate the resistance Re of an edge e between the cutsets in
proportion to their weight, that is, for e 2 xSa let

Re;a D
Reˇ

aP
bWe2xSb

ˇb
: (4.1)

Our immediate goal is therefore to understand which of the cutsets Sa include a given
edge and which edges are included in any cutset. The enlarged cutsets xSa will be defined
so that Re;a is easier to analyse.

Lemma 4.1. Consider an edge e D .x; y/ of type t with yx < yy.
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(1) If t 2 ¹�1; 0º, then e 2 Sa if and only if ¹yx; yyº D ¹ya � 1; yaº as an unordered pair.

(2) If t D 1 and a ¤ x, then we have e 2 Sa if and only if ai D xi D yi for all i > `0
except i D k.

(3) If t D 2 and e 2 Sa, then ai D xi D yi for all i > `1 except i D k.

See Figure 2 for examples of the type 1 and type 2 cases. Note that in the case t D 1
we have k D `1 C 1 > `0. In that case the condition on the digits of a, x, y is satisfied
when a D x but e 62 Sa due to the strict inequality in the definition of Sa. In the case
t D 2, we do not provide a sufficient criterion for e 2 Sa but only a necessary condition.
In the case of t D 2, one could give a necessary and sufficient condition for e to be in Sa,
which would be more cumbersome and would not lead to a significant improvement in the
estimates below.

Proof. The cases t D �1 and t D 0 follow immediately from Remark 2.1.
Let e D .x; y/ be a type 1 edge with yx < yy. Since k D 1C `1 is the unique index

where xk ¤ yk , we have that x and y have the following form (from left to right): They
start with the same sequence of bits w, until position k. At position k, one of them is 0
and the other is 1. Which is 0 depends on the parity of the number of 1s in w. At position
`1 D k � 1 both are 1, and the rest of the bits are 0 except for a single position l0 where
also x`0 D y`0 D 1 (see Figure 2).

Therefore, their linear order representations yx; yy have the following structure: Both
begin (on the left) with yw till position k. At position k, yx D 0 and yy D 1 (since we
assumed yx < yy). This is followed in yx by `1 � `0 ones, and `0 zeros. In yy, the final ones
and zeros are reversed: There are `1 � `0 zeros followed by `0 ones.

w 0 1 0 0 0 0 0

w 1 0 0 0 0 0

x

y

x̂

ŷ

â

a

ŵ 0 0 0 0 0

0 0 0ŵ

ŵ

1 1 111

1 1 1

0

0 0 0ŵ 1

1 1 1 ∗

∗∗

∗∗

∗∗

w 1 0 0 ∗∗ ∗∗∗

l
1

l
0

l
2

l
1

l
0

k

w 0 0 0 0 0 0

w 0 0 0 0 0

x

y

x̂

ŷ

â

a

ŵ 0 0 0 0 0

0 0 0ŵw

ŵw

1 1 111

1 1 1

ŵ 0

0 0 01

1 1 1 ∗

∗∗

∗∗∗

∗∗

w 0 0 ∗∗ ∗∗∗

k

0 0

0 0

0 0 0

1 11

∗

∗∗

∗∗

∗

∗∗∗

∗

1

1

11 1

1 1

11 1

1

Figure 2. Examples for Lemma 4.1. Left: .x; y/ is a type 1 edge. x and y differ only in a single
position k, and have a one at position k � 1 D `1. The digits xi D yi for i > k form a sequence w.
If w has an even number of ones, then yx < yy; otherwise, it would be reversed. If .x; y/ 2 Sa, then
yx < ya � yy, and so ya must take one of two forms, depending on its kth digit. The �s indicate digits
that could take any value in ¹0; 1º. However, in the first form of ya, if all �s are 0 then yx D ya, which
is excluded. In either case, ai agrees with either xi or yi for all i > `0. Right: a type 2 edge. Here,
yx < ya � yy implies that ya and a have the form shown. However, even more cases are excluded; for
example, if yaD yw10001111010, then ya > yy and .x;y/ 62 Sa. The enlarged cutsets xSa contain .x;y/
whenever a has one of the forms above, even if ya 62 .yx; yy�.
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Since we assume a ¤ x, then also ya ¤ yx. Therefore, the assumption .x; y/ 2 Sa is
equivalent to yx � ya � yy. Then ya must agree with both yx and yy in all positions left of k. If
yak D 0, then ya � yy must hold, and the condition yx � ya is equivalent to the next `1 � `0
digits being 1 (and the final `0 digits can be anything). Similarly, if yak D 1, then yx � ya
must hold, and the condition ya � yy is equivalent to the next `1 � `0 digits all being 0.

Converting this description of ya to a yields the claim for the case t D 1 (recall
ai D yai C baiC1 mod 2).

The case t D 2 is similar. Let eD .x;y/ be a type 2 edge with yx < yy. Since k D 1C `2
is the unique index where xk ¤ yk , we have that x and y have the following form (from
left to right): They start with the same sequence w, until position k. At position k one of
them is 0 and the other is 1. Subsequently, their non-zero digits are precisely in positions
`2; `1; `0.

In the linear order representation, yx; yy have the following structure: Both begin (on
the left) with yw till position k. At position k, yx D 0 and yy D 1. This is followed in yx by a
block of 1s, a block of 0s, and another block of 1s, and in yy by blocks of the same lengths,
but starting and ending with 0s.

Suppose .x;y/ 2 Sa, and in particular yx � ya� yy. Then yamust agree with both yx and yy
in all positions left of k. If yak D 0, then ya � yy holds, and the assumption yx � ya implies
that the next `2 � `1 digits of ya are all 1s. Similarly, if yak D 1, then the assumption ya � yy
implies that the next `2 � `1 digits are 0s. Converting this description of ya to a yields the
claim for the case t D 2.

In light of Lemma 4.1, we define the enlarged cutsets xSa which contain all edges .x;y/
which satisfy the condition in the corresponding clause of the Lemma 4.1. Explicitly, an
edge .x; y/ of type t with yx < yy is in xSa if

• t 2 ¹�1; 0º, and yx D ya � 1, yy D ya, or

• t D 1 and ai D xi D yi for all i > `0 except possibly i D k, or

• t D 2 and ai D xi D yi for all i > `1 except possibly i D k.

From here on we work with the cutsets xSa.

Lemma 4.2. For an edge e D .x; y/ of type t , we have that

X
aWe2xSa

ˇa �

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

ˇx t D �1 or t D 0;

ˇx
Y
i�`0

.1C ˇi / t D 1;

ˇx
Y
i�`1

.1C ˇi / t D 2;

where the implicit constants depend only on max xm.

Proof. The case t � 0 is trivial since aD x or aD y and ˇx and ˇy differ by the bounded
ratio ˇk .
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In the case t D 1, from the definition of xSa we have ai D xi D yi for i > `0, except
i D k D `1 C 1. In particular, ai D 0 for i 2 .`0; `1/. We are interested in the sum of ˇa

over all a with e 2 xSa. Since for i � `0 we can have any combination of 0s and 1s, this
satisfies X

aWe2xSa

ˇa D
�Y
i>k

ˇ
xi
i

�
.1C ˇk/ˇ`1

� Y
i�`0

.1C ˇi /
�
:

Since ˇ is bounded from 0 and above, and since xi D 0 for i < k except i D `0; `1, the
first term in this product is (up to constants) ˇx , and the next two terms are bounded,
giving the lemma.

The case t D 2 is almost identical, with `1 replacing `0.

The next step is to compute the total conductance of a cutset. Whereas previously
we were interested in which cutsets contain an edge, now this requires the dual question:
Which edges are in a cutset. Each cutset contains a unique edge of type 0 or �1, but
can contain more edges of higher types. For any a, the conductance of xSa is given by
Ca WD

P
e2xSa

R�1e;a. Note that for an integer a we have Œlog2 a� D max¹i W ai ¤ 0º.

Lemma 4.3. Fix a 2 N. For each `0 � log2 a, there is a unique edge .x; y/ of type 1 in
xSa with the given `0, whereas for `0 > log2 a there are no edges of type 1 in xSa with that
value of `0.

Proof. This is seen directly from the definition of xSa. Let us fix `0 and a, we try to recover
the edge .x; y/. First we find `1, which must be the minimal i > `0 with ai D 1. This is
the only choice, since a`1 cannot be 0 if .x; y/ 2 xSa, and since ai D 0 for all i 2 .`0; `1/.
Such `1 can be found if and only if `0 < log a. We now can identify x and y, since
xi D yi D 0 for all i � `1 except i D `0; `1 where xi D yi D 1. Moreover, xi D yi D ai
for all i > `1C 1. Finally, for i D `1C 1we have that xi , yi are 0 and 1 in some order.

Lemma 4.4. In the degree 1 mother group, we have that

Ca � ˇ
�a

Y
i<log2 a

.1C ˇi /;

where the constants depend only on max xm.

Proof. Fix some a 2 N, and consider the cutset xSa. The cutset contains exactly one edge
of type �1 or 0 (with yx C 1 D yy D ya). This edge has conductance R�1e D ˇ

�x or ˇ�y

(equivalent up to constants to ˇ�a), and assigns all of it to the cutset xSa. Recall the defini-
tion (4.1) of the resistance allocation Re;a. The contribution to the cutset conductance Ca
from edges e D .x; y/ of type 1 is given (using Lemma 4.2) by

X
e2xSa

R�1e;a D
X
e2xSa

P
bWe2xSb

ˇb

Reˇa
�

X
e2xSa

ˇx
Q
i�`0

.1C ˇi /

ˇxˇa
D ˇ�a

X
e2xSa

Y
i�`0

.1C ˇi /:
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By Lemma 4.3, there is a unique edge xSa with each `0 � log2 a, so we have

Ca � ˇ
�a
C ˇ�a

X
`0�log2 a

Y
i�`0

.1C ˇi /

where the first term is from the edge of type 0 or �1 and the sum from edges of type 1.
Since ˇi are bounded away from 0, the sum is dominated up to a constant factor by the
largest term and we get

Ca � ˇ
�a

Y
i<log2 a

.1C ˇi /

as claimed.

Lemma 4.5. In G2;m we have that Ca � ˇ�a.log2 a/
Q
i<log2 a

.1 C ˇi /, where the
constants depend only on max xm.

Proof. This is very similar to the proof of Lemma 4.4. The main change and additional
contribution now is from edges of type 2, and so we need to understand edges of type 2
in xSa. We first count edges of type 2 in xSa. (This is just as the type 1 case in Lemma 4.3.)
We claim that for any `1 < log2 a, there are exactly `1 edges e 2 xSa with that `1. To see
this note that given `1 < log a, and any `0 < `1, there is a unique edge x; y of type 2
with those `0; `1 in the cutset. Thus the contribution to Ca from edges of type 2 is up to
constants

ˇ�a
X

`1<log2 a

k
Y
i�`1

.1C ˇi / � ˇ
�a.log2 a/

Y
i<log2 a

.1C ˇi /;

since the sum is again dominated by its largest term. This dominates the contribution from
edges of type �1; 0; 1, and so gives the claimed total conductance.

Proof of Theorem 1.7. To bound the resistance from ��1.Œ0; 2s// to ��1.Œ2t ;1//, we
separate cutsets into groups according to Œlog2 a� 2 Œs; t/. For k 2 Œs; t/, there are 2k

choices for a with Œlog2 a� D k.
In the case d D 1, the contribution from the cutsets xSa with Œlog2 a� D k is given by

Lemma 4.4:
2kC1�1X
aD2k

C�1a �

2kC1�1X
aD2k

ˇa
Y
i�k

.1C ˇi /
�1
D ˇk :

Since ˇk is bounded, the total resistance is at least c.t � s/.
In the case d D 2, Lemma 4.5 gives an extra factor of 1=k in the kth term, so

2kC1�1X
aD2k

C�1a �

2kC1�1X
aD2k

ˇak�1
Y
i�k

.1C ˇi /
�1
D ˇkk

�1:

Therefore,

R.y��1Œ0; 2s/$ y��1Œ2t ;1// �

t�1X
kDs

c=k � log.t/ � log.s/
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as claimed.

Proof of Theorem 1.6. Fix s D 0 in Theorem 1.7. We find that R.y��1.0/$ y��1Œ2t ;1//
is unbounded as t !1. Recurrence of the graph follows.
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