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On GIT stability of linear systems
of hypersurfaces in projective spaces

Masafumi Hattori and Aline Zanardini

Abstract. In this paper, we consider the problem of classifying linear systems of
hypersurfaces (of a fixed degree) in projective space up to projective equivalence.
Our main result consists of a complete criterion for (semi)stability in the sense of
geometric invariant theory (GIT). As an application, we inspect a few relevant geo-
metric examples recovering, for instance, Miranda’s characterization of GIT stability
of pencils of plane cubics. Furthermore, we completely describe GIT stability of
Halphen pencils of any index.

1. Introduction

Linear systems of hypersurfaces are ubiquitous in algebraic geometry, usually in connec-
tion with rich geometric structures, including algebraic fiber spaces. This paper aims to
shed light on the problem of classifying such objects up to projective equivalence using
geometric invariant theory (GIT). Our work fits in a collection of other GIT constructions
of moduli spaces of linear systems of hypersurfaces, such as [7,8,11,15,17,21,26,30,33].

For a fixed positive integer n, let V denote the .n C 1/-dimensional vector space
H0.Pn;OPn.1//. Then for each integer r � 1, the projective space P .S rV _/ param-
eterizes hypersurfaces of degree r on P .V / D Pn. In particular, the space Xk;d;n of
k-dimensional linear systems of hypersurfaces of degree d in Pn can be embedded in
the projective space P .ƒkC1SdV _/ via the Plücker coordinates. The natural action of
PGL.V / on V induces an action on this large projective space, hence on the invariant
subvariety Xk;d;n, and the problem we are interested in is the problem of parameterizing
points in Xk;d;n modulo the induced PGL.V /-action. Moreover, since the group SL.V /
also acts naturally on Xk;d;n, and it acts with the same orbits as PGL.V /, we can (and we
will) consider the SL.V /-action on Xk;d;n instead for practical reasons.

Parameterizing the orbits of the SL.V /-action on Xk;d;n is the same as construct-
ing the quotient space Xk;d;n==SL.V /. This can be achieved algebraically via GIT by
restricting to the open subset of Xk;d;n consisting of so-called (semi)stable points. In
this paper, we provide a complete criterion for describing these (semi)stable points in
Xk;d;n � P .ƒkC1SdV _/ for the action of SL.V /. Since the group SL.V / also acts on the
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space P .Sd.kC1/V _/ parameterizing hypersurfaces of degree d.k C 1/, we achieve this
by establishing a link between (semi)stability of points in Xk;d;n and (semi)stability of
certain reducible hypersurfaces of degree d.k C 1/ in Pn (points in P .Sd.kC1/V _/). Our
criterion can now be stated.

Theorem 1.1 (= Theorem 3.3). A linear system L 2Xk;d;n is GIT stable (respectively,
semistable) if and only if for any choice of generators H1; : : : ; HkC1 2L, the degree
d.k C 1/ hypersurface H1 C � � � C HkC1, viewed as an element of P .Sd.kC1/V _/, is
GIT stable (respectively, semistable).

Theorem 1.1 shows that the following two questions are equivalent:

When is a linear system L2Xk;d;n GIT (semi)stable?

and

When is the union of k C 1 (distinct) hypersurfaces generating L GIT (semi)stable?

This means that the problem of classifying points L2Xk;d;n can be viewed as the problem
of classifying certain points in P .Sd.kC1/V _/. Since the dimension of P .Sd.kC1/V _/ is
much smaller than that of P .ƒkC1SdV _/ � Xk;d;n, this equivalence makes the former
problem simpler. Furthermore, we can use this equivalence to detect GIT stability of linear
systems by applying several already-known criteria for stability of hypersurfaces.

To prove Theorem 1.1, we first compare the Hilbert–Mumford weights of a linear
system L 2Xk;d;n with the Hilbert–Mumford weights of a hypersurface lying in L, as
well as to the Hilbert–Mumford weights of the hypersurface given by the union of k C 1
generators of L. This is encoded in Lemmas 3.1 and 3.2. We then make use of the standard
numerical criterion for GIT (semi)stability (Proposition 2.2) in both our setting and the
analogous one for hypersurfaces.

Some partial criteria for (semi)stability of linear systems of hypersurfaces

In this paper, we also establish several secondary partial criteria for (semi)stability of
points in Xk;d;n, which are consequences of our main result and illustrate its applicability.
We will now list these.

First, recall that GIT stability for hypersurfaces is closely related to an invariant of
singularities called the log canonical threshold, as pointed out first by Hacking in [12]
and by Kim–Lee in [18]. In [32], the second named author shows that a similar relation-
ship also holds for pencils of plane curves. Here, using Theorem 1.1, we can show that
this relationship holds more generally for all linear systems of hypersurfaces. The result
we obtain, which we will state next, is also one of the main ingredients in the proof of
Theorem 1.6.

Corollary 1.2 (= Corollary 4.1). If L2Xk;d;n is GIT non-stable (respectively, unstable),
then there exists a choice of generators H1; : : : ;HkC1 2L such that

lct.Pn;H1 C � � � CHkC1/ �
nC 1

d.k C 1/
.respectively, </;

where lct.Pn; H1 C � � � CHkC1/ denotes the log canonical threshold (Definition 2.6) of
the pair .Pn;H1 C � � � CHkC1/.
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In a different direction, we observe that if we can explicitly describe what the (semi)-
stable points in Xk�1;d;n are, then we can use this description to characterize some of the
(semi)stable points in Xk;d;n. More precisely, we prove the following result.

Corollary 1.3 (= Corollary 4.3). Let k > 1 and let L 2Xk;d;n be a linear system con-
taining at least one GIT semistable hypersurface. If L is GIT non-stable (respectively,
unstable), then there exists a sub-linear system of dimension k � 1 (of L/ that is GIT
non-stable (respectively, unstable).

In addition, we establish that there exist GIT stable k-dimensional linear systems of
hypersurfaces of degree d in Pn with a base locus of dimension bigger than n � .k C 1/.
For instance, this tells us that we can construct examples of GIT stable pencils of plane
curves whose members are all singular. This is summarized in the result below.

Corollary 1.4 (= Corollary 4.5). Let d > m and choose QL 2Xk;d�m;n which is GIT
stable (respectively, semistable). If QH1; : : : ; QHkC1 generate QL andH � Pn is an arbitrary
GIT semistable (respectively, stable) hypersurface of degree m, then the linear system
L2Xk;d;n generated by the kC 1 hypersurfacesHi WDH C QHi of degree d is GIT stable.

Finally, we further relate the non-stability of a point L2Xk;d;n to Chow stability (see,
e.g., Section 2.5) of its base locus, or lack thereof. Detecting Chow stability is usually
much more challenging than detecting GIT stability of hypersurfaces. In [28], Sano pro-
vides a partial criterion for establishing Chow stability of a complete intersection using an
analytical argument. By using (the proof of) Theorem 1.1 and Sano’s result (Theorem 1.1
in [28]), we relate Chow stability of a complete intersection to GIT stability of the corre-
sponding linear system. Furthermore, in Appendix A, we prove that this relationship also
holds in the semistable case using a purely algebro-geometric argument. More precisely,
considering only linear systems L2Xk;d;n with a base locus of dimension n� k � 1 and
that we call regular, we prove the following.

Corollary 1.5 (= Theorem A.1, cf. Theorem 1.1 in [28] and Corollary 4.4). Let k � n� 1
and let L2Xk;d;n be a regular linear system. If L is generated by Hf1 ; : : : ; HfkC1 and
the complete intersection Hf1 \ � � � \HfkC1 � Pn is Chow (semi)stable, then L is GIT
(semi)stable.

Some geometric applications

To further illustrate the applicability of Theorem 1.1, in Section 5.1, we revisit the work
of Miranda on pencils of plane cubics [21], and in Section 6, the work of Wall on nets
of conics [30]. We explicitly explain how one can recover their stability criteria by using
Theorem 1.1. Furthermore, in Section 5.2, we provide a complete description of stability
of certain pencils of curves of degree 3m, called Halphen pencils of index m, by proving
the result below.

Theorem 1.6 (= Theorem 5.1 + Theorem 5.11). Let P be a Halphen pencil of indexm and
denote by Y the corresponding rational elliptic surface. If lct.Y;F /> 1=.2m/ (respective-
ly,�/ for any fiber F , then P is GIT stable (respectively, semistable). Furthermore, except
for GIT stable Halphen pencils of index m D 2 (which are given by Examples 7.46, 7.47
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and 7.55 in [31]) and of index m D 3 (which are given by Example 5.10), the converse
statement also holds.

In [14], the first named author introduced and studied the notions of adiabatic K-sta-
bility and log-twisted K-stability of the base for Calabi–Yau fibrations over curves. It is
interesting to observe that Theorem 1.6 shows that these two notions are closely related
to the notion of GIT stability for Halphen pencils of any index m. Indeed, it follows from
Proposition 4.16 in [14] and Theorem 1.6 that log-twisted K-stability of the base curve of
a rational elliptic surface implies GIT stability of the associated Halphen pencil.

We further observe that Theorem 1.6 above is entirely new and an application not only
of Theorem 1.1 but also of Corollary 1.2, as already mentioned. More precisely, for the
second part of the statement, we make use of the partial converse of Corollary 1.2 (see
Lemma 2.8).

Connections to other works

Finally, we would like to point out that the criterion given by Theorem 1.1 can, a pri-
ori, be used to provide alternative descriptions of the results in [7, 8, 11, 15, 21, 30, 33].
Furthermore, since every pencil of plane curves can be seen as a holomorphic foliation
of P2, it could also be used to provide an alternative description of the results in [2–4].
It would be interesting to explore what new insights could be gained from our results.
For instance, combining the results in [11] with Theorem 1.1, it seems plausible that one
should be able to describe the (semi)stable sextic threefolds in P4 which are given by the
union of three quadrics. Here, we restrict ourselves to exploring the cases of pencils of
plane cubics from [21] and that of nets of conics from [30], which we do in Sections 5.1
and 6, respectively.

We also remark that GIT stability of linear systems whose base locus is a complete
intersection has been recently considered in [26]. After finishing this manuscript, we
learned that Papazachariou had also generalized the work in [32] and that he had inde-
pendently obtained some of the same results presented here. Even more recently, since
any point L2Xk;d;n can also be viewed as a divisor of bidegree .1; d/ in Pk � Pn, GIT
stability of linear systems has also been considered in [17]. However, their approach is
strictly computational.

2. Relevant background and notations

In this section, we present the basic GIT setup for the action of the reductive group
SL.nC 1/ on the projective variety Xk;d;n of k-dimensional linear systems of hyper-
surfaces of degree d in Pn. We further establish the notations we will use throughout
the paper. In particular, we recall what kind of tools we can use to determine when a
point in Xk;d;n is (semi)stable or not, namely the numerical criterion of Hilbert–Mumford
(Proposition 2.2) and the log canonical threshold (Definition 2.6). For details, see [22] and
Section 8 of [19]. We work over C throughout the paper, and will also adopt the following
conventions.
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• Given any vector space W over C and of finite dimension, P .W / denotes the pro-
jective space parametrizing hyperplanes in W . The projective space of lines in W is
denoted by jW j. Thus, P .W /D jW _j, whereW _ denotes the dual vector space ofW .
Moreover, we identify points in P .W / with non-zero linear functionals on W .

• In particular, for the vector space V WD H 0.Pn;OPn.1// of dimension nC 1, P .V /
means jV _j D Pn in this paper, and the same notations are also used for the symmetric
powers of V and V _. Hence, for each r � 1, we regard P .S rV _/ as the complete lin-
ear system jOjV _j.r/j D jOPn.r/j of hypersurfaces of degree r on jV _jDP .V /DPn.

2.1. The general GIT setup

We start by recalling the notion of GIT (semi)stability in a general setting. Throughout
this section, we let X be a projective variety on which the group SL.nC 1/ acts, and L an
ample SL.nC 1/-linearized line bundle on X (see, e.g., Definition 1.6 in [23]).

Definition 2.1. A closed point x 2X is GIT semistable with respect to L if there exist
some m 2 Z>0 and an SL.nC 1/-invariant section s 2H 0.X;L˝m/ such that s.x/ ¤ 0.
If, in addition, the SL.n C 1/-orbit of x is closed and of maximal dimension, then the
point x is GIT stable with respect to L.

When the projective variety X has Picard number one, as in the case we are inter-
ested in, then (semi)stability (as in Definition 2.1) is independent of the choice of L (see,
e.g., Proposition 1.4 and Corollary 1.20 in [23]). In this case, we simply say that x is
(semi)stable.

In general, the GIT machinery tells us that one can detect (semi)stability of a point
x2X by a numerical invariant known as the Hilbert–Mumford weight. This can be defined
in the following way. Fix any (not necessarily ample) SL.nC 1/-linearized line bundle M
onX . Given any one-parameter subgroup �WC�! SL.nC 1/, i.e., � is a homomorphism
of algebraic groups, the corresponding Hilbert–Mumford weight of x 2X with respect
to � and M is the quantity

�M.x; �/ WD �the weight of the action of C� on M˝ k.y/ via �;

where y is the unique point in X such that y D limt!0 �.t/ � x, and k.y/ is the corre-
sponding residue field. The Hilbert–Mumford criterion (Theorem 2.1 in [23]) then tells
us that a closed point x 2X is GIT semistable (respectively, stable) with respect to an
ample SL.n C 1/-linearized line bundle L if and only if �L.x; �/ � 0 (respectively,
�L.x; �/ > 0) for any non-trivial one-parameter subgroup �WC� ! SL.nC 1/.

In this paper, we are interested in the projective variety X D Xk;d;n. Letting V WD
H 0.Pn;OPn.1// as above, we identify Xk;d;n with the Grassmannian variety of .k C 1/-
planes in the vector space SdV of all hypersurfaces of degree d . We embed Xk;d;n

into the projective space P .ƒkC1SdV _/ ' PN via the Plücker coordinates and assume
that dim P .SdV _/ � k. Moreover, we consider the action of SL.V / ' SL.n C 1/ on
Xk;d;n � PN coming from the natural linear action of SL.V / on V and, since Pic.Xk;d;n/

' Z, we consider the GIT stability of Xk;d;n with respect to the very ample line bundle L
corresponding to the Plücker embedding together with its unique SL.V /-linearization.
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2.2. The Plücker embedding

Next, we will describe the Plücker coordinates of a point in Xk;d;n. This description will
be necessary when we translate the Hilbert–Mumford criterion to our setting (Proposi-
tion 2.2).

We let r WD dimSdV _ and given any tuple I D .i0; : : : ; in�1/ of non-negative integers,
we write xI to denote the monomial

x
i0
0 � x

i1
1 � � � x

in�1
n�1 � x

d�i0�����in�1
n :

Then, if we choose L 2Xk;d;n and k C 1 hypersurfaces Hf1 ; : : : ; HfkC1 as generators,
each Hfj represented (in some choice of coordinates) by

(2.1) fj D
X
I

f
j
I xI D 0;

we can represent the linear system L by a .k C 1/ � r matrix whose .k C 1/ � .k C 1/
minors are precisely the Plücker coordinates of L. In other words, in (2.1) we assume that
the collection ¹xI º is a basis for the space SdV _ of hypersurfaces of degree d so that
each Plücker coordinate of L can be written as

(2.2) MI1;:::;IkC1 WD

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
f 1I1 f 1I2 : : : f 1IkC1
f 2I1 f 2I2 : : : f 2IkC1
:::

:::
: : :

:::

f kC1I1
f kC1I2

: : : f kC1IkC1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

for some choice of k C 1 tuples I` WD .i0;`; : : : ; in�1;`/ among the r tuples I appearing
in (2.1).

2.3. The Hilbert–Mumford criterion for linear systems

We now want to state the Hilbert–Mumford criterion for a point L 2Xk;d;n. For this,
we need to describe how one-parameter subgroups of SL.V / act on the Plücker coordi-
nates. Throughout the paper, we will always assume that any one-parameter subgroup �
of SL.V / is normalized, meaning that given �W C� ! SL.V / we choose coordinates
.x0 W x1 W : : : W xn/ in Pn such that � is expressed as

(2.3) t 7!

0BBB@
ta0

ta1

: : :

tan

1CCCA ;
for some ai 2Z such that a0 � a1 � � � � � an, a0 > 0 and a0 C a1 C � � � C an D 0. In
particular, if we define

aI1;:::;IkC1 WD

n�1X
lD0

al .il;1 C � � � C il;kC1/C an

�
d.k C 1/ �

n�1X
lD0

.il;1 C � � � C il;kC1/
�
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and we pick L2Xk;d;n and generators Hf1 ; : : : ; HfkC1 as above, then the action of �.t/
on the Plücker coordinate MI1;:::;IkC1 has weight aI1;:::;IkC1 . It is given by

MI1;:::;IkC1 7! taI1:::IkMI1;:::;IkC1 :

Therefore, letting
• QaI1;:::;IkC1 WD

Pn�1
lD0.al � an/.il;1 C � � � C il;kC1/,

• A� WD
Pn�1
lD0.al � an/ D �an.nC 1/, and

• !.L; �/ WD min¹ QaI1;:::;IkC1 jMI1;:::;IkC1 ¤ 0º,
we can rephrase the standard numerical criterion of Hilbert–Mumford in our setting in the
following way.

Proposition 2.2 (Hilbert–Mumford criterion). A point L2Xk;d;n is GIT unstable (respec-
tively, non-stable) if and only if there exists a one-parameter subgroup � of SL.V / such
that

d.k C 1/

nC 1
<
!.L; �/

A�
.respectively, �/:

Proof. By Theorem 2.1 in [23], we know that a point L2Xk;d;n is unstable (respectively,
non-stable) if and only if there exists a one-parameter subgroup �WC�! SL.V / such that
�L.L;�/ < 0 (respectively,� 0). By choosing coordinates as in (2.3), these conditions are
equivalent to saying that for any non-zero Plücker coordinateMI1;:::;Ik , the corresponding
weight aI1;:::;IkC1 is positive (respectively, non-negative).

Thus, it suffices to observe that we have the following sequence of equivalences:

aI1;:::;IkC1 > 0 .respectively, �/ ”

n�1X
lD0

al .il1 C � � � C ilkC1/C an

�
d.kC 1/�

n�1X
lD0

.il1 C � � � C ilkC1/
�
> 0 .respectively, �/

”

n�1X
lD0

.al � an/.il1 C � � � C ilkC1/ �
d.k C 1/

nC 1
� A� > 0 .respectively, �/

”
QaI1;:::;IkC1

A�
>
d.k C 1/

nC 1
.respectively, �/:

This completes the proof.

When k D 0, we will also adopt the following convention. Given any point L2X0;d;n

generated by some hypersurfaceHf that is given by the zero locus of some homogeneous
polynomial f D

P
I fIxI , we will write !.f; �/ instead of !.L; �/. In other words,

we set

!.f; �/ WD min
° n�1X
lD0

.al � an/ � il j fI ¤ 0
±
:

Then, a crucial observation is that !.�; �/ is additive in the following sense.
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Lemma 2.3. Fix a one-parameter subgroup � of SL.V / and two non-zero homogeneous
polynomials f and g, not necessarily of the same degree. Then,

!.f � g; �/ D !.f; �/C !.g; �/:

Proof. The statement follows from the fundamental theory of graded polynomial rings,
but we present here a short proof for the reader’s convenience.

First, write f D
P
I fIxI and g D

P
J gJxJ . Next, set

f 0 WD
X
I 0

fI 0xI 0 and g0 WD
X
J 0

gJ 0xJ 0 ;

where the tuples I 0 (respectively, J 0) run over all the tuples I (respectively, J ) such that
we have !.xI ; �/ D !.f; �/ (respectively, !.xJ ; �/ D !.g; �/). Then, it is routine to
check that

!.f 0 � g0; �/ D !.f 0; �/C !.g0; �/ D !.f; �/C !.g; �/:

Now, let f 00 WD f � f 0 and g00 WD g � g0, and observe that

!.f; �/C !.g; �/ < min¹!.f 00 � g0; �/; !.f 0 � g00; �/; !.f 00 � g00; �/º

and that

!.f � g; �/ D min¹!.f 0 � g0; �/; !.f 00 � g0; �/; !.f 0 � g00; �/; !.f 00 � g00; �/º:

Putting all of the above together, we obtain the assertion.

We can use Lemma 2.3 to obtain a partial criterion for (semi)stability of hypersurfaces
of any degree ˛ in Pn, which is relevant when applying our results to concrete examples,
and which one can use to derive many corollaries from Theorem 3.3. We will now state
and prove this partial criterion.

Proposition 2.4. Let Hf D Hf1 C � � � C Hfr be a reducible hypersurface of degree ˛
in Pn. If all the hypersurfaces Hfi are GIT semistable, then H is GIT semistable. Fur-
thermore, if one of the Hfi is GIT stable, then H is GIT stable.

Proof. Suppose that eachHfi has degree di . Consider the actions of SL.V / on P .S˛V _/
and on P .SdiV _/ for i D 1; : : : ; r . Choose any one-parameter subgroup � of SL.V /. If
all the Hfi are semistable, then

!.fi ; �/

A�
�

di

nC 1
for all i D 1; : : : ; r:

In particular,

(2.4)
!.f; �/

A�
D

rX
iD1

!.fi ; �/

A�
�

rX
iD1

di

nC 1
D

˛

nC 1
,

where we use Lemma 2.3 in the first equality. Now, if there is some j such that Hfj is
stable, then we further have !.fj ; �/=A� < dj =.n C 1/, and the inequality in (2.4) is
strict. In both cases, the statement then follows from Proposition 2.2.
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Remark 2.5. Observe that in Proposition 2.4, we are neither assuming that the compo-
nents Hfi are of the same degree nor do we assume that they are irreducible. Moreover,
Proposition 2.4 also follows from Proposition B.1 in [25]. In [25], Okawa proves that if
two cycles of the same dimension in some projective space are Chow semistable, then
their sum is also Chow semistable. Moreover, if one of the cycles is Chow stable, then so
is their sum. We note that Chow stability of hypersurfaces is nothing but GIT stability as
we consider here.

Similar to [32], Lemma 2.3 can further be used to relate GIT stability of a linear system
L2Xk;d;n to GIT stability of the hypersurfaces Hfj lying on L and, in particular, to the
number lct.Pn;Hfj /, known as the log canonical threshold of the pair .Pn;Hfj /. We will
do this in Section 3. In preparation, we present next some basic notions concerning log
canonical pairs and toric valuations and their connection to GIT stability. See Section 8
of [19] for more details.

2.4. The log canonical threshold

Let X be a smooth projective variety and E a prime divisor over X , that is, a prime
divisor on a smooth variety Y that admits a proper birational morphism � WY ! X . Then,
we define the log discrepancy of E to be the number

AX .E/ D 1C ordE .KY=X /;

where ordE .KY=X / denotes the coefficient of E appearing in KY=X WD KY � ��KX . In
particular, we say that a pair .X; D/ (where D is an effective Q-divisor on X ) is log
canonical if for any prime divisor E over X as above one has AX .E/ � ordE .D/ � 0,
where ordE .D/ denotes the coefficient of E in ��D. In general, givenX andE as above,
we can define a valuation ordE onX that sends each rational function inK.X/�DK.Y /�

to its order of vanishing alongE. Using these notions, we can now introduce the following
algebraic invariant.

Definition 2.6. The log canonical threshold of a pair .X;D/ is the rational number

lct.X;D/ D inf
E

AX .E/

ordE .D/
,

where E runs over all prime divisors over X (i.e., all prime divisors E on some model Y
as above) such that ordE .D/ ¤ 0.

It is well known that in Definition 2.6, the infimum is a minimum, and we say that a
prime divisor E over X computes lct.X;D/ if lct.X;D/ D AX .E/=ordE .D/. Moreover,
whenX and Y admit a torus action, a special role is played by those prime divisorsE � Y
over X which are invariant. This motivates the definition below.

Definition 2.7. WhenX D Pn, a prime divisorE over Pn is toric if there exists a T -equi-
variant proper birational morphism � W Y ! X from a normal variety with a T -action
such that E is a T -invariant prime divisor on Y with respect to some maximal torus
T � SL.nC 1/.
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The usefulness, for our purposes, of this notion of toric divisors lies in the following
lemma (cf. Section 8 in [19] and Proposition 4.2 in [32]).

Lemma 2.8. Let Hf W .f D 0/ � Pn be a hypersurface of degree d and let � be a non-
trivial one-parameter subgroup of SL.nC 1/. Then there exists a toric prime divisor E
over Pn such that

!.f; �/

A�
D

ordE .Hf /
APn.E/

�

Proof. As in (2.3), we choose coordinates .x0 W : : : W xn/ in Pn that normalize �. Then, the
image of � lies in the fixed maximal torus T � SL.nC 1/ of the diagonal matrices in the
chosen coordinates, which is acting on Pn, and we can consider Pn as a toric variety. In
particular, we claim that there exists a toric prime divisor E over Pn and c > 0 such that
!.f; �/ D c � ordE .Hf / for any non-zero homogeneous polynomial f . Indeed, we can
take E to be the exceptional divisor of the weighted blow-up of An Š .xn ¤ 0/ � Pn

with respect to the weights ai � an for xi=xn. Here, we remark that a0 � an > 0 by
the assumption on � and hence E is well defined. Then, for such E, we have that c D
A�=APn.E/ by Proposition 5.1 in [16].

This allows us to obtain the following sufficient criterion for a hypersurface of degree d
in Pn to be GIT (semi)stable, which was first observed by Hacking (Propositions 10.2
and 10.4 in [12]), and Kim–Lee (Theorem 2.3 in [18]) in the case of plane curves.

Corollary 2.9. If a hypersurfaceHf W .f D 0/ � Pn of degree d is GIT unstable (respec-
tively, non-stable), then

d

nC 1
<

1

lct.Pn;Hf /
.respectively, �/:

Moreover, the converse also holds if a toric divisor over Pn computes lct.Pn;Hf /.

Proof. By assumption, we can find a one-parameter subgroup � such that

d

nC 1
<
!.f; �/

A�
.respectively, �/:

Applying Lemma 2.8 to this one-parameter subgroup, we obtain the result by observing
that

(2.5) lct.Pn;Hf / � inf
E Wtoric

APn.E/

ordE .Hf /
,

which follows from Definition 2.6.

Remark 2.10. The inequality (2.5) can in general be strict. For example, for any Płoski
curve Cd of even degree d we have lct.X; Cd / D 5=.2d/ but

inf
E W toric

APn.E/

ordE .Cd /
D
3

d
,

since Cd is known to be strictly GIT semistable (cf. [9]).

Moreover, the following construction shows that toric divisors, as in Definition 2.7,
appear naturally. This construction will be helpful to us in Section 5.2.
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Remark 2.11. Consider X D Pn as a toric variety with respect to some maximal torus
T � SL.n C 1/. Let � W Y ! X be a T -equivariant proper birational morphism from a
smooth variety. Let D1 and D2 be toric prime divisors on Y intersecting at a closed
point p. Then p is T -invariant and hence the blow-up�WZ! Y at p is also T -equivariant.
In particular, the exceptional divisor E of � is toric.

2.5. Chow stability

Finally, we end this background section with a short description of the notion of Chow
stability of algebraic cycles on Pn (cf. [22]).

Let Chowr;d be the Chow variety parameterizing r-codimensional cycles of degree d .
Consider the natural closed immersion �WChowr;d ,!P .W /, whereW D˝rC1.Sd .V _//,
and consider M WD ��OP.W /.1/ together with its unique SL.V /-linearization. We call
an r-codimensional algebraic cycle X of Pn of degree d Chow (semi)stable if the cor-
responding point of Chowr;d is GIT (semi)stable with respect to M. For details, see
Section 1.16 of [22].

3. A complete criterion for (semi)stability

Adapting the work in [32] by the second named author, we will now state and prove
Lemmas 3.1 and 3.2 below, which generalize Proposition 3.5 in [32] and Corollary 3.11
in [32], and are the main ingredients in the proof of Theorem 1.1.

Lemma 3.1. Let L2Xk;d;n and letHf1 ; : : : ;Hfl 2L be l � k C 1 linearly independent
hypersurfaces. Then, for any one-parameter subgroup �WC� ! SL.V /,

lX
jD1

!.fj ; �/ � !.L; �/:

Proof. Choose k � l C 1 linearly independent hypersurfaces in L, say HflC1 ; : : : ;HfkC1 ,
so that Hf1 ; : : : ; Hfl ; HflC1 ; : : : ; HfkC1 generate L. Choose � and fix I1; : : : ; IkC1 such
that !.L; �/ D QaI1;:::;IkC1 . Then MI1;:::;IkC1 ¤ 0 and the corresponding determinant as
in (2.2) is non-zero by definition. In particular, each row i and each column j of (2.2)
must contain a non-zero element. Thus, there exists a permutation � 2 SkC1 such that
f
�.j /
Ij

¤ 0 for all j D 1; : : : ; k C 1, and it follows that

!.L; �/ D QaI1;:::;IkC1 D

n�1X
lD0

.al � an/.il;1 C � � � C il;kC1/

D

kC1X
jD1

� n�1X
lD0

.al � an/ � il;j

�
„ ƒ‚ …

�!.f�.j /;�/

�

kC1X
jD1

!.fj ; �/ �

lX
jD1

!.fj ; �/:

This completes the proof.
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Lemma 3.2. Let L2Xk;d;n, let �WC� ! SL.V / denote a one-parameter subgroup and
Hf1 2 L a hypersurface. Then, there existHf2 ; : : : ;HfkC1 2L such that the k C 1 hyper-
surfaces Hf1 ;Hf2 ; : : : ;HfkC1 generate L and

!.L; �/ D

kC1X
jD1

!.fj ; �/:

Proof. Fix L 2Xk;d;n, �WC� ! SL.V / and Hf1 2 L as above. We claim that we can
find hypersurfaces Hf2 ; : : : ;HfkC1 2L all distinct and tuples I1; : : : ; IkC1 such that
(i) the hypersurfaces Hf1 ;Hf2 ; : : : ;HfkC1 generate L,
(ii) the Plücker coordinate MI1;:::;IkC1 is non-zero and is given by

MI1;:::;IkC1 D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ

f 1I1 f 1I2 f 1I3 : : : f 1IkC1
0 f 2I2 f 2I3 : : : f 2IkC1
0 0 f 3I3 : : : f 3IkC1
:::

:::
:::

: : :
:::

0 0 0 : : : f kC1IkC1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
¤ 0;

and
(iii) !.fj ; �/ D

Pn�1
lD0.al � an/ � il;j for all j D 1; : : : ; k C 1.

If our claim holds, then we have

!.L; �/ � QaI1;:::;IkC1 D

n�1X
lD0

.al � an/.il;1 C � � � C il;kC1/

D

kC1X
jD1

� n�1X
lD0

.al � an/ � il;j

�
D

kC1X
jD1

!.fj ; �/:

Hence, !.L; �/ D
PkC1
jD1 !.fj ; �/ holds by Lemma 3.1. Thus, it suffices to prove our

claim, which we do next.
First, we choose any k hypersurfacesHf2 ; : : : ;HfkC12L such thatHf1 ;Hf2 ; : : : ;HfkC1

generate L. We will show that up to replacing eachHfj (j � 1 times), for j D 2; : : : ;kC1,
we can find k C 1 tuples I1; : : : ; IkC1 as above such that (i), (ii) and (iii) hold.

Indeed, fix I1 such that f 1I1 ¤ 0 and !.f1; �/D
Pn�1
lD0.al � an/ � il;1. Then by replac-

ing fj with

f 0j D fj �
f
j
I1

f 1I1

f1

for all j D 2; : : : ; k C 1, we have that f jI1 D 0 for all j D 2; : : : ; k C 1. In particu-
lar, if we choose I2; : : : ; IkC1 and we let M.I2; : : : ; IkC1/ denote the sub-determinant
of (2.2) computed by removing the first row and the first column, then the correspond-
ing Plücker coordinate MI1I2:::IkC1 D f 1I1M.I2; : : : ; IkC1/ will be non-zero whenever
M.I2; : : : ; IkC1/ ¤ 0.
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Therefore, if we now fix I2 such that f 2I2 ¤ 0 and !.f2; �/ D
Pn�1
lD0.al � an/ � il;2,

then by replacing fj with

f 0j D fj �
f
j
I2

f 2I2

f2

for all j D 3; : : : ; k C 1, we have that f jI2 D 0 for all j D 3; : : : ; k C 1, and thus that
MI1I2I3:::IkC1 ¤ 0 for all choices of tuples I3; : : : ; IkC1 such thatˇ̌̌̌

ˇ̌̌̌
ˇ̌
f 3I3 f 3I4 : : : f 3IkC1
f 4I3 f 4I4 : : : f 4IkC1
:::

:::
: : :

:::

f kC1I3
f kC1I4

: : : f kC1IkC1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ ¤ 0:

By iterating this argument kC 1 times, we find the desired tuples I1; I2; : : : ; IkC1 and the
desired generators for L, which satisfy (i), (ii) and (iii) by construction.

As a consequence, using both Lemmas 3.1 and 3.2, we can finally state and prove the
following slightly stronger version of Theorem 1.1.

Theorem 3.3. Let L 2Xk;d;n and fix a hypersurface Hf1 2L. Then, L is GIT stable
(respectively, semistable) if and only if, for any choice of k hypersurfacesHf2 ; : : : ;HfkC1
in L such thatHf1 ;Hf2 ; : : : ;HfkC1 generate L, the degree d.k C 1/ hypersurfaceHf1 C
� � � CHfkC1 is GIT stable (respectively, semistable).

Proof. Suppose first that the linear system L is GIT stable (respectively, semistable) and
choose any one-parameter subgroup � of SL.V /. Given Hf2 ; : : : ; HfkC1 2L such that
Hf1 ;Hf2 ; : : : ;HfkC1 generate L, by Lemmas 2.3, 3.1 and Proposition 2.2, we have

d.k C 1/

nC 1

.respectively, �/
>

!.L; �/

A�
�

kC1X
jD1

!.fj ; �/

A�
D
!.f1 � � � fkC1; �/

A�
,

and we conclude that Hf1 C � � � CHfkC1 is GIT stable (respectively, semistable). Here,
we apply Proposition 2.2 with k D 0 and with d replaced by d.k C 1/.

Choose now any one-parameter subgroup � of SL.V / for the converse. Given the fixed
hypersurface Hf1 2L, by Lemma 3.2 we can find k hypersurfaces Hf2 ; : : : ; HfkC1 2L

such that Hf1 ;Hf2 ; : : : ;HfkC1 generate L and

!.L; �/

A�
D

kC1X
jD1

!.fj ; �/

A�
D
!.f1 � � � fkC1; �/

A�
�

Because the hypersurface Hf1 C � � � CHfkC1 is GIT stable (respectively, semistable), we
have (again by applying Proposition 2.2 with k D 0 and with d replaced by d.k C 1/)

!.f1 � � � fkC1; �/

A�
<
d.k C 1/

nC 1
.respectively, �/

and it follows from Proposition 2.2 that L is GIT stable (respectively, semistable).
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4. Some partial criteria for (semi)stability

We now collect several partial criteria for (semi)stability of points in Xk;d;n, which em-
anate from our main result except for Corollary 4.4. First, we state and prove a slightly
more precise version of Corollary 1.2.

Corollary 4.1. Let L 2Xk;d;n and let H1 2L. If L is GIT non-stable (respectively,
unstable), then there exists a choice of k hypersurfaces H2; : : : ; HkC1 2 L such that
H1;H2; : : : ;HkC1 generate L and

lct.Pn;H1 C � � � CHkC1/ �
nC 1

d.k C 1/
.respectively, </:

If a toric prime divisorE over Pn computes lct.Pn;H1C � � � CHkC1/, then the converse
also holds.

Proof. By Theorem 3.3, if L2X is as in the statement, then there is a choice of generators
of L such that their summation (union) is a non-stable (respectively, unstable) hypersur-
face of degree d.kC 1/. This hypersurface satisfies the above inequality involving the log
canonical threshold by Lemma 2.8.

Next, we obtain the following criterion for pencils of hypersurfaces.

Corollary 4.2. Let P 2 X1;d;n be a pencil and choose Hf 2 P . Then P is GIT non-
stable (respectively, unstable) if and only if there exists Hg 2P other than Hf such that
Hf CHg is GIT non-stable (respectively, unstable).

Proof. Here, we are simply restating Theorem 3.3 in the case k D 1. Note that any two
distinct members give a generating set for a pencil.

We also have the result below, which states that GIT stability of linear systems can be
described inductively in some cases.

Corollary 4.3. Let k > 1 and L 2Xk;d;n be a linear system containing at least one
GIT semistable hypersurface (e.g., a smooth one). If L is GIT non-stable (respectively,
unstable), then there exists a sub-linear system of dimension k � 1 that is GIT non-stable
(respectively, unstable).

Proof. Let L 2Xk;d;n be as in the statement and pick Hf1 2L semistable. If the lin-
ear system L is non-stable (respectively, unstable), then by combining Proposition 2.2
with Lemma 3.2, we can find Hf2 ; : : : ; HfkC1 2L such that the k C 1 hypersurfaces
Hf1 ;Hf2 ; : : : ;HfkC1 generate L and the hypersurfaceHf2 C � � � CHfkC1 of degree dk is
non-stable (respectively, unstable). Therefore, Theorem 3.3 shows that the sub-linear sys-
tem of L generated byHf2 ; : : : ;HfkC1 of dimension k � 1 is GIT non-stable (respectively,
unstable).

Moreover, we obtain the following criterion for regular linear systems L 2Xk;d;n,
meaning linear systems with a base locus of dimension n � k � 1.
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Corollary 4.4. Let k � n � 1 and let L 2Xk;d;n be a regular linear system generated
by Hf1 ; : : : ; HfkC1 . If the complete intersection Hf1 \ � � � \HfkC1 � Pn is Chow stable,
then L is GIT stable.

Proof. Choose arbitrary generators Hf1 ; : : : ; HfkC1 of L as above. It is shown in Theo-
rem 1.1 of [28] that if the base locus of L is Chow stable, then for any one-parameter
subgroup �WC� ! SL.nC 1/, we have that

kC1X
iD1

�L.Hfi ; �/ < 0;

where we consider the usual Hilbert–Mumford weights for hypersurfaces of degree d , that
is, we consider the SL.nC 1/-action on P .SdV _/ and we choose the ample line bundle
L D O.1/, together with its unique SL.nC 1/-linearization. Thus, the assertion follows
from Lemmas 3.1 and 3.2 and Proposition 2.2. An alternative proof is also provided in
Appendix A.

Although this last result is not a direct consequence of Theorem 3.3, the idea of relating
Sano’s result (Theorem 1.1 in [28]) on Chow stability of complete intersections to GIT
stability of linear systems is new. It can be seen as an application of the fundamental
lemmas from Section 3 and is included here for this reason.

Finally, we remark that many concrete examples of GIT stable linear systems of hyper-
surfaces that are not complete intersections can be constructed. The following is also a
consequence of our main theorem.

Corollary 4.5. Let d > m and let QL be a k-dimensional linear system of hypersurfaces
of degree d � m in Pn that is GIT stable (respectively, semistable). If QH1; : : : ; QHkC1
generate QL andH �Pn is an arbitrary GIT semistable (respectively, stable) hypersurface
of degreem, then the linear system L generated by the kC 1 hypersurfacesHi WDH C QHi
of degree d is GIT stable.

Proof. Choose generators Hf1 ; : : : ;HfkC1 for L. Then

Hf1 C � � � CHfkC1 D .k C 1/H C
QHg1 C � � � C

QHgkC1 ;

where the QHgi generate QL. Now, since QL is stable (respectively, semistable), it follows
from Theorem 3.3 that the hypersurface QHg1 C � � � C QHgkC1 is stable (respectively, semi-
stable). In particular, since H is semistable (respectively, stable), the hypersurface Hf1 C
� � � C HfkC1 is stable by Proposition 2.4. Thus, the linear system L is stable by Theo-
rem 3.3.

5. Stability of pencils of plane curves

This section will show how our stability criterion can be used to recover the results
in [21]. In addition, we will also provide a complete description of the stability of so-
called Halphen pencils of index m, which are pencils of plane curves of degree 3m that
have exactly nine base points, each of multiplicity m.
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5.1. Pencils of plane cubics revisited

The work of Miranda in [21] describes GIT stability of a pencil of plane cubics (with
general member smooth) in terms of the types of singular fibers appearing in the corre-
sponding rational elliptic surface, which is obtained by blowing up P2 at the nine base
points of the pencil. Using Kodaira’s notation for the singular fibers, he proves the follow-
ing.

Theorem ([21]). A pencil of plane cubics P is stable if and only if P contains a smooth
member and every fiber of the corresponding rational elliptic surface XP is reduced.
Moreover, if P contains a smooth member, then P is semistable if and only if XP does
not contain a fiber of type II�, III� or IV�.

We will now describe how we can use Corollary 4.2 to recover Miranda’s result. First,
observe that by Theorem 2.3 in [29] and Corollary 4.2, a pencil of plane cubics P is stable
if and only if for any two (distinct) cubics Cf ; Cg in P the sextic curve Cf C Cg satisfies
the following conditions:

(i) it does not contain a multiple line as a component,
(ii) it does not have consecutive triple points, and
(iii) it does not have a singular point of multiplicity at least four.

Therefore, a pencil of plane cubics P is stable if and only if the following conditions hold:
(i’) P contains a smooth member,
(ii’) any curve in P is reduced, and
(iii’) any curve in P is either smooth or has, at worst, one node as a singularity at a base

point of P .
It is routine to check that conditions (ii’) and (iii’) hold if and only if every fiber of XP is
reduced.

Finally, by [29] and Corollary 4.2, P is unstable if and only if we can find two
cubics Cf and Cg in P such that the sextic curve Cf C Cg satisfies one of the following
conditions:

(a) it has a line as a component, and it has a triple point on that line, which remains a
triple point with a threefold tangent under a blow-up;

(b) it has a quadruple point, which has a threefold or a fourfold tangent;
(c) it has a singular point of multiplicity at least five.

Assuming that P has a smooth member, we see that one of the conditions (a), (b), or
(c) holds if and only if, up to relabeling, one of the following situations occurs:

(a’) Cf is a triple line and Cg is arbitrary;
(b’) Cf is the union of a double line and another line, and Cg is tangent to the double

line at the intersection point (of the two lines);
(c’) Cf is the union of a double line and another line, and Cg intersects the double line

at a single point.
Now, if that is the case, then the fiber of XP corresponding to Cf will have a compo-

nent of multiplicity three and hence it must be of type II�, III� or IV�. Conversely, if XP
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contains a fiber of type II�, III� or IV�, then by Proposition 4.2 in [31], we know that P

is the pencil �Cf C �Cg D 0, where Cf consists of either a triple line or a double line
and another line. This is the content of Lemma 6.4 in [21], which is the hardest step in
the proof of Theorem 6.1 in [21]. Moreover, if Cf consists of a double line and another
line, then Cf and Cg must intersect as in (b’) or (c’). Otherwise, blowing up the nine base
points of P would not yield a fiber with a component of multiplicity three.

5.2. Halphen pencils

We now provide a complete description of the stability of certain pencils of plane curves
of degree 3m, called Halphen pencils of index m. First studied by the French mathemati-
cian Georges Henri Halphen in [13], these pencils are characterized by the property that
they have precisely nine base points (possibly infinitely near), each of multiplicity m, and
their general members are integral curves. For details, see [10]. The case of index m D 1
consists of pencils of plane cubics with a smooth member. The case m D 2 is also well
understood, and it has been considered by the second named author in [31] and [33]. Here,
we address all other cases.

Given a Halphen pencil P of indexm, taking the minimal resolution of its base points,
one obtains a so-called rational elliptic surface of index m, that is, a (smooth and projec-
tive) rational surface Y that comes equipped with a relatively minimal genus-one fibration
which is given by the linear system j �mKY j and has precisely one multiple fiber of mul-
tiplicity m. As in [21] and [33], our strategy is to explore the geometry of Y to describe
the stability of P . We will first prove the following.

Theorem 5.1. Let P be a Halphen pencil of index m � 1 and let Y denote the corre-
sponding rational elliptic surface. If lct.Y;F / > 1=.2m/ (respectively,�) for any fiber F ,
then P is GIT stable (respectively, semistable).

Remark 5.2. The table below gives the number lct.Y; F /, depending on the type of the
fiber F according to Kodaira’s notation.

lct.Y; F / Type of F lct.Y; F / Type of F
1=m mIn 1=2 I�n
5=6 II 1=6 II�

3=4 III 1=4 III�

2=3 IV 1=3 IV�

Remark 5.3. The condition lct.Y; F / > 1=.2m/ is known to be equivalent to the notion
of uniform adiabatic K-stability of rational elliptic surfaces of indexm introduced in [14].
In particular, Theorem 5.1 implies that GIT stability of Halphen pencils is closely related
to the existence of Kähler metrics with constant scalar curvature on the corresponding
rational elliptic surfaces.

We need the following lemma to prove Theorem 5.1.

Lemma 5.4. Let P be a pencil of plane curves of degreem � s with s2 base points (possi-
bly infinitely near), each of multiplicity m. Suppose that P contains at least one integral
curve. Let � W Y ! P2 denote the s2-fold blow-up which resolves P , and let qW Y ! P1
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be the morphism induced by P . Then there exists a curve Cf 2P such that for any other
curve Cg 2P , we have that

KY C
1

2m
.Ff C Fg/ D �

�
�
KP2 C

1

2m
.Cf C Cg/

�
;

where Ff and Fg are the corresponding fibers of q.

Proof. We choose Cf as a curve in P corresponding to a smooth fiber of q. Given any
other curve Cg in P , let Fg be the fiber of q corresponding to Cg , let ��P be the pencil
on Y generated by ��Cf and ��Cg , and let D be the fixed part of ��P . Then, it is routine
to check that m �KY=P2 D D. In particular,

��
�
KP2C

1

2m
.Cf CCg/

�
DKY �KY=P2C

1

2m
.Ff CFgC2D/DKYC

1

2m
.Ff CFg/:

Thus, we obtain the assertion.

Then, the argument is the one that follows.

Proof of Theorem 5.1. We first observe that Halphen pencils of any index m satisfy the
assumptions of Lemma 5.4. We can choose Cf as a curve corresponding to any smooth
fiber of the corresponding genus-one fibration. Now, choose any other curve Cg 2 P .
Lemma 5.4 implies that

lct.Y;Ff CFg/>
1

2m
.respectively, �/ ” lct.P2;Cf CCg/>

1

2m
.respectively, �/:

Note that lct.Y; Ff / D 1. Thus, lct.Y; Ff C Fg/ > 1=.2m/ (respectively, �) by assump-
tion. Now, because Cg was arbitrary, it follows from Corollary 4.1 that P is GIT stable
(respectively, semistable).

In particular, the following two statements hold (see Remark 5.2). These are direct
consequences of Theorem 5.1.

Corollary 5.5. All Halphen pencils of index m > 3 are GIT stable. Moreover, a Halphen
pencil of indexmD 3 is always GIT semistable, and it is stable whenever the correspond-
ing rational elliptic surface does not contain a fiber of type II�.

Corollary 5.6. Let P be a Halphen pencil of indexmD 2. If the rational elliptic surface Y
corresponding to P does not contain a fiber of type II� or III�, P is GIT stable. Moreover,
if Y does have a fiber of type III�, then P is always semistable (cf. [33]).

We will now consider the converse statement to that of Theorem 5.1. For this, we
first observe that the multiple cubic mC in a Halphen pencil P of index m > 1 satisfies
lct.P2; mC/ D 1=m by Proposition 4.9 in [31], and that the following two lemmas hold.

Lemma 5.7 (Theorem 1.1 in [31]). If m > 1 and Ff is a reduced fiber of Y , then the
corresponding curve Cf is reduced and we have that

1

m
< lct.P2; Cf / � lct.Y; Ff /:
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Lemma 5.8. If m > 1 and Y contains a fiber F such that lct.Y; F / � 1=.2m/ but the
corresponding plane curve Cg 2P is GIT semistable, then P is GIT stable.

Proof. First, note that F is a fiber of type II� or III� by Remark 5.2. Moreover, since the
Picard number of Y is ten, any other non-multiple fiber of Y is reduced. Thus, we can
show that any member C 2P is GIT semistable. Indeed, when C is the multiple cubic, it
follows from Proposition 4.9 in [31] and Corollary 2.9 that C is GIT semistable. On the
other hand, if C corresponds to a reduced fiber of Y , then C is GIT stable by Lemma 5.7
and Corollary 2.9.

Take now Cf 2P corresponding to a smooth fiber Ff . This curve Cf is GIT stable,
as shown in the first paragraph. In particular, given any other curve Cg 2P , the curve
Cf C Cg of degree 6m is GIT stable by Proposition 2.4 since Cg is GIT semistable.
Therefore, it follows from Corollary 4.2 that the pencil P is stable as asserted.

In general, the converse of Theorem 5.1 does not hold. The following two explicit
examples show that there are both stable and non-stable Halphen pencils of index m D 3
yielding a fiber of type II�. Nonetheless, we can show that Examples 7.46, 7.47 and 7.55
in [31] and Example 5.10 are precisely the only GIT stable counterexamples to the con-
verse of Theorem 5.1. This will be done in the proof of Theorem 5.11 below.

Example 5.9. Consider the cubic C given by z2y C x.y2C xz/D 0. LetQ be the conic
y2C xzD 0 and letL be the line y D 0. Then the pencil generated byCf D 2QC 5L and
Cg D 3C is a Halphen pencil of index three, say P , such that the corresponding rational
elliptic surface contains a fiber of type II� and such pencil is GIT non-stable.

To see why, let � be the one-parameter subgroup determined (in these coordinates)
by a0 D 1; a1 D 0 and a2 D �1. Then, arguing as in Lemma 3.3 of [9], we compute
!.fg; �/ D 18 and it follows from Lemma 3.1 that

6 D
!.fg; �/

3
D
!.f; �/C !.g; �/

3
�
!.P ; �/

3
D

!.P ; �/

.a0 � a2/ � .a1 � a2/
�

Thus, P is non-stable by Proposition 2.2.

Example 5.10. Consider the cubic C given by .y2 C xz/.˛y C z/ C ˇyx2 D 0, for
some ˛; ˇ ¤ 0. Let Q be the conic y2 C xz D 0 and L be the line y D 0. Then the
pencil P generated by Cf D 4Q C L and Cg D 3C is a Halphen pencil of index three
such that the corresponding rational elliptic surface contains a fiber F of type II�. Note
that lct.P2; Q C L/ D 1 and 3Q is semistable. By Corollary 2.9 and Proposition 2.4,
Cf is also semistable. Thus, P is GIT stable by Lemma 5.8 since F corresponds to the
semistable curve Cf .

It is also essential to observe that Example 5.10 is unique up to a choice of projective
coordinates, as we now explain. Arguing as in Section 5 of [31], we can show that if a
Halphen pencil of index m D 3 yields a fiber F of type II� and the curve correspond-
ing to F consists in the union of a conic taken with multiplicity four and a line (as in
Example 5.10), then the conic and the line must intersect at two distinct points, say P1
and P2. Moreover, up to relabeling, the unique triple cubic in the pencil, say 3C , is such
that C intersects Q (respectively, L) with multiplicity five (respectively, one) at P1 and it
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intersectsQ (respectively, L) with multiplicity one (respectively, two) at P2. In particular,
to obtain the corresponding rational elliptic surface Y , we must blow up the plane seven
times at P1 and two times at P2.

Even more is true. IfQ, C and L are as in the previous paragraph, then up to a change
of coordinates, we may assume that P1 D .0 W 0 W 1/, P2 D .1 W 0 W 0/,Q is the conic given
by y2C xz D 0 and L is the line given by y D 0. This further implies that C can be taken
to be a cubic as in Example 5.10. Indeed, up to scaling, C is given by

xz2 C ˛y3 C ˇx2y C axy2 C bxyz C cy2z C dyz2 D 0; with ˛ ¤ 0;

and we further know that the line x D 0 is tangent to C at P1 (with multiplicity two
since P1 cannot be a flex). Thus, we may further assume that d D 0 and c D 1. We can
then rewrite the defining polynomial of C as

.y2 C xz/.˛y C z/C xy.ˇx C ay C .b � ˛/z/ D 0:

Hence, if IP1.C;Q/ denotes the intersection multiplicity of C and Q at P1, then

IP1.C;Q/ D IP1.Q;L/C IP1.Q;L
0/C IP1.Q;L

00/ D 3C IP1.Q;L
00/;

where L0 W x D 0 and L00 W ˇx C ay C .b � ˛/z D 0. Furthermore, since the intersection
multiplicity IP1.C; Q/ is equal to five, we must have IP1.Q; L

00/ D 2, which tells us
that L00 D L0. Hence, a D 0 and b D ˛. In other words, the cubic C is precisely as in
Example 5.10, as claimed.

We can now prove the following theorem.

Theorem 5.11. Let P be a Halphen pencil of index m and let Y be the correspond-
ing rational elliptic surface. Assume that P is not given by Examples 7.46, 7.47, 7.55
in [31] or Example 5.10 (up to a projective change of coordinates). If lct.Y;F / < 1=.2m/
(respectively, � 1=.2m// for some fiber F , then P is GIT unstable (respectively, GIT
non-stable).

Proof. The case when m D 1 follows from [21] and Remark 5.2. Therefore, by Corollar-
ies 5.5 and 5.6, it suffices to deal with the cases m D 2 and m D 3.

Observe now that, in view of Lemma 5.4 and Corollary 4.1, if there exists a toric
divisor E � Y over P2 (see Definition 2.7) and a fiber F of Y such that

AP2.E/

ordE .F /
�

1

2m

(respectively,<), then the Halphen pencil P is GIT non-stable (respectively, unstable). We
call such toric divisors destabilizing, and we say that E makes P non-stable (respectively,
unstable). Thus, in what follows, we will argue that there exists a destabilizing toric divisor
for all Halphen pencils of indexmD 2 andmD 3 except for Examples 7.46, 7.47 and 7.55
in [31] and Example 5.10.

When m D 2, all Halphen pencils have been completely classified in [31]. Here we
simply observe that except for Examples 7.46, 7.47 and 7.55 in [31], we can always find
destabilizing toric divisors for all Halphen pencils of index two such that Y contains a
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fiber F of type II� or III� (see [21] and Section 7 of [31]). Therefore, we focus on the
case when P is a Halphen pencil of index m D 3, which is not as in Example 5.10 and Y
has a fiber F of type II�. We claim that there exists a toric divisor computing lct.Y; F /
(hence a destabilizing toric divisor) for such pencils.

To prove the claim, the key ingredients we will use are Lemma 4.1 in [31], the fact that
.�1/-curves are trisections of Y and Remark 2.11. Recall first that a fiber F of type II�

has the dual graph below.

�

2˛1

�

4˛3

�

6˛4

�3˛2

�

5˛5

�

4˛6

�

3˛7

�

2˛8

�

˛9

Thus, to prove the claim, we aim to show that the rational curve ˛4 is always toric (Defi-
nition 2.7).

Fix a nine-fold blow-up � WY ! P2 and let mj denote the multiplicity of j̨ in F for
j D 1; : : : ; 9. Since P is a pencil of plane curves of degree nine, there are four cases to
consider: (1) ˛2 is the strict transform of a cubic, (2) ˛2 is the strict transform of a conic,
(3) ˛2 is the strict transform of a line L, and (4) ˛2 is exceptional. We will consider each
of these cases separately.

Case (1). This case cannot happen. There exists a unique triple cubic in P , and that
corresponds to the unique multiple fiber (see, e.g., Corollary 5.6.3 in [10]).

Case (2). Again, this case cannot happen. By contradiction, assume that ��.˛2/ is a
conic. Note that deg��.

P
j¤2mj j̨ / D 3, where degC denotes the degree of a curve C

in P2. If ˛1 is non-exceptional, then ��.˛1/ and ��.˛9/ must be lines in P2. Note that j̨

for 3 � j � 8 are all exceptional. By Lemma 4.1 in [31] and the fact that a .�1/-curve
of Y is a trisection, there exists a �-exceptional .�1/-curve E such that ˛8 � E D 1 but
j̨ � E D 0 for 3 � j � 7. If we blow down j̨ for 3 � j � 8 and E, then we have

that .��.˛9//2 � 4, which is impossible. Now, if ˛1 is exceptional, then there are three
possibilities:

(a) ��.˛7/ is a line,
(b) ��.˛8/ and ��.˛9/ are lines, or
(c) all j̨ are exceptional except for ˛2 and ˛9.

We claim that none of these cases can occur either.
First, in the case (a), all j̨ are exceptional except for ˛2 and ˛7. By Lemma 4.1

in [31] and the fact that a .�1/-curve is a trisection of Y , there exists a �-exceptional
.�1/-curve E such that ˛1 � E D 1 but j̨ � E D 0 for 3 � j � 6. By contracting E, ˛1,
˛3, ˛4, ˛5 and ˛6, we have that ��.˛2/ � ��.˛7/� 3. However, ��.˛2/ � ��.˛7/D 2 since
��.˛7/ is a line and ��.˛2/ is a conic. This is a contradiction.

Second, in the case (b), we see that by Lemma 4.1 in [31] there is a �-exceptional
.�1/-curve E intersecting either ˛7, or both ˛1 and ˛9 since E is a trisection of Y . If the
former holds, then we can show that .��.˛8//2 � 5 by contracting E and all �-excep-
tional j̨ ’s. Otherwise, we have that .��.˛9//2 � 5 in a similar way. In any case, we reach
a contradiction.
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Finally, we deal with the case (c). Note that ��.˛9/ is a cubic. By Lemma 4.1 in [31],
there exists a �-exceptional .�1/-curve E1 intersecting ˛1 or ˛8. Let E2 be the other
�-exceptional .�1/-curve. Since E1 and E2 are trisections of Y , we have E1 � ˛2 � 1
and E2 � ˛2 � 1. If E1 intersects ˛8, then .��.˛2//2 � 2 when we contract E1, E2
and the exceptional j̨ ’s. This contradicts the assumption that ��.˛2/ is a conic. If E1
intersects ˛1, then E1 also intersects ˛9 since E1 is a trisection and we can show that
.��.˛9//

2 � 7 in P2, which is again a contradiction.
Case (3). Assume that ��.˛2/D L. In this case, ˛4 is always an exceptional divisor of

a blow-up at a point p0 infinitely near to a point p 2 L as in Remark 2.11. In particular, ˛4
is toric. Note that Example 5.9 is included in this case.

Case (4). First, we claim that we may assume that ˛4 is an exceptional curve. Indeed,
if ˛4 is non-exceptional, then ��.˛4/ is a line. In particular, ˛4 is automatically toric. Thus,
from now on, we assume that ˛4 is exceptional. Then, by Lemma 4.1 in [31], either ˛3
or ˛5 must be non-exceptional. If either comes from a line, then ˛4 is toric by Remark 2.11.
Otherwise, ˛3 comes from a conic and ˛5 is exceptional since deg ��.

P
mj j̨ / D 9.

Then ˛9 must come from a line, and we are in the situation of Example 5.10 since, as
already explained, such an example is unique up to a choice of projective coordinates.

The above four cases show that ˛4 is always toric, except for a Halphen pencil as
in Example 5.10, as asserted. Moreover, since ˛4 computes lct.Y; F /, ˛4 makes P non-
stable, which completes the proof.

6. Stability of nets of conics

In this section, we will describe how one can apply the stability criterion given in Theo-
rem 3.3 to obtain an alternative geometric description of stability of nets of conics. GIT
stability of linear systems of quadrics in general has been explored in [6, 7, 11, 30]. Here,
we provide an explicit description of stability of nets of conics using Theorem 1.1, and we
also explain how our description agrees with the description in [30] by C.T.C. Wall. We
further point out that the connection between the two approaches can also be somewhat
easily read off from Table 1 in [1].

First, we recall that Theorem 1.1 together with the work of Shah in [29] tell us that a
net of conics N is stable if and only if for any choice of generators Cf , Cg and Ch for N ,
the sextic curve Cf C Cg C Ch satisfies conditions (i), (ii) and (iii) from Section 5.1.
Therefore, we obtain the following criterion.

Proposition 6.1. A net of conics N is GIT stable if and only if the following conditions
hold:
(i”) N does not contain a double line;
(ii”) at a base point of N any conic in N is smooth (in particular, the base locus is

zero-dimensional and N contains a smooth member);
(iii”) at a base point of N , no three conics in N are mutually tangent; and

(iv”) every pencil contained in N has a smooth member.



On GIT stability of linear systems of hypersurfaces in projective spaces 23

Proof. If N is non-stable, then by Theorem 1.1 there exists a choice of generators Cf ; Cg
and Ch for N such that the sextic Cf C Cg C Ch is non-stable. Then, up to relabeling, by
Theorem 2.3 in [29], one of the following holds:

Case I. Ch is a double line,
Case II. Ch is the union of two lines that intersect at a base point of the net,
Case III. Cg and Ch form a pencil such that any member is singular,
Case IV. the three conics are mutually tangent at a base point of the net.

In other words, at least one among the conditions (i”) through (iv”) does not hold.
Conversely, if one of these conditions does not hold, we can find generators Cf , Cg

and Ch for N as above. In particular, the sextic curve Cf C Cg C Ch either contains a
multiple line, a point of multiplicity at least four, or a consecutive triple point. In any case,
the sextic Cf C Cg C Ch is not stable by Theorem 2.3 in [29]. Hence, N is not stable by
Theorem 1.1.

We can also prove that the following two lemmas hold.

Lemma 6.2. If a net of conics N has a base point p, then there exists a conic in N that
is singular at p.

Proof. Choose generators Cf ; Cg and Ch for N and choose coordinates .x0 W x1 W x2/
in P2. If p D .a W b W c/ is a base point of N , then .a; b; c/ is a non-trivial element in the
kernel of the matrix

A WD

0B@@Cf =@x0 @Cf =@x1 @Cf =@x2

@Cg=@x0 @Cg=@x1 @Cg=@x2

@Ch=@x0 @Ch=@x1 @Ch=@x2

1CA :
In particular, detAD detAT D 0, which implies that we can find .� W � W �/ 2 P2 such that

�
@Cf

@x0
C �

@Cg

@x0
C �

@Ch

@x0
D 0;

�
@Cf

@x1
C �

@Cg

@x1
C �

@Ch

@x1
D 0;

�
@Cf

@x2
C �

@Cg

@x2
C �

@Ch

@x2
D 0:

The above equations tell us that the curve �Cf C �Cg C �Ch is singular at p.

Lemma 6.3. If a net of conics N does not contain a double line and it does not have a
base point, then every pencil contained in N has a smooth member.

Proof. We first observe that if a pencil of conics P does not contain a smooth member,
then one of the following conditions holds (up to change of coordinates in P2):

(1) the base locus of P is one-dimensional,
(2) P is generated by Cf W x20 D 0 and Cg W x21 D 0,
(3) P is generated by Cf W x0x1 D 0 and Cg W .ax0 C bx1/.cx0 C dx1/ D 0 for some

a; b; c; d 2 C that are not all zero.
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Now, since N does not contain a double line and it does not have a base point, it is
clear that N cannot contain a pencil as in .1/ or .2/. Thus, it suffices to check that N

cannot contain a pencil as in .3/. In fact, a pencil P as in .3/ always contains a double
line, namely the curve �Cf C Cg , where � D 2

p
abcd � .ac C bd/.

Therefore, Proposition 6.1 can be sharpened, yielding the following result.

Proposition 6.4. A net of conics N is GIT stable if and only if N does not contain a
double line and does not have a base point.

Now, by [29] and Corollary 4.2, we further know that N is unstable if and only if
we can find three conics Cf , Cg and Ch in N such that the sextic curve Cf C Cg C Ch
satisfies one of the conditions (a), (b) or (c) from Section 5.1. In particular, we obtain the
result below.

Proposition 6.5. A net of conics N is unstable if and only if we can find three conics Cf ,
Cg and Ch in N such that one of the following (non-mutually-exclusive) conditions holds:
(a”) the base locus Cf \ Cg \ Ch of N is one-dimensional;
(b”) Cf D 2L, Cg is tangent to L at a base point of N , and Ch is arbitrary;
(c”) Cf D LC L0 and either

� Cg D L C L00 and Ch is smooth and tangent to Cf at the intersection point
L \ L0 ; or

� Cg and Ch are smooth and Cf ; Cg and Ch are mutually tangent at L \ L0 ;
(d”) Cf and Cg intersect at a base point of N which is a singular point of both Cf

and Cg .

Corollary 6.6. A net of conics with no base points is GIT semistable.

Remark 6.7. Note that if a net of conics N contains a smooth member and is unstable,
then by Corollary 4.3 and 1.12 in [22], we can find two conics Cf ; Cg 2N such that
Cf C Cg has a triple point. This means that, up to relabeling, we can find two (distinct)
conics Cf ; Cg 2N such that Cf is singular at a point in the intersection Cf \ Cg .

Finally, we explain how our criterion agrees with the criterion in [30], which we state
next.

Theorem ([30]). A net of conics is GIT stable (respectively, semistable) if and only if the
corresponding discriminant cubic curve is smooth (respectively, has at worst nodes).

We first note that any conic Cf 2 P2 can be described by an equation of the form

xTAf x D

2X
iD0

2X
jD0

fij xi xj D 0;

where Af D .fij / is a symmetric 3 � 3 matrix. In particular, given a net of conics, say
�Cf C �Cg C �Ch D 0, its discriminant is the ternary cubic form

� D �.�;�; �/ WD det.�Af C �Ag C �Ah/:
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We also note that the singularities of�D 0 do not depend on the choice of generators Cf ,
Cg , and Ch. We can thus prove the following.

Proposition 6.8. The plane cubic � D 0 is singular if and only if there exists a choice of
generators Cf 0 , Cg 0 and Ch0 such that the sextic curve Cf 0 CCg 0 CCh0 is GIT non-stable.

Proof. Write
� D

X
i;j

ıij �
i�j �3�i�j

and assume that the cubic C W � D 0 is singular. Then there exists a choice of generators
Cf 0 , Cg 0 and Ch0 (equivalently, a choice of coordinates .� W � W �/) such that ı00 D ı01 D
ı10 D 0. In other words, we may assume that C is singular at .0 W 0 W 1/.

In particular, det.Ah0/ D ı00 D 0 if and only if Ch0 is singular. Now, if Ch0 is a double
line, then Cf 0 CCg 0 CCh0 is non-stable by [29]. Similarly, if Ch0 is the union of two lines,
then we claim that the intersection point of the two lines is a base point of the net, which
implies that Cf 0 C Cg 0 C Ch0 contains a point of multiplicity at least four. Hence, it is
non-stable by [29]. In fact, we can choose coordinates .x0 W x1 W x2/ such that Ch0 is given
by x0x1 D 0. In particular,

ı01 D �g
0
22 and ı10 D �f

0
22;

which implies .0 W 0 W 1/ 2 Cf 0 \ Cg 0 .
Conversely, assume that there exists a choice of generators Cf 0 , Cg 0 and Ch0 such

that Cf 0 C Cg 0 C Ch0 is non-stable. Then, as in the proof of Proposition 6.1 and up to
relabeling, one of the following conditions holds:

Case I. Ch0 is a double line.
Case II. Ch0 is the union of two lines that intersect at a base point of the net.
Case III. Cg 0 and Ch0 form a pencil such that any member is singular.
Case IV. The three conics are mutually tangent at a base point of the net.

We will show that the cubic C is singular in all four cases.
If either one of Cases I or II holds, then we can find coordinates .x0; x1; x2/ in P2

such that ı00 D det.Ah0/ D 0 and

ı01 D �g
0
22 .h

0
01/

2 and ı10 D �f
0
22 .h

0
01/

2:

In Case I, we can assume that C 0
h

is given by x20 D 0. Hence, h001 D 0. Furthermore, we
can assume in Case II that C 0

h
is given by x0x1 D 0, which is singular at .0 W 0 W 1/, and

since such point is a base point of the net, we further have f 022 D g
0
22 D 0. In any case, we

conclude that ı00 D ı01 D ı10 D 0 and the cubic C is singular at .0 W 0 W 1/.
Next, if Case III holds, then the cubic C contains the line � D 0. Therefore, it is also

singular.
Finally, assume that Case IV holds. Since we can always find a singular member in the

net and we have already considered Cases I and II, we may choose coordinates .x0; x1;x2/
in P2 such that Ch0 is given by x0x1 D 0 and the base point in question is .0 W 1 W 0/. The
case when Cf 0 or Cg 0 is singular is included in Case III. Thus, we may assume that the
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curves Cf 0 and Cg 0 are such that g012 D g
0
11 D f

0
12 D f

0
11 D 0 but f 022 � g

0
22 ¤ 0. Then C

is the singular cubic given by

.f 022�C g
0
22�/.f

0
01�C g

0
01�C �/

2
D 0:

This completes the proof.

Similar reasoning by making convenient choices of coordinates .x0 W x1 W x2/ in P2

also proves the following.

Proposition 6.9. The plane cubic C W �D 0 has a singularity at worst a node if and only
if for any choice of generators Cf 0 , Cg 0 and Ch0 , the sextic curve Cf 0 C Cg 0 C Ch0 is GIT
semistable.

Proof. The classification of nets of conics up to projective equivalence in Table 1 of [1]
tells us that we have the correspondence given in the table below.

The cubic C The net generated by Cf 0 , Cg 0 and Ch0 Cf 0 C Cg 0 C Ch0

2�2�C �3 D 0 �x0x1 C �x
2
2 C �.x

2
0 C x1x2/ D 0 x0x1x

2
2 .x

2
0 C x1x2/ D 0

�.��C �2/ D 0 �x20 C �x0x1 C �.x1 C x2/x2 D 0 x30x1x2.x1 C x2/ D 0

��2 D 0 �x0x2 C �x0x1 C �x
2
2 D 0 x20x1x

3
2 D 0

�2� D 0 �x21 C �x
2
2 C �x0x1 D 0 x0x

3
1x

2
2 D 0

��2 D 0 �x0x2 C �x1x2 C �.x
2
0 C x

2
2/ D 0 x0x1x

2
2.x

2
0 C x

2
2/ D 0

�3 D 0 �x21 C �x0x1 C �.x
2
0 C x1x2/ D 0 x0x

3
1.x

2
0 C x1x2/ D 0

� � 0 �x20 C �x
2
1 C �.x0 C x1/

2 D 0 x20x
2
1.x0 C x1/

2 D 0

� � 0 �x20 C �x0x1 C �x0x2 D 0 x40x1x2 D 0

The assertion immediately follows from this correspondence.

Remark 6.10. The above correspondence also follows from the classification of symmet-
ric determinantal representations of plane cubics, which can be found in Table 7 in the
Appendix of [27].

A final remark. Note that any net of conics N can be regarded as a divisor of bide-
gree .1; 2/ in P2 � P2. It defines a Fano threefold X in the family � 2.24. In Section 2
of [30], it is shown that stability of X under the action of PGL.3/ � PGL.3/ agrees with
stability of N under the action of PGL.3/. Here, we further observe that the Jacobian
criterion gives us the following. If X is smooth, then either conditions (ii”) and (iii”) in
Proposition 6.1 hold, or N does not have a base point. In particular, we obtain the follow-
ing result by combining this last observation with Lemma 6.2 and Propositions 6.1, 6.4,
and 6.5.

Proposition 6.11. Let X be a smooth Fano threefold in the family � 2.24. Then X is
always GIT semistable, and X is GIT strictly semistable whenever N contains a double
line.

As a consequence, we can recover Corollary 4.7.8 in [5] by Lemma 4.7.7 in [5] and by
the same argument of Theorem 3.4 in [24] (see also the arguments in Appendix A). There-
fore,X is strictly K-semistable whenever N contains a double line and has no base points.
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A. Chow stability of complete intersections

In this appendix, we extend Corollary 4.4 to the semistable case using a purely algebro-
geometric argument. The precise statement and its proof are given below.

Theorem A.1. LetX � Pn be a complete intersection defined by degree d hypersurfaces
H1; : : : ;Hk , where k � n. If X is Chow (semi)stable, then the linear system L generated
by H1; : : : ;Hk is GIT (semi)stable.

Proof. Suppose theHi are represented by homogeneous polynomials hi , each of degree d ,
and let .h1; : : : ; hk/ denote L. As before, we consider .h1; : : : ; hk/ as a point in the
Grassmannian varietyG parametrizing k-dimensional linear subspaces ofH 0.Pn;O.d//.

Let W � G � H 0.Pn;O.d// be the universal subspace associated with G and let
X � G � Pn be the closed subscheme defined by the ideal generated by the image of
W ˝ O.�d/! OG�Pn . Furthermore, let U � G be the locus of points p such that the
fiber Xp has dimension n � k. Then U is Zariski open, XjU ! U is flat and there exists
a morphism qW U ! Chowk;dk . This morphism is the composition of the natural map
from U to the Hilbert scheme induced by the flat family XjU ! U and the Hilbert–Chow
morphism (cf. Section 5.4 of [23]). We fix an ample line bundle M on Chowk;dk as in
Section 2.5. Now, recall that Chow stability of a cycle is defined as GIT stability of the
corresponding point in Chowk;dk with respect to M .

Let L be an ample generator of Pic.G/ Š Z and let Y be the normalized graph of the
rational map G Ü Chowk;dk induced by q. Note that Y admits an SL.nC 1/-left action
compatible with q. Let p1WY ! G and p2WY ! Chowk;dk be the projections.

Claim. There is an SL.nC 1/-equivariant linear equivalence

(A.1) ap�1L � bE � p
�
2M

for some a 2 Z>0 and b 2 Z�0, where E is a p1-exceptional Cartier (effective) divisor.

Proof of Claim. We first show that there exist a one-parameter subgroup �0 of SL.nC 1/
and a point p0 2U such that the sign of�L.p0;�0/ coincides with that of�M .q.p0/;�0/.
In fact, we can exhibit p0 and �0 such that �0 destabilizes both of p0 and q.p0/ as fol-
lows. Recall that SL.n C 1/ acts on G. Given g 2 SL.n C 1/, g maps .h1; : : : ; hk/ to
.g.h1/; : : : ; g.hk//, where

g.hi /.gx/ D hi .x/ for any x 2 Pn:

Moreover, qWU ! Chowk;dk is SL.nC 1/-equivariant for this action. Consider p0 2 U
to be the point corresponding to the linear system .xd0 ; x

d
1 ; : : : ; x

d
k�1

/ and let �0 be a one-
parameter subgroup of SL.nC 1/ acting on the subspace in Pn spanned by x0; : : : ; xk�1
with weight �.n � k C 1/ and on the subspace spanned by xk ; : : : ; xn with weight k.
Then �0 destabilizes both of p0 and q.p0/.

Now, because �.G/ D 1, we know that there exist some integers a; b 2Z such that
p�2M � ap

�
1L � bE, where E is a p1-exceptional effective Cartier divisor. Indeed, we

consider p1�p
�
2M as a divisor on G and then p1�p

�
2M � aL for some a. Thus, we have

p�2M D ap
�
1L � bE as a divisor for some b. We see that b � 0 by Lemma 3.39 in [20]
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since p�2M � ap
�
1L D �bE is p1-nef. Moreover, by Proposition 1.4 in [23], we may

further assume that the above linear equivalence preserves the SL.nC 1/-linearizations.
Finally, observe that because E is fixed by SL.nC 1/, we can consider OY .�E/ as

an SL.nC 1/-stable subsheaf of OY . Moreover, around p0 2 U we have thatG and Y are
isomorphic via p1. Thus, letting Qp0 2 Y be the point corresponding to p0, we can compare
�p
�
2M . Qp0; �0/ with �ap

�
1L�bE . Qp0; �0/ to conclude a > 0. Note that �0 acts on the fiber

OY .�E/˝ k. Qp0/ D OY ˝ k. Qp0/ trivially since Qp0 62 E. Therefore, (A.1) holds.

Finally, we show that Theorem A.1 indeed follows from our claim. Given any p 2 U
corresponding to .h1; : : : ; hk/ and any arbitrary non-trivial one-parameter subgroup �
of SL.nC 1/, if we let Qp 2 Y be the point corresponding to p, then

a�L.p; �/ D a�p
�
1L. Qp; �/ D �p

�
2M . Qp; �/ � b�OY .�E/. Qp; �/

� �p
�
2M . Qp; �/ > 0; .respectively, � 0/

whenever X is Chow (semi)stable by Theorem 2.1 in [23]. Here, we remark that for any
SL.nC 1/-stable effective Cartier divisorE on Y ,�OY .�E/.y;�/� 0 for any closed point
y2Y and one-parameter subgroup �WC�! SL.nC 1/. Thus, we obtain the assertion.
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